
Stefan Stumpfl, BSc

Introduction of an Agile
Development Management

Technique Including a Test-Driven
Development Paradigm on the iOS

Platform.

Master’s Thesis

Institute of Software Technology
Graz University of Technology

Inffeldgasse 16B/II , A - 8010 Graz
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Supervisor:
Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, April 2014

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt
und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

Graz, am .
Name

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

. .
date Name

Abstract

Um den hohen Ansprüchen in der modernen Softwareentwicklung gerecht
zu werden, ist die Einführung eines zeitgemäßen Managementprozess
unausweichlich. In die Jahre gekommene sequentielle Entwicklungs-
methodiken werden den ständig ändernden Anforderungen nicht mehr
gerecht. Moderne und agile Methoden bieten eine vielversprechende
Alternative und scheinen der einzig richtige Weg zum Erfolg zu sein.
Hinzu kommen kontinuierlich ansteigende Qualitätsansprüche welche
ein vollständig etabliertes Software-Testsystem erfordern.

Diese Arbeit befasst sich mit der Einführung einer agilen Soft-
wareentwicklungsmethodik in einer Organisation. Weiters beschreibt
sie die Etablierung eines vielversprechendem Testansatzes mithilfe von
kontinuierlicher Integration.

Der erste Teil beschreibt theoretische Grundlagen zum Testprozess, wobei
der Fokus auf testgetriebener Entwicklung mittels Unit-Tests liegt.
Im zweiten Teil wird die Einführung des agilen Entwicklungsprozesses auf
Basis von Scrum und Kanban erläutert. Durch eine starke Einbeziehung
des Kunden während des gesamten Prozesses wird versucht auf ständige
Änderungen so schnell wie möglich zu reagieren. Kontinuierliche
Integration der Software ermöglicht einen modernen automatisierten
Testprozess. Besonderer Fokus liegt auf der testgetriebenen Entwicklung
eines iOS Projektes.

Durch die Flexibilität des eingeführten Entwicklungsprozesses war es
möglich auf ständig ändernde Anforderungen zu reagieren, wodurch ein
sehr gutes Kundenverhältnis über den gesamten Projektablauf aufrecht
erhalten werden konnte.
Der Ansatz einer kontinuierlichen Integration erlaubte die Anwendung
von umfangreichen Testprozessen. Die Fehlerrate der Projekte konnte
dadurch gering gehalten werden, wodurch ein hohes Vertrauen in die
Software geschaffen werden konnte.
Bei der Umsetzung der testgetriebenen Entwicklung auf iOS gab es einige
Schwierigkeiten, was zum größten Teil auf die fehlende Erfahrung und
dem hohen Zeitdruck zurückzuführen war.

Schlüsselwörter: CI, Scrum, Kanban, testen, test, agil, unit-test, test-
getrieben, software

b

Abstract

To meet today’s challenging requirements in software development it is
inevitable to establish a sophisticated management process. Due to con-
stantly changing requirements it is no longer enough to simply follow an
outdated sequential design approach. Modern agile management meth-
ods seem to be the winning way to satisfy today’s demands.
Moreover continuously increasing quality standards call for fully matured
software testing techniques to establish high reliability.

This thesis deals with the introduction of an agile development man-
agement method in an organization. Moreover it describes the process
of the establishment of a promising test approach using continuous
integration.

The first part describes the theoretical basics of software testing with
particular focus on unit testing and test driven development.
The second part of this thesis deals with the introduction of an agile
development technique based on a combination of Scrum and Kanban.
The approach aims to a constant involvement of the customer, to ensure
change requirements are recognized as soon as possible. Supported by
the correct tools and a continuous integration process it ensures high
quality software by automated testing. The work treats specifically the
realization of a test-driven development approach on an iOS project.

By the flexibility of the introduced development technique, we were able
to react on the constantly changing product requirements and thereby
the relationship with the customer was excellent throughout the whole
project cycle.
The established continuous integration introduced new opportunities re-
garding test execution, which helped us keep the error rate low and create
confidence in our product.
Only the realization of the test-driven development approach caused
problems, which was mainly because of missing experience and a con-
stant pressure of time.

Keywords: CI, Scrum, Kanban, testing, agile, unit-test, test-driven, soft-
ware

Contents

I Theoretical Background 1

1 About Software Testing 2
1.1 Introduction . 2
1.2 Motivation . 3

1.2.1 Why Should Software Be Tested? 3
1.3 The Testing Process . 3

1.3.1 Who Should Test Software? 3
1.3.2 When Should Software Be Tested? 6

1.4 Different Testing Levels . 7

2 Unit Testing 10
2.1 Introduction . 10

2.1.1 Motivation . 10
2.2 The Basics of Unit Testing 12

2.2.1 Definition . 14
2.3 Core Techniques . 14

2.3.1 Refactoring to Make Code More Testable 14
2.3.2 Indirect State and Interaction Testing 15
2.3.3 Stubs and Mocks 15
2.3.4 Isolation Frameworks 17

2.4 Managing and Organizing Test Code 18
2.4.1 Test Hierarchies and Organization 18
2.4.2 Naming Conventions 19
2.4.3 Ensuring Quality of Unit Tests 19
2.4.4 Unit Testing as Part of an Automated Build Process 19

2.5 Basic Pillars of Good Unit Tests 20

i

3 Test-Driven Development 21
3.0.1 Advantages . 21
3.0.2 Disadvantages . 23

3.1 Techniques . 24
3.1.1 Test First . 24
3.1.2 Red, Green, Refactor 25
3.1.3 Designing a Test-Driven Application 26
3.1.4 You Aren’t Gonna Need It 27

4 Test Automation 29
4.1 Introduction . 29

4.1.1 The Difference of Software Testing and Test Auto-
mation . 29

4.2 Motivation . 31
4.3 Disadvantages . 32

4.3.1 Problems When Introducing Test-Automation . . . 34

II Practical Part 36

5 Introduction 37
5.1 An Agile Development Method 37
5.2 The Project . 38

6 Tools and Frameworks 39
6.1 Jira . 39

6.1.1 Capabilities . 40
6.1.2 Advantages and Disadvantages 42

6.2 GIT . 44
6.2.1 Successful Git Branching 45
6.2.2 Advantages and Disadvantages 46

6.3 Jenkins . 48
6.3.1 Architecture . 49
6.3.2 Setup and Configuration 49
6.3.3 Encountered Problems and Pitfalls 50

6.4 Unit Testing Framework 51
6.4.1 OCUnit . 51
6.4.2 GHUnit . 52
6.4.3 OCMock . 52

ii

7 Workflow and Process Automation 54
7.1 Scrum . 54

7.1.1 Agile Workflow . 54
7.1.2 Different Roles . 57

7.2 Kanban . 57
7.3 Planning and Development Workflow 59
7.4 The Good Parts . 60
7.5 Drawbacks and Possible Improvements 60

8 Test-Driven Development on iOS 62
8.1 Getting Started . 62
8.2 The Development Process 63

8.2.1 Noticeable Lack of Experience 63
8.2.2 Slipping Project Schedule 63
8.2.3 Catching Up Writing Tests 64
8.2.4 Conclusion . 65

8.3 Ensure Testable Design . 65
8.4 Why Did the Process Fail? 66

iii

Part I

Theoretical Background

1

Chapter 1

About Software Testing

1.1 Introduction

Software testing generally is no new concept and has already existed
with the introduction of the first computer programs. Back then, ma-
chine cycles where very expansive and software testing was mainly based
on manually checking your code several times to make sure it will work
afterwards on the machine, a process called ”desk checking” [1, p. xv].
Letting the machine do all of the work for you was not really imaginable.
Why should anybody use the computer to check the programs, when
we actually want to use its power to solve the actual problem. In the
following years, when machines became faster, we completely discarded
the idea of ”desk checking” our code. The practice of creating code in-
creasingly became a trial and error experience. Just change the code and
execute it until it does what it should do [1, p. xv].

Unfortunately we have lost some good discipline there. The desk
checking practice per se has many advantages, it just takes too much
time. Now that we have the computing power to let the machine do
all this work for us, we should find a balance between then and now.
Therefore we can write tests using the computer as resource and run
them as often as the code needs to be executed [1, p. xvi].

2

1.2 Motivation

1.2.1 Why Should Software Be Tested?

Without any doubt the main goal for most software projects is to make
profit. And in order to achieve this goal it is important that it provides
enough value to the customer to convince them to buy the product.

The whole testing procedure which is involved in the software devel-
opment needs to support the goal of making profit. If testing increases
the costs, so that the software is not profitable anymore, it is not ap-
propriate to do. But the tests can prove that the product provides the
functionality the customer expects, which will improve the chance to con-
vince him to buy the product. If you can’t demonstrate the functionality,
the customer may not buy it.

At this point it is a good moment to note, that the main purpose
of software testing is not to find bugs, it is to prove that the software
works. So we should think of it more like quality assurance instead of
quality insertion. Finding errors is often associated with poor work at
all, because it costs money to fix them. Money to fix problems which
shouldn’t be there in the first place. But as long as we are limited on
time and resources, it is not possible to write software without any errors.
So the best way to go is to find a balance between adding tests to control
the development process and check the program to provide confidence
that it works. The compromise should be based on reducing the risk
to ship the product at an acceptable level. This means that the most
critical components should be tested first then the next most critical.
This should be continued until the remaining risk is not worth spending
more time and money to fix it [2, p. 2].

1.3 The Testing Process

1.3.1 Who Should Test Software?

In the early days of software development projects were managed accord-
ing to the ”waterfall model” (see Figure 1.1). Even today, many projects
are built based on these concept. The concept processes the different
development stages step by step. Managers create product requirements
and specifications which are then implemented by developers. At the end

3

the product is tested by an individual testing team [2, p. 2].

Figure 1.1: In the traditional waterfall approach each phase is performed
individually. The method enforces a separation between testers and
coders [2, p. 3].

This traditional approach separates testers and coders, which has
some critical drawbacks but also benefits. One of those benefits is that
individual testers are unaffected by any implementation details. Test-
ers familiar with the code are often blind for many scenarios and won’t
find certain errors. Also it can help to uncover ambiguous specifications,
which are often interpreted differently by unaffected testers. Misunder-
standings concerning the requirements are a very common reason for
failing tests.

The probably biggest problem for individual testers represents the
fact, that the costs to fix an error will increase drastically with the time
when it is found (as shown in Figure 1.2). Starting testing at the end of
the project means, that every bug found has to be fixed then, which is
the most expansive moment to fix bugs. This makes sense when consid-
ering that a bug found at the end needs to be reported by the tester first.
Then the developer has to interpret the report correctly, reproduce the

4

error, locate it and find a way to solve it. Also, by the moment the error
is found, much time has passed since the developer has created the code,
which makes it even more difficult to locate and fix the problem. At the
end the fix must be resubmitted and the application must be tested again
[2, p. 3].

Figure 1.2: The costs to fix a bug will increase logarithmic. As in our
example a bug found while developing may cost about 10$ while it will
cost the tenfold or more in later stages [3, p. 18].

The costs of fixing bugs at the end of the development stage also
depends on how early the bugs where injected into the software. In the
worst case a misunderstanding of the requirements has the consequences,
that a feature must be completely rewritten. This leads to waterfall prac-
titioners following a very conservative approach, where requirements and
specifications are completely overspecified. This attempt to avoid am-
biguous specifications which can lead to misunderstandings is known as
analysis paralysis and usually increases the project costs [2, p. 4].

