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1 Introduction
In many contexts we want to compute an in a multiplicative group G for an integer n.
For example in public-key cryptography this is a very common operation. One possibility
to do this efficient uses the binary expansion of the integer n = (εL . . . ε0). It is called
Square-and-Multiply method. There we compute

an =
(
. . .
(
(aεL)2 aεL−1

)2
. . .
)2
aε0 .

If εi = 0 the multiplication by aεi is a multiplication by 1 and does not cost anything. So
there is a nontrivial multiplication for every one in the binary expansion of n. The number
of nonzero digits in an expansion is the Hamming weight of the expansion. Additionally
there are L squaring operations.

If we use another digit set D ⊆ Z+ and radix 2 to represent the integer n, then we
have to precompute the values aε for ε ∈ D. Again we have a multiplication for every
nonzero digit of the representation. If the representation of an integer is not unique, we
can choose a representation with a small Hamming weight to make the computation of an
more efficiently.

A similar task is to compute nP in an additive group. Here the method is called
Double-and-Add. Then we have

nP = 2
(
. . .
(
2 (2εLP + εL−1P ) + εL−2P

)
. . .
)

+ ε0P.

Here, every nonzero digit of the representation corresponds to a nontrivial addition and
every digit of the expansion leads to a multiplication by 2.

A negative digit ε in the representation corresponds to a division by a|ε| or a subtraction
of |ε|P . If inversion in the group is time consuming, then the use of negative digits yields
a long precomputation. However there are examples where inverting an element does not
cost a lot of time. One of these examples is the additive group on an elliptic curve, which
is also used in public-key cryptography.

Another problem is the computation of a linear combination of group elements like
mP + nQ for an additive group or ambn for a multiplicative group. A first approach is to
compute mP and nQ separately and add the results. However, there is a more efficient
way of computation. We compute a joint integer representation(

xL . . . x0
yL . . . y0

)
of (m,n)T . Then we can compute

mP + nQ = 2

(
. . .
(

2
(
2(xLP + yLQ) + (xL−1P + yL−1Q)

)
+ (xL−2P + yL−2Q)

)
. . .

)
+ (x0P + y0Q).
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Again the Hamming weight, the number of nonzero columns in the representation, is the
number of nontrivial additions. Here we have to precompute the values xP + yQ for all x,
y ∈ D.

The same computation is done for the linear combination m1P1 + . . .+mdPd. Here we
need the joint integer representation of (m1, . . . ,md)

T with minimal Hamming weight.
Therefore we are interested in the expected value of the minimal Hamming weight when

we use a given digit set. In this thesis we present the expected value, the variance and the
asymptotic distribution for different digit sets and dimensions.

Section 2 gives definitions and known properties of different representations with min-
imal Hamming weight. First in Section 2.1 there are definitions of integer representations
and joint integer representations. Furthermore the Hamming weight of a representation is
defined. Section 2.2 contains properties of the nonadjacent form which is a representation
with digit set {0,±1}. The name of this representation is due to the fact that there are
no two adjacent nonzero digits. In Section 2.3 the nonadjacent form is generalized to the
width-w nonadjacent form which uses a larger digit set. In Sections 2.4 and 2.5 there are
other generalizations of the nonadjacent form. They are called joint sparse form and simple
joint sparse form and they are representations of two dimensional vectors of integers. In all
previous sections we always considered special digits sets. In Sections 2.6 and 2.7 rather
general digit sets are examined, first for the representation of a single integer and later
for the representation of an integer vector. All these types of representations and their
properties are well known.

In Sections 3, 4 and 5 new results for the distribution of the Hamming weight are
presented. The width-w nonadjacent form in Section 3 is asymptotical normally distributed
and the expected value and the variance are stated. Section 4 contains the asymptotic
distribution for representations in dimension one and a rather general digit set. Again the
mean and the variance are computed and the asymptotically normal distribution of the
Hamming weight is proved. In Section 5 rather general digit sets in arbitrary dimension is
examined. There we give a procedure to compute the expected value and the variance of
the Hamming weight for a fixed but rather general digit set. In each section we describe a
transducer to compute the Hamming weight of a given integer or integer vector.

The work on this thesis has been partially supported by the Austrian Science Fund
(FWF): S9606, that is part of the Austrian National Research Network “Analytic Combi-
natorics and Probabilistic Number Theory”.
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2 Definitions and known results
In this section we first define integer representations and the Hamming weight of a repre-
sentation. Then we present different kinds of representations over different digit sets which
have minimal Hamming weight among all representations over the same digit set. We also
prove the existence and uniqueness of these representations. All of this is well known.

In Section 2.2 we will start with a small digit set and dimension one. Then we will
generalize to larger symmetric digit sets in Section 2.3. The next step in Sections 2.4 and 2.5
again uses a small digit set but in dimension two. Then we will introduce a representation
over an asymmetric digit set, first in dimension one in Section 2.6, and in Section 2.7 in
arbitrary dimension.

2.1 Integer representation and weight of representations

Now we want to introduce integer representations and give some facts about them.

Definition 2.1. For a radix r and a digit set D ⊆ Z a representation of an integer n is a
word (εk . . . ε0) ∈ D∗ with n =

∑k
i=0 εir

i.

Thereby D∗ is the set of all finite words over the alphabet D. Depending on the digit
set D the representation of an integer may be impossible, unique or ambiguous. If the
representation of any positive integer is possible, then the digit set D has to contain at
least a complete system of residues modulo r. If there exist integers which have more
than one representation, then the digit set contains one residue modulo r at least twice.
However, there exist digit sets which contain more than a complete system of residues
modulo r, but do not allow every integer to be represented. For example with the digit set
{0, 3, 4} and the radix 2, there is no representation of the integer 1.

We will restrict ourselves to the ambiguous case, since otherwise the representation is
unique or impossible and we want to investigate which representation has some minimality
property. Since the representation of an integer is not unique, we can require the represen-
tation to satisfy some additional properties. This leads to the definition of special types of
representations in the following sections.

Furthermore we demand 0 ∈ D to be a digit. Thus we can extend every representation
to any length k, by prepending 0 in front of the representation without changing the integer
represented. If (εk . . . ε0) is a representation of n, then (0 . . . 0εk . . . ε0) is one too. We will
mainly investigate the case in which the radix r = 2.

Definition 2.2. The radix-r representation with digit set {0, 1, . . . , r−1} is called standard
radix-r expansion. If r = 2 it is called binary expansion.

The standard radix-r expansion exists and is unique for every positive integer.
If we want to represent more than one integer at the same time, we use a joint repre-

sentation.

7



Definition 2.3 (Joint representation). For a radix r, a dimension d and a digit set D ⊆ Z
the dimension-d radix-r joint representation of a vector N ∈ Zd is a word (εk . . . ε0) with
εi ∈ Dd and N =

∑k
i=0 εir

i.

We are mainly interested in the number of nonzero digits of a representation of an
integer or vector.

Definition 2.4 (Hamming weight). The Hamming weight h(εk . . . ε0) of a representation
(εk . . . ε0) is the number of i = 0, . . . , k with εi 6= 0. If εi 6= 0 is a vector, at least one
coordinate of εi is nonzero.

The weight of an integer depends on the representation we use. For example (11) and
(3) are two different radix-2 representations of 3, but the weight is not the same: h(11) = 2
and h(3) = 1. If it is clear in the context which representation is meant, we shortly write
h(n) for the weight of this representation.

2.2 Nonadjacent form

In this section we introduce a representation, called nonadjacent form, which is a unique
integer representation over the digit set {0,±1}. The uniqueness comes from an additional
property.

Definition 2.5 (NAF). The nonadjacent form (short NAF) of an integer n is a radix-2
representation (εk . . . ε0) over the digit set {0,±1} with the following property:

If εi 6= 0, then εi+1 = 0.

This type of integer representation was first introduced by Reitwiesner in [16]. There
he proved the existence, uniqueness and the minimality of the NAF.

Theorem 1. The NAF representation of an integer n exists and is unique.

Proof (cf. [16]). To prove uniqueness we assume that there are two different NAF repre-
sentations (εL . . . ε0) and (δL . . . δ0) of an integer n. Both have the same length, otherwise
we prepend zeros in front of the shorter representation. Without loss of generality we may
assume that ε0 6= δ0. Then we have

ε0 − δ0 = ±(1 + b)

for b ∈ {0, 1}. If b = 1, then ε0 and δ0 are both nonzero. Therefore ε1 = δ1 = 0 because of
the NAF condition. Then we have

(2ε1 + ε0)− (2δ1 + δ0) = ±2 = ±2b.

If b = 0 we have
ε0 − δ0 = ±1 = ±2b.
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Therefore we have

0 =
L∑
i=0

εi2
i −

L∑
i=0

δi2
i =

L∑
i=b+1

εi2
i −

L∑
i=b+1

δi2
i ± 2b

⇒ ±2b =
L∑

i=b+1

εi2
i −

L∑
i=b+1

δi2
i,

but the difference of these sums has to be a multiple of 2b+1. Therefore our assumption is
false and if the NAF representation exists, then it is unique.

To prove existence of such a representation we describe an algorithm to construct it.
If n = 0, the algorithm terminates. If n ≡ 0 mod 2, we choose ε0 = 0. If n is odd, we
choose ε0 ∈ {±1} such that n ≡ ε0 mod 4. Then we construct a representation (εL . . . ε1)
of n−ε0

2
. The representation (εL . . . ε0) is the NAF representation of n. First we prove the

condition of a NAF representation. If ε0 6= 0, then n − ε0 ≡ 0 mod 4 and therefore n−ε0
2

is even and ε1 = 0. Second we have to prove that the algorithm terminates for n 6= 0. We
observe that ∣∣∣∣n− ε02

∣∣∣∣ < |n|
for |n| > 1 and it is obviously true for |n| = 1. Therefore the absolute value of the input
becomes smaller and the algorithm terminates.

Theorem 2. The NAF representation of an integer n has minimal Hamming weight among
all representations of n over the digit set {0,±1}.
Proof (cf. [16]). If we have any representation (εL . . . ε0) of n we describe how to construct
a NAF representation without increasing the weight of the representation. Therefore we
define the property (1) of a representation (εL . . . ε0) and an integer λ ≥ 0

εiεi−1 = 0 for λ ≥ i ≥ 0. (1)

Thereby we assume εl = 0 for l ≥ L or l < 0. If a representation satisfies property (1) for
λ = L, then the representation is a NAF representation. Every representation satisfies the
property for λ = 0.

Let (εL . . . ε0) be a representation of n satisfying property (1) for some λ. We construct
a representation (δL′ . . . δ0) of n satisfying property (1) for λ + 1 without increasing the
weight.

We have ελ+1ελ ∈ {0,±1}. If ελ+1ελ = 0 nothing is to be done, since the representation
already satisfies the property for λ+1. If ελ+1ελ = 1, let µ be a index with λ+2 ≤ µ ≤ L+1
and

εµ 6= εµ−1 = . . . = ελ+2 = ελ+1 = ελ = ±1.

Then we have
µ∑
i=λ

εi2
i = (εµ + ελ)2

µ − ελ2λ.
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Therefore we can replace the digits of the representation without changing the integer
represented as follows:

δµ = εµ + ελ,

δi = 0 for λ < i < µ,

δλ = −ελ,
δi = εi otherwise.

Thereby the weight of the representation does not increase. The new representation satisfies
property (1) for λ+ 1.

If ελ+1ελ = −1, then we have ∓1 = ελ+1 6= ελ = ±1 and

ελ+12
λ+1 + ελ2

λ = 0 · 2λ+1 − ελ2λ.

Therefore we can replace the digits of the representation without changing the represented
integer:

δλ+1 = 0,

δλ = −ελ,
δi = εi otherwise.

Thereby the weight of the representation does not increase and the new representation
satisfies property (1) for λ+ 1.

Of course there may be other representations of an integer, which have minimal weight.
For example (101̄) and (11) are both representations of 3 with radix 2 and have both
minimal weight h(101̄) = h(11) = 2. Note that we write 1̄ to denote −1 for readability.

Since we are interested in the average number of nonzero digits of a NAF representation,
the next theorem proved by Thuswaldner in [19] gives the expected value of the number
of nonzero digits.

Theorem 3. The average number of nonzero digits in a NAF representation is

1

N

∑
n<N

h(n) =
1

3
log2N + φ(log4N) +O(N1−ε)

for ε > 0 small enough. The function φ(x) has period 1.

In [19], the Fourier coefficients of φ(x) also are determined.

2.3 Width-w nonadjacent form

In this section we introduce an integer representation similar to the NAF, but with a larger
digit set. It is also unique and has minimal Hamming weight.
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Definition 2.6 (w-NAF). The width-w nonadjacent form (short w-NAF) of an integer
n is a radix-2 representation (εk . . . ε0) with the digit set Dw := {0,±1,±3, . . . ,±(2w−1 −
3),±(2w−1 − 1)} and the following property:

If εi 6= 0, then εi+1 = . . . = εi+w−1 = 0.

This integer representation was introduced in [6] and [17], but without any proofs. Muir
and Stinson give proofs of existence, uniqueness and minimality of the w-NAF in [14]. We
follow this paper in the first part of this section.

Theorem 4. The w-NAF representation of an integer exists and is unique up to leading
zeros.

Proof (cf. [14]). To prove the uniqueness, we assume that an integer n has two w-NAF
representations (εL . . . ε0) and (δL′ . . . δ0). We can assume that L = L′, otherwise there are
leading zeros in one representation. Furthermore we assume that L is minimal. Therefore
ε0 6= δ0. Thus n is odd, since otherwise ε0 = δ0 = 0. Since the representations are w-NAFs,
we have ε1 = . . . = εw−1 = 0 = δ0 = . . . = δw−1 and therefore n ≡ ε0 ≡ δ0 mod 2w. Since
every residue class modulo 2w has exactly one representative in the digit set, we have
ε0 = δ0. This contradicts our assumption, therefore the w-NAF of an integer is unique.

Next we prove the existence of the w-NAF of an integer n. Therefore we describe an
algorithm which computes the w-NAF of the input n. This is Algorithm 1. It uses the
following two functions

fw(n) =

{
n
2

if n is even,
n−r
2w

else, with r ∈ Dw and n ≡ r mod 2w,

gw(n) =

{
0 if n is even,
0w−1r else, with r ∈ Dw and n ≡ r mod 2w.

Algorithm 1 Algorithm to compute the w-NAF of an integer
Input: An integer n
Output: The w-NAF representation α of n
Set α = () the empty string
while n 6= 0 do

α = (gw(n)α) the concatenation of these strings
n = fw(n)

end while
return α

Algorithm 1 terminates because |fw(n)| < |n|: If n is even, then |fw(n)| = |n
2
| < |n|. If

n is odd, then we have

|fw(n)| =
∣∣∣∣n− r2w

∣∣∣∣ ≤ ∣∣∣ n2w ∣∣∣+
∣∣∣ r
2w

∣∣∣ < ∣∣∣ n
2w

∣∣∣+

∣∣∣∣12
∣∣∣∣ ≤ 2

∣∣∣ n
2w

∣∣∣ < |n|.
11



In the next step we prove that the output of the algorithm is a w-NAF representation
of the input n. It is clear that α is a w-NAF, because of the definition of gw(n). We only
have to prove that α is a representation of n. Let f iw(n) = fw ◦ · · · ◦ fw(n) be the i-th
application of fw. Since the algorithm terminates, there exists an i ≥ 0 with f iw(n) = 0.
We use induction on i to prove the correctness.

If i = 0, then f iw(n) = 0 implies n = 0. The output of Algorithm 1 is the empty string
and the w-NAF representation of n = 0 is (0). Since leading zeros do not matter, the
output is a w-NAF representation of n. If i > 0, let n′ = fw(n) and α′ be the output of
the algorithm on the input n′. Then we have f i−1w (n′) = f iw(n) = 0 and by the induction
hypothesis α′ is a w-NAF representation of n′. Since the result of the input n′ is written
in front of the first digits gw(n) of n, the string α is the concatenation of α′ and gw(n). Let
r be the integer represented by the string gw(n) and l be the length of the string gw(n).
Then α represents the integer 2ln′+ r = n, since n′ = fw(n) = n−r

2l
. Therefore Algorithm 1

is correct and the existence of a w-NAF representation of n follows.

In [14], Muir and Stinson prove the minimality of the w-NAF. To do this, they con-
struct an algorithm to add a small integer to a representation over the digit set Dw. We
first describe this algorithm and prove its correctness. The pseudo code is written in Al-
gorithm 2. Then we prove an inequality for the change of the weight when performing the
algorithm. At last we can give a proof for the minimality of the w-NAF.

Let n := (εL . . . ε0) ∈ D∗w and γ0 ∈ Z with |γ0| < 2w−1. We want to find a representation
m := (δL′ . . . δ0) ∈ D∗w with m = n+ γ0. Furthermore h(δL′ . . . δ0) ≤ h(εL . . . ε0) + 1 should
hold. Therefore we present Algorithm 2. The idea of the algorithm is the following:

We define a sequence γ1, γ2, . . . corresponding to the carry of the addition. Let εl = 0
for l > L. We read εi and γi and write values for δi and γi+1. We assign the following
values to the digits δi for i ≥ 0:

εi mod 2 γi mod 2 δi
0 0 εi
0 1 γi
1 0 εi
1 1 0

The other assignment is γi+1 =
εi + γi − δi

2
. Then we have the following addition with the

carries γi.

. . . ε3 ε2 ε1 ε0
+ . . . γ3 γ2 γ1 γ0

. . . δ3 δ2 δ1 δ0

To prove that the representation of m has digits in Dw, we first examine the carries γi.
We have |εi| < 2w−1 and therefore by induction

|γi+1| =
∣∣∣∣εi + γi − δi

2

∣∣∣∣ < 2w−1

12



for every δi ∈ {0, εi, γi}. If δi = εi or δi = 0, we clearly have δi ∈ Dw. If δi = γi, then γi is
odd and therefore γi ∈ Dw. Therefore the representation of m has only digits in Dw.

This idea is summarized in Algorithm 2. Instead of computing each digit of m sepa-
rately, we just assign m to be equal to n at the beginning and change digits of this first
representation if necessary. Notice that the algorithm does not use any modulo 2w−1 oper-
ations, in fact only modulo 2 operations, although the digit set is a set of representatives
modulo 2w−1.

Algorithm 2 Algorithm to add a small number to a representation over Dw

Input: A representation n = (εL . . . ε0) ∈ D∗w and an integer γ0 with |γ0| < 2w−1

Output: A representation m = (δL′ . . . δ0) ∈ D∗w with m = n+ γ0
δi = εi for all i
i = 0
while γi 6= 0 do

ε = εi mod 2, γ = γi mod 2
if ε = 0 and γ = 1 then

δi = γi
else if ε = 1 and γ = 1 then

δi = 0
end if
γi+1 = εi+γi−δi

2

i = i+ 1
end while

The next lemma proves the correctness of Algorithm 2.

Lemma 1. For the output m = (δL′ . . . δ0) of Algorithm 2 and input n = (εL . . . ε0) ∈ D∗w
and γ0 with |γ0| < 2w−1, the relation m = n+ γ0 is satisfied.

Proof (cf. [14]). Let i∗ ≥ 0 be the value of i when Algorithm 2 stops. We will prove the
lemma by induction on i∗. For i∗ = 0 we have γ0 = 0 and m = n = n+ γ0.

If i∗ > 0, let n′ = (εL . . . ε1) and m′ = (δL′ . . . δ1). Then Algorithm 2 with input n′ and
γ1 produces the output m′. Furthermore the value of i, when the algorithm stops, is i∗−1.
By induction hypothesis we have m′ = n′ + γ1. It follows from γ1 = ε0+γ0−δ0

2
that

2m′ = 2n′ + 2γ1

⇔ (δL′ . . . δ10) = (εL . . . ε10) + 2γ1

⇔ (δL′ . . . δ1δ0) = (εL . . . ε10) + 2γ1 + δ0

⇔ (δL′ . . . δ0) = (εL . . . ε1ε0) + γ0

⇔ m = n+ γ0,

which proves the lemma.
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For using this algorithm in the proof of minimality of the w-NAF, we need another
property of the output of the algorithm. This property is proved in the next lemma.

