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Abstract

Although the brain is one of the most complex and investigated systems, its underlying struc-

tural relations and related functions are still not fully resolved. Structural connectivity is a novel

field of research which models the complexity and interaction of distinct regions of the brain

mathematically - as a network.

The aim of this thesis was to investigate structural connectivity in amyotrophic lateral sclerosis

(ALS), its relation to normal brain, and whether it bears the potential as an additional marker

for diagnosis and disease progression. Therefore structural connectivity was investigated with

methods of diffusion magnetic resonance imaging at 3T and the structural networks were further

analyzed with methods of graph theory to assess differences between 31 patients with ALS and

34 controls.

Group analysis found a region of different connectivity between ALS and controls, which spatially

overlapped with the right corticospinal-tract. Additionally the strength of structural connectiv-

ity correlated with ALS disease progression (r = 0.4).

In conclusion, the analysis of structural connectivity identified disease related changes in a sub-

network of the brain and revealed a novel marker for disease progression. The location of this

subnetwork extends well-known findings in the mesencephalic corticospinal-tract by an addi-

tional involvement of cortical regions.

Kurzfassung

Obwohl das Gehirn eines der komplexesten und zugleich am meisten erforschten Systeme ist,

sind die strukturelle Konnektivität und das Zusammenspiel der einzelnen Bausteine noch nicht

endgültig geklärt. Strukturelle Konnektivität ist ein neues Forschungsfeld, welches die Komplex-

ität und Interaktion der verschiedenen Gehirnregionen mathematisch modelliert – als Netzwerk.

Das Ziel dieser Arbeit war es, strukturelle Konnektivität bei Amyotropher Lateralsklerose (ALS)

zu untersuchen, diese in Verbindung mit gesunden Gehirnen zu bringen, und zu untersuchen,

ob diese als zusätzlicher Marker in Diagnose und Fortschreiten der Krankheit verwendet werden

kann. Strukturelle Konnektivität wurde mit Methoden der Diffusions Magnetresonanzbildge-

bung bei 3T untersucht. Um Unterschiede zwischen 31 ALS Patienten und 34 Kontrollen zu

finden, wurden die strukturellen Netzwerke mit Methoden der Graphentheorie untersucht.

Mittels Gruppenanalyse wurde ein betroffenes Areal mit veränderter Konnektivität zwischen

ALS Patienten und Kontrollen gefunden, welches örtlich mit den Regionen des rechten Kor-

tikospinaltraktes übereinstimmt. Des Weiteren korrelierte die Stärke der strukturellen Konnek-

tivität signifikant mit dem Krankheitsverlauf (r = 0.4).

Zusammenfassend zeigte die Analyse der strukturellen Konnektivität krankheitsbezogene Verän-

derungen in einem Subnetzwerk des Gehirns und fand einen neuen Marker für das Fortschreiten

der Krankheit. Der Ort des Subnetzwerks erweitert bereits bekannte Befunde des mesencephalen

Kortikospinaltrakts mit einer zusätzlichen Beteiligung der kortikalen Regionen.
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1 Introduction

It is the age of networks. Social networks are part of our daily live, networking nowadays

is an important skill in professional life and one of the biggest networks, the world wide

web expands immensly every day. But what if we can be described by a network? What

if we are nothing more than our brains connections?
”
I am my connectome“ is the famous

teaser Sebastian Seung used in his book; stating that the neurons and connecting axons

of our brain make us who we are.

To understand the most complex object in the known universe [66] a lot of research was

done in the last decades. A huge project of the Washington University, University of

Minnesota and Oxford University (the WU-Minn HCP consortium) - the Human Connec-

tome Project - aims to map the connectomes (= brain-networks) of an immense number

of humans to get an inside look into brains wiring. [70]

The field of Connectomics thus aims to generate networks describing our human brain.

The intention behind it is, that we are able to identify and understand numerous diseases

- of course with the previous knowledge of many healthy brain-networks. In short, it will

”
transform our understanding of the human brain in health and disease“. [70]

One of the most promising attempts to map the brain’s connections is Magnetic Reso-

nance Imaging - it is non-invasive, relatively fast and it resolves the brain’s wiring.

The aim of this thesis is to generate such brain-networks with MRI and to analyse the

obtained networks with methods of graph theory [59] and Network-based statistics [78].

The networks of healthy controls are compared with those of patients with ALS. To show

if structural connectivity might be a better marker in disease diagnosis or progression, the
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results are compared to the findings of other studies in the following sections.
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2 Background

2.1 Diffusion MRI

The principle of Diffusion MRI is that diffusion of water in white matter is hindered

and follows primarly along the path of axons. The result of dMRI is either a orientation

distribution function (DSI,HARDI) or a main diffusion orientation vector (DTI) for each

voxel. By following these vectors or probabilities of orientation one can get an idea of the

main fiber tracts in the human brain.

2.1.1 Diffusion Tensor Imaging

The first and simpliest model was proposed 20 years ago of Peter Basser [6] and is called

Diffusion Tensor Imaging (DTI).

It measures the signal attenuation due to strong gradients in different directions. If the

measured voxel is part of a main fiber tract, water diffusion mainly follows along the path

of axons and a strong signal attenuation is measured. Water molecules are restricted

perpendicular to the fibre tract and less signal attenuation is measured. This signal

attenuation S is modelled with the following equation.

S = S0 exp (−bD) (2.1)
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where S0 is the signal without diffusion gradients, b a measure of gradients strength and

D is the Diffusion Tensor (shown in figure 2.1).

Figure 2.1: Diffusion Tensor, image taken from [45]

The diffusion tensor is symmetric and can be described with six independent parameters,

therefore a minimum of six independent measurements are needed. By determing the

eigenvalues and eigenvectors of this tensor, the main direction of water diffusion can be

determined.

The eigenvalues and eigenvectors are used to calculate important measures in dMRI. These

include Fractional Anisotropy (FA) and different diffusivities (mean diffusivity MD, axial

and radial diffusivity AD, RD) The mean diffusivity is calculated as a third of the trace

of the diffusion tensor (the
”
average trace“). The axial diffusion is described by the major

eigenvalue and the radial diffusion contrary by the average of the two smaller eigenvalues.

The fractional anisotropy measures the anisotropic fraction of the diffusion tensor, whereas

a low fractional anisotropy indicates isotropic tissue and a high FA anisotropic tissue:

FA =

√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3)2

2(λ21 + λ22 + λ23)
(2.2)

The fractional anisotropy is one of the most commonly used measures in DTI as it may

reflect changes in myelination and organization of fibers. [1]

4
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Nevertheless, DTI is not the gold standard of diffusion weighted image processing. Several

assumptions, such as the fibre number per voxel, the gaussianity of the diffusion pattern

and the fact that the most probable direction is taken as the main direction of diffusion (i.e.

Maximum Likelihood assumption) make this method less applicable as newer methods

have been developed.

2.1.2 Advanced Models Beyond DTI

To overcome the limitations of DTI several new methods were proposed. One can distin-

guish between model-based and model-free methods.

Model-based methods As the name suggests, model-based methods use a model to de-

scribe the diffusion pattern. The most popular method beyond DTI is the ball-and-stick

model [11], which is described in detail in chapter 3.2.1.2. Free (isotropic) diffusion is

modeled with a ball and the directed (anisotropic) diffusion in the axons with a stick.

Another method is called Diffusion kurtosis imaging which models the non-Gaussian char-

acteristics of Diffusion with an additional parameter in equation 2.1.

Constrained spherical deconvolution (CSD) is a method which models the diffusion within

a voxel by deconvoluting the MR signal and obtaining fiber orientation distribution func-

tions as a superposition of spherical harmonics in every voxel. [48]

The main advantage of these methods is the relatively low requirement of diffusion sam-

pling directions and thereby a reduced scanning time allowing clinical usage. The major

drawback is certainly the assumptions of the diffusion models which might be violated in

reality. [1]

Model-free methods Model-free methods obtain the empirical distribution of diffusion

by exhaustive sampling. A distribution function is used to estimate the diffusion distri-

bution in every voxel. Common model-free methods include q-space imaging or diffusion

5
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spectrum imaging. [74] The major drawback of these methods is the need of a high

number of diffusion gradient directions and multiple b-values. [1]

2.1.3 Fibertracking

Fibertracking describes a method for finding the trajectories of fiber bundles through

white matter. It is done by determining the preferred direction of water diffusion and

map it as a curve in three-dimensional space. The most simple and common approach is

known as streamline tractography.

Deterministic Tracking Streamline algorithms start at one point - called the seeding

point - and follow the main direction of diffusion in every voxel until a stopping criteria

is met. The trajectory is therefore always tangent to the local main diffusion vector

(major eigenvector of the diffusion tensor). This type of algorithm is called deterministic

because it assumes a single orientation at each voxel. The uncertainty of the estimate is

not regarded. Moreover, the simple method of creating a streamline is clearly a source

of very obvious artifacts and additionally crossing fibers cannot be modelled with this

simple approach. In DTI and streamline tractography only one fibre per voxel is assumed,

therefore crossing or kissing fibers cannot be dissolved probably. An additional drawback

is that crossing fibers can lead to reduced fractional anisotropy which often is a stopping

criteria for streamline algorithms. Other methods based on a probabilistic approach were

proposed in recent years to overcome these restrictions. [39]

Probabilistic Tracking Contrary to deterministic methods, probabilistic methods of

fiber tracking regard the uncertainty of diffusion direction. Every voxel can have mul-

tiple diffusion directions, each with a different probability. The method of probabilistic

fibre tracking is described in detail in section 3.2.1.2. [39]

6
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2.2 The connectome

The term
”
Connectome“ was first stated by Olaf Sporns in 2005 [67] and simultaneously

by Peter Hagmann [37]. Sporns defined the connectome as
”
structural description of the

network of elements and connections forming the human brain“. [67] The idea behind is

to get a look inside brains function by regarding its structural and functional connections.

Comparision to genomics Connectome is an artificial word, derived from the term

genome, which is a complete listing of all nucleotide sequences, in the same way the con-

nectome implies the completeness of all neural connections. The analysis of the structure

and function of the connectome is (in the same way as it is with genomics) called connec-

tomics. [55]

It is a relatively young field of science, genomics in contrast has a much longer tradition

(starting in the late 70s), nevertheless the decryption of the whole human genome was

possible in the first place only a few years ago. The human genome consists of 20000-

30000 genes made from circa 3 · 109 base pairs, [67] in contrast the human brain consists

of approximately 1011 neurons and 1016 connections, making the decryption a lot more

challenging to realise. [38]

The three aspects in connectomics To really understand the term connectome it is a

good idea to look at the formally given definition: There are three main aspects which

define the connectome:

The structural... What is meant by structure? By definition structure is
”
the ar-

rangement of and relations between the parts or elements of something complex“ 1. In

neuroscience, structure is related to the physical links between neural elements.

...description... is a compression of raw data to extract the maximal amount of in-

fomation. An analogy would be the architectural description of a house: One would begin

1http://www.oxforddictionaries.com/definition/english/structure

7
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by describing the main features not the exact building blocks or walls inside. The same

is done in connectomics. A description provides an overview of the main features not the

exact copy of all neurons and synapses.

...of the network of elements and connections forming the human brain. A

network is a mathematical object consisting of elements and their connections. It is well

known and studied by graph theory and therefore offers a large theoretical framework.

[65]

Different scales A network is defined by its elements and connections: The smallest

possible neural element would be a neuron, the connection a single synapse. As it was

said previously the human brain consits of 1011 neurons. A network of this size (1011x 1011

giving every possible connection) would not only be extremly hard to compute but also

hard to analyze and interprete. If connectomes are resolved in this scale it is called
”
Mi-

croscale“.

In contrast, the
”
Macroscale“ defines elements of different brain areas and connections are

described by fibre tracts. In contrast to neurons, which are easy to delineate, this is not

given for a specific brain area or fiber tract. Furthermore, the number of distinct anatom-

ical brain regions is still unknown. [78],[23],[67] The problem of dividing humans brain

into distinct functional or structural areas is called parcellation and is further discussed

in section 3.2.1.1.

Steps in Connectome Processing MRI is currently the best option to map connectomes

in macroscale. It offers a non-invasive method which is able to capture the structural and

functional connections of the human brain. [39] Structural connectomes can be gener-

ated with diffusion MRI (dMRI) by following the main diffusion direction in white mat-

ter, functional connectomes by acquiring a functional resting state MRI (fMRI/rsMRI).