External testers without any knowledge about the application intern-
als follow a so called blackbox testing approach. Usually they perform
system or integration tests which follow a strict plan. The testers take
the specifications and create test schematics. The tests are often per-

5

formed manually as they have to be interpreted by the tester because of
dependencies on external states [2, p. 4].

A very specific way of testing is done by beta testers. The involved
people are no test professionals, they are mostly end users. The intend
is to find problems with different system configurations between testers
and customers. A very large number of users trying to find errors in
special use cases which the team didn’t thought of. Especially for small
teams, which cannot afford individual testers, beta testers offer a chance
to check the software.

One common problem with beta testing is, that the beta state means
for the developers that the software is practically finished, and an end is
in sight. Thereby the motivation to deal with beta feedback is not that
high. But it is really important to deal with the problems found, since
the whole time spent testing the software would have been wasted time
if nobody is willing to fix the bugs.

The main part of testing is done by the developers themselves. Build-
ing and debugging the code while writing the software is a kind of testing.
In addition, developers are inspecting code internals and will get rapid
feedback in the form of compiler warnings. The advantages and dis-
advantages when developers are testing software is almost exactly the
opposite of them for individual testers. They will find the errors much
earlier and may know where the exact problem is located. There is still
the possibility of misinterpreting the requirements which will not be dis-
covered until a second tester is going to check this [2, p. 5].

1.3.2 When Should Software Be Tested?

As already mentioned in a previous topic, the earlier a software can be
tested and bugs may be fixed, the cheaper it will be. It is good to know
that software on which will further be built on is already tested and does
work. This will result in less errors and a faster development process and
thus is much better then testing all of the software only at the end.

However, software is traditionally tested mostly at the end of devel-
opment. An explicit QA phase follows the development process. Then
a beta release will be published where inexperienced testers can perform
a last check on the software before a general release will be published.
Most of the modern approaches already recognized this deficit and try
to counteract this practice. Different approaches to continually test all

6

parts of the software during the development cycle become more and
more popular. These define the main differences between agile projects
and traditional managed projects [2, p. 6].

Agile projects are organized in short iterations called sprints. The
project requirements will be reviewed after each sprint and obsolete stuff
gets dropped. If any changes are necessary, they will be applied and
the requirements and specifications will be updated. Then the current
most important requirement gets designed, implemented and tested in the
current sprint. A review at the end of the sprint will decide whether the
implemented feature will be added to the product, or if it needs further
changes. One important point is that the customer is included in all
significant decisions, so there is no need for an overspecified requirements
document. He will be asked how the application should work and has
the opportunity to confirm or deny that it works as expected.

So in agile projects all aspects will be tested continuously. An extreme
example for an agile development approach is called ”extreme program-
ming” where developers are working in pairs. One takes the control of
the keyboard while the other one thinks about the implementation, how
it could be improved and what kind of pitfalls may be involved. The
whole process runs under a test driven approach [2, p. 6].

So the simple answer to the question when software should be tested
is always. There will always be users who use the software in some
unexpected way and they will discover bugs nobody was aware of. It is
simply not possible to cover all circumstances, not with any reasonable
time or budget. But it is possible to let the developer do all the testing
for the basic stuff, leaving the QA team and beta testers free to try out
the experimental use cases. So separate Testers will have the opportunity
to find ways to break your application [2, p. 6].

1.4 Different Testing Levels

The main different testing types can be categorized under two basic ap-
proaches [22]:

Blackbox Testing This approach, also called functional testing is an
technique which ignores the internal behavior and structure of the soft-

7

ware. The output for a specific input is validated according to the spe-
cifications. The approach is basically used for software validation.

Whitebox Testing Whitebox testing is also called structural or glass
box testing. In contrast to Blackbox testing the approach focuses on the
internal mechanism and structure of the program. This approach is often
used for verification.

Considered in more detail there are the following widely used types of
testing:

Unit Testing This technique describes the test of an individual program
unit or a group of related units. Each unit should meet its expected be-
havior. It’s mostly accomplished by the programmer himself and is one
of the Whitebox testing approaches.

Integration Testing A group of components combined should produce
an expected output. Integration testing also checks whether the inter-
action of hardware and software works as expected. It belongs to both,
Blackbox and Whitebox testing.

Functional Testing The technique of functional testing is used to en-
sure that the specified functionality in the system requirements works as
expected. It is an Blackbox testing approach.

System Testing For system tests the program under test is put in dif-
ferent environments, to check if the software still works. It is usually done
with a full system implementation and falls under the class of Blackbox
testing.

Stress Testing Checks how the system behaves under unfavorable con-
ditions. Such tests are preformed beyond the limits of the specifications.
Stress Testing is an Blackbox testing approach.

Performance Testing Used to test the speed and effectiveness of the
program. It must be ensured that all results arrive within a specified time
as it is defined in the performance requirements. The approach belongs
to the Blackbox testing approaches.

8

Usability Testing Here the program is tested from the perspective of
the user. It aims to check whether the GUI is user friendly and how deep
the learning curve for the user is. Whether the product is pleasing to use
in generally. Usability testing is also a Blackbox testing approach.

Acceptance Testing Acceptance testing is mostly done by the cus-
tomer. It aims to verify that the delivered product meets the specified
requirements. Does the program do what the customer wants? It is a
BlackBox approach.

Regression Testing After the software has been modified or updated,
regression tests should check if everything still works as expected. The
technique is a Blackbox approach.

Beta Testing Beta testing is done by the end user after a beta ver-
sion has been released. It aims to cover unexpected errors for special
use cases nobody thought of. Since the user has no knowledge of any
internals, it is also an Blackbox testing approach.

9

Chapter 2

Unit Testing

2.1 Introduction

Most programmers know that they should write tests, but hardly anyone
really does it. Testing reduces bugs, provides basic documentation and
improves the overall application design, but even though software testing
is probably the most powerful tool to improve the quality of our software,
it is really hard to motivate yourself writing tests.

2.1.1 Motivation

It can be really hard to find the motivation to write unit tests, and even
harder to keep this up over the timespan of the whole project. But there
are many good reasons to do so.

First of all, unit tests will change the way of how you are writing
code. You don’t have to think through the exact logic of the code you
are going to write. You don’t have to check the code afterwards multiple
times and think about whether it will work or not. You just have to write
the tests first and thereby define what your code should do. Then let the
computer check your code. This can greatly speed up your development
[4].

Tests will improve your overall design. Writing unit tests forces your
code to be testable. It is really hard to write unit tests for tightly coupled

10

code, so you have to make your classes as loosely coupled as possible. Also
you will rely less on patterns like global variables or singletons, as it can
be hard to unit test such controversial design. In addition, writing tests
makes you a user of your own API, so you start thinking how it should
be used and how it could be improved [4].

Existing Tests will increase your confidence in the program. One of
the biggest fears for developers is not knowing if all does still work after
making some code changes. Unit Tests will take this fear from us. We
do not hesitate anymore when changing and improving well tested code
[4].

Unit tests will speed up the refactoring process or make it even pos-
sible at all. It can be really cumbersome to refactor code written long
time ago, when there is no way to know if you broke something after-
wards. Tests provide a great confidence that your changes don’t break
any expected functionality. Thereby you can refactor any time, which
leads to even better code design. Also adding new features won’t break
any existing code without knowing [4].

What is the first thing you are looking for, when you have to work
with a new API? For most people, the easiest way to learn is by examples.
So most likely you are going to find code samples for the new API. This is
exactly how your unit tests will serve as a documentation for your code.
They will use your code the same way as anybody else is supposed to use
it. You don’t have to write boilerplate documentation nobody is going
to read [4].

Unit tests will help you defend your code against other programmers.
Imaging a bug which occurs only under very strict circumstances. In
most cases it is very time consuming to find and fix such an issue. Now,
any other programmer which doesn’t even know the issue existed at all
has to refactor some parts or add functionality. There are high odds he
is going to reintroduce the fixed issue. You could have written an unit
test which would have checked exactly this issue, so nobody would break
your stuff again [4]. If anybody does, you would immediately know who
broke it and can blame the responsible programmer instead of fixing your
own stuff again and again.

11

In the end, unit testing makes development faster. Sure, on a class
by class basis, testing slows you down. It takes some time to produce
good tests, especially for beginners. But as time goes on and you are
getting more confident in writing test, the velocity increases. At the end
you will waste much less time on thinking about breaking code and can
add features much faster as without tests.

It can also help to ignore internal implementation details on the first
iteration of coding. Many people prefer a quick and dirty approach first.
As long as we have tests it’s no problem to come back later and improve
or refactor your code [4].

And last, testing is fun! Good developers like challenges. It can be
quite difficult to find well built solutions for automated tests. ”Just like
coding is an art, testing is an art” [4]. Do not make the common mistake
to let the novice programmer do all the testing. Writing good tests needs
experience, expert programmers are the best testers [4].

2.2 The Basics of Unit Testing

The test code invokes another piece of code, mostly a method or a func-
tion and checks if some assumptions about it are correct. It is important
that the assumption concerns a single isolated code unit, thus the proven
part must be completely independent from other logic. The unit test
passes when the assumptions prove to be correct.

This describes more or less a typical way how unit tests are defined.
It is strictly correct but lacks any advice what a good unit test looks
like. To successfully apply unit testing to your project, it is not enough
to only write unit tests. You have to write good unit tests or don’t write
them at all [1, p. 4].

To succeed in writing unit tests essential properties for a good unit
tests have to be defined [1, p. 6]:

• It is easy to implement.

• Once written, it remains for future use.

12

• It is executable by anybody.

• It is automated and repeatable.

• It must run quickly.

Is it possible to write the unit test in a few minutes? If it
takes more time to write the test, it is probably not a good unit test or
not a unit test at all. Common reasons for such tests are internal and
external dependencies, e.g. a database would be an external depend-
ency. Such dependencies are often indicators for integration tests. Unit
tests should focus on a single logical unit and dependencies should be
stubbed or mocked, which should help writing them as fast as possible.
The harder it is and the more time it takes to write tests, the less tests
you will write [1, p. 9].

Is it still possible to run tests which I have written a long
time ago? If we can’t run them, there is no way to know if we broke any
code we wrote back then. There could always break stuff when we are
fixing small bugs at the end of the project. So we need to ensure within
minutes, that everything is still working [1, p. 9].

Is it possible for anybody to run all existing tests? Everybody
needs to execute all tests every time the code is edited. Otherwise there
would be no way to know if anybody broke someone else’s code. Without
good unit tests there is always the fear to break someone else’s code and
thus most people avoid changing code at all [1, p. 10].

Are all tests automated and repeatable? It should be possible to
run all tests with just one click. The more complicated it is to run them,
the less often they will be executed. Nobody cares configuring settings
to get the tests working. So they will probably be skipped at all [1, p. 10].

Is it possible to run all unit tests in a matter of minutes?
The more time it takes to run them, the less often the unit tests will
be executed. After code has been changed, feedback is required as soon
as possible. The more time passes between code changes and the notice
of broken code, the much harder it gets to find the responsible issue [1,
p. 10].

13

If the answer to one of these questions will be no, there is a very high
probability your unit tests are not that good. Or they are no unit tests
at all [1, p. 7]. Unit tests which do not satisfy these properties will most
of the time add more trouble than benefit and most teams will give up
writing them [1, p. 5].

