
Master’s Thesis

Synthesizing Robust Systems

Bettina Könighofer

————————————–

Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie
Technische Universität Graz

Graz University of Technology

Betreuer: Roderick Bloem

Graz, im Dezember 2012

Abstract

Property synthesis allows the automatic creation of systems from formal specifications [Chu62,
PR89, BCG+10b]. Synthesized systems are correct by construction. There has been a lot
of progress recently in making property synthesis practicable [PPS06, BGJ+07b, BGJ+07a,
FJR11, MS08, SS09, SB00, SL09, VYY10, LNP+12, HJK10, GKP11]. Although one of
the problems that remains is that synthesized systems often do not behave reasonably in
unexpected situations, i.e., when environment assumptions are violated.

Many specifications consist of environment assumptions and system guarantees. Guarantees
must be fulfilled only if all assumptions are satisfied. If assumptions are violated, than the
system can behave arbitrary. For both assumptions and guarantees, we may distinguish
between safety and liveness properties. Safety properties specify that “something bad never
happens” and liveness properties specify that “something good will happen eventually” [MP92,
AS85]. Also, it is not possible to detect violations of liveness properties at any point of
time [AS85], whereas violations of safety properties are immediately apparent. For this reason,
we build systems that are robust to safety failures. In order to define robustness, we define
a system failure to be a violation of a safety guarantee, and an environment failure to be
a violation of a safety assumption. We define a system to be robust if a finite number of
environment failures induces a finite number of system failures [BGHJ09]. Let’s assume the
environment produces an environment failure for one tick. After some time, a robust system
should recover and shouldn’t produce system failures any more. Even if there is a finite
number of environment failures, a robust system should still fulfill all liveness guarantees.
Liveness properties state that some property will hold eventually. If there are finitely many
environment failures, then the system works correctly for an infinitely long time, and should
be able to fulfill all liveness guarantees.

This work presents an extension of the requirements analysis and synthesis tool RATSY
[BCG+10b] that allows the synthesis of robust systems from GR(1) specifications [PPS06].
Our work is based on ideas from [BGHJ09] and [BCG+10a]. We turn a GR(1) specification
into a one-pair Streett game such that a winning strategy corresponds to a correct implemen-
tation [BCG+10a]. Furthermore, we add a second pair such that the strategy corresponds to
a robust system. We show how to compute the strategy, based on the algorithm of [PP06].

Keywords: Robust Systems, Synthesis, Reactive Systems, Formal Specifications, Streett
Games, Counting Construction.

Kurzfassung

Formale Synthese ist in der Lage, automatisch korrekte Systeme aus formalen Spezifika-
tionen zu erstellen [Chu62, PR89, BCG+10b]. In letzter Zeit gab es viele wissenschaftliche
Publikation, welche sich damit beschäftigten, den Synthese Prozess zu optimieren, um ihn
auf praktische Probleme anzuwenden [PPS06, BGJ+07b, BGJ+07a, FJR11, MS08, SS09,
SB00, SL09, VYY10, LNP+12, HJK10, GKP11]. Jedoch gibt es noch immer offene Proble-
me, zum Beispiel dass sich synthetisierte Systeme in unerwarteten Situationen, in welchen
Umgebungsannahmen verletzt sind, oft nicht wie gewünscht verhalten.

Viele Spezifikationen bestehen aus Umgebungsannahmen und System-Garantien. Garantien
müssen nur dann erfüllt werden, wenn alle Annahmen erfüllt sind. Wenn Annahmen verletzt
sind, darf sich das System beliebig verhalten. Sowohl für Annahmen als auch für Garantien
unterscheiden wir zwischen so genannten Safety-Eigenschaften und Liveness-Eigenschaften.
Safety-Eigenschaften spezifizieren, dass etwas Schlechtes nicht eintreten wird und Liveness-
Eigenschfaten besagen, dass irgendwann etwas Gutes eintreten wird [MP92, AS85]. Weiteres
ist es nicht möglich, zu irgendeinem Zeitpunkt eine Verletzung einer Liveness-Eigenschaft
zu erkennen [AS85], jedoch kann eine Verletzungen einer Safety-Eigenschaft sofort detek-
tiert werden. Aus diesem Grund konstruieren wir Systeme, welche robust sind hinsichtlich
Verletzungen von Safety-Annahmen. Wir nehmen an, dass während der Ausführungszeit
alle Liveness-Annahmen erfüllt werden. Diese Annahme ist gerechtfertigt, da die Umgebung
zu jedem Zeitpunkt in der Lage ist, alle Liveness-Annahmen zu erfüllen, unabhängig von
bisherigen Eingabe- und Ausgabewerten. Ein Systemfehler ist definiert als eine Verletzung
einer Safety-Garantie und ein Umgebungsfehler ist definiert als eine Verletzung einer Safety-
Annahme. Ein System ist per Definition robust, wenn endlich viele Umgebungsfehler auch
nur endlich viele Systemfehler induzieren [BGHJ09]. Angenommen, die Umgebung erzeugt
einen Umgebungsfehler für einen Tick. Nach einiger Zeit sollte sich das System erholen,
und keine Systemfehler mehr produzieren. Auch wenn es während einer Ausführungszeit
endlich viele Umgebungsfehler gibt, sollten alle Liveness-Garantien trotzdem erfüllt werden.
Liveness- Eigenschaften besagen, dass eine bestimmte Eigenschaft irgendwann erfüllt werden
muss. Auch wenn es eine beliebige endliche Anzahl an Umgebungsfehlern gibt, arbeitet das
System trotzdem für eine unendlich lange Zeit korrekt und sollte in der Lage sein, alle
Liveness-Garantien zu erfüllen.

Diese Arbeit präsentiert eine Erweiterung des Anforderungsanalyse und Synthese Tools
RATSY [BCG+10b] Diese Erweiterung ermöglicht es uns nun robuste Systeme von GR(1)
Spezifikationen zu erzeugen [PPS06]. Die Arbeit basiert auf den Ideen von [BGHJ09]
und [BCG+10a]. Eine GR(1) Spezifikation kann in ein Streett-game mit einem Paar überführt

werden. Die Gewinnstrategie dieses Spieles korrespondiert mit einer korrekten Implementierung
der Spezifikation [BCG+10a]. Ein zweites Paar wird zum Spiel hinzugefügt, sodass die
Strategie nun mit einem robusten System korrespondieren würde. Wir präsentieren einen
Algorithmus zum Berechnen der Strategie, welcher auf den Algorithmus in [PP06] basiert.

Schlagwörter: Robuste Systeme, Synthese, Reaktive Systeme, Formale Spezifikationen,
Streett-Games, Counting-Constructions.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläe an Eides statt, dass ich die vorliegende Arbeit selbststädig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und
inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Acknowledgements

This thesis was written in 2012 at the Institute for Applied Information Processing and
Communications at Graz University of Technology.

First of all, I want to thank my supervisor Roderick Bloem, who encouraged me to work on
this topic, who spent a lot of time and patience teaching me the required basics and who
woke my interest in formal methods and verification. I learnt a great deal during this time,
and for that I am very grateful. Although, he has the busiest schedule ever, he always found
the time to answer questions, discuss new ideas and to eliminate ambiguities. Furthermore, I
thank him for the opportunity of writing a paper about this work and being able to present
it at the SYNT 2012 Workshop in Berkeley, California.

Special thanks to Georg Hofferek and Robert Könighofer, for valuable tips on the imple-
mentation, for their help in writing the paper and for explaining things from other areas in
synthesis and verification to me. I really enjoyed working on my thesis, and they were largely
responsible for that. Further, I want to thank Ayrat Khalimov and Swen Jacobs, for their
help in preparing the presentation of the paper, and for the great time we spent together at
the conference.

I thank my boyfriend Philip Weber for proofreading this work and for motivating and
supporting me during my study. Moreover, I express my gratitude to my parents Franz
Könighofer and Birgit Schiestl, for encouraging me to visit a technical school and consequently
giving me the opportunity to attend the university in the first place.

Graz, Austria, September 2012 Bettina Könighofer

Danksagung

Diese Masterarbeit wurde im Jahr 2012 am Institut für Angewandte Informationsverarbeitung
und Kommunikationstechnologie an der Technischen Universität Graz durchgeführt.

Zu Beginn möchte ich meinen Betreuer Roderick Bloem danken. Er ermutigte mich, an
diesem Thema zu arbeiten, lehrte mich mit viel Zeit und Geduld die benötigten Grundlagen
und weckte mein Interesse an Verifikation und formale Methoden. Ich habe während meiner
Masterarbeit sehr viel gelernt, und dafür möchte ich mich herzlich bedanken. Obwohl sein
Terminkalender immer voll ist, fand er stets die Zeit, um Fragen zu beantworten, neue Ideen zu
diskutieren und Unklarheiten zu beseitigen. Des Weiteren danke ich ihm für die Gelegenheit,
aus dieser Arbeit ein Paper verfassen zu dürfen, welches auf der SYNT 2012 in Berkeley, USA
akzeptiert wurde und ich präsentieren durfte.

Ganz besonderer Dank gilt Georg Hofferek und Robert Könighofer. Sie gaben mir wertvolle
Tips für die Implementierung meiner Arbeit, halfen mir beim Verfassen des Papers und
gaben mir Einblicke auch in andere interessante Bereiche der formalen Methoden. Vor allem
durch sie genoss ich die Zeit sehr, in der ich an dieser Thesis gearbeitet habe. Des Weiteren
möchte ich Ayrat Khalimov und Swen Jacobs danken, für die Hilfe bei der Vorbereitung der
Präsentation des Papers, und für die schöne Zeit, welche wir gemeinsam auf der Konferenz
verbrachten.

Ich danke meinen Freund Philip Weber für sein Korrekturlesen und für die Motivation und
Unterstützung während meines gesamten Studiums. Des Weiteren möchte ich meinen Eltern
Franz Könighofer und Birgit Schiestl danken. Sie ermutigten mich in meiner Schulzeit eine
Höhere Technische Lehranstalt zu besuchen und ermöglichten mir danach mein Studium.

Graz, im September 2012 Bettina Könighofer

Contents

1 Introduction 1
1.1 Motivation for Correct Systems . 1

1.1.1 Motivation for Correct Systems . 1
1.1.2 Motivation for Robust Systems . 2

1.2 Property Synthesis . 3
1.2.1 History of Synthesis . 4

1.3 Our Method of Synthesizing Robust Systems 7
1.4 Structure of this work . 8

2 Preliminaries 10
2.1 Kripke Structures . 10

2.1.1 Computation Trees . 11
2.2 Labeled Transition System . 12
2.3 Automaton . 13

2.3.1 Words and Languages . 13
2.3.2 Finite Automata on Finite Words . 14
2.3.3 Finite ω-Automata . 15
2.3.4 Symbolic Representation of ω-Automata 18

2.4 Mealy and Moore Machines . 18
2.4.1 Reactive Systems . 18
2.4.2 Mealy and Moore Machines . 19

2.5 Temporal Logics . 21
2.5.1 LTL . 23
2.5.2 LTL-Properties . 25
2.5.3 GR(1) . 26
2.5.4 CTL? and CTL . 28
2.5.5 Modal µ-Calculus . 29

2.6 Games . 31
2.6.1 Strategies . 32
2.6.2 Safety Games . 33
2.6.3 Reachability Games . 33
2.6.4 Büchi Games . 33
2.6.5 co-Büchi Games . 34
2.6.6 Muller Games . 34
2.6.7 Rabin Games . 34
2.6.8 Streett Games . 34
2.6.9 Parity Games . 34

i

2.6.10 GR(1) Games . 35
2.6.11 The modal µ-Calculus over Game Structures 35

2.7 Implementation . 36
2.7.1 RAT . 36
2.7.2 RATSY . 38
2.7.3 Marduk . 40

2.8 Related Work on Robust Synthesis . 41

3 Robust Synthesis from GR(1) Specifications 44
3.1 Idea . 44
3.2 Definition of Robustness . 44
3.3 Illustration of the problem . 46
3.4 Example of Environment Failures and System Failures 47
3.5 Robust Synthesis Algorithm . 49

3.5.1 GR(1) Specification to GR(1) Game 49
3.5.2 GR(1) Game to one-pair Streett Game 50
3.5.3 Robustness Streett pair . 52
3.5.4 Winning Region . 54
3.5.5 Winning Strategy . 60

3.6 Example of Robust Synthesis . 61
3.7 Recovery Time . 64

4 Implementation of Robustness and Results 66
4.1 Implementation of Robustness in RATSY . 66

4.1.1 RATSY . 66
4.1.2 Marduk . 67

4.2 Results . 68

5 Conclusions and Future Work 70
5.1 Conclusions . 70
5.2 Future Work . 70

List of Symbols 73

Bibliography 74

ii

List of Figures

2.1 Kripke Structure Example. 11
2.2 Computation Tree Example. 12
2.3 Labeled Transition System Example. 13
2.4 Reactive System. 19
2.5 Graph of Mealy Machine M1. 21
2.6 Graph of Moore Machine M2. 22
2.7 Moore Machine for simple Arbiter. 27
2.8 Typical Design Workflow. 38
2.9 RATSY’s User Interface while playing a Counter Game. 39

3.1 Non-robust Moore Machine. 46
3.2 Robust Moore Machine. 46
3.3 Possible Signal Trace, without Violation of Safety Properties. 47
3.4 Environment Transitions Relation ρe of one-Pair Streett Game. 48
3.5 System Transitions Relation ρs of one-Pair Streett Game. 48
3.6 Transitions Relation ρe ∧ ρs of one-Pair Streett Game. 48
3.7 Robust System Generation Process. 50
3.8 Game Graph before Applying Counting Construction. 52
3.9 Game Graph after applying Counting Construction. 52
3.10 Strategy for States in Y1 for one-Pair Streett Game. 59
3.11 Strategy for States in Yi+1 for a one-Pair Streett Game. 59
3.12 Illustration of the Iterates of the Fixpoint Computation. 60
3.13 Cutout of the Transition Relation of the two-Pair Streett Game. 62
3.14 Transition Relation of the two-Pair Streett Game. 63
3.15 Arbiter Example: Illustration of the Iterates. 63

4.1 Control Flow of extended Marduk. 67

iii

List of Tables

2.1 Mealy Machine M1.
Transition relation δ. 20

2.2 Mealy Machine M1.
Output function λ1. 20

2.3 Moore Machine M2.
Transition relation δ. 21

2.4 Moore Machine M2.
Output function λ2. 21

3.1 Winning Strategy for two-Pair Streett Game. 61

4.1 Synthesis Time for Arbiter. 68
4.2 Implementation Size for Arbiter. 69

List of Algorithms

1 main_Streett: Main Function to compute Winning Region 55

2 Streett: Recursive Function to compute Winning Region 56

3 m_Streett: Helper Function to compute Winning Region 56

iv

1 Introduction

1.1 Motivation for Correct Systems

1.1.1 Motivation for Correct Systems

Today we are surrounded by computer systems and we need these systems to work correctly.
If they do not, it could lead considerable financial implications or even put human lives in
danger. Both hardware and software may be flawed. Errors in hardware are most likely
irreversible and in such cases the hardware has to be replaced. In the past there have been
many cases where both hardware and software errors caused great damage.

A famous example of a hardware error is the Pentium-FDIV-Bug. In the year 1994 a bug in
the Pentium processor was discovered. This bug caused certain floating point divisions to go
wrong. It cost Intel 475 million US dollars to replace the faulty CPUs [Pra95, Kro99].

In 1996, a software error caused massive financial losses. There was a bug in the navigation
software of the Ariane 5 rocket, which caused the rocket to crash. During the conversion of a
64-bit float variable into a signed 16-bit integer variable an arithmetical overflow occurred, and
this led to a total loss of steering and positioning data. The rocket left its anticipated course
and had to be destroyed. The rocket had a value of 370 million US dollars [Nus97, Dow97].
Further examples of fatal software bugs can be found in [Gar05].

To prevent such errors, formal and informal methods have been developed. Testing and
simulation are popular informal methods of finding bugs in hardware and software systems.
Unfortunately, since today’s systems are becoming larger and even more complex, these
methods cannot be carried out exhaustively anymore [MS04]. This means that it is impossible
to check the system’s output for all the possible inputs and some cases stay untested. Therefore
errors cannot be ruled out and the need for formal methods ensues.

Formal methods can guarantee the correctness of both hardware and software systems, with
respect to a given specification. This is particularly pertinent when it comes to safety-critical
systems such as vehicles, planes or banking networks which have to be correct under all
circumstances.

Formal verification is a method of proving whether a system satisfies its formal specification.
A formal specification is a mathematical description of a system and describes what the
system should do (not how it should do it). These specifications can be written in temporal
logic, like linear temporal logic (LTL) or computational tree logic (CTL), or in a specification
language, like Z-notation or VDM-SL. In verification, a typical work flow to obtain a correct
system works as follows. First, the user writes a formal specification and then implements

1

2 CHAPTER 1. INTRODUCTION

the system. Secondly, the system is tested against the specification. If the system violates
the specification, the user has to debug the system and has to fix the errors. In the next step,
the corrected system is tested again. All steps except the first one are repeated, until the
system finally satisfies its specification.

Formal synthesis allows the automatic creation of systems from formal specifications. These
systems are correct by construction. In verification, the user has to write the specification and
the implementation for the system. In synthesis, the user only has to write the specification and
the synthesis process automatically derives a correct implementation from the specification.

In 1962, the idea of property synthesis was proposed by Church [Chu62]. Recently there
has been a lot of progress in making property synthesis practicable. Nevertheless, there are
still a lot of open problems regarding the synthesis process, such as the high complexity
of the synthesis algorithm and the size of the systems generated. Another problem is that
synthesized systems often do not behave reasonably in unexpected situations. This problem
is called the robustness problem, and is addressed in this work.

1.1.2 Motivation for Robust Systems

In this work we consider the synthesis of reactive hardware systems. Reactive systems are
constantly interacting with their environment. First the environment provides some input.
Then the system reads these input values, performs some internal calculation and provides a
proper output to the environment. This process is repeated over and over again.

Specifications of systems describe how the system should respond to the inputs of the
environment. In many cases, these specifications consists of environment assumptions and
on system guarantees. Environment assumptions restrict the behavior of the environment.
Since synthesized systems are correct by construction, they have to behave as prescribed,
if the environment does not violate any assumption. The question is what happens if the
environment does violate an assumption? In this case, what the synthesized system has to do
has not been defined and no matter how it responds to further inputs, it is still a correct
system.

For instance, let’s take a look at the specification of an airport ground control system [Dav90].
The specification consists of one assumption and one guarantee. If the assumption is fulfilled,
than a correct system has to satisfy the guarantee. The assumption requires, that there
are less than or equal to 100 requests per second. The guarantee requires, that the system
handles all plane requests within 0.1 seconds. If during operation a situation occurs, where
101 requests per second arrive at the ground control, than the assumption is violated. In this
case, a correct system do not have to satisfy his guarantee and can behave unpredictably.
There are various possibilities, as to how a system could react. It could stop responding to
any requests at all, ignore all requests after the 100th one, or respond to all 101 requests,
violating the 0.1 second response-time constraint for the 101th request. In this example the
system’s most preferable behavior in the case of an environmental error would be the third
one. It is definitely not desirable that the system ignores aircraft, not even one.

1.2. Property Synthesis 3

Another example is the specification of a cash-operated beverage vending machine. The
specification consists of two environment assumptions and one system guarantee. First we
assume, that the customer is only allowed to enter his choice of beverage after supplying
the machine with cash. Secondly, we assume that after the customer supplied the money, he
chooses only one beverage. The guarantee requires, that after a system receives a choice, it
delivers the beverage to the customer. As in the ground control example, not all possible
environment behaviors are covered with the specification. What happens, when the costumer
enters his choice of beverage, but did not enter any money. In this case, the first assumption
is violated. The costumer can violate also the second assumption by entering more than
one choice of beverage. In both cases, the system is allowed to behave arbitrary. It could
terminate and stop any further processing, ignore the input and wait for a valid one, dispense
multiple beverages at once, or deliver all it’s available beverages.

Each of these solutions is a correct way for the system to handle the situation, but some
solutions are better than others. It‘s not in the interest of the owner of the vending machine,
if the machine stops working every time someone presses two buttons, or neither that the
vending machine gives away free beverages. So even in non-security relevant systems we need
our systems to be robust against environment errors. Furthermore we cannot expect the user
to specify every possible environment error that could occur. Nevertheless, the synthesized
system should be able to recover if the environment does.

In this context a system is defined as robust if it behaves reasonably, even under circumstances
which have not been anticipated in the requirements specification [AS10]. Environment errors
can always occur, throw transmission errors, a faulty environment or radiation related bit
flips. The latter issue is becoming more serious, due to continuously decreasing feature
sizes [SKK+02]. Therefore automatically synthesized systems should always be robust in
order to be prepared for environment errors.

This thesis presents a new way of synthesizing robust systems.

1.2 Property Synthesis

Before we deal with robust synthesis, this section gives a brief overview of the characteristics
of synthesis and it’s history.

Property synthesis is the process of deriving a system from a high level behavioral specification.
The derived system is guaranteed to satisfy the specification. This property of synthesis is
called correctness by construction. Moreover, when the synthesis algorithm does not find a
system for a particular specification, then the specification is unrealizable, and developers
know at an early stage that their specification is likely to be faulty.

The behavioral specification aims to describe only the functionality of the system, so what
the system has to do during its operation time, and not how it should do it. One of the main
advantages of property synthesis is that specifications are generally shorter compared to a
concrete implementation. This makes behavioral specifications less error-prone and easier to
write and change. Thereby, systems can be simulated faster, and so property synthesis is

4 CHAPTER 1. INTRODUCTION

widely-used in prototyping. There are still a lot of open problems regarding synthesis, such
as automatically synthesized systems are much bigger than systems made by hand. Thus,
synthesis is still rarely used in practice. Recently, there has been a lot of work put into
making synthesis more practicable.

1.2.1 History of Synthesis

In 1962, Alonzo Church [Chu62] first mentioned the problem of finding an implementation
for a given specification. This problem is nowadays called the Synthesis Problem or Church’s
Problem and is defined as follows:
Given is a set of Boolean input variables I, a set of Boolean output variables O and a
relation R ⊆ (2I)ω × (2I)ω. The task is to find a function f : (2I)∗ → 2O, such that for all
possible assignments of the input variables x = x0x1x2 · · · ∈ (2I)ω the function f generates
an assignment of the output variables y = y0y1y2 · · · ∈ (2O)ω with yi = f(x0x1 . . . xi−1) for
∀i > 0 and (x, y) ∈ R holds.
R was originally defined in restricted recursive arithmetic (S1S) and defines pairs of permitted
input and output sequences. The function f is called a strategy and maps every possible
input sequence into a correct output sequence. The relation R can be viewed as a linear
specification. The realizability problem is to decide if there exists such a strategy f for a
given specification R.

