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Abstract

The Hubbard model, one of the simplest models in correlated quantum many-body physics,
is used among other things to study magnetic properties of highly correlated systems. One
also supposes that this model can be used to explain the phenomena of high-temperature
superconductivity.
Despite its simplicity, an analytical solution is only possible for special cases (Bethe ansatz)
and also straightforward numerical methods are restricted to small systems because of the
exponential growths of the required computer capacities depending on the size of the system.

Di�usion Monte Carlo o�ers a di�erent approach, whereby one is able to compute ground-
state properties of the considered system with the help of stochastic processes. In this work
we present that kind of Quantum Monte Carlo method and show how to use it to calculate
expectation values of quantum mechanical observables. Therefore, one also needs a reasonable
good approximation for the groundstate wavefunction.
In addition, three di�erent methods to compute such an approximation applicable for the
Hubbard Model are presented.

The so-called sign problem also creates di�culties during the calculation for fermionic systems.
Its origin is discussed and a method to avoid this problem is also presented.
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Kurzfassung

Das Hubbard Model, eines der einfachsten korrelierten Vielteilchenmodelle in der Quantenphy-
sik, wurde in der Vergangenheit immer wieder herangezogen um unter anderen magnetische
Eigenschaften von stark korrelierten Systemen zu untersuchen. Man vermutet auch, damit das
Phänomen der Hochtemperatursupraleitung erklären zu können.
Trotz seiner einfachen Bescha�enheit ist eine analytische Lösung nur für ausgewählte Grenzfälle
möglich (Bethe Ansatz). Ebenso können numerische Standardverfahren, aufgrund des mit der
Systemgröÿe überexponentiell wachsenden Bedarfs an Computer Ressourcen, nur auf sehr kleine
Systeme angewendet werden.

Di�usions Monte Carlo bietet eine andere Herangehensweise, wobei Grundzustandseigenschaf-
ten des betrachteten Systems mit Hilfe stochastischer Prozesse ermittelt werden können. Der
Autor stellt diese Art von Quanten Monte Carlo vor und zeigt wie es verwendet werden kann
um physikalische Observablen zu berechnen. Dafür wird auch eine hinreichend genaue Nähe-
rung der Grundzustandswellenfunktion benötigt, wobei in weiterer Folge drei Methoden für das
Hubbard Modell vorgestellt werden.

Für fermionische Systeme stellt das sogenannte Sign Problem eine weitere Hürde in der Berech-
nung dar. Dessen Ursachen werden diskutiert und es wird eine Methode um dieses Problem zu
umgehen präsentiert.
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1. The Hubbard Model

The Hubbard model, named after John Hubbard, is one of the simplest models in correlated
quantum many-body physics. It was originally introduced in Ref. [1] and gives a description
of strongly localized electrons on a rigid lattice, while taking account of the Pauli principle
and the Coulomb interaction of the electrons. The Hamiltonian in second quantization only
consists of two terms and takes the form

Ĥ = −t
∑
〈i,j〉
σ

c†i,σ cj,σ + U
∑
i

ni,↑ ni,↓ , (1.1)

where 〈i,j〉 denotes to sum only over the nearest neighbours on the lattice.
The �rst term in Equation (1.1), the hopping term, is identical to the well-known Tight Binding
Hamiltonian and represents the kinetic energy of the electrons. For the hopping parameter t
only transitions between the nearest neighbour sites of the lattice are considered, as a result of
the minor mobility of the electrons.
The second term describes the coulumb interaction of the electrons. In the Hubbard model it
is assumed that the Coulomb potential is very short ranged because of screening, so that only
electrons on the same lattice site are able to interact with each other. Therefore, the operator
D̂ =

∑
i ni,↑ ni,↓ simply counts the double occupations per basis state, as shown in Figure (1.2).

Hence, each lattice site with two electrons on it costs the energy U .
Because of Pauli's principle, there are only four di�erent possibilities to occupy a lattice site.
It is either occupied by an electron with spin up or an electron with spin down or there are two
electrons with di�erent spins on it or the site is empty, as depicted in Figure (1.1). That means
the coulumb interaction concerns only electrons with di�erent spin on the same lattice site.

Figure 1.1.: To illustrate Pauli's principle, the four di�erent possibilities to occupy a lattice site
by electrons are shown. An arrow depicts an electron and its direction denotes the
spin (either up or down).

Figure (1.2) displays an example for a manybody basis state χ of the Hubbard Hamiltonian in
real space for a system size LX ×LY = 4× 4. The number of electrons with spin up is equal to
the electrons with spin down, therefore N↑ = N↓ = 5. In second quantization this basis state is

|χ 〉 = |χ 〉↑ ⊗ |χ 〉↓
=
(
c†4,↑ c

†
5,↑ c

†
10,↑ c

†
12,↑ c

†
14,↑

)
⊗
(
c†4,↓ c

†
6,↓ c

†
10,↓ c

†
13,↓ c

†
16,↓

)
| 0 〉 ,

1



1. The Hubbard Model

where | 0 〉 denotes the vacuum state. Furthermore, the double occupied sites are marked in
colour and hopping possibilites for the electron on site 6 are sketched. However, hopping to the
right hand site, on site 10, is not possible, because of Pauli's principle.

Figure 1.2.: A basis state of the Hubbard Hamiltonian in real space for a system size
LX × LY = 4 × 4. The double occupied sites are marked in colour and hopping
possibilities for the electron on site 6 are sketched.

The di�erent strategies to handle the hopping across the boundaries are described in Section
1.1 and in Section 1.2 we discuss the properties of the Hubbard Hamiltonian in reciprocal
space. In Section 1.3, a calculation to obtain the exact groundstate wavefunction for a toy
model is performed and in Section 1.4 we show that an exact diagonalisation of the Hubbard
Hamiltonian is limited to small system sizes.

1.1. Boundary Conditions

A scenario that has to be discussed is what happens to an electron located on the edge of the
system if it hops outwards. For example, the electron on site 5 in Figure (1.2) wants to move
in the −LX direction.
There are three typical possibilities. Either the hopping across the boundaries is forbidden or
one introduces periodic boundary conditions (pbc). That means if we consider the previous
example, the new position for an electron hopping from site 5 in the −LX direction is site 8.

The third alternative, described among others in Ref. [2], is to use a periodic lattice and to
modify the hopping by a Peierls phase

ti,j ⇒ ti,j · eiϕ (xi−xj) ,

which results in a gauge transformation (Equation (1.2)).

c̃i = ci · e−iϕxi , c̃†i = c†i · eiϕxi (1.2)

(In the following the one dimensional case LX = N and LY = 1 is discussed. In two or more
dimensions it is very similar, but for the Peierls phase also a direction has to be considered.)

2



1. The Hubbard Model

This transformation causes that only the electrons hopping across the boundaries of the system
get a phase factor (twisted boundary conditions)

e−iφ with φ = N · ϕ ,

as shown below.

c†j+1 cj = c̃†j+1 c̃j e−iϕxj+1 eiϕxj = c̃†j+1 c̃j e−iϕ

But at the boundaries, and taking the periodicity of the lattice into account, the situation is
di�erent.

c†N+1 cN = c̃†N+1 c̃N e−iϕxN+1 eiϕxN

= c̃†1 c̃N e−iϕ eiφ

Furthermore, Equation (1.2) does not a�ect the second term of the Hamiltonian D̂ =
∑

i ni,↑ ni,↓,
because

ni,σ = c†i,σ ci,σ = c̃†i,σ c̃i,σ eiϕ (xi−xi) = c̃†i,σ c̃i,σ = ñi,σ .

Periodic boundary conditions are a special case of this gauge transformation and can be obtained
if we choose φ = 0.

1.2. The Hubbard Hamiltonian in reciprocal space

In this Section, we start with the Hubbard Hamiltonian in real space

Ĥ = −t
∑
〈i,j〉
σ

c†i,σ cj,σ

︸ ︷︷ ︸
Ĥ0

+U
∑
i

ni,↑ ni,↓︸ ︷︷ ︸
Ĥ1

,

and transform it into reciprocal space. Subsequent, the di�erent terms of the Hamiltonian are
discussed, similar to the previous Section.

The part of the Hamiltonian, which corresponds to the kinetic energy, is labeled as Ĥ0. The
other one is labeled Ĥ1 and describes the Coulomb interaction between the electrons, which is
a diagonal operator in real space. Again 〈i,j〉 denotes a sum over the nearest neighbours of the
lattice.
The Fourier transformation of a creation operator takes the form

c†k,σ =
1√
N

∑
j

ei k xj c†j,σ and c†j,σ =
1√
N

∑
k

e−i k xj c†k,σ respectively, (1.3)

whereby j (k) denotes the index for the operator in real (momentum) space and N is the
number of lattice sites. For an annihilation operator it is the complex conjugate of Equation
(1.3). Therefore, using these de�nitions, one obtains the following result for Ĥ0.

Ĥ0 = − t
∑
〈i,j〉
σ

c†i,σ cj,σ

= − t
∑
〈i,j〉
σ

∑
k, k′

1

N
e−i k xi c†k,σ ei k′ xj ck′,σ

= − t
∑

i, j=i+η
σ

∑
k, k′

1

N
e−i (k−k′)xi ei k′ xη c†k,σ ck′,σ

3



1. The Hubbard Model

On a quadratic lattice the nearest neighbours are given by

η =

{(
1

0

)
,

(
−1

0

)
,

(
0

1

)
,

(
0

−1

)}
.

Ĥ0 =
∑
k, k′
σ

∑
i

1

N
e−i (k−k′)xi

︸ ︷︷ ︸
δk,k′

∑
η

(−t) ei k′ xη c†k,σ ck′,σ

=
∑
k
σ

c†k,σ ck,σ (−2t) (cos(kX) + cos(kY )) (1.4)

=
∑
k
σ

εk c
†
k,σ ck,σ (1.5)

The same calculation is done for the operator Ĥ1.

Ĥ1 =U
∑
i

ni,↑ ni,↓ = U
∑
i

c†i,↑ci,↑ c
†
i,↓ ci,↓

=U
∑
k,l,m,n

1

N2

∑
i

e−i (k−l+m−n)xi

︸ ︷︷ ︸
N δk+m,l+n

c†k,↑cl,↑ c
†
m,↓ cn,↓

=
U

N

∑
k,l,m

c†k,↑cl,↑ c
†
m,↓ ck+m−l,↓

Next, we perform the index transformation q = l − k respectively l = k + q and obtain

Ĥ1 =
U

N

∑
q

∑
k

c†k,↑ck+q,↑︸ ︷︷ ︸
ρq

∑
m

c†m,↓cm−q,↓︸ ︷︷ ︸
ρ−q

(1.6)

=
U

N

∑
q

ρq ρ−q . (1.7)

The combination of Equation (1.5) and (1.7) yields the Hamiltonian in momentum space

Ĥ =
∑
k
σ

εk c
†
k,σ ck,σ

︸ ︷︷ ︸
Ĥ0

+
U

N

∑
q

ρq ρ−q︸ ︷︷ ︸
Ĥ1

. (1.8)

In reciprocal space it is contrawise to real space, now Ĥ0 is a diagonal operator and Ĥ1 has
o�-diagonal elements.
Of course, Pauli's principle is also valid in reciprocal space, which means that a certain
wavenumber can at most be occupied by one up and one down electron.

The term εk in Equation (1.5) respectively in (1.8) is the well-known dispersion relation of the
Tight binding model. The wave vectors kX and kY depend on the system size and can take the
values

ki =
2π

Li
ν , ν ∈ {0, 1, · · · , Li − 1} , i = X, Y ,

4



1. The Hubbard Model

assuming that the lattice constant is unique.
Figure (1.3) shows the dispersion relation for a one-dimensional system with periodic boundary
conditions (red) for U = 0 and t = 1. The crosses chart the possible values of εk for a system
with N = 9 sites. Close inspection reveals that the groundstate of Ĥ0 is degenerated if the
number of electrons per spin direction is even (for the one-dimensional case).
If one introduces twisted boundary conditions, as described in Section 1.1, the operator Ĥ0

changes to

Ĥ0 = − t
∑
〈i,j〉
σ

c†i,σ cj,σ eiϕ (xi−xj)

= − t
∑
〈i,j〉
σ

∑
k, k′

1

N
e−i (k−k′) (xi−xj) eiϕ (xi−xj) c†k,σ ck′,σ

= − t
∑
i,η
σ

∑
k, k′

1

N
e−i (k−k′)xi ei (k′+ϕ)xη c†k,σ ck′,σ

=
∑
k
σ

∑
η

(−t) ei (k+ϕ)xη c†k,σ ck,σ

=
∑
k
σ

c†k,σ ck,σ (−2t) cos(k + ϕ) .

Hence, it is possible to avoid this degeneration as depicted in Figure (1.3).

−π −2π/3 −π/3 0 π/3 2π/3 π
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

wave vector k

en
er
g
y
ε k

/
t

 

 

ϕ = 0

ϕ = 0.25

Figure 1.3.: Dispersion relation for a one-dimensional system (U = 0, t = 1) with periodic (red)
and twisted boundary conditions (blue). The crosses sketch the possible values for
εk for a system with N = 9 sites. The energies are given in units of t.
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1. The Hubbard Model

The operators ρq and ρ−q (see Equation (1.8)) have the following impact on a manybody basis
state. First, ρ−q creates a momentum q in any spin direction and subsequently ρq annihilates

a momentum q in the other spin direction. From this follows that Ĥ1 conserves momentum.
(See Figure (1.4) for schematic illustration.)

k, ↓ m, ↑

q

k+q, ↓ m-q, ↑

Figure 1.4.: Schematic illustration of a scattering process caused by the operator Ĥ1. The
arrows denote the wavenumbers of the electrons before (k + q, m− q) respectively
after scattering (k, m) and the waved arrow represents the exchanged momentum
q, as described in Equation (1.6).

Figure (1.5) displays an example for a manybody basis stateK in momentum space for a system
size LX × LY = 3 × 3 with N↑ = N↓ = 5. The consecutive number (black) is used to give a
representation of this state in second quantization

|K 〉 = |K 〉↑ ⊗ |K 〉↓
=
(
c†2,↑ c

†
4,↑ c

†
5,↑ c

†
6,↑ c

†
8,↑

)
⊗
(
c†2,↓ c

†
4,↓ c

†
5,↓ c

†
6,↓ c

†
8,↓

)
| 0 〉 ,

whereas the coloured numbers indicate the wavenumber of the sites.
The depicted state is a groundstate vector of Ĥ0 (in the following also denoted as Fermi Sea
|FS 〉), which has total momentum zero. As one can easily deduce, for this system con�guration
(system size and number of electrons) the groundstate of Ĥ0 is not degenerated and all shells
are �lled.
Applying the operator Ĥ1 to this basis state leads to particle hole excitations, but the mo-
mentum of the scattered states Ĥ1 |K 〉 is still zero. One example of these scattered states is
denoted in Figure (1.5) with the green arrows.

6



1. The Hubbard Model

1 4 7 1 4 7

0 2π/32π/3

-2π/3

-2π/3

-2π/3-2π/3 0

kX -2π/3

-2π/3 0

-2π/3

2π/3

-2π/3

0

-2π/3

2π/3

-2π/3

kY

2 5 8 2 5 8

3 6 9 3 6 9

0

0

2π/3

2π/3

2π/3

00

2π/3

2π/3

0

-2π/3

2π/3

-2π/3

2π/3

0

2π/3

00

Figure 1.5.: A basis state of the Hubbard Hamiltonian in momentum space for a system size
LX ×LY = 3× 3. The coloured numbers indicate the wavenumber of the sites and
the green arrows denote an example for a scattered state.

1.3. Analytical Solution of a Toy Model

In this Section, we perform an analytical calculation to obtain the groundstate energy and
wavefunction of the Hubbard Hamiltonian

Ĥ = −t
∑
〈i,j〉
σ

c†i,σ cj,σ + U
∑
i

ni,↑ ni,↓

for a very small system. Considering a system with N = 2 sites and one electron per spin is
the smallest system that makes sense. Furthermore, we forbid hopping across the boundaries.