Resting state functional MRI measures spontaneous fluctuations in the so called BOLD

(=Blood-oxigenation-level-dependent) signal in grey matter regions and computes cross-

correlations between these BOLD time series.

8



2 Background

In Sporns’ first draft of the connectome [67] he proposed to generate a connectome of

both the fMRI and dMRI data. Nevertheless, this thesis focusses structural connectivity

as many studies have shown its validity before (e.g. [54], [71],[38]). [21],[65]

Intervariability The structural connectome is in general an invariant characteristic of

our species but same as the genome it can show a high individual variation due to genetic

differences, development and experiental history, gender differences or diseases. Another

reason is the individual variability in size and location of different brain areas which makes

a
”
standard connectome“ hard to define. Besides the anatomical and functional differences

in brains, methods of acquisition and processing might further impact the variability.

Outlook/Impact The connectome as a network should give a look inside the brains

wiring, organization and maybe can be used as indicator for different diseases. Recent

studies have shown the influence of diseases in the human connectome. [34],[8] Especially

those which show myelin alteration or axonal degeneration and destruction (as for ex-

ample Amyotrophic Lateral Sclerosis ALS, [71]) could have an influence on the human

connectome.

9
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2.3 ALS

Amyotrophic Lateral Sclerosis (ALS) - also known as Lou Gehring’s disease - was first

described by Charcot nearly 150 years ago in 1874. [58]

It is part of the whole group of motor neuron diseases which are characterised by progres-

sive degeneration of motor neurones such as the classical (Charcot’s) ALS, progressive

bulbar palsy or primary lateral sclerosis. [75],[58]

2.3.1 Description of the disease

ALS is a neurodegenerative disease showing involvement of both upper and lower motor

neurons. Upper motor neuron signs indicate that the affected region is above the anterior

horn cells : i.e. motor cortex, brain stem and spinal cord; whereas lower motor neuron

signs indicate that the disturbance is in or distal to the anterior horn cells. These cells can

be found in the ventral part of the spinal cord and affect the axial muscles (figure 2.2). The

symptoms of damage in the upper motor neuron cells, the upper motor neuron signs, are

characterised by spasticities, weaknesses or increased reflexes. Lower motor signs appear

with decreased muscle tone, arreflexia, weakness and a wasting in the muscle which is

supplied by the diseased motor nerve. [69]

Figure 2.2: cross section of spinal cord showing anterior horn cells (marked as red points),

image taken from [76].

10
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The disease can thus be described as a neurodegenerative disorder which is
”
characterised

by progressive muscular paralysis reflecting degeneration of motor neurons in the primary

motor cortex, brainstem and spinal cord.“[75]

The term Amyotrophy refers to the atrophy of muscle fibres which are denervated because

of the degeneration of anterior horn cells (lower motor neuron signs). Lateral Sclerosis

describes the hardening of the anterior and lateral corticospinal tract. The hardening is

caused by a proliferation of glial cells induced by degenerated motor neurons in this area.

11
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Corticospinaltract

The corticospinal tract is the most important output pathway from the motor cortex. It orig-

inates about 30 per cent from the primary motor cortex, 30 per cent from the premotor and

supplementary motor areas and 40 per cent from the somatosensory areas posterior to the cen-

tral sulcus. (see figure 2.3) This major tract then passes through the posterior limb of the

internal capsule (which is located between the caudate nucleus and the putamen of the basal

ganglia) and descends through the brainstem where it forms the pyramids in the medulla. The

pyramidal fibers pass through to the intermediate regions of the cord gray matter and build the

ventral and lateral corticospinaltract. [35]

Figure 2.3: areas of corticospinal tract fibres, image adapted from [5]

The incidence of ALS has been reported in the 1990s between 1.5 and 2.7 per 100000

people/year in Europe and North America with an average age of onset between 55-65

years. It is a progressive disease with a mean survival time ranging from three to five

years.

Patients often suffer from cramps, spasticity, excessive watery salvia, persistent salvia and

bronchial secretions, excessive or violent yawning, laryngospasm, pain, emotional lability,

communication difficulties, constipation, depression, insomnia, anxiety or fatigue. All of

these symptomes can be treated to a certain extent but there is still no chance of healing.

[75] Patients often die from respiratory failure three to five years after onset.

Although some genetic risk factors have been identified, the cause of ALS is still unknown.

12
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Furthermore, excitoxicity which describes a neuronal injury induced by excessive gluta-

mat induced stimulation, oxidative stress and mitochondrial dysfunction were found in

patients with ALS. Moreover there may be impaired axonal transport, neurofilament and

protein aggregation as part of the defence mechanism to reduce the intracellular concen-

tration of toxic proteins, inflammatory dysfunction as well as dysfunction of signalling

pathways. [58],[75]

With modern neuroimaging modalities it may be possible to better understand the patho-

physiology of the disease in vivo and to identify potential biomarkers of disease progression

to facilitate an earlier diagnosis. Thus, diffusion MRI can give a look inside into tissue’s

white matter microstructure and so may help to understand the pathological process of

the disease. Several studies have been made in this area - a summary is presented in the

following section.

2.3.2 Related Studies

Impaired Structural Motor Connectome in Amyotrophic Lateral Sclerosis -

Verstraete et. al - 2011 [71]

The group of Verstraete studied the influence of ALS on FA (Fractional Anisotropy) -

weighted connectivity maps. The entries of the connectome represent the mean Frac-

tional Anisotropy (FA) along the found fibre tracts.

The participants involved 35 patients with ALS and 19 age-matched controls. They

used diffusion tensor imaging (DTI) in connection with deterministic tracking (FACT-

Algorithm: criteria: FA > 0.1,α < 45◦, l > 30mm). T1 images where parcellated into 82

brain regions using Freesurfer. As next step all connections between region i and j were

counted to fill the connectivity matrix. To control for false positives only connections

(matrix entries) which were present in two thirds of both patients and controls where

taken into account for further analysis. In contrast to the method used in this thesis,

the entries of the connectivity matrix were filled with the average FA along the tracts,

because they could reflect the microstructural organization of the tract.

13
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For each FA-weighted-connectivity map several network measures including the network

strength S, the (normalized) average shortest path length L, the (normalized) average

clustering coefficient C and the mean connectivity distribution (i.e. a histogram of the

connectome entries) were computed. Differences in these metrics were examined using

permutation testing.

Additionally they examined Network based statistics [78] by using t-tests and 5000 per-

mutations to create the null-distribution of the maximal connected-component size. The

affected network was further investigated by computing the same network measures as be-

fore for the whole brain network and additionally some local network measures like local

efficiency Effi and node-specific connectivity strength Si. Possible associations between

network measures of the impaired network and clinical scores (ALSFRS-R, and disease-

progression) were examined using linear regression

They found no difference between ALS patients and controls in the overall graph metrics

by studying the full connectome. An impaired network showing lower FA-connectivity

values was found using NBS (p = 0.01). The affected regions of this network are listed in

table 2.1. These regions strongly overlap with the known motor areas in the brain.

By examining the topology of the impaired network a significantly reduced level of net-

work efficiency E and clustering was found in patients with ALS. However, the reduction

in strength S was not statistically significant. Local measures showed significantly lower

local efficiency in the left precentral, left caudal middlefrontal gyrus, the right paracentral,

right precuneus and posterior cingulate gyrus.

The main finding of this study is therefore a reduced efficiency of a network strongly

overlapping with bilateral motor regions such as precentral gyrus and paracentral lobule

(BA 6) and supplementary motor regions (BA 4). Based on these findings they conclude

that the center of the degenerative process of ALS may start in the primary motor re-

gions but also effects suplementary regions as secondary motor connections. The focal

damage in primary motor regions in ALS may ultimately manifest elsewhere in the brain.

14
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Reduced Structural Connectivity Within a Prefrontal-Motor-Subcortical Net-

work in Amyotrophic Lateral Sclerosis - Buchanan et al. - 2014 [15]

Buchanan et al. also studied FA-weighted connectomes of 30 ALS patients and 30 age-

matched controls with NBS. They combined the findings of the study with TBSS. (Tract

Based Spatial Statistics [63])

All dwMR images used in this study were acquired in 64 non-collinear directions (b =

1000 s /mm2) along with 7 B0 Images. The T1 images were parcellated using Freesurfer

and the Desikan-Killiany altlas [24] resulting in 34 cortical structures per hemisphere -

plus brain-stem and eight other subcortical structures this resulted in 85 regions of inter-

est. The diffusion weighted images were used to calculate the fractional anisotropy in each

voxel for whole brain probabilistic tractography using FSLs BedpostX and ProbTrackX

algorithm ([11], criteria: α < 70◦, FA > 0.1, l > 200mm). To reduce spurious connections

a two step threshold was applied on the networks by first discarding the weakest 25%

of weights for every connectivity matrix and after that retaining only connections which

were present in at least 50% of all subjects. After this thresholding step different network

measures of the FA-weighted networks like network strength, clustering coefficient and

efficiency were computed.

Buchanan et al. used NBS to identify an impaired structural network and analysed the

network found with this method further by relating it to the results found with TBSS -

a skeletton-based analysis which is used to find differences in diffusion MR images (FA).

Therefore they calculated the proportion of streamlines between nodes i and j which pass

through any significant voxel identified by TBSS.

The impaired network consisted of 10 nodes and 12 connections (see table 2.1 for a listing

of involved regions, p = 0.020) where all 12 connections are directly linked to nodes of

the primary motor cortex. Three of these connections significantly correlated with disease

progression rate.

TBSS analysis found significant reductions in FA within the corticospinal tract and part

of the corpus callosum in patients. These regions strongly overlapped in 11 of the 12

connections. The global network measures showed no significant differences.
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The main result is that connectivity in terms of tract-averaged FA is reduced in patients

with ALS in primary motor, prefrontal and subcortical regions and that there is no brain-

wide impairments in connectivity due to ALS.

Multimodal tract-based analysis in ALS patients at 7T: A specific white

matter profile - Verstraete - 2014 [72]

The objective of this study was the exploration of the value of additional MR contrasts for

studying ALS. For this reason eleven patients and nine controls were scanned at 3T and

7T to compare the results of diffusion weighted (3T), quantitative T1 (qT1), magnetization

transfer ratio (MTR) and amide proton transfer weighted (APTw) imaging: Quantitative

T1 mapping can be used to asses the degree of myelination, as well as MTR which estimates

the exchange of water bound to macromolecules and the unbound water fraction. The

APTw imaging is done with the method of chemical exchange saturation transfer (CEST)

which measures the exchange of protons between specific solutes and free water - if the

protons are amide protons (chemical derivates of ammonia) the result is amide proton

transfer weighted imaging. APTw is therefore expected to reflect physiological changes

in this proton pool in case of ALS and has also shown to be sensitive for myelination. Be-

side these imaging techniques diffusion weighted images were acquired. Longitudinal and

transversal diffusivity (Dlong, Dtrans) were calculated from DT data. The fiber tracking of

the corticospinal tract (CST) was done by placing seed-regions in the left and right motor

tract at the level of the pons with the following settings: FA > 0.2 α < 20◦, stepsize =

1 mm, lmin/lmax = 40/500 mm. Verstraete et al. performed a quantitative comparision

of qT1, MTR and APTw by registring each volume to the subject’s FA map and doing a

tract-based analysis by projecting the tracts of the CST to one single vertical curve and

assigning the contrast of interest to the nearest voxels. The group average is calculated

similarly by averaging the curves of all subjects.

No differences on the mean histograms of patients and controls for any of the different MR

contrasts were found. The analysis of several MR measures along the CST revealed sig-
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nificantly reduced FA, significantly higher transversal diffusivity Dtrans and a significant

increase of MTR in patients in the right CST. Changes in the left CST were not significant

(see figure 2.4). No significant correlation was found between any MR parameters and

clinical markers such as ALSFRS-R, progression or disease duration.

The reduction of FA is already known and was investigated earlier. [3] This finding is

also consistent with the increase in transversal diffusivity. The decrease of the fractional

anisotropy is known to indicate demyelination as it with the MTR. However this study

demonstrates an increase in MTR. Buchanan et al. tried to explain this phenomenon

with an accumulation of pathologic protein and an increased tissue liquid fraction. They

claimed that the main reason for reduced FA is more likely the increase in the liquid

fraction such as proliferation of glial cells and extracellular matrix expansion rather than

demyelination.