In the following years the Church Synthesis Problem was theoretically solved in two different
ways.
Büchi and Landweber [BL69] solved Church’s problem based on infinite games. The specifi-
cation R(x, y) is given in Monadic second-order logic of order (MSO). The Büchi-Landweber
Theorem says that for every MSO formula R(x, y), it is decidable whether there is a function
f which implements R, and f is computable from R. There is also a game version of the
Büchi-Landweber Theorem. Büchi and Landweber transformed a given MSO formula R(x, y)
in a two player Game GR. The theorem says that one of the players always has a winning
strategy, and it is decidable which one has it. Also, for every MSO specification R(x, y), there
exists an algorithm that constructs a finite-state winning strategy f for the winner in GR.

Rabin [Rab72] independently presented an alternative solution of Church’s Problem, based
on tree automata. Even if we have a linear-time specification, we have to consider all of
the environment’s possible behaviors. This branching-time behavior can be described by a
tree. The edges of the input tree are labeled with all possible input values chosen from the
environment and the nodes are labeled with output values chosen by the system. A tree
automaton is able to check if all paths of a tree are satisfying the specification. Finally, Rabin
reduced the realizability problem to the emptiness problem of tree automata.

In the primary studies of synthesis, specifications were given as S1S-formulas. To write speci-
fications for reactive systems in S1S is cumbersome, therefore the need for new specification
languages arose. In 1977, Pnueli proposed the idea of using temporal logics for specifications
of non-terminating programs and introduced Linear Temporal Logic (LTL)[Pnu77]. LTL is
nowadays widely used and has been further studied [Pnu86, MP79, MP81, MP92, MP95]. In
1981, Clarke and Emerson [CE81] introduced the principle of model checking and a branching

1.2. Property Synthesis 5

time logic called Computation Tree Logic (CTL). Through the application of model checking,
linear temporal logics and branching time logics became very famous. Both, CTL and
LTL have their respective pros and cons. Through the restricted syntax of CTL, writing
specifications in LTL is easier than in CTL. However, while we can efficiently model check
CTL specifications, LTL model checking is in theory PSPACE-complete [SC85] and takes in
praxis exponential time and space in the size of the formula.

In computer science, we distinguish between open and closed systems. In the closed setting,
we do not distinguish between input and output variables. The behavior of a closed system
is completely determined by the internal state of the system. Here, we can think of the
environment as a friend who cooperates with the system to find the correct output. In contrast,
an open system (also called reactive system) interacts with its environment by reading input
variables and setting output variables. In the open setting, we see the environment as an
enemy, who tries to force the system to violate its specification and to produce incorrect
output.

Earlier works concentrated on synthesis of closed systems. Emerson and Clarke [EC82] and
Manna and Wolper [MW84] reduced the synthesis problem to the satisfiability problem. Let’s
suppose the specification is satisfiable. In this case, a system that meets the specification is
constructed by using the proof that the specification is satisfiable. It was shown in [PR89]
that this approach is only capable of synthesizing closed systems. Therefore, later works on
synthesis considered open systems.

In 1989, Pnueli and Rosner [PR89] introduced the classical method of synthesizing open
systems. Three years later, Rosner proved that LTL synthesis is 2EXPTIME-complete[Ros92].
Since the synthesis problem and the realizablilty problem are closely related, the realizability
problem for full LTL is also 2EXPTIME-complete.
In the first step of the classical method of synthesis, the LTL specification is transformed
into a non-deterministic Büchi word automaton. Ways of performing this step were proposed
by Vardi et al. [VW86] and by Emerson et al. [ES84]. The language of the constructed
Büchi automaton is the set of words that satisfy the specification. This translation leads to
an exponential blowup of the size of the Büchi automaton in respect to the size of the LTL
specification. In the second step, the Büchi automaton is determinised into a deterministic
Rabin word automaton. Again, this results in an exponential blowup of the state space.
Finally, the deterministic Rabin word automaton is translated into a nondeterministic Rabin
tree automaton, which is checked for emptiness. If the Rabin tree automaton is empty, then
the specification is not realizable. If not, than a system which implements the specification
can be constructed from the witness of non emptiness. Although LTL synthesis was solved in
theory, the high complexity discouraged many practitioners and no work on full LTL synthesis
was published for a long time.

In the following years, the translation from LTL to Büchi word automaton improved a
great deal [SB00, GO01, DGV99, GPV+95]. Less progress was made in the determinisation
step. The most popular way for determining Büchi automata is via Safra’s construction.
In 1988, this method was proposed by Safra in [Saf88] and was the first method which was
asymptotically optimal. Unfortunately, this approach has two problems. First, it is very
difficult to implement Safra’s construction efficiently [KB05]. Second, Safra’s construction

6 CHAPTER 1. INTRODUCTION

creates a very complex state space and there is no known symbolic data structure that is
able to handle such state spaces [Mor10].

In 2005, Kupferman and Vardi [KV05] presented a new approach that avoided Safra’s con-
struction. They translated the non-deterministic Büchi word automaton into a generalized
universal co-Büchi tree automata and then transformed this automata into a nondetermin-
istic Büchi tree automata. Although this construction has the same complexity as Safra’s
construction, it is much simpler to implement and to optimize. Further, this approach can be
implemented symbolically and is therefore much more practicable.

Nowadays, some tools exist for full LTL synthesis like LILY [JB06], ACACIA [FJR09]
and UNBEAST [Ehl11b]. All these tools implement efficient algorithms, to make LTL
synthesis more practical. In 2006, Jobstmann and Bloem presented the first tool for full
LTL synthesis called LILY. LILY implements the Safraless approach from Kupferman and
Vardi with additional optimizations for all intermediate automata, in order to achieve a
better performance. Nevertheless, since the tool is implemented explicitly, LILY is only
able to synthesize small examples [Ehl11a]. In 2009, Filiot et al. proposed a new symbolic
antichain synthesis algorithm [FJR09] based on the principle of bounded synthesis [SF07].
The algorithm was implemented in the tool ACACIA [FJR09] and reduces the LTL synthesis
problem to safety games. In practice, the tool outperforms LILY and performs similar to
the tool UNBEAST. The main advantage of ACACIA is that in general it creates small
winning strategies. In 2010, Filiot et al. presented a new version of ACACIA [FJR10]. The
new version implements a compositional game solving approach for large conjunctions of LTL
formulas [Ehl11a]. In 2011, Ehlers presented the tool UNBEAST [Ehl11b] that implements
the bounded synthesis ideas of [SF07] and [Ehl10]. Unlike ACACIA, UNBEAST uses BDDs
instead of anti-chains.

Another stand of research tried to find interesting subsets of LTL with lower complexity. It is
possible to solve the synthesis problem in polynomial time, if the specification is restricted to
a certain subsets of LTL. Asarin et al. [AMP94] presented polynomial solutions for the LTL
formulas Gϕ, Fϕ, G Fϕ and F Gϕ. More recently in 2004, Alur et al. [AT04] achieved the
same for formulas consisting of Boolean combinations of formulas of the form Gϕ. In 2003,
Wallmeier et al. [WHT03] presented an efficient algorithm with only exponential complexity
for the LTL fragment of request-response specifications. A request-response specification is of
the form ∧

i G(ϕi → Fψi).

Piterman, Pnueli and Sa’ar [PPS06] considered the synthesis problem for Generalized Re-
activity of rank 1 formulas (GR(1)), see Section 2.5.3. A GR(1) formula is of the form∧
i G Fϕi →

∧
j G Fψj . The left side of the implication consists of a set of environment

assumption, and the right side of a set of system guarantees. A system which implements
the specification has to fulfill all guarantees infinitely often, if all environment assumptions
are fulfilled infinitely often. Most specifications can be transformed into GR(1) formulas
[BGJ+07b, BGJ+07a]. However, it is not possible to formulate all LTL properties in GR(1),
such as strong liveness properties (∧i (G Fϕi → G Fψi)). The symbolic algorithm presented
in [PPS06] solves GR(1) specifications in N3-time, where N is the size of the state space of
the design. This algorithm was implemented in the tools Anzu [JGWB07], RAT [BCP+07]
and its successor RATSY [BCG+10b].

1.3. Our Method of Synthesizing Robust Systems 7

1.3 Our Method of Synthesizing Robust Systems

This Section gives an overview of our algorithm to synthesize robust reactive modules from
formal specifications.

Specifications consist of a set of logical temporal properties. For these properties we distinguish
between safety and liveness properties. Alpern and Schneider [AS85] presented the first
definition for both safety and liveness properties. Informally, safety properties state that
“something bad ” will not happen during system execution and liveness properties state that
eventually “something good ” must happen during system execution. Formally, safety and
liveness properties are defined as follows:
A system execution π can be modeled as an infinite sequence of states: π = s0, s1 A
partial execution πi consists of the first i states of an execution π. A property is a safety
property, if and only if any execution π violating the property contains a partial execution πi
and all of whose infinite extensions violate the property. A property is a liveness property, if
and only if any partial execution πi can be extended to an infinite sequence π satisfying the
property. For further details, see Section 2.5.2.

In this work, we consider specifications written in Generalized Reactivity of rank 1 (GR(1),
[PPS06]). GR(1) specifications are defined as follows:

ϕ = A→ G = Ai ∧
∧
i

Ati ∧
∧
j

Alj → Gi ∧
∧
m

Gtm ∧
∧
n

Gln. (1.1)

A GR(1) specification describes the interaction between an environment and a system and
consists of assumptions A and guarantees G. Assumptions and guarantees define the allowed
actions of the environment and of the system, respectively. The formulas Ai and Gi define
the initial states of the environment and the system, respectively. The formulas At describe
the transition relation for the environment. These formulas define for all time steps the
possible next values for the input variables, depending on the current input and output values.
The formulas Gt describe the transition relation for the system. There is a small difference
between the formulas At and Gt. In all time steps, the next values of the output variables
depend on the current input and output values and on the next input values. The initial
formulas and the transition formulas form the safety component of the GR(1) specification.
The formulas Al and Gl form the liveness component of the specification. They are of the
form G F p, where p is some Boolean formula that has to be fulfilled infinitely often. For a
formal definition of GR(1), see Section 2.5.3.

According to the definition of GR(1), guarantees must be fulfilled only if all assumptions are
satisfied. At any point of time during operation, if the environment chooses a single invalid
input value that violates a safety assumption the system can behave arbitrarily. Even if
the environment works correctly for the rest of the time, the system do not have to fulfill
any guarantees. Clearly, if assumptions are violated, the system may not be able to fulfill
all guarantees. However, it should try to recover, if the environment does. Unfortunately,
synthesized systems sometimes stop performing any useful interaction once a assumption has
been violated. This is clearly not what anyone would expect from a robust system.

8 CHAPTER 1. INTRODUCTION

In order to define robustness, we introduce two kinds of errors, environment failures and
system failures. The environment causes an environment failure if it chooses an input
values that violates at least one safety assumption. The system causes a system failure, if
it chooses an output values that violates at least one safety guarantee. We define a system to
be robust if a finite number of environment failures only induce a finite number of system
failures [BGHJ09]. Systems synthesized with our method fulfill this robustness criterion.

Our robust synthesis algorithm turns a GR(1) specification into a two-pair Streett game. The
first Streett pair is called the Correctness Pair and the second is called the Robustness Pair.
In the first step of the algorithm the specification in GR(1) is turned into a one-pair Streett
game such that a winning strategy corresponds to a correct implementation [BCG+10a]. The
Streett pair of this game is the Correctness Pair. In the second step we add the Robustness
Pair so that the strategy corresponds to a robust system. Finally we solve the game with the
algorithm of [PP06].

The transformation from a GR(1) Specification into a one-pair Streett game is done by
applying a counting construction [BCG+10a]. The safety properties are encoded directly
into the transition relation of the Streett game. The liveness properties are expressed
via the Correctness Pair. For m liveness assumptions G FAi (with 1 ≤ i ≤ m) and n
liveness guarantees G FGj (with 1 ≤ j ≤ n), the state-space is extended with two counters
x ∈ {0, . . .m} and y ∈ {0, . . . n}, which can be encoded with dlog2(m+ 1)e+ dlog2(n+ 1)e
additional bits. The counter x is incremented modulo m + 1 whenever assumption Ax
(corresponding to the current counter value) is satisfied; similarly for y, Gy, modulo n+ 1. If
a counter has the special value 0, it is always incremented. The counter value x = 0 indicates
that all Ai have been satisfied; y = 0 indicates the same for all Gj . Hence, the condition
(G Fx = 0)→ (G F y = 0), expressed by the Correctness-Pair 〈(x = 0), (y = 0)〉, ensures that
the liveness part of the specification is encoded properly in the game. A winning strategy for
this game corresponds to a correct implementation.

The second step of the algorithm is to add the Robustness Pair. In order to do that, we
extend the state-space of the Streett game by two additional Boolean variables enverr and
syserr. Variable enverr is set to true whenever the environment produces an environment
failure, syserr is set to true iff the system produces a system failure. Initially, both enverr and
syserr are set to false. Our notion of robustness can now be formulated using the condition
(G F syserr)→ (G F enverr), which is expressed by the Robustness Pair 〈(syserr), (enverr)〉. An
infinite number of system errors is only allowed if there is an infinite number of environment
errors.

A winning strategy for the two-pair Streett game corresponds to a correct and robust
implementation. We use a recursive fixpoint algorithm to compute the winning region [PP06].
Intermediate results of this computation can be used to obtain the winning strategy.

1.4 Structure of this work

This work is based on the paper Synthesizing Robust Systems with RATSY at the Synth
2012 Workshop in Berkeley, USA and is organized as follows.

1.4. Structure of this work 9

Chapter 2 introduces the mathematical background for understanding this work and gives
the necessary definitions and notations used in the following chapters. Section 2.7 gives a
short introduction on the tools RAT, RATSY and Marduk and gives a brief overview of
their software design.
The last section of this chapter, Section 2.8 summarizes related work on robust synthesis.

Chapter 3 covers the core part of this work. First, Section 3.1 presents the idea of our
algorithm for synthesizing a robust system. This leads us to the definition of robustness
presented in Section 3.2. Section 3.3 uses an example to illustrate, what can happen if a
system is not robust. Section 3.4 explains on an example system failures and environment
failures. Next follows a detailed description of the algorithm in Section 3.5. The subsections
contain the single steps of the algorithm and provide a detailed explanation. 3.5.1 3.5.2
and 3.5.3 explain the steps that are necessary to transform the specification into two-pair
Streett game. Section 3.5.4 and Section 3.5.5 explain the computation of a winning region
and winning strategy for two-pair Streett games in more detail. Section 3.6 of this chapter,
the algorithm is applied to an example to demonstrate how it works. The last Section 3.7
discusses, how much time steps the system needs to recover from an environment failure.

Chapter 4 provides details of the implementation of robustness in RATSY and presents
experimental results. Chapter 5 concludes by discussing the most important facts and gives
an outlook on future work.

2 Preliminaries

2.1 Kripke Structures

The Kripke Structure was introduced by Saul Kripke in 1963 [Kri63] and is used in model
checking to model the behavior of a reactive hardware and software. The behavior of a system
is often modeled through temporal properties. Temporal logics are most commonly used for
the formal specification of such properties and are interpreted traditionally in terms of Kripke
Structures.

Kripke Structures allow the representation of a reactive system as a set of all possible
system states and transitions between the states. States are labeled with atomic propositions.
An atomic proposition is a Boolean expression over system variables and predicates, and
represents a relationship among variables. All valid transitions between system states are
defined by the transition relation.

Definition 2.1. (Kripke Structure)
Let AP be the set of all atomic propositions. Clarke et al. [CGP01] defined a Kripke Structure
M over AP as a 4-tuple M = (S, S0, R, L), when

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is a left-total transition relation, meaning ∀s ∈ S ∃s′ ∈ S : (s, s′) ∈ R, and

• L : S → 2AP is a labeling function, which labels a state s ∈ S with a subset of AP , the
atomic propositions that are valid in s.

A path π is an infinite sequence of states: π = s0, s1, s2 . . . with s0 ∈ S0 and ∀i ≥ 0 :
(si, si+1) ∈ R. Each path π defines a corresponding infinite word σ̄ over the alphabet 2AP ,
σ̄ = σ0, σ1, σ2, . . . with ∀i ≥ 0 : σi = L(si).

Definition 2.2. (State Transition Graph)
A Kripke structure M = (S, S0, R, L) can be represented as a total state transition graph,
whose nodes represent the states in S and whose edges represent the transitions in R. The
nodes of the graph are labeled according to the labeling function L.

Consider an example of a state transition graph of a Kripke structure.

Example 2.1. Let M1 = (S, S0, R, L) be a Kripke structure. The set AP consists of the
atomic propositions a, b and c. M1 is defined by:

10

2.1. Kripke Structures 11

• S = {s0, s1, s2}.

• S0 = {s0}.

• R = {(s0, s0), (s0, s1), (s0, s2)(s1, s2), (s2, s2)}.

• L : {(s0, {a}), (s1, {b}), (s0, {a, c})}.

Figure 2.1 shows the state transition graph of the Kripke structure.

S0
{a}

S1
{b}

S2
{a,c}

Figure 2.1: Kripke Structure Example.

One possible path of M1 would be π = s0, s0, s1, s2, s2, ... This path would generate the word
σ̄ = {a}{a}{b}{a, c}{a, c}...

2.1.1 Computation Trees

Unwinding the transition relation graph of the Kripke structure leads to a computation tree.
A computation tree defines the set of all possible behaviors of a Kripke structure. This means
that the branches of the tree represent all possible paths π of the corresponding Kripke
structure.

Definition 2.3. (Computation trees). Let M = (S, S0, R, L) be a Kripke structure over AP .
The computation tree for M is defined as follows:

• The nodes of the tree are labeled with states s ∈ S.

• The root node is labeled with a sate s0 ∈ S0.

• If a node in the tree is labeled with s ∈ S, then its children are all nodes labeled with
s′ ∈ S for which holds that (s, s′) ∈ R.

Figure 2.2 shows the computation tree for the Kripke Structure M1 of example 2.1.

Since all possible behaviors of a Kripke structure are contained in its computation tree, it is
possible to formulate properties of Kripke structures via properties of paths in computation
trees and states along these paths using temporal logic. E.g. a property of a Kripke Structure
could be: “There are no states where a and b hold at the same time ”. We can express this
property in the tree with: “For every path and for all nodes on this path, a and b never hold
at the same time ”.

12 CHAPTER 2. PRELIMINARIES

S0
{a}

S0
{a}

S1
{b}

S2
{a,c}

S0
{a}

S1
{b}

S2
{a,c}

S2
{a,c}

S1
{b}

S2
{a,c}

S2
{a,c}

S2
{a,c}

S1
{b}

Figure 2.2: Computation Tree Example.

2.2 Labeled Transition System

Besides Kripke structures, Labeled Transition Systems (LTS) [Pnu77], [Kel76] are also used
to model the behavior of reactive systems. Unlike Kripke structures, in LTS transitions are
labeled, not states. Also Labeled Transition Systems allow states without outgoing transitions,
so called deadlocked states. While Kripke structures are more convenient for defining temporal
logics, transitions systems are better suited for modeling reactive systems.

Also, labeled transition systems differ from finite state automata (defined in 2.3). The main
difference between LTS and automata is that the set of states and the set of labels may be
infinite in a LTS. Also a state in a LTS may have an infinite branching. An automaton has a
set of final states (also called accepting states), a LTS doesn’t.

Definition 2.4. (Labeled Transition System)
A Labeled Transition System T is defined over a set of actions Act as a 4-tuple T =
(Act, S, s0, R), when

• Act is a set of transition labels, so called actions.

• S is a finite set of states.

• s0 ∈ S is the initial state.

• R ⊆ S ×Act× S is a transition relation.

S and Act are either finite or countably infinite.

A path π of T is defined as sequence a of states and actions: π = s0, a0, s1, a1, s2... with
∀i ≥ 0 : si ∈ S, ai ∈ Act and (si, ai, si+1) ∈ R.

The graph of an LTS is called labeled transition relation graph.

2.3. Automaton 13

Example 2.2. (LTS)
Consider an example of a Labeled Transition System that models a light switch. Let
T1 = (Act, S, s0, R) be a LTS defined by:

• Act = {off,on}

• S = {dark,light}.

• S0 = {dark}.

• R = {(dark,on,light), (light,off,dark).

Figure 2.3 shows the state transition graph of the LTS.

dark light

off

on

Figure 2.3: Labeled Transition System Example.

2.3 Automaton

An automaton is a mathematical construct that takes an input word and decides if it is
accepted or not. Automata are used to model systems. Since in reality, systems differ greatly
from each other, there are also many different types of automata. Automata can be classified
by their input, (finite or an infinite sequence of symbols or trees of symbols), their number
of states (finite or an infinite), their transition function (deterministic, nondeterministic or
alternating) and their acceptance condition.

In this work, we will discuss finite state infinite word automata, so called ω-automata. Since
the basic for ω- automata are automata with finite input, we will start with them.

For further information about automata see [Tho96].

2.3.1 Words and Languages

Within the context of automata we use the following terminology:

• The alphabet Σ is a finite set of letters.

• A word σ̄ over an alphabet Σ is defined as a sequence of letters. A word can be finite:
σ̄ = σ0, σ1 . . . σn or infinite: σ̄ = σ0, σ1, σ2 . . . with ∀i ≥ 0 : σi ∈ Σ.

– ε denotes the empty word.

– We define Σn to be the set of words over Σ of length n.

14 CHAPTER 2. PRELIMINARIES

– The set of finite words over Σ is defined by Σ? = {ε} ∪ Σ ∪ Σ2

– Σω is the set of all infinite words over Σ.

– Σ∞ = Σ? ∪ Σω denotes the set of all finite and infinite words over Σ.

• A language L is a set of words from Σ?, Σω or Σ∞.

2.3.2 Finite Automata on Finite Words

First we define finite automata that accept finite input words σ̄ = σ1, σ2, σ3...σn ∈ Σ?.

Definition 2.5. (Finite Automata on Finite Words)
Automaton are defined over a 5-tuple A = (S,Σ,∆ or δ, s0, F).

• S is a finite set of states.

• Σ is a finite alphabet.

• ∆ ⊆ S × Σ× S is a non-deterministic transition relation.

• s0 ∈ S is an initial state.

• F ⊆ S is a set of accepting states.

Automata can be deterministic or non-deterministic, wherein a deterministic automaton is a
special case of a non-deterministic automaton. In the case of a non-deterministic automaton
we use the transition relation ∆.