This system has four di�erent basis states, depicted in Equation (1.10), and is described by the
Hamiltonian

H =


U −t −t 0

−t 0 0 −t
−t 0 0 −t
0 −t −t U

 . (1.9)

7



1. The Hubbard Model

|Γ1 〉 = c†1,↑ c
†
1,↓ | 0 〉 =̂

1 2

|Γ2 〉 = c†1,↑ c
†
2,↓ | 0 〉 =̂

1 2

|Γ3 〉 = c†2,↑ c
†
1,↓ | 0 〉 =̂

21

|Γ4 〉 = c†2,↑ c
†
2,↓ | 0 〉 =̂

21

(1.10)

The eigenvalues of H, as it is generally known, are the roots of the secular equation, resulting
from

det (H − λE) = 0 ,

whereby E is the identity matrix. To calculate the determinant, we do an expansion in the �rst
column and obtain∣∣∣∣∣∣∣∣∣

U − λ −t −t 0

−t −λ 0 −t
−t 0 −λ −t
0 −t −t U − λ

∣∣∣∣∣∣∣∣∣ = 0

0 = (U − λ)

∣∣∣∣∣∣∣
−λ 0 −t
0 −λ −t
−t −t U − λ

∣∣∣∣∣∣∣︸ ︷︷ ︸
1

+t

∣∣∣∣∣∣∣
−t −t 0

0 −λ −t
−t −t U − λ

∣∣∣∣∣∣∣︸ ︷︷ ︸
2

−t

∣∣∣∣∣∣∣
−t −t 0

−λ 0 −t
−t −t U − λ

∣∣∣∣∣∣∣︸ ︷︷ ︸
3

. (1.11)

The determinants in Equation (1.11) yield

1 = − λ
(
(−λ)(U − λ)− t2

)
+ t2λ = −λ3 + λ2U + 2λt2

2 = − t
(
(−λ)(U − λ)− t2

)
− t3 = −λ2t+ λtU

3 = t(t2 − t2) + (U − λ)(−λt) = λ2t− λtU .

Hence, the characteristic polynomial is given by

0 = (U − λ)
(
−λ3 + λ2U + 2λt2

)
+ t
(
−λ2t+ λtU

)
− t
(
λ2t− λtU

)
0 =λ4 + λ3(−2U) + λ2(U − 4t2) + λ(4t2U) ,

8



1. The Hubbard Model

with analytically computable roots

λ1 = 0 ,

λ2 =U ,

λ3 =
1

2

(
U +
√

16t2 + U2
)

and

λ4 =
1

2

(
U −
√

16t2 + U2
)

.

Since U > 0 and t > 0 the smallest eigenvalue of H is given by λ4, which corresponds to the
groundstate energy ε0 of the system.

Next, we calculate the coe�cients cν of the groundstate wavefunction

|Φ0 〉 =
4∑

ν=1

cν |Γν 〉 ,

which lead to the following system of linear equations,
U − ε0 −t −t 0

−t −ε0 0 −t
−t 0 −ε0 −t
0 −t −t U − ε0

 ·


c1

c2

c3

c4

 = 0 (1.12)

respectively, using the abbreviation S =
√

16t2 + U2 to

0 = (U + S)
1

2
c1 − t c2 − t c3 (1.13)

0 = − t c1 + (S − U)
1

2
c2 − t c4 (1.14)

0 = − t c1 + (S − U)
1

2
c3 − t c4 (1.15)

0 = − t c2 − t c3 + (U + S)
1

2
c4 (1.16)

(1.17)

Substracting Equation (1.13) from (1.16) respectively (1.14) from (1.15) yields

c1 = c4 and c2 = c3 .

By comparing Equation (1.13) and (1.14) we obtain

(U + S)
1

2
c1 − 2t c2 = − 2t c1 + (S − U)

1

2
c2

c2 =
4t+ U + S

4t− U + S
c1

c2 =
4t+ U + S

4t− U + S

4t

U + S

U + S

4t
c1

c2 =
16t2 + 4tU + 4tS

4tU − U2 + US + 4tS − US + S2

U + S

4t
c1

c2 =
16t2 + 4tU + 4tS

4tU − U2 + 4tS + 16t2 + U2

U + S

4t
c1

c2 =
U + S

4t
c1 .

9



1. The Hubbard Model

Thus, the set of linear equations is solved and the groundstate wavefunction (not normalised)
results in

|Φ0 〉 = |Γ1 〉+
U +
√

16t2 + U2

4t
|Γ2 〉+

U +
√

16t2 + U2

4t
|Γ3 〉+ |Γ4 〉 , (1.18)

as also shown in Ref [3]. As one can see, the groundstate is a linear combination of the four
basis states, but those without double occupations (|Γ2 〉 and |Γ3 〉) are energetically favorable
and therefore weighted more strongly.

1.4. The size of the Hilbert Space

In the previous Section, we did an analytical calculation to obtain the exact groundstate wave-
function for a very small system of the Hubbard Hamiltonian. Of course, this procedure is not
feasible if one wants to treat larger system sizes.
In this Section, we want to demonstrate that this is also a di�cult task for numerical methods,
due to the size of the Hilbert space NH .

Let us consider a system with N↑ electrons with spin up and N↓ electrons with spin down on N
lattice sites. Thus, the number of basis states is determined by Equation (1.19), which increases
exponentially with the system size.

NH =

(
N

N↑

)
·
(
N

N↓

)
(1.19)

That means, if one uses, for example, the Lanczos algorithm to calculate the ground state of
the Hamiltonian, one has to store three vectors of length NB, datatype double [4]. To store a
variable of type double on a 32 bit system, one typically needs 8 bytes.
Table 1.1 lists the size of the Hilbert space NH and the memory requirements to store three
lanczos vectors of that size, for di�erent systems of the Hubbard model. One realises that the
storage capacity of today's computers limits an exact diagonalisation to small systems.
This is why one searches for other methods, such as Di�usion Monte Carlo, to calculate ground-
state properties of the Hubbard model, which do not require such a huge main memory.

10



1. The Hubbard Model

Table 1.1.: Comparison of the required memory to store three lancos vectors for di�erent system
sizes of the Hubbard model.

sites Hilbert Space required
N N↑ N↓ NH memory

4 2 2 36 864 B
8 4 4 4900 117.6 kB
10 5 5 63504 1.5 MB
16 5 5 19.0794e+06 457.9 MB
16 8 8 165.6369e+06 4.0 GB
18 9 9 2.3639e+09 56.7 GB
20 10 10 34.1348e+09 819.2 GB
26 13 13 108.1725e+12 2.6 PB*
36 18 18 82.3581e+18 2.0 ZB**

* petabyte (PB) = 1015 byte
** zettabyte (ZB) = 1021 byte

11



2. Di�usion Monte Carlo

To describe the time evolution of an arbitrary state |ψ 〉 =
∑

ν cν |χν 〉 in a quantum mechan-

ical system, represented by the Hamiltonian Ĥ, one usually starts with the time - dependent
Schrödinger equation (2.1). (In this context the |χν 〉 denote basis states of the Hamiltonian.)

i~
∂

∂t
|ψ 〉 = Ĥ |ψ 〉 (2.1)

If the Hamiltonian does not depend on time, the time evolution operator is simple

Û(t, t0) = e−
i
~ (t−t0)Ĥ

and we obtain
|ψ(t) 〉 = e−

i
~ (t−t0)Ĥ |ψ(t0) 〉 .

Next, we perform the transformation τ = i · t, called Wicks rotation of time and adopt time
units in which Planck's constant is unity. Furthermore, we introduced an energy shift S.

|ψ(τ) 〉 = e−τ(Ĥ−S) |ψ(0) 〉 (2.2)

It can be shown [5], that in the long time limit, ψτ converges to the groundstate wavefunction
Φ0 of the Hamiltonian, if

- ψ(0) has a non - vanishing overlap with the groundstate Φ0,

- the groundstate energy ε0 is not degenerated
1 and

- the energy shift S is the exact, at this time unknown, groundstate energy of the system.

|ψ(τ) 〉 = e−τ(Ĥ−S) |ψ(0) 〉 = e−τ(Ĥ−S)
∑
i

|Φi 〉〈Φi |︸ ︷︷ ︸
1̂

|ψ(0) 〉 = e−τ(Ĥ−S)
∑
i

〈Φi |ψτ=0 〉︸ ︷︷ ︸
di

|Φi 〉

=
∑
i

e−τ(Ĥ−S) di |Φi 〉 =
∑
i

e−τ(εi−S) di |Φi 〉

In the previous lines, we �rst inserted a complete set of eigenvectors of the Hamiltonian and
subsequently replaced Ĥ by its eigenvalues εi.

= e−τ(ε0−S) d0 |Φ0 〉+
∑
i=1

e−τ(εi−S) di |Φi 〉

= d0 e−τ(ε0−S)

(
|Φ0 〉+

∑
i=1

e−τ(εi−S)+τ(ε0−S) di
d0

|Φi 〉
)

= d0 e−τ(ε0−S)

|Φ0 〉+
∑
i=1

e

−τ (εi − ε0)︸ ︷︷ ︸
>0

di
d0

|Φi 〉


1If it is degenerated, ψ(τ) converges to an arbitrary linear combination of degenerated groundstate wavefunc-

tions.

12



2. Di�usion Monte Carlo

lim
τ→∞

|ψτ 〉 = lim
τ→∞

d0 e−τ(ε0−S)

(
|Φ0 〉+

∑
i=1

e−τ(εi−ε0) di
d0

|Φi 〉
)

= |Φ0 〉 (2.3)

The main task of Di�usion Monte Carlo (DMC) is to perform the long time limit in Equation
(2.3) in a stochastic way. In order to realise this aim, one introduces an arti�cial object, called
walker. Each walker occupies a basis state χν of the Hamiltonian and is able to propagate
through the Hilbert space randomly.
While its movement through con�guration space, every walker can spawn progeny and is also
able to die. The destiny of each walker depends on the one hand on its state χν and furthermore
on the Hamiltonian Ĥ. On the other hand, the energy shift S controls the walker population.
That means, if the groundstate energy is less than the energy shift, the mean number of walkers
increases and vice versa [6]. This fact follows directly from Equation (2.3).

S < ε0 → lim
τ→∞

|ψ(τ) 〉 = lim
τ→∞

d0 e−τ(ε0−S) |Φ0 〉 = 0

S > ε0 → lim
τ→∞

|ψ(τ) 〉 = lim
τ→∞

d0 e−τ(ε0−S) |Φ0 〉 = ∞

The exact rules, how this population dynamics are realised, di�er from algorithm to algorithm.
(cf. Section 2.2 and 2.3)
If the groundstate wavefunction Φ0 of the Hamiltonian is strictly positive, that means

〈χν |Φ0 〉 = cν , cν ≥ 0 ∀ν ,
∑
ν

cν = 1 , (2.4)

one can interpret Φ0 as a probability density function (pdf). Under these circumstances and
if the current walker population propageted su�ciently long in imaginary time (thermalisation
time of the MC algorithm), that all excited eigenstates of the Hamiltonian decayed to zero,
the walkers are distributed proportionally to the groundstate wavefunction Φ0. In other words,
basis states χν of the groundstate with a large coe�cient cν are occupied more often by walkers
than those with a small coe�cient.
All walkers of the simulation (afterwards named walker con�guration or a generation of walkers)
at particular time τ give a represenation of a wavefunction

|ψ(τ) 〉 =
∑
ν

nν(τ) |χν 〉 , nν(τ) ∈ N0 ,

whereby nν(τ) is the number of walkers in state |χν 〉. The expectation value of such wavefunc-
tions is proportional to the groundstate of the Hamiltonian Ĥ.

|Φ0 〉 ∝
〈
|ψ(τ) 〉

〉
=

〈∑
ν

nν(τ) |χν 〉
〉

=
∑
ν

〈nν(τ)〉 |χν 〉 ∝
∑
ν

cν |χν 〉 (2.5)

In Equation (2.5) we used the fact that the expectation value of a multinomial distributed
random number is proportional to its probability of occurrence.

In the next Section, we describe how to calculate the expectation value of an observable using
DMC. In Section 2.2 respectively 2.3, two di�erent DMC algorithms are presented and in
Section 2.4 the meaning of the guiding respectively the trial function is discussed.
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2. Di�usion Monte Carlo

2.1. The expectation value of a quantum mechanical

operator

The expectation value of a quantum mechanical operator Ô, given an arbitrary wavefunction
|Ψ 〉, is usually 〈

Ô
〉

=
〈Ψ | Ô |Ψ 〉
〈Ψ |Ψ 〉 .

If the wavefunction is generated using DMC, this exercise is a little bit more complicated.
Let us start, given a single walker con�guration at a speci�c imaginary time τ , represented by
the wavefunction ψ(τ), then the expectation value Ô(τ) is calculated in exactly the same manner
as mentioned above.

Ô(τ) =
〈ψ(τ) | Ô |ψ(τ) 〉
〈ψ(τ) |ψ(τ) 〉

=

∑
ν,ν′ nν(τ)nν′(τ) 〈χν | Ô |χν′ 〉∑
ν,ν′ nν(τ)nν′(τ) 〈χν |χν′ 〉

=

∑
ν,ν′ nν(τ)nν′(τ) 〈χν | Ô |χν′ 〉∑

ν nν(τ)2

However, to obtain a more appropriate estimation for the expectation value of an observable
Ô in the groundstate wavefunction, we need several (in the best case an endless number), as
uncorrelated as possible, di�erent walker con�gurations ψ(τ). In addition, it is very important
to average the numerator and the denominator separately before they are divided by each other.

Ô(τ) =
〈ψ(τ) | Ô |ψ(τ) 〉
〈ψ(τ) |ψ(τ) 〉

=

∑
τ

(∑
ν,ν′ nν(τ)nν′(τ) 〈χν | Ô |χν′ 〉

)
∑

τ (
∑

ν nν(τ)2 )
(2.6)

Next, we discuss the ideal case, described in the previous lines, by means of the numerator
of Equation (2.6). That means, we are able to replace the arithmetic mean

∑
τ ( . . . ) by the

expectation value 〈 . . . 〉.

〈
〈ψ(τ) | Ô |ψ(τ) 〉

〉
=

〈∑
ν, ν′

nν(τ)nν′(τ) 〈χν | Ô |χν′ 〉
〉

=
∑
ν, ν′

〈nν(τ)nν′(τ)〉 〈χν | Ô |χν′ 〉 6=

6=
∑
ν, ν′

〈nν(τ)〉 〈nν′(τ)〉 〈χν | Ô |χν′ 〉 ∝
∑
ν, ν′

cν cν′ 〈χν | Ô |χν′ 〉 = 〈Φ0 | Ô |Φ0 〉

(2.7)

To repeat the quintessence of Equation (2.7), even if there is an endless number of walker
con�gurations, there is a systematic error in our calculation because∑

ν, ν′

〈nν nν′〉 6=
∑
ν, ν′

〈nν〉 〈nν′〉 .

It is possible to prevent this error if one calulates the so called mixed estimator [5]. This involves
replacing one of the ψ(τ)'s with a trial wavefunction |ΨT 〉 =

∑
ν aν |χν 〉, when calculating the

expectation value of an operator.

Ô(τ) =
〈ΨT | Ô |ψ(τ) 〉
〈ΨT |ψ(τ) 〉

(2.8)

Typically, this trial state ΨT is either a walker con�guration, which already gives a quite good
approach for Φ0, or some kind of analytical approximation for the groundstate of the system.
But keep in mind that ΨT is not a random variable anymore.

14



2. Di�usion Monte Carlo

Therefore, if we consider the special case that Ô = Ĥ, we obtain the true groundstate energy
of the system, otherwise the result would be variational.