2.2.1 Definition

With the properties for a good unit tests specified we can form a new
definition for those:

”A unit test is an automated piece of code that invokes the
method or class being tested and then checks some assump-
tions about the logical behavior of that method or class. A unit
test is almost always written using a unit-testing framework.
It can be written easily and runs quickly. It’s fully automated,
trustworthy, readable, and maintainable.” [1, p. 10]

It’s not always that easy to understand what kind of code should be
tested. Let’s describe the definition of a logical behavior more clearly:

”Logical code is any piece of code that has some sort of logic
in it, small as it may be. It’s logical code if it has one or
more of the following: an IF statement, a loop, switch or
case statements, calculations, or any other type of decision-
making code.” [1, p. 11]

2.3 Core Techniques

2.3.1 Refactoring to Make Code More Testable

It is often the case that you have to open up your design in order to write
proper unit tests [1, p. 77]. For example, tests need to have access to
private properties and methods, sealed classes, non-virtual methods and
it should be possible to replace dependencies via stubs [1, p. 78].

14

Object-oriented design demands the idea of encapsulation. So the
basic approach for most of us is to hide everything that the user of our
class does not need. And now our testing practice forces us to make all
the internals visible again.

Many people think it is a bad idea to change the application design
just to make it testable, but that’s not the case [1, p. 77]. We need to
look at our tests as another user of our API, then it is absolutely justified
to adapt our design for improved testability. There are several ways to
do so, which are called testable object-oriented design [1, p. 78].

2.3.2 Indirect State and Interaction Testing

The most common way to check, whether a method does what it should
is to check its return value. But often it’s not enough to do so or there
is no return value at all. In such cases there are other ways to verify the
expected functionality.

If there is no return value, we can check the result indirectly by ob-
serving the state of the class under test. This approach is called indirect
state testing [1, p. 41].

In cases where this is not enough, we can look at the code under test in
more detail and check whether it’s correctly interacting with some other
object. This so called interaction testing let us verify if some method
has been called correctly. Usually interaction testing can be a little bit
harder than state based testing [1, p. 83].

2.3.3 Stubs and Mocks

While small representative unit test examples in books usually get along
with very simple techniques, that’s not the case for unit tests in real world
projects. The code under tests almost always relies on some other objects
to work as expected. Typical external dependencies would be the local
file system, a web service or dependence on memory or time [1, p. 49].
You have no direct control over them and the unit test would fail just
because the web service is not available. The only way we can certainly
tell whether our logic does work, is to force complete independence for
our code under test while our unit tests are running.

So we have to find a way to control these dependencies. This is where
we have to use stubs. Stubs are controllable replacements for any existing

15

dependencies [1, p. 50].

A mock object, although for many people quite the same as a stub
object, has a complete different purpose. While we use stubs to avoid
dependencies, we have to use mocks to verify our unit tests in special
cases. There will be often the case where our code under test do not
return any result or save any state we could check with our tests. In
most of these cases the result of our logic will be a method call on another
object. The process of testing such a behavior is called interaction testing
[1, p. 82].

A mock object will serve as a replacement for the involved object. We
have to tell our mock how the code under test is expected to interact with
it and then verify this expectations. Our unit test will fail if the method
was not invoked at all or was not called with the specified parameters.

As you should test only one responsibility in each unit test, it’s im-
portant to have no more than one mock for each test. More mocks would
mean you are testing more than one thing, which would indicate an over-
specified unit test. You should identify what you actually want to test
and use a mock object for this. For all the other fake objects you should
use stubs and don’t assert them [1, p. 86].

We can see that both, mocks and stubs are fake objects used to re-
place dependencies. But mocks can fail tests, while stubs can’t, which
leads to a complete different meaning for both. We can combine them
as needed but we should never use multiple mocks or verify on stubs [1,
p. 86].

There are several ways to replace our dependencies with stubs, for
example we could adapt our design to use interfaces instead of concrete
implementations and then replace the real object with the fake by de-
pendency injection. This can be really time-consuming and forces you
to use interfaces most of the time. Moreover it can get really difficult to
write the appropriate mocks for each test as it can be hard to reuse them
generally.

Instead there will be many frameworks, which will greatly facilitate
the process of creating and injecting fake objects which will be described
more detailed under the next topic.

16

2.3.4 Isolation Frameworks

Writing mocks and stubs manually can be really time consuming and
comes with various challenges. To save time and avoid common mis-
takes it’s recommended to use one of the various isolation frameworks
out there. They can facilitate the process of creating mocks and stubs
tremendous. Furthermore by using such frameworks the test complexity
will come down and the errors can be avoided [1, p. 99].

Following there are listed a few typical framework capabilities:

• Dynamic fake object creation at runtime.

• Define stubs to return simulated values.

• Verify single or multiple mock calls.

• Mock parameter verification.

• Verify and triggering event-related activities.

• It must run quickly.

Beside all these advantages, there are also a few traps of which one
should be aware of when using such frameworks [1, p. 136]:

• Easy creation of fake objects can lead to too much usage of them.
This will worsen the readability of the tests.

• Verifying multiple things or use several mocks will lead to over-
specified tests. These tend bo break on small code changes although
the functionality would still be correct.

• Stubs should not be verified.

• Hard-coded values should be consulted for verification.

17

2.4 Managing and Organizing Test Code

As with production code, you have to manage and organize unit tests in
the right way to ensure their quality. In order to reuse parts of the unit
tests, you have to structure them correctly and build test hierarchies.
Unmanaged tests will get unmaintainable and unreadable very quickly
as the project extends [1, p. 141].

2.4.1 Test Hierarchies and Organization

One of the most important parts is to ensure the confidence into the
tests of the development team. To get the most out of our unit tests,
we have to run them as often as we can. The only way to get your
developers to run them continuously is to make the testing process itself
as fast and as easy as possible. When running all the tests takes several
minutes, nobody is going to run them on every deployment. If they have
to be configured in any way to be executable, they are not going to be
carried out all the time. If a test is going to fail occasionally because of
any dependencies or other circumstances, the team will lose confidence
in them and is not going to rely on them anymore. Developers will get
used to failing tests and they will probably ignore them in the future [1,
p. 147].

Tests must be completely reliable. When a test passes, it means that
the affected code does exactly what it is supposed to do. When a test
fails, there must be any failure in the code under test [1, p. 146].

To ensure this behavior it is necessary to separate your test by their
kind. Categorize them by fast running tests, usually these are unit tests,
and tests that take more time to run, for example integration tests. This
ensures that the unit tests can be run separately without any config-
uration needed and independent from any unwanted external influences.
They will proceed quickly and thus can be run as often as possible. Integ-
ration tests will run less frequently, but they will run at least on nightly
builds [1, p. 144].

To ensure that every developer in your team can execute all tests at
any time, the tests must be managed under your source control. Usually
all your tests will rely under a separate project and will be checked in
with your production code every time [1, p. 148].

18

2.4.2 Naming Conventions

Beside the right location of your tests, it’s important to give your tests
meaningful names. The appropriate test code for each method should
be easily findable. A common approach is to name your test project
exactly as your main project prefixed with the name tests. Then create
an own test class for each class with the same name suffixed with tests.
It’s required to be as specific as possible, so use the word majority of
the word test to point to multiple tests in each class. The test method
should contain the name of the tested method, the scenario for the test
case and the expected outcome. For example TestMethodName-Scenario-
ExpectedBehavior. If it’s hard to name your tests because it does many
things, it is probably time to split it into multiple test cases anyway [1,
p. 150].

2.4.3 Ensuring Quality of Unit Tests

As with your production code, your test code is built up by object-
oriented concepts. As such, it should follow the main principles of object-
oriented programming. Code duplication should be avoided, so structure
your tests to create reusable code. Use inheritance, extract utility classes
and create factory methods. One common practice is the usage of setup
and teardown methods [1, p. 151].

2.4.4 Unit Testing as Part of an Automated Build
Process

Todays agile development processes requires to handle immediate require-
ment changes, which leads to the necessity of test automation. This usu-
ally involves a few common steps: The checkout of the latest version
from the project repository. Then the code must be compiled and all
tests executed. After it is ensured that nothing is broken, the code will
be checked in to production. Usually a predefined build script will handle
all this. If the build or any test fails, the relevant people will be notified
[1, p. 142]. There is also much more stuff today’s build server can handle,
for example the representation of build and test metric and a complete
history with backups and archives of intermediate builds [1, p. 143].

To start the automated process there are usually different ways to
trigger the build. Nearly every build server supports continues integra-

19

tion, which means it will run this process continuously. The build could
be triggered every time somebody checks in some source code or it could
run every few minutes.

What kind of tests will be run on each trigger depends on the exact
build type. Usually there are a few different kind of build types. This
includes nightly builds for long running tests and system tests, release
builds which add server deployment and archiving, or continuous integ-
ration builds which include all fast running tests [1, p. 144].

2.5 Basic Pillars of Good Unit Tests

Regardless of your test code management and organization, there are
three basic principles which serve as indicators for good unit tests [1,
p. 171].

Trustworthy Tests It’s strongly required to ensure the confidence of
your tests. Tests have to be free of errors and they have to test the right
things.

Trustworthy tests let your developers know what is going on all the
time. When a test fails, the code under test doesn’t what it is supposed
to do. When it passes, the tested part does work [1, p. 171].

Maintainable Tests Unmaintainable tests represent a high risk. As
they won’t get updated they will fail more often. As they won’t get
fixed, they won’t get executed anymore at all [1, p. 171].

Ensure the maintainability of your tests is one of the most common
problem, as it can get really hard to write maintainable tests with the
project getting bigger and more complex over time [1, p. 181].

Readable Tests If you can’t clearly understand your own tests months
after you have written it, nobody else will either. Unreadable tests wont
get fixed or updated. As you can’t maintain unreadable tests, their trust-
worthy gets lost [1, p. 171].

Good naming of the tests and their assert message is inevitable for
good readability. We should see our tests as stories we use to tell the
following programmers about our code [1, p. 210].

20

Chapter 3

Test-Driven Development

In the early days of testing it was common practice to start writing
tests not until the production code was finished. In recent times this has
changed and tests are written more and more before the code under test is
written. While the exact meaning of Test-Driven Development may vary,
the term is mostly used for such a test-first approach [1, p. 16]. Figure
3.1 and Figure 3.2 show the differences between a traditional unit-testing
approach and test-driven development.

3.0.1 Advantages

Test-Driven Development will significantly improve the overall code qual-
ity and object oriented design. Also the tests themselves will have a much
better quality because of the way they are written. The number of bugs
will decrease, which results in a increased confidence in the code. In ad-
dition, time to find bugs will be much shorter than before [1, p. 18].

Take the simple way Writing all the tests after the code would
be exactly as bad as writing them all before any code has been written.
People are much better in doing only one thing at a time, so try not
switching context as long as you don’t have to. Writing all code first and
the tests afterwards means you have to deal with every problem twice.
So write just one or even a few tests for a problem, then create the code
to make them pass. Thus you can increase your efficiency and you can
get the most out of your time [1, p. 13].

21

Figure 3.1: In a traditional approach most of the parts which involve
testing are optional as represented by the dotted lines. If at all, they are
written after some or most of the code is done [1, p. 17].