Lemma 2. Let (δL′ . . . δ0) be the output of Algorithm 2 with input (εL . . . ε0) and γ0. Then
we have h(δL′ . . . δ0) ≤ h(εL . . . ε0) + 1

Proof (cf. [14]). Let i∗ be the value of i when Algorithm 2 terminates. We show that the
sequence t0, . . . , ti∗ with

ti = h(εL . . . εi) + h(γi) + h(δi−1 . . . δ0)

is monotonically decreasing. If we have proved this, then we observe that t0 = h(εL . . . ε0)+
h(γ0) and ti∗ = h(δL′ . . . δ0) since γi∗ = 0 and for all i ≥ i∗ we have δi = εi. Then from
ti∗ ≤ t0 we obtain

h(δL′ . . . δ0) ≤ h(εL . . . ε0) + h(γ0) ≤ h(εL . . . ε0) + 1,

which proves the lemma.
Now we prove the monotonicity of the sequence (ti)i∈N. Since γi+1 = εi+γi−δi

2
, we have

h(γi+1) ≤ h(εi) + h(γi)− h(δi).

This can be proved by a case analysis for δi ∈ {0, εi, γi}. For example, if δi = εi, then
γi+1 = γi

2
. Then the weight of γi+1 and γi is the same.

If we compare
ti = h(εL . . . εi) + h(γi) + h(δi−1 . . . δ0)

and
ti+1 = h(εL . . . εi+1) + h(γi+1) + h(δi . . . δ0),

and cancel every possible digit, we get

ti − ti+1 = h(εi) + h(γi)− h(γi+1)− h(δi) ≥ 0.

Therefore the sequence is monotonically decreasing.

Now we are able to prove the following theorem:

Theorem 5. The w-NAF representation (εL . . . ε0) of an integer n has minimal weight
among all representations (δL′ . . . δ0) of n with the digit set Dw.

Proof (cf. [14]). Assume the contrary. Then there is a w-NAF representation (εL . . . ε0) of
an integer n and a different representation (δL′ . . . δ0) of n with h(δL′ . . . δ0) < h(εL . . . ε0).
We choose n so that the length of the w-NAF representation is minimal. Hence any w-NAF
representation with shorter length has minimal weight.

Because the length of the counterexample n is minimal, we have ε0 6= δ0. Therefore n
is odd and ε0 6= 0 and δ0 6= 0. Therefore the next w − 1 digits of the w-NAF represen-
tation have to be zero. Let n′ = (εL . . . εw) be the remaining digits and m′ = (δL′ . . . δw).
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The representation (εL . . . εw) is a w-NAF representation of n′. Moreover h(εL . . . ε0) =
h(εL . . . εw) + 1.

Next we show that at least two digits of (δw−1 . . . δ0) have to be nonzero. Suppose this
is not true. Since δ0 6= 0, all other digits have to be zero. Therefore

n ≡ ε0 ≡ δ0 mod 2w−1

and ε0 = δ0. This is a contradiction to the minimal length of the counterexample. Thus
h(δw−1 . . . δ0) ≥ 2 and h(δL′ . . . δ0) ≥ h(δL′ . . . δw) + 2.

Now we have
n′ = m′ +

(δw−1 . . . δ0)− (0 . . . 0ε0)

2w
.

We define γ0 := (δw−1...δ0)−(0...0ε0)
2w

, which is an integer. We will show that m′ and γ0 are a
valid input to Algorithm 2. Therefore we must prove |γ0| < 2w−1.

For every digit in Dw we have the upper bound 2w−1 − 1. Therefore

|(δw−1 . . . δ0)| ≤
w−1∑
l=0

(2w−1 − 1)2l = (2w−1 − 1)(2w − 1)

and
|(0 . . . 0ε0)| ≤ 2w−1 − 1.

This gives

|γ0| =
1

2w
|(δw−1 . . . δ0)− (0 . . . 0ε0)| ≤ 2w−1 − 1.

Let (δ′L′′ . . . δ
′
w) be the output of Algorithm 2 when the input is (δL′ . . . δw) and γ0. Then

we have (δ′L′′ . . . δ
′
w) = (δL′ . . . δw) + γ0 = (εL . . . εw) with h(δ′L′′ . . . δ

′
w) ≤ h(δL′ . . . δw) + 1.

If we summarize the above inequalities, we get

h(εL . . . ε0) > h(δL′ . . . δ0)

h(εL . . . εw) + 1 > h(δL′ . . . δw) + 2

h(εL . . . εw) > h(δ′L′′ . . . δ
′
w).

But since (εL . . . εw) is a w-NAF representation of n′ with shorter length than the counterex-
ample and (δ′L′′ . . . δ

′
w) is a representation of n′, we have a contradiction. Our assumption

must be wrong and the w-NAF representation has minimal weight.

A different proof of the minimality of the w-NAF representation is given by Avanzi in
[2].

For the w-NAF representation we give the following theorem for the distribution. It is
proved by Cohen in [5].

Theorem 6. The average weight of the w-NAF representation of length N of an integer
is

N

w + 1
− (w − 1)(w + 2)

2(w + 1)2
+O((1 + ε)−N)

where ε > 0 is small enough.
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2.4 Joint sparse form

Now we want to generalize to higher dimensions. In [18], Solinas introduced a joint integer
representation for d = 2, which has minimal Hamming weight.

Definition 2.7 (Joint sparse form). Let x, y ∈ Z. Then the joint integer representation(
xL . . . x0
yL . . . y0

)
of
(
x
y

)
over the digit set {0,±1} is called joint sparse form, if the following

conditions are satisfied:

1. Of any three consecutive positions, at least one is a double zero.

2. Adjacent terms do not have opposite signs, in other words xj+1xj 6= −1 and
yj+1yj 6= −1.

3. If xj+1xj 6= 0, then yj+1 = ±1 and yj = 0.

4. If yj+1yj 6= 0, then xj+1 = ±1 and xj = 0.

Solinas also proved the following theorem about uniqueness and existence of the joint
sparse form in [18]:

Theorem 7. Every pair of integers (x, y)T has a unique joint sparse form.

Proof (cf. [18]). To prove uniqueness we assume that for (x, y)T there are two different
joint sparse forms (

xL . . . x0
yL . . . y0

)
and

(
x′L . . . x

′
0

y′L . . . y
′
0

)
.

Without loss of generality we can assume that min{|x|, |y|} is minimal. Therefore
(x0, y0)

T 6= (x′0, y
′
0)
T . Furthermore we assume that x0 6= x′0. Then both have to be nonzero

and we can assume x0 = 1, x′0 = −1.
If x ≡ 1 mod 4, we know that x1 = 0 and x′1 is odd. Because of Condition 2 we have

x′1 = −1. By Condition 3 we get y′0 = 0 and y′1 = ±1 and hence y ≡ 2 mod 4. Therefore
we have y0 = 0 and y1 = ±1. So up to now we have the following two beginnings of the
representations: (

. . . 0 1

. . . ±1 0

)
,

(
. . . 1̄ 1̄
. . . ±1 0

)
.

Condition 1 implies that x2 = y2 = x′2 = y′2 = 0. Therefore x ≡ 1 mod 8 due to the left
representation and x ≡ 5 mod 8 due to the right representation. This is a contradiction,
therefore the assumption must be wrong.

If x ≡ 3 mod 4, by the same reasons as above we know the following two beginnings
of the representations (

. . . 0 1 1

. . . 0 ±1 0

)
,

(
. . . 0 0 1̄
. . . 0 ±1 0

)
.
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Algorithm 3 Algorithm to compute the joint sparse form of an integer vector
Input: A vector of integers (x, y)T

Output: Joint sparse form of the input vector:
(
u0,L . . . u0,0
u1,L . . . u1,0

)
1: k0 = x, k1 = y
2: j = 0
3: d0 = d1 = 0
4: while ki + di > 0 for i = 0 or 1 do
5: li = di + ki
6: for i = 0, 1 do
7: if li is even then
8: u = 0
9: else

10: u = −1 + ((li + 1) mod 4)
11: if li ≡ ±3 mod 8 and l1−i ≡ 2 mod 4 then
12: u = −u
13: end if
14: end if
15: ui,j = u
16: end for
17: for i = 0, 1 do
18: if 2di = 1 + ui then
19: di = 1− di
20: end if
21: ki = bki

2
c

22: end for
23: j = j + 1
24: end while
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Therefore x ≡ 3 mod 8 and x ≡ 7 mod 8, which is again a contradiction.
To prove the existence we give Algorithm 3. This algorithm takes two integers x and

y as input and gives back their joint sparse form. Note that n mod k returns the residue
of n modulo k within the set {0, 1, . . . , k− 1}. The existence of a joint sparse form follows
from the correctness of the algorithm.

All operations in the algorithm can be performed if we know the last three bits of the
binary expansions of x and y. The modulo operations are trivial and bki

2
c corresponds to

cutting off the last digit of the expansion. Therefore we can use these expansions as input
to the algorithm instead of the integers themselves.

Algorithm 4 Second algorithm to compute the joint sparse form of an integer vector

Input: A reduced signed joint representation of two integers
(
x
y

)
=

(
xL−1 . . . x0
yL−1 . . . y0

)
Output: Joint sparse form of the input vector:

(
u0,L . . . u0,0
u1,L . . . u1,0

)
1: a0 = x0, b0 = x1, c0 = x2, d0 = 0
2: a1 = y0, b1 = y1, c1 = y2, d1 = 0
3: for j from 0 to L do
4: for i = 0, 1 do
5: if di ≡ ai mod 2 then
6: u = 0
7: else
8: u = −1 + ((di + 2bi + ai + 1) mod 4)
9: if di + 4ci + 2bi + ai ≡ ±3 mod 8 and d1−i + 2b1−i + a1−i ≡ 2 mod 2 then

10: u = −u
11: end if
12: end if
13: ui,j = u
14: Ri,j = (di, ci, bi, ai)
15: end for
16: Sj = (R0,j, R1,j)
17: for i = 0, 1 do
18: di =

di+ai−ui,j
2

19: ai = bi
20: bi = ci
21: end for
22: c0 = xj+3, c1 = yj+3

23: end for

To prove the correctness of the algorithm, we have to generalize Algorithm 3 to an
algorithm which accepts any reduced signed joint representation as input. Thereby a
reduced signed representation is an integer representation with radix 2, digit set {0,±1} and
any two consecutive digits do not have opposite signs. A reduced signed joint representation
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Sj R0,j R1,j

C l0,j even l1,j even
D l0,j ≡ 0 mod 4 l1,j odd
E l0,j ≡ 2 mod 4 l1,j ≡ ±1 mod 8
F l0,j ≡ 2 mod 4 l1,j ≡ ±3 mod 8
G l0,j odd l1,j ≡ 0 mod 4
H l0,j ≡ ±1 mod 8 l1,j ≡ 2 mod 4
J l0,j ≡ ±3 mod 8 l1,j ≡ 2 mod 4
K l0,j odd l1,j odd

Table 1: A partition of the states Sj into eight sets

consists of two reduced signed representations. This leads to Algorithm 4. For two binary
expansions as input both algorithms do the same calculation. The variables Ri,j and Sj
are not necessary for the algorithm, but we need them for the proof. Digits after the left
end of a representation are assumed to be zero.

We examine the variables Ri,j and Si more closely. The variable Si are called states.
The output (u0,j, u1,j) is a function of the state Sj. Hence we can describe the algorithm
like an automaton: In the j-th iteration of the for loop the input is the state Sj and the
output is (u0,j, u1,j) and we go on to state Sj+1.

The next question is which states there are. For the variable Ri,j = (di, ci, bi, ai) there
are 34 = 81 possibilities, but not all of them are allowed because the input is reduced.
Only 51 possibilities remain. For each we define

ki,j := 4ci + 2bi + ai

li,j := di + ki.

The values ki,j and li,j are the same as in Algorithm 3 if the input is an unsigned expansion.
With these definitions we group the states Sj into eight different sets as shown in Table 1.
From now on we will identify the states with the corresponding sets.

Now we describe which state can follow which. Therefore we check the following con-
ditions for all possible values of Sj = (R0,j, R1,j) in Algorithm 4.

• If li,j ≡ 0 mod 4 and l1−i,j is odd, then li,j+1 is even.

• If li,j ≡ 2 mod 4 and l1−i,j is odd, then li,j+1 is odd.

• If li,j is odd and l1−i,j 6≡ 2 mod 4, then li,j+1 is even.

• If li,j ≡ 1 mod 4 and l1−i,j ≡ 2 mod 4, then li,j+1 ≡ 0 mod 4.

• If li,j ≡ 3 mod 4 and l1−i,j ≡ 2 mod 4, then li,j+1 is odd.
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Sj (u0,j, u1,j) Sj+1

C (0, 0) all
D (0,±1) C
E (0,±1) G
F (0,±1) K
G (±1, 0) C
H (±1, 0) D
J (±1, 0) K
K (±1,±1) C

Table 2: All possible transitions from Sj to Sj+1, together with the output (u0,j, u1,j)

Sj consists of u0,j = u1,j = 0? Sj+1

A E,F,H or J No B
B D,G or K No C
C C Yes A,B or C

Table 3: A further grouping of the eight states into three states, together with the successors
and the weight of the output

In combination with Table 1 we obtain the transitions between states Sj and Sj+1 with
the output (u0,j, u1,j) as listed in Table 2. Except for the state C, the successor of a state
Sj is unique. All states can be a successor of the state C.

As a last step we further combine the eight states C to K into three states A, B and
C. This is written in Table 3.

Now we are ready to prove that the output of Algorithm 4 is indeed a joint sparse form
of the input (x, y)T . It is obvious that the output is a signed joint integer representation
of (x, y)T . We now have to prove that it is a joint sparse form.

Condition 1 is satisfied, because for every j at least one of the states Sj−1, Sj and Sj+1

is state C. If Sj−1 6= C, then it is either A or B. In the first case Sj = B and Sj+1 = C.
In the second case Sj = C.

If u0,j 6= 0 and u0,j+1 6= 0, then Sj = J and Sj+1 = K as we can see in Table 2. If we
check all possible cases for R0,j, we obtain u0,j = u0,j+1. Therefore u0,ju0,j+1 6= −1. For
the other coordinate we have the same result and hence Condition 2 is satisfied.

To prove Condition 3, we assume that u0,ju0,j+1 6= 0. Then Sj = J and Sj+1 = K and
Table 2 shows that u1,j = 0 and u1,j+1 = ±1. Condition 4 is proved in the same way.

Another property of the joint sparse form is proved in [18]:

Theorem 8. The joint sparse form of (x, y)T has minimal Hamming weight among all
joint integer representations of (x, y)T over the digit set {0,±1}.
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Proof (cf. [18]). We will prove that the output of Algorithm 4 has smaller or equal Ham-
ming weight than the input. If we have proved this fact, then we are done: Any signed
integer representation is given. If it is reduced, then we take it as input of Algorithm 4 and
we get a joint sparse form with less or equal weight. If it is not reduced, then there is a j
with, say, xjxj+1 = −1. Then we can exchange these two digits (xj+1xj) with (0(−xj+1)).
Thereby we get another signed joint representation of (x, y)T with smaller weight than the
first one. After finitely many such steps, we obtain a reduced signed joint representation
of (x, y)T which we use as input of the algorithm. Therefore the joint sparse form has
minimal weight among all signed integer representations.

To prove that Algorithm 4 does not increase the weight, we define

Wk :=

(
w0,L . . . w0,0

w1,L . . . w1,0

)
with

wi,j :=


ui,j if j < k

xj, if j ≥ k and i = 0

yj, if j ≥ k and i = 1.

Then W0 is the input sequence and WL+1 is the output sequence. The j-th step of the
algorithm replaces Wj by Wj+1.

Now we investigate whether the weight increases or decreases when we replace Wj by
Wj+1. If one of xj and yj is nonzero and u0,j = u1,j = 0, then the weight decreases by 1.
We say, there is a weight loss at step j. If u0,j or u1,j is nonzero and xj = yj = 0, then
the weight increases by 1. This is a weight gain at step j. In all other cases the weight
remains the same.

Next, we have to show that there are not more weight gain steps than weight loss steps.
Therefore we use again the states Sj from the proof of Theorem 7. We group the states in
another way, but first we have to group the variables Ri,j in the following way.

(a) li,j odd, d = 0

(b) li,j odd, d = ±1, b = 0

(c) li,j odd, d = ±1, b = ±1

(d) li,j even, d = 0

(e) li,j ≡ 2 mod 4, d = ±1, b = 0

(f) li,j even, all other cases

The grouping of the states Sj is written in Table 4. There are also the possible successors
of a state Sj. These successors can be verified by looking at each of the cases in Algorithm 4.

The state L consists of exactly the states with a weight loss: If, say, xj 6= 0 and
u0,j = u1,j = 0, then xj ≡ d0 mod 2, since u0,j = 0, and l0,j ≡ xj + d0 mod 2 by
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Sj R0,j and R1,j Sj+1

L both (d), (e) or (f), not both (d) L,M,N or P
M both (b), (c) or (d), not both (d) L or N
N one (a) and the other (a), (c), (d) or (f), or both (d) L or N
P other 12 cases L,M,N or P

Table 4: A grouping of the states according to the change of weight

N

M

L

P

Figure 1: Automaton corresponding to Algorithm 4 with states and transitions listed in
Table 4

definition. Then l0,j is even and d0 = ±1. These are the cases (e) and (f). In the other
coordinate we have l1,j which is even too, but d1 can be anything. These are the cases (d),
(e) and (f).

The state M consists of exactly the states with a weight gain: If, say, u0,j 6= 1 and
xj = yj = 0, then d0 6≡ xj mod 2, since u0,j 6= 0, and l0,j ≡ xj + d0 mod 2. Then l0,j
is odd and d0 = ±1. These are the cases (b) and (c). In the second coordinate we have
l1,j ≡ yj + d1 ≡ d1 mod 2. These are the cases (b), (c) and (d).

At the beginning of the algorithm, we have d0 = d1 = 0. These are the cases (a) and
(d), therefore N is the initial state . At the end of the algorithm ai = bi = ci = 0. These
are the cases (b) and (d), which can be verified by looking at each state.

In Figure 1 the states and the transitions are shown. We can see that every time we
visit the state M , we first have to visit the state L. Therefore the algorithm does not
increase the weight.

The joint sparse form is a generalization of the NAF. If we compute the joint sparse
form of (n, 0)T , the first row will be the NAF of n. However, if we use two NAF representa-
tions and put them together to a joint representation, it will not be a joint representation

with minimal weight. For example the NAF representations of
(

11
2

)
is
(

101̄01̄
00010

)
. This

representation has Hamming weight 4, but the joint sparse form is
(

1011
0010

)
and has Ham-
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ming weight 3.
To compute the distribution of the weight of the joint sparse form, we refer to the next

chapter, where we introduce the simple joint sparse form with the same Hamming weight
as the joint sparse form. In Theorem 10 we give the mean and the variance of the weight.
However, in [18] Solinas also proved that the main term of the density of the Hamming
weight is 1

2
.

2.5 Simple joint sparse form

Now we will define another type of integer representation for dimension d = 2. It was first
introduced by Grabner, Heuberger and Prodinger in [10].

Definition 2.8 (Simple joint sparse form). The simple joint sparse form of a vector

(x, y)T ∈ Z2 is a dimension-2 radix-2 joint integer representation
(
xn . . . x0
yn . . . y0

)
of
(
x
y

)
over the digit set {0,±1} such that

1. If |xi| 6= |yi|, then |xi+1| = |yi+1|.

2. If |xi| = |yi| = 1, then xi+1 = yi+1 = 0.

In [10] the following theorem is proved:

Theorem 9. For any vector (x, y)T ∈ Z2 the simple joint sparse form exists and is unique
up to leading zeros. Furthermore it has minimal weight among all joint integer expansions
of N over the digit set {0,±1}.

Proof (cf. [10]). For the existence we describe an algorithm to construct the simple joint
sparse form. Let x = (xL . . . x0) and y = (yL . . . y0) with xi, yi ∈ {0,±1}. If both numbers
(x, y)T are even, then x0 = y0 = 0. In this case we have a double zero. If both are odd,
we choose (x0, y0)

T such that both x−x0
2

and y−y0
2

are even. Here the next digit will be a
double zero. If x is odd and y is even, or the other way round, then y0 has to be 0 and we
choose x0 such that x−x0

2
≡ y−y0

2
mod 2. Then either the next digit is zero if y

2
is even,

or the digit after the next is a double zero if y
2
is odd. Then we go on with (x−x0

2
, y−y0

2
)T .

Obviously we get a representation of (x, y)T which is a simple joint sparse form. Observe
that of any three consecutive digits at least one is a double zero.