〈
Ĥ
〉

=

〈
〈ΨT | Ĥ |ψ(τ) 〉

〉
〈
〈ΨT |ψ(τ) 〉

〉 =

〈∑
ν,ν′ aν nν′(τ) 〈χν | Ĥ |χν′ 〉

〉
〈∑

ν,ν′ aν nν′(τ) 〈χν |χν′ 〉
〉

=

∑
ν,ν′ aν 〈nν′(τ)〉 〈χν | Ĥ |χν′ 〉∑
ν,ν′ aν 〈nν′(τ)〉 〈χν |χν′ 〉

=

∑
ν,ν′ aν cν′ 〈χν | Ĥ |χν′ 〉∑
ν,ν′ aν cν′ 〈χν |χν′ 〉

=
〈ΨT | Ĥ |Φ0 〉
〈ΨT |Φ0 〉

= ε0
〈ΨT |Φ0 〉
〈ΨT |Φ0 〉

= ε0

(2.9)

Furthermore, it can be demonstrated that the expectation value of an estimator

E∗ =
〈ΨT | Ĥ |ψ(τ) 〉
〈ΨT |ψ(τ) 〉

(2.10)

is biased of order 1/N , whereby N denotes the number of walker con�gurations [7].

〈E∗〉 = ε0 +O(1/N) (2.11)

But there are analytical and numerical methods to remove this bias, see Appendix A for further
details.

2.2. Algorithm a la Ceperley / Alavi

In Equation (2.3), we showed that an arbitrary wavefunction converges in the long time limit,
under certain conditions, to the true groundstate of the Hamiltonian. In this Section, we present
a DMC algorithm to perform this long time limit to obtain walker con�gurations according to
the groundstate wavefunction.

If one accepts small time step errors, the imaginary time propagator e−τ(Ĥ−S) can be linearised,
in the following way, as also demonstrated in [8, p. 3].

e−τ(Ĥ−S) n·∆τ = τ
=

(
e−∆τ(Ĥ−S)

)n
=
(
1̂−∆τ(Ĥ − S) +O(∆τ 2)

)n
≈
(
1̂−∆τ(Ĥ − S)

)n
(2.12)

It is easy to see that in the limit of ∆τ → 0 and n → ∞ the approach in Equation (2.12)
becomes exact again.
In Ref. [5] and [9] the imaginary time propagation of the walkers is divided into discrete time
steps ∆τ , whereby the walker con�guration after n time steps is generated from the preceding
walker con�guration, by applying the Green function G.

|ψ(n) 〉 = G |ψ(n−1) 〉 =
(
1̂−∆τ(Ĥ − S)

)
|ψ(n−1) 〉 (2.13)

The Green function G in (2.13) (introduced to remain consistent with nomenclature of A. Alavi
and D.M. Ceperley) causes a change of populations on each basis state proportional to ∆τ .
Hence, ∆τ is a very important parameter of the simulation, which has to be calibrated in the
right way.
If the time step ∆τ is chosen appropriately, as discussed in Ref. [5], the repeated application of
G to an initial set of walkers ψ(0) achieves that in the long time limit the walkers are distributed
according to the groundstate wavefunction Φ0 of the Hamiltonian.
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2. Di�usion Monte Carlo

In case the time step is too large, the excited eigenstates of the Hamiltonian do not decay to
zero with time [9]. On the other hand, a small ∆τ leads to minor modi�cations of the walker
population per time step, that means ψ(n) and ψ(n+1) do not di�er greatly from each other.
To compensate this, one requires either a longer simulation or an additional ingredient to the
algorithm, called contiuous time [10].

The �rst walker generation of the simulation ψ(0) is commonly generated proportionally to a
trial state ΨT [6], whereby ΨT is a reasonable good guess for the groundstate wavefunction of
the system.
For the special case of the Hubbard Hamiltonian, there is an additional possibility to distribute
the walkers. If one only considers the diagonal elements of Ĥ, it is pretty easy to extract those
basis states χν , which are energetically favorable. That means in real space, states without
double occupations and in reciprocal space, states with a speci�c wavevector k. Typically, one
selects basis states with zero momentum.
But, if the groundstate wavefunction does not have momentum zero and the initial walker
con�guration has, one never reaches the groundstate within the DMC run. This is obvious,
because the Hubbard Hamiltonian in k-space conserves momentum, as described in Section 1.2.

〈Φ0(k 6= 0) |Gn |ψ(0)(k = 0) 〉 = 〈Φ0(k 6= 0) |ψ(n)(k = 0) 〉 = 0

2.2.1. The fermion sign

In Ref. [5], DMC is used to treat a Bose system. As a consequence, the propagator G and the
groundstate wavefunction Φ0 are both non-negative. That means, a walker con�guration ψ(τ)

can be thought of a probability density.
For systems with interacting fermions, this condition does not hold [6]. For this reason, the
arti�cial object walker gets an extra attribute, the sign. Hence, each walker carries a posi-
tive or a negative sign, while its propagation through the Hilbert space [9] and therefore one
earns the possibilty to represent the antisymmetries of a femionic wavefunction using a walker
con�guration ψ(τ).

|ψ(τ) 〉 =
∑
ν

nν(τ) |χν 〉 =
∑
ν

sν nν(τ) |χν 〉 , sν ∈ {1, −1} , nν(τ) ∈ N0 (2.14)

2.2.2. Population dynamics

The authors of Ref. [9] developed a population dynamics algorithm consisting of three basic
processes. By applying these rules to each walker at any time step, the propagation of the
walkers in con�guration space is controlled.

i) The diagonal death / cloning process :
For each walker one has to compute

p1 = ∆τ(Hν, ν − S) . (2.15)

If p1 > 0, the walker dies with the probability p1. Thereby, the move of this walker
through con�guration space is terminated and it is not part of the next generation.
If p1 < 0, the walker is cloned with the probability | p1 |.

ii) The spawning process :
With probability

p2 = ∆τ |Hν, ν′ | , (2.16)
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2. Di�usion Monte Carlo

the walker spawns progeny on the basis state χν′ . The newly created walker has the same
sign as its parent, if Hν, ν′ < 0, and the opposite one, otherwise.
It is noteworthy that every walker has only once the possibility per time step to spawn
progeny.

With probability p3 = 1−p1−p2 a walker remains in its state and is part of the next generation
without any changes.

iii) The annihilation step:
Both steps, i) and ii), can be applied to a walker independently to all other ones until the
global annihilation step follows. That means, if two walkers with opposite sign occupy the
same basis state, these two walkers are removed from the simulation and the population is
reduced by two, schematically depicted in Figure (2.1). This process is a major ingredient
of the algorithm and helps to reduce the minus sign problem (see Chapter 4).

The above listed rules result in an algorithm with an underlying imaginary time propagator
de�ned in Equation (2.13), as veri�ed in the following master equation [11].

n(τ)
ν = sν n

(τ)
ν

∆Ĥ =

{
Hν, ν′ − S if ν = ν ′

Hν, ν′ if ν 6= ν ′

n
(τ)
ν means, that at time τ basis state χν is occupied by n walkers with sign s, ∆Ĥ is merely an

abbreviation. Using step i) and ii), one is able to describe the change of the walker population
during a time step.

n(τ+1)
ν =n(τ)

ν − 1 · p1 n
(τ)
ν + 1 ·

∑
ν′ 6=ν

p2 n
(τ)
ν′

n(τ+1)
ν =n(τ)

ν − 1 ·∆τ∆Hν, ν n
(τ)
ν + 1 ·

∑
ν′ 6=ν

∆τ |∆Hν, ν′ |n(τ)
ν′

n(τ+1)
ν =n(τ)

ν − 1 ·∆τ∆Hν, ν n
(τ)
ν − 1 ·

∑
ν′ 6=ν

∆τ ∆Hν, ν′ n
(τ)
ν′

n(τ+1)
ν =n(τ)

ν −
∑
ν′

∆τ∆Hν, ν′ n
(τ)
ν′

n(τ+1)
ν =

∑
ν′

(δν, ν′ −∆τ∆Hν, ν′) n
(τ)
ν′

|ψ(τ+1) 〉 =
(
1̂−∆τ∆Ĥ

)
|ψ(τ) 〉 = G |ψ(τ) 〉

During this derivation, the relation

|∆Hν, ν′ |n(τ)
ν = sH∆Hν, ν′ sν n

(τ)
ν =

{
(−1)∆Hν, ν′ (+1) sν n

(τ)
ν if Hν, ν′ < 0

(+1)∆Hν, ν′ (−1) sν n
(τ)
ν if Hν, ν′ > 0

,

which follows directly from ii), was used. In this context, sH denotes the sign of the o�-diagonal
elements of the Hamiltonian.
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τ τ + Δτ

imaginary time 

p1 deathX

ν ν

ν'

p2

new walker

νp3

ν

ν ν+2+1

+1

ν

ν

-1

+1

Figure 2.1.: Schematic illustration of the fundamental processes of the algorithm described in
Section 2.2.2.
The opportunities of each walker occupying state χν at time τ (death or spawning)
are shown on the left hand side. On the right hand side an example for annihilation
is pictured, assuming four walkers are in state χν , three of them with sign +1 and
one walker with sign −1.

2.2.3. Application to the Hubbard Hamiltonian in reciprocal space

This Section describes an e�ective implementation of the spawning process (Section 2.2.2) for
the Hubbard Hamiltonian in reciprocal space, Equation (2.17).

Ĥ =
∑
k
σ

εk c
†
k,σ ck,σ +

U

N

∑
q

ρq ρ−q (2.17)

In Equation (2.17), εk is the die dispersion relationship of the kinetic energy and U/N is the
absolute value of the o�-diagonal elements, whereby N denotes the number of sites of the
system. See Section 1.2 for details.
Suppose a walker occupies a basis state χν , then the probability to spawn a new walker on
state χν′ within the next time step is

p2 = ∆τ |Hν, ν′ | .

If one wants to implement this process brute force, one usually generates a uniformly distributed
random number r ∈ U(0,1) and checks if r is in the intervall [0, p2] or not. This procedure must
be repeated for every basis state to which this walker can spawn onto. In k-space, Ĥ has a lot
of nonzero o�-diagonal elements, which make this technique very ine�ective.
Therefore, one divides the spawning event into three steps, using the fact that the maximum
number of o�-diagonal elements is

Nσ · (N −Nσ) ·Nσ ,

whereby Nσ denotes the number of electrons with spin σ.
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• Step 1: Compute

p̃2 = ∆τ
U

N
Nσ (N −Nσ)Nσ ,

which gives the maximal probability, that a spawning event occurs to this walker in
general and check if a random number r ∈ U(0,1) is in the intervall [0, p̃2].

• Step 2: Choose an electron with spin σ randomly and let it scatter into a free hole, also
chosen randomly. The probability for this process is

pS(σ) =
1

Nσ

1

(N −Nσ)
.

• Step 3: Choose an electron with spin σ randomly and check if the total scattering process
is possible, under the constraint, that momentum is conserved.

pS(σ) =

{
1/Nσ if possible

0 otherwise

These three steps can be realized independently and together they result in the orginal spawning
probability p2.

p̃2 · pS(σ) · pS(σ) = ∆τ
U

N
Nσ (N −Nσ)Nσ ·

1

Nσ

1

(N −Nσ)
· 1

Nσ

= ∆τ |Hν, ν′ | = p2

2.3. Algorithm a la Schmidt

The authors of Ref. [12] developed an algorithm to sample the imaginary time propagator

G(τ) = e−τ(Ĥ−S)

without any time step error. In contrast to, for example Ref. [5], they do not linearise G but
they did a transformation, which results in an integral equation. Then probability theory is
used to get rules to control the propagation of each walker through the con�guration space. In
this Section this DMC algorithm is described.

Suppose there is a known Green function G0(τ) for a Hamiltonian Ĥ0, which satis�es Equation
(2.18). Then it is possible to form a relationship to the full imaginary time Green function
G(τ). (

Ĥ0 − S
)
G0(τ) = − ∂G

0(τ)

∂τ
(2.18)

If one considers the Hubbard Hamiltonian in reciprocal space, for example, this known Ĥ0

would be the contribution of the kinetic energy to Ĥ.
In order to deduce the abovementioned connection between G0(τ) and G(τ) one uses the be-
neath listed relations.

G0(0) =G(0) = 1̂ (2.19)

GĤG0 −GĤ0G0 =G
(
Ĥ − Ĥ0 + Ĥ0

)
G0 −GĤ0G0 = G

(
Ĥ − Ĥ0

)
G0 (2.20)

e−τ(Ĥ−S) = G(τ) =G0(τ)−
∫ τ

0

dτ ′
∂

∂τ ′
(
G(τ − τ ′)G0(τ ′)

)
(2.21)

=G0(τ)−
(
G(0)G0(τ)−G(τ)G0(0)

)
=G0(τ)−G0(τ) +G(τ)
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2. Di�usion Monte Carlo

The derivation to get the exact Green function in Ref. [12] starts with Equation (2.21) and
uses (2.18), as shown below.

G(τ) =G0(τ)−
∫ τ

0

dτ ′
∂

∂τ ′
(
G(τ − τ ′)G0(τ ′)

)
=G0(τ)−

∫ τ

0

dτ ′
(
G(τ − τ ′)

(
Ĥ − S

)
G0(τ ′)−G(τ − τ ′)

(
Ĥ0 − S

)
G0(τ ′)

)
=G0(τ) +

∫ τ

0

dτ ′
(
G(τ − τ ′)

(
Ĥ0 − Ĥ

)
G0(τ ′)

)
(2.22)

Again a walker population at time τ +∆τ is generated if one applies the imaginary time prop-
agator G, de�ned in Equation (2.22), to a walker population at time τ . But, by construction,
there is no constraint to the size of the time step, in contrast to the algorithm presented in Ref.
[9].

|ψ(τ+∆τ) 〉 = G(∆τ) |ψ(τ) 〉
That also means it is possible to choose ∆τ in such a manner that the di�erence between a
new walker generation and the preceding one is large enough to keep correlations small.
After each time step there is also a global annihilation process, as described in Section 2.2.2, and
subsequently one typically uses the walker con�guration to calculate some kind of observable.

At this point the authors of Ref. [12] introduce importance sampling. The idea behind it is to
de�ne a new random walk, using an approach for the groundstate wavefunction ΨG, with the
aim that the walkers spend more time in the important regions [13]. Thereby, the propagators
and the densities of the algorithm change in the following way.

G̃(τ) =
ΨGG(τ)

ΨG
, G̃0(τ) =

ΨGG
0(τ)

ΨG
,

˜̂
H(τ) =

ΨG Ĥ(τ)

ΨG
, ψ̃(τ) = ΨG ψ(τ)

In our calculations we do not use a guiding function, that means ΨG = 1, see Section 2.4 for
details. Therefore, the tilde is omitted in the following.

In the next step G (Equation (2.22)) is converted to earn a population dynamics algorithm,
which gives the probability to �nd a walker in state χi at time τ if it has occupied state χj at
time 0. However, to interpret the imaginary time propagator as a probability density one has
to add additional terms, see Equation (2.23) and Ref. [12, Eq. (25)].

Gi, j(τ) =

[
G0
i, j(τ)∑

n G
0
n, j(τ)

]
2

[∑
n

G0
n, j(τ)

]
1

+

∫ τ

0

∑
k,l

[
Gi, k(τ − τ ′)

]
7

 ∑m,n

[
Ĥ0
m,n − Ĥm,n

]
G0
m,n(τ

′)∑
m,n

[
Ĥ0
m,n − Sδm,n

]
G0
n, j(τ

′)


6

×

 Ĥ0
k, l − Ĥk, l∑

m

[
Ĥ0
m, l − Ĥm, l

]


5

 ∑
m

[
Ĥ0
m, l − Ĥm, l

]
G0
l, j(τ

′)∑
m,n

[
Ĥ0
m,n − Ĥm,n

]
G0
m,n(τ

′)


4

[
− ∂

∂τ ′

∑
n

G0
n, j(τ

′) dτ ′

]
3

(2.23)

Those terms in Equation (2.23), which are marked with the same colour, cancel each other and
one obtains

Gi, j(τ) = G0
i, j(τ) +

∫ τ

0

∑
k, l

Gi, k(τ − τ ′)
(
Ĥ0
k, l − Ĥk, l

)
G0
l, j(τ

′) dτ ′ ,

what is identical to Equation (2.22). To cancel term 3, Equation (2.18) was used.
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2. Di�usion Monte Carlo

If one considers the Hubbard Hamiltonian in real or reciprocal space, the simplest choice for the
known Green function G0 is to take Ĥ0 to be the diagonal part of Ĥ. Thereby, (2.18) becomes

G0
i, j(τ) = e−(Ĥj, j−S) τ δi, j ,

which is decaying exponential if S is chosen appropriately. This is necessary in order to interpret
G0(τ) as a normalized probability distribution. Since G0 is diagonal, term 4 in Equation (2.23)
reduces to δl, j and term 2 cancels out. Using these simpli�cations Equation (2.23) results in
(2.24), Ref. [12, Eq. (30)].