Definition 2.6. (Deterministic Automata)
An automaton is called deterministic if

∀s ∈ S : ∀σ ∈ Σ :
∣∣{s′ ∈ S : (s, σ, s′) ∈ ∆}

∣∣ ≤ 1. (2.1)

A deterministic transition function specifies only one possible transition for each state and
letter. In this case, we use the transition function δ : S × Σ→ S.

An automaton with finite input always starts in an initial state, and runs on a finite input
word σ̄. At any time step, an automaton is in a current state si and reads an input letter
σi. The transition function takes si and σi and determines the next state si+1. The finite
sequence of visited states is called a run on σ̄. If there exists a run on σ̄ that ends in an
accepting state, the automaton accepts the word σ̄, otherwise the word is rejected. The
set of all accepted words is called the language of the automaton.

Definition 2.7. (Complete Automata)
An automaton is called complete, if

∀s ∈ S : ∀σ ∈ Σ :
∣∣{s′ ∈ S : (s, σ, s′) ∈ ∆}

∣∣ ≥ 1. (2.2)

In this case, the transition function ∆ is complete.

2.3. Automaton 15

Definition 2.8. (Runs on Automata)
Let σ̄ = σ1, σ2, σ3...σn ∈ Σ? be a word and let A = (S,Σ,∆, s0, F) be an automaton. A run π
of A on σ̄ is a finite sequence of states π = s0, s1 . . . sn such that ∀i ≥ 0 : (si, σi+1, si+1) ∈ ∆.

While a deterministic automaton has only one possible run for a certain input word σ̄, several
runs of σ̄ can exist on a non-deterministic automaton.

A word σ̄ is an accepted word of the automaton A if there exists a run π of A on σ̄ with
last state sn and sn ∈ F . In that case, we say π is an accepting run. The set of all accepted
words defines the language L of an automaton A :

L(A) = {σ̄ ∈ Σ? : σ̄ is accepted by A}. (2.3)

2.3.3 Finite ω-Automata

Finite ω-automata accept infinitely long input words σ̄ = σ1, σ2, σ3... ∈ Σω and are very
important for modeling reactive systems. A reactive system is in constant interaction with its
environment. This leads to an infinite sequence of input letters, and hence we need automata
that can deal with such input.

Definition 2.9. (ω-Automata)
ω-Automaton are defined over a 5-tuple A = (S,Σ,∆, s0, Acc) [Tho96].

• S is a finite set of states.

• Σ is a finite alphabet.

• ∆ ⊆ S × Σ× S is a non-deterministic transition relation or
δ : S × Σ→ S is a deterministic transition relation.

• s0 ∈ S is an initial state.

• Acc : Sω → {true, false} is an acceptance condition.

Since ω-automata deal with infinitely long words, runs on ω-automata don’t have final states.
Thus, acceptance conditions are defined over states that have been visited infinitely often
during a run π.

The ω-language L(A) of an ω-automaton A defines the set of ω-words accepted by the
automaton.

Definition 2.10. (Infinity Set of a Run π)
Let π = s0, s1, s2 · · · ∈ Sω then we define:

inf(π) = {s ∈ S : for infinitely many i ≥ 0 : si = s}. (2.4)

So the infinity set inf(π) ⊆ S is the set of states occurring infinitely often in π. Since runs on
ω- automata are infinite, this set is never empty. If inf(π) satisfies the winning condition Acc,
than the run is an accepting run, otherwise it’s a rejecting run.

16 CHAPTER 2. PRELIMINARIES

Definition 2.11. (Runs on ω-Automata)
Let σ̄ = σ1, σ2, σ3 · · · ∈ Σω be an infinite word.

• If A = (S,Σ,∆, s0, F) is a non-deterministic automaton, than a run π of a A on σ̄ is an
infinite sequence of states π = s0, s1, s2 . . . with (si, σi+1, si+1) ∈ ∆.

• If A = (S,Σ, δ, s0, F) is a deterministic automaton, than a run π of a A on σ̄ is an
infinite sequence of states π = s0, s1, s2 . . . with si+1 = δ(si, σi+1).

For all runs π = s0, s1, s2 . . . holds that, ∀i ≥ 0 : si ∈ S and s0 is the initial state.

We differ ω-automata only by their acceptance condition. There are several ways to define the
acceptance condition. In the following, we discuss some commonly used acceptance condition:
Büchi-, co-Büchi-, Muller-, Rabin-, Streett- and Parity- acceptance.

Rabin, Parity, Streett and Muller automata, each in their deterministic and non-deterministic
form and non-deterministic Büchi automata are equally expressive. They all recognize the
regular ω-languages. Only deterministic Büchi automata are strictly less expressive than the
others. So there is no algorithm to transform Büchi automata in deterministic Büchi automata.
To determinise Büchi automata they are transformed into deterministic Rabin or Muller
automata via Safra’s construction [Saf88] or via McNaughton’s Theorem [McN66]. Safra’s
construction transforms a non-deterministic Büchi automaton with n states in an equivalent
deterministic Rabin or Muller automaton with 2O(n∗logn) states. Safra’s construction is proven
to be optimal for Rabin automata.

Büchi-Automata

In 1962, Büchi automata were invented by the mathematician Julius Richard Büchi [Büc62].

Definition 2.12. (Büchi Acceptance Condition)
The Büchi acceptance condition Acc is a finite set of states: Acc = F ⊆ S. A run π satisfies
the acceptance condition, if inf(π) ∩ F 6= ∅.

Here, F is a set of accepting states. A run π is accepted if and only if at least one of the
infinitely often occurring states in π is in F .

Generalized Büchi-Automata

Definition 2.13. (Generalized Büchi Acceptance Condition)
The Generalized Büchi acceptance condition Acc is defined by a set of sets of states: Acc =
F1, F2, . . . , Fk with Fi ⊆ S for i = 1 . . . k. A run π satisfies the acceptance condition, if
inf(π) ∩ Fi 6= ∅ for i = 1 . . . k.

In this case a run π is accepted if and only if at least one state of each set Fi for i = 1 . . . k
occurs infinitely often during π.

2.3. Automaton 17

Co-Büchi-Automata

The co-Büchi acceptance is dual to the Büchi acceptance.

Definition 2.14. (Co-Büchi Acceptance Condition)
The co-Büchi acceptance condition Acc is a finite set of states: Acc = F ⊆ S. A run π
satisfies the acceptance condition, if inf(π) ∩Acc = ∅.

Here, F defines a set of rejecting states. This condition requires that no state from F is
visited infinitely often during π.

Muller-Automata

Muller-Automata were named after its inventor David Eugene Muller [Mul63].

Definition 2.15. (Muller Acceptance Condition)
The Muller acceptance condition Acc is given as a set of sets of states Acc = F1, F2, . . . , Fk
with Fi ⊆ S for i = 1 . . . k. A run π satisfies the acceptance condition, if inf(π) ∈ Acc.

In Muller-automata the sets Fi form accepting sets. A run π is accepting, if exactly the set
of all states which occur infinitely often in π is specified as an accepting set.

Rabin-Automata

In 1969, Michael Oser Rabin introduced another acceptance condition, and the corresponding
ω-automaton was named Rabin automaton [Rab69].

Definition 2.16. (Rabin Acceptance Condition)
The Rabin acceptance condition Acc is given as a set of pairs of sets of states Acc =
(E1, F1), (En, Fn), . . . , (En, Fk) with Ei, Fi ⊆ S for i = 1 . . . k. A run π satisfies the acceptance
condition, iff ∃(Ei, Fi) ∈ Acc : inf(π) ∩ Ei = ∅ ∧ inf(π) ∩ Fi 6= ∅.

Here, a run π is accepting, if there exists a pair (Ei, Fi) where Ei is visited finitely often and
Fi infinitely often.

Streett-Automata

Robert Streett introduced Streett automata [Str82]. The dual automaton to a Streett
automaton is a Rabin automaton and vice versa. The Streett acceptance condition also
consists of pairs of sets of states but the pairs are interpreted complementary.

Definition 2.17. (Streett Acceptance Condition)
The Streett acceptance condition Acc is given as a set of pairs of sets of states Acc =
(E1, F1), (En, Fn), . . . , (En, Fk) with Ei, Fi ⊆ S for i = 1 . . . k. A run π satisfies the acceptance
condition, iff ∀(Ei, Fi) ∈ Acc : inf(π) ∩ Ei 6= ∅ → inf(π) ∩ Fi 6= ∅.

18 CHAPTER 2. PRELIMINARIES

This means that a run π is accepting, if for all pairs (Ei, Fi) holds that if states from Ei are
visited infinitely often, than states from Fi must be visited infinitely often as well.

Parity-Automata

The Parity acceptance condition is also a very frequently used acceptance condition [Mos84],
[EJS93].

Definition 2.18. (Parity Acceptance Condition)
The Parity acceptance condition Acc is given as a coloring function c : S → {0, . . . k}, where
the numbers {0, . . . k} represent colors. A run π = s0, s1, s2 . . . generates a sequence of colors
c(π) = c(s0), c(s1), c(s2) A run π satisfies the acceptance condition, if max(inf(c(π))) is
even.

In Parity automata, a run π is accepting, if the maximal color occurring infinitely often is
even.

2.3.4 Symbolic Representation of ω-Automata

For reasons of efficiency, ω-automata are often represented in a symbolic setting, for instance
by using Binary Decision Diagrams (BDDs)[Lee59]. The symbolic representation of an
automaton can be exponentially more compact than its explicit representation, especially
when the state space is large. In the explicit representation, each state and each transition
is represented individually. The goal of symbolic encoding is, to represent sets of states
and transitions more efficiently. This is done, by using formulas to define sets of states and
transitions. This formulas are called Characteristic Formulas. A Characteristic Formula of a
set evaluates to true, if and only if the element is in the set.

For the symbolic representation of ω-automata, we encode the input alphabet Σ with a set of
Boolean Variables vΣ = v0, v1, . . . , vn with n = dlog2(|Σ|)e. In order to write a Characteristic
Formula for the transition function, we introduce two additional sets of propositional variables.
The first set of Boolean variables s = s0, s1, . . . , sm withm = dlog2(|S|)e represents the current
state and the second set s′ = s′0, s

′
1, . . . , s

′
m represents the next state. Using the sets of variables

vΣ, s and s′, we are able to write Characteristic Formulas for the initial state, the transition
relation and the acceptance condition of the automaton [MSL08].

2.4 Mealy and Moore Machines

2.4.1 Reactive Systems

Our goal is to synthesize reactive systems [MP92]. Reactive systems are systems that do not
terminate. As illustrated in Figure 2.4, a reactive system is in constant interaction with its
environment. At any time, these systems receive input from some environment (via sensors,

2.4. Mealy and Moore Machines 19

machines or humans), perform some internal calculation to process the current input and send
a corresponding output to the environment. A specification of a reactive system defines the
allowed interaction between environment and system. Popular examples of reactive systems
include cell phones, control systems like traffic-light controlers and elevator controlers or even
nuclear reactors.

Figure 2.4: Reactive System.

2.4.2 Mealy and Moore Machines

We differentiate between two different types of reactive systems: Mealy machines and Moore
machines. A Moore machine is a specialization of the Mealy machine. For every Mealy
machine there exists an equivalent Moore machine.

Definition 2.19. (Moore and Mealy Machines)
Given a set of input variables X and a set of output variables Y . Mealy machines and Moore
machines are defined over a 6-tuple M = (S,DX , DY , s0, δ, λ), when

• S is a finite set of states,

• DX = 2X denotes the input alphabet, and DY = 2Y the output alphabet,

• s0 ∈ S defines the initial state,

• δ : S ×DX → S is the transition function, and

• λ : S ×DX → DY is the output function for a Mealy Machine,
λ : S → DY is the output function for a Moore Machine.

Moore and Mealy machines differ only in their output function. Mealy machines react
instantaneously on input, therefore the next output is decided by the current state and the
current input. On the other hand, Moore machines react one time step later. Their output is
a function of the present state only.

20 CHAPTER 2. PRELIMINARIES

To simplify further definitions, we extend the definition of the transition function:

δ : S ×D?
X → S, with δ(s, ε) = s, and δ(s, aw) = δ(δ(s, a), w) for a ∈ DX , w ∈ D?

X . (2.5)

A path π of a Moore or Mealy machine is defined as an infinite sequence of states: π =
s0, s1, s2 . . . such that for ∀i ≥ 0 we have si+1 = δ(si, xi), si ∈ S, xi ∈ DX and s0 is the
initial state. A word is an infinite sequence of tuples: σ̄ = (x0, y0), (x1, y1), . . . , where
∀i : (xi, yi) ∈ DX ×DY .

• For a Mealy machine a word σ̄ is defined as: σ̄ = (x0, λ(s0, x0))(x1, λ(s1, x1)) . . . with
si = δ(si−1, xi−1) and xi−1 ∈ DX for i > 0.

• For a Moore machine a word σ is defined as: σ̄ = (x0, λ(s0))(x1, λ(s1)) . . . with
si = δ(si−1, xi−1) and xi−1 ∈ DX for i > 0.

Example 2.3. Let’s have a look at an example of a Mealy machineM1 = (S,DX , DY , s0, δ, λ1)
with:

• S = {s0, s1, s2}.

• X = {r}, Y = {a}, DX = {0, 1}, DY = {0, 1}.

• The transition function δ is defined by Table 2.1, e.g., δ(s0, 0) = s1, δ(s0, 1) = s2,

• The output function λ1 is defined by the adjacent Table 2.2, e.g., λ1(s0, 0) = 1,
λ1(s0, 1) = 0,

Both transition relation δ and output function λ1 of M1 are represented graphically in Figure
2.5. The transitions are expressed as arrows and their captions contain the current input and
output values.

Table 2.1: Mealy Machine M1.
Transition relation δ.

state input nextstate
s0 0 s1
s0 1 s2
s1 0 s1
s1 1 s2
s2 0 s1
s2 1 s2

Table 2.2: Mealy Machine M1.
Output function λ1.

state input output
s0 0 1
s0 1 0
s1 * 0
s2 * 1

Example 2.4. Now, let us consider a Moore machine M2, which differs from the Mealy
machineM1 in 2.3 only by its output function. The Moore machineM2 = (S,DX , DY , s0, δ, λ2)
is defined by:

• S = {s0, s1, s2}.

• X = {r}, Y = {a}, DX = {0, 1}, DY = {0, 1}.

• The transition function δ is defined by Table 2.3.

2.5. Temporal Logics 21

S1 S2

S0

r=1 a=0

r=0 a=1 r=1 a=1r=0 a=0

r=1
a=0

r=0
a=1

Figure 2.5: Graph of Mealy Machine M1.

• The output function λ2 is defined by the adjacent Table 2.4.

Both transition relation δ and output function λ2 of M2 are represented graphically in Figure
2.6.

Table 2.3: Moore Machine M2.
Transition relation δ.

state input nextstate
s0 0 s1
s0 1 s2
s1 0 s1
s1 1 s2
s2 0 s1
s2 1 s2

Table 2.4: Moore Machine M2.
Output function λ2.

state output
s0 0
s1 0
s2 1

Note that the two machines are not equivalent, because they accept different sets of words.
E.g. the first output of Moore Machine M2 is always 0. On the other hand, the output
function λ1 of the Mealy Machine M1 reacts instantaneously on the first input, and the first
output can either be 0 or 1 depending on the first input.

2.5 Temporal Logics

We want to specify the behavior of reactive systems. Such behavior is always defined over
paths (also called computation paths) or over computation trees of Kripke structures. A
path π is an infinite sequence of states π = s0, s1, s2 . . . such that s0 is an initial State and
we have for ∀i ≥ 0 : (si, si+1) ∈ R The computation tree of a Kripke structure contains all
possible computation paths. With propositional logic or first-order logic it’s is only possible
to express properties of states, not properties of paths. Hence the need arose for temporal
logics. Temporal logics allow the specification of properties of reactive systems over time,
such as safety properties or liveness properties, see Section 2.5.2.

22 CHAPTER 2. PRELIMINARIES

S1 S2

S0

r=1

r=0 r=1

a=1

r=0

a=0

r=1r=0

a=0

Figure 2.6: Graph of Moore Machine M2.

In 1977, Pnueli proposed the idea of using temporal logics for the specification of non-
terminating programs and introduced Linear Temporal Logic (LTL) [Pnu77]. LTL is currently
one of the most popular temporal logics and was further studied by Manna and Pnueli in
([MP79], [MP81], [MP92], [MP95]). In [Pnu86], Pnueli introduced the application of temporal
logic for the specification of reactive systems. Nowadays, LTL is used in many different
applications. It is used as a specification language in model checking tools such as SPIN
[Hol97] or SMV [McM93] and as a basis for other specification languages like PSL [EF06].

The second major family of temporal logic forms branching-time logics. Clarke and Emerson
[CE81] and Queille and Sifakis [QS82] each independently introduced the principal of model
checking. Through model checking, temporal logics became even more important and popular.
Each of the papers mentioned used a different branching time logic. Clarke and Emerson
introduced Computation Tree Logic (CTL), which became very famous. Queille and Sifakis
used in their paper a branching time logic introduced by Lamport [Lam80]. In the 1980s,
Wolper [Wol83] proposed efficient methods for model checking of LTL formulas, and Emerson
and Halpern [EH85] for CTL formulas.

Because of the restricted syntax of CTL, writing specifications in LTL is easier than in CTL.
However, LTL model checking is in theory PSPACE-complete [SC85] and takes in praxis
exponential time and space in the size of the LTL formula, while we can efficiently model
check CTL specifications.

Finally, it was shown that LTL and CTL have different expressive powers. This fact led to
the introduction of the branching-time logic CTL? [EH83], which is a superset of both CTL
and LTL.

This Section gives an overview of commonly used temporal logics. Subsection 2.5.1 discusses
LTL and Subsection 2.5.2 gives some examples of how properties of reactive systems can be
expressed in LTL. In this work the specifications of reactive systems are written in Generalized
Reactivity of rank 1 called GR(1), which is a commonly used subset of LTL. An introduction
of GR(1) can be found in Subsection 2.5.3. Subsection 2.5.4 gives a short introduction on
CTL? and CTL. Another very important branching time temporal logic is called modal
µ-calculus, which we define in Subsection 2.5.5.

2.5. Temporal Logics 23

2.5.1 LTL

Linear temporal logic (LTL) extends propositional logic by temporal operators [Pnu77]. and
has attained an important role in the formal specification of reactive systems. LTL formulas
are able to express properties over individual execution paths of systems, and thus it is very
intuitive for describing the behavior of reactive systems with LTL formulas.

Before we define the syntax and the semantic of LTL, we are going to explain the meaning of
the temporal operators in an informal fashion. A LTL formula is interpreted over an infinite
sequence of states (called an execution path) π = s0, s1, s2, . . . of Kripke structures. The two
basic temporal operators of LTL are the Next-operator X and the Until-operator U. From
these basic operators we can derive additional temporal operators like the Global-operator G,
the Eventually-operator F and the Weak-Until-operator W. The meaning of these operators
is explained below:

• The Until Operator U:
φ U ψ holds for a path π if φ holds in all states along π from s0 until ψ holds.

• The Next Operator X:
X φ holds in a state si of path π if φ holds in the next state si+1.

• The Globally Operator G:
Gφ holds for a path π if φ holds at all states on π.

• The Eventually Operator F:
Fφ holds for a path π if φ holds at some states on π.

• The Weak-Until Operator W:
ϕW ψ holds for a path π if either φ holds until ψ holds or φ holds for all states along π.

Now we can define the syntax and the semantics of LTL [MP92].

Definition 2.20. (Syntax of LTL)

Let AP be a set of atomic propositions, M be a Kripke structure and π = s0, s1, s2, . . . a
path in M . The syntax of a LTL formula is defined as follows:

1. Atomic Proposition: ∀p ∈ AP ∪ {true, false} are LTL formula.

2. Boolean Operators: If ϕ and ψ are LTL formulas, then so are (¬ϕ), (ϕ ∧ ψ) and
(ϕ ∨ ψ).

3. Temporal Operators: If ϕ and ψ are LTL formulas, then so are Xϕ and ϕ U ψ.

By using these elementary operators it is possible to derive the remaining operators.

• φ→ ψ = ¬φ ∨ ψ

• φ↔ ψ = (φ→ ψ) ∧ (ψ → φ)

• Fφ = true U φ

24 CHAPTER 2. PRELIMINARIES

• Gϕ = ¬F¬φ

• φW ψ = (φ U ψ) ∨ Gφ

Definition 2.21. (Semantic of LTL)

Let AP be a set of atomic propositions, M be a Kripke structure and π = s0s1s2 . . . a path
in M . φ and ψ are LTL formulas. We define (π, i) |= φ for the path π satisfies the formula φ
at position i in state si. The satisfaction relation |= is defined as follows:

1. Atomic Propositions:

• φ ∈ AP ∪ {true, false} : (π, i) |= φ iff si |= φ

2. Boolean Operators:

• (π, i) |= ¬φ iff (π, i) 2 φ.

• (π, i) |= φ ∧ ψ iff (π, i) |= φ and (π, i) |= ψ.

• (π, i) |= φ ∨ ψ iff (π, i) |= φ or (π, i) |= ψ.

3. Temporal Operators:

• Next Operator:
(π, i) |= X φ iff (π, i+ 1) |= φ.

• Until Operator:
(π, i) |= φ U ψ iff ∃j ≥ i : (π, j) |= ψ and ∀k, i ≤ k < j : (π, k) |= φ

A path π of a Kripke structure M satisfies a LTL formula φ, if φ holds in the state s0. We
define, π |= φ iff (π, 0) |= φ. A LTL formula φ holds for a Kripke structure M , if all paths π
of M satisfy φ, so M |= φ iff for all paths π in M : π |= φ.

The semantic of the remaining operators G,F and W derives from the semantics of the primary
operators:

• Globally Operator:
(π, i) |= Gφ iff ∀j ≥ i : (π, j) |= φ

• Eventually Operator:
(π, i) |= Fφ iff ∃j ≥ i : (π, j) |= ϕ

• Weak-Until Operator:
(π, i) |= φW ψ iff (π, i) |= φ U ψ or (π, i) |= Gφ

2.5. Temporal Logics 25

2.5.2 LTL-Properties

LTL is widely used to specify properties of reactive hardware and software. The following are
some very often used LTL formulas:

• G(φ→ Gφ)
This formula says that if some state si in the path π satisfies φ, than all following states
sj with j > i also has to satisfy φ. So, if once φ, than always φ.

• G Fφ
A path π satisfies this formula, if for all states in π, φ holds immediately or in some
further state. So this formula expresses the property: φ is true at infinitely many states
on π.

• F Gφ
This formula states that at a certain point, the formula φ holds at all future states of
the path. In other words, there are only finitely many states, were φ does not hold.