To show uniqueness we assume that
(
xL . . . x0
yL . . . y0

)
and

(
x′L . . . x

′
0

y′L . . . y
′
0

)
are two different

simple joint sparse forms of (x, y)T . Without loss of generality we can assume that L
is minimal. Hence (x0, y0)

T 6= (x′0, y
′
0)
T . Furthermore we can assume that x0 = 1 and

x′0 = −1. Then x1 ≡ x−x0
2
≡ x−x′0

2
− 1 ≡ x′1− 1 6≡ x′1 mod 2. If y is even, then y0 = y′0 = 0

and Condition 1 implies x1 ≡ y1 ≡ y′1 ≡ x′1 mod 2, which is a contradiction. In the other
case, if y is odd, then Condition 2 implies (x1, y1)

T = (0, 0)T and (x′1, y
′
1)
T = (0, 0)T , which

is again a contradiction. Therefore the simple joint sparse form is unique.
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To prove minimality we describe how to convert a simple joint sparse form into a
joint sparse form. Thereby the position of the double zeros does not change and as a
consequence the weight remains the same. By Theorem 8 we know that the joint sparse
form is minimal and therefore the simple joint sparse form is minimal too. The simple joint
sparse form satisfies the Conditions 1, 3 and 4 of the joint sparse form. But it need not
satisfy Condition 2. If xi+1xi = −1 then in a simple joint sparse form we have |yi+1| = 1
and yi = 0. So changing xi+1xi into 0xi+1 does not change the weight of the representation
and the number represented also stays the same as well. By doing a finite number of these
changes, we can convert a simple joint sparse form into a joint sparse form.

The joint sparse form and the simple joint sparse form are not the same in general, but
they have all double zeros at the same positions. Therefore both have the same length and

the same Hamming weight. For example the joint sparse form of
(

7
3

)
is

(
1001̄
0101̄

)
,

but the simple joint sparse form is (
1001̄
11̄01̄

)
.

For the same reason as above the simple joint sparse form generalizes the NAF.
In [10], Grabner, Heuberger and Prodinger compute the distribution of the Hamming

weight of the simple joint sparse form using exponential sums. The probability space on
the pairs of integer is a uniform distribution on all pairs (m,n) with m, n < N for a fixed
integer N . Then the following result holds where we have a better error term here than in
[10].

Theorem 10. The weight of the simple joint sparse form is asymptotically normally dis-
tributed with mean 1

2
log2N and variance 1

16
log2N , that is

P

(
h(m,n)− 1

2
log2N

1
4

√
log2N

< x

)
=

1√
2π

∫ x

−∞
e−

t2

2 dt+O(log−1/4N),

for all x ∈ R.

Proof (cf. [10]). The transducer in Figure 2 computes the Hamming weight of the simple
joint sparse form of the input (m,n)T . The input is the binary expansion of (m,n)T . This
input is read from right to left, from the least significant digit to the most significant one.
The output of the transducer is a sequence of zeros and ones and the number of ones is
the Hamming weight of the simple joint sparse form of the input.

This transducer is a simplification of the transducer in Figure 1 in [10]. Since we are
not interested in the digits of the simple joint sparse form, but rather whether the digit
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1 4 5

7 2 6

8 9 3

(1, 0)T |1

(0, 0)T |0

(1, 1)T |1
(0, 0)T |0(0, 1)T |1

(0, 0)T |0

(1, 0)T |0

(0, 0)T |1

(0, 1)T |1

(1, 0)T |0

(1, 1)T |1
(1, 0)T |0

(0, 0)T |1(1, 1)T |0

(0, 1)T |1

(1, 1)T |0(1, 1)T |1

(0, 1)T |0

(1, 0)T |1

(0, 1)T |0

(0, 0)T |1
(0, 1)T |0

(1, 0)T |1

(1, 1)T |0

(0, 0)T |0 (1, 0)T |0

(1, 1)T |0(0, 1)T |0

(0, 1)T |1
(1, 1)T |1

(0, 0)T |1
(0, 1)T |1

(0, 0)T |1
(1, 0)T |1

(1, 0)T |1
(1, 1)T |1

Figure 2: Transducer to compute the Hamming weight of a simple joint sparse form

is (0, 0)T or not, we write a 0 instead of (0, 0)T and a 1 in all other cases. The second
simplification comes from the following observation: If we look at state s, it does not
matter to which state we go, we always write the same output ε ∈ {0, 1}. Therefore we
can write this output ε when coming to state s instead of when leaving state s. The
resulting transducer is in Figure 2.

We want to calculate f(m,n) := eith(m,n). Therefore we define the matrices Mδ,ε for
each δ, ε ∈ {0, 1}. The (k, l)-th entry of the matrix Mδ,ε is eith if we go from state k to
state l while reading (δ, ε)T and writing h. If there is no transition from k to l with input
label (δ, ε)T , then the entry is 0. With this definition we have the matrices (where z = eit)
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M0,0 =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 z 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 z 0 0
0 z 0 0 0 0 0 0 0


, M0,1 =



0 0 0 0 0 0 z 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 z
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0


,

M1,0 =



0 0 0 z 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0


, M1,1 =



0 z 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 z
0 0 1 0 0 0 0 0 0


.

With these matrices we can rewrite the function f(m,n) in

f(m,n) = ~vT

(
L∏
l=0

Mml,nl

)
M2

0,0~v

with n =
∑L

l=0 2lnl, m =
∑L

l=0 2lml and ~vT = (1, 0, 0, 0, 0, 0, 0, 0, 0). One entry (k, l) of
the product of matrices describes the sum of weight of all paths starting in k, ending in l
with the binary expansion of (m,n)T as labels. The factor M2

0,0 ensures that we stop at
state 1, so that all possible carries are processed. We are interested in the paths starting
and ending in state 1, therefore we multiply by ~vT and ~v.

We define M(m,n) :=
∏L

l=0Mml,nl
. This matrix function is bivariate 2-multiplicative

(see, for example, [3]). Next we define the summatory functions

E(N) =
∑

m,n<N

f(m,n)

and

F (N) =
∑

m,n<N

M(m,n).

Primarily we are interested in E(N), but since E(N) = ~vTF (N)M2
0,0~v we will inves-

tigate the function F (N). First we derive a recursion formula for F (N). The following
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equations hold for F (N)

F (2N) =
1∑

δ,ε=0

∑
2m+δ<2N
2n+ε<2N

M(2m+ δ, 2n+ ε) =
1∑

δ,ε=0

Mδ,εF (N)

and

F (2N + 1) =
1∑

δ,ε=0

∑
2m+δ<2N+1
2n+ε<2N+1

M(2m+ δ, 2n+ ε)

=
1∑

δ,ε=0

Mδ,εF (N) +
∑
n<2N

M(2N, n) +
∑
m<2N

M(m, 2N) +M(2N, 2N).

If we define the matrices

A =
1∑

δ,ε=0

Mδ,ε,

B1,0 = M0,0 +M0,1,

B2,0 = M0,0 +M1,0

and the functions

G1(N) =
∑
n<N

M(N, n),

G2(N) =
∑
m<N

M(m,N),

we have

F (2N) = AF (N),

F (2N + 1) = AF (N) +B1,0G1(N) +B2,0G2(N) +M0,0M(N,N). (2)

The functions Gi(N) also satisfy recurrence relations for i ∈ {1, 2}, similar to the one
of F (N). They are

G1(2N) =
1∑
ε=0

∑
2n+ε<2N

M(2N, 2n+ ε) = B1,0G1(N),

G1(2N + 1) =
1∑
ε=0

∑
2n+ε<2N+1

M(2N + 1, 2n+ ε) = B1,1G1(N) + C1M(N,N),
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and

G2(2N) =
1∑
ε=0

∑
2n+ε<2N

M(2n+ ε, 2N) = B2,0G2(N),

G2(2N + 1) =
1∑
ε=0

∑
2n+ε<2N+1

M(2n+ ε, 2N + 1) = B2,1G2(N) + C2M(N,N),

with B1,1 = M1,0 +M1,1, B2,1 = M0,1 +M1,1, C1 = M1,0 and C2 = M0,1.
By iterating, we get

Gi

(
L∑
l=0

εl2
l

)
=

L∑
l=0

εl

l−1∏
j=0

Bi,εjCi

L∏
j=l+1

Mεj ,εj .

If we insert this last equation into (2) and iterate, we get F (N) = F0(N)+F1(N)+F2(N)
with

F0(
L∑
l=0

εl2
l) =

L∑
l=0

εlA
lM0,0

L∏
p=l+1

Mεp,εp ,

Fi(
L∑
l=0

εl2
l) =

L∑
l=0

εlA
lBi,0

L∑
j=l+1

εj

j−1∏
k=l+1

Bi,εkCi

L∏
k=j+1

Mεk,εk for i = 1, 2.

Next we want to split these equations into two parts. The main part is contributed by
the dominating eigenvalue. The rest will be the error term and is contributed by all other
eigenvalues. Therefore we determine the eigenvalues of all occurring matrices. The matrices
Mδ,ε have the characteristic polynomial −x8(x− 1), independent of z. The eigenvalues are
therefore 0 and 1. The characteristic polynomial of Bi,ε for i = 1, 2 and ε ∈ {0, 1} is
x6(x − 1)(x2 − x − 2z). Hence all eigenvalues of Bi,ε have modulus less or equal then 2.
The characteristic polynomial of A is

x(x− 1)(x2 − x− 2z)2(x3 − x2 − 8zx− 16z2).

At t = 0 we have the largest eigenvalue µ(0) = 4, a zero of the last factor. The second
largest eigenvalue has modulus β(0) < |µ(0)|. Since eigenvalues are continuous, we have
β(t) < |µ(t)| around t = 0 and µ(t) is the dominating eigenvalue of A around t = 0. The
Taylor expansion of µ(t) around t = 0 is

µ(t) = 4 + 2it− 5

8
t2 +O(t3).

Let J = T−1AT be a Jordan decomposition with the eigenvalue µ(t) in top left entry.
Define Λ := Tdiag(µ−1, 0, . . . , 0)T−1 and R := T (J − diag(µ, 0, . . . , 0))T−1. The matrix R
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has a largest eigenvalue with modulus β(t). Also define

Λ0(x0, x1, . . .) =
∞∑
l=0

xlΛ
lM0,0

l−1∐
p=0

Mxp,xp ,

Λi(x0, x1, . . .) =
∞∑
l=0

xlΛ
lBi,0

l−1∑
j=0

xj

l−1∐
k=j+1

Bi,xkCi

j−1∐
k=0

Mxk,xk for i = 1, 2

with
∐b

l=aml = mb ·mb−1 · . . .ma and

R0(εL, εL−1, . . . , ε0) =
L∑
l=0

εlR
lM0,0

L∏
p=l+1

Mxp,xp ,

Ri(εL, εL−1, . . . , ε0) =
L∑
l=0

εlR
lBi,0

L∑
j=l+1

εj

j−1∏
k=l+1

Bi,εkCi

L∏
k=j+1

Mεk,εk for i = 1, 2.

Then we have

Fi

(
L∑
l=0

εl2
l

)
= µ(t)LΛi(εL, εL−1, . . . , ε0, 0

ω) +R(εL, εL−1, . . . , ε0)

for i = 0, 1, 2.
First the functions Λi are defined on the infinite product space {0, 1}N. But we define

Λi for i = 0, 1, 2 to be a function on [0, 1) by

Λi

(∑
l≥1

εl2
−l

)
:= Λi(ε1, ε2, . . .)

where we prefer expansions ending with 0ω to those ending with 1ω.
Altogether we have

E(N) = µlog2NΨ(log2N, t) + ~vTR(N)M2
0,0~v, (3)

where Ψ(log2N, t) = µ−{log2N}~vT (Λ0(2
{log2N})+Λ1(2

{log2N})+Λ2(2
{log2N}))M2

0,0~v and N =∑L
l=0 εl2

l. The function Ψ(x, t) is periodic in x with period 1 and well defined for every
x ∈ R. To show continuity in x we first observe that for x ∈ R such that x = log2 y with y
not a dyadic rational it is clearly continuous. For x = log2 y with y =

∑L
l=1 εl2

−l a dyadic
rational the two one-sided limits exist. Therefore it is enough to compare the limits for
two sequences log2Nk and log2 Ñk with Nk = y2L+k+1 + 2k and Ñk = y2L+k+1 + 2k − 1. If
we insert these two sequences into (3) and subtract, we get

O(N) = E(Nk)− E(Ñk) = N2
kΨ(log2Nk, t)− Ñ2

kΨ(log2 Ñk, t) +O(N
log2 β(t)
k ).
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Hence limk→∞Ψ(log2Nk, t) = limk→∞Ψ(log2 Ñk, t) and the function Ψ(x, t) is continuous
in x.

The function Ψ(x, t) is also continuous in t, because eigenvalues are continuous. Fur-
thermore it is arbitrarily often differentiable since it is dominated by a geometric series.
The first and the second derivative are continuous and periodic in x too, due to the same
argument as above. Therefore Ψ(x, t) and its derivatives with respect to t are O(1).

The error term ~vTR(N)M2
0,0~v is also differentiable with respect to t because it is dom-

inated by a geometric series.
Since we know that the eigenvalues of Mδ,ε and Bi,ε have modulus less or equal than 2,

we can estimate the error term

|~vTR(N)M2
0,0~v| = O(N log2 β(t))

and so

E(N) = N2+ i
2 log 2

t− 1
32 log 2

t2+O(t3)Ψ(log2N, t) +O(N log2 β(t)). (4)

If we insert t = 0 into the last equation, we see that Ψ(log2N, 0) = 1 +O(N−1).
By differentiation of E(N) with respect to t and inserting t = 0 we obtain the following

formula ∑
m,n<N

h(m,n) =
1

2
N2 log2N +N2Ψ1(log2N) +O(N logN)

with Ψ1(x) = i ∂
∂t

Ψ(x, t)|t=0.
The second derivative of E(N) with respect to t at t = 0 gives∑
m,n<N

h2(m,n) =
1

4
N2 log2

2N +
1

16
N2 log2N +N2 log2NΨ1(log2N) +N2Ψ2(log2N)

+O(N log2N)

where Ψ2(x) = − ∂2

∂t2
Ψ(x, t)|t=0.

We can calculate the expected value and the variance of the random variable X = h(N)
now. The expected value is

1

N2

∑
m,n<N

h(m,n) =
1

2
log2N + Ψ1(log2N) +O(N−1 logN)

and the variance is

1

N2

∑
m,n<N

h2(m,n)−
(

1

N2

∑
m,n<N

h(m,n)

)2

=
1

16
log2N + Ψ2(log2N)−Ψ2

1(log2N)

+O(N−1 logN).

To compare the distribution of X with the normal distribution, we use the Berry-Esseen
inequality (see [4, 7]) in a version proved by Vaaler [20].
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Theorem 11 (Berry-Esseen inequality). Let f(x) and g(x) be probability distribution func-
tions with characteristic functions f̂(t) and ĝ(t). Suppose t−1(ĝ(t)− f̂(t)) is integrable on
a neighborhood of zero and f(x) has a density function f ′(x) bounded from above by M .
Then

|g(x)−f(x)| ≤
∫ T

−T
Ĵ(T−1t)

1

2πt

∣∣∣ĝ(t)− f̂(t)
∣∣∣ dt+ 1

2T

(
M +

∫ T

−T
K̂(T−1t)

(
ĝ(t)− f̂(f)

)
dt

)
for all real x, all T > 0 and

Ĵ(t) =

{
πt(1− |t|) cot(πt) + |t| for |t| ≤ 1,

0 else,

K̂(t) =

{
1− |t| for |t| ≤ 1,

0 else.

We need the characteristic function ĝN(t) of the standardized random variable

Z =
X − 1

2
log2N

1
4

√
log2N

.

Therefore we insert t
1
4

√
log2N

instead of t in (4) and multiply the whole equation by

1
N2 exp(−it

1
2
log2N

1
4

√
log2N

). Then we get

ĝN(t) =
1

N2

∑
m,n<N

exp

(
it
h(m,n)− 1

2
log2N

1
4

√
log2N

)

= e−
t2

2

(
1 +O

(
t3

log3/2N

))
Ψ

(
log2N,

t
1
4

√
log2N

)

+ R̃

(
N,

t
1
4

√
log2N

)
e−it2
√

log2N .

Here we have R̃(N, t) := 1
N2~v

TR(N)M2
0,0~v. Since ĝN(t) is a characteristic function, we have

1 = ĝN(0) = ψ0 + r0 (5)

with ψ0 := Ψ(log2N, 0) and r0 := R̃(N, 0). Since we have a dominating eigenvalue around
t = 0 we get R̃(N, t) = O(N−ε) for a small ε > 0. Next we have to estimate the difference
between ĝN(t) and the characteristic function of the normal distribution with mean 0 and
variance 1, which is f̂(t) := e−

t2

2 . For t = o(
√

logN) we have
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∣∣∣ĝN(t)− f̂(t)
∣∣∣ =

∣∣∣∣e− t2

2

(
1 +O

(
t3

log3/2N

))(
ψ0 +O

(
t√

logN

))
+R̃

(
N,

t
1
4

√
log2N

)
e−it2
√

log2N − (ψ0 + r0)e
− t2

2

∣∣∣∣∣
≤
∣∣∣∣e− t2

2 O
(

t√
logN

)
+

(
r0 +O

(
t√

logN

))(
1 +O

(
t
√

logN
))
− r0

∣∣∣∣
≤ O

(
t√

logN

)
+O

(
t
√

logN

N ε

)
= O

(
t√

logN

)
.

Here we used e−
t2

2 ≤ 1, (5) and R̃(N, t) = r0 +O(t) = O(N−ε) around t = 0.
Let gN(x) := P (Z < x) be the distribution function of the random variable Z and

f(x) = 1√
2π

∫ x
−∞ e

− y2

2 dy the distribution function of the normal distribution with mean 0
and variance 1. By the Berry-Esseen inequality, Theorem 11, we have

|gN(x)− f(x)| ≤
∫ T

−T
Ĵ(T−1t)

1

2πt

∣∣∣ĝN(t)− e− t2

2

∣∣∣ dt
+

1

2T

(
1 +

∫ T

−T
K̂(T−1t)

(
ĝN(t)− e− t2

2

)
dt

)
≤
∫ T

−T
O
(

1√
logN

)
dt+

1

2T

(
1 +

∫ T

−T
(1− |T−1t|)O

(
t√

logN

)
dt

)
= O

(
T√

logN

)
+

1

2T
,

because the density function of the normal distribution is bounded from above by 1. If we
choose T = 4

√
logN we get

P

(
h(n)− 1

2
log2N

1
4

√
log2N

< x

)
=

1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)
.

In [10], Grabner, Heuberger and Prodinger also describe a generalization of the sim-
ple joint sparse form for higher dimensions. But we present an other generalization in
Section 2.7.

2.6 Asymmetric digit sets

Up to now we have only considered digits sets which are symmetric around 0, that is if ε ∈
D, then also −ε ∈ D. In [15], Phillips and Burgess present minimal weight representations
over an asymmetric digit set satisfying the following definition.
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Definition 2.9. Let r be a radix, l and u integers and w ≥ 2 an integer. Let D = {a ∈
Z | l ≤ a ≤ u and a 6≡ 0 mod r} ∪ {0} be the digit set. Further following conditions have
to be satisfied:

1. 1− rw−1 ≤ l ≤ 0

2. 1 ≤ u ≤ rw−1 − 1

3. |D| ≥ rw−1 − rw−2 + 1

4. u ≡ −1 mod r

5. If l < 0, then l ≡ 1 mod r.

Conditions 1 and 2 imply 1 ∈ D. Furthermore together with Condition 3 we have
for any n = (εw−2 . . . ε0) over the digit set {0, 1, . . . , r − 1} and a carry c ∈ {0, 1} with
ε0 + c 6≡ 0 mod r at least one of n + c or n + c − rw−1 is contained in D. This also
implies that u− l ≥ rw−1. Conditions 4 and 5 are used to show minimality of the output
of Algorithm 5.

In [15], Phillips and Burgess give Algorithm 5 which computes a representation over D
from a standard radix-r expansion of an integer. They further show that the output has
minimal weight among all representations over the digit set D.

It is clear that the algorithm produces a representation over the digit set D of the input
n. To prove that the output is a minimal weight representation we first investigate the
carry propagation in this digit set in the next lemmas.

Lemma 3. Let (εL . . . ε0) be a representation over the digit set D, i ∈ [0, L] and c ∈
[ l
r−1 ,

u
r−1 ] integers. Then there exists a representation (δL′ . . . δ0) over the digit set D with

(δL′ . . . δ0) = (εL . . . ε0) + cri

and
h(δL′ . . . δ0) ≤ h(εL . . . ε0) + 1.

Proof (cf. [15]). Algorithm 6 computes a representation (δL′ . . . δ0) of (εL . . . ε0) + cri. It
is clearly a representation over the digit set D. To prove the bound for the weight change
we examine the four cases of the if statement.