Gi, j(τ) = δi, j

[
e−(Ĥj, j−S) τ

]
1

+

∫ τ

0

dτ ′
∑
k

[Gi, k(τ − τ ′)]7

[
Ĥj, j −

∑
m Ĥm, j

Ĥj, j − S

]
6

×

 −Ĥk, j (1− δk, j)∑
m

(
−Ĥm, j

)
(1− δm, j)


5

[(
Ĥj, j − S

)
e−(Ĥj, j−S) τ ′

]
3

(2.24)

Suppose a walker in state χj and the time left to propagate at the beginning of the time step is
τ , then the algorithm to sample a new state χi, resulting from Equation (2.24), is the following:

i) Generate a time τ ′ according to the probability distribution in term 3. The probability
that τ ′ > τ is

1−
∫ τ

0

dτ ′
(
Ĥj, j − S

)
e−(Ĥj, j−S) τ ′ = e−(Ĥj, j−S) τ ,

what is exactly term 1.
That means, if τ ′ > τ , the walker has �nished its propagation for this time step and
remains in state χj.

ii) If τ ′ < τ , the walker switches into a state χk 6= χj with a probability proportional to the
numerator of term 5.

iii) The walker in basis state χk gains a weight

w =
Ĥj, j −

∑
m Ĥm, j

Ĥj, j − S

according to term 6. This weight and a random number r ∈ U(0,1) determine the destiny
of the walker. One calculates

nk = int (w + r) ,

where int(x) denotes the integer part of x and nk is the new number or walkers in basis
state χk. If, for example nk = 1, one walker persists in this state, as depicted in Figure
(2.2).
This choice to control the walker population ensures that on average every walker gets
the weight w.

iv) Only term 7 of Equation (2.24) is left, which is the full Green function for a walker to
propagate from state χk into state χi in time τ − τ ′.
That means, subtract τ ′ from the remaining time and repeat step i) to iii) until the walker
has �nished its time step or died during propagation.
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2. Di�usion Monte Carlo

For a better understanding step i) to iii) are schematically depicted in Figure (2.2).

τ' > τ

0 τ

i) j

imaginary time 

j

kiii)

τ' < τ

int(w+r) = 1

ii) j j

τ - τ'

Figure 2.2.: Schematic illustration of the algorithm resulting from Equation (2.24).
If τ ′ > τ , the walker has �nished its time step, if not, the walker hops into state k.
To be part of the next generation, it has to propagate the remaining time τ − τ ′.

2.4. Importance sampling

In literature (for example Ref. [13], [5], [12]) one often reads, that it is possible to improve the
behaviour of the random walk if there is a reasonable good approximation for the groundstate
wavefunction of the system available. The fundamental idea behind it is to use this function
to guide the walkers of the DMC simulation into important regions of the Hilbert space. Thus,
these regions are sampled more often by the walkers, which should result in a reduction of the
variance of the calculated observables.

In DMC one has two di�erent functions, the guiding function ΨG and the trial function ΨT , but
often these are the same functions. This is why the nomenclature in literature is not clear.

2.4.1. The guiding function

As abovementioned ΨG is used to bias the random walk, which leads to a modi�cation of the
imaginary time propagator [14].

G̃n,m =
ΨGn Gn,m

ΨGm
(2.25)
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2. Di�usion Monte Carlo

The repeated application of G̃ to a biased initial walker con�guration ψ̃(0) = ΨG ψ(0), leads to

ψ̃(1)
n =

∑
m

G̃n,m ψ̃
(0)
m =

∑
m

ΨGn Gn,m

ΨGm
ΨGm ψ

(0)
m = ΨGn

∑
m

Gn,m ψ
(0)
m = ΨGn ψ

(1)
n

ψ̃(2)
n =

∑
m

G̃n,m ψ̃
(1)
m = ΨGn ψ

(2)
n

· · ·
ψ̃(N)
n =

∑
m

G̃n,m ψ̃
(N−1)
m = ΨGn ψ

(N)
n ,

or in matrix notation

ψ̃(N) = G̃ ψ̃(N−1) = ΨG ψ(N) = ΨGGN ψ(0) .

In each time step the walker population is �rst of all divided and subsequently multiplied by
the guiding function. This results in the orginal algorithm, without importance sampling with
the exception, that the �nal walker population is multiplied by the guiding function. That
means, using a guiding function costs extra computational e�ort, without any improvement to
the variance of the calculated observables, as also noticed during our calculations.

But there is di�erent e�ect of the guiding function, which is expedient numerically. The �uc-
tuations of the walker population during the simulation are smaller. This becomes apparent in
Equation (2.24) term 6, which determines the multiplication of the walkers. If one considers
ideal importance sampling, which means ΨG = Φ0, the weight factor yields

Ĥj, j −
∑

m
˜̂
Hm, j

Ĥj, j − S
=

Ĥj, j −
∑

m
ΨGm Ĥm, j

ΨGj

Ĥj, j − S
ΨG=Φ0=

Ĥj, j − ε0
Ĥj, j − S

= w ∼= 1 .

If the weight factor w = 1, the walker population is constant.

2.4.2. The trial function

The trial function is typically used to calculate an expectation value of an observable, as
described in Section 2.1.
In Ref. [14], D. Ceperley did a calculation to estimate the variance of the energy computed by
DMC, assuming that ΨG = ΨT . It turns out, that the variance reduction comes from the trial
function in the energy estimator

E∗ =
1

N

N∑
τ=1

(
1

Z
〈ψ(τ) | Ĥ |ΨT 〉

)

=
1

N

N∑
τ=1

(
1

Z
〈 ψ̃(τ) / ΨT | Ĥ |ΨT 〉

)

=
1

N

N∑
τ=1

(
1

Z

∑
n

(
ΨTn
)−1

(
Ĥ |ΨT 〉

)
n
ψ̃(τ)
n

)

=
1

N

N∑
τ=1

(
1

Z

∑
n

EL
n ψ̃

(τ)
n

)

=
1

N

N∑
τ=1

EL(τ)
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2. Di�usion Monte Carlo

that is based on the local energy EL. The expectation value of this estimator is asymptotically
unbiased and independent of the trial function as proven in Equation (2.9).
Without loss of generality, one can assume that the ground state energy ε0 is zero, which
simpli�es the calculation. The variance of this estimator is thus given by

V =
1

N2

∑
i, j

〈
EL(i)EL(j)

〉
=

1

N2

∑
i

〈(
EL(i)

)2
〉

︸ ︷︷ ︸
σ2
E/N

+
2

N2

∑
i>j

〈
EL(i)EL(j)

〉
︸ ︷︷ ︸

V2

(2.26)

=
σ2
E

N
+ V2 ,

whereby N denotes the number of the sampled walker con�gurations after the thermalization
phase of the DMC simulation.
Furthermore, we assume that the trial function is close to the ground state wavefuntion Φ0 of
the Hamiltonian.

|ΨT 〉 = |Φ0 〉+ |∆ΨT 〉 (2.27)

Ĥ |ΨT 〉 = ε0 |Φ0 〉+ Ĥ |∆ΨT 〉 = Ĥ |∆ΨT 〉 (2.28)

The �rst term in Equation (2.26) can be transformed with the help of (2.27) and (2.28) that it
only depends on ∆Ψ .

σ2
E =

〈(
EL(i)

)2
〉

=
1

Z

∑
n

(
EL
)2

n

〈
ψ̃(i)
n

〉
=

1

Z

∑
n

(
ΨTn
)−2

(
Ĥ |ΨT 〉

)2

n
ΨTn Φ

0
n

=
1

Z

∑
n

(
ΨTn
)−1

(
Ĥ |ΨT 〉

)2

n

(
ΨTn −∆Ψn

)
=

1

Z

∑
n

(
Ĥ |∆ΨT 〉

)2

n

(
1− ∆Ψn

ΨTn

)
(2.29)

If the ground state wavefunction Φ0 is normalized, the normalization constant Z is

Z =
∑
n

Φ0
n Ψ

T
n =

∑
n

Φ0
n

(
Φ0
n +∆Ψn

)
= 1 + 〈Φ0 |∆ΨT 〉 .

To compute the second term of Equation (2.26), we �rst insert the de�nition of the local energy.

V2 =
2

N2

∑
i>j

〈
EL(i)EL(j)

〉
=

2

N2

∑
i>j

〈(
1

Z

∑
m

EL
m ψ̃

(i)
m

) (
1

Z

∑
n

EL
n ψ̃

(j)
n

)〉

=
2

N2

∑
i>j

∑
m,n

EL
m p(m ∈ i |n ∈ j)EL

n p(n ∈ j) (2.30)
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2. Di�usion Monte Carlo

The term p(m ∈ i |n ∈ j) in Equation (2.30) gives the probability to �nd a walker in state m
in generation i under the condition that there was one in state n in a preceding generation j.
In the derivation for V2, David Ceperley considers those walkers only in generation i which
are descendants from generation j. All other correlations ("cousin correlation") are neglected,
what gives a lower bound to the actual variance, as described in Ref. [14]. In addition, one
assumes that the number of generations in the equilibrated random walk is su�ciently large,
that all descendants of a given walker in state n in generation j are eventually sampled.
Using these approximations, the conditional probability in Equation (2.30) reduces to

p(m ∈ i |n ∈ j) =
∞∑
τ=1

G̃(τ)
m,n =

∞∑
τ=1

ΨTmG
(τ)
m,n

(
ΨTn
)−1

,

resulting in

V2 =
2

N Z

∑
m,n

EL
m

(
∞∑
τ=1

ΨTmG
(τ)
m,n

(
ΨTn
)−1

)
EL
n Ψ

T
n Φ

0
n . (2.31)

Whereby, τ = 1 means to sum over the descendants of generation j after one time step, τ = 2
to sum over the descendants after two time steps and so on.
The expression in Equation (2.31) can be further simpli�ed, which leads to

V2 =
2

N Z

∑
m,n

(
ΨTm
)−1

(
Ĥ |ΨT 〉

)
m

∞∑
τ=1

ΨTmG
(τ)
m,nE

L
n Φ

0
n

=
2

N Z

∑
m,n

〈ΨT | Ĥ |m 〉
∞∑
τ=1

G(τ)
m,nE

L
n Φ

0
n

=
2

N Z

∑
m,n

〈ΨT | Ĥ |m 〉
∞∑
τ=1

〈m |
(

1

1̂ + τ(Ĥ − S)

)τ

|n 〉EL
n Φ

0
n

=
2

N Z

∑
n

〈ΨT | Ĥ |
∞∑
τ=1

(
1

1̂ + τ(Ĥ − S)

)τ

|n 〉EL
n Φ

0
n .

In the next step, a complete set of eigenvectors of Ĥ is introduced. However, the ground state
drops out, because we set the ground state energy to be zero.

V2 =
2

N Z

∑
α>0

∑
n

〈ΨT | Ĥ |α 〉
∞∑
τ=1

(
1

1̂ + τ(εα − S)

)τ
〈α |n 〉EL

n Φ
0
n

Using the simple relation

∞∑
t=1

(
1

1 + x

)t
y=1/(1+x)

= −1 +
∞∑
t=0

yt =
y

1− y =
1

x

yields

V2 =
2

N Z

∑
α>0

∑
n

〈ΨT |α 〉 εα
τ(εα − S)

〈α |n 〉EL
n Φ

0
n .
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Since S ≈ ε0 = 0 we obtain

V2 =
2

N Z τ

∑
α>0

∑
n

〈ΨT |α 〉 〈α |n 〉EL
n Φ

0
n .

To complete the sum over α we add and subtract a term, which results in

V2 =
2

N Z τ

∑
α

∑
n

〈ΨT |α 〉 〈α |n 〉EL
n Φ

0
n −

2

N Z τ

∑
n

〈ΨT |Φ0 〉 〈Φ0 |n 〉EL
n Φ

0
n . (2.32)

The �rst term in Equation (2.32) vanishes because∑
α

∑
n

〈ΨT |α 〉 〈α |n 〉EL
n Φ

0
n =

∑
n

〈ΨT |n 〉EL
n Φ

0
n

=
∑
n

〈ΨT |n 〉
(
ΨTn
)−1

(
Ĥ |ΨT 〉

)
n
Φ0
n

=
∑
n

ΨTn
(
ΨTn
)−1

(
Ĥ |ΨT 〉

)
n
Φ0
n

= 〈Φ0 | Ĥ︸ ︷︷ ︸
ε0

|ΨT 〉 = ε0 〈Φ0 |ΨT 〉 = 0 .

Hence, we get the following result for the expression V2.

V2 = − 2

N Z τ

∑
n

〈ΨT |Φ0 〉︸ ︷︷ ︸
Z

〈Φ0 |n 〉EL
n Φ

0
n = − 2

N τ

∑
n

EL
n

(
Φ0
n

)2
(2.33)

Therefore, the total variance a la Ceperley is given by

V2 =
σ2
e

N
− 2

N τ

∑
n

EL
n

(
Φ0
n

)2
. (2.34)
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3. Approximations for the groundstate

wavefunction

In this Chapter, three di�erent methods to calculate an approximation for the groundstate
wavefunction of the Hubbard Hamiltonian are discussed. In the following, these wavefunctions
can be used within a DMC simulation to generate an initial walker con�guration, to calculate
the mixed estimator (see Section 2.1) or as a trial function in the Fixed Node Approximation.
The Gutzwiller Wavefunction respectively the RVB Wavefunction are described in Section 3.1
respectively 3.2, which can be applied to the fermion Hubbard model. In Section 3.3, an
approach for the groundstate based on probability theory is presented.

3.1. The Gutzwiller Wavefunction

In Ref. [15], Martin C. Gutzwiller described a general wavefunction for electrons in narrow
s bands. In this Section, we apply this Gutzwilller Wavefunction (GWF) to the Hubbard
Hamiltonian to obtain an analytical approximation for the groundstate. Subsequently some
results are presented.

To compute the GWF, one starts with the groundstate in momentum space (|FS 〉) for U = 0,
accomplishes a Fourier transformation to real space and �nally the basis states are weighted
depending on their double occupations.

|ΨGWF 〉 =
∑
Γ

gD̂ |Γ 〉 〈Γ |FS 〉 =
∑
Γ↑,Γ↓

gD̂ |Γ↑ 〉 ⊗ |Γ↓ 〉 〈Γ↑ |FS↑ 〉 〈Γ↓ |FS↓ 〉 (3.1)

In Equation (3.1), |Γσ 〉 denotes a manybody basis state in real space

|Γσ 〉 =
Nσ∏
i∈N

c†i,σ | 0 〉

for Nσ electrons per spin direction σ on N lattice sites (e.g. Figure (1.2)), respectively |FSσ 〉
is the ground state in reciprocal space in the appendant spin direction. The operator D̂ simply
counts the double occupations, as described in Chapter 1.
The parameter g is de�ned to minimise

EGWF (g) =
〈ΨGWF (g) | Ĥ |ΨGWF (g) 〉
〈ΨGWF (g) |ΨGWF (g) 〉 , (3.2)

whereupon EGWF (g) has a global minimum in the intervall g ∈ (0, 1], as noticed during our
calculations. For the special case U = 0, the Gutzwiller wavefunction is consistent with the
groundstate wavefuntion of the system if we choose g = 1. But this is not surprising because
we already started with this function in momentum-space.
With increasing U the di�erence between EGWF and the groundstate energy ε0 increases too
and the optimal value of g is shifted to smaller values, as depicted in Tabular 3.2 and 3.3.
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3. Approximations for the groundstate wavefunction

The meaning of the terms 〈Γσ |FSσ 〉 becomes clear if one performs the Fourier transformation
of |FSσ 〉 by hand. Let us consider a system with N = 3 sites and a basis state in momentum
space for a spin direction given by

|K 〉 = c†k1 c
†
k2
| 0 〉 .