Increase your motivation When writing production code for your
tests, you will get immediate feedback of your development cycle. Each
test you can make pass will increase your encouragement. The process
of TDD will split up large requirements in many small problems which
you can solve in small steps. The permanent sense of achievement is a
natural way to increase your motivation [5, p. 13].

Organize your thoughts You will have to think about the tests you
are going to write. For each requirement you have to find the correct way
to split it up in small problems and then write tests for these problems.
You will only write production code if it is going to make a test pass,
otherwise it is most likely not needed [5, p. 15].

Spend your time useful Much of the time needed for writing code
includes time to test just written code. You need to get confidence that
it does what it is supposed to be, because there are no tests which can
tell you. Usually even more time gets lost finding small bugs and using

22

Figure 3.2: Test-driven development enforces small incremental steps.
Unit-tests will be written first, then the code to make them pass followed
by a refactoring process if necessary [1, p. 17].

the debugger stepping through your code.
After some experience with TDD, the total time spent writing tests

and code isn’t that much different to the time needed to just writing code.
But the time lost by testing your code and using the debugger doesn’t
provide any value for the future. Unit tests on the other hand will stay
there and will help you many times in the ongoing project cycle [5, p. 15].

3.0.2 Disadvantages

If Test-Driven Development is done wrong it can easily result in a slowed
progress and thus it can delay the project schedule. It can waste de-
veloper’s time and lower their overall motivation. Of course wrong tests

23

can also reduce the overall code quality.
One must be aware, that the advantages of a Test-Driven Develop-

ment process come not without a price one has to pay. Mastering TDD
requires a lot of experience, time to learn and time to implement your
test environment [1, p. 18].

3.1 Techniques

The Test-Driven Development technique is based on three simple steps.
First write a failing test, then write the code to make the test pass and
in the last step refactor your code if this is necessary. The failing test
is written as if code would be already working. It proves the absence of
required functionality. A passing test means that the corresponding pro-
duction code does exactly what it should do. The code should be written
as simple as possible. Don’t write more than you need to make the test
pass. Refactoring is optionally. Sometimes it is enough to refactor after
multiple passing tests have been written [1, p. 19].

The concept itself is not hard to understand nor hard to apply, but
to succeed with it it’s important to recall the unit testing patterns it is
based on.

3.1.1 Test First

The unusual concept of the test first approach is to test something before
it does actually exist. The test will define the acceptance criteria and as
long as the test does not pass, the product needs to be further improved.
As soon as all tests pass the project is finished [5, p. 13].

The problems usually do not describe user features. They are rather
micro-features which form the functionality. [5, p. 14]

The best way to go is to not think about how to implement something.
Instead think how you could write a test for the problem. This will lead to
code which can be tested and will do what the requirement demands. As
long as you think test-driven, the strict process when a test is written and
how many tests are created before writing any code is not that important.
Sometimes you will write a few tests and then make them pass. Another
time you will write the code which should solve the problem first and
then go back to write the tests to prove it [5, p. 14].

24

3.1.2 Red, Green, Refactor

Now that we know the basic concept of Test-Driven development, we
need to think about how the tests should look like. It is important
that the tests are derived from the specified requirements. Start with
thinking about how you would like to use your implementation. What
should the method call look like and which parameters does it need to
solve the problem. Start implementing the method while leaving out
any implementation logic. Then write the test which asserts the correct
output.

The next step is to run the test. But why should we run the test
knowing that we have not implemented any logic yet and the test will
fail anyway? Sure the test will fail, but even failing tests provide value.
They explicitly show that there is something the application should do
but doesn’t yet [5, p. 15].

Instead of just get going writing the implementation and thinking
afterwards how it will be called and which parameters it does need, you
have defined the call you would like to use first. This will greatly improve
your overall application design. Your methods will be much easier to use
for other developers. And you have shown that your project is not quite
there, where it should be [5, p. 15].

At the early stages of your project this will be pretty obvious, but
later on there will be cases where it is not that easy to know, what your
application is already capable off. It may happen that you write a test
with the intention to add a feature, not knowing that your application
can already solve this problem. You will realize this not until you run
the test and it magically passes [5, p. 14].

The process of writing tests although no code has been written, is
often called the red stage. This is, because most of the modern develop-
ment environments are displaying a red bar when any test is failing.

The red bar is only going to disappear when the failing tests have been
fixed. There will appear a much friendlier green bar when all tests pass.
This is the next step we aim to achieve. After defining the implement-
ation interface in the first stage, we have to start implementing actual
implementation. The curious part here is that it does not really matter
how the code is written. You just have to make the test pass, even if
this means that you just have to return the value as a constant for which
the test assertion aims. As soon as the test is not failing anymore, you

25

have added the required functionality and reached the save green stage.
Otherwise there would be a test to prove the contrary. Implementing
anything more might just be a waste of effort [5, p. 16].

Now that you have implemented the required functionality it could
be, that you do not really like your code. It seems that it is not as the
object oriented world demands it to be. It can be really hard to tell what
exactly is wrong, so it is used to be called that ”the code smells” [5]. This
expression was invented by Kent Beck and refers to code, that may be
okay, but there is definitely something about it that does not seem right.
This is where you get the possibility to refactor your code. This should
be simpler then ever, since you can’t really break any existing functional-
ity without knowing about. Your tests will provide confidence that your
changes won’t break anything. It is not required to refactor after each
test. You can also do some refactoring after writing a few tests. You
don’t even have to refactor at all, if the code needs no refactoring [5,
p. 17].

So there are three basic stages of Test-Driven Development. Writing
failing tests is the red stage, make them pass is the green stage and
the final stage is the refactoring process. Sure your application might
not be finished after such an iteration, but it should be save to release
an update because you have provided additional functionality without
breaking anything else. Instead of implementing dozens of half baked
features, we have defined a way to implement fully working and entirely
tested micro features step by step. It has to be noted that there is still
the requirement for other tests like integration and system tests before
releasing any update of your software [5, p. 17].

3.1.3 Designing a Test-Driven Application

Although in the previous chapters we have learned how to implement
features just by defining them through tests, it is not enough to just
start writing the first test and incrementally adding all required func-
tionality. Even Test-Driven development requires to think about your
overall application design first. It is not that much different to physical
engineering, where it would not be even thinkable to start adding com-
ponents without thinking about the architecture first. You just can’t

26

install your windows without putting in the walls first. But exactly this
is what happens many times on software projects.

So before writing any test, start your Test-Driven project with at least
an overall concept of your application. It does not need to be carried out
to the smallest details. Just get an idea of all required features and
how they fit together. Think about where common used code might
be required and how your communication and interaction between the
individual components can take place.

This knowledge will help you creating the correct application design
while writing your tests. It is also very important for refactoring your
code, to move your design in the correct direction [5, p. 18].

3.1.4 You Aren’t Gonna Need It

One very important concept of Test-Driven development leads us to only
writing code for tests we have written. And furthermore, only writ-
ing tests for features which are defined in the requirements explicitly.
Thereby our project will contain no code we won’t need, except for any
requirement changes or other stuff becoming obsolete.

Usually developers tend to write more code then necessary. Why
should I not implement nice stuff I’m absolutely capable off. It’s often
fun facing the challenge to write your code a little bit more generic or
to extend your helper class with a few maybe useful methods. But a
common problem with this is, that a lot of time gets lost adding this
features. Your classes will degenerate to little frameworks and you have
to invest much time just for the sake of completeness of this framework,
time for implemented features you doesn’t even need, at least not for this
project [5, p. 19].

This is also often the case when implementing features while the exact
requirements are still unclear. For example knowing that we are going to
need a class which handles a web request to retrieve some information.
We do not know anything in detail, so we could just start over writing
a generic class, which should be able to handle all arising requirements.
This is often called an inside out approach. As soon as we implement the
exact details, we realize that most of the written stuff is not needed. But
the code will be left there making it harder to read and maintain. This
also comes with a bunch of tests we have written for this class. In the
worst scenario the needless code may lead to an exploit by attackers. As

27

long as the code exists, there is also an eventuality that it may be used
in the future. But this can easily lead to bugs which can be really hard
to find since the code has been written a long time ago [5, p. 20].

Test-Driven development enforces an outside in approach. We will
write only tests for things we will need for sure. It might be the case
that you have to extend your code at some point to support features
you would have already thought off. But since you got a complete test
coverage it should be no problem to do so when the time has come. You
can also write multiple tests and then write the code to implement it
outright in a more generic way [5, p. 20].

Of course there are also cases where it is required to write generic
classes. Many big software companies have to do so when building their
frameworks. But they will invest much more time and effort to do so.
Most of us write simple applications where no such requirement exists
and it would be much better to spend our time on more important and
really required things.

28

Chapter 4

Test Automation

4.1 Introduction

Automated software tests can reduce the testing effort significantly. Either
the tests can be executed in much less time or the number of tests per-
formed in a limited time will be increased. The required resources to
execute them will decrease in any way. So test automation is a great way
to save money on software development. Since it will require much effort
to build up the automated tests, it will not always save money directly
but you will get much better software quality more quickly.

Test automation builds up on the concept, that all test should run
on the push of a button. So they can run overnight when computing
resources are available. One of the main advantages is the repeatability.
You can execute exactly the same test sequence with the same inputs over
and over again. It would be really hard and time consuming to achieve
this with manual testing. Even the smallest change in your production
code can be tested with minimal effort. In addition it is great for your
developers to get rid of boring repetitive test activities which are mostly
error prone and discouraging [6, p. 3].

4.1.1 The Difference of Software Testing and Test
Automation

To understand the concept of test automation it is important to see the
difference between testing and test automation:

29

Software testing
There will be an unlimited number of possible test cases for any system
and it is only feasible to create a very limited number of them. Therefore
it is necessary to pick the right ones to build, the ones which will prob-
ably find the most errors. A good test can be described by four main
attributes.

• Effectiveness indicates the probability of finding bugs.

• Exemplary tests will do more than one thing whereby the overall
number of required tests will be reduced.

• How Economical is it to perform a test? How much resources are
required?

• Evolvability is an indicator of the complexity of a software test.
How hard is it to maintain the test, when software changes?

For example, a very examplary test will verify multiple outputs but
may cost much more time to execute, analyze and debug. It’s also very
likely that such tests are hard to maintain. Therefore very examplary
tests can drastically reduce their economy and evolvability [6, p. 4].

Test automation
Whether tests are performed manually or automated will make no dif-
ference in its effectiveness or how examplary it is. If your tests are not
well suited for finding many bugs, they will neither do so when executed
automatically. Automation will only affect the evolvability and economy
of the tests. The costs of running all tests will decrease drastically but
it will take much more effort to create and maintain them. It is import-
ant to have far reaching knowledge and experience in creating automated
tests, otherwise the costs for creating and maintaining them can quickly
exceed the costs of executing them all manually [6, p. 5].

30

4.2 Motivation

Test automation will help perform testing much more efficient than it
could be done manually, but there are also many other advantages when
using automated tests [6, p. 9].

One of the main advantages of automated tests is the possibility of
regression testing. Tests can be performed repeatably for each new ver-
sion of the software. After software changes, your tests will check the
code for any introduced errors. This is especial useful in environments
with a large number of programmers and permanent software updates.
The extra effort should be minimal, since all the tests already exist and
have been automated [6, p. 9].