Probabilistic diffusion tractography: A potential tool to assess the rate of

disease progression in amyotrophic lateral sclerosis - Ciccarelli - 2006 [17]

This study based on a group of thirteen patients and nineteen controls, investigated the

impact of ALS and disease duration and progression on voxel-based connectivity measures

along the CST. They also investigated whether fractional anisotropy is reduced in patients

and how it relates to disease progression rate.

Imaging for this study was performed on a 1.5T MRI System from GE. Diffusion weighted

images were acquired with an DW-EPI sequence in 54 directions wtih an resolution of

1.7x1.7x2.3 mm3 and a b-value of 1150 s/mm2. Additionally, six B0 and six images with

a low weighting of b = 300 mm/22 were acquired to reconstruct the diffusion tensor from

the combination of volumes with bmin and bmax. T1 images were made with a resolution

of 1.2x1.2x1.2 mm3 using a 3D inversion-recovery prepared spoiled gradient recalled se-

quence.

The probabilstic tractography algorithm proposed of Behrens [11] was used to compute

a voxel based connectivity index. Therefore the CST was delineated in each subject and

FA and connectivity measures were plotted in everey voxel which is probably part of this

major fibre tract. For this reason a seed region (as part of the internal capsule) and target
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Figure 2.4: Image taken from [72] - showing the different MR contrasts along the CST
(The median values and interquartile ranges are shown). An asterix in the
right top of the graph indicates a significant change. Patients are marked in
blue, controls are red (A) FA was significantly lower in patients in the right
CST (B) The longitudinal diffusivity Dtrans showed significant higher values
in patients, (C) the longitudinal diffusivity showed no difference, (D) quanti-
tative T1 mapping also showed no significant changes (E) MTR is significantly
increased in Patients along the right CST, (F) APTw showed no significant
changes
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Figure 2.5: Distributions of FA values and connectivity measures sampled along the CSD.
Connectivity measures were thresholded at 100, further analysis was done
to the right tail of the distribution (values over 75th centile - top quarter
connectivity)

regions on the primary motor cortex were defined. Then the streamlines which pass from

each voxel of the seed region to the target region were counted. The resulting connectivity

map (of the seed region) was thresholded to include only voxel with a connectivity value

above 100. The binarized version of this map was then used as mask for the FA-map

(So the FA was only plotted if the connectivity measure to the CST was high enough).

Histograms of FA and connectivity measures of all subjects were drawn to show the dis-

tribution across all patients and controls (see figure 2.5). These histograms were analysed

by taking only values above the 75th centile (top quarter mean connectvity) and by aver-

aging all values. Statistical analyis was done on 3 groups whereas the patient group was

subdivided in patients with moderate disease progression (all subjects with a progression

rate below the median) and rapid disease progression (progression above the median).

They found no significant difference between the whole group of ALS patients and con-

trols in the mean connectivity values in both CST but a borderline significantly lower
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mean connectivity in patients with rapid progression in the left CST (p = 0.08). Patients

with moderate disease progression showed no significant difference in mean connectivity.

When looking at the number of voxels containing top quarter connectivity measures pa-

tients with rapid disease progression had a lower proportion (in relation to the number of

voxels identified as CST) than controls. Again patients with moderate disease progression

showed no significant difference. Differences in Fractional Anisotropy were found both in

the left and right CST for ALS patients. Identical results were found by regarding only

the top quarter mean FA values. One of the most interesting result is certainly the cor-

relation of disease progression with both top quarter mean connectivity and top quarter

mean FA in the left CST.

The fact that they excluded the brain stem from the CST was discussed as possible

weaknesses of their study. They conclude that anisotropy and connectivity can give com-

plementary information, as one can detect pathological changes in all patients or might

be used as a marker of disease progression rate.

Mapping of Iron Deposition in Conjunction With Assessment of Nerve Fiber

Tract Integrity in Amyotrophic Lateral Sclerosis - Langkammer et. al. - 2010

[51]

The aim of this study was to test whether there is an increased accumulation of iron in

brains of ALS patients. The methods used include quantitative mapping of iron deposi-

tion with R∗
2-maps, DTI and tract based spatial statistics (TBSS)

Fifteen patients and the same number of healthy controls (age- and gender matched) un-

derwent MRI at 3T to acquire a T1, gradient echo images with different echo times to

map R∗
2 and diffusion weighted data (12 independent directions, b = 1000 s/mm2).

The calculation of the Diffusion Tensor and the preprocessing (eddy current correction,

skull extraction) was done with FSL. TBSS was used to study diffusion characteristics.

FA and Mean Diffusivity (MD) were calculated from DT data. For further analysis the

deep gray matter of the brain was subdivided into different structures containing the
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nucleus accumbens, amygdala, caudate nucleus, hippocampus, globus pallidus, putamen

and thalamus.

When studying the former calculated maps (R∗
2, FA and MD) an increase of R∗

2 in pa-

tients was exclusively found in the caudate nucleus indicating a higher iron content in

this area. The regional FA was significantly lower in patients in the globus pallidus and

the putamen. Regional anlysis in the later region revealed an increased MD in patients

compared to healthy controls.

Regional analysis of R∗
2, FA and MD along the segmented corticospinal tract did not show

differences, however the TBSS analysis of the DTI data demonstrated a significantly re-

duced FA in the mesencephalic part of the CST in ALS patients. The R∗
2 maps indicated

that iron levels in adjacent regions of the CST were increased whereas the changes were

more pronounced in the left than in the right CST.

As the regions of increased iron content did not exactly match the regions with reduced

FA and increased MD they discussed the possible presence of independent neurodegener-

ative processes. Another important point they mentioned is that an increased R∗
2 value

could also reflect microstructural tissue changes and not necessarily suggest changes in

iron content.

Summary and additional studies

Although studies revealed contrary results, nearly all of them observed a decreased frac-

tional anisotropy ([71],[72],[15],[17],[51],[2]), which certainly is an indicator of a change in

the microstructural organization of fibre tracts. In most of the cases the affected regions

coincided with the motor areas of the brain, including the corticospinaltract ([72],[17],[51],

[2],[3]) and areas related to the primary motor cortex such as the supplementary motor

area ([20],[71],[15]).

Another measure often derived from diffusion weighted data is the mean diffusivity which

is a a scalar measure of the total diffusion within a voxel. This measure showed an increase

in the CST and other motor related parts of the brain in a number of studies ([3],[2],[51]).

The mean diffusivity is the average of all eigenvalues . By regarding only the highest

eigenvalue one can compute the diffusivity in longitudinal direction Dlong or contrary the
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radial or transversal diffusivity Dtrans as average of the two smaller eigenvalues of the

diffusion tensor. Two of the mentioned studies ([72],[3]) also showed an increase of this

measurement.

One group used Voxel Based Morphometry to detect differences in gray matter volumes

and found that there is a decrease in patients with ALS. [20]

Another interesting difference in all of the surveys is the affected hemisphere. Most of

the changes are bilaterally but higher on one side. Cossotini et al. ([20]) as well as others

(e.g.: [72]) found more extensive changes in the right CST, whereas others had contrary

results showing higher significances on the left side. [17],[15]

To summarize, it is known that there are microstructural changes in a defined area of

the brain affecting several measures derived from neuroimaging methods but the causes

are still unknown and therefore a lot of research is still done revealing new interesting

facts which may help to understand and finally enable curing this disease. For further

information on ALS related studies the reader is referred to [68].
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3.1 Participants and MRI acquisition

MRI acquisition Structural images were acquired with an MPRAGE sequence with a

resolution of 1mm isotropic (TR/TE/TI/FA = 1.9s/2.19ms/0.9s/9◦).

DwI data were collected using a two-dimensional diffusion weighted EPI sequence with 12

collinear directions (TR/TE/FA = 6.7s/95ms/90◦) and an image resolution of 2x2x3mm3.

The b−value was set to 1000 mm/s2 and 4 averages as well as 4 images with no gradient

weighting (B0) were acquired.

Participants Thirty-one patients with definite or probable ALS according to El Esorical

criteria [14] (mean age ± SD: 58.1±13.0 years, range: 32−82 years, 12 female) and thirty-

four healthy controls (mean age ± SD: 57.5± 13.2 years, range: 29− 80 years, 11 female)

underwent both a T1-weighted scan and a diffusion weighted scan at 3T. Their functional

impairement was rated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-

Revised (ALSFRS-R). [13] The mean ALSFRS-R was 31.6 ± 8.4 (range: 9 − 45). The

mean disease duration Tdisease was 22.0± 20.7 months with a range of 4− 93 months. The

disease progression rate was calculated [51] as:

RDP =
48− ALSFRS-R

Tdisease
(3.1)
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Table 3.1: Participants

Healthy controls (n = 34) ALS patients (n = 31)
Mean ± SD (range) Mean ± SD (range)

Age (years) 57.5± 13.2 (29− 80) 58.1± 13.0 (32− 82)
Sex (male/female) 23/11 19/12
Disease duration (months) 22.0± 20.7 (4− 93)
ALSFRS-R 31.6± 8.4 (9− 45)
Progression (per month) 0.78± 0.85 (0.27− 4.17)

SD = Standard Derivation

with a mean RDP of 0.78± 0.85 per month and a range of 0.17− 4.17 per month.

3.2 Determining structural connectivity

This chapter describes the seperate steps in connectome processing in detail. Structural

connectivity is calculated by a probabilistic approach. [11] The regions which define the

connectivity were parcellated on T1-weighted images. [31]

3.2.1 Overview

To generate a connectome two different types of MR images are needed: a morpholigical

scan (typically a T1-weighted scan) and a diffusion scan which are processed as separate

streams. The final connectome can be obtained by registring and merging the data from

the two streams. The schematic of such a pipeline is shown in figure 3.1.
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Figure 3.1: An overview of the connectome pipeline taken from [22]

Segmentation and parcellation The anatomical scan was used to generate the nodes of

the connectome network. Therefore the brain is extracted from the skull and segmented

into subcortical and cortical areas (gray matter, white matter, brain stem, ...). Both

segmenation and surface extraction were done with Freesurfer’s recon-all command

which is described in detail in section 3.2.1.1 Segmentation.

The next step is called parcellation and describes the division of the cortex into distinct

regions of interests. These regions define the nodes of the brain network and are also used

as seed points for fibertracking. These steps are described more precisely in the following

section 3.2.1.1 Parcellation.

Determining Connectivity Additionally a connectivity measure is needed: In the case

of a structural connectomics this measure is derived from the fiber tracts which connect

two regions (nodes).

As described in chapter 2, the main fiber tracts can be modeled with methods on diffusion-

weigthed MR images: After motion- and eddy-current correction the dwMR images are

used to generate a diffusion/fiber orientation function in each voxel so that one can model

the preferred direction of water. The generation of this fiber orientation function depends

on the model of diffusion which is used - here a Bayesian estimation of diffusion parameters
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was used. Many samples of probable directions of diffusion are generated to build an

empirical estimate of the distribution of diffusion parameters. The diffusion parameters

are the two spherical angles θ and φ, which define the direction of axonal diffusion and a

diffusivity d which describes the isotropic diffusion in each voxel. Further details of the

method can be found in 3.2.1.2.

After the estimation of diffusion parameters, one can tract fibers by following the preferred

diffusion direction at each voxel starting and ending in defined regions (which were defined

in the morphological stream before.) This procedure is also done with a probabilistic

approach. A high number of possible streamlines is generated for each region and the

probability of a connection is calculated by determining the fraction of streamlines which

connect two nodes.

Registration The fiber tracking is the point of processing where the morphological and

diffusion stream meet. A registration has to be done to combine these two different image

types and to generate the final connectivity matrix. Both the anatomical and the diffu-

sion scan were processed sequentially for every subject, thus a linear registration was used

here.

The parcellated brain defines the nodes of the network and the probabilistic measure of

connectivity was used to calculate the matrix. A network matrix is generated for every

single subject, showing the probability of each region to be connected to others.

As might be expected there is not only one ideal solution for each of these steps and there

exists no gold standard one can refer to. The methods used in this thesis are widely used

in recent studies and were selected because they are robust and can handle the given data.

Although tested, other methods are not described in this thesis.
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3.2.1.1 Morphological stream

The anatomical scan was used to parcellate the brain into different anatomical regions of

interest. The first step in this process was the segmentation and surface extraction.

Segmentation and Surface Extraction Segmentation and Surface Extraction was done

with Freesurfer1 using the command recon-all. This tool runs a whole suite of different

commands. The methods used in this step are described in the following section.