1. If δi ≡ 0 mod r, then we will set δi = 0. Therefore the weight will be reduced
by one. The carry which propagates to the next digit is δi

r
. Since l ≤ δi ≤ u and

l
r−1 ≤ c ≤ u

r−1 , we know that the new carry c satisfies l
r−1 ≤ c ≤ u

r−1 too. Therefore
the new carry c and i+ 1 is a valid input to the algorithm.

2. If δi > u and δi 6≡ 0 mod r, then we have u < δi ≤ u + u
r−1 . Therefore we have

l < δi − rw−1 < u. Thus δi − rw−1 is a valid digit. There is a carry propagation of 1
to the digit δi+m. Since εi > 0 because δi > u, there is no change of weight at this
position.
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Algorithm 5 Algorithm to compute a minimal weight representation over an asymmetric
digit set
Input: Standard radix-r expansion (εL−1 . . . ε0) of an integer n
Output: Minimal weight representation (δL . . . δ0) of n over the digit set D
s = 0, c = 0
for i = 0 to L− 1 do

if s = 0 then
if εi + c mod r = 0 then

δi = 0
else

x =
∑w−2

j=0 εi+jr
j

if x+ c > u then
δi = x+ c− rw−1
c = 1

else if εi+m = r − 1 and x+ c ≥ l + rw−1 then
δi = x+ c− rw−1
c = 1

else
δi = x+ c
c = 0

end if
s = w − 2

end if
else

δi = 0
s = s− 1

end if
end for
δL = c
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3. If δi < l and δi 6≡ 0 mod r, then we have l + l
r−1 ≤ δi < u. Therefore we have

l < δi + rw−1 < u. Thus δi + rw−1 is a valid digit. There is a carry propagation of −1
to the digit δi+m. Since εi < 0 because δi < l, there is no change of weight at this
position.

4. In all other cases, δi ∈ D and the carry propagation stops. Therefore the algorithm
terminates. If δi = 0, then the weight decreases by one. If δi 6= 0 and εi 6= 0, then
the weight remains the same. If δi 6= 0 and εi = 0, then the weight increases by one.

In all cases the weight of the output only increases by one if the algorithm terminates.
Therefore the inequality

h(δL′ . . . δ0) ≤ h(εL . . . ε0) + 1

holds.

Algorithm 6 Algorithm to add a digit to a representation over an asymmetric digit set
D
Input: Any representation (εL . . . ε0) of an integer n over the digit set D, c ∈ [ l

r−1 ,
u
r−1 ]

Output: Representation of (εL . . . ε0) + cri over the digit set D
δj = εj for all j
while c 6= 0 do

δi = εi + c
if δi ≡ 0 mod r then

c = δi
r

δi = 0
i = i+ 1

else if δi > u then
c = 1
δi = δi − rm
i = i+m

else if δi < l then
c = −1
δi = δi + rm

i = i+m
else

c = 0
end if

end while

Lemma 4. Let (εL . . . ε0) be a representation over the digit set D with εi 6= 0 for an
i ∈ [0, L] and c = ±1. Then there exists a representation (δL . . . δ0) over the digit set D
with

(δL . . . δ0) = (εL . . . ε0) + cri
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and
h(δL . . . δ0) ≤ h(εL . . . ε0).

Proof (cf. [15]). The proof of this lemma follows along the proof of Lemma 3. The differ-
ence to Lemma 3 is that because of Conditions 4 and 5 of our digit set D we are either in
case 4 and the carry does not propagate, or we are in case 1 and set δi = 0. The other two
cases do not occur because if δi 6∈ D, then δi ≡ 0 mod r.

In case 4 the weight is unchanged because εi 6= 0. In case 1 the weight is first decreased
by one and later at the end of the algorithm it may be increased by one. Thus the weight
remains the same too.

Lemma 5. Let z ∈ Z be such that l + lri ≤ z ≤ u + uri for an i ∈ {1, . . . , w − 2}. Then
there exists an integer α with l

r−1 ≤ α ≤ u
r−1 and l ≤ z − αrw−1 ≤ u.

Proof. If l ≤ z ≤ u, then α = 0 is a solution. If u < z ≤ u + uri, then we must have
α > 0. If we can choose an α in the interval

[
l

r−1 ,
u
r−1

]
with u+uri ≤ u+αrw−1, then this

α satisfies z − αrw−1 ≤ u. Thus we need an α satisfying

u

rw−1−i
≤ α ≤ u

r − 1
.

By Condition 4 on the digit set D, there exists an integer c ≥ 1 with u = cr−1. Therefore
we have

u

rw−1−i
≤ u

r
≤ c ≤ u

r − 1
,

and we can choose α = c.
If α also satisfies l ≤ z−αrw−1, then it is the solution stated in the lemma. Otherwise

we know that u− l ≥ rw−1, therefore there exists an integer d ≥ 0 with l ≤ z − drw−1 ≤ u
for z > 0. Then we have α ≥ d. If we use d instead of α, then l

r−1 ≤ 0 ≤ d ≤ α ≤ u
r−1 .

If l+ lri ≤ z < l and l < 0 holds, we can find a solution α as in the case u < z ≤ u+uri.
If l = 0, nothing has to be proved.

Now we can prove the minimality of the output of Algorithm 5 like in [15].

Theorem 12. The output of Algorithm 5 is a minimal weight representation of the input
n over the digit set D.

Proof (cf. [15]). We assume that the output is not always a minimal weight representation.
Let (εL . . . ε0) be the output of Algorithm 5 with input n. Let (δL′ . . . δ0) be a minimal
weight representation of n over the digit set D with h(δL′ . . . δ0) < h(εL . . . ε0). We assume
L to be minimal. Then we have the following five cases. In each case we either find a
contradiction or give a construction for a shorter counterexample.

1. If ε0 = δ0, then we can use (εL . . . ε1) and (δL′ . . . δ1) instead of (εL . . . ε0) and
(δL′ . . . δ0).

2. If δ0 = 0 and ε0 6= 0, ε0 6≡ 0 mod r, but δ0 ≡ ε0 mod r. This is a contradiction.
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3. If δ0 = ε0− rw−1 and δ1 = . . . = δw−2 = 0, then we have δw−1rw−1 + δ0 = εw−1r
w−1 +

ε0 + arw for an integer a and therefore

δw−1 = εw−1 + ar + 1. (6)

By Condition 1 on the digit set D, we have −rw−1 +1 ≤ δ0 = ε0−rw−1 and therefore
ε0 ≥ 0. In Algorithm 5, ε0 was not chosen to be negative, therefore the w-th digit
γw−1 of the standard radix-r expansion of n is not r − 1. Since εw−1 ≡ γw−1 mod r
in the algorithm, we have εw−1 6≡ −1 mod r. Hence (6) implies δw−1 6= 0.

Therefore we can change the least significant digit to δ′0 = δ0 + rw−1 = ε0. Then
we have to find a representation (δ′L′′ . . . δ

′
1) for (δL′ . . . δ1) − rw−1. This is done by

Lemma 4 without increasing the weight. Then we can consider the representations
(δ′L′′ . . . δ

′
1) and (εL . . . ε1) instead of the original ones.

4. If δ0 = ε0 + rw−1 and δ1 = . . . = δw−2 = 0, then we have δw−1rw−1 + δ0 = εw−1r
w−1 +

ε0 + arw for an integer a and therefore

δw−1 = εw−1 + ar − 1. (7)

By Condition 2 on the digit set D, we have rw−1 − 1 ≥ δ0 = ε0 + rw−1 and therefore
ε0 ≤ 0. In Algorithm 5, ε0 was chosen to be negative, therefore the w-th digit γw−1
of the standard radix-r expansion of n is r− 1. Then we will choose εw−1 = 0 in the
algorithm. Hence (7) implies δw−1 6= 0.

Therefore we can change the least significant digit to δ′0 = δ0 − rw−1 = ε0. Then
we have to find a representation (δ′L′′ . . . δ

′
1) for (δL′ . . . δ1) + rw−1. This is done by

Lemma 4 without increasing the weight. Then we can consider the representations
(δ′L′′ . . . δ

′
1) and (εL . . . ε1) instead of the original ones.

5. In all other cases we have δ0 6= 0 and δ0 6= ε0. We will construct a representation
(δ′L′′ . . . δ

′
0) of n without increasing the weight and δ′0 = ε0 or δ′0 = ε0 ± rw−1 and

δ1 = . . . = δw−2 = 0. Then with one of the previous cases we can construct a shorter
counterexample.

Since (εL . . . ε0) is the output of Algorithm 5, we have ε1 = . . . = εw−2 = 0 and
therefore

w−2∑
i=0

δir
i = ε0 mod rw−1.

Thus there is an a ∈ Z with

δ0 − ε0 = arw−1 − δw−2rw−1 − . . .− δ1r.

To construct the representation (δ′L′′ . . . δ
′
0), we first assign δ′i = δi for all i. We start

at i = 1 and stop at i = w − 2. If δ′i = 0, then we do nothing. If δ′i 6= 0, then δ0 − ε0
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is a multiple of ri. We change the digits δ′0 = δ′0 + riδ′i and δ′i = 0. Then we have
reduced the weight by one. Since l+ lri ≤ δ′0 ≤ u+uri is not a valid digit, we have to
find an α ∈ Z with l ≤ δ′0 − αrw−1 ≤ u. By Lemma 5 we can choose α ∈

[
l

r−1 ,
u
r−1

]
.

Then we have a carry α to the digit δ′w−1. By Lemma 3 we can process this carry
with increasing the weight by at most one. So after both steps of changing δ′0 the
weight has decreased by one or is unchanged. Then we go on with the next i = i+ 1.

At the end of this algorithm when i = w − 1, we have δ1 = . . . = δw−2 = 0 and
δ′0 − ε0 = arm. Since δ′0, ε0 ∈ [−rw−1 + 1, rw−1 − 1], we have a ∈ {0,±1}.

So for every counterexample we have constructed a shorter counterexample, which is a
contradiction. Therefore the output of Algorithm 5 is minimal.

In [15], Phillips and Burgess also present the expected value of the weight of a minimal
representation over the digit set D. They use the probability space of all representations
of length k with equal distribution.

Theorem 13. The expected value of the weight of the minimal representation over the

digit set D of length k is
k

w − 1 + pr
r−1

(1 + o(1)) with p =
u− l −

⌊−l
r

⌋
−
⌊
u
r

⌋
rw−1(r − 1)

.

2.7 Joint integer representations with asymmetric digit sets

In the last section we introduced representations over asymmetric digit sets in dimension
one. Now we will generalize to an arbitrary dimension d, and an asymmetric digit set

Dl,u = {a ∈ Z | l ≤ a ≤ u}

for l ≤ 0 and u ≥ 1, as in [11] by Heuberger and Muir. Obviously 0, 1 ∈ Dl,u for any l and
u. We look at dimension-d radix-2 representations. If l = 0, Dl,u only consists of positive
digits. Therefore we can only represent positive integers. Otherwise if l ≤ −1 we also can
represent negative integers, for example by exchanging every 1 for 1̄ in the standard binary
expansion.

The digit set Dl,u contains u− l + 1 digits. We define w to be the unique integer such
that

2w−1 ≤ u− l + 1 < 2w.

We know that w ≥ 2, since Dl,u has at least two elements. Without loss of generality
we can restrict l to be greater than −2w−1. Otherwise we would take the digit set D−u,−l
where we have −2w−1 < −u ≤ −1. Then every representation of a vector N of integers
with digit set Dl,u would correspond to a representation of −N with digit set D−u,−l by
changing the sign of each digit. Thereby the weight of the representation does not change.

The digit set Dl,u contains a complete system of residues modulo 2w−1. Two possibilities
are the sets lower(Dl,u) := {l, l + 1, . . . , l + 2w−1 − 1} and upper(Dl,u) := {u − 2w−1 +
1, . . . , u− 1, u}. If u− l + 1 = 2w−1 these two sets will coincide. Then Dl,u contains every
residue modulo 2w−1 exactly once. Otherwise there will be digits which are unique modulo
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2w−1, these are unique(Dl,u) := {a ∈ Dl,u|u− 2w−1 < a < l + 2w−1}, and digits which are
not unique, these are nonunique(Dl,u) := {a ∈ Dl,u|a ≤ u− 2w−1 or l + 2w−1 ≤ a}. If we
have a number n ∈ Z and we want to compute a digit a ∈ Dl,u such that n ≡ a mod 2w−1,
we have two choices, namely

a = l +
(
n− l mod 2w−1

)
or

a = u−
(
u− n mod 2w−1

)
.

Maybe these two possibilities are the same. If they are different, however, then the
difference is 2w−1. No matter which one we choose, the next w − 2 digits are 0 since
n− a ≡ 0 mod 2w−1.

Next we will define an order on the words over the alphabet {0, 1}. It will be similar
to the lexicographic order, but reading words from right to left.

Definition 2.10 (Colexicographic order).

1. Let (an . . . a0), (bn . . . b0) ∈ {0, 1}∗ be two words of the same length. Then

(an . . . a0) ≺ (bn . . . b0)

if ∃0 ≤ m ≤ n (∀i < m : ai = bi) ∧ am < bm and

(an . . . a0) � (bn . . . b0)

if (an . . . a0) ≺ (bn . . . b0) or (an . . . a0) = (bn . . . b0). If the words are not of the same
length, just prepend zeros in front of the shorter word.

2. For a joint integer representation (εn . . . ε0) of a vector of integers over a digit set D
we define a string (an . . . a0) ∈ {0, 1}∗ with

ai =

{
0 if εi = 0,

1 else.

For two integer representations (εn . . . ε0) and (δn . . . δ0) of two vectors of integers
over the digit set D we say (εn . . . ε0) � (δn . . . δ0) if (an . . . a0) � (bn . . . b0) is true
for the corresponding strings (an . . . a0) and (bn . . . b0).

For example these words are colexicographically ordered:

0 � 10100 � 10 � 1 � 101 � 11.

The following integer representations are colexicographically ordered as well:(
10
20

)
�
(

310
100

)
�
(

430
110

)
�
(

21
10

)
�
(

112
020

)
�
(

032
113

)
.
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As in the previous sections we are interested in integer representations with minimal
weight. In [11], Heuberger and Muir present an algorithm which computes the colexi-
cographically minimal integer representation. At the same time the output has minimal
weight. An integer representation (εn . . . ε0) of an integer vector N over a digit set Dl,u

is colexicographically minimal, if for all integer representations (δm . . . δ0) over Dl,u with∑n
i=0 δi2

i = N we have (εn . . . ε0) � (δm . . . δ0). Algorithm 7 is this algorithm. For sim-
plicity we write n + a, for a vector n and an integer a, and mean that we add a to every
coordinate of the vector n. Furthermore we have the vector M = (m1, . . . ,md)

T .

Algorithm 7 Algorithm to compute the colexicographically minimal and minimal weight
representation
Input: N ∈ Zd, l ≤ 0, u ≥ 1, N has to be nonnegative if l = 0
Output: (εL−1 . . . ε0) a colexicographically minimal, minimal weight representation of N
1: L = 0
2: while N 6= 0 do
3: if N ≡ 0 mod 2 then
4: A = 0
5: else
6: A = l + ((N − l) mod 2w−1)
7: Iunique = {j ∈ {1, 2, . . . , d} | aj ∈ unique(Dl,u)}
8: Inonunique = {j ∈ {1, 2, . . . , d} | aj ∈ nonunique(Dl,u)}
9: M = (N − A)/2w−1

10: if mj ≡ 0 mod 2 for all j ∈ Iunique then
11: for j ∈ Inonunique such that mj is odd do
12: aj = aj + 2w−1

13: end for
14: else
15: for j ∈ Inonunique such that mj ≡ u+ 1 mod 2w−1 do
16: aj = aj + 2w−1

17: end for
18: end if
19: end if
20: εL = A
21: N = (N − A)/2
22: L = L+ 1
23: end while
24: return εL−1 . . . ε0

The if branch in line 3 of Algorithm 7 makes the digit at position L a zero column if
possible. If this is not possible, the else branch in line 5 chooses a smallest digit which
is congruent to the input. In the inner if and else branches the algorithm checks if we
should change any non-unique digits. In the if statement in line 10 we check whether we
can make the (w − 1)-st digit after the current digit zero. If this is not possible we check
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in the else statement in line 14 whether we can increase the redundancy at the (w− 1)-st
digit after the current digit by changing any non-unique digits at the current position.

In the following lemma we prove that Algorithm 7 terminates.

Lemma 6. For an input vector N ∈ Zd, where N is nonnegative if l = 0, Algorithm 7
terminates.

Proof (cf. [11]). First let l < 0. Then max{u, |l|} ≤ u − l − 1 < 2w−1 − 2. We show that
‖N‖∞ is overall decreasing. Here ‖N‖∞ = max{|nj|} is the maximum norm of N .

If A = 0, then ‖(N − A)/2‖∞ = ‖N/2‖∞ < ‖N‖∞. If A 6= 0, ‖N‖∞ does not decrease
in the next step, but it is decreased after w−1 steps. In the steps in between we have zero
digits, since N ≡ A mod 2w−1. If ‖N‖∞ ≥ 2, the weight decrease is because of

‖(N − A)/2w−1‖∞ ≤ (‖N‖∞ + max{u, |l|})/2w−1
< (‖N‖∞ + 2w − 2)/2w−1

≤ ‖N‖∞.

If ‖N‖∞ = 1, the algorithm chooses A = N , because all entries of N belong to the digit
set Dl,u. Therefore A is a colexicographically minimal representation of N , since we can
not choose the least significant digit of the representation to be 0. Hence Algorithm 7
terminates for l < 0.

If l = 0, N has to be nonnegative at the beginning. We will show that N will never be
negative during the runtime of the algorithm. Since all digits are nonnegative (N − A)/2
will decrease and the algorithm terminates.

To show that N is never negative, we observe that this could only happen if nj < u,
that is nj is a digit. If the algorithm chooses nj as a digit of the representation, the j-th
coordinate will become zero, which does not matter. But if nj + 2w−1 is also a digit and
the algorithm chooses this digit, then the j-th coordinate would become negative. In this
case nj ∈ nonunique(Dl,u) and nj ∈ lower(Dl,u). Since we first choose the digit from
the lower part, we have mj = 0 in line 9 of Algorithm 7. Since u ≥ 2w−1, we do not have
0 ≡ mj ≡ u + 1 mod 2w−1. Therefore we do not change anything in the if branch in
line 10 nor in the else branch in line 14 and the algorithm chooses the digit nj.

Since the output of Algorithm 7 obviously is a representation of N over the digit set
Dl,u, we have to show that the output is a colexicographically minimal representation.
Therefore there are the next lemmas from [11].

Lemma 7.

1. Let (εL . . . ε0) be a colexicographically minimal representation of a vector N ∈ Zd,
then (εL . . . ε1) is a colexicographically minimal representation of (N − ε0)/2.

2. Let (εL . . . ε0) be a minimal weight representation of a vector N ∈ Zd, then (εL . . . ε1)
is a minimal weight representation of (N − ε0)/2.

41



Proof (cf. [11]).

1. Suppose (εL . . . ε1) is not a colexicographically minimal representation of (N − ε0)/2.
Let (δL′ . . . δ1) be a colexicographically minimal representation of (N − ε0)/2. Then
we have (δL′ . . . δ1) ≺ (εL . . . ε1) and therefore (δL′ . . . δ1ε0) ≺ (εL . . . ε1ε0). Since both
(δL′ . . . δ1ε0) and (εL . . . ε1ε0) are representations ofN , this contradicts the minimality
of (εL . . . ε0).

2. Suppose (εL . . . ε1) is not a minimal weight representation of (N−ε0)/2. Let (δL′ . . . δ1)
be a minimal weight representation of (N − ε0)/2. Then we have h(δL′ . . . δ1) <
h(εL . . . ε1) and therefore h(δL′ . . . δ1ε0) < h(εL . . . ε1ε0). Since both (δL′ . . . δ1ε0) and
(εL . . . ε1ε0) are representations of N , this contradicts the minimality of (εL . . . ε0).

This first lemma does not make use of any properties of Dl,u. Therefore it is true for
any digit set D, in contrast to the next lemmas.

Lemma 8. For any representation (εw−2 . . . ε0) with εj ∈ Dd
l,u, the equation

(εw−2 . . . ε0) = x2w−1 + y

has an integer solution (x, y) with x, y ∈ Dd
l,u.

Proof (cf. [11]). If the result is true for d = 1, we can solve the equation for each coordinate
separately. Therefore we only look at one coordinate. All integers between l2w−1 + l and
u2w−1 + u can be expressed as x2w−1 + y with x, y ∈ Dl,u. Since l ≤ 0 and u ≥ 1, we have

l2w−1 + l ≤
w−2∑
i=0

l2i ≤ (εw−2 . . . ε0) ≤
w−2∑
i=0

u2i ≤ u2w−1 + u,

and thus (εw−2 . . . ε0) can be expressed in this a way.