• G Fφ→ G Fψ
Such formulas are so called reactivity properties or fairness properties. Fairness properties
claim that if something is requested infinitely often, then it will be granted infinitely
often.
In many applications such properties are used. E.g. for an arbiter the specification
could look like: G F r → G F g where again r is the input request variable and g is the
output acknowledgment variable.

We can classify LTL formulas in safety formulas and in liveness formulas. Manna and Pnuelli
defined safety and liveness properties in [MP92] as follows:

Definition 2.22. (Safety and Liveness Properties)
Let the path π = s0, s1, . . . be an infinite sequence of states si : i ≥ 0. We define π[0 . . . k] for
k ≥ 0 to be the finite prefix of π.

• φ is a safety formula iff any path π violating φ contains a prefix π[0 . . . k] all of whose
infinite extensions violate φ.

• φ is a liveness formula iff any finite sequence of states s0, s1, . . . , sk can be extended to
an infinite sequence satisfying φ.

Safety Properties:

Safety formulas are able to express properties which have to hold at all times. Basically they
say that “something bad will not happen”. Examples of “bad things” in a program could be
that two processes enter a critical Section at the same time, a deadlock occurs, . . .

If φ is only a propositional formula, the safety condition Gφ defines that φ has to hold in
all states of the path. This safety condition often occurs in specifications of arbiters. The
specification could say that there are never two requests at the same time. This property can
be expressed by the safety formula G¬(r0 ∧ r1), where r0 and r1 are input variables denoting
a request from the first and the second user, respectively.

26 CHAPTER 2. PRELIMINARIES

Another property of the arbiter could be that each request has to be granted in the next
tick. The safety formula for this property is G(r0 → X g0) and g0 denotes a grant for the first
user.

The violation of any safety property Gφ can be detected in finite time. If φ is a propositional
formula, we can immediately notice if any state violates φ and know that something bad
happened. If the safety property is of the form G(φ → Xψ), and φ holds in some state si,
but ψ does not in si+1, than we can only detect the violation at state si+1.

Liveness Properties:

Liveness formula claim that “something good will happen eventually”. Examples of “good
things” in programs could be starvation freedom, meaning each process is making progress,
termination or every packet sent must be received at its destination. Very often they define
properties, which have to hold infinitely often.

Let φ and ψ be propositional formulas. Then some examples of liveness formulas would be:
Fφ, G Fφ, F Gφ, G Fφ→ G Fψ.

Violations of safety properties can be detected immediately. However, in the case of liveness
properties, a violation cannot be detected at any point in time [AS85]. It is always possible
that a good thing can occur in the future, but we cannot know this at any current state.

2.5.3 GR(1)

Generalized Reactivity of rank 1 (GR(1)) was first introduced by Piterman, Pnueli and Sa’ar
in [PPS06] and defines a subset of LTL. In practice, most specifications of reactive systems
can be rewritten in GR(1) [PPS06]. A GR(1) specification defines the interaction allowed
between environment and system. Let X be a set of Boolean input variables controlled by
the environment and Y be a set of Boolean output variables controlled by the system.

Definition 2.23. (GR(1))
A GR(1) formula ϕ over input variables X and output variables Y can be written in the
following form [PPS06]:

ϕ = ϕe → ϕs = ϕei ∧ ϕet ∧ ϕel → ϕsi ∧ ϕst ∧ ϕsl , (2.6)

for each single part holds the following:

• ϕei is a Boolean formula over the input variables X and ϕsi over the output variables Y .

• ϕet and ϕst are Boolean formulas. The formulas have the form ∧
j G qj where qj is a

Boolean combination of input and output variables and expressions of the form X v.
For ϕet we have v ∈ X and for ϕst we have v ∈ X ∪ Y .

• ϕel and ϕsl are formulas of the form ∧
j G F pj , where each pj is a Boolean formula over

X ∪ Y .

2.5. Temporal Logics 27

Any GR(1) specification ϕ = ϕe → ϕs consists of two parts. The first part ϕe defines the
allowed behavior of the environment and is called environment assumptions. The second
part ϕs defines the expected behavior from the system, and is called system guarantees.
The implication in the specification requires that if all assumptions are fulfilled, also all
guarantees have to be satisfied. For both, assumptions and guarantees we distinguish between
safety properties (ϕi and ϕt) and liveness properties (ϕl). A definition of safety and liveness
properties can be found in 2.5.2.

The formulas ϕei and ϕsi define the initial state of the environment and the system, respectively.
The Boolean formulas ϕet and ϕst represent the transition relation of the environment and the
system. ϕet defines the set of possible next inputs in respect to the present input and output.
ϕst defines the next outputs, also in respect to the current values of input and output. The
liveness properties ϕel and ϕsl define properties that have to hold infinitely often.

Example 2.5. We take a look at the GR(1) specification of a simple arbiter [PPS06]. The
input variable r denotes a request and the output variable a denotes an acknowledgement.
The properties of the arbiter are the following:

• At the begin, both signals are low.
ϕei = ¬r and ϕsi = ¬a .

• The environment is not allowed to send a new request, if the grant signal is still high.
Furthermore, the environment has to hold a request until it is granted by the system.
ϕet = G(¬r ∧ a→ X¬r) ∧G(r ∧ ¬a→ Xr).

• The system isn’t allowed to give a grant without a request, and it also has to hold the
grant for a request, until the request is low again.
ϕst = G(¬r ∧ ¬a→ X¬a) ∧G(r ∧ a→ Xa).

• The liveness conditions for environment and system is defined as follows
ϕel = GF (r ∧ ¬a) ∧GF (¬r ∧ a) and ϕsl = GF (r ∧ a) ∧GF (¬r ∧ ¬a).

The resulting GR(1) formula ϕ = ϕei ∧ ϕet ∧ ϕel → ϕsi ∧ ϕst ∧ ϕsl describes the behavior of the
arbiter. Figure 2.7 shows a Moore machine that realizes this specification.

S0

r=1

a=0

S3

S2S1

a=0

a=0a=0

r=0

r=0

r=1

r=1

r=0

Figure 2.7: Moore Machine for simple Arbiter.

28 CHAPTER 2. PRELIMINARIES

2.5.4 CTL? and CTL

This Section is intended to give only a brief overview of branching time logic, for more details
and references please see [Eme90].

Linear-time logics are only able to express properties over individual computation paths. This
follows from the fact that in linear-time models there is only one possible path in the future
which is realized. Instead, a branching-time model says that there are many different paths
in the future, and which one will be realized is not fixed. So linear-time temporal formulas
express properties of computation paths of Kripke structures, and branching-time temporal
formulas express properties of computation trees of Kripke structures. A computation tree is
an infinite tree, which arises from unwinding a Kripke structure M , see Section 2.1.1.

In 1983, the branching-time logic CTL? was introduced by Emerson and Halpern [EH83],
[EH85].

Lemma 2.1. Let M be a Kripke structure.

• a LTL formula φ holds for M , if all paths π of M satisfy φ.

• a CTL? formula φ holds for M , if φ holds for the computation tree of M .

CTL? has the same logical operators and temporal operators as LTL. Additionally, CTL? has
two path operators, the All-operator A and the Exists-operator E. Therefor, CTL? has more
expressive power than LTL, and LTL is a subset of CTL?. The temporal operators describe
the properties of a path of the computation tree, and the path operators describe properties
on the branching structure of the tree. The meaning of the path operators is the following:

• Aφ holds in a state s ∈ S of M , iff for all paths π starting from s the formula φ holds.

• Eφ holds in a state s ∈ S of M , if there exists at least one path π starting from s for
which the formula φ holds.

A Kripke structure M satisfies a CTL? formula φ, if φ holds in the state s0.

In 1981, the branching-time logic called Computation Tree Logic (CTL) was introduced by
Clarke and Emerson [CE81]. CTL is also a subset CTL?, which is easer to verify. In CTL? all
operators can be combined arbitrarily. In contrast, in CTL, there must always be one path
operator followed by one temporal operator. So the path operators A and E must immediately
be followed by a temporal operator X, F, U or W. Examples for CTL formulas would be
A X φ, E X φ, A Fφ,

CTL and LTL have different expressive powers. This means that there are properties which
can be expressed in CTL, but not in LTL, vice versa. CTL can specify the existence of paths
like E X φ, which isn’t possible in LTL. In return LTL can specify fairness properties like
G Fφ→ G Fψ, which isn’t possible in CTL.

Since it is more intuitive for most people to write the specifications of systems in LTL than
in CTL, LTL is more commonly used [Var01], although verifying LTL properties is harder
than verifying CTL properties.

2.5. Temporal Logics 29

2.5.5 Modal µ-Calculus

Fixed-point theory

First we give a short introduction to fixed-point theory [DG08].

Let S be a set and F : 2S → 2S be a monotone function with respect to set inclusion. A
function F is monotone if ∀X,Y ∈ S : X ⊆ Y → F (X) ⊆ F (Y).

Definition 2.24. (Fixed Point)
Given a set S and a monotone function F : 2S → 2S . A fixed point is defined as any set
X ⊆ S with F (X) = X.

Each monotone function F : 2S → 2S has a least and a greatest fixed point. Their existence
is a consequence of the Knaster-Tarski-Theorem [BL69].

Definition 2.25. Let S be a set and F: 2S → 2S a monotone function. Then F has a least
fixed point µ(F) and a greatest fixed point ν(F), defined as:

µ(F) :=
⋂
{X ⊆ S : F (X) = X} =

⋂
{X ⊆ S : F (X) ⊆ X} (2.7)

ν(F) :=
⋃
{X ⊆ S : F (X) = X} =

⋃
{X ⊆ S : F (X) ⊇ X} (2.8)

Least and greatest fixed points can also be calculated inductively. For the least fixpoint we
get:

X0 := ∅, Xi+1 := F (Xi) (2.9)

with Xi ⊆ S for i ≥ 0. Since F is a monotone function, we have ∀i, j with i ≤ j : Xi ⊆ Xj .
At some point, this sequence of sets reaches a fixed point, with Xi = Xi+1 for some i. The
least i for which this condition holds defines the so called least inductive fixed point of F :
X∞, with X∞ := Xi = Xi+1 = ⋃

kX
k for k = 0 . . . i. Similarly, the greatest fixed point can

be calculated recursively by computing the following sequence of sets:

X0 := S,Xi+1 := F (Xi) (2.10)

Again, we get the greatest inductive fixed point X∞, with X∞ := Xi = Xi+1 = ⋂
iX

k for
k = 0 . . . i for some i.

A further consequence of the Knaster-Tarski-Theorem is that the least and greatest fixed
point and the least and least and greatest inductive fixed point of every monotone function
F : 2S → 2S coincide [KL08].

By definition, each fixed point X is a solution for the equation F (X) = X. Besides least
fixed point µ(F) and greatest fixed point ν(F), there may also exist other fixed points Z of
F . For all fixed points Z of F holds that µ(F) ⊆ Z ⊆ ν(F).

30 CHAPTER 2. PRELIMINARIES

The modal µ-Calculus

Another branching-time temporal logic is called modal µ-calculus (µ-calculus for short). µ-
calculus is used as a specification language to formulate properties of reactive systems. Almost
all other temporal logics, like CTL?, CTL or LTL an be seen as fragments of µ-calculus.
Its currently used form was introduced by Kozen in [Koz83]. For further information about
modal µ-calculus see [BBW06] and [Eme96].

In addition to the Boolean operators, the µ-calculus consists of the nexttime operators AX
and EX and the fixpoint operators µ and ν. The operators AX and EX are already known
from CTL, and have the same meaning. The operator EXϕ means that ϕ holds in at least
one of the successor states of the current state. The formula AXϕ holds in a state, if ϕ holds
in all successor states. Fixpoint operators bind free variables. E.g. consider the formula µY ϕ.
The least fixpoint operator µ binds each occurrence of the propositional variable Y in the
µ-calculus formula ϕ. A closed µ-calculus formula contains no free variables.

Definition 2.26. (Syntax of µ-calculus)

Let AP be the set of atomic propositions, and V be the set of relational variables. The syntax
of a µ-calculus is inductively defined as follows:

1. Atomic Proposition: p is a µ-calculus formulas for all p ∈ AP .

2. Propositional Variables: ∀X ∈ V are µ-calculus formulas.

3. Boolean Operators: If ϕ and ψ are µ-calculus formulas, then so are (¬ϕ), (ϕ ∧ ψ)
and (ϕ ∨ ψ).

4. Nexttime Operator: If ϕ is a µ-calculus formula, than so are EXϕ and AXϕ.

5. Fixpoint Operators: If ϕ is a µ-calculus formula and X ∈ V , than µXϕ and νXϕ
are also µ-calculus formulas.

Usually, µ-calculus formula describe properties of Kripke structures (see 2.1). A µ-calculus
formula ϕ is interpreted over states s ∈ S of a Kripke structure M in which ϕ holds.

Definition 2.27. (Semantic of µ-calculus)
Let AP be de set of atomic propositions, V the set of relational Variables, and M =
{S, S0, R, L} be a Kripke structure. We define ‖ϕ‖iM as the set of states of the Kripke structure
M , for which the µ-calculus formula ϕ holds. The interpretation function i : V → 2S assigns a
set of states of S to each free variable. The formula i[X ← Z] denotes that i[X ← Z](X) = Z
and i[X ← Z](Y) = i(Y) for Y 6= Z.

The sets ‖ϕ‖iM and ‖ψ‖iM are inductively defined as follows:

• p ∈ AP : ‖p‖iM = {s ∈ S : s |= p},

• p ∈ AP : ‖¬p‖iM = {s ∈ S : s 2 p},

• X ∈ V : ‖X‖iM = i(X),

2.6. Games 31

• ‖ϕ ∧ ψ‖iM = ‖ϕ‖iM ∩ ‖ψ‖iM ,

• ‖ϕ ∨ ψ‖iM = ‖ϕ‖iM ∪ ‖ψ‖iM ,

• ‖EXϕ‖iM = {s ∈ S : ∃s′ with (s, s′) ∈ E and s′ ∈ ‖ϕ‖iM},

• ‖AXϕ‖iM = {s ∈ S : ∀s′ with (s, s′) ∈ E and s′ ∈ ‖ϕ‖iM},

• ‖µXϕ‖iM = ⋃
j Xj where X0 = ∅ and Xj+1 = ‖ϕ‖i[X←Xj]

M , and

• ‖νXϕ‖iM = ⋂
j Xj where X0 = S and Xj+1 = ‖ϕ‖i[X←Xj]

M ,

If all variables are bound by a least or a greatest fixpoint operator, than there are no free
variables, and the interpretation function i does not matter any more, and we write ‖ϕ‖M
instead of ‖ϕ‖iM . For simplicity, if the Kripke structure M is clear, we only write ‖ϕ‖.

Let ϕ be a µ-calculus formula, and Y ∈ V . Than the relation between the operators fulfills
the following equations:

EXϕ = ¬AX¬ϕ, and (2.11)

µY ϕ = ¬νY ¬ϕ, (2.12)

2.6 Games

To solve the synthesis problem we translate the GR(1) specification into an infinite two-player
game, played between an environment and a system. The system is winning, if it is able to
satisfy the specification, regardless of the actions of the environment. Our notation of games
is based on the notation introduced in [PPS06].

Definition 2.28. (Symbolic Game Structure)
A game structure G is defined as a 7-tuple G = (V,X, Y,Θ, ρe, ρs, ϕ), when

• V = {v0 . . . vn} is a finite set of Boolean variables. A state is an interpretation of V , i.e.
in a state s, each variable v ∈ V has an assigned value. Σ = 2V defines the set of all
states.

• X ⊆ V is the set of environment input variables. The input domain is defined by
DX = 2X and defines all possible valuations to the variables in X.

• Y = V \ X is the set of system output variables. The output domain is defined by
DY = 2Y and defines all possible valuations to the variables in Y .

• The formula Θ defines all initial states. A state s0 is an initial state if it satisfies Θ.

• ρe(X,Y,X ′) is a Boolean formula and is called an environment transition relation. It
relates each state to possible next input values. Let X ′ be a primed copy from X. For
a state s ∈ Σ, x′ ∈ DX is a possible next input value, if (s, x′) |= ρe.

32 CHAPTER 2. PRELIMINARIES

• ρs(X,Y,X ′, Y ′) is a Boolean formula and is called a system transition relation. It relates
each state and the next input value to possible next output values. Let X ′ and Y ′ be
primed copies from X and Y , respectively. For a state s ∈ Σ and next input value
x′ ∈ DX , y′ ∈ DY is a possible next output value, if (s, x′, y′) |= ρs. x′ and y′ define
the next state s′ = (x′, y′).

• ϕ is the winning condition defined by a LTL formula.

Game Structures are often represented symbolically, for instance by using BDDs. The
inputs and the outputs are defined by sets of Boolean variables: X = x0, x1, . . . , xn and
Y = y0, y1, . . . , ym. The initial states, the environment transition relation, the system
transition relation and the winning condition are represented by Characteristic Formulas. In
order to write a Characteristic Formula for the transition relations, we introduce two additional
Sets of Boolean variables. The set X ′ = x′0, x

′
1, . . . , x

′
n represents the next input variables and

the set Y ′ = y′0, y
′
1, . . . , y

′
m represents the next output variables. The symbolic representation

of game structures is very similar to the symbolic representation of ω − automaton, see
Section 2.3.4.

In a game for a reactive system, the environment is Player 0 and controls the input variables
X and the system is Player 1 and controls the output variables Y . A play is an infinite
sequence of states. In each step, the environment chooses a next input x′ ∈ DX and the
system responds by choosing a next output y′ ∈ DY . By doing so, they are defining the next
state s′ = (x′, y′). This results in an infinite sequence of states. This corresponds to passing
a token from one state to the next state.

Definition 2.29. (Play σ̄)
A play σ̄ of a game structure G is an infinite sequence of states σ̄ = s0, s1, s2, . . . , with
s0 |= Θ and ∀i ≥ 0 : (si, si+1) |= ρe ∧ ρs. si+1 is called the successor of si.

The goal of the system is to fulfill the specification, and the environment seeks to prevent
this. The system wins a play σ̄, if the play σ̄ fulfills the winning condition ϕ. Otherwise the
environment wins the play. The set Win contains all plays, which are winning plays for the
system.

Win = {σ̄ : σ̄ |= ϕ} (2.13)

2.6.1 Strategies

A strategy for the environment is a function fe : Σ+ → DX , which defines a next input value
for each step in the play. For a sequence of states σ̄ = s0, s1, . . . sn, we get the next input
value x′ ∈ DX with x′ = fe(σ̄) and (sn, x′) |= ρe.
A strategy for the system is a function fs : Σ+ ×DX → DY , which defines for each current
state and next input value a next output value. For a sequence of states σ̄ = s0, s1, . . . sn
and next input value x′ ∈ DX , we get the next output value y′ ∈ DY with y′ = fs(σ̄, x′) and
(sn, x′, y′) |= ρs. A strategy fs is called a winning strategy for a given state s, if every play
σ̄ with initial state s and played according to the strategy fs, is a win for the system. The

2.6. Games 33

winning region Ws is defined as the set of all states from which the system has a winning
strategy. Winning strategy and winning region We are defined dually for the environment.

Different types of winning conditions ϕ exist, which define different types of games.
Winning conditions are defined over states, which are visited finitely or infinitely during a
play.

• occ(σ̄) defines the set of states occurring often during a play σ̄.

• inf(σ̄) defines the set of states occurring infinitely often in a play σ̄.

All winning conditions are defined by using inf(σ̄) or occ(σ̄). In our setting, we need two
types of games for the synthesis of reactive systems: Generalized Reactivity Games and Streett
Games. In the following, we define the most common used winning conditions, with respect
to Section 2.3.3.

2.6.2 Safety Games

Definition 2.30. (Safety Winning Condition)
Let G be a game structure, F a finite set of states and σ̄ = s0, s1, . . . be a play. The safety
winning condition ϕ is defined by:

ϕ(σ̄)⇔ occ(σ̄) ⊆ F. (2.14)

F defines a set of safe states. A play σ̄ is winning for player 0, if the set of visited states
corresponds to the set of safe states: σ̄ ∈Win⇔ ∀i : si ∈ F .

2.6.3 Reachability Games

Definition 2.31. (Reachability Winning Condition)
Let G be a game structure, F a finite set of states and σ̄ = s0, s1, . . . be a play. The
reachability winning condition ϕ is defined by:

ϕ(σ̄)⇔ occ(σ̄) ∩ F 6= ∅. (2.15)

In this case, F defines a set of target states. Player 0 wins the play, if a state in F is visited:
σ̄ ∈Win⇔ ∃i : si ∈ F .

2.6.4 Büchi Games

Definition 2.32. (Büchi Winning Condition)
Let G be a game structure, F a finite set of states and σ̄ = s0, s1, . . . be a play. The Büchi
winning condition ϕ is defined by:

ϕ(σ̄)⇔ inf(σ̄) ∩ F 6= ∅. (2.16)

34 CHAPTER 2. PRELIMINARIES

2.6.5 co-Büchi Games

Definition 2.33. (co-Büchi Winning Condition)
Let G be a game structure, F a finite set of states and σ̄ = s0, s1, . . . be a play. The co-Büchi
winning condition ϕ is defined by:

ϕ(σ̄)⇔ inf(σ̄) ∩ F = ∅. (2.17)

2.6.6 Muller Games

Definition 2.34. (Muller Winning Condition)
Let G be a game structure, σ̄ = s0, s1, . . . be a play and F a set of sets of states F =
{F1, . . . , Fk} with Fi ⊆ Σ for i = 1 . . . k. The Muller winning condition ϕ is defined as follows:

ϕ(σ̄)⇔ inf(σ̄) ∈ F. (2.18)

2.6.7 Rabin Games

Definition 2.35. (Rabin Winning Condition)
Let G be a game structure and σ̄ = s0, s1, . . . be a play. The Rabin winning condition ϕ is
given as a set of pairs of sets of states ϕ = (E1, F1), (En, Fn), . . . , (En, Fk) with Ei, Fi ⊆ Σ
for i = 1 . . . k. ϕ is defined as follows:

ϕ(σ̄)⇔
k∨
i=1

(inf(σ̄) ∩ Ei = ∅ ∧ inf(σ̄) ∩ Fi 6= ∅) (2.19)

2.6.8 Streett Games

Definition 2.36. (Streett Winning Condition) The Streett winning condition ϕ is given as a
set of pairs of sets of states ϕ = (E1, F1), (En, Fn), . . . , (En, Fk) with Ei, Fi ⊆ Σ for i = 1 . . . k.
ϕ is defined as follows:

ϕ(σ̄)⇔
k∧
i=1

(inf(σ̄) ∩ Ei 6= ∅ → inf(σ̄) ∩ Fi 6= ∅) (2.20)

2.6.9 Parity Games

Definition 2.37. (Parity Winning Condition)
Let G be a game structure, c : Σ→ {1, . . . , k} with k as even and σ̄ = s0, s1, . . . being a play.
The parity winning condition ϕ is defined by:

ϕ(σ̄)⇔ max(inf(c(σ̄))) is even. (2.21)

2.6. Games 35

2.6.10 GR(1) Games

Definition 2.38. (GR(1) Condition)
Let G be a game structure and E = E1, . . . , Ek and F = F1, . . . , Fl with Ei ⊆ Σ for i = 1 . . . k
and Fj ⊆ Σ for j = 1 . . . l. The GR(1) winning condition ϕ is defined by:

ϕ(σ̄)⇔
k∧
i=1

(inf(σ̄) ∩ Ei 6= ∅)→
l∧

j=1
(inf(σ̄) ∩ Fj 6= ∅) (2.22)

2.6.11 The modal µ-Calculus over Game Structures

In order to solve game, we use a slightly different definition of modal µ-calculus. µ-calculus
over game structures is defined in [PP06] and in [PPS06]. The definition of game structures
can be found in Section 2.6 and the definition of µ-calculus in Section 2.5.5.