The method: Automated Labeling of Neuroanatomical Structures in the Human Brain

1. The T1-weighted image of every subject is normalized to correct non-uniformities in

MR data.

2. An affine transform to the Talairach atlas is computed.

Brain Atlases:

A brain atlas is a 3D coordinate space which maps individual coordinates to the (known)

location of brain structures independent from individual differences like shape or size. For

this reason the correlation between the individual volume and an average volume composed of

a large number of previously aligned brains is maximised by a gradient descent algorithm at

multiple scales. [28]

3. As a next step the brain is extracted from the skull. Therefore non-brain tissue is

removed with a hybrid watershed/surface deformation procedure: The watershed algo-

rithm is used to approximate the inner surface of the brain which is subsequently used as

initialization for the surface deformation procedure. [40], [60]

Watershed algorithm:

This method interprets image intensities as height information: the brightest points correspond

1http://freesurfer.net/
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to hills whereas the darkest points represent the valleys. With this interpretation the image

can be segmented into different basins, following the ridges of this virtual landscape. [60]

In a T1-weighted image white matter is connected and surrounded by the
”
darker“ gray

matter and
”
even darker“ CSF. As the watershed algorithm segments the

”
valleys“ and

not the
”
hills“ the images are inverted in a preprocessing step so that the white matter

and the gray matter build up
”
the valley“ and are fully segmented from the CSF and the

skull.

This segmentation serves as initialization for an active contour algorithm.

Active contour models

...where introduced by Kaas in 1988 [49] and are premised on the fact that an initial active

contour S0 can be iteratively changed by a force F to create the desired shape. Mathematically

expressed:

∀p ∈ P S(p, 0) = S0(p) (3.2)

∀(p, t) ∈ P ×R+ ∂S(p, t)

∂t
= F(x, t) (3.3)

where P is the parameter space, x is the current location and t the actual time step. The trans-

formation process in skull stripping is driven by three different forces: a smoothness constraint

FS(x, t), an MRI-based force FMRI(x, t) which is designed to drive the template to the true

boundary and an atlas based force FA(x, t) that ensures that the surface holds shape. The

evolution equation giving the coordinates xt+1

k
of the kth vertex at time t+1 is therefore given

as:

x
t+1

k
= x

t

k + [FS(x, t) + FMRI(x, t) + FA(x, t)]δt (3.4)

With this procedure the brain can be extracted from the skull. [60], [28]

4. In order to distinguish between the different subcortical areas of the brain (i.e.: ventri-

cle, thalamus, pallidum, putamen, cortical white matter (WM), amygdala, hippocampus,
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cortical gray matter (GM), cerebral GM and cerebral WM) automatic subcortical seg-

mentation is done. This procedure is based on the the method proposed of Fischl et al.

in 2002. [29] It uses an Bayesian approach to construct a probabilistic atlas of the brain

areas. The probability of a segmentation W given an Image I is according to Bayes rule:

p(W |I) ∝ p(I|W )p(W ) (3.5)

where p(W ) is called the prior probability - the probability of a given segmentation W

into classes ci. It is the knowledge about the location of the brain areas by defining

a probability map and manually labelling a large set of datasets into the given brain

areas (= different classes). The intensity values of these different classes (e.g.: Ventricle,

Thalamus) are assumed to be Gaussian distributed. Thus this prior probability (map) is

called Gaussian probability/classifier atlas.

In contrast, the other factor p(I|W ) is called a posteriori probability and is the probability

of the image occurring giving a certain segmentation. By maximizing the probability of

W with the given linear transformation to the atlas space L and the image data I, one

can find the optimal segmentation W .

Wopt = arg
W

max {p(W |I,L)} (3.6)

where L is the transformation matrix which maps the image coordinates to the atlas

space. [29]

5. After segmentation, the borders between the different classes are defined. This is done

by generating surfaces - the pial surface (which is the border between gray matter and

CSF), the white matter surface (border between WM and GM) and the cortical surface.

The main idea how to
”
convert“ the volume segmentation into surfaces is to find the plane

of least variance for every voxel. For further description the reader is referred to [28] and

[27].

Implementation:

All of the methods described above are done with Freesurfers’ recon_all command. In
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this process some steps have been placed with external software: The T1-weighted image

of every subject was normalized to correct non-uniformities in MR data with a non-

uniform intensity correction described in [62] and the command nu_correct from MINC

(MINC software tools for neurological imaging2).

Brain Extraction was done with BET (Brain Extraction Tool, also part of the FSL pack-

age). [40], [60]

The methods of subcortical parcellation described above are part of the recon_all com-

mand (Freesurfer built-in). A selection of subcortical areas of one sagital slice is shown

in figure 3.2.

Figure 3.2: Subcortical parcellation shown for one coronal slice (selection of subcortical

volumes)

Parcellation Parcellation is the process of dividing the cortex into different regions of

interest. The technique used in this thesis is based on the method proposed of Fischl in

2004. [26]

The method: Automatically Parcellating the Human Cerebral Cortex [30]

Fischl presented a method for automatically assigning a neuroanatomical label to each

location of the cortical surface. As it was done in the segmentation process, the parcel-

lation is also based on a probabilistic approach incorporating both geometric information

2http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
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from the cortical model and the neuroanatomical convention derived from a training data

set.

The problem can be stated in the bayesian framework in the same way as it was done in

the segmentation process. The probability of a parcellation P given the observed surface

S is therefore given as:

p(P |S) ∝ p(S|P )p(P ) (3.7)

With this approach one can include a prior information via p(P ) and the conditional

probability of observing the surface S given the classification p(S|P ). These probabilities
can also be defined in an atlas space with the advantage that its coordinates have more

anatomical meaning compared with the native coordinate system of an image. [28] The

link between the native coordinates and the atlas coordinates r is the atlas function f .

Therefore the native coordinates can be expressed as f(r)

The question which remains is how the prior information of the parcellation can be ac-

cessed: In this method it is done by a combination of learning from a training set of

manually labeled cortical areas ci and a probabilistic atlas based on a large number of

subjects. In the manually labeled training set the probability of a parcellation label c

occuring at each atlas location p(P (r) = c) is computed by counting the times that class

c occured at location f(r) independent from all other classes. To get more spatial infor-

mation also pairwise probabilites are computed for every possible combination of classes

(e.g.: fusiform can never be a neighbour of precentral). This prior information available,

the problem statement in 3.7 can be solved.

In the following the surface S of equation 3.7 at each point f(r) is summarized by two

quantities encoded as a vector G(f(r)). With the known atlas function f equation 3.7

can be written as:

p(P |G, f) ∝ p(G|P, f)p(P ) (3.8)
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By assuming that the noise at each vertex is independent from all other vertices on the

surface the conditional probability of all classes c can be written as:

p(G|P, f) =
∏

r∈S

p(G(f(r))|P (r)) (3.9)

Also, the prior probability of the full parcellation is extended to:

p(P ) ∝
∏

r∈S

p(P (r))
K∏

i=1

p(P (r)|P (ri), ri) (3.10)

where K is the number of vertices on S. With eq. 3.9 and 3.10 the formally stated problem

is nothing more than computing the parcellation P (r) that maximizes the conditional

posterior probability.

P (r) = argmax
c
p(P (r) = c|P (ri),G(f(r)), ri)

= p(G(f(r))|P (r) = c = p(P (r) = c)
K∑

i=1

p(Pri)|P (r = c, ri) (3.11)

Eq. 3.11 is iteratively applied until convergence.

The atlas used in this thesis was proposed of Desikan et al. in 2006 [24] and is therefore

called Desikan-Kiliany atlas. It is composed of 34 areas for each hemisphere. With a

training set of 40 manually labeled T1 MRI scans the method described above was used

to automatically segment the given cortical surface on the inflated cortices. (An example

of an inflated parcellated cortex can be seen in figure 3.3 (b)).

Implementation:

Parcellation is also part of the recon_all command. mris_ca_label is called to generate

the parcellated brain surface. The resultant files are saved seperately for the right and left

hemisphere and are called rh/lh.aparc.annot. The subcortical areas and the regions of

the cortical parcellation yields 83 distinct regions (A listing is given in the appendix in

table 5.1). An example of a parcellated brain is shown in figure 3.3
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(a) (b)

(c)

Figure 3.3: Fully parcellated brain mapped to (a) white matter surface (b) inflated (c)

volume (colorcodes can be found in table 5.1 in the appendix)

Registration Registration is the process of transforming different sets of data to one

common coordinate system. Since there are two different image acquisition schemes (T1

and dwI) the data has to be registered.

The method: FLIRT of FSL

FLIRT stands for FMRIB’s Linear Image Registration Tool and is part of the FSL pack-

age 3). Linear registration includes rotation, scaling, translation and shearing. The aim of

linear registration is therefore to find the best set of parameters (rotation, scaling shear-

ing,...) to map one image to a selected target.

To find the best set of parameters FLIRT uses a global optimization procedure in several

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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resolution levels (n = 8, 4, 2 mm) with 12 degrees of freedom (affine transform). The

optimization procedure is based on minimizing a given cost-function. This cost function

should present the difference/similarity in the two images. Several measurement of sim-

ilarity exist as a basis for cost-function - depending on what type of images are need to

be registered. Common measurement are the

• Least squares of the image intensities (same modality,contrast,subject)

• Normalized correlation (same modality,contrast,subject)

• Correlation ratio (same subject, different contrast and modality)

• Mutual information (same subject, different contrast and modality)

Images acquired from different subjects other registration methods such as non-linear

registration. [46],[47]

Implementation:

The reference space used here was the first diffusion-weighted image (which is the B0

image), the T1 image was registered to the B0 image. As these two images have different

resolutions the first step was to resample the B0 image to the higher resolution of the T1

weighted image [22]. The registration was done with the tool FLIRT (FMRIB’s Linear

Image Registration Tool) of FSL which was described above.

The correlation ratio was used as a marker of similarity in the two images. The target,

reference and the registered image are shown in figure 3.4 [46],[47].
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(a) (b) (c)

Figure 3.4: Registration (a) T1 image to register, (b) target B0, (c) resampled target and

T1, the B0 image is colored in red and overlaid

3.2.1.2 Diffusion Scan

The diffusion weighted scan is the basis of the connectivity measurements which fill the

connectome matrix. First some preprocessing is done.

Preprocessing Diffusion weighted data is acquired by adding additional gradients to

the pulse sequence and therefore getting the information of the direction of free water

molecules. It is assumed that there is no motion between the different gradients.

Additionally, an eddy current correction was done.

The method: Linear Registration (FLIRT)

Both motion correction and eddy current correction are done with the methods of linear

registration described above (section 3.2.1.1, Registration)
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Implementation:

Motion correction was done by registrating the diffusion gradient images to one reference

image. The reference image is the B0 image. Every other (gradient)-image had to regis-

tered to this target. The same linear registration procedure which was used to match the

T1 to the B0 image (MCFLIRT of FSL, the MC stands for motion correction) was used.

The registration was done by optimizing a cost function based on a correlation ratio.

Every image was registered to the first one of the gradient images and as it is assumed

that there is little motion between the acquisition steps, the transformation matrix of the

previous image is used as initialization for the next one. [47]

Eddy current artefacts were also corrected with methods of linear affine registration.

[46],[32] Figure 3.5 shows the raw and preprocessed images.

(a) (b) (c)

Figure 3.5: Same patient, same gradient number (9), same slice showing (a) raw diffusion

data, (b) after motion correction, (c) eddy-current corrected image
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Model of Diffusion Several models of diffusion exist (a summary is given in section

2.1.1). The method in this thesis is called bayesian estimation of diffusion parameters ob-

tained using sampling techniques, in short BEDPOSTX, whereas the X stands for crossing

fibers. [32]

The method: Bayesian Estimation of Diffusion Parameters Obtained Using Sampling

Techniques [11],[12]

Model building and thus parameter estimation can be done in two ways: The most ob-

vious one is to find the set of parameters ω which fit the data best (point estimate of

the parameters). One attempt could be to find the set of parameters which maximize

the probability of seeing this realization (= data Y ) which the given model M and its

parameters ω:

argmax
Ω

p(Y |ω,M) (3.12)

Another way is to associate a probability density function (pdf) of the parameters by

bayesian rules:

p(ω|Y,M) =
p(Y |ω,M)p(ω|M)

p(Y |M)
(3.13)

This is a total different way of definition because it describes the probability of the pa-

rameters with the given data.

Equation (3.13) is called posterior density, the denumerator P (Y |M) is the joint posterior

pdf of all (possible) parameters. Both the joint posterior pdf as well as the posterior pdf

are expensive to compute and often cannot be traced analytically.