Lemma 9. For any a ∈ Dd
l,u and any representation (0εL−1 . . . ε1ε0) with εj ∈ Dd

l,u, there
exists a representation (δL . . . δ0) with δj ∈ Dd

l,u such that

(δL . . . δ0) = (0εL−1 . . . ε0) + a

and
h(δL . . . δ0) ≤ h(0εL−1 . . . ε0) + 1.

Proof (cf. [11]). We just use the classical algorithm for addition in each coordinate. There
can be a carry which is bounded by l and u. Therefore the carry propagation stops if we
reach the first zero from the right. Thus there is at most one zero column of (0εL−1 . . . ε0)
changed into a nonzero column. This is the first zero column from the right. Hence the
weight increases by at most one.
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Lemma 10.

1. Let (εL . . . ε0) be a colexicographically minimal representation of N ∈ Zd over the
digit set Dl,u, then every nonzero column of this representation must contain an odd
digit.

2. Every vector N ∈ Zd has a minimal weight representation over digit set Dl,u, where
each nonzero column contains an odd digit.

Proof (cf. [11]).

1. Assume the representation (εL . . . ε0) contains a nonzero column with only even digits.
We can assume that ε0 is this specific column. Let the (t+ 1)-st column be the first
zero column from the right, then we have the representation (0εt−1 . . . ε0) with εi 6= 0
for i < t. By Lemma 9 we know that there exists a representation (δt . . . δ1) with

(δt . . . δ1) = (0εt−1 . . . ε1) +
ε0
2
.

Now we can replace (0εt−1 . . . ε0) by (δt . . . δ10) in the representation (εL . . . ε0) of N
and we get a colexicographically strictly smaller representation ofN which contradicts
our assumptions.

2. Let (εL . . . ε0) be a minimal weight representation of N with a nonzero column con-
sisting of only even digits. We can assume that ε0 6= 0. Let εt be the first zero column
from the right. So we have (0εt−1 . . . ε0). By Lemma 9 there is a representation

(δt . . . δ1) = (0εt−1 . . . ε1) +
ε0
2

and
h(δt . . . δ1) ≤ h(0εt−1 . . . ε1) + 1.

Therefore we have
h(δt . . . δ10) ≤ h(0εt−1 . . . ε1ε0)

and when we exchange these two representations, we again obtain a minimal weight
representation.

Lemma 11.

1. Let (εL . . . ε0) be a colexicographically minimal representation of a vector N ∈ Zd
over the digit set Dl,u. If εj 6= 0, then εj+1 = . . . = εj+w−2 = 0.

2. Every vector N ∈ Zd has a minimal weight representation over the digit set Dl,u

where there are at least w − 2 zero columns in front of each nonzero column.
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Proof (cf. [11]).

1. Assume the result is false for N . Let (εL . . . ε0) be a representation of N . We can
assume that ε0 6= 0 and one of the digits εw−2, . . . , ε1 is nonzero too. By Lemma 8
there exist x, y ∈ Dd

l,u such that

(εw−2 . . . ε0) = x2w−1 + y.

With this solution x, y we can construct a representation of N which is colexicograph-
ically less than the original one. This is a contradiction to the fact that (εL . . . ε0) is
colexicographically minimal.

We have

N = (εL . . . εw−1εw−2 . . . ε0)

= (εL . . . εw−1)2
w−1 + (εw−2 . . . ε0)

= ((εL . . . εw−1) + x) 2w−1 + y

= (δL+1 . . . δw−10 . . . 0y),

where the addition (0εL . . . εw−1) + x = (δL+1 . . . δw−1) is done by Lemma 9.

2. We construct the same new representation as above:

N = (εL . . . ε0) = (δL+1 . . . δw−10 . . . 0y).

By Lemma 9 we further know that

h(δL+1 . . . δw−1) ≤ h(0εL . . . εw−1) + 1

and
h(0 . . . 0y) ≤ h(εw−2 . . . ε0)− 1

since on the right hand side there are at least two nonzero digits in the representation.
Therefore the new representation has weight

h(δL+1 . . . δw−10 . . . 0y) ≤ h(εL . . . ε0).

Thus it is a minimal weight representation again.

Now we have all prerequisites to prove the minimality of the output of Algorithm 7.

Theorem 14.

1. For any input N ∈ Zd, the output of Algorithm 7 has minimal weight.

2. For any input N ∈ Zd, the output of Algorithm 7 is a colexicographically minimal
representation.
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Proof (cf. [11]).

1. Let N be a vector of integers for which the output of Algorithm 7 has not minimal
weight. We choose N such that the output (εL . . . ε0) of Algorithm 7 has minimal
length. Let (δL′ . . . δ0) be a minimal weight representation of N . We can assume that
ε0 6= δ0, since otherwise N−ε0

2
would be a smaller counterexample to the algorithm.

Furthermore by Lemmas 10 and 11 we can assume that (δL′ . . . δ0) has at least one
odd coordinate in every nonzero digit and that any nonzero digit is preceded by at
least w − 2 zero columns. If N ≡ 0 mod 2, then ε0 = δ0 = 0, since every nonzero
digit of the minimal weight representation contains at least one odd coordinate and
the algorithm chooses ε0 = 0. But this contradicts our choice of N , therefore N 6≡ 0
mod 2. Because in both representations any nonzero column is preceded by w − 2
zero columns we have the two representations

(εL . . . εw−1 0 . . . 0︸ ︷︷ ︸
w−2

ε0) and (δL′ . . . δw−1 0 . . . 0︸ ︷︷ ︸
w−2

δ0).

Therefore we have ε0 ≡ δ0 mod 2w−1 but ε0 6= δ0. If Dl,u consists of exactly 2w−1

digits, then nonunique(Dl,u) is empty and this contradicts these conditions on ε0
and δ0. In this case we have proved that the output of the algorithm has minimal
weight.

From now on we assume that nonunique(Dl,u) is not empty. Next we show that the
digits εw−1 and δw−1 are nonzero. If δw−1 = 0, then N ≡ δ0 mod 2w and Algorithm 7
would choose ε0 = δ0 since there is no other possibility. Therefore δw−1 6= 0 and
δw = . . . = δ2w−3 = 0 and we have the representation

(δL′ . . . δ2w−2 0 . . . 0︸ ︷︷ ︸
w−2

δw−1 0 . . . 0︸ ︷︷ ︸
w−2

δ0)

of N .

We write aj = (a1,j, . . . , ad,j)
T to denote the coordinates of aj.

Now assume εw−1 = 0. Then ε0 ≡ δw−12
w−1 + δ0 mod 2w and thus

δ′w :=
δw−1

2
+
δ0 − ε0

2w

is a vector of integers. Furthermore for all i the entry δ′i,w of δ′w is in Dl,u since

l − 1 ≤ l

2
− 1 <

δi,w−1
2

+
δi,0 − εi,0

2w
<
u

2
+ 1 ≤ u+ 1.

The strict inequalities follow from the fact that δi,0 − εi,0 = ±2w−1 if they are not
equal. If we set δ′w−1 = 0, δ′0 = ε0 and for all other digits δ′j = δj, then we get the
representation

(δ′L′ . . . δ
′
w+1δ

′
wδ
′
w−1δ

′
w−2 . . . δ

′
1δ
′
0) = (δL′ . . . δ2w−2 0 . . . 0︸ ︷︷ ︸

w−3

δ′w 0 . . . 0︸ ︷︷ ︸
w−1

ε0)
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of N . Since the weight of this new representation and of the minimal weight rep-
resentation is the same, the new representation is a minimal weight representation
of N too. Therefore we have a shorter counterexample N−ε0

2
which contradicts our

choice of N . Therefore εw−1 6= 0 and εw = . . . = ε2w−3 = 0.

Now we examine the integer vector N−ε0
2w−1 . We have

N − ε0
2w−1

= (εL . . . ε2w−2 0 . . . 0︸ ︷︷ ︸
w−2

εw−1)

= (δL′ . . . δ2w−2 0 . . . 0︸ ︷︷ ︸
w−2

δw−1) +
δ0 − ε0
2w−1

.

Every coordinate of the vector δ0−ε0
2w−1 is in {0,±1}. Now we have to perform the

addition (δL′ . . . δ2w−20 . . . 0δw−1) + δ0−ε0
2w−1 . Thereby we only have to change the digit

δw−1 as we will prove. The result (δL′ . . . δ2w−20 . . . 0δ
′′
w−1) of the addition has the same

weight as (δL′ . . . δ2w−20 . . . 0δw−1) and is therefore a minimal weight representation
of N−ε0

2w−1 . But we have

h(εL . . . ε2w−2 0 . . . 0︸ ︷︷ ︸
w−2

εw−1) < h(δL′ . . . δ2w−2 0 . . . 0︸ ︷︷ ︸
w−2

δ′′w−1) (8)

which is a contradiction to our choice of N .

To prove that we only have to change the digit δw−1 in the addition

(δL′ . . . δ2w−20 . . . 0δw−1) +
δ0 − ε0
2w−1

,

we consider three cases. In each case we only look at one coordinate i. If δi,0−εi,0
2w−1 = 0,

nothing changes in the addition. If δi,0−εi,0
2w−1 = 1, we only have a problem if δi,w−1 = u.

Then we would have a carry since u+ 1 6∈ Dl,u. We have

δi,w−1 + 1 ≡ εi,w−1 mod 2w−1

⇒ u+ 1 ≡ εi,w−1 mod 2w−1

⇒ εi,w−1 = u− 2w−1 + 1.

Thus εi,w−1 is at the border of the unique digits. Additionally we have εi,0 ∈
nonunique(Dl,u) since εi,0 6= δi,0 and εi,0 ≡ δi,0 mod 2w−1. But this combination
is impossible in Algorithm 7, since it would change a non-unique digit to increase
redundancy at the next nonzero digit. Therefore we will never have to add 1 to the
digit u.

If δi,0−εi,0
2w−1 = −1 we only have a carry if δi,w−1 = l. Since the difference is −1, we have

εi,0 = 2w−1 + δi,0, thus εi,0 ∈ upper(Dl,u). We further have εi,w−1 = l + 2w−1 − 1
since εi,w−1 ≡ δi,w−1 − 1 ≡ l − 1 mod 2w−1. But Algorithm 7 would choose εi,0 ∈
lower(Dl,u) and only change it if the column εw−1 can be made 0 or the redundancy
can be increased. These conditions do not occur since εw−1 6= 0 and εi,w−1 6= u−2w−1.
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2. The proof of 2 is the same as the proof of 1, only (8) has to be changed. There we
argue as follows: The two representations of N−ε0

2w−1 satisfy

(δL′ . . . δ2w−2 0 . . . 0︸ ︷︷ ︸
w−2

δ′′w−1) ≺ (εL . . . ε2w−2 0 . . . 0︸ ︷︷ ︸
w−2

εw−1).

Therefore we have constructed a shorter counterexample which contradicts our choice
of N .

Now we know that every colexicographically minimal representation has minimal weight,
since all have the same weight and the output of Algorithm 7 is at the same time colexi-
cographically minimal and has minimal weight.

The combinatorial characterization of the colexicographically minimal integer represen-
tation will be presented in the following theorem (which is Theorem 6.1 in [11]).

Theorem 15. Let N ∈ Zd. Then there is exactly one representation (εn . . . ε0) (up to
leading zeros) of N over the digit set Dl,u such that the following conditions are satisfied:

1. Each column εj is zero or contains an odd digit.

2. If εj 6= 0 for some j, then εj+w−2 = . . . = εj+1 = 0.

3. If εj 6= 0 and εj+w−1 6= 0 for some j, then

(a) there is an i ∈ {1, . . . , d} such that εi,(j+w−1) is odd and εi,j ∈ unique(Dl,u),
(b) if εi,j ∈ nonunique(Dl,u), then εi,(j+w−1) 6≡ u+ 1 mod 2w−1,
(c) if εi,j ∈ upper(Dl,u) ∩ nonunique(Dl,u), then εi,(j+w−1) ≡ u mod 2w−1.

Moreover, this representation is the output of Algorithm 7 on input N .

Proof (cf. [11]). We can see that the output of Algorithm 7 satisfies these conditions be-
cause of the decisions made in the algorithm. From this and the correctness of the algorithm
the existence of such a representation follows.

To show uniqueness, we assume that for an integer vector N there exist two different
representations (εL . . . ε0) and (δL′ . . . δ0) which satisfy the conditions of the theorem. We
choose N such that the minimum of the lengths of the representations is minimal. Thus
ε0 6= δ0. If ε0 = 0, then Condition 1 implies that δ0 = 0. Therefore ε0 and δ0 are both
nonzero. Condition 2 implies ε1 = . . . = εw−2 = δ1 = . . . = δw−2 = 0. Hence ε0 ≡ δ0
mod 2w−1. Therefore for all coordinates i with εi,0 ∈ unique(Dl,u) we have εi,0 = δi,0.

The digits εw−1 and δw−1 cannot both be zero, otherwise ε0 ≡ δ0 mod 2w which implies
ε0 = δ0. Without loss of generality εw−1 6= 0. Let i be the index described in Condition 3a.
Then we have εi,0 = δi,0 ∈ unique(Dl,u) and εi,w−1 ≡ δi,w−1 ≡ 1 mod 2. Hence, δw−1 6= 0
either. Condition 2 implies εw = . . . = ε2w−3 = δw = . . . = δ2w−3 = 0. Then we have

δw−1 ≡ εw−1 +
ε0 − δ0
2w−1

mod 2w−1. (9)
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Since ε0 6= δ0 there is a coordinate i with εi,0 ∈ upper(Dl,u) ∩ nonunique(Dl,u)
and δi,0 = εi,0 − 2w−1. Then Condition 3c implies εi,w−1 ≡ u mod 2w−1. With (9) we
get δi,w−1 ≡ u + 1 mod 2w−1. But this is a contradiction of Condition 3b since δi,0 ∈
nonunique(Dl,u).

For d = 1 we can simplify our digit set Dl,u: Because of Theorem 15, Condition 1 we
do not have any even εi 6= 0 in the representation of an integer. Therefore we can assume
l and u to be odd, and we can use the digit set D := {a ∈ Dl,u | a = 0 ∨ a odd}. Now we
see that this digit set is slightly more general than the digit set in Section 2.6, since for
example u = 2w − 3 and l = −1 are also allowed.

This type of joint integer representation generalizes the w-NAF. For d = 1, l = −2w−1+
1 and u = 2w−1−1 we have the simplified digit setD = {0,±1, . . . ,±(2w−1−3),±(2w−1−1)}
and Conditions 2 and 3a guarantee that there is only one nonzero digit in every block of
length w.

It also generalizes the simple joint sparse form. For d = 2, l = −1 and u = 1 we have
w = 2. Condition 3a implies, if xi = ±1 and yi = ±1, then xi+1 = yi+1 = 0. If |xi| 6= |yi|
and εi+1 = 0, then we have |xi+1| = |yi+1|. If |xi| 6= |yi| and εi+1 6= 0, then εi 6= 0 and
εi+1 6= 0. Therefore Conditions 3a and 3b and εi = (0,±1)T (or the other way round)
imply εi+1 = (±1,±1)T , hence |xi+1| = |yi+1|.

But the colexicographically minimal integer representation presented in this section
does not generalize the joint sparse form, since the joint sparse form is different from
the simple joint sparse form and this colexicographically minimal integer representation is
unique. Nevertheless the joint sparse form is also colexicographically minimal, since it has
all double zeros at the same positions as the simple joint sparse form.

In [11], Heuberger and Muir also derived a limit law for the distribution of h(n). They
consider the probability space over all representations of length N with uniform distribu-
tion.

Theorem 16. Let the random variable XN be the weight of the colexicographically minimal
representation over the digit set Dl,u of length at most N . Then there are constants el,u,d
and vl,u,d such that the expected value and the variance of XN are

el,u,dN +O(1) and vl,u,dN +O(1).

For d = 1 we have el,u,1 =
1

w − 1 + λ
and vl,u,1 =

(3− λ)λ

(w − 1 + λ)3
, where

λ =
2(u− l + 1)− (−1)l − (−1)u

2w
.

Furthermore the random variable XN satisfies the central limit law

lim
n→∞

P

(
XN − el,u,dN√

vl,u,dN
≤ x

)
=

1√
2π

∫ x

−∞
e−

t2

2 dt.
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1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

Figure 3: Transducer to compute the Hamming weight of a w-NAF representation

3 Asymptotic distribution of the weight of a w-NAF
In this section we will present the asymptotic distribution of the Hamming weight of the
w-NAF representation. Therefore we construct a transducer which computes the Hamming
weight of the w-NAF of the input.

Lemma 12. The transducer in Figure 3 calculates the weight h(n) of the w-NAF of a
number n given in binary expansion. Thereby the output is a series of 0 and 1 and the
weight h(n) is the number of 1.

Proof. Let n =
∑L

j=0 2jnj with nj ∈ {0, 1} be the standard binary expansion of n and
(εk . . . ε0) be the w-NAF representation of n. If n ≡ 0 mod 2, then ε0 = 0 and we start
the transducer again with input n

2
. Otherwise ε0 6= 0 and the weight h(ε0) = 1. Since

we have a w-NAF representation, the next w − 1 digits ε1 = ε2 = . . . = εw−1 = 0, no
matter what the corresponding nj, j = 1, . . . , w − 1 are. The sign of the digit ε0 depends
on nw−1 mod 2. If nw−1 ≡ 0 mod 2, then ε0 > 0 and we can just restart the transducer
with n−ε0

2w
. If nw−1 ≡ 1 mod 2, then ε0 < 0 and we therefore have a carry of 1. As long as

we read a 1, we pretend to have read a 0, and the carry stays the same. When we read a
0, we pretend to have read a 1 and the carry vanishes.

We want to compute the average weight of w-NAF representation. Therefore we assume
the following probabilistic model on the discrete space {n ∈ Z | 0 ≤ n < N}, where N ∈ Z
is a fixed number. The probability measure is the uniform distribution on this space.

Theorem 17. The weight h(n) of the w-NAF of the integer n is asymptotically normally
distributed with mean log2N

w+1
+O(1) and variance 2

(w+1)3
log2N +O(1), that is

P

 h(n)− log2N
w+1√

2
(w+1)3

log2N
< x

 =
1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)
for all x ∈ R.
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The remainder of this section consists of the proof of Theorem 17.
We calculate the exponential function f(n) := eith(n). The computation follows along

the proof of Theorem 6 in [10]. We define the following matricesMε for each digit ε ∈ {0, 1}:
the (k, l)-th entry is equal to eith if reading an ε in state k means writing an h and going
to state l, or it is 0 if there is no edge from state k to l with input label ε. So we obtain
the two matrices

M0 =



0 1 0 0 0 0
... . . . . . . 0

...
...

0 · · · 0 1 0 0
0 0 · · · 0 1 0

0
... . . . ... 1 0

z 0 · · · 0 0 0


, M1 =



0 1 0 0 0 0
... . . . . . . 0

...
...

0 · · · 0 1 0 0
0 0 · · · 0 0 1

z
... . . . ... 0 0

0 0 · · · 0 0 1


.

Thereby the labels of the states in the transducer in Figure 3 correspond to the enu-
meration of the rows and columns of the matrices and z = eit.

Now we can rewrite the function f(n) into

f(n) = ~vT
L∏
l=0

Mnl
·Mw

0 ~v,

where ~vT = (0, . . . , 0, 1, 0) is the w-th unit vector and n =
∑L

l=0 2lnl is the binary expansion
of n. The product describes all possible paths from any state to any other state, using
edges with input labels corresponding to the input n. The exponent of the entries of the
matrix product is the sum of output labels on this paths. Since we are interested in paths
starting and ending in state w, we multiply by ~vT from the left and ~v from the right. The
factor Mw

0 is due to the fact that we want to stop at state w, but maybe the input n is
not of the correct length to stop there. So we just append w zeros at the end of the input,
since we need at most w steps reading 0 to get to the state w.

We define M(n) :=
∏L

l=0Mnl
. The function M(n) is 2-multiplicative (see, for example

[3]), that is

M

(
L∑
l=0

2lnl

)
=

L∏
l=0

M(nl).

Furthermore we define the following summatory functions

E(N) :=
∑
n<N

eith(n),

F (N) :=
∑
n<N

M(n).