Using Equation (1.3) we yield

|K 〉 =
1

N

(
ei k1 x1 c†x1 + ei k1 x2 c†x2 + ei k1 x3 c†x3

) (
ei k2 x1 c†x1 + ei k2 x2 c†x2 + ei k2 x3 c†x3

)
=

1

N

(
(ei k1 x1 ei k2 x2 − ei k1 x2 ei k2 x1) c†x1 c

†
x2

+ (ei k1 x1 ei k2 x3 − ei k1 x3 ei k2 x1) c†x1 c
†
x3

+ (ei k1 x2 ei k2 x3 − ei k1 x3 ei k2 x2) c†x2 c
†
x3

)
1

N

( ∣∣∣∣∣ ei k1 x1 ei k1 x2

ei k2 x1 ei k2 x2

∣∣∣∣∣ c†x1 c†x2 +

∣∣∣∣∣ ei k1 x1 ei k1 x3

ei k2 x1 ei k2 x3

∣∣∣∣∣ c†x1 c†x3 +

∣∣∣∣∣ ei k1 x2 ei k1 x3

ei k2 x2 ei k2 x3

∣∣∣∣∣ c†x2 c†x3
)

=
1

N

∑
Γ

(∑
P

∏
i

(−1)P ei ki xΓi

)
|Γ 〉 ,

whereby
∑

P sums over all permutation of the c†'s and the factor (−1)P considers the sign
occuring to sort the creation operators in ascending order. Hence, we obtain the general form
for the Gutzwiller wavefunction

|ΨGWF 〉 =
∑
Γ↑,Γ↓

gD̂ det

(
exp(iK↑ Γ↑)√

N

)
det

(
exp(iK↓ Γ↓)√

N

)
|Γ↑ 〉 ⊗ |Γ↓ 〉 . (3.3)

As one can see in Equation (3.3), one is able to calculate the determinants for each spin direction
independently of each other. Therefore, the number of determinants to compute and to store
is only (

N

N↑

)
+

(
N

N↓

)
instead of

(
N

N↑

)
·
(
N

N↓

)
,

what is very expedient, concerning memory requirements and calculating time.

Furthermore, the coe�cients of the GWF are usually complex numbers, that means

|ΨGWF 〉 =
∑
ν

cν |Γν 〉 , cν ∈ C .

Since we want to use the GWF, as a guiding function or as a trial function in the Fixed
Node Approximation, it would be useful if the cν 's are real numbers. This is why we did the
minimisation in Equation (3.2) always twice, once using only the real, and once using only the
imaginary part of the cν 's. The wavefunction, which corresponds to the lower energy, was used
for further calculations.
Despite of neglecting a lot of information in the wavefunction, it turns out that the obtained
energy EGWF is mostly the same as for complex coe�cients, sometimes better and seldom
worse.

If the groundstate of Ĥ0 (the term of the Hamiltonian corresponding to the kinetic energy) is
degenerated, every linear combination of groundstate vectors is a groundstate vector as well.
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3. Approximations for the groundstate wavefunction

That means, there is an enormous number of possibilities to construct |FS 〉 respectively to
compute the GWF.
During our calculations, it turned out that if the di�erent spin directions have combined momen-
tum zero (an example is depicted in Figure (3.1)), one obtains a suitable function to calculate
the GWF. However, this choice for example is limited to systems with N↑ = N↓ and does not
mean that there are no better functions available.
For systems, which are not degenerated in Ĥ0 (Figure (1.5)), the fermi sea is accurately de�ned
resulting in a signi�cantly better approximation for the groundstate energy ε0 in comparison
to degenerated systems (see Figure (3.3) and (3.4)).
But maybe there are also possibilities to improve this wavefunction, for example, if one takes
particle hole excitations into account.

1 4 7 1 4 7

-2π/3 0 2π/3

kX -2π/3 -2π/3 -2π/3 -2π/3 -2π/3 -2π/3

kY
-2π/3 0 2π/3

2 5 8 2 5 8

-2π/3 0 2π/3 -2π/3 0 2π/3

2π/3 2π/3 2π/3 2π/3 2π/3 2π/3

-2π/3 0 2π/3 -2π/3 0 2π/3

0 0 0 0 0 0

3 6 9 3 6 9
2π/3 2π/3 2π/3 2π/3 2π/3 2π/3

Figure 3.1.: A basis state of the Hubbard Hamiltonian in momentum space for a system size
LX×LY = 3×3 andN↑ = N↓ = 3 . The coloured numbers indicate the wavenumber
of the sites.
As one can recognize, this state is a groundstate of Ĥ0 and has momentum zero.

3.1.1. Results of the Gutzwiller Wavefunction

In this Section, the true groundstate energy ε0 for di�erent systems is compared to the corre-
sponding energy EGWF , obtained using the GWF.

Figure (3.2) shows the energy EGWF as a function of the variational parameter g for a system
with LX × LY = 3× 3 sites and N↑ = N↓ = 5 electrons.

Figure (3.3) shows the exact groundstate energy ε0 and the approximation EGWF using the
GWF as a function of U/t for a system with LX ×LY = 3× 3 sites and N↑ = N↓ = 5 electrons.
The approximation is exact for U = 0 and becomes inexact with increasing U . The values
belonging to Figure (3.3) are listed in Table 3.2.
Figure (3.4) is the same as Figure (3.3), but for a system with only N↑ = N↓ = 3 electrons.
The corresponding values are listed in Table 3.3.

To sum up, some results for di�erent systems are listed in Table 3.1 for U/t = 4.
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3. Approximations for the groundstate wavefunction
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Figure 3.2.: The energy EGWF as a function of the variational parameter g in comparison to
the groundstate energy ε0 for a system with LX × LY = 3 × 3, N↑ = N↓ = 5 and
U/t = 4. The energies are given in units of t.
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3. Approximations for the groundstate wavefunction

Table 3.1.: Comparison of the energies obtained for di�erent systems by means of the GWF
(EGWF ) and exact diagonalisation (ε0) for a value of U/t = 4.
The = or < denote, if the real or the imaginary part of the GWF was used to
calculate the energy. The energies are given in units of t.

LX LY N↑ N↓ = or < EGWF ε0

2 4 4 4 < -9.8885 -10.2530
3 3 4 4 = -8.7167 -9.3648
3 4 2 2 = -11.2836 -11.3464
3 4 3 3 < -13.9043 -13.9962
3 4 4 4 = -14.2193 -14.3635
3 4 6 6 < -9.9818 -10.3090
4 4 5 5 < -19.3874 -19.5808*
4 4 8 8 < -11.3711 -13.6224*

* adopted from Ref. [16]
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Figure 3.3.: Comparison of the exact groundstate energy ε0 and the approximation EGWF as a
function of U/t for a system with LX × LY = 3× 3 and N↑ = N↓ = 5.
To calculate EGWF the real part of the GWF was used. The energies are given in
units of t.
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3. Approximations for the groundstate wavefunction

Table 3.2.: Corresponding values of Figure (3.3). gopt denotes the value, which minimises Equa-
tion (3.2). The energies are given in units of t.

U/t EGWF ε0 gopt

0 -16.0000 -16.0000 1.0000
1 -13.3080 -13.3127 0.8742
2 -10.7829 -10.8014 0.7647
3 -8.4187 -8.4616 0.6683
4 -6.2104 -6.2911 0.5826
5 -4.1537 -4.2880 0.5059
6 -2.2439 -2.4467 0.4372
7 -0.4745 -0.7541 0.3765
8 1.1648 0.8094 0.3241
9 2.6889 2.2667 0.2800
10 4.1156 3.6394 0.2437
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Figure 3.4.: Comparison of the exact groundstate energy ε0 and the approximation EGWF as a
function of U/t for a system with LX × LY = 3× 3 and N↑ = N↓ = 3.
To calculate EGWF the real part of the GWF was used. The energies are given in
units of t.

Table 3.3.: Corresponding values of Figure (3.4). gopt denotes the value, which minimises Equa-
tion (3.2). The energies are given in units of t.

U/t EGWF ε0 gopt

0 -12.0000 -12.0000 1.0000
1 -11.1057 -11.4763 0.8489
2 -10.3947 -11.0162 0.7248
3 -9.8288 -10.6175 0.6230
4 -9.3765 -10.2754 0.5396
5 -9.0125 -9.9836 0.4714
6 -8.7171 -9.7352 0.4156
7 -8.4750 -9.5236 0.3697
8 -8.2744 -9.3426 0.3318
9 -8.1065 -9.1871 0.3001
10 -7.9645 -9.0527 0.2735
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3. Approximations for the groundstate wavefunction

3.2. The RVB Wavefunction

In Ref. [17], P. W. Anderson suggested that on a two dimensional square lattice the spins
are in a resonation-valence-bond (RVB) state of spin pairs with total spin zero. Iske and
Caspers used this spin pairs (singlets) to approximate the groundstate of the antiferromagnetic
Heisenberg model [18]. The authors of Ref. [3] adopted this concept and proposed to use the
RVB approximation for the groundstate wavefunction of the Hubbard model.
This Section describes in detail, how to compute an approach for the groundstate of the Hubbard
Hamiltonian using RVB, whereupon we restrict ourselves to the half �lled case N↑ = N↓ = N/2.

The idea of the RVB approximation is to cover the whole lattice with spin pairs (also called
bonds, dimers or singlets) between two nearest neighbour sites. Such a bond between site i and
j is de�ned by

i j
=̂ |ψ(i,j) 〉 =

[(
c†i,↑ c

†
j,↓ + c†j,↑ c

†
i,↓

)
x+ c†i,↑ c

†
i,↓ + c†j,↑ c

†
j,↓

]
| 0 〉 with

x =
U +
√

16t2 + U2

4t
,

(3.4)

what is exactly the groundstate of a system with N = 2 sites and N↑ = N↓ = 1 electron (see
Equation (1.18)). If one considers periodic boundary conditions, these bonds are also allowed
to reach across the boundaries (see Figure (3.8)).
A lattice, that is completely covered by bonds, is called dimer covering as depicted in Figure
(3.5). Thereby, it is very important that each lattice site is only occupied by one dimer.

1 3 5 7

2 4 6 8

LY

2 4 6 8LX

Figure 3.5.: An example for a dimer covering for a system size LX × LY = 2× 4.

The wavefunction corresponding to a given dimer coveringD is the product of the wavefunctions
of its bonds

ψD =
∏

(i,j)∈D
i<j

ψ(i,j) , (3.5)

whereby D sums over all bonds concerning to the covering. For the example in Figure (3.5)

D = {(1,3), (2,4), (5,7), (6,8)} .

Thus, each dimer covering occupies at most 4N/2 basis states of the Hamiltonian, where N/2 is
the number of bonds per covering. The di�erent weights of the basis states depending on their
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3. Approximations for the groundstate wavefunction

double occupations are taken into account by the factor x in Equation (3.4). The rule i < j in
the product of Equation (3.5) is needed to obtain the correct sign of the basis states.

The RVB wavefunction ΨRV B is given by a linear combination of all possible dimer coverings
ND of the considered system [3]. Subsequently, a Gutzwiller factor is added to improve the
result.

|ΨRV B 〉 = gD̂

(
ND∑
n=1

cn ψDn

)
| 0 〉 (3.6)

The coe�cients ~c and g in Equation (3.6) are variational parameters and are determined by

min
~c, g

ERV B = min
~c, g

〈ΨRV B | Ĥ |ΨRV B 〉
〈ΨRV B |ΨRV B 〉

. (3.7)

The operator D̂, again, simply counts the double occupations of the basis states.
This minimisation is a task in ND + 1 dimensions, for what the following procedure has proved
to be successful during our calculations.

i) Optimise the coe�cients ~c independently of the Gutzwiller factor gD̂. This leads to the
generalized eigenvalue problem

H~c = E S~c where Hi, j = 〈ψDi | Ĥ |ψDj 〉 and Si, j = 〈ψDi |ψDj 〉 .

ii) Use the result for the ~c form i), but leave them constant and perform a minimisation in
one dimension for the parameter g. For example, use Brents method, as described in Ref.
[19].

iii) Use the results from i) and ii) as initial values for the simplex algorithm, also described
in Ref. [19], to compute ERV B.

Thereby, it is not assured to �nd the global minimum, but one obtains a feasible result for
ERV B. An improvement of this procedure is achievable if one �rst divides the dimer coverings
into classes, whereby coverings within a class are related by the symmetry of the bonds [18].
A further possibility to improve this approximation is to allow also bonds between the next
nearest neighbours. Thus, more basis states of the Hubbard Hamiltonian are occupied and one
obtains a more appropriate approach for the groundstate wavefunction.
It is mentionable that the coe�cients ~c and g are real. That means the RVB wavefuntion is
also real and one can use it as a trial function in the Fixed Node Approximation (see Chapter
5) without any changes.

Table 3.4.: The number of possible dimer coverings for di�erent system sizes considering the
nearest neighbour bonds respectively also the next nearest neighbour bonds.

nearest next nearest
LX LY neighbours neighbours

2 2 2 -
2 4 9 33
4 4 272 17552
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3. Approximations for the groundstate wavefunction

3.2.1. Results for the system LX × LY = 2× 2

In this Section, we show how to calculate the coe�cients of a dimer covering for the system
LX × LY = 2 × 2 by hand. Then, the obtained approximation for the groundstate energy
ERV B is compared to the true groundstate energy ε0 and to the result from the Gutzwiller
Wavefunction EGWF .

1 3 1 3

2 4 2 4

LY

2 4 2 4LX

Figure 3.6.: The two possible dimer coverings for the system LX × LY = 2× 2.

Figure (3.6) shows the two possible dimer coverings for the considered system, whereby the
left-sided covering (horizontal bonds) corresponds to the following wavefunction.

ψD1 =ψ(1,3)ψ(2,4)

=
(
x
(
c†1,↑ c

†
3,↓ + c†3,↑ c

†
1,↓

)
+ c†1,↑ c

†
1,↓ + c†3,↑ c

†
3,↓

) (
x
(
c†2,↑ c

†
4,↓ + c†4,↑ c

†
2,↓

)
+ c†2,↑ c

†
2,↓ + c†4,↑ c

†
4,↓

)
=x2

(
c†1,↑ c

†
3,↓ c

†
2,↑ c

†
4,↓ + c†1,↑ c

†
3,↓ c

†
4,↑ c

†
2,↓ + c†3,↑ c

†
1,↓ c

†
2,↑ c

†
4,↓ + c†3,↑ c

†
1,↓ c

†
4,↑ c

†
2,↓

)
+x

(
c†1,↑ c

†
3,↓ c

†
2,↑ c

†
2,↓ + c†1,↑ c

†
3,↓ c

†
4,↑ c

†
4,↓ + c†3,↑ c

†
1,↓ c

†
2,↑ c

†
2,↓ + c†3,↑ c

†
1,↓ c

†
4,↑ c

†
4,↓

+ c†1,↑ c
†
1,↓ c

†
2,↑ c

†
4,↓ + c†1,↑ c

†
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†
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†
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†
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2,↓

)
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(
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†
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†
1,↓ c

†
4,↑ c

†
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†
3,↓ c

†
2,↑ c

†
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3,↓ c

†
4,↑ c

†
4,↓

)
Shifting all c†↑'s to the left hand side and all c†↓'s to the right hand side and a subsequent sorting
by ascending order yields the sign of the basis states.

=x2
(
−c†1,↑ c†2,↑ c†3,↓ c†4,↓ + c†1,↑ c

†
4,↑ c

†
2,↓ c

†
3,↓ + c†2,↑ c

†
3,↑ c

†
1,↓ c

†
4,↓ − c†3,↑ c†4,↑ c†1,↓ c†2,↓

)
+x

(
c†1,↑ c

†
2,↑ c

†
2,↓ c

†
3,↓ − c†1,↑ c†4,↑ c†3,↓ c†4,↓ + c†2,↑ c

†
3,↑ c

†
1,↓ c

†
2,↓ − c†3,↑ c†4,↑ c†1,↓ c†4,↓

− c†1,↑ c†2,↑ c†1,↓ c†4,↓ − c†1,↑ c†4,↑ c†1,↓ c†2,↓ + c†2,↑ c
†
3,↑ c

†
3,↓ c

†
4,↓ + c†3,↑ c

†
4,↑ c

†
2,↓ c

†
3,↓

)
−
(
c†1,↑ c

†
2,↑ c

†
1,↓ c

†
2,↓ + c†1,↑ c

†
4,↑ c

†
1,↓ c

†
4,↓ + c†2,↑ c

†
3,↑ c

†
2,↓ c

†
3,↓ + c†3,↑ c

†
4,↑ c

†
3,↓ c

†
4,↓

)
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The same calculation has to be done for the right-sided dimer covering (vertical bonds) of
Figure (3.6).