Sampling techniques can be used to address this problem by drawing samples in the pa-

rameter space and reject or accept these samples according to a criterion based on the

numerator in equation (3.13). The accepted samples will be distributed like the posterior

pdf if the criteria is chosen the right way. As these methods are also computationally ex-

pensive one way is to propose samples in areas of high probability. This is called Markov

Chain MonteCarlo technique (fig. 3.7) and can be used to draw the posterior pdf in a
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relative short amount of time. [11]

Figure 3.6: Estimation of posterior pdf, taken from [64]

The model of diffusion is a simple partial volume model, where the measured signal can

be separated into an isotropic part (diffusion of free water) and an anisotropic part which

models the diffusion along the fiber direction. The measured signal at every acquisition

is then

si = s0((1− f) exp (bid)
︸ ︷︷ ︸

isotropic

+ f exp (−bidrTi RART ri)
︸ ︷︷ ︸

anisotropic

) (3.14)

where si is the measured signal, s0 the signal without gradient, f the anisotropic fraction

of the signal, bi the b-value of the i
th acquisition, d the diffusivity, ri the gradient direction

of the ith acquisition and RART the anisotropic diffusion tensor along (θ, ψ), with A fixed

as:

A =








1 0 0

0 0 0

0 0 0








and R rotates A to (θ, φ). Equation (3.14) is the model. By observing the data and some

prior knowledge, we can reject or accept samples drawn in parameter space. The parame-

ters of the ball and stick model are (s0, d, f, θ, φ, σ), where σ is the standard derivation of
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the noise. It is modeled seperately for each voxel as independently identically distributed

gaussian with zero mean.

For better understanding figure 3.7 should give an idea of the process in finding the pos-

terior pdf of every voxel.[11]

Figure 3.7: Markov Chain MonteCarlo sampling, the 1st collumn shows the samples drawn

in parameter space - by comparing the predicted and the observed signal one

can accept or reject this sample. If the criteria is chosen right, the accepted

samples are distributed like the posterior pdf in equation (3.13), image adapted

from [64], the gray balls depict the isotropic diffusion in the voxel, the black

stick is the anisotropic part

This is the simplest ball and stick model and it was followed by many others. Behrens

published an extension of his method 4 from 2007, [12] where crossing fibers can be mod-

eled by subdividing the voxel into smaller compartements each with his
”
own“ anisotropic

part. However, it was shown that a high number of independent gradient directions as
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well as higher b−values are needed to get an adequate result. [12]

Implementation:

The method was implemented in the bedpostx command of FSL. The parameter used in

this thesis were: burnin = 0 (markov chains were sampled from the beginning) with 1250

jumps where every 25th jump was sampled, hence resulting in 50 samples of parameters

per voxel. The number of fibers per voxel was set to 1.

The output of the estimation of diffusion parameters are

• 4D volumes showing the samples of the parameters θ (= th), φ (= ph) and the

anisotropic fraction f (merged_<th/ph/f><i>samples.nii.gz)

• 3D volumes showing the mean of these distributions (mean_<th/ph/f><i>samples.nii.gz)

• 4D volume containig the main directions (dyads_<i>.nii.gz)

An example output is shown in figure 3.8.
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Figure 3.8: One slice showing the estimated direction of diffusion (colorcoded

dyads.nii.gz) and the distribution of θ and φ in the marked voxel

Tractography

The method: Bayesian Estimation of Diffusion Parameters Obtained Using Sampling

Techniques [11] - continued

The probability distribution function of each voxel is now used to generate a connectivity

measure which characterizes the probability that region A is connected with region B, or

mathematically expressed:

p(∃A→ B|Y ) (3.15)

As the pdfs of the parameters do not exist in an analytical represantation but only as

samples drawn in parameter space one can use exactly this representation to model the

probability of (3.15). Tracking a streamline is then extremely cheap, following the given
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procedure:

• The front of the streamline is the point z

• The streamline starts at point A, z = A

• A random sample (θ, φ) at z is selected

• z is moved a distance along (θ, φ)

• until a stopping criteria is met

This algorithm is repeated a given times for every region. A whole bunch of streamlines is

generated. If one wants to calculate the probability that A is connected to B one simply

counts the streamlines which connect A and B and divide them by the total number of

generated streamlines. The main idea of this procedure is shown in figure 3.9.
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(a) (b)

Figure 3.9: 2D representation of 16 voxels with the samples of anisotropic diffusion direc-

tion, in (a) 11 streamlines were tracked seeding from region A by repeatedly

choosing a diffusion direction of the given set (blue lines), in (b) only the tracts

which connect A to B are shown, the probability that there is an connection

between these to points is given as the number of streamlines connecting A

and B divided by all streamlines, therefore p(∃A→ B|Y ) = 5
11

Implementation:

The command probtrackx, part of the FSL package, was used for probabilistic track-

ing. 5000 streamlines were generated in every voxel of the given region and the curvature

threshold was set to 0.2 (corresponding to a maximum angle of ±80◦ otherwise the stream-

line was stopped here).

probtrackx was called 83 times (Every region defined in the parcellation before was used

as a seed region, all the others were target regions). For every seed region 82 files were

generated, showing the probability of the voxels of the seed region to be connected to one

of the 82 target regions (resulting in 1 file per target region → 82 files per seed region,

83x82 files all in all). An example of such a probability map is shown in figure 3.10.
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Figure 3.10: Axial slice of the brain stem (gray framed) showing the probability to be

connected with the right hippocampus. As it can be seen it is more likely

that the right part of the brain stem is connected with the right hippocampus,

interhemispheric connections do not exist here.

3.2.2 Connectome generation

With the knowledge of the connection probability of every voxel of every region it is easy

to fill the connectome matrix. This was done by summing up the probabilities of all voxels

of a region resulting in the probability of the whole region to be connected to the other

one. All together this results in 83x82 entries, whereas the mean diagonal is set to zero

(The region cannot be connected to itself).

The final connectome is a network containing nodes (regions) which are interconnected

by edges (connection probabilities).
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3.3 Networks

This chapter will give an overview of networks in general - how they are compared to each

other, how they can be visualized and a short introduction into brain networks.

A network is a mathematical model used to describe a complex system. Any networks

are defined by their nodes and connecting edges.

3.3.1 Network statistics

To compare networks, one can either calculate topological measures (described in the next

section 3.3.1.2) or compare the networks as a whole with a novel method called Network

Based Statistics.

3.3.1.1 Network Based Statistics

The method was proposed of Zalesky in 2010 [78] with the goal to find pairwise associations

which are significantly different between groups. The brain network generated before

contains the connection probability or connectivity as pairwise association. Each subject

can be assigned to a group (case-control studies) and for each connection probability

(entry of the connectivity matrix) a groupwise statistical test is done - resulting in one

matrix for all subjects showing the test-statistic for every possible link. An example of

such an test-statistic map is shown in figure 4.2(a).

In the following step this test-statistic matrix is thresholded to find connections which are

significantly different between the groups giving a set of suprathresholded connections.

At this point it is important to mention that NBS is a non-parametric method. The

thresholded test-statistic map is only the first step and used as a
”
preliminary decision“ -

normally distributed data is not required here. [78]

When searching for differences in brain networks one is not interested in isolated, unpaired
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connections - therefore the next step is to search for connected components in this set of

suprathresholded links.

Connected Component

A connected component is a subset of a graph where any two nodes are connected to each other

by paths. A path is a finite number of edges which connect two nodes. [53]

Any connected components are identified using a breadth first search and the number of

links they comprise (i.e.: the size) of the connected component is stored.

As NBS is a non-parametric method, the individual thresholded test-statistic values are

not used to determine the significance. To assign a p-value to the identified connected

components permutation testing is done.

Permutation Testing

Permutation tests can be described as significance tests. These test are used to determine

whether an observed effect (such as a difference of two means from two groups) could be

ascribed to randomness or not. For this reason the distribution under the null-hypothesis (H0,

no difference between the groups = no effect) is studied. If an observation is somewhere located

in the body of the distribution this could easily occur by chance. A value in the tail would

rarely occur by chance and so this can be an evidence that something other than chance is

operating. The probability, that the observed sample happened by chance, is specified with

the p-value. A lower p-value indicates that there might be an effect which is caused to a lower

extent by chance (= significance).

The statement, that the effect searched for is not present in the population, is the null hypothesis

H0. If H0 is true it makes no difference which group a subject does belong to (They are the

same anyway). This is the principal of permutation testing. By assigning any subject a random

group label (permute the group label) many times and observe the variable of interest again

one can draw a distribution of the observed variable. If the variable observed with the
”
true“

assignment of the groups is much higher or lower than most of the others (somewhere in the
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tail of the distribution), it appears likely, that something other than chance is operating, the

null-hypothesis can be rejected. The p-value can be calculated by counting the values of the

drawn distribution which are higher than the observed one and dividing it by the total number

of permutation.

As an example it is assumed that out of 100 permutations only 5 values were higher than the

observed variable. The probability that this happened by chance is then 5

100
= 0.05.

The permutation distribution approximates the sampling distribution. It is non-parametric

method and can be used for any distribution.

In NBS a total of M permutations are generated independently by randomly exchanging

the group to which a subject belongs to. The test statistic of interest is the size of the

maximal connected component. For each permutation the test-statistic is recalculated

and thresholded in the same way as it was done before. The maximal component size

of all M permutation is stored and thereby yielding an estimate of the null hypothesis

of the maximal component size. The p-value can be determined easily by counting the

numbers of permutations with an higher maximal component size than the observed one

and normalizing by M . If the p-value does not exceed the statistical significance level a

connected component is found and can be analyzed further.

Implementation:

All the calculations were done in MATLAB with support of the NBS-toolbox.4 A F -Test

was used to investigate any difference between ALS patients and controls. F values below

7 were discarded and significance level for NBS was set to 5%. 5000 permutations were

done to assign a p−value to the identified connected component.

The identified subnetwork was further investigated by averaging the connectivity values of

the affected subnetwork of patients and controls and by determining topological network

measures. A summary of the network measures used is given in the next section.

4https://sites.google.com/site/bctnet/comparison/nbs
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3.3.1.2 Network Measures

As introduced in chapter 2, a network is a
”
mathematical representation of a real-world

complex system“ [59]. It is defined by nodes and the links between them (edges) and can

be described by mathematical measures. One can distinguish between local network mea-

sures, which describe features of one specific node, and global network measures, which

are used to describe the topology of the whole network. The local measures of all nodes

build up a distribution, which is most commonly described by its mean.

Individual network measures normally characterize only one aspect of global or local con-

nectivity thus the network measures are divided into measures of density, segregation,

integration and small-worldness.

One can also distinguish between weighted and binary network measures. Binary net-

work measures categorize whether there is a connection or not, whereas weighted network

measures consider the weight of a link (e.g.: the probability of a connection) used in this

thesis. Here we focus on weighted network measures. These measures are marked with an

superscripted w, the subscript i marks the local measure of node i. No subscript indicates

a global network measure. [59]

Measure of density The most basic network measure is the degree of a network. The

degree of a node defines the number of neighbours and thus is equal to the number of

directly connected nodes. The degrees of all nodes build up the degree distribution,

which is an important marker of network’s development and resilience. The mean degree

describes the density of the whole network or the total wiring cost, whereas a lower mean

degree depicts less density and less wiring cost. The binary degree ki of a node i can be

described as

ki =
∑

j∈N

aij (3.16)
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where N is the set of all nodes and n is the total number of nodes. aij is the connection

status which is 1 if there exists a link between node i and j an 0 otherwise.

The weighted degree is given as

kwi =
∑

j∈N

wij (3.17)

where wij is associated with the connection weight. Weights are normalized such that

0 < wij < 1. The weighted degree is also called local strength of the node. The global

strength is the total sum of all weights of a network.

Sw =
∑

i∈N

wi (3.18)

Measure of segregation Segregation is the ability for specialized processing in densely

interconnected groups of brain regions. Such groups can be clusters or modules in this

network. Simpler measures of segregation are based on the the number of triangles in the

network. A high number of triangles indicates high segregation and high clustering. The

number of weighted triangles around a node i is given as:

twi =
1

2

∑

j,h∈N

wijwihwjh (3.19)

Then the local and global clustering coefficient Cw
(i) and can be expressed as:

Cw
i =

2twi
ki(ki − 1)

(3.20)

Cw =
1

n

∑

i∈N

Cw
i (3.21)

Note, that the number of triangles around the node i is normalized by ki(ki−1)
2

where ki is

the binary degree and not the weighted version.[59]
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Measures of integration Integration describes the ability of rapidly combining informa-

tion from distributed brain regions. These measures are commonly based on the concept

of paths. A path is a sequence of links which connects two nodes.