Next we want to find some recursion relation for F (N). By the 2-multiplicativity we
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have

F (2N) =
1∑
ε=0

∑
2n+ε<2N

M(2n+ ε)

=
1∑
ε=0

MεF (N)

and for N ≥ 1 we have

F (2N + 1) =
1∑
ε=0

∑
2n+ε<2N+1

M(2n+ ε)

=
1∑
ε=0

Mε

∑
n<N+ 1−ε

2

M(n)

=
1∑
ε=0

MεF (N) +M0M(N).

With

A := M0 +M1 =



0 2 0 · · · 0 0

0 0 2
. . . ...

...
... . . . . . .
0 · · · 0 2 0 0
0 · · · 1 1
z 0 · · · 1 0
z 0 · · · 0 1


we have

F (2N) = AF (N),

F (2N + 1) = AF (N) +M0M(N)

and by iterating we obtain

F

(
L∑
l=0

2lεl

)
=

L∑
l=0

εlA
lM0

L∏
j=l+1

Mεj .

Now we want to split this formula into two parts. One part is coming from the dominat-
ing eigenvalue. The other part, coming from the other eigenvalues, will be the remainder
term. The characteristic polynomial of M0 and M1 is (−1)w+1xw(x − 1) and therefore
independent of z, which is obtained by Laplace expansion. The eigenvalues of the matrices
M0 and M1 are therefore 0 and 1. Thus the interesting matrix is A.
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w 2 3 4 5 6 7 8 9 10
β(0) 1 1.41421 1.64512 1.77055 1.84348 1.8886 1.91797 1.9379 1.95189

Table 5: Values of β(0), modulus of the second largest eigenvalue of A at t = 0 for
w = 2, . . . , 10

The underlying graph of the transducer in Figure 3 is strongly connected and the matrix
A is positive at t = 0. So we can use the theorem of Perron-Frobenius (see, for example,
[13]). Since we can reach every node with exactly w steps starting at node w, and we can
reach the node w starting from any node with exactly w steps, the adjacency matrix A
is primitive at t = 0 (since A2w > 0). Therefore we know that the dominating eigenvalue
of the adjacency matrix A is unique at t = 0. Since eigenvalues are continuous, we have
β(t) < |µ(t)| around t = 0 where µ(t) is the dominating eigenvalue and β(t) is the modulus
of the second largest eigenvalue. In other words, µ(t) is the dominating eigenvalue.

With Laplace expansion we get the characteristic polynomial of A

(x− 1)(xw − xw−1 − 2w−1eit).

At t = 0 we have a solution x = 2. We have µ(0) = 2, because for |x| > 2 we have

|xw−1 + 2w−1| = |xw−1| ·
∣∣∣∣∣1 +

(
2

x

)w−1∣∣∣∣∣ < |xw−1| · 2 < |xw|
by the triangle inequality. Thus there cannot be a greater eigenvalue.

The value of β(0) depends on w. In Table 5 the values for β(0) for some small w can
be found. The Taylor expansion of µ(t) around t = 0 is

µ(t) = 2 +
2i

w + 1
t− w + 3

(w + 1)3
t2 +O(t3).

Let T−1AT = J be a Jordan decomposition of A with the eigenvalue µ(t) in the top
left entry: J1,1 = µ(t). To split the formulas, we define Λ := Tdiag(µ−1, 0, . . . , 0)T−1 and
R = T (J − diag(µ, 0, . . . , 0))T−1. Then Al = µLΛL−l + Rl holds for l ≤ L. The largest
eigenvalue of the matrix R has modulus β. We also define

Λ(x0, x1, . . .) :=
∞∑
l=0

xlΛ
lM0

l−1∐
p=0

Mxp ,

R(εL, . . . , ε0) :=
L∑
l=0

εlR
lM0

L∏
p=l+1

Mεp ,
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where
∐b

l=aml = mb ·mb−1 · . . . ·ma. The function Λ is continuous on the infinite product
space {0, 1}N0 . Altogether we have

F

(
L∑
l=0

2lεl

)
= µ(t)LΛ(εL, . . . , ε0, 0

ω) +R(εL, . . . , ε0).

We can define R to be a function on N. The function Λ is defined on the infinite product
space {0, 1}N, but we can define Λ on the interval [0, 1) by

Λ

(∑
l≥1

εl2
−l

)
= Λ(ε1, ε2, . . .),

where we prefer representations ending on 0ω to representations ending on 1ω if there is a
choice. Then we get

E(N) = ~vTF (N)Mw
0 ~v = µlog2NΨ(log2N, t) + ~vTR(N)Mw

0 ~v, (10)

with Ψ(log2N, t) = µ−{log2N}~vTΛ(2{log2N})Mw
0 ~v.

Since the eigenvalues of Mε are 0 and 1 and the largest eigenvalue of R has modulus
β(t), we know the error term ∣∣~vTR(N)Mw

0 ~v
∣∣ = O(N log2 β(t))

and the following expression for E(N)

E(N) = N1+i/((w+1) log 2)t−1/((w+1)3 log 2)t2+O(t3)Ψ(log2N, t) +O(N log2 β(t)). (11)

The function Ψ(x, t) is periodic in x with period 1 and is well defined for all x ∈ R+.
Therefore Ψ(x, t) = O(1). To prove continuity in x we first note that continuity is obvious
for x ∈ R with x = log2 y where y is not a dyadic rational. To prove it for x = log2 y with
y =

∑L
l=1 εl2

−l a dyadic rational, we observe that the two one-sided limits exist. Next we
prove that they are the same. Therefore we look at the two sequences Nk = y2L+k+1 + 2k

and Ñk = y2L+k+1 + 2k − 1. Then

lim
k→∞

2{log2Nk} = (�ε1ε2 . . . εL10ω) and lim
k→∞

2{log2 Ñk} = (�ε1ε2 . . . εL01ω).

If we insert these two sequences in (10) we get

O(1) = E(Nk)− E(Ñk) = NkΨ(log2Nk, t)− ÑkΨ(log2 Ñk, t) +O(N
log2 β(t)
k ),

and hence limk→∞Ψ({log2Nk}) = limk→∞Ψ({log2 Ñk}). Therefore Ψ(x, t) is continuous
in x.

In t, Ψ(x, t) is also continuous, because the eigenvalues of a matrix are continuous. Fur-
thermore the function Ψ(x, t) is arbitrarily often differentiable in t, because it is dominated
by a geometric series.
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Furthermore the error term ~vTR(N)Mw
0 ~v is also differentiable with respect to t because

it is dominated by a geometric series.
If we insert t = 0 in (11), we get the value of Ψ(log2N, 0) = 1 +O(N log2 β(0)−1).
Differentiating E(N) with respect to t and inserting t = 0 produces∑

n<N

h(n) =
1

w + 1
N log2N +NΨ1(log2N) +O(N log2 β(0) logN),

with Ψ1(x) = −i ∂
∂t

Ψ(x, t)|t=0. Differentiating once more produces∑
n<N

h2(n) =
1

(w + 1)2
N log2

2N +
2

(w + 1)3
N log2N

+
2

w + 1
N log2NΨ1(log2N) +NΨ2(log2N) +O(N log2 β(0) log2N),

with Ψ2(x) = − ∂2

∂t2
Ψ(x, t)|t=0. Both functions Ψ1(x) and Ψ2(x) are continuous with respect

to x and periodic with period 1 due to the same arguments as above. Therefore they are
bounded.

From these two equations we can compute the expected value and the variance of the
random variable X = h(n). The expected value is

1

N

∑
n<N

h(n) =
1

w + 1
log2N + Ψ1(log2N) +O(N log2 β(0)−1 logN),

and the variance is

1

N

∑
n<N

h2(n)−
(

1

N

∑
n<N

h(n)

)2

=
2

(w + 1)3
log2N −Ψ1(log2N)2

+ Ψ2(log2N) +O
(
N log2 β(0)−1 log2N

)
.

Now we can calculate the characteristic function ĝN(t) of the standardized random
variable

Z =
X − log2N

w+1√
2

(w+1)3
log2N

.

With this we can compare the asymptotic distribution of Z with the normal distribution.
For this we use Vaaler’s version [20] of the Berry-Esseen inequality, Theorem 11.

First we have to compute the characteristic function of Z for t = o(
√

logN). We do

so by multiplying (10) with
1

N
exp

−it log2N
w+1√

2
(w+1)3

log2N

 and inserting
t√

2
(w+1)3

log2N
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instead of t:

ĝN(t) =
1

N

∑
n<N

exp

it h(n)− log2N
w+1√

2
(w+1)3

log2N


= e−

t2

2

(
1 +O

(
t3

log3/2N

))
Ψ

log2N,
t√

2
(w+1)3

log2N


+ R̃

N, t√
2

(w+1)3
log2N

 exp

(
−it
√

(w + 1) log2N

2

)
,

where R̃ (N, t) = 1
N
~vTR(N)Mw

0 ~v. Since ĝN(t) is a characteristic function, we have

1 = ĝN(0) = ψ0 + r0 (12)

with ψ0 := Ψ(log2N, 0) and r0 := R̃(N, 0). We know that r0 = O (N−ε) for some ε >
0, since log2 β(0) < 1. Furthermore we know that R̃(N, t) = O(N−ε), since there is a
dominating eigenvalue around t = 0.

We also know that the characteristic function of the normal distribution with mean
0 and variance 1 is f̂(t) := exp(− t2

2
). Now we look at the difference between these two

characteristic functions∣∣∣ĝN(t)− f̂(t)
∣∣∣ =

∣∣∣∣e− t2

2

(
1 +O

(
t3

log3/2N

))(
ψ0 +O

(
t√

logN

))

+ R̃

N, t√
2

(w+1)3
log2N

 exp

(
−it
√

(w + 1) log2N

2

)
− (ψ0 + r0)e

− t2

2

∣∣∣∣∣∣
≤ e−

t2

2 O
(

t√
logN

)
+

∣∣∣∣(r0 +O
(

t√
logN

))(
1 +O

(
t
√

logN
))
− r0

∣∣∣∣
≤ O

(
t√

logN

)
+O

(
t
√

logN

N ε

)
+O

(
t√

logN

)
= O

(
t√

logN

)
, (13)

where we used (12), e−
t2

2 ≤ 1 and R̃(N, t) = r0 +O (t) = O(N−ε) for some ε > 0 around
t = 0. Let

gN(x) := P

 h(n)− log2N
w+1√

2
(w+1)3

log2N
< x


be the distribution function of the variable Z and f(x) := 1√

2π

∫ x
−∞ e

− y2

2 dy be the nor-
mal distribution with mean 0 and variance 1. Since the density function of the normal
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distribution is bounded from above by 1, the Berry-Esseen inequality, Theorem 11, implies

|gN(x)− f(x)| ≤
∫ T

−T
Ĵ(T−1t)

1

2πt

∣∣∣ĝN(t)− e− t2

2

∣∣∣ dt
+

1

2T

(
1 +

∫ T

−T
K̂(T−1t)

(
ĝN(t)− e− t2

2

)
dt

)
.

Now we estimate the integral on the right hand side with Ĵ(t) ≤ 1, e−
t2

2 ≤ 1 and (13):

|gN(x)− f(x)| ≤
∫ T

−T

1

t
O
(

t√
logN

)
dt+

1

2T

(
1 +

∫ T

−T

(
1−

∣∣T−1t∣∣)O( t√
logN

)
dt

)
≤ O

(
T√

logN

)
+

1

2T
.

If we choose T = 4
√

logN , we get

P

 h(n)− log2N
w+1√

2
(w+1)3

log2N
< x

 =
1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)
.
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4 Asymmetric digit sets in dimension one
In this section we investigate minimal weight representations with asymmetric digit sets.
We will give the asymptotic distribution of the minimal Hamming weight. In [11], Heuberger
and Muir present an algorithm for constructing d-dimensional joint representations in base
2 with minimal weight. First we will restrict ourselves to d = 1. Later in Section 5 we will
describe how to generalize the result to arbitrary d.

For definitions see Section 2.7. Algorithm 3 in [11] computes a minimal weight joint
representation for arbitrary d. In the case of d = 1, some simplifications can be done. First
of all, even digits, except 0 will not be used, therefore u is assumed to be odd. As we only
want to compute the weight of the representation, we sometimes can abbreviate the while
loop. This leads to Algorithm 8.

Algorithm 8 Algorithm to compute the minimal weight of a representation over the digit
set Dl,u in dimension one
Input: Integers n, l ≤ 0, u > 0, u odd, n ≥ 0 if l = 0
Output: Minimal weight of a representation of n with digits in Dl,u

1: h = 0
2: while n 6= 0 do
3: if n ≡ 0 mod 2 then
4: a = 0
5: h = h+ 0
6: m = n

2

7: else
8: a = l + ((n− l) mod 2w−1)
9: h = h+ 1

10: m = n−a
2w−1

11: if m ≡ 1 mod 2 and (n− l) mod 2w−1 ≤ u− l − 2w−1 then
12: a = a+ 2w−1

13: m = m− 1
14: end if
15: end if
16: n = m
17: end while
18: return h

Now we want to construct a transducer, doing the same calculation as Algorithm 8. It
will look similar to the transducer in Figure 3. We start at some state 0. Then there is
some vertical block of states (0, 0)i, (1, 0)i, (0, 1)i and (1, 1)i for i = 1, . . . , w−1. After this
block we either go back to state 0, or to a similar state 1, or again to the block of states
(see Figure 5). We call the states 0 and 1 the beginning states. Their labels signify the
carry which is to be processed. The state 0 is also the final state.

The block of states corresponds to the if statement in line 11 in Algorithm 8. In this
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line we have to check the inequality (n−l) mod 2w−1 ≤ u−l−2w−1. A first step to this aim
is to compare n+ l̃ ≤ ũ with l̃ := −l and ũ := u− l− 2w−1. Therefore we use Automaton 4
in Figure 4.

This automaton takes three binary expansions of the integers a, b and c as input. It
answers the question whether a+ b ≤ c is true. The states are (s, t) with s, t ∈ {0, 1}. The
label s signifies the carry of the addition a+ b which still has to be processed. The label t
corresponds to the truth value of the expression (a + b) mod 2i > c mod 2i where i is the
number of read digits up to now. So the automaton accepts the input if it stops in state
(0, 0) where there is no carry anymore and a+ b > c is false. The initial state is (0, 0).

Therefore there is a path from (0, 0) to (s, t) in Automaton 4 with input labelαi−1 . . . α0

βi−1 . . . β0
γi−1 . . . γ0


if and only if

s =

⌊
(αi−1 . . . α0) + (βi−1 . . . β0)

2i

⌋
and t = [((αi−1 . . . α0) + (βi−1 . . . β0)) mod 2i > (γi−1 . . . γ0)]. Here we use Iverson’s nota-
tion, that is [expression] is 1 if expression is true and 0 else. From this the rules for the

transitions follow. There is a transition (s, t)
(α,β,γ)T−−−−−→ (s′, t′) if and only if s′ =

⌊
α+β+s

2

⌋
and t′ = [(α + β + s) mod 2 > γ − t].

Next we examine the binary expansions of ũ and l̃. Since we have assumed that l >
−2w−1, we know that the length of the binary expansion of l̃ is at most w−1. Furthermore
−1 ≤ ũ < 2w−1. In the case ũ = −1 the set nonunique(Dl,u) is empty and we have no
choices for the digits, therefore we will neglect this case. Then the length of the binary
expansion of ũ is at most w − 1. Let l̃ = (lw−2 . . . l0) and ũ = (uw−2 . . . u0) be the binary
expansions.

Now we can verify n + l̃ mod 2w−1 ≤ (uw−2 . . . u0) by checking the label t of the state
(s, t) after reading w − 1 digits from the binary expansion of (n, l̃, ũ)T in Automaton 4. If
t = 0, then the inequality is true, otherwise it is false. Since the length of ũ is less than
or equal w − 1 there are no digits of ũ left. Only a possible carry of the addition n + l̃ is
left. This carry is the label s of the current state (s, t). Therefore in fact we have checked
n+ l̃ mod 2w−1 ≤ ũ. To ensure that we read exactly w−1 digits, the transducer in Figure 5
has w− 1 copies of the four states of Automaton 4. The transitions start in a state of the
i-th copy and go to an appropriate state of the (i+ 1)-th copy while reading the i-th digit
of the expansion.

In the if statement in line 11 in Algorithm 8 we have to check the other condition
m ≡ 1 mod 2 too. Let (s, t)w−1 be the current state at the end of the block of states. We
know that m = (n+l̃)−(n+l̃) mod 2w−1

2w−1 , therefore the least significant digit of m is simply the
next digit of the addition n + l̃. Since there are no digits of the expansion of l̃ left, we
only have to look at the next digit of n and consider the carry s. Thus we have m ≡ s+ ε
mod 2.
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0, 0 0, 1

1, 0 1, 1

(0, 1, 0)T

(1, 0, 0)T

(0, 0, 1)T

(1, 0, 1)T

(0, 1, 1)T

(1, 1, 0)T

(1, 1, 1)T

(1, 1, 0)T

(0, 0, 1)T

(0, 0, 0)T

(0, 0, 1)T

(1, 1, 0)T

(1, 1, 1)T(0, 0, 0)T

(0, 0, 0)T , (0, 0, 1)T

(0, 1, 1)T , (1, 0, 1)T

(1, 0, 1)T , (0, 1, 1)T

(1, 0, 0)T , (0, 1, 0)T

(1, 1, 1)T

(0, 1, 0)T , (1, 0, 0)T

(0, 1, 1)T , (1, 0, 1)T

(0, 0, 0)T

(1, 1, 1)T , (1, 1, 0)T

(1, 0, 0)T , (0, 1, 0)T

Figure 4: Automaton 4 to compare three integers a, b and c, if a+ b ≤ c

If the inequality of the if statement is satisfied, that is if t = 0, then whatever digit ε we
read next, the transducer starts from a beginning state again. If m is even, then the next
written digit is a zero anyway. If m is odd, we can change the digit in the representation
(because it is non-unique) and m becomes even too. We only have to remember the carry.
If s = 0 or s = 1 and we read ε = 0 then there will be no carry propagation and we start
at state 0. If s = 1 and we read ε = 1, then there is a carry propagation and we start at
state 1.

If the inequality is not satisfied, that is if t = 1 and m ≡ s + ε mod 2 is not even,
then we have to start with the w− 1 transitions of Automaton 4 immediately. If m is even
however, then the transducer starts from a beginning state again. In both cases we have
to consider the carry propagation as well.

At state s ∈ {0, 1} we stay in state s as long as we read s. If we read 1 − s we start
with the w − 1 transitions of Automaton 4.

To summarize we have the following transitions in the transducer in Figure 5 for s, s′,
t, t′, ε ∈ {0, 1} and i ∈ {1, . . . , w − 2}:

• s ε|0−→ s if s = ε.

• s ε|1−→ (s′, t′)1 if s = ε and (s, 0)
(ε,l0,u0)T−−−−−→ (s′, t′) is a transition in Automaton 4.

• (s, t)i
ε|0−→ (s′, t′)i+1 if (s, t)

(ε,li,ui)
T

−−−−−→ (s′, t′) is a transition in Automaton 4.

• (s, t)w−1
ε|0−→ s′ if t = 0 or ε+ s ≡ 0 mod 2, and s′ = b ε+s

2
c.
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0 1

0, 01 1, 01 0, 11 1, 11

0, 0w−1 1, 0w−1 0, 1w−1 1, 1w−1

0 |1

0, 1 |0

0 |0

0 |0

1 |0

1 |0

1 |1

1 |1 0 |1

0 |0 1 |0

Figure 5: Transducer to compute the weight of a minimal weight representation with digits
in Dl,u

0 1

1, 01

0, 03 1, 03

1, 02

1 |1 0 |1

0, 1 |0
0 |0

1 |0

0, 1 |0

1 |0
0 |0

0 |0 1 |0

Figure 6: Transducer to compute the weight of a minimal weight representation with digits
in D−3,11

• (s, t)w−1
ε|1−→ (s′, t′)1 if t = 1, ε+s ≡ 1 mod 2 and (s, 0)

(ε,l0,u0)T−−−−−→ (s′, t′) is a transition
in Automaton 4.

We note that there is only one accessible state in the first row, because the transitions
0

1|1−→ (s, t)1 and 1
0|1−→ (s, t)1 have both the same target state. This target state depends

on l and u.

Example 4.1. For l = −3 and u = 11 we have w = 4, l̃ = (011)2 and ũ = u− l− 2w−1 =
(110)2. The transducer can be seen in Figure 6, where all non-accessible states are gray.

The next theorem states the properties of the distribution of the weight.