Definition 2.39. (Syntax µ-calculus over game structures)
Let G = (V,X, Y,Θ, ρe, ρs, ϕ) be a game structure, and V the set of relational variables. The
syntax of a µ-calculus formulas is inductively defined as follows:

• ∀v ∈ V : v and ¬v are µ-calculus formulas (atomic formulas).

• ∀X ∈ V are µ-calculus formulas.

• If ϕ and ψ are µ-calculus formulas, then so are (ϕ ∧ ψ) and (ϕ ∨ ψ).

• If ϕ is a µ-calculus formula, then so are ϕ and φ.

• If ϕ is a µ-calculus formula and X ∈ V , than µXϕ and νXϕ are also µ-calculus
formulas.

Before defining the semantic, let’s again look at the operators in an informal way. Here,
the µ-calculus formula ϕ is interpreted over states s ∈ Σ of the game structure G, in which
ϕ holds. We define ‖ϕ‖iG as the set of states of the game structure G, for which ϕ holds.
The interpretation function i : V ar → 2Σ assigns to each free variable a subset of Σ. The
meaning of the attractor-operators and differ from nexttime-operators used before, and
are defined as follows:

• The Attractor-Operator .
The attractor ‖ ϕ‖iG defines the set of all states from which the system can force the
game into a state in which ϕ holds in one step. No matter what input the environment
chooses, the system can always choose an output, so that the successor state is in ‖ϕ‖iG.

• The Attractor-Operator .
Has the same effect, only for the other environment. ‖ ϕ‖iG defines the set of all states,
from which the environment can force the game in a state in which ϕ holds in one step,
regardless of the output of the system.

36 CHAPTER 2. PRELIMINARIES

Definition 2.40. (Semantic µ-calculus over game structures)
Let ϕ and ψ be µ-calculus formulas. The set ‖ϕ‖iG and ‖ψ‖iG is inductively defined as follows:

• v ∈ V : ‖v‖iG = {s ∈ Σ : s[v] = 1}.

• v ∈ V : ‖¬v‖iG = {s ∈ S : s[v] = 0}.

• X ∈ V ar : ‖X‖iG = i(X).

• ‖ϕ ∧ ψ‖iG = ‖ϕ‖iG ∩ ‖ψ‖iG.

• ‖ϕ ∨ ψ‖iG = ‖ϕ‖iG ∪ ‖ψ‖iG.

• ‖ ϕ‖iG = {s ∈ Σ : ∀x′ ∈ DX with (s, x′) |= ρe : ∃y′ ∈ DY with s′ = (x′, y′) and
(s, s′) |= ρs and s′ ∈ ‖ϕ‖iG}.

• ‖ ϕ‖iG = {s ∈ Σ : ∃x′ ∈ DX with (s, x′) |= ρe : ∀y′ ∈ DY with s′ = (x′, y′) and
(s, s′) |= ρs and s′ ∈ ‖ϕ‖iG}.

• ‖µXϕ‖iG = ⋃
j Sj where S0 = ∅ and Sj+1 = ‖ϕ‖i[X←Sj]

G

• ‖νXϕ‖iG = ⋂
j Si where S0 = S and Sj+1 = ‖ϕ‖i[X←Sj]

G

If there are no free variables and the game structure G is clear, we write ‖ϕ‖ instead of
‖ϕ‖iG.

Example 2.6. For a better understanding, let’s have a look at some examples of µ-calculus
formulas from [PP06]:

• ϕ = νX(v ∧ X) with v ∈ V,X ∈ V ar
s ∈ ‖ϕ‖, if player 0 can force the game to visit only states where v holds.

• ϕ = µX(v ∨ X) with v ∈ V,X ∈ V ar
s ∈ ‖ϕ‖, if player 1 can force a visit of a state where v holds.

2.7 Implementation

This Section gives a short introduction on how RATSY [BCG+10b] works, its components
and how it all fits together.

2.7.1 RAT

In 2007, Bloem et al. [BCP+07] presented the Requirement Analysis Tool, RAT. Writing
formal specifications for circuits is a tricky task, in which errors can easily be overlooked.
RAT supports the user in developing and analyzing his specifications by providing three main
functionalities: Property Assurance, Property Simulation and Property Realizability. RAT
supports specifications written in PSL [EF06]. All functionality of RAT can be accessed via
its graphical user interface.

2.7. Implementation 37

Property Simulation

Property Simulation allows the user to interactively check his specification. The behavior
of properties can be explored, by looking at possible time traces of the input and output
signals. Here, the user has several possibilities. He can either ask RAT to provide a possible
time trace. Then the user can fix certain values of any signal in any time step and then ask
RAT, if the new trace still fulfills the specification. This helps the user to understand, what
impacts the different requirements of his specification have, and whether the specification
does what the user had in mind. Also, the user can provide RAT with input values, and
RAT answers with possible output values. It’s also possible the other way around. The user
can provide the output values, and RAT delivers possible input values. Property simulation
is very similar to classical hardware simulation.

Property Assurance

Property Assurance provides the user with two functionalities. First, it enables a user to
check properties automatically against contradiction and consistency. Second, the user can
define two sets of properties, assertions and possibilities. The designer can use assertions to
make sure that undesired behavior is forbidden by the specification. Possibilities are used
to check, if a certain described behavior is still allowed by the specification. So, these two
sets supply the designer with a tool to check whether his specification is strict enough to
exclude bad behavior, and at the same time is not too strict and still allows good behavior.
This way, property assurance helps the user to understand, whether he has written the right
specification for his desired circuit.

Property Realizability

Property Realizability is the third functionality of RAT. Realizability is the problem of
checking, whether there exists a system that fulfills the specification. We deviate between two
types of properties in the specification. Environment assumptions restrict the set of possible
input sequences, and system guarantees define the allowed behavior of the system. For any
allowed input sequence, a correct system must be able to provide an output sequence, which
satisfies all system guarantees. If the system is not able to do so, the specification is not
realizable. In this case, the user can perform property simulation, in order to find out the
reason for un-realizability.

With these three functionalities; Property Assurance, Property Simulation and Property
Realizability, a designer can iteratively develop his specification. First, he can write a
specification with assertions and possibilities. Then he can check if the specification is
consistent, if no assertions are violated, if all possibilities are fulfilled and if the specification
is realizable. If there are any problems, the designer can use the simulation functionality
and the diagnosis information provide to find the problem. Afterwards, he can refine the
specification and test it again.

38 CHAPTER 2. PRELIMINARIES

Technical Aspects

Property Assurance and Property Simulation both use Bounded Model Checking methods.
Property Realizability is solved via a two player game between the environment and the
system. If a winning strategy exists for the system, the specification is realizable. RAT uses
the model checker NuSMV [CCGR00] and VIS [ea96].

RAT has been used in practical projects [Aue06] and was found to be very helpful.

2.7.2 RATSY

In 2010, Bloem et al. [BCG+10b] presented the successor tool of RAT, called RATSY
(Requirements Analysis Tool with Synthesis). RATSY extends RAT’s functionality with
three new features. First, the tool provides an improved user interface, in which the user
can specify properties in the form of Büchi word automaton. Second, it implements a game-
based debugging approach. Third, the tool is now able to automatically synthesize given
specifications.

Typical Design Workflow

Debugging not ok

Simulation ImplementationIndent Formal
Spec.

no

realizable? yes ok

Figure 2.8: Typical Design Workflow.

Figure 2.8 shows the typical process of writing a correct specification. First, the user tries to
formulate his idea of the design. To make this task easier and more intuitive, RATSY provides
an automata editor, which automatically translates Büchi automata into PSL properties.
Then the resulting specification is tested for realizability and is then simulated. If something
goes wrong, the user has to debug his specification. RATSY provides a special new modus
just for debugging. When the specification finally satisfies the intention of the user, RATSY
can automatically synthesize a correct implementation. With the new features, RATSY
overcomes all the shortcomings of RAT and is able to optimally support the user in the
design process.

2.7. Implementation 39

Automaton Editor

With the graphical automaton editor, the user can draw a complete deterministic Büchi
automaton. Automata are much easier to understand than PSL formulas, and hence it
is easier to express design intents by using automata. The tool automatically maintains
completeness, by defining a default dead state. Edges, which are not defined by the user,
point automatically to this state. By only allowing deterministic complete automata, the
synthesis’ problem gets easier. RATSY automatically transforms the Büchi automata into
PSL properties for further processing.

Game Based Debugging

RATSY implements a game-based debugging approach presented in [KHB09]. If a speci-
fication is unrealizable, the user has to first identify the problem, before he can refine the
specification. A specification is unrealizable, if the environment has a winning strategy in the
two player game. This strategy is called counter strategy. If the environment plays according
to this strategy, the system can’t do anything to fulfill the specification.

For the debugging of unrealizable specifications, the user can play a counter game against
RATSY to understand the problem. In every time step, RATSY chooses an input value,
and the user chooses an output value. The tool chooses the input values according to the
counter strategy, to win the game. At some point, the user is not able to choose a proper
output anymore and loses. Although he lost the game, understanding why he lost, helps
him to understand the problem. Either, the user has to restrict some of the environment’s
behavior which led to this situation, or he has to relax the guarantees for the system.

Figure 2.9: RATSY’s User Interface while playing a Counter Game.

40 CHAPTER 2. PRELIMINARIES

Figure 2.9 shows a part of RATSY’s GUI while playing a counter game. The tool has already
chosen the input values. The user selects the output values via the game window or via
the automaton window. In the automaton window, possible next states and transitions are
marked. By the second time step, the user ends up in an error state and loses.

Synthesis

RATSY is able to synthesize correct implementations from realizeable specifications. The
user can choose between three different hardware description languages: BLIF , Verilog and
HIF. For synthesis, RATSY uses the external tool Marduk, which is a reimplementation
of the tool Anzu[JGWB07] in Python. The tool works with specifications written in GR(1).
By using the NuSMV library, RATSY can translate many specifications into GR(1). Since
synthesis can be rather time-consuming, it is possible to run Marduk in the background,
independently from the GUI of RATSY. More information on Marduk follows in Section
2.7.3.

Technical Aspects

RATSY is written in Python. It utilizes the symbolic model checker NuSMV [CCG+02].
NuSMV is also used to apply syntactical transformations to specifications before handing
them to Marduk. It also handles the conversion of multi-valued variables into Boolean
signals. Ratsy and NuSMV heavily use CUDD [Som98]. CUDD is a Decision Diagram
Package which provides data-structures and basic BDD [Bry95] operations. NuSMV and
CUDD are written in C/C++, Ratsy is not. Therefore SWIG [Bea96] is used to generate a
wrapper around them, giving Python and Ratsy the ability to access their functionality.

2.7.3 Marduk

Marduk is a tool which is able to generate hardware descriptions from GR(1) specifications.
It implements an efficient symbolic algorithm [PPS06], which needs N3 time, where N is
the size of the state space. Marduk is the successor of Anzu, which had nearly the same
functionality. The greatest difference between Anzu and Marduk is the programming
language used for the implementation. Anzu was written in Perl, whereas Marduk is
written in Python. The reason for rewriting Anzu into Python, may be the easier interaction
with RATSY, since RATSY is also written in Python.

Marduk takes as input a set of input variables, a set of output variables and a GR(1)
specification, which consists of assumptions and guarantees. It transforms the specification
into a transition system. Safety properties define the initial states and the transitions, and
liveness properties define accepting states, which have to be visited infinitely often. If the
specification is realizable, Marduk creates a BDD representing all possible implementations.
In the final step, Marduk constructs a circuit from the BDD.

2.8. Related Work on Robust Synthesis 41

2.8 Related Work on Robust Synthesis

In 2009, Bloem, Greimel, Henzinger and Jobstmann [BGHJ09] introduced a notation of
robustness and solved the verification and the synthesis problem of robust systems for safety
specifications. They defined a system to be robust if a finite number of environment failures
induces only a finite number of system failures.

The user provides an error specification, which consists of a pair of error functions (de, ds).
An error function measures the number of specification violations in some appropriate sense
and assigns to each run σ a natural number or infinite. If a run satisfies the specification,
the value of the error function is 0. Other values indicate a violation of the specification.
The higher the value, the more serious the violation. The error function maps to infinite, if
there is an infinite number of safety violations during the run. de is the error function for
the environment, and ds is the error function for the system. A system is robust with respect
to an error specification (de, ds), if for each run σ a finite number of de(σ) implies a finite
number of ds(σ). Note that this condition can be encoded as a Streett pair.

The error specification (de, ds) can be defined by a double cost automaton with two weights
we and ws. This double cost automaton is the product of two single cost automaton, one for
the environment with cost function we and one for the system with cost function ws. Thus,
de(σ) and ds(σ) correspond to the sum of we and ws of a run over σ, respectively. Each single
cost automaton can be constructed from a set of cost automata. So the user can simply define
a cost automaton for each safety assumption and and each safety guarantee, and together the
cost automatons form a double cost automaton, which defines the error specification.

To solve the synthesis problem, the error specification is transformed into a Streett game
with one pair 〈F1, F2〉. F1 is the set of states with incoming transitions with systems costs
and F2 is the set of states with incoming transitions with environment costs. The solution of
the game corresponds to a robust implementation of the specification. The system can be
synthesized in polynomial time.

Additionally, they defined another measure of robustness. A system is k-robust if the ratio of
the system error to the environment error is smaller than or equal to k for every word of the
system. The synthesis problem for k-robustness is solved with a novel game type; the ratio
game. Based on ratio games they are able to synthesize k-robust systems with minimal k in
pseudopolynomial time. So the most robust system for a given specification is the system
with the smallest possible k.

The big disadvantages of the previous discussed method from Bloem et al. are that the
method only deals with safety specifications and that the user has to specify the proper
reaction to each environment failure, in addition to the normal behavior. Writing error
specifications is time consuming, leads to bigger specifications and is error prone. The robust
synthesis method presented in this work requires no additional effort from the user and
handles specifications consisting of safety and liveness properties.

Bloem et al. continued their work on robust synthesis. One year later, in 2010, they presented
an algorithm that was able to deal with liveness properties [BCG+10a]. So instead of pure
safety specification, the new paper supported the important class of GR(1) specifications. In

42 CHAPTER 2. PRELIMINARIES

order to deal with liveness properties, they used a different notation of robustness. They used
another definition of robustness, because it is not possible to notice a violation of a liveness
property at any point in time, and therefor it is not possible to count the liveness violations.
Bloem et al. defined a system to be robust, if for any number of environment assumptions
that is violated, there is a minimal number of system guarantees that must still be fulfilled.

Any GR(1) specification can be turned into a robustness specification, which has the form of
a General Generalized Reactivity formula of rank k. Suppose that the GR(1) specification
consists of m assumptions A = {A1, . . . , Am} and n guarantees G = G1, {. . . , Gn}. Let
Ak and Gk a be the set of all subsets of A and G of size k, respectively. The robustness
specification has the form:

(
∨

A∈Ak

∧
Ai∈A

Ai)→ (
∨
G∈Gl

∧
Gi∈G

Gi). (2.23)

Any system satisfying this specification has to fulfill l guarantees when k assumptions are
fulfilled. It is also possible to compare systems according to their robustness. The more
guarantees a system satisfies with the same number of fulfilled assumptions, the more robust
the system is. The synthesis algorithm proposed in this paper always generates the most
robust system.

To synthesize systems from Generalized Reactivity specifications, a Generalized Reactivity
game has to be solved. In order to do that, Bloem et al. introduced a new algorithm which
reduced the game with Generalized Reactivity objective into a game with Streett objective.
A special case of this reduction is the reduction from a GR(1) game into a one-pair Streett
game via counting construction. We used this idea for our robust synthesis method, which
is presented in this thesis, for more detail on this step see Chapter 3.5. For games with
Generalized Reactivity objective of rank k, this step is repeated k times. Each GR(1) objective
is turned into Streett pair via counting construction. This results in a Streett game with
k-pairs, which is solved with the algorithm of [PP06]. Both counting construction and solving
the Streett game can be done symbolically.

The disadvantage of the method in [BCG+10a] is that the system does not recover from safety
assumption violations. In our method, if the environment makes a failure, eventually, the
system stops making failures. This is not the case according to the definition of robustness in
[BCG+10a].

Robustness of sequential circuits was addressed by Doyen, Henzinger, Legay and Nickovic in
[DHLN10]. Input values of digital systems often come from analog devices or from a physical
environment. Since the environment cannot be fully captured, the input values are not precise.
A system is robust if small changes in the input values do not result in huge changes in the
output values. Doyen et al. studied a notation of robustness for sequential circuites and
presented an algorithm to decide, whether a circuit is robust or not.

In 2011, Majumdar, Render and Tabuada presented a paper about robust discrete synthesis
against unspecified disturbances [DHLN10]. Here robustness is not defined in terms of
assumption and guarantee violations, but using metrics on the state of a system. Synthesis is
performed via special automata incorporating these metrics.

2.8. Related Work on Robust Synthesis 43

Robust systems are closely related to fault-tolerant systems. Fault-tolerance is the property
that enables a system to continue its operation even in the case of unexpected inputs or in the
case of an error in hardware or software of some of its components. In [G9̈9], Gärtner studied
fault tolerance for distributed systems. This paper formalizes important concepts of this area,
and gives the reader a good introduction to this topic. In order to design a fault-tolerant
system, the first thing to do is to specify a fault class that should be tolerated. Usually this
means that the program still has to satisfy all of its safety and liveness guarantees even in
the presence of a failure of this fault class. In order to make systems fault-tolerant, one must
add some form of redundance to the system, via providing multiple identical instances of the
same hardware which run in parallel or implementing an algorithm in software in different
ways and run them in parallel.

In [KE05], Kulkarni and Ebnenasir focused on the synthesis of failsafe fault-tolerant systems,
where fault-tolerance is added to an existing program. A failsafe system satisfies its safety
properties in the presence of faults from the fault class, but its liveness properties may be
violated. In [EKA08], Kulkarni at al presented a tool to add fault-tolerance to existing finite-
state programs. This was the first automated tool to synthesize fault-tolerant distributed
programs. More recently, [CRKB11] and [GR09] also presented tools to synthesize fault-
tolerant systems, using controller synthesis.

3 Robust Synthesis from GR(1) Specifications

3.1 Idea

Synthesized systems are guaranteed to be correct in respect to a given specification, but there
is no guarantee that these systems are also robust against environment assumption violations.
Systems that are not robust do not behave reasonably in unexpected situations, i.e., when
environment assumptions are violated.

Many specifications consist of environment assumptions and system guarantees. Guarantees
must be fulfilled only if all assumptions are satisfied. If assumptions are violated, than the
system can behave arbitrary. For both assumptions and guarantees, we may distinguish
between safety and liveness properties. In this work, we build systems that are robust to
safety assumption violations.

In order to define robustness, we define a system failure to be a violation of a safety guarantee,
and an environment failure to be a violation of a safety assumption. We define a system
to be robust if a finite number of environment failures induces a finite number of system
failures [BGHJ09]. Let’s assume the environment produces an environment failure for one
tick. After some time, a robust system should recover and shouldn’t produce system failures
any more. Even if there is a finite number of environment failures, a robust system should
still fulfill all liveness guarantees. Liveness properties state that some property will hold
eventually. If there are finitely many environment failures, then the system works correctly
for an infinitely long time, and should be able to fulfill all liveness guarantees.

We implemented our robust synthesis algorithm in the requirements analysis and synthesis tool
RATSY [BCG+10b]. With this extension, RATSY is now able to synthesize robust systems
from realizable GR(1) specifications. Our algorithm first turns a GR(1) specification into a
one-pair Streett game such that a winning strategy corresponds to a correct implementation.
Furthermore, we add a second pair such that the winning strategy corresponds to a robust
system. In this Chapter, we explain the single steps of the algorithm in detail.

3.2 Definition of Robustness

A system should not only be correct, it should also behave reasonably even in cir-
cumstances that were not anticipated in the requirement specification[...][GJM91].

44

3.2. Definition of Robustness 45

This means that a system should be correct and robust.

In RATSY we consider GR(1) specifications. In case of reactive systems, a GR(1) specification
ϕ over input variables X and output variables Y consists of environment assumptions and
system guarantees:

ϕ = A→ G = Ai ∧At ∧Al → Gi ∧Gt ∧Gl. (3.1)

The formulas Ai and Gi define the initial condition for environment and system, respectively.
The formulas At = At1 ∧ · · · ∧ Atn and Gt = Gt1 ∧ · · · ∧Gtm define the transition relation for
the environment and the system, respectively. The environment transition relation formulas
define for all time steps the next possible input values and the system transition relation
formulas define the next possible outputs, in respect to the next input. The initial formulas
and the transition formulas form the safety component of the GR(1) specification. The
formulas Al = Al1∧· · ·∧Alk and Gl = Gl1∧· · ·∧Gll define liveness assumptions and guarantees,
respectively. For more details to GR(1), see Section 2.5.3.

According to the definition of GR(1), if the environment chooses at any point of time a single
invalid input value, that violates a transition assumption, a non robust system can behave
arbitrarily. Even if the environment works correctly for the rest of the time, the system do
not have to fulfill any guarantees. We want to synthesize systems that are robust against
safety assumption violations. This means that a robust system should be able to recover
from safety assumption violations. If eventually, the environment stops making failures, the
system should eventually work correctly again.

In order to define robustness, we introduce two kinds of errors, environment failures and
system failures. The environment causes an environment failure, if it chooses an input
values that violates at least one safety assumption. The system causes a system failure, if
it chooses an output values that violates at least one safety guarantee.