The utilized measure of integration is the characteristic path length of a network, which

is the average shortest path length between all possible pairs of nodes. The weighted

shortest path length between nodes i and j is given as

dwij =
∑

auv∈gi→j

f(wuv) (3.22)

where gi→j is the shortest weighted path from node i to j and f is a map from weight

to length (in this thesis, the inverse of the weight is used as length). The mean weighted

shortest path length is called weighted characteristic path length Lw:

Lw =
1

n

∑

i∈N

∑

j∈N,j 6=i d
w
ij

n− 1
(3.23)

A non-connected node has infinite path length per definition, leading to an infinite char-

acteristic path length for the whole network. Therfore another network measure of in-

tegration can be defined: The efficiency is the inverse of the shortest path length. It is

converging to zero if a node is disconnected, mathematically expressed:

Ew =
1

n

∑

i∈N

∑

j∈N,j 6=i

(
dwij

)−1

n− 1
(3.24)

The local efficiency is calculated in the following way: [59]

Ew
loc =

1

2

∑

i∈N

∑

j,h∈N,j 6=i

(
wijwih[d

w
jh(Ni)]

−1
)1/3

ki(ki − 1)
(3.25)

Measure of smallworldness A well designed network should simultaneously be able to

accomplish the demands of functional integration as well as the opposing demands of

segregation. It should have a high number of clusters which are efficiently connected to
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each other - giving an optimal balance of functional segregation and integration. Watts

and Strogatz [73] were the first ones who entitled this phenomenons: small-world networks.

Those are formally defined as networks that are significantly more clustered than random

networks but have approximately the same characteristic path length. The measure of

small-worldness captures this effect by calculating the fraction of two known (normalized)

measures:

small-worldness =

Cw

Cw
r

Lw

Lw
r

(3.26)

where Cr and Lr are the clustering coefficient and characteristic path length of a random

network with the same degree distribution and number of nodes n. A small-world network

is a network with a high (≫1) small-worldness. An example of a small-world network as

well as the normalized characteristic path length and clustering coefficient for a different

randomness is shown in figure 3.11. [59]

(a) (b)

Figure 3.11: Small-world networks, (a) depicts different network types with increasing

randomness, (b) shows the normalized clustering coefficient and characteristic

path length for increasing randomness, both images are taken from [73].
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Implementation:

The presented network measures were calculated for every subject. Calculations were

done in MATLAB with the Brain Connectivity Toolbox (BCT)5 and own Matlab scripts.

The random weighted clustering coefficient Cw
r and the weighted charateristic path length

Lw
r were calculated by generating 100 random networks with the same number of nodes

n and the same degree distribution. The average weighted clustering coefficient and

weighted characteristic path length of these 100 random networks where used estimate

these random measures for every subject.

After checking for normal distributed data with the Kolmogorov–Smirnov test the group

wise comparision was done either with a t-test or a Mann-Whitney U Test for non-normal

distributed data. Significance level was set to 5%.

statistical tests for group-wise comparisions

In a case-control study it is important to find differences between two groups. So how are

different measures compared to each other? The easiest way would be to compare the means of

the cases and controls for a given contrast, but how can one be sure that the difference in means

happened not just by chance? A t-test therefore tests whether two data sets come from the

same or from different distributions by looking at their means and variances. The hypothesis

to test is that the two datasets are samples of the same distribution (null hypothesis H0, shown

in the bottom of figure 3.12). By calculating the probability that this is the case (p-value),

one can either reject or accept the null hypothesis. The criteria whether the null hypothesis is

rejected or not is called significance level and is defined by thresholding the calculated p−value

(normally p < 0.05 is used as significance level).

It is important to ensure that the samples of the data are normally distributed. This type of

testing is also called parametric testing as it requires a known distribution. Another group of

statistical tests is therefore called non-parametric tests, distribution of data does not have to

be known in advance.

To ensure normality different test can be made: The most commonly used one is called Kol-

mogorov–Smirnov test which test the null hypothesis that the data is normally distributed.

If this is not the case non-parametric tests such as the Mann-Whitney U test can be used.

5available here https://sites.google.com/site/bctnet/
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Figure 3.12: distribution and the means of two datasets, testing whether the two datasets are

from the same or different distributions

3.3.2 Visualizing networks

There are several ways to visualize a network. The easiest one is certainly shown in figure

3.14 (a), where the links of every possible connection from node i to j are depicted in

matrix form. The x and y axis depict the nodes of the network. Another way is to

draw the nodes in anatomical space, as it was done in 3.14 (b). This is an interesting

visualization for neurologists, as one can see the real anatomical locations of the nodes

and any findings can be immediately characterized by their location.

Another common way of visualizing is shown in figure 3.14 (c). [43] The different regions

are distributed on a circle and the connectivity probabilities are shown as lines connecting

these regions. [16],[52]
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Figure 3.13: methods to represent a connectome, image taken from [52]
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(a) (b)

(c)

Figure 3.14: The same connection probability matrix of one patient shown in three differ-

ent ways: (a) matrix where the entries in (i, j) depict the connection prob-

ability of from node i to j, (b) 3D representation of the same network, the

nodes are the centroids of regions mapped to MNI - space; (c) circular repre-

sentation of the same network, only edges higher than a fifth of the maximal

value are shown for better illustration
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Implementation:

In this thesis networks were visualized as matrices as shown in figure 3.14 (a) and as 3D

- models within an anatomical space (The MNI space was used here). The visualization

was done with MATLAB and the toolbox BrainNetViewer. [77]

3.3.3 Software

A number of free software for both analyzing and visualizing of brain networks or networks

in general exist. A summary of the most common network toolboxes is given in table 3.2.

In this thesis the connectomemapping toolkit6 was used. This pipeline includes software

packages like FSL for brain extraction, registration, motion and eddy current correction,

probabilistic estimation of diffusion parameters and probabilistic tracking, Freesurfer for

segmentation, surface extraction and parcellation, and MRtrix7 for conversion of the dif-

ferent data types.

Post-hoc analysis was done with MATLAB and the already mentioned toolboxes (Brain

Connectivity Toolbox and BrainNet Viewer)

6www.cmtk.org
7www.brain.org.au/software/mrtrix/
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4 Results

4.1 Connection Probability Maps

The result of the connectome processing was basically a matrix containing the probabilities

for all connections between node i and j, for every subject.

The mean connectivity measures for both patients and controls are shown in figure 4.1.

4.2 Network Based Statistics

A group-wise comparison was done for every connection in the connection probability

map. A F -test, which reveals any difference in the variances of two populations, was used

here.

The F -map as well as the suprathresholded links (F > 7) and the connected component

are shown in figure 4.2. 19 nodes and 15 connections had an F− statistic above 7,

but only 10 connections and 11 nodes built a connected component and where further

analized. A connected component is built with at least 3 nodes, connected with 2 edges.

The discarded edges are isolated connections and did not build a connected component

(see figure 4.2 (b)).

The maximum component size succeeded the value of 10 in 170 of 5000 permutation,

yielding a p-value of 3.4% for the identified subnetwork.
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(a)

(b)

Figure 4.1: mean connection probability maps for (a) controls and (b) ALS patients; on
the x- and y- axis the different regions are shown
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(a)

(b)

Figure 4.2: A F-test was done for every connection to test for group differences in the
connectome. The corresponding F -value for every connection is shown in (a),
(b) depicts the thresholded F -map whereas only the connections connecting
the red nodes are kept as they form a connected component
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Higher variance of connection probabilities in ALS patients The affected subnetwork

is shown in figure 4.3.

The affected nodes (i.e.: brain regions) and the connections of the affected subnetwork

are listed in table 4.1 and table 4.2:

Table 4.1: nodes of the affected subnetwork found with NBS

Number Hemisphere Region Lobe part of

CST

15 right isthmus of cingulate cortex cingulate (parietal)

16 right postcentral cortex parietal
√

17 right supramarginal gyrus parietal
√

18 right superior parietal cortex parietal
√

20 right precuneus cortex parietal
√

24 right lingual gyrus occipital

25 right fusiform gyrus temporal

32 right superior temporal gyrus temporal

40 right Hippocampus -

41 right Amygdala -

83 - Brain Stem -
√

As listed in table 4.1, 5 of the 11 nodes belong to the corticospinal-tract which plays a

crucial role in motor coordination, control and development.

Higher connectivity in superior parts of the brain and lower connectivity in inferior

parts When considering the means of the connection probabilities of both patients and

controls, it was found that the connection probabilities of the ALS patients are higher

in the superior part of the identified subnetwork (right superior parietal cortex - right
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(a)

(b)

Figure 4.3: affected subnetwork showing a higher variance of connection probabilites in
ALS patients
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postcentral cortex; right superior parietal cortex - right supramarginal gyrus; right supra-

marginal gyrus - right isthmus of cingulate cortex; right supramarginal gyrus - right

precuneus cortex) but lower in the inferior part of the subnetwork (right superior parietal

cortex - right fusiform gyrus; right hippocampus - right amygdala; right fusiform gyrus -

brain stem; right hippocampus - brain stem) as it can be seen in table 4.2.

Table 4.2: connection probabilites for ALS patients and controls in terms of mean ± stan-

dard derivation and the corresponding t and F -value

Connection Healthy controls ALS patients t F

Mean ± SD Mean ± SD

right isthmus of cingulate cortex - right supramarginal gyrus 2.66e-05 ± 5.66e-05 1.18e-04 ± 1.89e-04 2.68 7.16

right postcentral gyrus - right superiorparietal lobule 3.50e-03 ± 1.13e-03 4.33e-03 ± 1.28e-03 2.76 7.59

right supramarginal gyrus - right superior parietal cortex 2.18e-03 ± 7.33e-04 2.99e-03 ± 1.32e-03 3.08 9.46

right supramarginal gyrus - right precuneus cortex 1.95e-04 ± 2.63e-04 5.05e-04 ± 4.98e-04 3.18 10.10

right precuneus cortex - right lingual gyrus 1.03e-03 ± 5.25e-04 1.46e-03 ± 6.17e-04 3.06 9.39

right superior parietal cortex - right fusiform gyrus 3.81e-04 ± 5.09e-04 1.17e-04 ± 1.81e-04 -2.73 7.48

right isthmus of cingulate cortex - right superiortemporal gyrus 7.07e-05 ± 1.27e-04 3.62e-04 ± 6.02e-04 2.76 7.61

right hippocampus - right amygdala 1.72e-03 ± 3.81e-04 1.46e-03 ± 3.34e-04 -2.91 8.44

right fusiform gyrus - brain stem 2.16e-07 ± 4.34e-07 4.87e-09 ± 1.63e-08 -2.70 7.32

right hippocampus - brain stem 1.32e-03 ± 2.75e-04 1.09e-03 ± 4.25e-04 -2.69 7.26

The difference of the mean connection probabilities µP −µC of the affected subnetwork is

shown in figure 4.4. Positive values indicate a higher connection probability in ALS pa-

tients, negative values (dark blue connections) a higher connection probability in healthy

controls.
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(a)

(b)

Figure 4.4: Difference of connection probability means for patients and controls
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Table 4.3: Global network measures of the entire network

Healthy controls ALS patients p
Network measure Mean ± SD Mean ± SD

Efficiency 1.14e-3± 3.73e-5 1.14e-3± 4.29e-5 0.64
Clustering Coefficient 1.87e-4± 3.66e-5 1.82e-4± 3.82e-5 0.62
Characteristic Path Length 1.46e3 ± 1.47e2 1.45e3 ± 1.55e2 0.86
Small World∗ 2.19± 1.68 2.02± 2.13 0.84
∗ not normally distributed, Mann-Whitney U test was used instead of a t-test

4.3 Statistics of Network Measures

Beside the NBS Analysis, different network measures were computed for the whole network

and the affected subnetwork. The measures of healthy controls and ALS patients where

compared with a t- or a Mann-Whitney-U test.