Theorem 18. The weight h(n) of the colexicographically minimal and minimal weight
representation over the digit set Dl,u of the integer n is asymptotically normally distributed
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with mean
1

w + cn
2w−1

log2N +O(1)

and variance
(2− cn

2w−1 )(1 + cn
2w−1 )

(w + cn
2w−1 )3

log2N +O(1),

that is

P

 h(n)− 1
w+ cn

2w−1
log2N√

(2− cn
2w−1 )(1+

cn
2w−1 )

(w+ cn
2w−1 )

3 log2N

< x

 =
1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)

for all x ∈ R with

cn = |{a ∈ nonunique(Dl,u) | a ≡ 1 mod 2}|.

The remainder of this section consists of the proof of Theorem 18. The proof is similar
to the proof of Theorem 17. We define matrices Mε for ε ∈ {0, 1} for the transducer in
Figure 5 as above. The order of the states is (0, 0)1, (1, 0)1, (0, 1̄)1, (1, 1̄)1, . . . , (0, 0)w−1,
(1, 0)w−1, (0, 1̄)w−1, (1, 1̄)w−1, 0, 1.

M0 =



0 M(0,l1,u1) 0 0 0 0
... . . . . . . 0

...
...

0 · · · 0 M(0,lw−2,uw−2) 0 0
~0 ~0 · · · ~0 1 0

~0
... . . . ... 1 0

~0 1 0
z~a 0 0
~0 1 0

z~a ~0 · · · ~0 0 0


,

M1 =



0 M(1,l1,u1) 0 0 0 0
... . . . . . . 0

...
...

0 · · · 0 M(1,lw−2,uw−2) 0 0
~0 ~0 · · · ~0 1 0

~0
... . . . ... 0 1

z~a 0 0
~0 0 1
z~a 0 0
~0 ~0 · · · ~0 0 1


.
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Here 0 is a 4×4 zero matrix, ~0 = (0, 0, 0, 0), ~a is the first row vector of the matrixM(1,l0,u0)

and z = eit. The matrices M(γ,δ,ε), with γ, δ, ε ∈ {0, 1}, are the matrices of Automaton 4:

M(0,0,0) =


1 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0

 , M(0,0,1) =


1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

 ,

M(0,1,0) = M(1,0,0) =


0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

M(1,1,0) =


0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 1

 , M(1,1,1) =


0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1

 ,

M(0,1,1) = M(1,0,1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0

 .

Example 4.2. The matrix A = M0 + M1, with the non-accessible states, in Example 4.1
is

A =



0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 z 0 0 0 0 0 0 0 0 0 0 1 0
0 z 0 0 0 0 0 0 0 0 0 0 0 1
0 z 0 0 0 0 0 0 0 0 0 0 1 0
0 z 0 0 0 0 0 0 0 0 0 0 0 1



.

Its characteristic polynomial is (x− 1)x9(x4 − x3 − 8z) and its eigenvalues at t = 0 are 2,
0.239± 1.628i, −1.478, 1 and 0 with algebraic multiplicity 9. The Taylor expansion of the
largest eigenvalue around t = 0 is

µ(t) = 2 +
2i

5
t− 7

125
t2 +O(t3).
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Next we define the functions f(n), F (N), E(N) and M(N) as above. Then we have

f(n) = ~vT
L∏
l=0

Mnl
·M2w

0 ~v.

The factor M2w
0 is due to the fact that for some u and l we have to go through the block

twice, to finish the computation at state 0. We have the same recursion formula for F (N)

F (2N) = AF (N),

F (2N + 1) = AF (N) +M0M(N),

and the following explicit formula for F (N)

F

(
L∑
l=0

2lεl

)
=

L∑
l=0

εlA
lM0

L∏
j=l+1

Mεj .

Now we want to investigate the eigenvalues of the matrices Mε for ε ∈ {0, 1} and
A = M0 +M1. First we use the theorem of Geršgorin (see [8]), to get an upper bound for
the eigenvalues. For the matrices Mε the union of the Geršgorin discs is the closed disc
B(0, 1), with center 0 and radius 1. Therefore all eigenvalues have modulus less than or
equal 1. For the matrix A the union of the Geršgorin discs is B(0, 2). Hence all eigenvalues
have modulus less than or equal 2. Since ~x = (1, . . . , 1)T is a solution to the equation
(A− 2I)~x = 0 at t = 0, the matrix A has an eigenvalue 2 at t = 0.

If we want to apply the theorem of Perron-Frobenius (see, for example, [13]), we have
to get rid of the non-accessible states. A state is called non-accessible if there is no path
from the initial state 0 to this state. Suppose we have already done this, then we just look
at the accessible states with the corresponding matrix Ã. The underlying graph of these
states is strongly connected and we can get from any node to any other node with exactly
4w steps. Hence Ã4w > 0 at t = 0 and Ã is a primitive matrix at t = 0. By the theorem
of Perron-Frobenius and the continuity of eigenvalues the dominating eigenvalue of Ã is
unique around t = 0.

What happens with the other states? We just rewrite the matrix A with a permutation
of the rows and columns. First there should be the accessible states with the same order
as before, and then there should be the non-accessible states with the same order as before
as well. Then the permutation of the matrix A looks as follows(

Ã 0
∗ D

)
,

where ∗ is any matrix and D is a strictly upper triangular matrix if state 1 is accessible
or D is an upper triangular matrix with zeros on the diagonal except for one entry one
if state 1 is not accessible. The zero matrix follows from the fact that a non-accessible
state cannot be a direct successor of an accessible state, otherwise it would be accessible.
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The matrix D is an upper triangular matrix because inside the block of states there are
only transitions from one level to the next, there is only a loop at state 1. Furthermore
transitions from the last row either go to a beginning state, then the entry is above the
diagonal of D, or go to the only accessible state in the first row, then the entry is in ∗. Thus
D is an upper triangular matrix. Therefore the characteristic polynomial of A is the same
as the characteristic polynomial of Ã except for a factor (−x)k or (−x)k−1(1 − x), where
k is the number of non-accessible states. Hence the dominating eigenvalue of A is unique
around t = 0 and the modulus of the second largest eigenvalue β(t) < |µ(t)|. Therefore
the dominating eigenvalue at t = 0 is µ(0) = 2.

With the same calculations and definitions as above we have

E(N) = µlog2NΨ(log2N, t) + ~vTR(N)M2w
0 ~v,

with Ψ(log2Nt) = µ−{log2N}~vTΛ(2{log2N})M2w
0 ~v and µ(t) = 2+O(t) around t = 0. Because

the spectral radius of Mε is 1 and the largest eigenvalue of R has modulus β(t), we have∣∣~vTR(N)M2w
0 ~v
∣∣ = O

(
N log2 β(t)

)
.

So we get
E(N) = N1+a1t+a2t2+O(t3)Ψ(log2N, t) +O

(
N log2 β(t)

)
for some a1, a2 ∈ C. By differentiating E(N) with respect to t and inserting t = 0, we get
the expected value of the random variable X = h(n)

1

N

∑
n<N

h(n) = b1 log2N + Ψ1(log2N) +O(N log2 β(0)−1 logN) (14)

with b1 = −ia1 log 2. Differentiating another time gives

1

N

∑
n<N

h2(n) = b2 log2N + b21 log2
2N + 2b1 log2NΨ1(log2N) + Ψ2(log2N)

+O(N log2 β(0)−1 log2N)

with b2 = −2a2 log 2. Hence, the variance is

1

N

∑
n<N

h2(n)−
(

1

N

∑
n<N

h(n)

)2

= b2 log2N −Ψ2
1(log2N) + Ψ2(log2N)

+O(N log2 β(0)−1 log2N). (15)

To determine the values b1 and b2, we compute the expected value and the variance in
the case of N = 2k like Heuberger and Prodinger in [12]. Therefore we use the probability
generating function of the random variable Xk = h(n) with n an integer in [0, 2k). We
define the probability generating function of the random variable Xk

Gk(Y ) :=
1

2k

∑
n<2k

Y h(n).
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Then we have the following recursion for Gk(Y ) for k ≥ w.

Gk(Y ) =
1

2k

∑
n≡0 mod 2
n<2k

Y h(n
2
) +

1

2k

∑
a∈unique(Dl,u)
a≡1 mod 2

∑
n≡a mod 2w−1

n<2k

Y 1+h( n−a

2w−1 )

+
1

2k

∑
a∈nonunique(Dl,u)

a≡1 mod 2

∑
n≡a mod 2w

n<2k

Y 1+h(n−a
2w

)

=
1

2k

∑
m<2k−1

Y h(m) +
1

2k

∑
a∈unique(Dl,u)
a≡1 mod 2

(
Y

∑
m<2k−w+1

Y h(m) +Ha(Y )

)

+
1

2k

∑
a∈nonunique(Dl,u)

a≡1 mod 2

(
Y

∑
m<2k−w

Y h(m) +Ha(Y )

)

=
1

2
Gk−1(Y ) +

cu
2w−1

Y Gk−w+1(Y ) +
cn

2k−w
Y Gk−w(Y ) +

1

2k
H̃(Y ),

where

Ha(Y ) :=


Y

∑
− a

2w−b≤m<0

(
Y h(m) − Y h(2k−w+b+m)

)
if a > 0,

Y
∑

0≤m<− a

2w−b

(
−Y h(m) + Y h(2k−w+b+m)

)
if a < 0,

b := [a ∈ unique(Dl,u)] ,

cu := |{a ∈ unique(Dl,u) | a ≡ 1 mod 2}| ,
cn := |{a ∈ nonunique(Dl,u) | a ≡ 1 mod 2}| ,

H̃(Y ) :=
∑
a∈Dl,u

a≡1 mod 2

Ha(Y ).

At first look, Ha(Y ) depends on k. But since the range of summation is quite small
we can prove that it is in fact independent of k. For a ∈ nonunique(Dl,u) we have
|a| < 2w since −l, u < 2w. Therefore we have

∣∣ a
2w

∣∣ < 1. For a ∈ unique(Dl,u) we have
u− 2w−1 < a < l+ 2w−1 and therefore

∣∣ a
2w−1

∣∣ < 1. Hence we know that Ha(Y ) = 0 if a > 0
or Ha(Y ) = Y (Y − 1) if a < 0 and thus independent of k.

If we define G(Y, Z) :=
∑∞

k=0 Z
kGk(Y ) then we get

G(Y, Z) =
1

2
ZG(Y, Z) +

cu
2w−1

Y Zw−1G(Y, Z) +
cn
2w
Y ZwG(Y, Z) +

1

1− Z
2

H̃(Y ) +H(Y, Z),

where

H(Y, Z) = −1

2
Z

w−2∑
k=0

Gk(Y )Zk − cu
2w−1

Y Zw−1G0(Y ) +
w−1∑
k=0

Gk(Y )Zk
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is a polynomial contributed by Gk(Y ) for k < w where the recursion for Gk(Y ) is not true.
Thus we have

G(Y, Z) =
H̃(Y ) +H(Y, Z)(1− Z

2
)

(1− Z
2
)(1− 1

2
Z − cu

2w−1Y Zw−1 − cn
2w
Y Zw)

.

Now we are interested in the coefficient of Zk in ∂
∂Y
G(Y, Z)|Y=1 = GY (1, Z) which is

the expected value of the random variable Xk. To do so we follow the computation of the
mean and the variance in [11]. Therefore we first investigate the occurring functions at
Y = 1. We have Gk(1) = 1 for all k ≥ 0 and thus G(1, Z) = 1

1−Z . Furthermore we have
Ha(1) = 0 and therefore H̃(1) = 0.

Let f(Y, Z) and g(Y, Z) be polynomials so that

G(Y, Z) =
f(Y, Z)

(1− Z
2
)g(Y, Z)

follows. Then we have (1 − Z
2
)g(1, Z) = (1 − Z)f(1, Z) = (1 − Z)(1 − Z

2
)H(1, Z) and

consequently g(1, Z) = (1− Z)H(1, Z) and f(1, Z) = (1− Z
2
)H(1, Z). Hence

0 = g(1, 1) =
1

2
− cu

2w−1
− cn

2w
. (16)

Hence we have

GY (1, Z) =
fY (1, Z)

(1− Z
2
)g(1, Z)

− f(1, Z)gY (1, Z)(1− Z
2
)

(1− Z
2
)2g2(1, Z)

=
fY (1, Z)

(1− Z
2
)(1− Z)H(1, Z)

− H(1, Z)(1− Z
2
)2gY (1, Z)

(1− Z
2
)2(1− Z)2H2(1, Z)

=
fY (1, Z)

(1− Z
2
)(1− Z)H(1, Z)

− gY (1, Z)

(1− Z)2H(1, Z)
.

The function G(1, Z), and therefore GY (1, Z), has a pole at Z = 1. For |Z| ≤ 1 and
Z 6= 1 it is analytic, because by the triangle inequality and (16) we have∣∣∣∣12Z +

cu
2w−1

Zw−1 +
cn
2w
Zw

∣∣∣∣ ≤ 1.

Equality only holds if cu
2w−1Z

w−1 and cn
2w
Zw are nonnegative real multiples of 1

2
Z, because

of the triangle inequality, and |Z| = 1. Thus g(1, Z) = 0 for |Z| ≤ 1 only if Z = 1. As a
result the main term of the coefficient of Zk is contributed by the pole Z = 1. We therefore
compute the Laurent series at Z = 1. So we get

GY (1, Z) =
1

(1− Z)2

(
−gY (1, 1)

H(1, 1)

)
+

1

1− Z

(
2fY (1, 1)

H(1, 1)
+
gY Z(1, 1)

H(1, 1)
− gY (1, 1)HZ(1, 1)

H2(1, 1)

)
+ power series in (Z − 1).
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Hence the expected value is

EXk = [Zk]GY (1, Z)

= (k + 1)

(
−gY (1, 1)

H(1, 1)

)
+

(
2fY (1, 1)

H(1, 1)
+
gY Z(1, 1)

H(1, 1)
− gY (1, 1)HZ(1, 1)

H2(1, 1)

)
+O(εk)

(17)

= k

(
−gY (1, 1)

H(1, 1)

)
+O(εk)

for an 0 < ε < 1, since GY (1, Z) has no other poles in |Z| ≤ 1.
We have H(1, 1) = w

2
+ cn

2w
and gY (1, 1) = −1

2
by the definitions of H(Y, Z) and g(Y, Z).

Thus the expected value is

E(Xk) =
1

w + cn
2w−1

k +O(1).

To compute the variance VXk we use the formula VXk = E(X2
k) − (EXk)

2. We know
that

E(X2
k) = [Zk] (GY Y (1, Z) +GY (1, Z)) .

By differentiating G(Y, Z) = f(Y,Z)

(1−Z
2
)g(Y,Z)

twice with respect to Y we obtain

GY Y (1, Z) =
fY Y (1, Z)

(1− Z
2
)(1− Z)H(1, Z)

− 2fY (1, Z)gY (1, Z)

(1− Z
2
)(1− Z)2H2(1, Z)

+
2gY (1, Z)

(1− Z)3H2(1, Z)
,

where we used gY Y (Y, Z) = 0. Now we compute the Laurent series, which is

GY Y (1, Z) =
1

(1− Z)3

(
2g2Y (1, 1)

H2(1, 1)

)
+

1

(1− Z)2

(
−4gY (1, 1)gY Z(1, 1)

H2(1, 1)
+

4g2Y (1, 1)HZ(1, 1)

H3(1, 1)
− 4fY (1, 1)gY (1, 1)

H2(1, 1)

)
+

c

1− Z + power series in (Z − 1).

Therefore we have

E(X2
k) = [Zk] (GY Y (1, Z) +GY (1, Z))

=
1

2
(k + 2)(k + 1)

2g2Y (1, 1)

H2(1, 1)
+ (k + 1)

(
−4gY (1, 1)gY Z(1, 1)

H2(1, 1)

+
4g2Y (1, 1)HZ(1, 1)

H3(1, 1)
− 4fY (1, 1)gY (1, 1)

H2(1, 1)
− gY (1, 1)

H(1, 1)

)
+O(1). (18)

If we subtract the square of (17) from (18) we obtain

VXk = E(X2
k)− (EXk)

2

= k

(
g2Y (1, 1)

H2(1, 1)
− 2gY (1, 1)gY Z(1, 1)

H2(1, 1)
+

2g2Y (1, 1)HZ(1, 1)

H3(1, 1)
− gY (1, 1)

H(1, 1)

)
+O(1).
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By the definitions of H(Y, Z) and g(Y, Z) we have

gY Z(1, 1) =
1− w

2
− cn

2w
,

HZ(1, 1) =
1

4
(w − 1)(w − 2 +

cn
2w−2

).

Thus we have the variance

VXk =
(2− cn

2w−1 )(1 + cn
2w−1 )

(w + cn
2w−1 )3

k +O(1).

Since the constants b1 and b2 in (14) and (15) are independent of N , we get

b1 =
1

w + cn
2w−1

and b2 =
(2− cn

2w−1 )(1 + cn
2w−1 )

(w + cn
2w−1 )3

.

We note that these are exactly the same values as in Theorem 16 for d = 1 since
λ = cn

2w−1 + 1.
Now we want to estimate the distribution function of the standardized random variable

Z =
X − b1 log2N√

b2 log2N

as in Section 3 for arbitrary N . Then the characteristic function ĝN(t) of the variable Z
for t = o(

√
logN) is

ĝN(t) =
1

N

∑
n<N

e
it

h(n)−b1 log2 N√
b2 log2 N

= e
−t2

2

(
1 +O

(
t3

log3/2N

))
ψ

(
log2N,

t√
b2 log2N

)

+ R̃

(
N,

t√
b2 log2N

)
e
−it b1√

b2

√
log2N

and the difference from the characteristic function f̂(t) = e−
t2

2 of the normal distribution
with mean 0 and variance 1 is

|ĝN(t)− f̂(t)| = O
(

t√
logN

)
.

Therefore the Berry-Esseen inequality, Theorem 11, implies

P

(
X − b1 log2N√

b2 log2N
< x

)
=

1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)
.
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5 Asymmetric digit sets in higher dimensions
The algorithm presented by Heuberger and Muir in [11] also works for higher dimension d.
Now we want to generalize the result of the previous chapter to an arbitrary dimension d.

Algorithm 9 for general dimension d is slightly different from Algorithm 8 for dimension
one. The most important part is that the if statement in line 11 of Algorithm 8 becomes
much more complicated. The difference to Algorithm 7 is that we abbreviate the while
loop. All variables are the same as in the previous chapter. For simplicity we write n+ a,
for a vector n and an integer a, and mean that we add a to every coordinate of the vector
n.

Algorithm 9 Algorithm to compute the minimal weight of a representation over the digit
set Dl,u in higher dimension
Input: A vector of integers n, integers l ≤ 0, u > 0, n ≥ 0 if l = 0
Output: Minimal weight representation of n with digits in Dl,u

1: while n 6= 0 do
2: if n ≡ 0 mod 2 then
3: a = 0, h = h+ 0
4: m = n

2

5: else
6: a = l + ((n− l) mod 2w−1)
7: h = h+ 1
8: m = n−a

2w−1

9: Iunique = {j ∈ {1, 2, . . . , d}|aj ∈ unique(Dl,u)}
10: Inonunique = {j ∈ {1, 2, . . . , d}|aj ∈ nonunique(Dl,u)}
11: if mj ≡ 0 mod 2 for all j ∈ Iunique then
12: for j ∈ Inonunique such that mj is odd do
13: aj = aj + 2w−1

14: mj = mj − 1
15: end for
16: else
17: for j ∈ Inonunique such that mj ≡ u+ 1 mod 2w−1 do
18: aj = aj + 2w−1

19: mj = mj − 1
20: end for
21: end if
22: end if
23: n = m
24: end while

Now we want to construct a transducer calculating the weight of a colexicographically
minimal joint integer representation. For convenience we start with a slightly wrong trans-
ducer, like the algorithm on page 306 of [11]. Therefore we skip the else statement in
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line 16 of Algorithm 9. The resulting provisional transducer is similar to the transducer in
Figure 5.

There is an initial state and some similar states. For every vector s ∈ {0, 1}d there
is such a state. We call them beginning states. The vector s signifies the carry at each
coordinate. Furthermore there is a block of states. The states inside the block have the
labels (s, t)i where s, t ∈ {0, 1}d, and i is the row in the block. The coordinates of s and
t have the same meaning as in the previous section, that is s is the carry of the addition
n+ l̃ and t signifies whether the digit is in nonunique(Dl,u) or not.

If s ∈ {0, 1}d is a beginning state, then there is a loop with label s|0 at this state.
Because if we read ε = s, then we have ε+s ≡ 0 mod 2 and we just restart the transducer.
Thereby carry propagation occurs. If we read ε 6= s, then we start with the w−1 transitions
of Automaton 4 in Figure 4 in each coordinate. These w − 1 transitions can be processed
independently for every coordinate. Therefore we need 4d states in each row and w − 1
rows to process exactly w − 1 transitions of Automaton 4.