The automated execution of tests will allow far more tests in less
time. Thus they can be executed much more often which will lead to
more confidence by your developers. It is often the case that automated
tests do not lead to less time spent for testing. Instead much more tests
will be executed more often [6, p. 9].

Test automation will enable the introduction of very large and difficult
tests. For many tests, manually testing is not really possible or would at
least require an extensive investment to do so. For example tests, where
a large number of user data and their input is required to populate data
required by the system. Manually creating hundreds or even thousands
of user data is not really a possibility. An automated system can create
these data within seconds, over and over again [6, p. 9].

Also, with manual tests you can only test a very limited number of
attributes. For example a user interface action may trigger an event
which has no immediate output. An automated system can easily check
for such events [6, p. 10].

A further advantage directly affects the developers. It can be really
boring to test code and simulate input data repeatedly. This can lead to
unmotivated employees, which will probably raise the mistakes made by
them. Automation will therefore increase accuracy and decrease errors.
In addition, free resources can be used to create better test cases. Ma-
chines which would idle otherwise can be used to execute tests over night
[6, p. 10].

31

Knowing that a large set of automated tests will run, leads to a greatly
increased confidence by your developers. Newly released updates will be
more robust, so any surprises after release are much less likely. This can
drastically reduce the pressure on your team [6, p. 10].

With automated tests you can reach a consistency of test execution,
which would not be possible otherwise. The tests will be repeated in
the exact same order, with an identical input and at the same time-
frame. This allows for the exact same execution on different hardware,
platforms and operating systems and can lead to much more consistency
for cross platform projects. By that, it will be much easier to enforce
implementation standards across different platforms. The same feature
will be implemented in the same way on each platform [6, p. 10].

And last, test automation can lead to a significantly reduced release
time for your product. Since the test process will be integrated in the
development cycle, the test procedure before release will be much shorter
and the software will reach the market faster [6, p. 10].

4.3 Disadvantages

Besides the numerous benefits, there are also some disadvantages and
common problems when trying to introduce test automation.

Automated tests cannot completely replace manual testing:
It would be whether possible nor is it recommendable to simply automate
all tests. There are test cases which are just too difficult to automate. In
such cases it can be much more economic to test things manually. Com-
mon examples for tests which should not be automated are [6, p. 22]:

• Tests which will not be repeated very often. It would be a waste
of resources to automate tests, which will run only once every few
months [6, p. 22].

• When software is changing very frequently, for example an user in-
terface which is not yet final. It will be changed with each iteration
and each automated test needs to be updated to. The effort to do
this would be too high for its value [6, p. 22].

32

• For tests, where the verification of the result is an easy task done
manually but would be very difficult to automate. Examples for this
would be the esthetical appeal of an user interface, the correctness
of images or an audio validation [6, p. 23].

• Mostly it is also not worth automating tests which require physical
interaction. For example turning off and on a system or insert coins
into a machine [6, p. 23].

At least at the beginning, all your testing should be done manually.
Manually testing is much more effective in finding errors. You can then
automate them over time. Begin with those, which are the most easiest
to automate and which will run very often [6, p. 23]

Manual tests find more defects:
A test will reveal a defect the first time it is run. Before any test will
be executed automatically, it has to be tested itself. This is done by
executing it manually. Affected defects will be revealed just then. It is
important to realize, that test automation is more for regression testing
then for finding errors immediately [6, p. 23].

Automated testing requires a very high test quality:
Only the differences between expected and actual outcome will be re-
vealed. It is important to have a great confidence in the correctness and
completeness of all the tests which will run in the background [6, p. 23].

Automation doesn’t improve effectiveness:
Automated tests are neither more effective nor more exemplary. They
are just going to improve the overall efficients [6, p. 23].

Test automation can limit software development:
Usually automated tests are more fragile than manual tests. They tend
to break by the smallest software changes. The effort in building and
maintaining them can easily restrict the options for enhancing and chan-
ging the software. Changes which will have a strong influence on the
tests should be eventually dropped [6, p. 24].

33

4.3.1 Problems When Introducing Test-Automation

There are some important points to consider, when introducing test auto-
mation. Since there are common problems depending on the project and
the development team itself, it should be clearly thought of, if an auto-
mation will provide any value for your project [6, p. 11].

It is very common that the introduction of test automation digs to
high and unrealistic expectations. It is the human nature to think, that
new technology will solve all of our problems with minimal effort. Sellers
of test automation software will withhold the given problems and disad-
vantages which will lead to unrealistic expectations. Expectations which
cannot be reached will impact your motivation negatively on the long
term [6, p. 11].

Test automation may not be a good idea if no experience is present
and the testing practice itself is very poor. It is most likely better to
invest more time in improving the test cases itself to make them more
effective than improving the efficiency of poor tests [6, p. 11].

Just because the automated tests have not revealed any issue, this
does not mean that there are no issues. Tests may be incomplete or in-
correct at all [6, p. 11].

Tests require much effort in maintenance. When production code gets
updated, many tests have to be changed to. If the effort maintaining your
tests is greater then running them manually, automation will not provide
any value [6, p. 11].

Test automation tools may be not free of errors themselves. They
often require trained personal and support to know their strengths and
weaknesses [6, p. 11].

There may be problems related to the software itself you are trying to
test. If this was not written with testability in mind, it may be difficult
to write tests. If you can’t really test it manually, an automation tool is
not going to help. It probably will make it just more difficult [6, p. 12].

It requires the right organization and extensive support by the pro-

34

ject management to integrate test automation successfully. The task is
not trivial and requires much time, budget and trained personal. The
team has to figure out a way what will work best for them. There should
be one person with responsibility, which itself is enthusiastic about test
automation. He needs to communicate his attitude to the team to mo-
tivate them. In addition, an appropriate infrastructure needs to be set
up to make test automation possible [6, p. 12].

35

Part II

Practical Part

36

Chapter 5

Introduction

The main goal of this work was the introduction of an agile software
development process for a new upcoming project. Once the technique
has been established and well integrated into the company structure, the
procedure should be adapted for other ongoing and upcoming projects
as well.

The intended scope of the process should include agile development
methods in a test-driven manner. Beside this, we had to set up tools
to support this goal, including a proper project management tool, a bug
tracking solution and a program to introduce Continuous Integration.

5.1 An Agile Development Method

We have decided to use an agile development approach based on Scrum.
This widely used and very successful technique for agile development is
based on short development cycles called sprints. Due to the fact that a
requirement cannot be fully understood or defined, the approach follows
the principle of a strongly involved costumer, who can track the project
progress and guide its ongoing direction [7].

Although this flexible approach was very promising, it has been de-
cided to not use it in its common definition. A very own process has
been developed, with the intention to provide the best adaption for the
team and the internal company structure. So the Scrum technique was
combined with the so called Kanban approach. Kanban, literally sign-
board or billboard, is a system for a just in time production which has its

37

roots in the car industry. It uses a multi column board to schedule and
assign the different tasks to the relevant people. The approach gives a
great overview of how resources are currently spent and how the project
progresses [8].

Our choice for a proper project management tool fell on Jira. Jira, a
commercial, platform independent software product developed by Atlas-
sian is one of the most widely used tools in modern software development.
Beside project management it supports issue tracking and bug tracking.
There are many different plugins, for example for Scrum and Kanban,
which allowed us to setup our custom development environment. Fur-
thermore, it can be integrated with all common source code management
tools and it also supports native build server integration.

To establish Continuous Integration we decided to fall back on a
widely used build server tool called Jenkins. Jenkins is a free cross-
platform tool which was forked by Hudson, a widely known commercial
build server. Since the development status for this tool seemed to be
very active, and it supports iOS as well as Android and Web projects it
seemed to fit perfectly for our needs.

5.2 The Project

The software project is about an online trading platform, where some
kind of items can be collected and shared with other users. In order to
use all offered features of this service, an user registration is required.
The collectible items must be generatable with templates, which allows
the customer to update and extend the item collections over time. The
platform should be accessible via an easy to use web interface, as well as
by different mobile clients. To offer the best possible user experience, a
native implementation on each platform is a key requirement.

38

Chapter 6

Tools and Frameworks

As already mentioned we used Jira for project management, bug and
issue tracking. Further, an important part was to connect Jira to our
build server and source code management tool. Only in this way we
could assure to gather all important information at one place.

So while looking for the right tools which would match our require-
ments, we have especially kept an eye on the ability to interact with each
other. Thereby Jenkins became our choice for a continuous integration
environment, while we decided to use GIT as our version control system.
All of them promised to interact with each other quite good.

To support test-driven development for our iOS project we used a
unit-testing framework called GHUnit and further a promising fake object
creation tool called OCMock.

6.1 Jira

Jira is a commercial issue tracking software we also use for project man-
agement and bug tracking. The highly customizable program can be
configured and accessed via an rich web interface. Its flexible plugin
architecture allows for a selection out of a large number of third party
plugins built by the Jira community. The available add ons helped us
creating our agile board consisting out of an Scrum based approach com-
bined with Kanban. Furthermore it is integratable with different source
code management tools, so we could connect it to our GIT Server [9].

39

6.1.1 Capabilities

The following section lists features of Jira, which where an essential part
for our decision to use this tool [9].

• The highly customizable Dashboard as can been seen in Figure 6.1
can be freely layouted to display activity stream, newest issues and
tasks, latest bugs, current project progress and much more func-
tionality. There is also the option to generate dashboard templates
in order to provide predefined layouts for all users.

• It supports bug, issue, feature and task tracking. Although bug
reporting can also be used from external testers and customers,
we only used it internally since we only had a limited number of
users. External bug reports where reported via emails, which where
automatically populated into Jira using available plugins.

• A Jira agile extension enables the power of creating and estimating
stories, building sprint backlogs, visualizing team activity and much
more we required for our agile process realization.

• A substantial issue change history. Every changes made, will be
logged and can help to understand past operations, which can be
especially useful if somebody who was working on an issue has left
the team.

• Jira has a paid extension tool to support documentation called
Confluence. Confluence is a wiki we use to collaborate on writing
and sharing content in our team.

• Widely available plugins, created by a large Jira community, enable
a free customizable project management tool including the support
to integrate external tools.

• Integration with GIT and Jenkins to support Continuous Integra-
tion. Test coverage and the latest commits can be directly displayed
on the project overview.

Creating new issues, bugs or tasks can be done within a few steps.
Although there are multiple fields and options when creation an issue,
most of the time it’s enough to fill out just a few of them, depending

40

Figure 6.1: The exemplary Jira dashboard shows multiple projects, as-
signed issues and an activity stream. Additionally you can see charts
regarding all different kind of issues and a comparison between created
and resolved issues.

41

Figure 6.2: Apart from a few required fields like defining an issue type
and a short description, there are a lot of additional fields e.g. priority,
related component, affected version and many more.

on your own process flow. Required fields includes the affected project,
the issue type and a short description for the issue. Figure 6.2 shows the
creation of an issue including many optional input fields.

6.1.2 Advantages and Disadvantages

Jira offers a great opportunity to use one tool to fulfill nearly all require-
ments and wishes for project management and software development. A
single place for everything, even if co-workers have to contribute from a
completely different workplace in a foreign country. Also the Confluence
extension is a great way to get all required documentation and informa-
tion to one place everybody has access to.

Another great part is the email integration to report bugs, even

42

without any access rights. Especially end-users which won’t have any
knowledge about Jira, can report bugs per email, which will automatic-
ally appear in the internal bug tracking system.