We can formulate our robustness definition in LTL, by using enverr for a safety assumption
violation, and syserr for a safety guarantee violation.

Definition 3.1. (Robustness)
We define a system to be robust if a finite number of environment failures only induce a finite
number of system failures [BGHJ09].

F G¬enverr → F G¬syserr. (3.2)

Systems synthesized with our robust synthesis method satisfy this robustness criterion. This
property can be rewritten by using the LTL equivalence G¬ϕ = ¬Fϕ:

¬F G¬enverr ∨ F G¬syserr. (3.3)

¬¬(G F enverr ∨ F G¬syserr). (3.4)

¬(¬G F enverr ∧ G F syserr). (3.5)

(G F enverr ∨ ¬G F syserr). (3.6)

(G F syserr → G F enverr). (3.7)

46 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

We end up in the last equation, which defines a system to be robust, if infinitely many
environment failures imply infinitely many system failures. The implication of the equation
requires that the system is only allowed to make an infinite number of failures, if the
environment also makes an infinite number of mistakes.

Clearly, this definition of robustness only considers the violation of safety properties, and not
the violation of liveness properties. This approach does not work for liveness, because it is
not possible to notice a violation of a liveness property at any point in time. On the other
hand, we immediately notice a violation of a safety property.

3.3 Illustration of the problem

Consider the specification of a simple arbiter for a resource shared between two clients. The
input signals r1 and r2 are used by the clients to request access to the resource. The arbiter
grants access via the output signals g1 and g2.

The specification states that initially r1 and g1 are false and r2 and g2 are true. This results
in the initial assumption Ai = (¬r1 ∧ r2) and the initial guarantee Gi = (¬g1 ∧ g2). Also,
it is assumed that the environment never raises both request signals at the same time. We
get At = G¬(r1 ∧ r2). According to the specification, the system must fulfill the following
requirements. First, the system is never allowed to raise both grant signals at the same time.
In LTL syntax, this can be written as Gt1 = G¬(g1 ∧ g2). Second, a request has to be followed
immediately by a grant, which can be formalized by the guarantees Gt2 = G(r1 → X g1) and
Gt3 = G(r2 → X g2). Combining the four guarantees and the two assumption results in the
specification ϕ = Ai ∧ At → Gi ∧ Gt1 ∧ Gt2 ∧ Gt3. The specification requires the arbiter to
satisfy all guarantees, if the assumptions are fulfilled.

g1g2

g1g2 g1g2

r1r2 r1r2
r2 r2

r1r2

r1r2

T

S1 S2

S3

Figure 3.1: Non-robust Moore Machine.

g1g2 g1g2

r2

r2 r2

r2

S1 S2

Figure 3.2: Robust Moore Machine.

One possible implementation of ϕ (in the form of a Moore Machine) is shown in Figure 3.1.
The environment violates the transition assumption, if it raises r1 and r2 at the same time.
This environment failure forces the machine to enter state S3, and the machine will remain
there forever. Irrespective of future inputs, both grant signals stay low. From this point on,
whenever there is a request, there will be no grant in the next step and the system will make
a system failure by violating Gt2 or Gt3 in the next step. This is not robust: a finite number
of environment errors leads to an infinite number of system errors, i.e., the system does not

3.4. Example of Environment Failures and System Failures 47

recover. Our new synthesis algorithm guarantees that this cannot happen. Instead, our
approach may lead to an implementation as shown in Figure 3.2, which does not exhibit the
aforementioned weakness. Now, if two requests occur simultaneously, one will be discarded
while the other one will be granted. Once the environment resumes correct behavior, the
system will also fulfill its guarantees again.

3.4 Example of Environment Failures and System Failures

To demonstrate our approach, we will use the GR(1) specification of a simple arbiter with a
full-handshake protocol [PPS06].

The arbiter has a single Boolean request input signal r and a Boolean grant output signal g.
Initially, the specification states that both request and input signal are low. We get, Ai = (¬r)
and Gi = (¬g). For the environment, the safety assumptions At1 = G(r ∧ ¬g → X r) and
At2 = G(¬r ∧ g → X¬r) are defined. The system also has two additional safety guarantees,
Gt1 = G(¬r ∧ ¬g → X¬g) and Gt2 = G(r ∧ g → X g). The liveness assumption and guarantee
are defined by the formulas Al = G F(¬r ∨¬g) and Gl = G F((r ∧ g)∨ (¬r ∧¬g)). Combining
the assumptions and the guarantees results in the specification ϕ = Ai ∧ At1 ∧ At2 ∧ Al →
Gi ∧Gt1 ∧Gt2 ∧Gl.

Figure 3.3 illustrates a cutout of a possible signal trace, without any violations of safety
properties. First, both signals are low. At some point, there is a request, and r is set to
true. One time step later, the system grants the request and rises g. After some time, the
environment lowers the request, and the system responds by lowering the grant.

r

g

Figure 3.3: Possible Signal Trace, without Violation of Safety Properties.

In order to synthesize a robust arbiter, we first transform the specification into a one-pair
Streett game.

Figure 3.4 illustrates the encoding of the safety assumptions At = At1 ∧At2 in the environment
transition relation ρe of the game. The formula ρe defines the set of possible next inputs in
respect to the present input and output. At all points in time holds that if the environment
chooses a next input such that the formula ρe evaluates to true, then the environment did
not make an environment failure in the current time step and the next environment error bit
env′err is set to false. If ρe evaluates to false, the environment made a failure and env′err is

48 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

set to true. Let’s assume, that the game is in the state where the request is low and the grant
is high and the environment chooses r = true as next input value. This violates the formula
ρe and env′err is set to true. This can also be observed in Figure 3.4. There is no transition
leading from the state with r = false and g = true to a state where r = true.

Figure 3.5 illustrates the encoding of the safety guarantees Gt = Gt1 ∧ Gt2 in the system
transition relation ρs of the game. The formula ρs defines the next outputs, also in respect to
the current values of input and output. If the system chooses a next output such that ρs
is violated, the system made a system failure and the next system error bit sys′err is set to
true. This fact can also be observed in Figure 3.5. If there is no transition from the current
state to the next state specified by the next input and output values, then the system made
a system error.

r g r g

r gr g

Figure 3.4: Environment Transitions Re-
lation ρe of one-Pair Streett
Game.

r g r g

r gr g

Figure 3.5: System Transitions Relation
ρs of one-Pair Streett Game.

Figure 3.6 shows the combined transition relation ρe ∧ ρs of the one-pair Streett game. This
Figure contains only transitions, where neither system or environment have made a failure.

r g r g

r gr g

Figure 3.6: Transitions Relation ρe ∧ ρs of one-Pair Streett Game.

To encode robustness into the game, we have to extend the state space by the two error bits
enverr and syserr. This results in a new state space V ∼ = V ∪ enverr ∪ syserr and in a new
environment transition relation ρ∼e = true and system transition relation ρ∼s . The new system
transition relation is defined as follows:

3.5. Robust Synthesis Algorithm 49

ρ∼1 = ρe ∧ ρs ∧ ¬env′err ∧ ¬sys′err
ρ∼2 = ρe ∧ ¬ρs ∧ ¬env′err ∧ sys′err
ρ∼3 = ¬ρe ∧ ρs ∧ env′err ∧ ¬sys′err
ρ∼4 = ¬ρe ∧ ¬ρs ∧ env′err ∧ sys′err
ρ∼s = ρ∼1 ∨ ρ∼2 ∨ ρ∼3 ∨ ρ∼4

The formula ρ∼s keeps track of all environment failures and system failures by setting the
next values of the environment error bit enverr and the system error bit syserr.

3.5 Robust Synthesis Algorithm

Given are:

• a GR(1) specification: ϕ = Ai ∧At ∧Al → Gi ∧Gt ∧Gl and

• the robustness criterion: G F syserr → G F enverr.

The algorithm for synthesizing robust system consists of several steps.

First, the GR(1) specification is transformed into a GR(1) game, see Section 3.5.1. The initial
properties (Ai, Gi) define the initial states of the game structure (defined by Θ). The transition
properties (At, Gt) are encoded directly into the transition relation of the GR(1) game (ρe,ρs),
and the liveness properties (Al, Gl) form the winning condition (ϕ = Al → Gl).

In the second step, the GR(1) game is transformed into a one-pair Streett game, by applying
a counting construction, see Section 3.5.2. The winning condition of the GR(1) game is
transformed into a Streett pair, called Correctness-Streett Pair. The Correctness Pair ensures
that the liveness part of the specification is encoded properly in the game. An implementation
of this Streett game would be a correct implementation of the specification.

Next, the robustness criterium has to be encoded into the game, see Section 3.5.3. This is
done by adding a second-Streett pair, called the Robustness Pair. The state space is extended
by two additional bits: enverr encodes an environment failure and syserr encodes a system
failure. Using these variables, the robustness criterion G F syserr → G F enverr can be encoded
by the second-Streett pair: 〈(syserr), (enverr)〉.

Finally, we compute the winning region, see Section 3.5.4 and the winning strategy, see
Section 3.5.5. The winning strategy for the two-pair Streett game corresponds to a correct
and robust implementation of the original GR(1) specification.

Figure 3.7 summarizes the steps necessary to obtain a robust system.

3.5.1 GR(1) Specification to GR(1) Game

The first step of synthesizing a robust reactive system, is to transform the GR(1) specification
into a GR(1) Game [PPS06].

50 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

GR(1) Game

Streett-pair

Counting-
Construction

Streett-pair

2-pair-Street Game

Hardware Description

Robust

GR(1) Specification

Figure 3.7: Robust System Generation Process.

Let ϕ = ϕe → ϕs be a GR(1) formula with ϕα = ϕαi ∧ ϕαt ∧ ϕαl for α ∈ {e, s}. X denotes the
set of input variables, and Y the set of output variables.

A game structure G : (V,X, Y,Θ, ρe, ρs, ϕ) can be constructed as follows:

• V = X ∪ Y , X be the set of input variables, Y be the set of output variables.

• Θ = ϕei ∧ ϕsi .

• Let ϕαt = ∧
j G qj , where qj is a Boolean combination of input and output variables and

expressions of the form X v with v ∈ X if α = e and v ∈ X ∪ Y if α = s.
Then we get ρα = ∧

j τ(qj), where τ replaces each occurrence of X v by v′.

• We get the winning condition ϕ = ϕel → ϕsl .

3.5.2 GR(1) Game to one-pair Streett Game

For the second step, we use the algorithm from Bloem et al. [BCG+10a], to transform a
GR(1) game into a one-pair Streett Game. In our setting, we call the Streett pair resulting
from this step the Correctness Pair.

The algorithm to reduce games with Generalized Reactivity objectives to games with Streett
objectives, is called counting construction.

Reduction 3.1. (Counting Construction)
Let G : (V,X, Y,Θ, ρe, ρs, ϕ) be a game structure with the winning condition
ϕ = ∧m

k=1 G FAk →
∧n
l=1 G FGl. We define i to be a variable which is able to count from 0

to m, and the counter j is able to count from 0 to n. We construct an equivalent one-pair
Streett game G∼ : (V ∼, X∼, Y ∼,Θ∼, ρ∼e , ρ∼s , ϕ∼):

3.5. Robust Synthesis Algorithm 51

1. The state space:
V ∼ = V ∪ i ∪ j,
X∼ = X,
Y ∼ = Y ∪ i ∪ j,
Σ∼ = 2X∼∪Y ∼ .

2. The initial states Θ′:
Θ∼ = Θ ∧ i = 0 ∧ j = 0.

3. The environment transition relation ρ∼e :
((s, i, j), x′) |= ρ∼e if s ∈ Σ, x′ ∈ DX , (s, x′) |= ρe, 0 ≤ i ≤ m, 0 ≤ j ≤ n

4. The system transition relation: ρ′s :
((s, i, j), (s′, i′, j′)) |= ρ∼s if s, s′ ∈ Σ, (s, s′) |= ρe ∧ ρs and if s′ ∈ Ai+1 then

i′ = i+ 1 else i′ = i, if s′ ∈ Gj+1 then j′ = j + 1
else j′ = j

((s,m, j), (s′, 0, j′)) |= ρ∼s if s, s′ ∈ Σ, (s, s′) |= ρe ∧ ρs, j 6= n, if s′ ∈ Gj+1
then j′ = j + 1 else j′ = j

((s, i, n), (s′, 0, 0)) |= ρ∼s if s, s′ ∈ Σ, (s, s′) |= ρe ∧ ρs and for 0 ≤ i ≤ m

5. The winning condition ϕ:
ϕ = G FA∼ → G FG∼, with A∼ = {(s,m, j) ∈ Σ∼ : j ∈ {0, . . . , n}} and G∼ =
{(s, i, n) ∈ Σ∼ : i ∈ {0, . . . ,m}}

We extend the state space by two counters i and j. For m liveness assumptions G FAk
(with 1 ≤ k ≤ m) and n liveness guarantees G FGl (with 1 ≤ l ≤ n), the state-space is
extended with two counters i ∈ {0, . . .m} and j ∈ {0, . . . n}, which can be encoded with
dlog2(m+ 1)e+ dlog2(n+ 1)e additional bits.

The counter i indicates which assumption was visited last and j which guarantee was visited
last. i is incremented modulo m+ 1 whenever the actual assumption is satisfied. Similarly
for j, Gj is incremented modulo n+ 1, whenever the actual guarantee is visited. It also takes
the sequential arrangement of the traversal of the assumptions and guarantees into account.
At the beginning both counters are set to 0. Counter i is incremented the first time, when A1
is visited. The next increment of i is performed when A2 is visited, etc. If all assumptions
were visited in the right order, i = m and i is going to be reset in the next step. The same
principle is applied to the guarantees. If counter j reaches the value of n, all guarantees have
been visited in a row and both counter i and j are going to be reset in the next step.

The set A∼ = {(s,m, j) ∈ Σ∼} is the set of states which have fulfilled all assumptions in a
row and the set G∼ = {(s, i, n) ∈ Σ∼} defines all states which have fulfilled all guarantees in
a row. This results in the Correctness-Streett Pair: 〈A∼, G∼〉, which ensures that the liveness
part of the specification is encoded properly in the game. A winning strategy for this game
corresponds to a correct implementation.

For simplicity, we write ϕ = (G F i = m)→ (G F j = n) as the winning strategy. We get the
Correctness-Pair by:

ϕ = 〈(i = m), (j = n)〉 (3.8)

52 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

Example 3.1. (Counting Construction)
This example demonstrates, how the counting construction works.
Let G : (V,X, Y,Θ, ρe, ρs, ϕ) be a game structure, see Figure 3.8. The game structure consists
of four reachable states: S1 . . . S4. The winning condition is a Generalized Reactivity winning
condition:

G FA1 ∧ G FA2 → G FG1 ∧ G FG2 (3.9)

with A1 = {S2}, A2 = {S3}, G1 = {S2} and G2 = {S1}.
Applying the counting construction results in a new game graph, as shown in Figure 3.9.

A1 A2

G1G2

S1 S2 S3 S4

Figure 3.8: Game Graph before Applying Counting Construction.

This graph again shows only the states that are reachable. Each state is extended by two
counters. The first counter is the assumption counter, and the second one is the guarantee
counter. Since we have two assumptions and two guarantees, each counter has to be able to
count from 0 to 2, and needs 2 bits.

S1,0,0 S2,1,1 S3,2,1 S4,0,1

S1,0,2 S2,0,0 S3,0,0 S4,0,0

Figure 3.9: Game Graph after applying Counting Construction.

3.5.3 Robustness Streett pair

So far, we transformed the GR(1) specification into a one-pair Streett game. What’s left is to
encode the robustness property into the game.

In order to obtain a system which is also robust, we extend the state-space of the Streett
game by two additional Boolean variables enverr and syserr. These variables keep track of
the current error state of the environment and the system. Initially, both enverr and syserr
are set to false, so no error has happened so far. The variable enverr is set to true whenever
the environment makes an environment failure, syserr is set to true if a system error occurs.
If the environment or the system stops making errors, the corresponding variable is flipped
to false again.

3.5. Robust Synthesis Algorithm 53

Formally, we have the following:
Let G : (V,X, Y,Θ, ρe, ρs, ϕ) be a game structure and let the game σ̄ be in a state s ∈ Σ, the
environment chooses the next input value x′ ∈ DX and the system chooses the next output
value y′ ∈ DY . env′err and sys′err denote the next values of the error variables.

• If (s, x′) 2 ρe and (s, (x′, y′)) 2 ρs than env′err = true and sys′err = true.

• If (s, x′) |= ρe and (s, (x′, y′)) 2 ρs than env′err = false and sys′err = true.

• If (s, x′) 2 ρe and (s, (x′, y′)) |= ρs than env′err = true and sys′err = false.

• If (s, x′) |= ρe and (s, (x′, y′)) |= ρs than env′err = false and sys′err = false.

Our definition of robustness can be formulated using these variables. A system is robust if

G F syserr → G F enverr. (3.10)

This can be expressed by the Robustness Pair :

ϕ = 〈(syserr), (enverr)〉. (3.11)

Reduction 3.2. (Translation of one-pair Streett game to robust two-pair Streett game)
Given is a one-pair Streett game G : (V,X, Y,Θ, ρe, ρs, ϕ) with ϕ = {〈A,G〉}. Let syserr and
enverr be two Boolean variables and sys′err and env′err the next value of the variables. We
construct a robust two-pair Streett game G∼ : (V ∼, X∼, Y ∼,Θ∼, ρ∼e , ρ∼s , ϕ∼):

1. The state space:
V ∼ = V ∪ enverr ∪ syserr,
X∼ = X,
Y ∼ = Y ∪ enverr ∪ syserr,
Σ∼ = 2X∼∪Y ∼ .

2. The initial states Θ∼:
Θ∼ = Θ ∧ ¬enverr ∧ ¬syserr.

3. The environment transition relation ρ∼e :
ρ∼e = true

4. The system transition relation: ρ′s :
ρ∼1 = ρe ∧ ρs ∧ ¬env′err ∧ ¬sys′err
ρ∼2 = ρe ∧ ¬ρs ∧ ¬env′err ∧ sys′err
ρ∼3 = ¬ρe ∧ ρs ∧ env′err ∧ ¬sys′err
ρ∼4 = ¬ρe ∧ ¬ρs ∧ env′err ∧ sys′err
ρ∼s = ρ∼1 ∨ ρ∼2 ∨ ρ∼3 ∨ ρ∼4

5. The winning condition ϕ∼:
ϕ∼ = (G FA→ G FG) ∧ (G F(syserr)→ G F(enverr))

54 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

According to the new environment transition relation ρ∼e , the environment is allowed to make
environment failures by choosing next input values that violate the initial transition relation
ρe. The system keeps track of the violations of ρe, by changing the value of the environment
error variable env′err to true. Also the system is allowed to make system failures by violating
the initial system transition relation ρs. In this case, sys′err is set to true. In order to win
the game, the system is not allowed to make an infinite number of errors, if the environment
doesn’t.

Another way to encode the system transition relation ρ∼s would be:
ρ∼1 = ρe ∧ ρs ∧ ¬env′err ∧ ¬sys′err
ρ∼2 = ρe ∧ ¬ρs ∧ ¬env′err ∧ sys′err
ρ∼3 = ¬ρe ∧ ρs ∧ env′err ∧ ¬sys′err
ρ∼4 = ¬ρe ∧ ¬ρs ∧ ¬env′err ∧ ¬sys′err
ρ∼s = ρ∼1 ∨ ρ∼2 ∨ ρ∼3 ∨ ρ∼4

It differs only in the last formula ρ∼4 . If an environment error occurs, it is ok for the system
to respond with a system error, according to the definition of robustness. Since this is ok,
there is no need to set an error bit. This way, states with both enverr = 1 and syserr = 1 are
no longer reachable.

The first street pair 〈A,G〉 was obtained from the GR(1) specification. It implies that if all
liveness assumptions A are fulfilled infinitely often, all liveness guarantees G also have to be
fulfilled infinitely often. If this condition is fulfilled, the automatically synthesized system
works correctly.

The robustness property is encoded in the second Streett pair 〈(syserr), (enverr)〉. The second
pair implies that if a state with a system error is visited infinitely often, a state with an
environment failure also has to be visited infinitely often.

Winning the game is only possible by fulfilling both pairs. Therefore the winning strategy of
the two-pair Streett game corresponds to a robust and correct implementation.

3.5.4 Winning Region

The next step is to compute the winning region Ws for player 0 of the two-pair Streett
game.

In [PP06], Piterman and Pnueli introduced a recursive fixpoint algorithm to compute the
winning region for any number of Streett pairs. It is a symbolic algorithm and therefore we
can use efficient symbolic fixpoint computations. By keeping intermediate values during the
fixpoint calculation, Streett games can be solved symbolically in time O(nk+1k!) and space
O(nk+1k!) where n ist the number of states of the game and k is the number of pairs in the
winning condition. In our case, we want to solve Streett games with two pairs. In case of
k = 2, we can solve such games in O(n3) time and O(n3) space.

Let G = (V,X, Y,Θ, ρe, ρs, ϕ) be a game structure and σ̄ an infinite play. The winning
condition ϕ is given by ϕ = {〈E1, F1〉, 〈E2, F2〉, . . . , 〈Ek, Fk〉} with Ei, Fi ⊆ Σ. The winning

3.5. Robust Synthesis Algorithm 55

condition is as follow:

ϕ(σ̄)⇔
k∧
i=1

(inf(σ̄) ∩ Ei 6= ∅ → inf(σ̄) ∩ Fi 6= ∅) (3.12)

First, the algorithm chooses the Streett pair 〈E1, F1〉, and collects all states that can visit F1
infinitely often. If F1 is visited infinitely often, the Streett pair is satisfied, no matter if E1 is
visited infinitely often or not. Then the algorithm adds all states that visit E1 only finitely
often, while making sure recursively that all other pairs 〈E2, F2〉, . . . , 〈Ek, Fk〉 are satisfied.
In the next step, the algorithm chooses the pair 〈E2, F2〉, collects all states that satisfies this
pair, and makes sure recursively that the others are satisfied as well. . . .

We used this algorithm in our implementation, shown in Algorithm 1.

input : A set Set of Streett pairs {〈a1, b1〉 . . . 〈ak, bk〉}.
output : The winning region for Streett game with k pairs.

1 begin
2 if |Set|=0 then
3 return m_Streett(true,false);
4 end
5 return m_Streett(Set,true,false);
6 end

Algorithm 1: main_Streett: Main Function to compute Winning Region

The function (X) returns the set of states from which the system can force the play into X
in one step. LeastFix and GreatestFix represent least and greatest fixpoint computations
over sets of states. The loop LeastFix(X) initializes X by the empty set, and is repeated
until the set of states computed for X does not change any more. The loop GreatestFix(X)
initializes X by the set of all states, and is repeated until two rounds calculate the same set
of states for X. The operators ∩ and ∪ perform intersection and union of sets of states. Let
〈a, b〉 be a Streett pair. Then a and b are sets of states, and ā and b̄ are their complements.