At the end of the block of states we either go back to a beginning state or start again
with the block of states. Let (s, t)w−1 be the current state in the last row and ε the next
input digit. As in the previous chapter we have m ≡ ε+ s mod 2. If for every coordinate
j, tj = 1 implies mj is even, then we have to process the if branch in line 11. We write
this condition as t · (s + ε mod 2) = 0. In this case the next written digit will be zero
and we start the transducer in a beginning state s′ again. We only have to consider carry
propagation. Thus we have s′ = b s+ε

2
c.

If t · (s + ε mod 2) = 0 does not hold, then we would have to process the else branch
in line 16. But since we skip this part for a while we simply have to restart the transducer
with the input m in the case t · (s + ε mod 2) > 0. We know that m is the original next
input plus the carry s. In this case s 6= ε, otherwise t · (s + ε mod 2) > 0 would be false.

Therefore there is a transition s
ε|1−→ (s′, t′)1 in this transducer. This ensures that, when

restarting the transducer with input m, we immediately go on to the state (s′, t′). Hence

we have a transition (s, t)w−1
ε|1−→ (s′, t′) in the provisional transducer.

Altogether, for s, s′, t, t′ ∈ {0, 1}d, i ∈ {1, . . . w − 2}, j ∈ {1 . . . d} and ε ∈ {0, 1}d, we
have the following transitions in this provisional transducer:

• s ε|0−→ s if ε = s

• s ε|1−→ (s′, t′)1 if ε 6= s and ∀j : (sj, 0)
(εj ,l0,u0)

T

−−−−−−→ (s′j, t
′
j) is a transition in Automaton 4

• (s, t)i
ε|0−→ (s′, t′)i+1 if ∀j : (sj, tj)

(εj ,li,ui)
T

−−−−−−→ (s′j, t
′
j) is a transition in Automaton 4

• (s, t)w−1
ε|0−→ s′ if t · (s+ ε mod 2) = 0 and s′ =

⌊
s+ε
2

⌋
• (s, t)w−1

ε|1−→ (s′, t′)1 if t · (s + ε mod 2) > 0 and s
ε|1−→ (s′, t′)1 is a transition in this

transducer
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This transducer does the same as Algorithm 9 without the else branch in line 16. Now
we must consider the else statement.

Let (s, t)w−1 be the current state in the last row and ε be the next input digit. To
process the else branch, t · (s + ε mod 2) > 0 must hold in the state (s, t)w−1. Otherwise
we would process the if branch. First let us examine one coordinate j. If tj = 1 nothing is
done in the else branch, because the digit at this coordinate is unique. If tj = 0, we have
to decide if mj ≡ u+1 mod 2w−1. Here mj mod 2w−1 corresponds to the next w−1 input
digits plus the carry sj from the current state (s, t)w−1. So we just have to compare the
input letters plus the carry with the binary expansion of u + 1 mod 2w−1 or, equivalently,
we compare mj − l mod 2w−1 with ṽ = u − l + 1 mod 2w−1. If they are not the same at
some point, then we just go on like we did in the provisional transducer.

If they are the same, we have to process the else branch. There we would have taken
mj − 1 as the next input of the algorithm instead of mj. Therefore we have to decide
where we would be in the provisional transducer, when starting in (s, t)w−1 and the input
is the original input minus one. This case only happens if originally the next nonzero
digit is unique, but changing the current digit ensures that the next nonzero digit is non-
unique. Nevertheless the next digit will not be zero, since this is the case when the if
branch is processed. Therefore we would start in (s, t)w−1 with original input minus one
and immediately go to the block of states again. Otherwise the next digit would be zero.
Thus after w − 1 transitions we are again in a state (s′, t′)w−1 in the last row. Since the
next digit is non-unique, we have t′j = 0.

To determine the value of s′j we have to decide whether there is a carry at position
w − 1 in the addition of mj − 1 and l̃. We have mj − 1 mod 2w−1 = u + k2w−1 for k ∈ Z.
Since 0 ≤ u ≤ 2w − 1, we have k ∈ {0,−1}. Then the carry is

s′j =

⌊
(mj − 1) mod 2w−1 + l̃ mod 2w−1

2w−1

⌋

=

⌊
u+ l̃ + k2w−1

2w−1

⌋
= 1 + k,

because 2w−1 ≤ u+ l̃ < 2w. Therefore we have

s′j =

{
0 if u ≥ 2w−1,

1 if u < 2w−1.

As a result the state (s′, t′)w−1 where we would be in the provisional transducer has

(
[
u < 2w−1

]
, 0)

in the j-th coordinate.
To remember that we can change the j-th coordinate at the end of the block we have

to use a second identical block {j}. Let ∅ be the first block, which already exists in the
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provisional transducer. Let (s, t)Ci be a state in block C. At the end of block ∅ we go to
block {j} if t · (s+ ε mod 2) > 0 and tj = 0 and else to a beginning state or to the block ∅.
If we find out that mj 6≡ u+ 1 mod 2w−1 in block {j}, then we go back to the appropriate
state in block ∅. At the end of block {j} in the state (s, t)

{j}
w−1 we go to the same states as

we would go from the state with ([u < 2w−1] , 0)∅w−1 in the j-th coordinate.
Up to now we only considered one coordinate. Now we combine this approach for

all coordinates. Since we have to remember for each coordinate whether we are allowed
to change it or not, we need one block for every subset of coordinates. Let block C ⊆
{1, . . . , d} be the block where we can change the coordinates in C. The states in block C
are denoted by (s, t, )Ci . The block ∅ is the block which already exists in the provisional
transducer. The block {1, . . . , d} is not accessible, since we need at least one unique
coordinate and only non-unique coordinates can be changed.

If we are in block C 6= ∅ and we find out that not every coordinate j ∈ C satisfies
mj ≡ u+ 1 mod 2w−1, we go to the appropriate state in block C ′ = C \ {j ∈ {1, . . . , d} |
mj 6≡ u + 1 mod 2w−1}. At the end of block C in state (s, t)Cw−1 we can change the
coordinates in C and all other coordinates remain the same. Therefore we go to the same
states as we would go from (s̃, t̃)∅w−1 where s̃j = [u < 2w−1], t̃j = 0 for j ∈ C and all other
coordinates stay the same, that is s̃j = sj and t̃j = tj for j 6∈ C.

Let (vw−2 . . . v0) be the binary expansion of ṽ. Further let s, s′, t, t′ ∈ {0, 1}d, C,
C ′ ( {1, . . . , d}, i ∈ {1, . . . , w−2} and ε ∈ {0, 1}d. Then altogether there are the following
transitions in the final transducer:

• s ε|0−→ s if s = ε

• s ε|1−→ (s′, t′)∅1 if s
ε|1−→ (s′, t′)1 is a transition in the provisional transducer

• (s, t)Ci
ε|0−→ (s′, t′)C

′
i+1 if (s, t)i

ε|0−→ (s′, t′)i+1 is a transition in the provisional transducer
and C ′ = C \ {j : sj + εj + li mod 2 6= vi}

• (s, t)∅w−1
ε|0−→ s′ if t · (s+ ε mod 2) = 0 and s′ =

⌊
s+ε
2

⌋
• (s, t)∅w−1

ε|1−→ (s′, t′)C
′

1 if t · (s + ε mod 2) > 0, (s, t)w−1
ε|1−→ (s′, t′)1 is a transition in

the provisional transducer and C ′ = {j : sj + εj + l0 mod 2 = v0 and tj = 0}

• (s, t)Cw−1
ε|1−→ (s′, t′)C

′
1 if C 6= ∅ and (s̃, t̃)∅w−1

ε|1−→ (s′, t′)C
′

1 is a transition in this
transducer with s̃j = [u < 2w−1], t̃j = 0 for j ∈ C and s̃j = sj, t̃j = tj for j 6∈ C

Next we go on like in the previous sections. We define f(m1, . . . ,md) := eith(m1,...,md)

and the matrices Mε1,...,εd for εi ∈ {0, 1}. The (k, l)-th entry of the matrix Mε1,...,εd is eith
if there is a transition from state k to l with input label (ε1, . . . , εd)

T and output label h.
The entry is 0 if there is no transition from state k to l with this input label. In this section
we only use the accessible states to define this matrix. From the ordering of the states we
demand that the states of the blocks are sorted by their row i. All blocks of any first row
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come first. At the end are the beginning states. The initial and final state (0, . . . , 0)T is
the last one of all beginning states. Then we have

f(m1, . . . ,md) = ~vT
L∏
l=0

Mm1,l,...,md,l
M4w

0,...,0~v

for ~vT = (0, . . . , 0, 1) and mi =
∑L

l=0mi,l2
l.

We further define the following summatory functions

E(N) =
∑

m1,...,md<N

f(m1, . . . ,md)

F (N) =
∑

m1,...,md<N

M(m1, . . . ,md),

with

M(m1, . . . ,md) =
L∏
l=0

Mm1,l,...,md,l
.

To write down a recursion formula for F (N), we need the following matrices

BC,D :=
∑
εi=0,1
i 6∈C∪D

∑
εi=0
i∈C

∑
εi=1
i∈D

Mε1,...,εd

for C, D ⊆ {1, . . . , d}. The first index C of BC,D is the set of coordinates where the digit
is zero. The second index D is the set of coordinates where the digit is one. All other
coordinates in (C ∪D)c can be any digit. These matrices all have eigenvectors (1, . . . , 1)T

at t = 0, because every summand has one entry with modulus 1 in every row. Therefore the
eigenvalue to this eigenvector of BC,D is 2d−|C|−|D|, the number of summands. This is the
largest eigenvalue of this matrix, since all Geršgorin discs are contained in B(0, 2d−|C|−|D|).
As a special matrix we define A = B∅,∅.

Furthermore we define the following functions GC(N) for every set C ⊆ {1, . . . , d}

GC(N) :=
∑
mi<N
i 6∈C

∑
mi=N
i∈C

M(m1, . . . ,md).

73



Then we have F (N) = G∅(N) and the functions satisfy the following recursion formulas

GC(2N) =
∑
εi=0,1
i 6∈C

∑
εi=0
i∈C

∑
2mi+εi<2N

i 6∈C

∑
2mi+εi=2N

i∈C

M(2m1 + ε1, . . . , 2md + εd)

= BC,∅GC(N),

GC(2N + 1) =
∑
εi=0,1
i 6∈C

∑
εi=1
i∈C

∑
2mi+εi<2N+1

i 6∈C

∑
2mi+εi=2N+1

i∈C

M(2m1 + ε1, . . . , 2md + εd)

=
∑
D⊆Cc

∑
εi=0,1
i 6∈C∪D

∑
εi=0
i∈D

∑
εi=1
i∈C

Mε1,...,εd

∑
mi<N
i 6∈C∪D

∑
mi=N
i∈C∪D

M(m1, . . . ,md)

=
∑
D⊆Cc

BD,CGC∪D(N).

From this recursion we can determine GC(N) inductively, because all needed functions
GC′(N) have C ′ % C. Therefore we have the following recursion formula for F (N) = G∅(N)

F (2N + ε) = AF (N) + εH(N)

for N ≥ 1, ε ∈ {0, 1} and

H(N) =
∑

∅6=D⊆{1,...,d}

BD,∅GD(N).

To solve this recursion we use the next lemma.

Lemma 13. Let G(N) : N→ Cn×n be a function which satisfies the recurrence relation

G(2N + ε) = AεG(N) + εH(N)

for N ≥ 1. Here we have ε ∈ {0, 1}, Aε two matrices in Cn×n and H(N) : N → Cn×n a
known function. We additionally assume that H(0) = G(1). Then

G

(
L∑
l=0

εl2
l

)
=

L∑
l=0

εl

(
l−1∏
j=0

Aεj

)
H

(
L∑

j=l+1

εj2
j−l−1

)
.

Proof. We prove this lemma by induction on L. If L = 0, then N = 1 and we have

G(1) = 1

(
−1∏
j=0

Aεj

)
H(0) = H(0)
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which is true by assumption. If L ≥ 1, then we have

G

(
2

L∑
l=1

εl2
l−1 + ε0

)
= Aε0G

(
L∑
l=1

εl2
l−1

)
+ ε0H

(
L∑
l=1

εl2
l−1

)

= Aε0

L∑
l=1

εl

(
l−1∏
j=1

Aεj

)
H

(
L∑

j=l+1

εj2
j−l−1

)
+ ε0H

(
L∑
l=1

εl2
l−1

)

=
L∑
l=0

εl

(
l−1∏
j=0

Aεj

)
H

(
L∑

j=l+1

εj2
j−l−1

)
by the recurrence relation and the induction hypothesis.

If we define H(0) = G∅(1), we can use this lemma and get

F

(
L∑
l=0

εl2
l

)
=

L∑
l=0

εlA
lH

(
L∑

j=l+1

εj2
j−l−1

)
. (19)

Thereby H(N) is known because it is a sum of functions GC(N), which are recursively
known by Lemma 13.

From the definition of GC(N) we can derive the growth rates of the functions GC(N)
and H(N). Because the eigenvalues of Mε1,...,εd are less than or equal to 1 and there are
Nd−|C| summands in the definition, we have GC(N) = O(Nd−|C|) and H(N) = O(Nd−1).

Next we further investigate the eigenvalues of the matrix A. For t = 0 the matrix A
is the adjacency matrix of the underlying graph of the accessible parts of the transducer
described above. It has eigenvalue 2d with eigenvector (1, . . . , 1)T at t = 0, since in every
row of A the sum of the entries is 2d. The Geršgorin discs are all contained in B(0, 2d)
because the sum of the modulus of the entries of a row is 2d at t = 0. Therefore all
eigenvalues have moduli less than or equal 2d which is 2d an eigenvalue. The underlying
graph of the transducer is strongly connected, therefore we can use the theorem of Perron-
Frobenius [13] at t = 0. Furthermore, we can reach every node starting from any node
with exactly 4w steps, hence A is primitive at t = 0. Therefore the dominating eigenvalue
µ(t) is unique and the modulus of the second largest eigenvalue β(t) satisfies β(t) < |µ(t)|
around t = 0.

Furthermore all other matrices in (19) have eigenvalues less than 2d−1.
Now we want to split up (19) into two parts, one for the dominating eigenvalue and

one for the remaining eigenvalues. Therefore let J = T−1AT be a Jordan decomposition
of A. We define Λ := Tdiag(µ(t)−1, 0, . . . , 0)T−1 and R := T (J − diag(µ(t), 0, . . . , 0))T−1.
Then Al = µLΛL−l +Rl holds for l ≤ L. Further we define

Λ(x0, x1, . . .) =
∞∑
l=0

xlΛ
lH

(
l−1∑
j=0

xj2
l−1−j

)
,

R(εL, . . . , ε0) =
L∑
l=

εlR
lH

(
L∑

j=l+1

εj2
j−l−1

)
.
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The function Λ is well defined on the infinite product space {0, 1}N because it is dominated
by a geometric series because H(N) = O(Nd−1). We define Λ to be a function on [0, 1),
by choosing the representation of x ∈ [0, 1) which ends on 0ω if there is a choice. We can
define the function R to be a function on N.

Then we have

F

(
L∑
l=0

εl2
l

)
= µLΛ(εL, εL−1, . . . , ε0, 0

ω) +R(εL, . . . , ε0)

and
E(N) = µ(t)log2NΨ(log2N, t) + ~vTR(N)M4w

0,...,0~v,

with Ψ(x, t) = µ(t)−{x}~vTΛ(2{x})M4w
0,...,0~v.

By the same arguments as in the previous sections Ψ(x, t) is periodic and continuous
in x and continuous and two times differentiable in t. Hence, the function Ψ(x, t) and
its derivatives are O(1). Also the error term ~vTR(N)M4w

0,...,0~v is differentiable, since it is
dominated by a geometric series. Furthermore we have

|~vTR(N)M4w
0,...,0~v| = O(N log2 β(t)).

So we have

E(N) = Nd+a1t+a2t2+O(t3)Ψ(log2N, t) +O(N log2 β(t)).

The first and second derivative of E(N) with respect to t at t = 0 imply that the
expected value of the Hamming weight is

1

Nd

∑
mi<N

h(m1, . . . ,md) = b1 log2N + Ψ1(log2N) +O(N log2 β(0)−d logN)

with b1 = −ia1 log 2 and Ψ1(log2N) = −i ∂
∂t

Ψ(log2N, t)|t=0, and

1

Nd

∑
mi<N

h2(m1, . . . ,md) = b2 log2N + b21 log2
2N + 2b1 log2NΨ1(log2N) + Ψ2(log2N)

+O(N log2 β(0)−d log2N)

with b2 = −2a2 log 2 and Ψ2(log2N) = − ∂2

∂t2
Ψ(log2N, t)|t=0. From that we calculate the

variance, which is

1

Nd

∑
mi<N

h2(m1, . . . ,md)−
(

1

Nd

∑
mi<N

h(m1, . . . ,md)

)2

=

b2 log2N −Ψ2
1(log2N) + Ψ2(log2N) +O(N log2 β(0)−d log2N).
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Example 5.1. In Figure 7 there is a sketch of the transducer computing the weight of a
minimal weight representation over D−2,3 in dimension two. The labels of the transitions
are omitted in the figure and the transitions going back at the end of a block or inside
a block are gray. All non-accessible states also are omitted. We have w = 3, ũ = (01),
l̃ = (10) and ṽ = (10).

For example the state
(

01
11

){2}
2

has transitions to the same states as the state
(

01
10

)∅
2

since u < 2w−1. The adjacency matrix A of the underlying graph of this transducer is

A =



0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0
3z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
2z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
2z 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
z z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2z 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

The characteristic polynomial of A is

−(x− 1)x7
(
x2 − 2z

) (
x3 − x2 − xz − 2z

)2 (
x5 − x4 − 7x3z − 20x2z + 6xz2 − 24z2

)
.

At t = 0 the dominating eigenvalue µ(0) = 4 is a root of the fourth factor. Therefore the
Taylor expansion of µ(t) around t = 0 is

µ(t) = 4 +
128i

89
t− 673216

2114907
t2 +O(t3).

Hence the expected value of the weight is

0.359551 log2N +O(1)

and the variance is
0.0298831 log2N +O(1).
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10 ∅
00 1

00 ∅
10 1

0
1

1
1

11 ∅
01 2

11 ∅
10 2

10 ∅
11 2

01 ∅
11 2

10 {1}
00 1

11 {1}
10 2

11 {1}
01 2

00 ∅
00 1

1
0

0
0

10 ∅
10 2

10 ∅
01 2

01 ∅
10 2

01 ∅
01 2

00 {2}
10 1

10 {2}
11 2

01 {2}
11 2

Figure 7: Transducer to compute the Hamming weight of a minimal weight representation
in dimension two over the digit set D−2,3
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Now we can prove the following theorem about the asymptotic expansion. Therefore
we again use the probabilistic space {(m1, . . . ,md)

T ∈ Zd | mi < N} for a fixed integer N
with uniform distribution.

Theorem 19. The Hamming weight h(m1, . . . ,md) of the colexicographically minimal and
minimal weight representation of an integer vector (m1, . . . ,md)

T over the digit set Dl,u

in dimension d is asymptotically normally distributed. There exist constants b1, b2 ∈ R
depending on u, l and d such that the expected value is b1 log2N +O(1) and the variance
is b2 log2N +O(1). Then we have

P

(
h(m1, . . . ,md)− b1 log2N√

b2 log2N
< x

)
=

∫ x

−∞
e
−y2

2 dy +O
(

1
4
√

logN

)
for all x ∈ R.

Proof. The proof is the same as in the previous sections. We first compute the characteristic
function ĝN(t) of the random variable

Z =
h(m1, . . . ,md)− b1 log2N√

b2 log2N
,

which is

ĝN(t) =
1

Nd

∑
n<N

e
it

h(m1,...,md)−b1 log2 N√
b2 log2 N

= e
−t2

2

(
1 +O

(
t3

log3/2N

))
ψ

(
log2N,

t√
b2 log2N

)

+ R̃

(
N,

t√
b2 log2N

)
e
−it b1√

b2

√
log2N

.

Next we can estimate the difference from ĝN(t) to the characteristic function f̂(t) = e−
t2

2

of the normal distribution with mean 0 and variance 1, which is

|ĝN(t)− f̂(t)| = O
(

t√
logN

)
.

Therefore the Berry-Esseen inequality, Theorem 11 implies

P

(
h(m1, . . . ,md)− b1 log2N√

b2 log2N
< x

)
=

1√
2π

∫ x

−∞
e−

y2

2 dy +O
(

1
4
√

logN

)
.
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