ψD2 =ψ(1,2)ψ(3,4)

= − x2
(
c†1,↑ c

†
3,↑ c

†
2,↓ c

†
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3,↓
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†
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†
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†
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†
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†
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†
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−
(
c†1,↑ c

†
3,↑ c

†
1,↓ c

†
3,↓ + c†2,↑ c

†
3,↑ c

†
2,↓ c

†
3,↓ + c†1,↑ c

†
4,↑ c

†
1,↓ c

†
4,↓ + c†2,↑ c

†
4,↑ c

†
2,↓ c

†
4,↓

)
Using the wavefunctions ψD1 and ψD2 for the dimer coverings and applying the steps i) to iii)
of the procedure to calculate ERV B, described in the previous Section, leads to a result that is
in a very good agreement with the exact groundstate energy ε0 of the system.

Figure (3.7) respectively Table 3.5 compare the obtained approximation for the groundstate
energy using the Gutzwiller Wavefunction and the RVB wavefunction to ε0 for di�erent values
of the parameters U/t.
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Figure 3.7.: Comparison of the exact groundstate energy ε0 and the approximations EGWF and
ERV B as a function of U/t for a system with LX × LY = 2× 2 and N↑ = N↓ = 2.
The energies are given in units of t.
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Table 3.5.: Corresponding values of Figure (3.7). The energies are given in units of t.

U/t EGWF ERV B ε0

0 -8.0000 -8.0000 -8.0000
1 -7.0623 -7.2957 -7.2980
2 -6.2462 -6.6747 -6.6817
3 -5.5440 -6.1264 -6.1381
4 -4.9443 -5.6412 -5.6569
5 -4.4340 -5.2113 -5.2294
6 -4.0000 -4.8294 -4.8489
7 -3.6301 -4.4895 -4.5092
8 -3.3137 -4.1861 -4.2055
9 -3.0416 -3.9147 -3.9332
10 -2.8062 -3.6712 -3.6886

3.2.2. Results for the system LX × LY = 2× 4

In this Section, again, the obtained result of the RVB approximation ERV B is compared to the
groundstate energy ε0.
But, in contrast to Section 3.2.1, it was useful for the minimisation procedure to divide the
possible dimer coverings for this system, shown in Figure (3.5) and (3.8), into classes �rst.
The classi�cation of the coverings was done according to the number of veritical bonds. That
means, class one is depicted in Figure (3.5), class two in the �rst row of Figure (3.8) and class
three in the second row of Figure (3.8).
The wavefunction, corresponding to a class, is a linear combination of the wavefunction of its
dimer coverings, whereby each dimer covering has got the same weight and a sign as depicted
in Figure (3.8). (The sign was found within a trial and error process.)

LY + + + +LY

LX

+ + + +

- - + +

Figure 3.8.: Eight of the nine possible dimer coverings for the system LX×LY = 2×4, whereby
those pictured in the same row, belong to the same class. The + or − show the
sign of the corresponding covering within a class.

Therefore, the minimisation procedure of Equation (3.7) is a task in 4 dimensions. Furthermore,
it has shown to be advantageous if one neglects step i) of the minimisation procedure and to
use the same weight factors for all classes instead of that.
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3. Approximations for the groundstate wavefunction

The results of the calculations are depicted in Figure (3.9) and Table 3.6. As one can see, the
RVB approximation gives a lower energy than the Gutzwiller Wavefunction and thus has to be
preferred for this system.
However, the agreement with the groundstate energy is not as good as for the system
LX × LY = 2× 2.
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Figure 3.9.: Comparison of the exact groundstate energy ε0 and the approximations EGWF and
ERV B as a function of U/t for a system with LX × LY = 2× 4 and N↑ = N↓ = 4.
The energies are given in units of t.

Table 3.6.: Corresponding values of Figure (3.9). The energies are given in units of t.

U/t EGWF ERV B ε0

0.00 -16.0000 -16.0000 -16.0000
1.00 -14.1245 -14.1420 -14.2395
2.00 -12.4924 -12.5569 -12.7053
3.00 -11.0880 -11.2157 -11.3839
4.00 -9.8885 -10.0822 -10.2530
5.00 -8.8680 -9.1210 -9.2861
6.00 -8.0000 -8.3015 -8.4574
7.00 -7.2603 -7.5984 -7.7441
8.00 -6.6274 -6.9912 -7.1267
9.00 -6.0832 -6.4634 -6.5894
10.00 -5.6125 -6.0018 -6.1190
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3. Approximations for the groundstate wavefunction

3.2.3. Results for the system LX × LY = 4× 4

For this system we used the minimisation procedure as described in Section 3.2. The result of
the RVB approximation using parameters U/t = 4 after the �rst two steps is

i) ERV B = −9.5155 and

ii) ERV B = −10.6617 ,

what is not in a good agreement with the groundstate energy ε0 (see Table 3.1). This is why
step iii) was not performed for this system.
Maybe by the use of the RVB wavefunction, an insu�cient number of basis states of the
Hamiltonian are occupied, what is at most

272 · 48

merely 10.8 % of the size of the Hilbert space.
Furthermore, one would be able to improve the result by taking also the next nearest neighbour
bonds into account, but this leads to an unworthy long computing time.

3.3. A variational approach based on the maximum

entropy principle

In Ref. [20] Canosa, Plastino and Rossignoli describe, that a quantum state in a complete
orthonormal basis can be treated as probability density, if it is positive de�nite. Thus, one can
de�ne a quantal entropy and use the maximum entropy principle to give an approach for the
groundstate wavefunction. This procedure is applied to the one-dimensional fermion Hubbard
model in Ref. [21].
In this Section, we will give a short overview of the derivation in Ref. [20] and use this
principle to compute an approximation of the groundstate wavefuntion of the two-dimensonal
hardcore-boson Hubbard model. That means, occupation numbers like fermions, but commu-
tator relations like bosons.

Let us assume an arbitrary wavefunction

|ψ 〉 =
∑
ν

cν |χν 〉 , cν ∈ R , cν ≥ 0 ∀ν , (3.8)

represented in a complete orthonormal basis |χ 〉 with

ρ = 〈ψ |ψ 〉 =
∑
ν

|cν |2 ,

then one is able to de�ne a quantal entropy S associated with the probability distribution ρ.

S = −
∑
ν

ρ(ν) ln ρ(ν) = −
∑
ν

2 c2
ν ln (cν) (3.9)

Furthermore, let us suppose that the available information of the treated system, assumed to be
in the groundstate, is given by a set of n linear independent expectation values of observables

Oi = 〈ψ | Ôi |ψ 〉 =
∑
ν, ν′

cν cν′ 〈χν | Ôi |χν′ 〉 , i = 1, · · · , n . (3.10)
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3. Approximations for the groundstate wavefunction

We use the maximum (quantum) entropy (MQE) principle to compute the coe�cients cν of
Equation (3.8). That means to choose that wavefunction, which extremalizes Equation (3.9)
considering the constraints in Equation (3.10). For every constraint Oi, a Lagrange multiplier
λi is introduced and for simpli�cation we restrict ourselves to diagonal operators.
Therefore, the Lagrange equation is given by

L = S −
∑
i

λiOi = −
∑
ν

2 c2
ν ln (cν)−

∑
i

λi

(∑
ν

c2
ν 〈χν | Ôi |χν 〉

)
. (3.11)

The calculation of the extremum yields

∂L

∂cν

!
= 0 = − 4cν ln cν − 2cν −

∑
i

λi 2cν 〈χν | Ôi |χν 〉

= − 2 ln cν − 1−
∑
i

λi 〈χν | Ôi |χν 〉

⇒ cν =
1

Z
exp

(
−
∑
i

λi 〈χν | Ôi |χν 〉
)

, (3.12)

whereby Z is simply a normalization constant. The Lagrange multipliers ~λ in Equation (3.12)
become a set of variational parameters and are determined by minimising the expectation value
of the Hamiltonian Ĥ.

min
~λ

EMQE = min
~λ

〈ψ(~λ) | Ĥ |ψ(~λ) 〉
〈ψ(~λ |ψ(~λ) 〉

(3.13)

For the concrete example, the two-dimensonal hardcore-boson Hubbard model, we used three
operators to calculate the approximation for the groundstate energy.

- The local correlation operator

D̂ =
∑
i

ni, ↑ ni, ↓ , (3.14)

which simply counts the double occupations of the basis state,

- the spin-spin correlation operator

ĈSS =
∑
〈i,j〉

Ŝi Ŝj and (3.15)

- the density-density correlation operator

ĈNN =
∑
〈i,j〉

N̂i N̂j . (3.16)

In this context 〈i,j〉 denotes to sum only over the nearest neighbours, while Ŝi = ni, ↑−ni, ↓ and
N̂i = ni, ↑ + ni, ↓, as also described in Ref. [21]. These operators describe the main correlations
of the system and are diagonal in real space.

In Figure (3.10), the exact groundstate energy ε0 is compared to the approach EMQE, based
on Equation (3.12) till (3.16), as a function of U/t for a system with LX × LY = 3 × 3 and
N↑ = N↓ = 3 hardcore-bosons. As one can see, they are in a very good agreement.
The corresponding values of Figure (3.10) are depicted in Table 3.7.
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Figure 3.10.: Comparison of the exact groundstate energy ε0 and the approximation EMQE,
based on maximum quantum entropy, as function of U/t for a system with
LX × LY = 3 × 3 and N↑ = N↓ = 3 hardcore-bosons. To calculate EMQE the

operators D̂, ĈSS and ĈNN were taken into account. The energies are given in
units of t.
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3. Approximations for the groundstate wavefunction

Table 3.7.: Corresponding values of Figure (3.10). The energies are given in units of t.

U/t EMQE ε0

0 -18.5375 -18.5424
1 -17.5921 -17.5972
2 -16.7514 -16.7572
3 -16.0085 -16.0152
4 -15.3554 -15.3631
5 -14.7834 -14.7924
6 -14.2839 -14.2942
7 -13.8481 -13.8596
8 -13.4677 -13.4805
9 -13.1351 -13.1491
10 -12.8436 -12.8587
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4. The Sign Problem

In this Chapter we discuss a topic, named in the literature of Di�usion Monte Carlo respectively
Greens Function Monte Carlo, the sign problem and its impacts. In the following Section, an
additional ingredient of the DMC algorithm is presented, originally introduced by A. Alavi and
his co-workers in Ref. [22], which helps to reduce the sign problem.

One is able to describe the sign problem in a few sentences [23]. Suppose there is a walker in
basis state χν with sign s at time τ and it is propagating through the Hilbert space. While
its movement, the walker can pick up a sign if the Hamiltonian of the system has o�-diagonal
elements with di�erent signs. Let us assume, this walker, or one of its descendants, returns to
this basis state at time τ ′ > τ , but with a sign −s. Thus, the problem arises, that the average
value of the coe�cient of this basis state has a large variance, which results in large �uctuations
of the calculated observables.
The annihilation step, described in Section 2.2.2, works against this problem. Thereby, one
assumes that after a time step the majority of the walkers on a basis state has the correct
sign and those walkers with the wrong sign are annihilated. This part of the algorithm should
ensure that the coe�cients of the basis states earn the correct sign on the average.
However, if the size of the Hilbert space NH is much bigger than the number of walkers NW ,
used within a DMC simulation, annihilation events become seldom.

Figure (4.1) shows the results of some DMC calculations as a function of the mean number of
walkers NW , used within the simulation, divided by the size of the Hilber space NH . Both,
the obtained energy EDMC (calculated using Equation (2.9)) and the mean value of the energy
shift 〈S〉 should actually be in agreement with the true groundstate energy ε0.
But, as you can realise, the obtained results depend on the ratio NW/NH . That means, if
the Hamiltonian has o�-diagonal elements with di�erent signs, there is a critical value NC of
required walkers (in the example, depicted in Figure (4.1), it's about 80 % of the size of the
Hilbert space) to achieve convergence. To repeat quintessence, not before NW/NH > NC are
EDMC and 〈S〉 in an agreement with the groundstate energy ε0 and NC scales with the size of
the Hilbert space, as observed during our calculations.
This is, of course, a terrible result, because the required memory to store the walkers within
a DMC simulation is in the range as for the lanczos algorithm. Keep in mind that without
the sign problem theoretically a handful of walkers su�ce to obtain an exact result for the
groundstate energy.

For further information regarding the sign problem and its impact to DMC simulations, see
Ref. [24].
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Figure 4.1.: Comparison of the exact groundstate energy ε0 = −13.9962 to the energy obtained
from the DMC simulation EDMC and to the corresponding mean value of the en-
ergy shift 〈S〉 as a function of the mean number of walkers NW divided by the size
of the Hilbert space NH .
The parameters of the considered system are LX × LY = 4× 3, N↑ = N↓ = 3 and
U/t = 4. The energies are given in units of t.
The errorbars for EDMC are plotted for a con�dence interval of ±σ and were com-
puted using Equation (A.4). For 〈S〉 no errorbars are plotted, because they are
smaller than the markers.
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4. The Sign Problem

Table 4.1.: Corresponding values of Figure (4.1).
Comparison of the exact groundstate energy ε0 = −13.9962 to the energy obtained
from the DMC simulation EDMC ± σDMC and to the corresponding mean value of
the energy shift 〈S〉 as a function of the mean number of walkers NW divided by
the size of the Hilbert space NH .
The parameters of the considered system are LX × LY = 4 × 3, N↑ = N↓ = 3 and
U/t = 4. The energies are given in units of t.

NW/NH 〈S〉 EDMC σDMC

0.14 -17.19 -7.15 2.40
0.20 -16.86 -7.29 0.93
0.25 -16.56 -7.47 1.29
0.31 -16.27 -9.82 1.31
0.36 -16.00 -10.69 5.47
0.41 -15.76 -7.84 0.87
0.45 -15.52 -10.41 4.43
0.50 -15.31 -9.37 2.83
0.54 -15.10 -7.37 3.40
0.58 -14.90 -799.62 165.57
0.63 -14.71 -5.55 4.13
0.67 -14.53 -9.27 4.09
0.70 -14.36 -6.02 1.06
0.74 -14.20 -7.20 4.73
0.78 -14.05 -13.59 1.87
0.82 -13.99 -13.88 0.07
0.87 -13.99 -13.93 0.04
0.92 -14.00 -13.98 0.04
0.97 -13.99 -13.92 0.03
1.02 -13.99 -14.00 0.03
1.07 -14.00 -13.94 0.02
1.11 -14.00 -13.98 0.02
1.16 -14.00 -13.97 0.02
1.21 -14.00 -13.97 0.02
1.26 -14.00 -13.97 0.02
1.31 -14.00 -13.97 0.02
1.35 -13.99 -13.96 0.02
1.40 -13.99 -13.99 0.02
1.45 -13.99 -13.95 0.02
1.50 -13.99 -13.95 0.02
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4. The Sign Problem

4.1. Initiator Di�usion Monte Carlo

In this Section, we describe a strategy, presented in Ref. [22], to reduce the required number
of walkers to achieve convergence of a DMC simulation. This strategy contains some kind of
survival criterion to newly spawned walkers and results in additional rules, which can easily be
adopted in the DMC algorithm.

i) If a basis state is occupied by na or more walkers, those walkers become initiators. Only
initiators are allowed to spawn progeny onto unoccupied basis states.
This ability gets lost if the number of walkers in this state is less than na.

ii) The progeny of walkers, which are no initators, survive only if they are spawned onto an
occupied basis state.

iii) The exception of i) and ii) is the special case, whereby two non-initators spawn new
walkers with the same sign onto a previously unoccupied basis state.