To compute the winning region for player 0 according to the Streett winning condition, the func-
tion main_Streett is called. The input Set is a set of Streett pairs: Set = 〈a1, b1〉, . . . , 〈ak, bk〉.
The output is a set of states: the winning region for player 0. To compute the winning region,
the function main_Streett calls the function Streett.

The function Streett is called recursively for all Streett pairs 〈a1, b1〉 . . . 〈ak, bk〉. Suppose
that the function Streett was already called i times with 1 ≤ i ≤ k and the parameter
Set consists of the Streett pairs 〈ai+1, bi+1〉, . . . , 〈ak, bk〉. In this case, the input parameter ϕ
defines the set of states that eventually avoid states in a1 ∪ · · · ∪ ai. The input parameter
W defines states that can visit states in bj for j = 1 . . . i infinitely often while satisfying all
previous handled pairs.

If the function Streett reaches recursion depth k, it has processed all Streett pairs and
the function Streett calls the function m_Streett. The input parameters ϕ and W of the
function m_Streett have the same meaning as in the function Streett.

56 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

input : A set Set of Streett pairs {〈a1, b1〉 . . . 〈ak, bk〉}, and sets of states ϕ and W .
output : The winning region Z for a game with winning condition

(ϕ UW)∧〈a,b〉[G(ϕ ∧ F b) ∨ [ϕ U (G(ϕ ∧ ā) ∧ ltlStr(S − 〈a, b〉))]]

1 begin
2 GreatestFix(Z)
3 foreach 〈a, b〉 ∈ Set do
4 nSet = Set − 〈a, b〉 ;
5 p1 = W ∪ ϕ ∩ r ∩ (Z);
6 LeastFix(Y)
7 p2 = p1 ∪ ϕ ∩ (Y);
8 if |nSet| = 0 then
9 Y = m_Streett(ϕ ∩ ḡ, p2);

10 else
11 Y = m_Streett(nSet, ϕ ∩ ḡ, p2);
12 end
13 end
14 Z = Y ;
15 end
16 end
17 return Z ;
18 end

Algorithm 2: Streett: Recursive Function to compute Winning Region

input : Sets of states ϕ and W .
output :Winning region for game with winning condition: (ϕ UW) ∨ Gϕ.

1 begin
2 GreatestFix(X)
3 X = W ∪ ϕ ∩ (X);
4 end
5 return X ;
6 end

Algorithm 3: m_Streett: Helper Function to compute Winning Region

3.5. Robust Synthesis Algorithm 57

We define ltlStr(Set) = ∧
〈a,b〉∈Set(G F a→ G F b).

Lemma 3.1. [PP06] The function m_Streett(ϕ,W) computes a set of state according to
the formula:

νX(W ∨ ϕ ∧ (X)). (3.13)

This set corresponds to the winning region for player 0 in the game with winning condition:

(ϕ UW) ∨ Gϕ. (3.14)

The set of states which is calculated by the fixpoint-formula is exactly the same set of states
satisfying the winning condition.

Lemma 3.2. [PP06] The function Streett(〈a, b〉,ϕ,W) computes a set of states according
to the formula:

νZµY (m_Streett(ϕ ∧ ā, (W ∨ (ϕ ∧ b ∧ Z) ∨ (ϕ ∧ Y)))). (3.15)

This set corresponds to the winning region for player 0 in the game with winning condition:

win(〈a, b〉, ϕ,W) = (ϕ UW) ∨ G(ϕ ∧ F b) ∨ (ϕ U G(ϕ ∧ ā)). (3.16)

A play σ̄ is winning according the winning condition win(〈a, b〉, ϕ,W), if the play stays in
ϕ-states, until it reaches a W -state, or it visits a-states finitely often, or in b-states infinitely
often, both while staying in ϕ-states.

Following, we sketch the proof for soundness of 3.2. The proof for completeness can be found
in [PP06]. Let Ẑ be the set computed by the greatest fixpoint and let Yi be the iterates of
the least fixpoint using Ẑ. We define the rank r of a state v: r(v) = min{i : v ∈ Yi}. By
using Lemma 3.1, the iterates for the fixpoint Y using Ẑ are defined by:

Y0 = ∅, (3.17)

Y1 = G(ϕ ∧ ā) ∨ [(ϕ ∧ ā) U (W ∨ (ϕ ∧ b ∧ Ẑ))], and (3.18)

Yi+1 = G(ϕ ∧ ā) ∨ [(ϕ ∧ ā) U (W ∨ (ϕ ∧ b ∧ Ẑ) ∨ (ϕ ∧ Yi))]. (3.19)

For any state with rank r(v) = i with i ≥ 1, there exists a sub-strategy for player 0. If there
are n iterates of the fixpoint Y , than there are n sub-strategies for player 0. In a state v with
r(v) = i, player 0 plays according to sub-strategy i. By combining these sub-strategies, we
are able to prove the soundness of Lemma 3.2.

First we consider Equation 3.18. Suppose, the play σ̄ is in state v in Y1: r(v) = 1.
Sub-strategy 1 is defined as follows:
Player 0 can either stay in (ϕ∧ ā)-states forever, or he can stay in ϕ∧ ā states until he reaches
a W -state, or he can stay in ϕ ∧ ā states until he reaches a (ϕ ∧ b ∧ Ẑ)-state.

Now, we consider Equation 3.19. The play σ̄ is in state v in Yi, i > 1, i.e. r(v) = i.
Sub-strategy i for i > 1 is defined as follows:

58 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

Player 0 can either do the same things as defined in sub-strategy 1 or he can stay in
(ϕ ∧ ā)-states until he reaches a state with a lower rank.

If a play σ̄ switches infinitely often between the sub-strategies, it visits states in (ϕ ∧ b ∧ Ẑ)
infinitely often. While player 0 is playing according to a sub-strategy, the ranks of the states
become lower and lower, and he gets closer and closer to states in (ϕ ∧ b ∧ Ẑ) with rank
0. If he reaches such a state, he can choose any successor state in Ẑ with arbitrary rank.
Afterwards, he again tries to reach a state with rank 0, etc. The play σ̄ satisfies the formula
G(ϕ ∧ F b) and thereby is a winning play according to win(〈a, b〉, ϕ,W).

If a play σ̄ switches only finitely often between the strategies, the play stays in some Yi from
this point on. From this point on, the play plays according to the ith sub-strategy and stays
in states in (ϕ ∧ ā) forever. The play satisfies the formula (ϕ U G(ϕ ∧ ā)) and thereby is
winning according to win(〈a, b〉, ϕ,W). This proves the soundness of Lemma 3.2. �

To illustrate what we have just proofed we solve a Streett game with only one pair. In this
“simple ”we can make further simplifications. If there is only one Streett pair 〈a, b〉, then
we are in the top-level call of the function Streett and we can set ϕ to true and W to false.
This leads to the winning condition of the function Streett:

win(〈a, b〉, true, false) = G F(b) ∨ F G(¬a) (3.20)

This is exactly the winning condition for a one pair Streett game:

win(〈a, b〉, true, false) = ¬¬F G(¬a) ∨ G F(b) (3.21)

win(〈a, b〉, true, false) = ¬G F(a) ∨ G F(b) (3.22)

win(〈a, b〉, true, false) = G F(a)→ G F(b) (3.23)

So the function Streett(〈a, b〉,true,false) computes the winning region for player 0 with a
one-pair Streett winning condition.

This can easily be illustrated by simplification of the iterates. We get:

Y0 = ∅. (3.24)

Y1 = G(ā) ∨ (ā U (b ∧ Ẑ)). (3.25)

Yi+1 = G ā ∨ (ā U (b ∧ Ẑ ∨ Yi)). (3.26)

Suppose the play σ̄ is in state v with r(v) = 1.
The play plays according to sub-strategy 1. Sub-strategy 1 defines that for each state in
Y1 the game either stays in ā-states forever, or the play stays in ā-states, until it reaches a
(b ∧ Ẑ)-state. Figure 3.10 illustrates sub-strategy 1.

Let’s assume the play σ̄ is in state v with r(v) = i+ 1 for i ≥ 1.
While playing according to sub-strategy i+ 1, player 0 can either stay in ā-states, or he stays
in ā-states, until it reaches a state in (b ∧ Ẑ) or a state in Yi. Figure 3.11 illustrates the
sub-strategy i+ 1.

3.5. Robust Synthesis Algorithm 59

Figure 3.10: Strategy for States in Y1 for one-Pair Streett Game.

Figure 3.11: Strategy for States in Yi+1 for a one-Pair Streett Game.

This is shown in Figure 3.11.

If a play σ̄ switches infinitely often between the strategies, then b-states are visited infinitely
often. If a play σ̄ switches only finitely often between the strategies, than a-states are also
only visited finitely often. The play is winning according to the Streett-winning condition
G F a→ G F b.

Lemma 3.3. [PP06] Let Set be a set of Streett pairs {〈a1, b1〉, . . . 〈ak, bk〉}. The function
Streett(Set,ϕ,W) computes a set of states according to the formula:

νZµY [Streett(Set− 〈a1, b1〉, ϕ ∧ ā1, (W ∨ (ϕ ∧ b1 ∧ Z) ∨ (ϕ ∧ Y)))]. (3.27)

This set corresponds to the winning region for player 0 in the game with winning condition:

win(〈a, b〉, ϕ,W) = (ϕUW)∨
∧

〈a,b〉∈Set
[G(ϕ∧F b)∨(ϕU(G(ϕ∧ā)∧ltlStr(Set−〈a, b〉)))]. (3.28)

Let’s assume Lemma 3.3 is proved for i Streett pairs. The induction step is done, by proving
Lemma 3.3 for i + 1 Streett pairs. Let S′ = Set − 〈a, b〉. By induction, we get for every
Streett pair 〈a, b〉 ∈ Set the iterates:

Y0 = ∅. (3.29)

Y1 = ϕ U (W ∨ (ϕ ∧ b ∧ Ẑ))∧
〈a′,b′〉∈S′

[G(ϕ ∧ ā ∧ F b′) ∨ [(ϕ ∧ ā) U (G(ϕ ∧ ā) ∧ ltlStr(S′ − 〈a′, b′〉))]]. (3.30)

Yi+1 = ϕ U ((ϕ ∧ Yi) ∨W ∨ (ϕ ∧ b ∧ Ẑ))∧
〈a′,b′〉∈S′

[G(ϕ ∧ ā ∧ F b′) ∨ [(ϕ ∧ ā) U (G(ϕ ∧ ā) ∧ ltlStr(S′ − 〈a′, b′〉))]]. (3.31)

60 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

First we consider Equation 3.30. Suppose, the play σ̄ is in state v with r(v) = 1.
Sub-strategy 1 is defined as follows:
Player 0 can either stay in ϕ-states until he reaches a W -state or a state in ϕ∧ b∧ Ẑ or the
play is infinite and remains in (ϕ ∧ ā)-states while satisfying the remaining Streett pairs.

Let’s look at Equation 3.31. The play σ̄ is in state v with r(v) = i+ 1.
Sub-strategy i+ 1 is defined as follows:
Player 0 can either do the same things as defined by sub-strategy 1 or he can stay in ϕ-states
until he reaches a state with lower rank, while staying in ϕ-states.

If a play σ̄ switches infinitely often between the strategies, it visits states in (ϕ ∧ b ∧ Ẑ)
infinitely often. While player 0 is playing according to some sub-strategy, the ranks of the
states decrease. If he reaches a state in (ϕ ∧ b ∧ Ẑ), he can choose any successor state in Ẑ
with arbitrary rank. The play σ̄ satisfies the formula G(ϕ ∧ F b) and thereby is a winning
play according to win(Set, ϕ,W).

If a play σ̄ switches only finitely often between the strategies, the play stays in Yi from this
point on. From this point on, the play plays according to the sub-strategy i and satisfies the
following formula ϕ U

∧
〈a,b〉∈Set[G(ϕ ∧ F b) ∨ (ϕ U (G(ϕ ∧ ā) ∧ (ltlStr(Set − 〈a, b〉)))] which

implies ϕ U (ltlStr(S′) ∧ Gϕ). This proves the soundness of Lemma 3.3.

3.5.5 Winning Strategy

Figure 3.12: Illustration of the Iterates of the Fixpoint Computation.

The following discussion assumes that Set={〈a1, b1〉, 〈a2, b2〉}. Let Y1 be the fixpoint in Y for
the first Streett pair in the top-level call to Str. Y2 is the result for the second pair. We
denote the iterates of these fixpoint computations by Y1,0 . . . Y1,C1 and Y2,0 . . . Y2,C2 . For both
Streett pairs, the function Str is called recursively. The iterates of Y in the recursive call
during the computation of Yi,j are denoted Yi,j,0 . . . Yi,j,Ci,j for i ∈ {1, 2} and j ∈ {0, . . . Ci}.

Figure 3.12 illustrates the intuitive meaning of the iterates. As long as a1 and a2 hold, it
is possible to proceed to the next lower iterate of Yi. Y2 is reachable from Y1,1 and Y1 is
reachable from Y2,1. The resulting cycle allows to visit b1 and b2 infinitely often during the
play. If a2 is not satisfied, the next lower iterate of Y2 may not be reachable. Never reaching

3.6. Example of Robust Synthesis 61

b2 again is fine if a2 is also never satisfied again. However, the other Streett pair still has
to be handled. This is ensured through the iterates from the recursive step. Figure 3.12
shows them for Y2,2 only. If a1 holds, it is possible to proceed to the next lower iterate of Y2,2
and from Y2,2,1 back to Y2,2. This cycle ensures that b1 is visited infinitely often if a1 holds
infinitely often but a2 does not. Analogously for all other iterates Yi,j .

To define a strategy, we introduce one bit m of memory. m = 0 means b1 should be fulfilled
next, m = 1 means b2 should be fulfilled next. The strategy is composed of several parts,
which we enumerate in the following Table. They are prioritized from top to bottom. If a
particular sub-strategy cannot be applied (because of violated assumptions), the next one is
tried.

Table 3.1: Winning Strategy for two-Pair Streett Game.
Nr. present state in: next state in: informal description
1 Y1,i \ Y1,i−1,¬m Y1,i−1,¬m step towards b1
2 Y2,i \ Y2,i−1,m Y2,i−1,m step towards b2
3 Y1,1,¬m Z,m b1 reached; switch towards b2
4 Y2,1,m Z,¬m b2 reached; switch towards b1
5 Y1,i,j \ Y1,i,j−1,¬m Y1,i,j−1,¬m ¬a1; sub-game towards b2
6 Y2,i,j \ Y2,i,j−1,m Y2,i,j−1,m ¬a2; sub-game towards b1
7 Y1,i,1,¬m Y1,i,¬m b2 reached in sub-game
8 Y2,i,1,m Y2,i,m b1 reached in sub-game
9 Y1,i,j \ Y1,i,j−1,¬m Y1,i,j ,¬m ¬a1,¬a2; stay
10 Y2,i,j \ Y2,i,j−1,m Y2,i,j ,m ¬a2,¬a1; stay

3.6 Example of Robust Synthesis

To demonstrate how our algorithm works, we look again on the simple arbiter example
specified in Section 3.4. The specification of the arbiter is defined by the formula ϕ =
Ai ∧At1 ∧At2 ∧Al → Gi ∧Gt1 ∧Gt2 ∧Gl.

First, the specification is transformed into a one-pair Streett game. In this example there
is no need for a counting construction, since there is only a single liveness assumption and
guarantee. Figure 3.6 illustrates the encoding of the safety properties At1, At2, Gt1 and Gt2 in
the transition relation of the Streett game. For example, the transition relation requires that
if there is a request r has to stay true until the request is granted.

The next step is to transform the one-pair Streett game to a robust two-pair Streett game. In
order to do that, we extend the state space with the variables enverr and syserr. Before,
the number of states was 4 = 22. Now, through the two additional variables, we end up with
16 = 24 states.

Further, we have to adapt the transition relation. Figure 3.13 shows a cutout of the
new transition relations of the two-pair Streett game. The first bit of each state corresponds

62 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

to the request signal r and the second bit to the grant signal g. The third bit of each state
corresponds to the signal enverr, which encodes an error caused by the environment. If this
bit is false, no safety assumption violation occurred in the current step. The last bit is syserr,
which keeps track of the safety guarantee violations.

First, let’s consider the blue dashed transition in Figure 3.13. Let ρe and ρs be the original
transition relations of the one-pair Streett game. Let’s suppose the play is in the initial
state s = (¬r,¬g), and all signals are low. The environment chooses the next input x′ = r.
Since (s, r) |= ρe, there is no safety assumption violation. Now, the system chooses the next
output y′ = g, although it is not allowed to raise the grant signal immediately, according
to the safety guarantees. We get (s, r, g) 2 ρs. So, in the two-pair Streett game, we get for
s = (¬r,¬g,¬enverr,¬syserr), x′ = r and y′ = g the next state s′ = (r, g,¬enverr, syserr).

Now let’s consider the dotted orange transitions in Figure 3.13. Suppose, the current state is
s = (r, g,¬enverr, syserr). According to the safety assumptions, if both request and grand
are true, than the environment is allowed to maintain the request, or to lower it. So in any
case, env′err = 0. However, the system can make safety guarantee violation. sys′err = 1, if the
system lowers the grant signal in the next step. In this case, the system error bit stays high.
Otherwise, if the system keep the grand signal high, the system has recovered and works
correctly again, and sys′err = 0.

0000 0100

11001000

1101

1001

0001

Figure 3.13: Cutout of the Transition Relation of the two-Pair Streett Game.

The complete transition relation graph consists of 16 states and 64 transitions. For a clear
illustration, a more compact representation of the whole game graph has been chosen, see
Figure 3.14. The first bit of each state represents r, the second bit g and the last bit enverr.
The variable syserr is encoded via the transitions. Black solid lines indicate that there is
no system error (syserr = 0) and red dashed-lines indicate that there is one (syserr = 1).
Colored states represent states where an environment error has occurred. E.g., assume we
start in state s = (100). In this state, a request has occurred which has not been granted yet,
and no environment error occurred. The safety assumption prohibits the environment from
lowering the request. If it does anyway, depending on the choice of the system, either the
state s′ = (011) or s′ = (001) is entered, which are both colored states.

3.6. Example of Robust Synthesis 63

Figure 3.14: Transition Relation of the two-Pair Streett Game.

Figure 3.15: Arbiter Example: Illustration of the Iterates.

Next, the winning region and the strategy are computed. Figure 3.15 illustrates the
iterates of the fixpoint computation. We have a1 = ¬(r ∧ g), b1 = (r ∧ g) ∨ (¬r ∧ ¬g), a2 =
¬oks, b2 = ¬oke. To illustrate strategy computation, we consider the following scenario.
Assume that m = 1 and the arbiter is in a state out of Y2,2\Y2,1. The value of m = 1 dictates
that a state out of Y2,1 is to be visited next, if possible. Y2,1 contains all states with an
environment error. If we assume that the environment always behaves correctly, the set
Y2,1 becomes unreachable. In order to win the game, the system is not allowed to make a
mistake either, so the arbiter stays in Y2,2. This way the second Streett pair 〈(¬oks), (¬oke)〉
is fulfilled, because both sets are only visited finitely often. To win the game, the first Streett

64 CHAPTER 3. ROBUST SYNTHESIS FROM GR(1) SPECIFICATIONS

pair also has to be fulfilled. Therefore the subgame is entered, trying to reach states in b1
while staying in Y2,2. Through the loop in Y2,2, it is possible to visit these states infinitely
often, fulfilling the first Streett pair as well.

3.7 Recovery Time

Lemma 3.4. (Recovery of a reactive System.)
A robust system is able to recover from an environment failure with at most one system
failure.

To prove Lemma 3.4, let’s consider the Game Structure G of the one-pair Streett Game with
transition relations ρe and ρs and the Game Structure G∼ of the robust two-pair Streett
Game with transition relations ρ∼e and ρ∼s . The transition relation ρe is complete. For all
states, there exists at least one possible next input. Also the transition relation ρs is complete.
For all states and for all possible next input values, there exists at least one possible next
output value.

Suppose, we chose the following implementation of ρ∼s :
ρ1 = ρe ∧ ρs ∧ ¬env′err ∧ ¬sys′err
ρ2 = ρe ∧ ¬ρs ∧ ¬env′err ∧ sys′err
ρ3 = ¬ρe ∧ ρs ∧ env′err ∧ ¬sys′err
ρ4 = ¬ρe ∧ ¬ρs ∧ env′err ∧ sys′err
ρ∼s = ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4

In the two-pair Streett game, the environment is allowed to choose any possible input
combination, hence its transition relation is ρ∼e = true. If the environment violates ρe by
doing so, the bit enverr is set to true. The system is allowed to choose its output values
arbitrarily, only the values of enverr and syserr result from the other choices of next input
and output values.

Let’s suppose. the environment violates ρe. The system can now choose a next output, such
that such that the game is again in a “normal ”state, where both environment and system can
satisfy all safety properties in the next step. Such a state always exists, since the transition
relations ρe and ρs are complete.

In some situations, when ρe is violated, the system may not be able to choose a next output
without violating the transition function ρs. In most cases, the system has to violate ρs to
reach a proper state. The only difference between violating and not violating ρs is that either
the error bits are set or not. Since the system is also allowed to choose the output arbitrarily,
it is always possible for the system to reach a valid state with at most one system error in
the case of an environment error.

3.7. Recovery Time 65

Suppose, we chose the following implementation for the system transition relation ρ∼s :
ρ1 = ρe ∧ ρs ∧ ¬env′err ∧ ¬sys′err
ρ2 = ρe ∧ ¬ρs ∧ ¬env′err ∧ sys′err
ρ3 = ¬ρe ∧ ρs ∧ env′err ∧ ¬sys′err
ρ4 = ¬ρe ∧ ¬ρs ∧ ¬env′err ∧ ¬sys′err
ρ∼s = ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4

In this case, the system has a winning strategy, where the system error bit will always stay
low. If there is an environment failure, the system may be able to recover without a system
failure: sys′err = 0. If there is an environment failure, and the system violates ρs, it also leads
to sys′err = 0 according to ρ∼s .

There are at least two possible winning strategies. The first one is: in the case of an
environment failure, do anything to get to a normal state. In this case the strategy could be
that the system violates a guarantee even if it doesn’t have to. We implemented an improved
strategy: if the system is able to recover without a safety guarantee violation, it should do
so.

4 Implementation of Robustness and Results

4.1 Implementation of Robustness in RATSY

To implement robustness into RATSY, most changes had to be made in Marduk. Only small
cosmetic changes are made to RATSY itself, such as adding checkboxes to the user-interface.
This section explains the changes.