Since the tool with all its possibilities can get really complicated, the
ability to create templates for different purposes can greatly facilitate the
usage for co-workers.

The support for a greatly customizable agile development interface
allows the personal adaption as it’s required for the internal company
process cycle.

And last the possibility to integrate the tool with our SCM tool GIT
and our build server Jenkins was one of the most important decision
makers, since it extended the possibilities for our project managers to
have all information at a single place.

Beside all the positive aspects mentioned, there are also some disad-
vantages when using this multi functional tool:

All the possibilities, customization options, plugins and extensions
make the tool really complicated to learn and use. It can be hard for
developers to get used to all the available functionality. In our experience
most of them where satisfied with a very small part of the features,
although there would be much more which could greatly facilitate their
work.

Also the setup requires quite an expertise at this area. It’s recommen-
ded to have a dedicated worker to explore and setup the tool as required.
He should make use of templates to help co-workers get used to the tool.
The tool is only really useful after correctly set up and customized as
wanted. Much effort will be needed to find and install required plugins
and integrate it with other tools. It is important to be aware of this facts
when deciding for such a powerful tool. Especially for very small teams,
this could be really hard to handle and not even necessary.

The structure of Jira can be quite confusing sometimes. The user-
interface offers many options for the same use case, which makes it hard
to remember the necessary procedures. Additionally there seem to be
small notification issues, which can make the tool a little bit annoying
at the beginning. For example the listed project lead will get an email
notification for every single issue created, changed or removed. This will

43

result in spam with not much value. Furthermore, it’s apparently not
possible to get a notification if you got assign to an issue by somebody
else.

6.2 GIT

The project is hosted on a dedicated in-house server with hourly backups
to prevent any data-loss. We have also considered using some external
hosting provider like GitHub but due to an restrictive contract with the
customer, we where forced to ensure the project will be hosted internally.

For our source code management system we decided to use GIT. GIT
is a distributed revision control and source code management system
which has evolved as the most used and reliable source control system
[10].

Although the previously used system was Subversion and there was
not much experience with GIT at this point of time, we decided to use
the newer alternative. Beside its popularity it was the extensive feature
set and the possibility of an entirely new branching system which forced
our final decision.

We have accomplished to integrate our GIT repositories into our Pro-
ject Development Tool Jira as well as into our Build Server Jenkins.

This offers the ability to show each commit to its associated issue,
bug or feature. Thereby the project lead has immediate insight who did
the last update on an issue and what was it about.

The connection with our Build Server was crucial to reach our goal
of a wide-ranging continuous integration. So we could configure Jenkins
to react on new commits and trigger a scheduled test run.

Even though the vast set of GIT functionalities can impede the entry
for beginners there, are plenty of free tools for every platform, which will
simplify the usage at the beginning. Moreover a small set of features is
already sufficient for an extensive branching approach as we have decided
to use.

44

6.2.1 Successful Git Branching

To succeed with our Continuous Integration approach and to use the
potential GIT entails in this regard, a successful branching strategy and
release management was inevitable for us. So we’ve invested a lot of time
and effort to completely understand the process of branching and to work
on an approach which would be most convenient for our claims.

In the end we found an approach which was already successfully used
by other development teams and also seemed to be perfectly suitable for
our own goals.

Our approach is based on Vincent Driessen’s famous branching model
which is shown in Figure 6.3 and although we started with the intent to
use it exactly as he described it, we did digress quite far with further
project progress.

The repository setup is quite simple. There is one central repository
referred to as origin, where every developer pulls new changes from and
pushes the latest commits to. Actually GIT is a decentralized version
control system, so technically there exists nothing like a central reposit-
ory, but there is the option to create a bare repository which contains no
working directory and that is exactly what we speak of [11].

With GIT it would be also possible for all developers to interact dir-
ectly with each other and push or pull from their peers to. This could be
especially useful for larger features but was not really used in our team,
since the mobile development teams are quite modest and features were
deliberately kept small [11].

Main branches: Main branches are characterized by an infinite lifetime
and are referred to as master and develop. The master always reflects
a production ready state of our product, while develop is the state with
the latest delivered development changes. This would be also often re-
ferred to as integration branch, since it is fully functional all the time
and automatic nightly builds are built from this.

After each new release the development branch gets merged into mas-
ter and tagged with a proper release number [11].

Supporting branches: Besides the two main branches the approach
includes a variety of parallel branches called feature-, release- and hotfix

45

branch.
The feature branches are used to develop new features for upcoming
releases. They exist as long as the feature is in development and if suc-
cessfully, it will be merged back into the develop branch, otherwise it
will be discarded. Mostly there is a large variety of such branches at the
same time but they reside usually only on the developer repository and
not on the origin itself.
Release branches are used for last minute changes and bugfixes before a
new release takes place. Only features targeted for the new release will be
included. The branch will then be merged back into develop and master.
Hotfix branches are for situations when a critical bug in the production
version needs to be fixed immediately. One person from the team will
create a new hotfix branch out of the master and will prepare a quick
hotfix, while the rest of the team can continue with their work completely
unaffected. The branch will be merged afterwards back into the master
and also the develop branch [11].

6.2.2 Advantages and Disadvantages

There are many discussions on advantages or disadvantages of GIT com-
pared to other version control systems. But since you can find more than
enough of these in selected literature or on the web, we will just focus on
our decisive points.

First I would like to mention that the branching opportunity GIT
allowed combined with a promising branching system, already caused
major euphoria in our team, even before the project development has
started.

• If everyone follows the rules and won’t push any untested code to
the development branch, there is never again the possibility that
anybody broke something by which all other developers would get
hold up. It won’t be the case anymore that anybody checks out
some code in the morning and has to wait until some teammates
show up, since nothing is working anymore.

• Also on planned releases the rest of the team can continue working
on their features since the branching system grants them complete

46

Figure 6.3: The model shows multiple branches used to ensure a suc-
cessful branching and proper release management. Beside master and
develop, which exist permanently, there are also a few branches with a
very limited lifetime [11].

47

independence.

• Hotfixes can be applied to the production state without major cir-
cumstances, and they will also be added to the current development
state.

• The branching allows developers doing experimental stuff which
can be immediately discarded afterwards.

• And the last but probably most important point is the support for
Continuous Integration which gets completely new opportunities
due to the applied branching.

But there are also a few cons on the list which should be mentioned to:

First the branching seems to be a bit excessive for very small teams.
Although parts of the model should be used even if somebody is working
on a project alone, the system can cause much overhead and the excessive
branching can lead to many merge conflicts if not done right.

To avoid such conflicts generally the features should be kept quite
small and it should be pulled and pushed to develop as often as possible
but at least once a day.

Even though the branching model worked very well, it was sometimes
just too much overhead for our very small mobile development teams. In
addition it can be very hard to run a very excessive branching on iOS
development since the framework makes it very hard to merge changes if
not done continually.

6.3 Jenkins

Due to its wide distribution we decided to use Jenkins as our Continuous
Integration tool. Jenkins is open source and can be used to build and test
software projects continuously. It supports a various number of different
SCM tools and can execute builds by many different practices. To start a

48

build a few approaches exists, for example it can be triggered by a commit
of a version control system or triggering can be scheduled repetitive by
a predefined timespan.

The application scope can be extended by a large set of plugins. They
can add additional build options, add functionality or integrate further
version control systems.

Reports of successful or failed builds can be directly reported to Jira,
where they will be displayed in the activity stream [12].

6.3.1 Architecture

Since our project includes multiple applications on different platforms, it
requires a slightly more verbose Jenkins architecture to support integra-
tion for all of them.

Mainly there are three dedicated Jenkins server. One master run-
ning on a Linux machine and two slaves, one running Mac OS X for iOS
application builds and the other is a Windows based machine executing
builds for dedicated Windows applications. The master has set up dif-
ferent jobs to start a various number of builds for different platforms.
It is constantly checking the GIT repositories to trigger builds on new
commits. The affected clients are cloning the relevant projects from their
respective repositories and then execute them via terminal. On a suc-
cessful build, both unit tests and user interface tests will be executed.
The build and test results are then reported back to Jira.

6.3.2 Setup and Configuration

The complex architecture requires much effort to set up all Jenkins ma-
chines and configure their desired jobs. Besides setting up the interac-
tion between master and slaves, it is also necessary to find and install
the proper plugins to ensure the interaction with GIT and Jira. The
master-slave connection will be established over a ssh communication.

For each job it has to be defined on which Jenkins note it will run,
what repository and which branches it should check out and build and
to which branches a successful build must be merged back. Additionally
the desired build triggers have to be defined. To execute the project and
run the tests, for each job a special build script needs to be created. The

49

responsibility of these scripts is to start the build via console, execute all
configured tests and write back the test results in a proper format.

Further it’s possible to define post build actions which should evalu-
ate the test results and notify the appropriate clients. In our case we had
also a Jira build reporter which automatically created the corresponding
issues if a build or test has failed and assigned it to the build breaker.

In the end, when all the Jenkins clients where successfully up and
running, the master has constantly checked the different development
branches for changes. As soon as any changes where registered, the
corresponding client has checked out the newest changes, created a built
and executed all tests. If no errors occurred it merged the changes back
to the development branch. In case anything went wrong it forwarded
the information to Jira, which on the other hand sent out emails to the
affected people.

6.3.3 Encountered Problems and Pitfalls

As with Jira, also the Jenkins setup and configuration requires enormous
time and effort and there should be definitely an individual worker who
is responsible for setting up and configuring all required modules. Even
if all is up and running, it still requires permanent maintenance and fixes
for occurring issues. Plugins are often only barely reliable and it requires
further effort to fix problems or you have to wait for updates which fixes
them.

While the build server was running pretty well for the web and android
based projects, it was really embarrassing to successfully setup all the
required stuff for the iOS project. First it was troublesome to setup the
master-slave communication on the Mac OS X machine. The requirement
for administrator rights requires any user authentication which was not
even possible when adding the relevant ssh keys.

A similar problem appeared when executing XCode builds with the
console. Since Jenkins was running on the machine as an individual user,
there were no rights to create any builds.

After these problems have been wiped out, there were already more
troubles waiting. Since there is no official support to build iOS projects
from console and executing their unit tests, much time and effort was

50

spent in creating the appropriate build scripts to do so. Even the task
of generating the test results in a proper format was not that straight
forward as it should have been.

The entire process was influenced by researching how to bypass any
occurring problems. Most of the time, if a solution has been found, it was
already outdated and did not work as expected, because XCode or any
other part of the framework got updated which destroyed the approach.
In the end after enough time and effort has been spent to bring the
integration up and running there is usually already a new update from
Apple waiting which is probably going to destroy much of the used effort.

6.4 Unit Testing Framework

To sustain the test-driven development process on iOS we decided to
use any tools and frameworks which can facilitate our approach. There
are a few different unit-testing frameworks for iOS including a native
supported one by Apple called OCUnit. Beside some frameworks based
on a behavior-driven development approach, there seemed to be only one
widely used alternative called GHUnit.

To avoid writing required mock and stub objects manually, we decided
to use OCMock since it had all usual required functionalities.