4.3.1 Analysis of the entire Network

4.3.1.1 Global Network Measures: Efficiency, Clustering Coefficient, char. Path

Length and Small World Coefficient

Global network measures of the entire network showed no significant differences between

controls and patients. The results are given in table 4.3

Global network measures of the patients were correlated with the ALSFRS-R, the duration

(in months) and the progression. Significant results where found when correlating the

duration with the efficiency (r = 0.49, p = 0.046) - showing a higher efficiency in patients

with a longer disease duration (see figure: 4.5).
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Figure 4.5: positive correlation of efficiency and disease duration. The red dashed line

markes the 95% confidence intervall

4.3.2 Analysis of the affected subnetwork

The affected subnetwork was extracted and has undergone the same analysis as the entire

network before.

4.3.2.1 Global Network Measures: Efficiency, Clustering Coefficient, char. Path

Length, Small World Coefficient and Strength

No significant differences where found when looking at the global network measures of the

affected subnetwork, but a borderline significance (p = 0.06) for the clustering coefficient

was observed. This network measure is higher in patients, therefore showing a higher

segregation of the affected subnetwork. The result is shown in table 4.4
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Table 4.4: global network measures of affected subnetwork

Healthy controls ALS patients p
Global network measure Mean ± SD Mean ± SD

Efficiency 1.82e43± 1.80e-4 1.89e-3± 1.83e-4 0.14
Clustering Coefficient 4.53e-4± 9.06e-5 4.93e-4± 7.97e-5 0.06
Characteristic Path Length 9.77e2± 1.39e2 1.06e3± 2.79e2 0.12
Small World 1.01± 5.08e-2 1.00± 6.81e-2 0.63
Strength 0.13± 1.25e-2 0.13± 1.33e-2 0.22

4.3.2.2 Local Network Measures: Local Efficiency, Local Clustering Coefficient,

Local Strength

The local network measures of all affected nodes of the subnetwork are listed in table 4.5.
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Table 4.5: local network measures of affected subnetwork

Healthy controls ALS patients p

Node Local network measure Mean ± SD Mean ± SD

right isthmus of cingulate gyrus Efficiency (x10−4) 5.68± 1.80 6.05± 1.87 0.42

Clustering Coefficient (x10−4) 4.71± 1.59 4.80± 1.52 0.81

Strength (x10−2) 1.15± 0.28 1.10± 0.20 0.48

right postcentral gyrus Efficiency (x10−4) 8.09± 2.67 8.46± 2.39 0.55

Clustering Coefficient (x10−4) 6.07± 2.18 6.71± 1.90 0.21

Strength (x10−2) 1.21± 0.18 1.26± 0.23 0.28

right supramarginal gyrus Efficiency (x10−4) ∗ 6.57± 3.19 10.52± 5.49 0.000116

Clustering Coefficient (x10−4) ∗ 4.89± 2.41 7.59± 2.04 0.00242

Strength (x10−2) 1.37± 0.19 1.45± 0.31 0.0058

right superior parietal cortex Efficiency (x10−4) 9.05± 1.84 9.00± 2.16 0.92

Clustering Coefficient (x10−4) 5.89± 1.28 6.10± 1.26 0.51

Strength (x10−2) 2.17± 0.29 2.31± 0.32 0.03

right precuneus Efficiency (x10−4) 8.47± 2.07 9.17± 1.51 0.13

Clustering Coefficient (x10−4) 5.86± 1.45 6.29± 1.13 0.20

Strength (x10−2) ∗ 2.50± 0.38 2.59± 0.36 0.58

right lingual gyrus Efficiency (x10−4) 8.03± 2.60 8.24± 2.49 0.73

Clustering Coefficient (x10−4) 6.02± 2.16 6.15± 2.03 0.81

Strength (x10−3) 8.60± 0.22 8.81± 0.23 0.72

right fusiform gyrus Efficiency (x10−4) 4.83± 1.79 5.56± 2.26 0.15

Clustering Coefficient (x10−4) 3.80± 1.55 4.34± 1.83 0.21

Strength (x10−2) 8.25± 0.17 8.14± 0.26 0.84

right superior temporal gyrus Efficiency (x10−4) 6.69± 2.70 7.18± 2.14 0.43

Clustering Coefficient (x10−4) 4.01± 1.64 4.20± 1.41 0.46

Strength (x10−3) 8.45± 0.25 9.36± 0.32 0.21

right hippocampus Efficiency (x10−4) 8.63± 1.74 8.03± 2.37 0.24

Clustering Coefficient (x10−4) 4.95± 1.03 4.56± 1.48 0.22

Strength (x10−3) 1.14± 0.23 1.03± 0.30 0.13

right amygdala Efficiency (x10−4) 1.98± 0.76 1.88± 0.69 0.59

Clustering Coefficient (x10−4) 1.48± 0.57 1.36± 0.49 0.38

Strength (x10−3) 0.29± 0.06 0.27± 0.07 0.15

Brainstem Efficiency (x10−4) 3.01± 1.09 3.02± 1.22 0.95

Clustering Coefficient (x10−4) 2.09± 0.80 2.07± 0.90 0.89

Strength (x10−3) 0.27± 0.07 0.23± 0.09 0.08

∗ not normally distributed, Mann-Whitney U test was used instead of a t-test
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The right supramarginal gyrus showed significantly higher local efficiency, local clustering

coefficient and local strength. Another difference was found in the right superior parietal

cortex as it shows a higher local strength in ALS patients compared to healthy controls.

The brainstem, as well as other core parts of the brain, had lower local strengths in ALS-

patients. However, these measures did not reach significance level.

Positive correlation of global clustering coefficient and global strength of the affected

subnetwork The global network measures of the affected subnetwork did not show any

significant changes, although a borderline significance for a higher clustering coefficient

in ALS patient was observed. Therefore this network measure was investigated further.

A positive correlation of the clustering coefficient and the progression was found (p =

0.04, r = 0.40, figure 4.6). Another global network measure, the strength, also correlated

with the disease progression, showing a higher strength of the affected subnetwork in ALS

patients (see figure 4.7, p = 0.17, r = 0.40). Both clustering and strength of the network

increase with the progression of the disease.
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4 Results

Figure 4.6: positive correlation of clustering coefficient of the affected subnetwork and the

progression, the red dashed line markes the 95% confidence interval

Figure 4.7: positive correlation of strength of the affected subnetwork and the progression,

the red dashed line marks the 95% confidence interval
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5 Discussion and Conclusion

The aim of this thesis was to explore the sensitivity of structual connectivity in patients

with ALS. It was found that structural connectivity is changed in ALS patients compared

to healthy controls. This difference is projected to a small subnetwork of the entire brain

network.

A F -test was used as statistical test in Network-based statistics. Hence any differences

were investigated with a test of variance-homogenity. The identified subnetwork showed

higher variances of the connection probabilities in this area.

When using a t-test, which compares the means of two samples of a distribution, it was

not possible to identify an impaired subnetwork. This is also compatible with the results

of other studies of ALS brain-networks ([15],[71]). In contrast to this thesis, Buchanan et.

al. and Verstraete et. al. then used a different type of connectivity measure as they gen-

erated FA-weighted maps of connectivity. It is well known that the fractional anisotropy

is lower in ALS patients ([72],[17],[51],[2],[3]) hence it is not unexpected that a network of

FA-weighted connections lower in patients was found - As the FA-connectivity measure

was lower in ALS patients the identified subnetwork was defined as
”
impaired“.

In this thesis it was shown that the variance of the connectivity probabilities of ALS

patients is higher in a defined are and therfore one cannot speak of a
”
disconnected“ or

”
impaired“ subnetwork.

Further investigation focussed on this subnetwork. The differences in connectivity might

be found exactly there. As it is known from other studies ([15],[71]), studying the connec-

tome and its network measures as a whole does not show any significant differences in ALS
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patients. This finding is in line to our calculation of global network measures of the entire

network (see table 4.3 for the listing of the global network measures of the entire network).

The location of the affected subnetwork Interesting is the fact, that this small sub-

network is part of the corticospinal-tract which plays a crucial role in motor development

and movement. Five of eleven affected nodes (regions) are part of this major fiber tract of

the human brain. (The CST nodes are marked in red in figure 4.4.) A few regions which

are part of the CST (e.g. the internal capsule) where not parcellated as a seperate region

in the segmentation process, but however, it was possible to assign the major regions of

CST origin (primary motor cortex, supplementary motor cortex, somatosensory cortex)

and the brain stem to the parcellated brain regions. It is known that ALS is a disease

which affects both upper and lower motor neurons, but the exact way of degeneration is

not fully discovered yet. Another study [71] also identified an impaired subnetwork, which

is part of the main motor regions of the brain.

All of the affected regions (except the brain stem) are part of the right hemisphere. A

recent study [72] also revealed changes in Mean Diffusivity and Magnetization Transfer

in the right corticospinaltract whereas the left one did not show significant differences.

Other studies, however, found changes in the left corticospinal tract.

Comparing the means of connectivity probability When comparing the means of the

connection probabilities of the patients and controls it was found that the superior con-

nections (right superior parietal cortex - right postcentral cortex; right superior parietal

cortex - right supramarginal gyrus; right supramarginal gyrus - right isthmus of cingulate

cortex; right supramarginal gyrus - right precuneus cortex) are higher in ALS patients

than in healthy controls, but lower in the inferior connections (right superior parietal

cortex - right fusiform gyrus; right hippocampus - right amygdala; right fusiform gyrus -

brain stem; right hippocampus - brain stem) as it is shown in table 4.2. This finding is

not what one may expect, but it fits to results of other studies, which showed a higher
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5 Discussion and Conclusion

mean diffusivity in ALS patients ([2],[3],[51]). On the contrary the connectivity in the

core parts of the brain is reduced. The superior connections might compensate the lower

connectivity in the core parts of the brain to a certain extent.

To inspect the affected network further topological network measures were calculated for

both the entire network as well as the affected subnetwork.

Global network measures of the affected subnetwork As shown in table 4.4, global

network measures of the affected subnetwork did not show any significant differences, al-

though the clustering coefficient nearly reached significance level, showing a higher clus-

tering coefficient in ALS patients.

These network measures were correlated with three important markers of disease pro-

gression: The ALSFRS-R, the duration of the disease and the progression (calculated as

shown in [51]).

The clustering coefficient, as well as the strength of the affected subnetwork correlated

with disease progression. Both measures increase with a stronger disease progression.

Correlation between DTI-derived measures and disease progression were already found

earlier: Filippini et al. ([25]) and Iwata et al. ([44]) discovered a positive correlation

of disease progression and Fractional Anisotropy in ALS patients, other groups ([3],[17])

found a negative correlation of Fractional Anisotropy within the Corticospinal tract and

disease progression.

The clustering coefficient is a measure of the fraction of weighted triangles around a node;

it is higher if the weights around the node are higher or the number of triangles around

a node is higher (see figure 5.1).
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5 Discussion and Conclusion

(a) (b)

(c)

Figure 5.1: Higher clustering coefficient and strength of node 1 in (b) and (c) compared to

(a). In (b) the higher clustering coefficient derives from higher weights around

the node; in (c) the fraction of triangles is higher (Triangles of node 1 are

drawn darker)

The higher clustering coefficient thus can have two reasons - more or stronger connections

in the affected subnetwork. The reason of the higher diffusivity in ALS patients is not yet

found, but it may be related with an increased proliferation of glial cells and the extra-

cellular matrix expansion [17],[72]. Contrary to our finding of an increased connectivity

in patients with stronger progression Ciccarelli et al. [17] found a decreased connectiv-

ity. In contrast they had done a comparision of the distribution of the voxel connectivity

measures in the CST. The CST was extracted above the internal capsule and the connec-

tivity to the motor regions of the cortex for every voxel in the CST was calculated. The
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distributions of the connectivity measures were compared groupwise whereas they only

took the tail of the distribution (showing the high connectivity measures which are found

in the core of the CST). This method is in total different to the one used here. Another

remarkable difference to our result was that the changes they found were located in the

left CST.

The strength is calculated as sum of all network weights. No significant differences where

found with a group-wise comparision but this measure also correlated positively with dis-

ease progression.

Local network measures of the affected subnetwork The local network measures

showed a higher clustering coefficient, strength and efficiency in the right supramarginal

gyrus. All these measures implicate that this node is better embedded in the network

structure in ALS. This finding fits to the higher connectivity in the superior part of the

affected brain network.

The superior parietal cortex also showed a higher local strength in patients which is caused

by a higher connection probability to the neighbour nodes.

Local network measures of the inferior part of the subnetwork are in general lower in

patients, however, significance level was not reached here.