4.1.1 RATSY

For the synthesis feature, RATSY’s main task is to provide a comfortable user-interface.
RATSY takes the user-settings and calls Marduk with the configured options, and Marduk
creates the implementation. RATSY uses a Model-View-Controller (MVC) design pattern.
It allows a clean separation of data-model, user-interface and control-logic. The library
pygtkmvc is used in RATSY to implement this pattern, which provides an easy-to-use high-
level MVC-framework for Python. Another important implementation aspect of RATSY is
that it uses Glade to implement its graphical user interface. Glade is a rapid-development
environment for creating gtk-windows, forms and panels via a comfortable and intuitive
GUI-editor.

Changes to RATSY’s forms. In order to allow robust synthesis, a new checkbox was
added to the synthesis Glade-panel. This way, robust synthesis is still optional. For large
specifications, it will sometimes not be possible to synthesize robust systems through to
the higher complexity. Additionally, this checkbox was also added to the game panel. If
the checkbox is enabled, realizability and a counterstrategy in case of non-realizability is
computed for the robust setting. Most notable for the user is that input signals are now
allowed to be chosen arbitrarily.

Changes to RATSY’s models. The data-models for the modified panels were adapted,
to keep track of the robustness checkbox.

Changes to RATSY’s controllers. RATSY’s controllers call Marduk and pass the
user’s configuration parameters to it. Therefore the controllers of the game and synthesis
features were modified to pass the new robustness option correctly to Marduk. Originally,
the control-logic did not allow input values during a game, which violates environment safety
assumptions. This check was disabled, when the robust-synthesis option is active. In a
counter game, the system is now allowed to violate safety assumptions, in order to win the
game. During a normal game, the user can also choose arbitrary input vales, to see how
the system recovers from safety assumptions violations. The system may respond by also
violating safety guarantees, but will eventually recover.

66

4.1. Implementation of Robustness in RATSY 67

4.1.2 Marduk

Marduk is a straight forward implementation. The main module (marduk.py) is used for
option parsing and management of the application’s control-flow. After acquiring the options,
Marduk starts to calculate a winning-region and a winning-strategy and then creates the
implementation of the circuit.

parse command
 line switches

 transform
 specification

synthesize
 robust
 system?

winning region

winning strategy

 counting
construction

 streett
winning region

 streett
winning strategy

 optimal
winning strategy

 create
 implementation

strategy?

Figure 4.1: Control Flow of extended Marduk.

The newly introduced robustness option is now used to alter the control flow of Marduk,
see Figure 4.1. If robustness is enabled, the counting construction is applied. The counting
construction was implemented by Hans Jürgen Gamauf during his master thesis. Next
the winning region and winning strategy for the two-pair Streett game are calculated. We

68 CHAPTER 4. IMPLEMENTATION OF ROBUSTNESS AND RESULTS

implemented two different winning strategies for robust synthesis: the first one is called normal
strategy and the second one is called best strategy. The normal strategy works according to
Table 3.5.5. In each step, the strategy tries to proceed to the next lower iterate, in order to
fulfill it‘s guarantees. If playing according to the best strategy, the system chooses an iterate
as low as possible, in order to fulfill the guarantees as soon as possible. Marduk’s simple
design allowed this extension without any other modifications.

In order to compute a winning strategy for Streett games, we have to store the iterates of the
fixpoint computation. Due to the recursive nature of the algorithm, storing these iterates
requires large amounts of memory. Even simple examples, like arbiters with 10 request and
acknowledgement lines, require an impracticable amount of memory.

4.2 Results

In this section, we tested our implementation in RATSY with an arbiter, with N request
and acknowledge lines. The Tables 4.1 and 4.2 compare the results of the experiment.
Three algorithms were compared. As baseline we used the already in RATSY implemented
algorithm from Piterman et al.[PPS06]. The second algorithm extends the baseline algorithm
by adding the counting construction. It shows the impact of the counting construction on
the baseline algorithm. The third algorithm is our robust synthesis algorithm presented in
this work. In the robustness algorithm, we used the best strategy as winning strategy.

Table 4.1 compares the synthesis time in seconds and Table 4.2 compares the implementation
size in lines of Verilog code.

The counting construction results in a significant increase of the state space. This already leads
to a huge increase in the synthesis time and in the size of the implementation compared with
the original algorithm. As expected, the robust approach takes even more time and creates
larger circuits than the second synthesis algorithm. This is due to the higher complexity of
the new method.

Table 4.1: Synthesis Time for Arbiter.
N time prev. impl. time with cc time with robustness
2 0.04 0.06 0.15
3 0.08 0.16 1.07
4 0.14 0.4 3.37
5 0.18 0.98 11.13
10 0.81 108.37 3,485
15 3.30 6749 26,172

Figures 4.2 and 4.2 show a graphical representation of the data.

4.2. Results 69

Table 4.2: Implementation Size for Arbiter.
N size prev. impl. size with cc size with robustness
2 85 170 501
3 145 335 1,234
4 230 896 2,829
5 324 1,451 5,614
10 1,072 32,466 90,215
15 2,215 407,699 6.2 · 106

4 6 8 10 12 14100

102

104

Number of req/ack lines

T
im

e
in

se
co
nd

s

Synthese Time

prev. implementation
with counting-construction
with robustness

2 4 6 8 10 12 14
102

104

106

Number of req/ack lines

Li
ne
s
of

co
de

Verilog Code Size

prev. implementation
with counting-construction
with robustness

We also compared the normal winning strategy and the best winning strategy. In most
cases, systems synthesized according to the normal strategy end up in smaller circuites. The
disadvantage is that they may react slower. For instance, the specification of an arbiter
states that if there is a request, there will be a grant eventually. Usually, systems synthesized
with the normal strategy need more time until the request is granted. The second strategy
could lead to the reverse phenomenon. The circuits may be larger, therefore requests may be
granted sooner.

5 Conclusions and Future Work

5.1 Conclusions

The original synthesis algorithm of RATSY gave no formal guarantees for robustness. The
extension presented in this work guarantees that synthesized systems are correct and robust
by construction. This comes at the cost of larger circuits and longer synthesis times, due to
the increased computational complexity. The systems synthesized without the robustness
method recover in zero or one steps. Experimental results show that in many practical cases,
the ratio between system errors and environment errors is far below one. So the synthesized
systems behave very reasonable in unexpected situations and for security relevant systems, it
could be worth the overhead.

Since in practice, one has to be prepared for environment errors, guaranteed robustness is an
important property that enhances the quality of a system.

5.2 Future Work

Possible future work would be to optimize the implementation to achieve better execution
times. The implementation is a proof of concept implementation and has optimization
potential. To compute the winning strategy, we use the iterates of the fixpoint algorithm of
computing the winning region. Due to the recursive nature of the algorithm, storing these
iterates requires large amounts of memory. Further optimization would be trying to reduce
the needed memory.

Another way to handle unexpected situations would be to go to some reset states, if there
are environment failures. This solution would result in much less overhead than our robust
synthesis method and could be enough for many system requirements. It would be interesting
to implement this method and to compare the resulting systems with the system of our robust
synthesis method.

An interesting future work would be to expand our definition of robustness. In this work, we
define a system to be robust if a finite number of environment failures only induce a finite
number of system failures. This can be expressed via the formula F G¬enverr → F G¬syserr.
An expansion would be to require additionally that if there is no environment failure, there
should be no system failure. This can be expressed by the safety property

ϕ = G¬enverr → G¬syserr. (5.1)

70

5.2. Future Work 71

We could also require that either there is never a system error, or there is no system error
until there is an environment error. This can be formulated by

ϕ = ¬syserr W enverr. (5.2)

At the moment we assume that the environment does not violate the safety assumption Ai
of the GR(1) specification. We can deal with violations of Ai by changing the initial state
formula Θ of the game structure of the two-pair Streett game.

The formula Θ is a formula over the assumption Ai, the guarantee Gi, the counters i and
j of the counting construction and the error bits enverr and syserr. The formula Θ of the
two-pair Streett game is currently defined by

Θ = Ai ∧Gi ∧ i = 0 ∧ j = 0 ∧ ¬enverr ∧ ¬syserr. (5.3)

In order to allow violations of Ai, we have to modify the formula Θ as follows:

Θ∼1 = Ai ∧Gi ∧ ¬enverr ∧ ¬syserr
Θ∼2 = ¬Ai ∧Gi ∧ enverr ∧ ¬syserr
Θ∼3 = Ai ∧ ¬Gi ∧ ¬enverr ∧ syserr
Θ∼4 = ¬Ai ∧ ¬Gi ∧ enverr ∧ syserr
Θ∼ = i = 0 ∧ j = 0 ∧ (Θ∼1 ∨Θ∼2 ∨Θ∼3 ∨Θ∼4)

According to our current definition of robustness, the system is allowed to violate the guarantee
Gi regardless of the initial action of the environment. The additional requirements of Equation
5.1 and 5.2 would prevent this from happening.

List of Symbols

AP Atomic propositions page 10

Σ Alphabet page 13

Σ? Set of finite words page 13

Σω Set of infinite words page 13

ε Empty word page 13

σ̄ Word over an Alphabet Σ page 13

A Automaton page 13

π Run on automaton A page 13

F Temporal operator: Eventually page 23

X Temporal operator: Next page 23

U Temporal operator: Until page 23

W Temporal operator: Weak Until page 23

E Path operator: Exists page 28

A Path operator: Forall page 28

µ Least fixpoint operator page 29

ν Greatest fixpoint operator page 29

G Game Structure page 31

X Set of input variables page 31

Y Set of output variables page 31

DX Input domain page 31

DY Output domain page 31

ρe Transition function of environment in G page 31

ρs Transition function of system in G page 31

Nexttime operator for the system page35

Nexttime operator for the environment page 35

73

Bibliography

[AMP94] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Hybrid Systems, pages 1–20, 1994.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, 1985.

[AS10] Farhad Arbab and Marjan Sirjani, editors. Fundamentals of Software Engineering,
Third IPM International Conference, FSEN 2009, Kish Island, Iran, April 15-17,
2009, Revised Selected Papers, volume 5961 of Lecture Notes in Computer Science.
Springer, 2010.

[AT04] Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl
fragments. ACM Trans. Comput. Log., 5(1):1–25, 2004.

[Aue06] Benalycherif L. Fedeli A. Fisman D. McIsaac A. Winkelmann K. Auerbach, G.
Case studies in property-based requirements specification. Prosyd Delivarable
D1.4/1, 2006.

[BBW06] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook
of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier
Science Inc., New York, NY, USA, 2006.

[BCG+10a] Roderick Paul Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas Henzinger,
and Barbara Jobstmann. Robustness in the presence of liveness. In Springer,
editor, Computer Aided Verification, volume 6174 of Lecture Notes in Computer
Science, pages 410 – 424. Springer, 2010.

[BCG+10b] Roderick Paul Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek,
Robert Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. Ratsy
- a new requirements analysis tool with synthesis. In Springer, editor, Computer
Aided Verification, volume 6174 of Lecture Notes in Computer Science, pages
425 – 429, 2010.

[BCP+07] Roderick Bloem, Roberto Cavada, Ingo Pill, Marco Roveri, and Andrei Tchaltsev.
Rat: A tool for the formal analysis of requirements. In Werner Damm and Holger
Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science,
pages 263–267. Springer, 2007.

[Bea96] David M Beazley. SWIG : An Easy to Use Tool for Integrating Scripting
Languages with C and C, pages 129–139. USENIX Association, 1996.

74

Bibliography 75

[BGHJ09] Roderick Paul Bloem, Karin Greimel, Thomas Henzinger, and Barbara Job-
stmann. Synthesizing robust systems. In Proceedings of 9th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, pages
85 – 92, 2009.

[BGJ+07a] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. Interactive presentation: Automatic hardware
synthesis from specifications: a case study. In DATE, pages 1188–1193, 2007.

[BGJ+07b] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. Specify, compile, run: Hardware from psl.
volume 190, pages 3–16, 2007.

[BL69] J. Richard Buchi and Lawrence H. Landweber. Solving Sequential Conditions
by Finite-State Strategies. Transactions of the American Mathematical Society,
138:295–311, 1969.

[Bry95] Randal E. Bryant. Binary decision diagrams and beyond: enabling technologies
for formal verification. In Proceedings of the 1995 IEEE/ACM international
conference on Computer-aided design, ICCAD ’95, pages 236–243, Washington,
DC, USA, 1995. IEEE Computer Society.

[Büc62] Julius R. Büchi. On a decision method in restricted second order arithmetic.
In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, Proceedings of the
1960 International Congress on Logic, Methodology and Philosophy of Science
(LMPS’60), pages 1–11. Stanford University Press, June 1962.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. pages 359–364.
Springer, 2002.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
Nusmv: A new symbolic model checker. STTT, 2(4):410–425, 2000.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs, pages
52–71, 1981.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

[Chu62] A. Church. Logic, arithmetic and automata. In Proceedings International
Mathematical Congress, 1962.

[CRKB11] Chih-Hong Cheng, Harald Rueß, Alois Knoll, and Christian Buckl. Synthesis
of fault-tolerant embedded systems using games: from theory to practice. In
Proceedings of the 12th international conference on Verification, model checking,
and abstract interpretation, VMCAI’11, pages 118–133, Berlin, Heidelberg, 2011.
Springer-Verlag.

76 Bibliography

[Dav90] A. Davis. Software Requirements Analysis and Specification. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1990.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum,
Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History and
Perspectives, volume 2 of Texts in Logic and Games, pages 261–306. Amsterdam
University Press, 2008.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata
generation for linear temporal logic. In CAV, pages 249–260, 1999.

[DHLN10] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Nickovic. Robust-
ness of sequential circuits. In ACSD, pages 77–84, 2010.

[Dow97] Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes,
22(2):84–, March 1997.

[ea96] Robert K. Brayton et al. Vis: A system for verification and synthesis. In CAV,
pages 428–432, 1996.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266,
1982.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series on
Integrated Circuits and Systems). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[EH83] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited:
On branching versus linear time. In POPL, pages 127–140, 1983.

[EH85] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985.

[Ehl10] Rüdiger Ehlers. Symbolic bounded synthesis. In CAV, pages 365–379, 2010.

[Ehl11a] Rüdiger Ehlers. Experimental aspects of synthesis. In iWIGP, pages 1–16, 2011.

[Ehl11b] Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In TACAS, pages
272–275, 2011.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking
for fragments of µ-calculus. In CAV, pages 385–396, 1993.

[EKA08] Ali Ebnenasir, Sandeep S. Kulkarni, and Anish Arora. Ftsyn: a framework for
automatic synthesis of fault-tolerance. Int. J. Softw. Tools Technol. Transf.,
10(5):455–471, September 2008.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 995–1072.
1990.

Bibliography 77

[Eme96] E. Allen Emerson. Model checking and the mu-calculus. In Descriptive Complexity
and Finite Models, pages 185–214, 1996.

[ES84] E. Allen Emerson and A. Prasad Sistla. Deciding full branching time logic.
Information and Control, 61(3):175–201, 1984.

[FJR09] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An antichain algorithm
for ltl realizability. In CAV, pages 263–277, 2009.

[FJR10] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Compositional algo-
rithms for ltl synthesis. In ATVA, pages 112–127, 2010.

[FJR11] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and
compositional algorithms for ltl synthesis. Formal Methods in System Design,
39(3):261–296, 2011.

[G9̈9] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Comput. Surv., 31(1):1–26, March 1999.

[Gar05] Simson Garfinkel. History’s worst software bugs. In Byte Magazine, November
2005.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software
engineering. Prentice Hall, 1991.

[GKP11] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthesis of code
snippets. In CAV, pages 418–423, 2011.

[GO01] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In CAV,
pages 53–65, 2001.

[GPV+95] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eindhoven,
D. Peled, M. Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In In Protocol Specification Testing and Verification,
pages 3–18. Chapman and Hall, 1995.

[GR09] Alain Girault and Éric Rutten. Automating the addition of fault tolerance with
discrete controller synthesis. Form. Methods Syst. Des., 35(2):190–225, October
2009.

[HJK10] Jad Hamza, Barbara Jobstmann, and Viktor Kuncak. Synthesis for regular
specifications over unbounded domains. In FMCAD, pages 101–109, 2010.

[Hol97] Gerard J. Holzmann. Designing bug-free protocols with spin. Computer Com-
munications, 20(2):97–105, 1997.

[JB06] Barbara Jobstmann and Roderick Bloem. Optimizations for ltl synthesis. In
FMCAD, pages 117–124, 2006.

[JGWB07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Roderick Bloem.
Anzu: A tool for property synthesis. In CAV, pages 258–262, 2007.

78 Bibliography

[KB05] Joachim Klein and Christel Baier. Experiments with deterministic omega-
automata for formulas of linear temporal logic. In CIAA, pages 199–212, 2005.

[KE05] Sandeep S. Kulkarni and Ali Ebnenasir. Complexity issues in automated syn-
thesis of failsafe fault-tolerance. IEEE Transactions on Dependable and Secure
Computing, 2:201–215, 2005.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371–384, July 1976.

[KHB09] Robert Könighofer, Georg Hofferek, and Roderick Bloem. Debugging formal
specifications using simple counterstrategies. In FMCAD, pages 152–159, 2009.

[KL08] Stephan Kreutzer and Martin Lange. Non-regular fixed-point logics and games.
In Logic and Automata, pages 423–456, 2008.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci.,
27:333–354, 1983.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[Kro99] Thomas Kropf. Introduction to Formal Hardware Verification: Methods and
Tools for Designing Correct Circuits and Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1st edition, 1999.

[KV05] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In FOCS,
pages 531–542, 2005.

[Lam80] Leslie Lamport. “sometime” is sometimes “not never” - on the temporal logic of
programs. In POPL, pages 174–185, 1980.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision programs.
38(4):985–999, July 1959.

[LNP+12] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran
Yahav. Dynamic synthesis for relaxed memory models. In PLDI, pages 429–440,
2012.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521–530, 1966.

[Mor10] Andreas Morgenstern. Symbolic controller synthesis for LTL specifications. PhD
thesis, 2010.

[Mos84] Andrzej Wlodzimierz Mostowski. Regular expressions for infinite trees and
a standard form of automata. In Symposium on Computation Theory, pages
157–168, 1984.

[MP79] Zohar Manna and Amir Pnueli. The modal logic of programs. In ICALP, pages
385–409, 1979.

Bibliography 79

[MP81] Zohar Manna and Amir Pnueli. Verification of concurrent programs: Temporal
proof principles. In Logic of Programs, pages 200–252, 1981.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

[MS04] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley
& Sons, 2004.

[MS08] Andreas Morgenstern and Klaus Schneider. From ltl to symbolically represented
deterministic automata. In VMCAI, pages 279–293, 2008.

[MSL08] Andreas Morgenstern, Klaus Schneider, and Sven Lamberti. Generating deter-
ministic ω-automata for most ltl formulas by the breakpoint construction. In
MBMV, pages 119–128, 2008.

[Mul63] David E. Muller. Infinite sequences and finite machines. In SWCT (FOCS),
pages 3–16, 1963.

[MW84] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68–93,
1984.

[Nus97] Bashar Nuseibeh. Ariane 5: Who dunnit? IEEE Software, 14:15–16, 1997.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[Pnu86] Amir Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In Current Trends in Concurrency,
pages 510–584. 1986.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games. In
LICS, pages 275–284, 2006.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs.
In VMCAI, pages 364–380, 2006.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL,
pages 179–190, 1989.

[Pra95] Vaughan R. Pratt. Anatomy of the pentium bug. In TAPSOFT, pages 97–107,
1995.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In Symposium on Programming, pages 337–351, 1982.

[Rab69] Michael O. Rabin. Decidability of Second Order Theories and Automata on
Infinite Trees. Transactions of the American Mathematical Society, 141:1–35,
1969.

80 Bibliography

[Rab72] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. Amer-
ican Mathematical Society, Boston, MA, USA, 1972.

[Ros92] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis. 1992.

[Saf88] Shmuel Safra. On the complexity of omega-automata. In FOCS, pages 319–327,
1988.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient büchi automata from ltl formulae.
In CAV, pages 248–263, 2000.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

[SF07] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In ATVA, pages 474–488,
2007.

[SKK+02] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger,
and Lorenzo Alvisi. Modeling the effect of technology trends on the soft error
rate of combinational logic. In DSN, pages 389–398, 2002.

[SL09] Armando Solar-Lezama. The sketching approach to program synthesis. In
APLAS, pages 4–13, 2009.

[Som98] F. Somenzi. Cudd: Cu decision diagram package release, 1998.

[SS09] Saqib Sohail and Fabio Somenzi. Safety first: A two-stage algorithm for ltl games.
In FMCAD, pages 77–84, 2009.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54(1/2):121–141, 1982.

[Tho96] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Languages, pages 389–455. Springer, 1996.

[Var01] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In TACAS, pages
1–22, 2001.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In LICS, pages 332–344, 1986.

[VYY10] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided synthesis
of synchronization. In POPL, pages 327–338, 2010.

[WHT03] Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of
finite-state controllers for request-response specifications. In CIAA, pages 11–22,
2003.

[Wol83] Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, 1983.

	Contents
	Introduction
	Motivation for Correct Systems
	Motivation for Correct Systems
	Motivation for Robust Systems

	Property Synthesis
	History of Synthesis

	Our Method of Synthesizing Robust Systems
	Structure of this work

	Preliminaries
	Kripke Structures
	Computation Trees

	Labeled Transition System
	Automaton
	Words and Languages
	Finite Automata on Finite Words
	Finite -Automata
	Symbolic Representation of -Automata

	Mealy and Moore Machines
	Reactive Systems
	Mealy and Moore Machines

	Temporal Logics
	LTL
	LTL-Properties
	GR(1)
	CTL and CTL
	Modal -Calculus

	Games
	Strategies
	Safety Games
	Reachability Games
	Büchi Games
	co-Büchi Games
	Muller Games
	Rabin Games
	Streett Games
	Parity Games
	GR(1) Games
	The modal -Calculus over Game Structures

	Implementation
	RAT
	RATSY
	Marduk

	Related Work on Robust Synthesis

	Robust Synthesis from GR(1) Specifications
	Idea
	Definition of Robustness
	Illustration of the problem
	Example of Environment Failures and System Failures
	Robust Synthesis Algorithm
	GR(1) Specification to GR(1) Game
	GR(1) Game to one-pair Streett Game
	Robustness Streett pair
	Winning Region
	Winning Strategy

	Example of Robust Synthesis
	Recovery Time

	Implementation of Robustness and Results
	Implementation of Robustness in RATSY
	RATSY
	Marduk

	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	List of Symbols
	Bibliography