6.4.1 OCUnit

OCUnit is the default framework provided by Apple. Since it directly
ships with XCode, it is probably the most easy choice to get started.
It is based on SenTestingKit, which is simply a revision of Kent Becks
unit-testing framework for smalltalk [13]. XCode versions prior to 4.0
had some poor limitations regarding to SenTestingKit, for example the
inability to set any breakpoints in test cases which would be essential to
debug failing test cases. Since then Apple provided incremental OCUnit
updates to make up for most of the crucial drawbacks which made it a
much better choice to use.

Drawbacks: There is no appealing user interface for running the unit
tests and the output is limited to log results in the console. The probably
biggest problem is the inability to run individual tests or a predefined set
of test cases.

51

6.4.2 GHUnit

GHUnit is an open-source framework for writing unit tests on Mac OS X
or iOS. It can be used as a standalone version or may be combined with
other testing frameworks such as OCUnit [14]. Since it’s not implemen-
ted into XCode it’s not exactly that easy to setup as Apples alternative,
although the installation process is equal to other external frameworks as
it can be installed with Cocoapods. Since OCUnit had many drawbacks
in its first iterations, GHUnit evolved to a first choice alternative with a
solid feature set and a committed community. There are also instructions
how to integrate GHUnit into Jenkins but at the end it was not that easy
to do so.

Strengths: Its strengths are clearly in the execution of test cases and in
the sophisticated ability to display test results. You can either execute
your tests by command line or using a tool including a welcome user
interface. In addition to the option of running all tests at once, they
can be executed individually or in a selected set of tests. The output is
colored, filterable and navigable. There is even an option to display rich
test metrics [14].

6.4.3 OCMock

OCMock is an open-source Objective-C mock object framework. It fa-
cilitates the mock and stub object creation on the fly. Expectations can
be defined with a syntax equal to standard method calls [15]. As with
GHUnit the setup is quite easy since it can be installed using Cocoapods.
The framework supports stub objects to return defined values for specific
method calls, dynamic mocks to verify interactions and partial mocks in
order to overwrite only specific methods of an existing object.

Useful features [15]:

• Supports mocks and stubs for class methods.

• Arguments on mock objects can be constraint or even validated
using Objective-C blocks.

52

• Nice mocks allow ignoring unexpected method calls with the pos-
sibility to disallow specific invocations.

• Partial mocks will forward not stubbed calls to the original object,
other calls will be handled by the mock object.

• Method swizzling to exchange specific methods of an object at
runtime.

There are no real drawbacks using this tool. The fact that on iOS
projects views and their controller are usually tightly coupled, can make
writing unit tests really difficult. Many framework interactions in each
method require multiple stubs to simulate the correct values. Writing
all the stubs and mocks manually wouldn’t really be an option. Overall
OCMock provides great value and is a pleasure to use.

53

Chapter 7

Workflow and Process
Automation

It was important for us to not just mirror or follow the process of a widely
used Scrum definition. We were focused to find our very own approach
of agile software development, which would match our internal company
structure and which would fit best our needs. Therefore our approaches
for Scrum and Kanban will differ from traditional methods.

7.1 Scrum

Scrum is a technique for management of agile software development. It
is an iterative process which focuses on a strong involvement of the cos-
tumer. By that, the project risk can be reduced as the interaction with
the customer will result in flexible changes of the requirements all the
time. Furthermore it encourages teams for self organization with a very
own approach of project management [7].

7.1.1 Agile Workflow

Our project was mainly split up into three different sub projects, one
for each platform. For each a Jira project was created which leads to
individual scrum procedures for each of the projects. At the start a main
pool of user stories for each project was created by a very small team
including the costumer. The team consisted of the product owner, the

54

scrum master, an individual project lead for each project and of course
the customer.

After this initial setup more user stories were worked out and existing
stories were refined. The involved people where constantly changing, de-
pending for which project stories were created. Only the product owner
was an exception, since he was involved in the story creation process all
the time.

User stories are reflected in our Jira setup as epic stories, while more
detailed tasks on which developer could work on are called stories (see
Figure 7.1). The elaboration of concrete stories was done by the affected
developer team including their project lead. They got estimated in story
points and assigned to an individual developer. Prior to an upcoming
sprint all stories in the backlog were evaluated and the next most import-
ant got selected for the next iteration. In the course of this the stories
are flagged with ”selected for development”whereby they appeared in our
initial column of our Kanban board in Jira.

Our sprints took up from one to four weeks, depending on the require-
ments for the next iteration. After each sprint we organized meetings
involving all project teams to get an insight on what was going on for
everybody. Within each project team including the project lead, weekly
meetings made sure, that everybody was aware of the current project
progress and what kind of problems occurred. Only in very critical pro-
ject phases we held daily stand-up meetings to discuss who is working
on which part, when he is planning to finish and what problems are cur-
rently critical. For these kind of meetings the number of attendees was
very small what helped to save time and get things done.

Unfortunately we often undervalued meetings at the end of each
sprint. We didn’t discuss enough about the last iteration and what could
be improved. Maybe this would have helped us to further refine the pro-
cess for the upcoming sprints but as with most of all real world projects
there was a constantly pressure to prepare the product for release in time.

55

Figure 7.1: The nested structure of epic-stories and sub-stories permits
a good overview. There is also the option to directly create, delete and
move stories from there. Furthermore the issue state can be directly
changed which will help selecting issues for the upcoming sprint.

56

7.1.2 Different Roles

Since the project was split up into three separate parts we settled with
the following different roles:

Product Owner: Our product owner was in continuous talk with the
costumer. He was involved in every crucial decision and helped creating
all of the user stories. He acted across all projects and was regularly
attending sprint meetings to retain a complete project overview.

Scrum Master: We had one scrum master with decent knowledge of
Scrum and Kanban. He was strongly involved in setting up the required
project management and agile tools. In addition he got significant ex-
pertise in software architecture and was mainly responsible for the setup
of the architectural environment.

Project Lead: In contrary to the usual Scrum approach we also got
an individual project lead for each of the three sub-projects. He was
attending in all of his project related meetings and guided the project
in the right direction. He was responsible for the main task of creating
stories and assigning them to the appropriate developers. In addition
he served as QA authority. Beside this, he was very helpful in solving
problems within his team and took over the task to motivate all team
members.

Development Team: Each subproject had a team of developers which
were mostly professionals on their field. The web team was with four to
six members the biggest group, while in the smaller mobile teams usually
two or three people were working.

7.2 Kanban

Kanban defines an evolutionary change management which means that
it tries to improve the overall process by small evolutionary steps. This
requires the introduction of a visualized workflow including the tasks to
be done and occurring problems. The visualization can be realized with
a simple whiteboard which contains sticky notes representing unfinished
tasks. In our case a proper Jira plugin mirrored these functionality. Cre-

57

Figure 7.2: The board displays Jira issues selected for the current sprint.
The different columns give a great overview of the current progress. Many
problems in a single column reveal a possible bottleneck which needs to
be addressed.

ated issues and bugs have been added to this Kanban board. The visual-
ization in form of a public board is crucial to establish more transparency
of how work is distributed and were bottlenecks may occur.

A further step is to limit the work in progress. This means limiting
the tasks each team member is working on simultaneously. Thereby mul-
titasking can be reduced and each individual task will be completed much
faster. Also this enforces an immediate treatment of problems instead
of working around of them constantly. This is realized by assigning an
allowed number of tasks for each column.

At the end this should result in a constant flow of tickets in your
Kanban board which live up to the core concept of these approach: No
bottlenecks and no accumulation of tickets at any phase [8] .

58

7.3 Planning and Development Workflow

Product planning phase:
First user stories are derived from the product specifications. This results
in Jira epic stories and is done by an internal team including the customer.

Concrete stories which can be assigned to individual developers are
created by the desired development team including their project lead.
All the stories will appear in the Jira backlog and stories selected for the
next sprint will be tagged with ”Selected for development” by which they
will be listed in the Kanban board. An issue should be already assigned
to a concrete developer by then. Possible estimation properties like story
points can be added when creating the stories but this is not a require-
ment.

Development phase:
The responsible developer selects an issue from the Kanban board ac-
cording to its priorities. For that purpose he moves the issue from the
column ”Selected for development” to ”Under development”. In the next
step he has to create an individual feature branch, which will be named
according to the issue’s unique ID in Jira.

Before starting writing tests or any implementation, the concrete
concept will be discussed with team colleagues.

Then the developer starts writing tests and implementation. After
these are finished and local tests run successfully, he will push the feature
branch to a central repository.

Our build server Jenkins will recognize these changes, clone the new
branch and execute the build and all its tests.

Only if all these tests succeed, the implementation has to be reviewed
by some other team member. For this the developer has to move the
issue in the Kanban board from ”Under development” to ”Under review”
and assign a concrete reviewer. Also a merge request for the reviewer
will be created.

If the reviewer has nothing to add or change he will move the is-
sue from ”Under review” to ”Ready for QA”. Then he has to merge the
new feature in the development branch where everybody can check it out.

59

7.4 The Good Parts

Most of the planned process did work out quite well so I will focus on a
few points which went particularly good and provided great value to the
project:

• By the weekly meetings including the costumer it was able to guide
the project in the right direction all the time. There were not any
bad surprises for the customer which resulted in a very good rela-
tionship and a pleasant atmosphere over the whole project cycle.

• Daily stand-up meetings in critical phases provided much value
since they helped to identify possible problems and redistribute
resources. Also it was important to keep the number of participants
small to ensure fast and uncomplicated meetings.

• Reviews before and after implementation can indeed take much
time and be a little annoying but they will provide much value. It
can help prevent misunderstandings, improve the overall applica-
tion design and bugs often will be found much earlier. Furthermore
it will result in much cleaner code since everybody knows that some-
body else is going to review the code which forces him to conform
to the coding standards and keep the code clean. And last it can
provide much value for less experienced developers since they can
be guided by experts.

7.5 Drawbacks and Possible Improvements

There were also some drawbacks and things which could be improved,
although most of the negative parts are related to the fact that it was
not always easy to motivate yourself to comply to all those process steps
all the time.

• After some time the process of creating user stories has changed to
allow individual developers split up or create new stories. Only the
developers knew what stories a concrete feature required. Further,
due to our branching model it was important to keep the stories
small to avoid substantial merge conflicts.

60

• The work of creating concrete implementation stories was often a
little bit annoying, so it became more and more the responsibility
of the developer to create them. Since they got enough other things
to do they were not pleased to do so.

• Unfortunately we did not use the opportunity to discuss things
which could be improved in the meetings after each sprint. Maybe
this could have helped to improve some stuff during the project
cycle.

• Not matter how important the reviews are, and how much value
they will provide in the long term, it is often very annoying for
the developer to get interrupted for the sake of doing code reviews.
We should have thought about things to motivate the developer for
doing code reviews.

• Each column in our Kanban board had a very limited number of
allowed tasks. But this was only in theory. Since there was no real
limit the phase of reviewing and doing QA spilled over most of the
time. Often nobody was willing to do the boring tasks until they
were forced to.

• Since Jira is not always easy and straight forward to use, most
of the developers felt it’s to much overhead to do all the required
steps in Jira. They got already enough other stuff to do and tools
to interact with. Maybe a cleaner and simpler user interface could
improve this. Or even a few short trainings would help to get the
developers comfortable with the project management tool.