All of these effects can be described by higher connectivity measures in the coronal re-

gions of the brain and lower values in the brain-stem parts. These connectivity measures

also correlated with disease progression, showing higher connectivity measures in patients

with a faster progressing disease. The reason why connectivity is increased, cannot be

determined from this data and further research has to be done. As it was shown in other

studies [71],[72]) fiber tracts are still present in ALS but they may have undergone some

alteration of microstructural organization. This alteration can manifest in an decreased

fractional anisotropy ([2],[51],[17],[72],[15],[71]), in an increased Mean Diffusivity ([51],[2],
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[3]) or an increased radial diffusivity ([3],[72]). It is still not clear how these measures

interact exactely and what reason on microstructural changes is underlying.

Another study found an increase in the magnetization transfer ratio ([72]) in the right

CST. They assumed that the higher MTR is caused by an accumulation of pathological

protein aggregates and therfore showing a higher macromolecular fraction.

Remarks on the used methods Connectivity measures were investigated with an prob-

abilistic approach. [11] This approach and its extension [12] are widely used because it

can resolve multiple fibers per voxel and therefore solve the problem of crossing or kissing

fibers. Nevertheless we used a model with only one fibre per voxel, as it was shown that

crossing fibers are resolvable only with a high number of independent diffusion gradient

directions or higher b-values (see figure 5.2).

Figure 5.2: Study of Behrens et al. [12]: They generated a voxel with two crossing fibers

and tried to find them with differnt gradient directions N (main x-axis) and

SNRs (main y− axis), as well as with different b-values and seperation angles

of the two fibers (main x- and y-axis respectively); with a low b-value of 1000

mm/s2 it is impossible to find the crossing two fibers, only one fiber is found

per voxel; image taken from [12]
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Differences in brain connectivity were explored with the method of Zalesky [78]. The high

number of possible connections (with 83 regions more than three thousand connections

are possible) makes statistical testing prone to misinterpretations. When making such a

high number of statistical tests a significant change can be found just by chance. This

problem is called multiple testing problem and several correction procedures exist. Here,

we used permutation testing to find the distribution of the maximal component size and

marked an identified subnetwork as significant if the component size was only higher in 5%

of the permutations. This method was widely used in many other studies ([15],[71],[34])

to find any differences in neurodegenerative and inflammatory diseases.

Weighted network measures were used to cope with the problem of thresholding. All

of the calculations were done on raw connectivity matrices and no thresholding or edge

discarding was done to control false positives (as it was done for example in [15] or [71]).

All of these binarizing or normalizing procedures are somehow based on arbitrary set

thresholds and assumptions. Additionally, Rodrigues et al. [57] showed that connectome

variability is even higher after binarizing.

Conclusion Structural connectivity in ALS patients by using a network-based approach

revealed further inside look into disease’s location. Additionally, severity of disease cor-

related with network measures derived from a subnetwork of the entire brain.

Connectivity in ALS is partly stronger and the network is better connected in disease,

which is somehow unexpected. However, many different parameters contribute to a bet-

ter connectivity measure and it was already shown in other studies ([51],[2], [3]) that the

mean diffusivity is higher in regions of ALS-diseased brains. Increased diffusivity might

contribute to fiber-tracts which connect two regions, yet leading to higher connectivity

measure.

Structural connectivity was investigated with a network-based approach. However, the

basis of the derived measures is diffusion MRI and its parameters. All of the DTI-derived

parameter contribute to the calculated connectivity measure. The problem of interpret-

ing such a
”
disconnected“,

”
stronger“ or

”
affected“ network is, that it is still not known
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how microstructural changes exactly affect measures like Fractional Anisotropy or Mean

Diffusivity and hence the connectivity.

The disease of ALS is related to a proliferation of glial cells, extracellular matrix expan-

sion and intraneuron abnormalities. [42] The connection to diffusion MRI is that myelin

breakdown is associated with increased perpendicular diffusivity and decreased Fractional

Anisotropy. [9]

”
To understand the functioning of a network, one must know its elements and their in-

terconnections“ [67] stated Sporns in 2005. The interconnections in diffusion MRI and

structural connectomics are still prone to misinterpretations. Therefore it remains chal-

lenging to make an explicit statement of how ALS affects the brain-network.

To conclude, this work demonstrated that structural connectivity gives complementary

information about pathological processes in ALS and revealed clustering coefficient and

strength of the affected subnetwork as an additional marker of disease progression rate.
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Index of Abbreviations

ALS Amyotrophic Lateral Sclerosis

ALSFRS-R Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised

CST Cortico Spinal Tract

DTI Diffusion Tensor Imaging

FA Fractional Anisotropy

GM Grey Matter

MD Mean Diffusivity

MRI Magnetic Resonance Imaging/Image

SMA Supplementary Motor Areal

SD Standard Derivation

TBSS Tract Based Spatial Statistics

VBM Voxel Based Morphometry

WM White Matter



Appendix

Table 5.1: Listing of ROIs

# color hemisphere Region Label freesurfer name

1 H Right Lateral orbital frontal cortex rh.lateralorbitofrontal ctx-rh-lateralorbitofrontal

2 H Right Pars orbitalis rh.parsorbitalis ctx-rh-parsorbitalis

3 H Right Frontal pole rh.frontalpole ctx-rh-frontalpole

4 H Right Medial orbital frontal cortex rh.medialorbitofrontal ctx-rh-medialorbitofrontal

5 H Right Pars triangularis rh.parstriangularis ctx-rh-parstriangularis

6 H Right Pars opercularis rh.parsopercularis ctx-rh-parsopercularis

7 H Right Rostral middle frontal gyrus rh.rostralmiddlefrontal ctx-rh-rostralmiddlefrontal

8 H Right Superior frontal gyrus rh.superiorfrontal ctx-rh-superiorfrontal

9 H Right Caudal middle frontal gyrus rh.caudalmiddlefrontal ctx-rh-caudalmiddlefrontal

10 H Right Precentral gyrus rh.precentral ctx-rh-precentral

11 H Right Paracentral lobule rh.paracentral ctx-rh-paracentral

12 H Right Rostral anterior cingulate cortex rh.rostralanteriorcingulate ctx-rh-rostralanteriorcingulate

13 H Right Caudal anterior-cingulate cortex rh.caudalanteriorcingulate ctx-rh-caudalanteriorcingulate

14 H Right Posterior-cingulate cortex rh.posteriorcingulate ctx-rh-posteriorcingulate

15 H Right Isthmus – cingulate cortex rh.isthmuscingulate ctx-rh-isthmuscingulate

16 H Right Postcentral gyrus rh.postcentral ctx-rh-postcentral

17 H Right Supramarginal gyrus rh.supramarginal ctx-rh-supramarginal

18 H Right Superior parietal cortex rh.superiorparietal ctx-rh-superiorparietal

19 H Right Inferior parietal cortex rh.inferiorparietal ctx-rh-inferiorparietal

20 H Right Precuneus cortex rh.precuneus ctx-rh-precuneus

21 H Right Cuneus cortex rh.cuneus ctx-rh-cuneus

22 H Right Pericalcarine cortex rh.pericalcarine ctx-rh-pericalcarine

23 H Right Lateral occipital cortex rh.lateraloccipital ctx-rh-lateraloccipital

24 H Right Lingual gyrus rh.lingual ctx-rh-lingual

25 H Right Fusiform gyrus rh.fusiform ctx-rh-fusiform

26 H Right Parahippocampal gyrus rh.parahippocampal ctx-rh-parahippocampal

27 H Right Entorhinal cortex rh.entorhinal ctx-rh-entorhinal

28 H Right Temporal pole rh.temporalpole ctx-rh-temporalpole

29 H Right Inferior temporal gyrus rh.inferiortemporal ctx-rh-inferiortemporal



5 Discussion and Conclusion

Table 5.1: Listing of ROIs

# color hemisphere Region Label freesurfer name

30 H Right Middle temporal gyrus rh.middletemporal ctx-rh-middletemporal

31 H Right Banks superior temporal sulcus rh.bankssts ctx-rh-bankssts

32 H Right Superior temporal gyrus rh.superiortemporal ctx-rh-superiortemporal

33 H Right Transverse temporal cortex rh.transversetemporal ctx-rh-transversetemporal

34 H Right Insula rh.insula ctx-rh-insula

35 H Right Thalamus Right-Thalamus-Proper Right-Thalamus-Proper

36 H Right Caudate Right-Caudate Right-Caudate

37 H Right Putamen Right-Putamen Right-Putamen

38 H Right Pallidum Right-Pallidum Right-Pallidum

39 H Right Accumbens area Right-Accumbens-area Right-Accumbens-area

40 H Right Hippocampus Right-Hippocampus Right-Hippocampus

41 H Right Amygdala Right-Amygdala Right-Amygdala

42 H Left Lateral orbital frontal cortex lh.lateralorbitofrontal ctx-lh-lateralorbitofrontal

43 H Left Pars orbitalis lh.parsorbitalis ctx-lh-parsorbitalis

44 H Left Frontal pole lh.frontalpole ctx-lh-frontalpole

45 H Left Medial orbital frontal cortex lh.medialorbitofrontal ctx-lh-medialorbitofrontal

46 H Left Pars triangularis lh.parstriangularis ctx-lh-parstriangularis

47 H Left Pars opercularis lh.parsopercularis ctx-lh-parsopercularis

48 H Left Rostral middle frontal gyrus lh.rostralmiddlefrontal ctx-lh-rostralmiddlefrontal

49 H Left Superior frontal gyrus lh.superiorfrontal ctx-lh-superiorfrontal

50 H Left Caudal middle frontal gyrus lh.caudalmiddlefrontal ctx-lh-caudalmiddlefrontal

51 H Left Precentral gyrus lh.precentral ctx-lh-precentral

52 H Left Paracentral lobule lh.paracentral ctx-lh-paracentral

53 H Left Rostral anterior cingulate cortex lh.rostralanteriorcingulate ctx-lh-rostralanteriorcingulate

54 H Left Caudal anterior-cingulate cortex lh.caudalanteriorcingulate ctx-lh-caudalanteriorcingulate

55 H Left Posterior-cingulate cortex lh.posteriorcingulate ctx-lh-posteriorcingulate

56 H Left Isthmus – cingulate cortex lh.isthmuscingulate ctx-lh-isthmuscingulate

57 H Left Postcentral gyrus lh.postcentral ctx-lh-postcentral

58 H Left Supramarginal gyrus lh.supramarginal ctx-lh-supramarginal

59 H Left Superior parietal cortex lh.superiorparietal ctx-lh-superiorparietal

60 H Left Inferior parietal cortex lh.inferiorparietal ctx-lh-inferiorparietal

61 H Left Precuneus cortex lh.precuneus ctx-lh-precuneus

62 H Left Cuneus cortex lh.cuneus ctx-lh-cuneus

63 H Left Pericalcarine cortex lh.pericalcarine ctx-lh-pericalcarine

64 H Left Lateral occipital cortex lh.lateraloccipital ctx-lh-lateraloccipital

65 H Left Lingual gyrus lh.lingual ctx-lh-lingual

66 H Left Fusiform gyrus lh.fusiform ctx-lh-fusiform

67 H Left Parahippocampal gyrus lh.parahippocampal ctx-lh-parahippocampal

68 H Left Entorhinal cortex lh.entorhinal ctx-lh-entorhinal

69 H Left Temporal pole lh.temporalpole ctx-lh-temporalpole

70 H Left Inferior temporal gyrus lh.inferiortemporal ctx-lh-inferiortemporal
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# color hemisphere Region Label freesurfer name

71 H Left Middle temporal gyrus lh.middletemporal ctx-lh-middletemporal

72 H Left Banks superior temporal sulcus lh.bankssts ctx-lh-bankssts

73 H Left Superior temporal gyrus lh.superiortemporal ctx-lh-superiortemporal

74 H Left Transverse temporal cortex lh.transversetemporal ctx-lh-transversetemporal

75 H Left Insula lh.insula ctx-lh-insula

76 H Left Thalamus Left-Thalamus-Proper Left-Thalamus-Proper

77 H Left Caudate Left-Caudate Left-Caudate

78 H Left Putamen Left-Putamen Left-Putamen

79 H Left Pallidum Left-Pallidum Left-Pallidum

80 H Left Accumbens area Left-Accumbens-area Left-Accumbens-area

81 H Left Hippocampus Left-Hippocampus Left-Hippocampus

82 H Left Amygdala Left-Amygdala Left-Amygdala

83 H - Brain Stem Brain-Stem Brain-Stem
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