Using these rules, one wants to ensure that an unoccupied state is only populated by a new
walker if its parent walkers have a well established sign. Thus, one assumes that newly spawned
walkers are also sign coherent.
Using this initiator algorithm is associated with a systematic error. Since obviously in the limit
of na → 0 and NW →∞ this algorithm reduces to the original one and the error removes also
within these limits.
For further details of the initator approximation see also Ref. [25].
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As described in Chapter 4, the Di�usion Monte Carlo method can only be applied to fermionic
systems with huge e�orts to the required memory, because of the sign problem. In this Chapter,
we present an approximation, originally introduced by Ceperley and Alder in Ref. [26], to avoid
the sign problem by replacing the full Hamiltonian by an e�ective Hamiltonian and show in
Section 5.1, that this approximation gives an upper bound for the true groundstate energy of
the system.
In Section 5.2, we do a calculation for a toy model to demonstrate how the Fixed Node Ap-
proximation (FNA) works and subsequently present some results for di�erent system sizes in
Section 5.3. Section 5.4 describes that under certain conditions, the FNA can be used as in-
put for another calculation, called Nodal Release, to obtain the ground state energy of the full
Hamiltonian.

Suppose there is quite a good approach ΨT for the groundstate wavefunction φ0 of the Hamil-
tonian available. (In the case of the Hubbard model with periodic boundary conditions this
wavefunction can be real.)
The idea of the FNA is to avoid the sign problem by dividing the con�guration space into
nodal regions, depending on the nodes of a trial wavefunction ΨT , which results in an e�ective
Hamiltonian Ĥeff . A nodal region is a set of basis states connected by the Hamiltonian in
which the trial function has the same sign. This e�ective Hamiltonian is designed that a
walker remains in its nodal region and therefore can never collect an unwanted sign during its
propagation.
An unwanted sign only occurs if o�-diagonal matrix elements of Ĥ exist with

Ĥn,m Ψ
T
n Ψ

T
m > 0 . (5.1)

To avoid the hopping of the walkers across the nodal regions, those elements are set to zero in
the e�ective Hamiltonian.

〈χn | Ĥeff |χm 〉 =

{
〈χn | Ĥ |χm 〉 if Ĥn,m Ψ

T
n Ψ

T
m < 0

0 otherwise
(5.2)

The diagonal elements of the e�ective Hamiltonian are given by

〈χn | Ĥeff |χn 〉 = 〈χn | Ĥ |χn 〉+ 〈χn | V̂sf |χn 〉 . (5.3)

The last term in Equation (5.3) is called the sign-�ip potential. It is de�ned by

〈χn | V̂sf |χn 〉 =

sf∑
m

〈χn | Ĥ |χm 〉
ΨTm
ΨTn

, (5.4)

whereby the summation is over all matrix elements for which Equation (5.1) holds. In the
e�ective Hamiltonian, the hopping across the nodes is replaced by a positive diagonal potential.
This is essential, because without V̂sf the value of the wavefunction at the nodes would be too
high and its energy too low, as found in Ref. [27].

48



5. The Fixed Node Approximation

5.1. Proof for an upper bound

In Ref. [28], D. M. Ceperley and his co-workers did a calculation to proof that the FNA gives
an upper bound for the groundstate energy of Ĥ. They started by introducing a truncated
Hamiltonian Ĥtr and a sign-�ip Hamiltonian Ĥsf .

Ĥ = Ĥtr + Ĥsf (5.5)

Ĥeff = Ĥtr + V̂sf (5.6)

The matrix elements of Ĥtr are de�ned by

〈χn | Ĥtr |χn 〉 = 〈χn | Ĥ |χn 〉 and 〈χn | Ĥtr |χm 〉 = 〈χn | Ĥeff |χm 〉 ,

and Ĥsf only contains the o�-diagonal elements of Ĥ, which are set to be zero in Ĥeff . Further-
more, an arbitrary normed wavefunction ψ is used to calculate the energy di�erence between
Ĥeff and Ĥ.

∆E = 〈ψ |
(
Ĥeff − Ĥ

)
|ψ 〉

∆E = 〈ψ |
(
V̂ sf − Ĥsf

)
|ψ 〉

∆E =
∑
n

ψ∗n V̂
sf
n, n ψn −

∑
n

ψn

(
Ĥsf |ψ 〉

)
n

∆E =
∑
n

ψ∗n

[
V̂ sf
n, n ψn −

∑
m

Ĥsf
n,m ψm

]

Next, we replace the operators V̂ sf and Ĥsf with terms of the original Hamiltonian Ĥ.

∆E =
∑
n

ψ∗n

[
sf∑
m

Ĥn,m
ΨTm
ΨTn

ψn −
sf∑
m

Ĥn,m ψm

]
(5.7)

In the double summation in the previous line each combination of (n, m) occurs twice. That
means, we are able to rewrite Equation (5.7) as a summation over pairs.

∆E =

sf∑
(n,m)

Ĥn,m

[
|ψn|2

ΨTm
ΨTn

+ |ψm|2
ΨTn
ΨTm
− ψ∗n ψm − ψ∗m ψn

]
(5.8)

Since the sum considers only terms for which condition (5.1) holds, the �rst two terms of
Equation (5.8) in combination with Ĥn,m are strictly positive. For the second two terms we

have to mind the sign sn,m of the matrix elements Ĥn,m.

∆E =

sf∑
(n,m)

|Ĥn,m|
[
|ψn|2

∣∣∣∣ΨTmΨTn
∣∣∣∣+ |ψm|2

∣∣∣∣ΨTnΨTm
∣∣∣∣− sn,m ψ∗n ψm − sm,nψ∗m ψn]

∆E =

sf∑
(n,m)

|Ĥn,m|
[
ψn

√∣∣∣∣ΨTmΨTn
∣∣∣∣− sn,m ψm

√∣∣∣∣ΨTnΨTm
∣∣∣∣
]2

≥ 0 (5.9)
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It is mentionable that one does not have to worry about the case ΨTn = 0, because such a
con�guration does not occur in the summation.

As one can see in Equation (5.9), ∆E is positive for an arbitrary wavefunction ψ. That means,
the groundstate energy of the e�ective Hamiltonian EFNA is an upper bound for the true
groundstate energy ε0.
If we consider the special case of ΨT = ψ, one can easily verify with the help of Equation (5.8),
that ∆E = 0 and therefore

ε0 ≤ EFNA ≤
〈ΨT | Ĥeff |ΨT 〉
〈ΨT |ΨT 〉

=
〈ΨT | Ĥ |ΨT 〉
〈ΨT |ΨT 〉

, (5.10)

where the second inequality follows from the usual variational principle. Naturally, the better
the trial wavefunction corresponds to the groundstate wavefunction of the Hamiltonian, the
better the result of the FNA.
To repeat the quintessence, the groundstate energy EFNA of the e�ective Hamiltonian can be
computed with the DMC method without a sign problem, gives an upper bound for ε0 and
improves the energy, obtained from the trial wavefunction.

5.2. Example for the Fixed Node Procedure

In this Section, we use a toy model to illustrate how the e�ective Hamiltonian in the FNA is
created and demonstrate that Equation (5.10) holds.

For simplicity we choose the Hubbard Hamiltonian for spinless fermions

Ĥ = −t
∑
〈i,j〉

c†i cj

and consider a one-dimensional system with four sites, periodic boundary conditions and two
particles in it. This system has six di�erent basis states, depicted in Equation (5.12), and is
described by the Hamiltonian

H =



0 −t 0 0 +t 0

−t 0 −t −t 0 +t

0 −t 0 0 −t 0

0 −t 0 0 −t 0

+t 0 −t −t 0 −t
0 +t 0 0 −t 0


, (5.11)
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with the groundstate energy ε0 = −2 t.

|Γ1 〉 = c†1 c
†
2 | 0 〉 =̂

4 3 2 1

|Γ2 〉 = c†1 c
†
3 | 0 〉 =̂

4 3 2 1

|Γ3 〉 = c†2 c
†
3 | 0 〉 =̂

4 3 2 1

|Γ4 〉 = c†1 c
†
4 | 0 〉 =̂

4 3 2 1

|Γ5 〉 = c†2 c
†
4 | 0 〉 =̂

4 3 2 1

|Γ6 〉 = c†3 c
†
4 | 0 〉 =̂

4 3 2 1

(5.12)

We consider a very simple trial wavefunction, given by

|ΨT 〉 =
1√
6

(|Γ1 〉+ |Γ2 〉+ |Γ3 〉+ |Γ4 〉+ |Γ5 〉+ |Γ6 〉) ,

to calculate the e�ective Hamiltonian Ĥeff of the FNA. Using Equation (5.2), (5.3) and (5.4)
we obtain

Heff =



+t −t 0 0 0 0

−t +t −t −t 0 0

0 −t 0 0 −t 0

0 −t 0 0 −t 0

0 0 −t −t +t −t
0 0 0 0 −t +t


, (5.13)

whereby the adaptations are highlighted in color. That means, for example, hopping from basis
state |Γ1 〉 to |Γ5 〉 is not possible anymore, because of the sign-�ip in the original Hamiltonian.
The groundstate energy of the e�ective Hamiltonian is given by EFNA = −1.709 t.
Finally, we calculate

〈ΨT | Ĥeff |ΨT 〉
〈ΨT |ΨT 〉

=
〈ΨT | Ĥ |ΨT 〉
〈ΨT |ΨT 〉

= −4

3
t ,

to verify Equation (5.10).

This concept can be generalized straightforwardly to more complicated systems. In our special
case we applied the FNA to the fermion Hubbard model and used the Gutzwiller Wavefunction
respectively the RVB Wavefunction (described in Section 3.1 and 3.2) as trial functions.
Also for the FNA, the initial walker con�guration is distributed according to the trial wave-
function. However, if a nodal region is not occupied by at least one walker at the beginning,
the whole region isn't sampled during the whole DMC simulation. This is why the e�ective
Hamiltonian forbids the hopping across nodal boundaries.
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5.3. Results of the FNA

In this Section, the true groundstate energy ε0 for di�erent systems is compared to the results
obtained using the FNA. In addition, the energy of the corresponding trial wavefunction is also
depicted.
The results are listed in Table 5.1, whereby instead of a DMC simulation, exact diagonalisation
was used in the calculations.

For the system LX×LY = 3×3 with N↑ = N↓ = 3 electrons, which is degenerated in k-space for
U = 0, two di�erent Gutzwiller trial wavefunctions were used. They di�er in the groundstate
wavefunctions, which were used for the Fourier transformation.
For the result, marked with ∗1, the wavefunction in reciprocal space is chosen, so that each spin
direction has momentum zero. That one, marked with ∗2, is chosen according to Figure (3.1).

Table 5.1.: Comparison of the obtained results for the FNA to the exact groundstate energy
ε0 for di�erent systems for a value of U/t = 4. To calculate EFNA, di�erent trial
functions were used, their energies ET are also listed.
The = or < denote, if the real or the imaginary part of the GWF was used to
calculate the energy. The energies are given in units of t.

LX LY N↑ N↓ Type ET EFNA ε0

2 2 2 2 GWF < -4.9443 -4.9443 -5.6569
2 2 2 2 RVB -5.6412 -5.6569 -5.6569

2 4 4 4 GWF < -9.8885 -9.8885 -10.2530
2 4 4 4 RVB -10.0822 -10.1268 -10.2530

3 3 3 3 GWF < ∗1 -9.1884 -9.9575 -10.2754
3 3 3 3 GWF < ∗2 -9.3765 -10.1441 -10.2754

3 3 5 5 GWF < -6.2104 -6.2519 -6.2911

* see text for information

5.4. Nodal Release

In this Section we present an improvement to the FNA, the Nodal Relaxation method, described
by Ceperley and Alder in Ref. [29].
The basic idea behind is the following: One uses a walker con�guration in the FNA as input for
the Nodal Relaxation method, but now the walkers are again allowed to cross the nodes of the
trial function. That means, one replaces the e�ective Hamiltonian of the FNA by the original
one of the system.
Those walker generations, which belong to the same time step after the nodal release, are used
to calculate the mixed estimator. The nodal release process must occur quickly, because after
some time steps this estimator starts �uctuating because of the sign problem. However, if the
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nodes of the trial function are in good agreement with those of the groundstate wavefunction,
one obtains the exact groundstate energy of the system.

For our calculations, we decided to use two DMC simulations simultaneously. The �rst one
computes the FNA in constant walker mode. That means, the energy shift is regulated after
each time step to keep the walker population constant. Once in a while, we used a walker
con�guration from this simulation as input for the Nodal Release method.
The Nodal Relaxation method was computed in constant shift mode, which causes an increase
of the walker population. This calculation was performed for a few time steps till the number of
walker reaches a speci�ed limit. This limit was introduced to keep the walker population always
in a region where the sign problem occurs. Remember in Chapter 4, if the number of walkers
exeeds a critical value, the sign problem vanishes. (For larger systems this maximum walker
limit is given by the size of the main memory of the computer.) If the maximum number of
walkers is reached, the current Nodal Release simulation is �nished and all walkers are deleted.
For the next one, again a walker con�guration from the FNA is used to start with.

A positive result of this Nodal Release method is depicted in Figure (5.1) for the system
LX × LY = 3 × 3 with N↑ = N↓ = 5 electrons and U/t = 4. One can realise, after the nodal
release, the energy decreases and before it starts to �uctuate it has converged to the groundstate
energy.
Another example is shown in Figure (5.2) for the system LX × LY = 2× 4 with N↑ = N↓ = 4
electrons and U/t = 4. As discussed above, if the trial function is not in good agreement with
the groundstate wavefunction, the Nodal Release method does not converge.
The errorbars in Figure (5.1) and (5.2) are plotted for a con�dence interval of ±σ are computed
using Equation (A.4).
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Figure 5.1.: Comparison of the exact groundstate energy ε0 to the results of the Nodal
Relaxation ERN method as a function of the time steps since nodal release for the
system LX × LY = 3× 3 with N↑ = N↓ = 5 electrons and U/t = 4.
The GWF was used as atrial function for the FNA. The energies are given in units
of t.
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Figure 5.2.: Comparison of the exact groundstate energy ε0 to the results of the Nodal
Relaxation ERN method as a function of the time steps since nodal release for the
system LX × LY = 2× 4 with N↑ = N↓ = 4 electrons and U/t = 4.
Both the GWF and the RVB wavefunction were used as a trial function for the
FNA. The energies are given in units of t.
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6. Conclusion and Outlook

In this last Chapter, we try to give a short explanation, why neither the Nodal Release method,
in combination with a trial wavefunction and the Fixed Node Approximation, nor the straight
forward Di�usion Monte Carlo is a suitable procedure to calculate groundstate properties for
the Hubbard model.

The latter fails because of the sign problem, described in Chapter 4. However, Alavi and his
co-workers described in Ref. [22] that there are systems for which the critical number of walkers
NC is in the range of 10−5 and not around 1.
This is why we did an exact diagonalisation for a system in real space (LX × LY = 4× 4 with
N↑ = N↓ = 2 and U/t = 4) to obtain the groundstate vector

|φ0 〉 =
∑
i

ci |χi 〉 ,

sorted the coe�cients ci by its absolute value and plotted them versus a consecutive number,
depicted in red in Figure (6.1).
As you can see, nearly all ci's have a non negligible absolute value, so the line is almost
horizontal. (Also in momentum space this plot looks like that.) That means, the walkers of
the DMC simulation have to sample the whole Hilbert space and it explains why the RVB
wavefunction with nearest neighbour bonds is for larger systems no longer in a good agreement
with the groundstate wavefunction.

The authors of Ref. [30] also work on the two-dimensional Hubbard model, but they use a
di�erent method, namely Unrestricted Hartree Fock (UHF).
Unrestricted Hartree Fock means to perform the standard linearization of the Hubbard Hamil-
tonian which leads to the mean �eld Hamiltonian

ĤHF = Ĥ↑HF + Ĥ↓HF

with

Ĥσ
HF = −t

∑
〈i,j〉

c†i,σ cj,σ + U
∑
i

ni,σ 〈ni,σ̄〉 −
1

2
U
∑
i

〈ni,↑〉 〈ni,↓〉 ,

whereby the 〈ni,σ〉 are variational parameters. For further information see also Ref. [31].