61

Chapter 8

Test-Driven Development on
iOS

8.1 Getting Started

After all of our used frameworks for testing were up and running the
next step was to get a little bit more of knowledge regarding the whole
iOS framework and also about test-driven development. Since I had no
experience and knowledge with iOS development I started reading some
books and created a few example applications. Though, my experience
in the area of test-driven development was slightly more, again I was no
more than a beginner, so I started reading more books about it, espe-
cially in the context of mobile development.

The intention to realize the project in a manner of pair programming
was quickly abandoned, especially by our project lead because we had
little time and not enough resources in terms of developers.

Most of the time we were two developers creating the iOS specific part
of the project. After we thought trough the overall application design
and built up some basic concept we were ready to start implementing
our first iOS application in a test-driven manner.

62

8.2 The Development Process

Since the framework makes it sometimes really hard to work together on
the same parts of the application, especially on view and controller logic,
we split our work up into two separate areas. While one was focusing on
creating some models and business logic, the other started implementing
view and controller logic, at the beginning mostly by using some dummy
data.

8.2.1 Noticeable Lack of Experience

At the beginning the progress was very sluggish, mostly due to missing
experience. Especially for the part of view and controller implementa-
tion a test-first approach seemed to be harder then thought. The closer
you get to the view layer the more interactions with the framework are
necessary, which makes it really difficult to write unit tests. For the part
of the business logic it was a little bit less annoying to write tests first.

How are you going to write tests for functionality you have no idea
how to implement it? The fact I didn’t write any real iOS application be-
fore complicated the approach tremendous. We had to invest much more
time and effort to create the application as we had estimated before.

After our schedule was already slipping we tried switching more to
a code first approach and writing test immediately afterwards, at least
for our view and controller logic. Fortunately our OCMock framework
helped us immense while creating fake objects for all the unavoidable
framework interactions. But even thereby the number of required mocks
made our unit tests more and more cluttered and unreadable. Of course
this was not beneficial for their maintainability.

8.2.2 Slipping Project Schedule

Since our progress was much less then calculated we were by far not there,
where we should have been at this time. The first beta release of the ap-
plication with a very limited scope of functionality moved closer. So we
had to remove the amount of unit testing to get back into our schedule.

63

For some time we completely stopped the process of test-driven develop-
ment and we just created immediately required functionality.

Of course, as soon as you stop completely unit testing your application
logic, most of their advantages get lost. We had not really any definable
code coverage and thus also lost our confidence in our tests. When you
are going through some refactoring processes and only half of the code
got backed up by unit tests you just don’t know anything about the re-
maining application functionality. At this point it was really hard to raise
any motivation for writing tests since they won’t provide any value at all.

8.2.3 Catching Up Writing Tests

After the first release we had some time to catch up with unit tests and
increase our insufficient test coverage. It did not took long until we real-
ized how much harder it was to write the unit tests afterwards. While
implementing one functionality after the other we sometimes completely
missed the point of testable design. So we had to refactor and rewrite
much code only to be able to write any tests. As this required much time
and effort, we were not able to completely catch up with our test cov-
erage. So we tried to focus writing unit tests for important application
logic, whereby much untested code was left.

In the ongoing project cycle we were forced to change much of the
application functionality because as it turned out it was not going to be
accepted by the customer as expected. Every piece of change in our code
forced us to update a large set of unit tests. This was especially hard
since many of our unit tests became hardly maintainable due to missing
experience and a large number of required stub objects. Often it seemed
like our unit tests were written to specific since the smallest change in
production code broke most of the related tests.

But there were also some good experiences while writing our test-
driven application. After some time passed we got better knowledge of
writing unit tests and also had an improved understanding of how to
correctly use the iOS framework. At least for some specific aspects of the
application we were able to write completely test-driven logic, which had

64

a downright positive impact to its design and also increased our overall
motivation to do so.

8.2.4 Conclusion

At the end it didn’t looked like our unit testing approach was very suc-
cessful and it raised the question if the increased effort and costs would
provide any value at all. But at least for the sake of the learning pro-
cess we tried to go on with a test-driven approach for specific application
parts when possible.

8.3 Ensure Testable Design

To successfully write unit tests for a whole application, it is important
to write completely testable designed code. Most of the design will grow
as it should be if development is done in a test first approach.

Overall it is important to always design to an interface instead of a
concrete implementation. Only by this it will be possible to replace
dependencies by proper fake objects and write good unit tests at all [2,
p. 201].

Tell your object what data and object it uses, don’t let it ask its en-
vironment for this. It is much easier to replace possible dependencies if
you decide the location and time where those dependencies get injected.
If the object asks for a global singleton instance you have to go through
a complex way of method swizzling or override functionality with addi-
tional categories. This makes tests complicated and whereby they will
be much harder to read and maintain [2, p. 203].

Of course this is not only a guideline for test-driven development but
it’s important to keep your methods small and focused. Each method
should be responsible for exactly one thing, as it should be each test. If a
test fails it should be easy to locate the error in the responsible method.
For the case when multiple tests fail it should be an easy task to locate
the exact location of the error since all of these methods should have
something in common [2, p. 204].

65

Ensure the single responsibility principle for each class. Neither should a
class be responsible for more than one thing, nor should a specified task
be done by multiple classes. This will remove dependencies and facilitate
testing [2, p. 205].

Avoid inheritance. It can be really hard to test tightly coupled classes
and nothing is tighter connected then a class which is derived from a
parent class [2, p. 208].

8.4 Why Did the Process Fail?

Definitely most of the problems we had were related to the fact that we
had quite no experience with iOS development nor had we enough know-
ledge of a successful test-driven process. It would have helped immensely
if there would have been some experience in at least one area of these.
Maybe a leader with knowledge in both could have helped guiding us
through the process. But in my opinion there is only a minimal chance
of an immediate success in these development style if you have that less
experience with it.

We temporarily stopped the test-driven development approach after
our project was slipped too far behind its schedule. Don’t ever stop the
process throughout the project or it is going to fail certainly. It does
not work writing the tests afterwards no matter how much you believe
it will work somehow. Be sure to plan more than enough time from the
beginning.

It can be really hard to write unit tests for tightly coupled view and
controller logic. Apparently this dependency is enforced by the principle
framework application design but it should be tried to comply with the
guidelines for testable design as strict as possible. Additionally frame-
works like OCMock can help creating stubs for all those framework de-
pendencies.

66

Bibliography

[1] Osherove R. The Art of Unit Testing: with Examples in .NET.
Manning Publications, 2009.

[2] Lee G. Test-Driven iOS Development (Developer’s Library).
Addison-Wesley Professional, 2012.

[3] Patton R. Software Testing (2nd Edition). Sams Publishing, 2005.

[4] Burke EM Coyner BM. Java Extreme Programming Cookbook.
O’Reilly Media, 2003.

[5] Beck K. Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

[6] Fewster M Graham D. Software Test Automation. Addison-Wesley
Professional, 1999.

[7] Ken Schwaber JS. The Scrum Guide. https://www.scrum.org/

Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf.
Last accessed: 2014, April.

[8] Kanban - Agile Softwareentwicklung. http://www.it-agile.de/

wissen/methoden/kanban/. Last accessed: 2014, April.

[9] Li P. JIRA 5.2 Essentials. Packt Publishing, 2013.

[10] Chacon S. Pro Git (Expert’s Voice in Software Development).
Apress, 2009.

[11] A Successfull Git Branching Model. http://nvie.com/posts/

a-successful-git-branching-model/. Last accessed: 2014,
April.

67

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
http://www.it-agile.de/wissen/methoden/kanban/
http://www.it-agile.de/wissen/methoden/kanban/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

[12] Jenkins: An extendable open source continuous integration server.
http://jenkins-ci.org/. Last accessed: 2014, April.

[13] OCUnit: iOS Unit-Testing Framework. http://www.sente.ch/

software/ocunit/. Last accessed: 2014, April.

[14] GHUnit: Mac OS X and iOS Test Framework. https://github.

com/gh-unit/gh-unit. Last accessed: 2014, April.

[15] OCMock: Objective-C Mock-Object Framework. http://ocmock.

org/. Last accessed: 2014, April.

[16] Loeliger J McCullough M. Version Control with Git: Powerful tools
and techniques for collaborative software development. O’Reilly Me-
dia, 2012.

[17] Conway J, Hillegass A, Keur C. iOS Programming: The Big Nerd
Ranch Guide (4th Edition) (Big Nerd Ranch Guides). Big Nerd
Ranch Guides, 2014.

[18] Kochan SG. Programming in Objective-C (5th Edition) (Developer’s
Library). Addison-Wesley Professional, 2012.

[19] Duvall PM, Matyas S, Glover A. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley Professional,
2007.

[20] Smart JF. Jenkins: The Definitive Guide. O’Reilly Media, 2011.

[21] Freeman S Pryce N. Growing Object-Oriented Software, Guided by
Tests. Addison-Wesley Professional, 2009.

[22] Myers GJ, Sandler C, Badgett T. The Art of Software Testing.
Wiley, 2011.

68

http://jenkins-ci.org/
http://www.sente.ch/software/ocunit/
http://www.sente.ch/software/ocunit/
https://github.com/gh-unit/gh-unit
https://github.com/gh-unit/gh-unit
http://ocmock.org/
http://ocmock.org/

List of Figures

1.1 A traditional waterfall model 4
1.2 Costs to fix a bug over time 5

3.1 A traditional unit-testing approach 22
3.2 A test-driven development approach 23

6.1 An example of a Jira dashboard 41
6.2 Defining different fields of a Jira issue 42
6.3 Vincent Driessen’s GIT branching model 47

7.1 A list of Jira stories . 56
7.2 Example of a Kanban board in Jira 58

69

	I Theoretical Background
	About Software Testing
	Introduction
	Motivation
	Why Should Software Be Tested?

	The Testing Process
	Who Should Test Software?
	When Should Software Be Tested?

	Different Testing Levels

	Unit Testing
	Introduction
	Motivation

	The Basics of Unit Testing
	Definition

	Core Techniques
	Refactoring to Make Code More Testable
	Indirect State and Interaction Testing
	Stubs and Mocks
	Isolation Frameworks

	Managing and Organizing Test Code
	Test Hierarchies and Organization
	Naming Conventions
	Ensuring Quality of Unit Tests
	Unit Testing as Part of an Automated Build Process

	Basic Pillars of Good Unit Tests

	Test-Driven Development
	Advantages
	Disadvantages

	Techniques
	Test First
	Red, Green, Refactor
	Designing a Test-Driven Application
	You Aren't Gonna Need It

	Test Automation
	Introduction
	The Difference of Software Testing and Test Automation

	Motivation
	Disadvantages
	Problems When Introducing Test-Automation

	II Practical Part
	Introduction
	An Agile Development Method
	The Project

	Tools and Frameworks
	Jira
	Capabilities
	Advantages and Disadvantages

	GIT
	Successful Git Branching
	Advantages and Disadvantages

	Jenkins
	Architecture
	Setup and Configuration
	Encountered Problems and Pitfalls

	Unit Testing Framework
	OCUnit
	GHUnit
	OCMock

	Workflow and Process Automation
	Scrum
	Agile Workflow
	Different Roles

	Kanban
	Planning and Development Workflow
	The Good Parts
	Drawbacks and Possible Improvements

	Test-Driven Development on iOS
	Getting Started
	The Development Process
	Noticeable Lack of Experience
	Slipping Project Schedule
	Catching Up Writing Tests
	Conclusion

	Ensure Testable Design
	Why Did the Process Fail?