Thereby, the idea arises not to compute in real or momentum space, but in UHF space. This
is why we performed a basis transformation of the groundstate vector of the abovementioned
system to UHF space. The result is plotted in blue in Figure (6.1).
As one can see, this is promising, because many basis states have coe�cients ci with not
noteworthy absolute values.
If one looks more closely, one realises that the absolute value of the �rst few ci's is much bigger
than all the others. That means, the UHF basis is also interesting for the Initiator DMC
method, described in Section 4.1.
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Figure 6.1.: The coe�cients ci of the groundstate vector |φ0 〉 =
∑

i ci |χi 〉 for the system
LX × LY = 4 × 4 with N↑ = N↓ = 2 and U/t = 4 were sorted by their absolute
value and plotted them versus a consecutive number for real and UHF space.
Note the log-log scale.
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In this Appendix, we �rst discuss how to compute the error propagation of a ratio of two
parameters according to Ref. [32]. Subsequently we show that the estimator in Equation (2.10)
is biased of order 1/N and that it is possible to construct an unbiased estimator therefore.
In Section A.3, the Jackknife Algorithm is presented, which is able to remove such a bias
numerically. Finally, we use a small example to illustrate these topics.

In the following, we will again need the Taylor series expansion. This is why we illustrate the
formular for a function f(x,y) around the point (a,b) to second order at this point .

f(x,y) = f(a,b) + (x− a) fx(a,b) + (y − b) fy(a,b)

+
1

2!

(
(x− a)2 fxx(a,b) + 2 (x− a) (y − b)fxy(a,b) + (y − b)2 fyy(a,b)

)
+O(f (3))

In this context, for example, fx denotes
∂
∂x
f(x,y).

A.1. Error Propagation

Let us suppose a function

z(x,y) =
x

y
.

In this Section, we want to estimate how uncertainties in the parameters x and y a�ect the
corresponding value of z.
Without loss of generality, one can assume that the independent variables x and y are random
numbers normally distributed around their means x0 respectively y0 with standard deviations
σx respectively σy. We develop this function around (x0,y0) and neglect quadratic and higher
order terms.

z(x,y)
∣∣∣
(x0,y0)

= z(x0,y0) + (x− x0)
1

y0

− (y − y0)
x0

y2
0

z(x,y)− z(x0,y0) =∆x
1

y0

−∆y x0

y2
0

∣∣∣ · y0

x0

∆z

z0

=
∆x

x0

− ∆y

y0

The next step is to square both sides and to take the expectation value. In consideration of〈
(∆x)2

〉
= σ2

x ,
〈
(∆y)2

〉
= σ2

y and 〈∆x∆y〉 = 0

we gain the following result.

〈(∆z)2〉
z2

0

=
〈(∆x)2〉
x2

0

+
〈(∆y)2〉
y2

0

− 2
〈∆x∆y〉
x0 y0

σz
z0

=

√(
σx
x0

)2

+

(
σy
y0

)2

(A.1)

Thus, we set 〈∆x∆y〉 = 0, it is assumed that x and y are uncorrelated.
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A.2. Ratio Estimation

We are interested in the estimator

E∗ =
f̄

ḡ
. (A.2)

Suppose there are N random numbers ri, then f̄ is de�ned to be the arithmetic mean of the
function values f(ri).

f̄ =
1

N

N∑
i=1

f(ri) =
1

N

N∑
i=1

fi = ~̄f

Because of that de�nition f̄ , is also a stochastic variable with expectation value
〈
f̄
〉

= f . The
same de�nitions are essential for ḡ.

To give a statement concerning E∗, one has to calculate its expectation value 〈E∗〉. Therefore,
we start with a Taylor series expansion of f̄/ḡ around the point (f, g).

E∗ =
f̄

ḡ

∣∣∣∣∣
(f,g)

=
f

g
+ (f − f̄)

1

g
− (g − ḡ)

f

g2

+ 0− (f − f̄) (g − ḡ)
1

g2
+ (g − ḡ)2 f

g3
+O

(
f̄

ḡ

)(3)

We disregard terms of higher order as quadratic and take the expectation value of E∗. The
linear terms cancels out and we obtain

〈E∗〉 =

〈
f̄

ḡ

〉
=
f

g
+ var(ḡ)

f

g3
− cov(f̄ , ḡ)

1

g2

≈ f
g

+
1

N

(
var(~g)

f

g3
− cov(~f,~g)

1

g2

)
(A.3)

In the last line we used the approach that var(ḡ) ≈ 1/N var(~g). As one can realise, 〈E∗〉 is
only an asymptotically unbiased estimator.

〈E∗〉 N→∞
=

f

g

In addition, we also want to compute an approach for the variance of 〈E∗〉. In the following we
use the abbreviations

∆f = (f − f̄) respectively ∆g = (g − ḡ) ,
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and again start with a Taylor series expansion.

(E∗)2 =

(
f̄

ḡ

)2

=

(
f

g
+∆f

1

g
−∆g f

g2
+∆f ∆g

1

g2
+∆g2 f

g3
+O

(
f̄

ḡ

)(3)
)2

=
f 2

g2
+ 2∆f

f

g2
− 2∆g

f 2

g3
− 4∆f ∆g

f

g3
+∆f 2 1

g2
+ 3∆g2 f

2

g4
+O(∆f +∆g)3

〈
(E∗)2〉 =

〈(
f̄

ḡ

)2
〉

=
f 2

g2
− 4 cov(f̄ , ḡ)

f

g3
+ var(f̄)

1

g2
+ 3 var(ḡ)

f 2

g4
+O

〈
(∆f +∆g)3

〉

〈E∗〉2 =

〈
f̄

ḡ

〉2

=

(
f

g
+ var(ḡ)

f

g3
− cov(f̄ , ḡ)

1

g2

)2

=
f 2

g2
+ 2 var(ḡ)

f 2

g4
− 2 cov(f̄ , ḡ)

f

g3
+O

〈
(∆f +∆g)3

〉
var 〈E∗〉 =

〈
(E∗)2〉− 〈E∗〉2

= var(f̄)
1

g2
+ var(ḡ)

f 2

g4
− 2 cov(f̄ , ḡ)

f

g3

≈ 1

N

(
var(~f)

1

g2
+ var(~g)

f 2

g4
− 2 cov(~f,~g)

f

g3

)
(A.4)

In the previous derivation, we showed that the estimator E∗ is only asymptotically unbiased.
Due to the fact that we obtained an analytical expression for 〈E∗〉 in Equation (A.3), we are
able to construct an unbiased estimator E.

E =
f̄

ḡ
− 1

N

(
var(~g)

f

g3
− cov(~f,~g)

1

g2

)
(A.5)

The expectation value of this estimator is of course

〈E〉 =

〈
f̄

ḡ
− 1

N

(
var(~g)

f

g3
− cov(~f,~g)

1

g2

)〉
≈ f

g
.

The variance of 〈E〉 is consistent with the variance of 〈E∗〉.

A.3. The Jackknife Approach

As already mentioned, the Jackknife method provides a possibility to remove a bias of an
estimator, like in Equation (A.3), numerically, but it costs extra computational e�ort.
Suppose there are N data points

~r = {r1, r2, . . . , rN}

and one wants to compute some estimator of interest q∗ using the available information ~r. In
this context, q is an arbitrary function depending on ri and q̂ should be the true unbiased value
of this quantity.
Using the Jackknife algorithm one has to perform the data analysis N + 1 times. Once using
the whole data

q̄ =
1

N

N∑
i=1

q(ri)
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and N times leaving out one of the data points

q̄j =
1

N − 1

N∑
i 6=j

q(ri) .

The Jackknife estimator of the mean qJ and variance σ2
J of the mean are de�ned by

qJ =
1

N

N∑
i=1

(N q̄ − (N − 1) q̄j)

=N q̄ − (N − 1) q̇ (A.6)

respectively

σ2
J =

N − 1

N

N∑
i=1

(q̄j − q̇)2 , (A.7)

whereby q̇ is the arithmetic mean of the q̄j.

The bias of an estimator q∗ is typically given by

bias(q∗) = q̂ − 〈q∗〉 =
a1

N
+
a2

N2
+O

(
1

N3

)
,

whereby a1 and a2 are constants, which do not depend on N . It can be shown [33], that the
Jackknife estimator for the mean cancels the 1/N term. That means, qJ is biased O (1/N2)
compared to O (1/N) for the original estimator.

A.4. Example for Ratio Estimation

In this Section, we show an example for ratio estimation to illustrate, that Equation (A.5)
respectively the Jackknife method produces a better result than the straightforward estimator
E∗ in Equation (A.2).

We decided for the following example.

E∗ =

∑N
i=1 a ri + b∑N

i=1 ri
=

a ri + b

ri
, ri ∈ U(0,1) (A.8)

In this context, a and b are constants and the ri are uniformly distributed random numbers.
The true value of this ratio Ê is given by a+ 2b.

Figure (A.1) shows the results for E∗ (Equation (A.2)), E (Equation (A.5)) and EJ (Equation
(A.6)) averaged over 10000 values for a = 1 and b = 1 as a function of N in comparison to Ê.
It is no surprise that the naive estimator E∗ yields the worst result.

If one considers the example in (A.8) for the case of b = 0, the estimator E∗ is simple a and its
variance is zero. Figure (A.2) shows the results for E∗ with errorbars according to Equation
(A.1) in comparison to Equation (A.4) and the Jackknife method. As one can realise, if one
uses the simple error propagation, described in Section A.1, the result is completely wrong.
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Figure A.1.: Results, using the example (A.8), for E∗ (Equation (A.2)), E (Equation (A.5))
and EJ (Equation (A.6)) averaged over 10000 values for a = 1 and b = 1 as a
function of N in comparison with the true value Ê = a+ 2b.
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Figure A.2.: Results, using the example (A.8), for E∗ with errorbars according to Equation
(A.1) in comparison to Equation (A.4) and the Jackknife method for a = 1 and
b = 0. As one can realise, the simple error propagation, described in Section A.1,
yields a completely wrong result.
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B.1. Program to generate the basis states

In this Appendix a C++ program is displayed to generate the basis states for the Hubbard
Hamiltonian for one spin direction.

The program stores the states in a bool vector of length N_SITES = LX × LY , whereby the
element of the vector is true if the corresponding site is occupied by an electron and false if
not.
The output of this program is depicted below. As one can see, the states are sorted in ascending
order if one would transform them to decimal.
Furthermore, one realises that this sequence of basis states implicates that the matrices to
calculate the determinants used in a basis transformation (for example from real to k-space
in the Gutzwiller Wavefunction, see Section 3.1) di�er mostly only by one column from one
basis state to the next. That means, one can use the determinant of the current basis state to
calculate the determinant of the next one. This is expedient numerically in view of computing
time.
In the following, we want to sketch that procedure starting with the matrix identity

tr ln(M) = ln det(M) ,

whereby in this case on the left hand side, ln is the matrix logarithm. Suppose the matrix of
the current basis state is A and the next one is B. As already mentioned, they di�er only by
one column v.

A =B + v = B
(
1 +B−1 v

)
tr ln(A) = tr ln(B) + tr ln

(
1 +B−1 v

)
= ln det(A)

det(A) = etr ln(B) · etr ln(1+B−1 v)

= det(A) · det
(
1 +B−1 v

)︸ ︷︷ ︸
⊗

The term on the right hand side, marked with ⊗, can be calculated using the so-called
Woodbury matrix identity.
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#include <iostream>

#include <vector>

void printBoolVec(const std::vector<bool> &vec);

// ----- ----- ----- ----- -----

// ----- main programm

int main()

{

unsigned N_SPIN = 2; // number of electrons for this spin diretion

unsigned N_SITES = 4; // number of lattice sites

// generate and store the basis states

std::vector< bool > one_state(N_SITES,false); // allocate memory and set to false

for(unsigned i=0; i<N_SPIN; i++) {

one_state[i].flip(); // Flip N_SPIN bits

}

std::sort(one_state.begin(), one_state.end());

std::vector< std::vector< bool > > all_states;

do

{

all_states.push_back(one_state); // store the current state

} while(std::next_permutation(one_state.begin(), one_state.end()));

// output of all states

for(unsigned i=0; i<all_states.size(); i++) {

printBoolVec(all_states[i]);

}

return 0;

}

// ----- ----- ----- ----- -----

// ----- ----- ----- ----- -----

// ----- programm to write a bool vector to stream

void printBoolVec(const std::vector<bool> &vec)

{

for(unsigned i=0; i<vec.size(); i++) {

if(vec[i]) {

std::cout << "1";

} else {

std::cout << "0";

}

}

std::cout << std::endl;

}

// ----- ----- ----- ----- -----
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Output:

0011

0101

0110

1001

1010

1100

B.2. Exact interval bounds

Suppose there is a wavefunction ψ, which already gives quite a good approach for a normalized
eigenvector of the Hamiltonian Ĥ. The corresponding energy is given by

ε = 〈ψ | Ĥ |ψ 〉 .

In this appendix, we derive exact interval bounds I = [ε− σ, ε + σ], in which there is at least
one exact eigenvalue of Ĥ.
First, we expand ψ in the basis φi of eigenvectors of the Hamiltonian

|ψ 〉 =
∑
i

ci |φi 〉

and subsequently give an expression for the variance σ2.

σ2 = 〈ψ | Ĥ2 |ψ 〉 − 〈ψ | Ĥ |ψ 〉2

= 〈ψ |

Ĥ − 〈Ĥ〉︸︷︷︸
ε

2

|ψ 〉

=
∑
i

|ci|2 (εi − ε)2

≥
∑
i

|ci|2︸ ︷︷ ︸
=1

min (εi − ε)2 = (εm − ε)2

In this context εm denotes that eigenvalue of Ĥ which is closest to ε.

B.3. Generate the Hamiltonian on the �y

In Section 1.4, we discussed the size of the Hilbert space of the Hubbard model with the result
that it is a hard task to store three Lanczos vectors for larger systems than LX × LY = 4× 4.
The same is true for the Hamiltonian itself, that means, whenever one needs entries of Ĥ
(e.g. for calculating the expectation value) one has to generate them on the �y (schematically
depicted in Equation (B.1) for the real space).
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Ĥ |χi 〉 =



U |χi 〉
−t sj|χj 〉
−t sk|χk 〉

...

−t sl|χl 〉
−t sm|χm 〉


(B.1)

In this context the |χj 〉, . . . , |χm 〉 describe the basis states, which can be reached by hopping
processes from state |χj 〉 and s describes the sign that can occur.
In the following, a part of a C++ program is displayed to realise this procedure.

// ----- ----- ----- ----- -----

std::vector< State > State::scatterState() const

{

std::vector< State > tmp; // vector with scattered basis states

State dummy_state;

unsigned ones_between;

// ----- loop all sites

for(unsigned i=0; i<basis.N_SITES; i++)

{

// loop all neighbours

for(unsigned j=0; j<basis.neighbour[0].size(); j++)

{

// ----- spin direction up

if( (basis.basis_up[i] == true) &&

(basis.basis_up[basis.neighbour[i][j]] == false) )

{

// hopping is possible

dummy_state = *this;

dummy_state.basis.basis_up[i].flip();

dummy_state.basis.basis_up[basis.neighbour[i][j]].flip();

// required for calculate the fermion sign

ones_between = countOnes(dummy_state.basis.basis_up, i,

dummy_state.basis.neighbour[i][j]);

dummy_state.value = -pow(-1,ones_between) * value * basis.T; // H = -T ...

// add the state to the vector

tmp.push_back(dummy_state);

}

// ----- -----

// ----- once again for spin diretion down

if( (basis.basis_down[i] == true) &&

67



B. Additional Information

(basis.basis_down[basis.neighbour[i][j]] == false) )

{

// hopping is possible

dummy_state = *this;

dummy_state.basis.basis_down[i].flip();

dummy_state.basis.basis_down[basis.neighbour[i][j]].flip();

// required for calculate the fermion sign

ones_between = countOnes(dummy_state.basis.basis_down, i,

dummy_state.basis.neighbour[i][j]);

dummy_state.value = -pow(-1,ones_between) * value * basis.T; // H = -T ...

// add the state to the vector

tmp.push_back(dummy_state);

// ----- -----

}

}

}

return tmp;

}

// ----- ----- ----- ----- -----
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