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Abstract

Equalities are ubiquitous in mathematics and science. One question that arises in that context is
whether or not an equality logically follows from a set of equalities containing uninterpreted functions.
An uninterpreted function is a function that only has a name and an arity associated with it. Congruence
closure algorithms can be used to solve this problem. This work proposes three extensions to congruence
closure algorithms, namely congruence closure modulo associativity and commutativity, congruence
closure modulo inverse functions, as well as congruence closure modulo associativity, commutativity
and inverse functions.

Standard congruence closure algorithms only enforce one property on the occurring uninterpreted
functions symbols, the so called functional consistency property. This means that two applications of
a function with congruent parameters have to have the same result. We extend the congruence closure
algorithm inside Z3 with the existing theory of uninterpreted functions modulo associativity and commu-
tativity and we propose an extension to the congruence closure algorithm that allows to handle inverse
uninterpreted functions as well. In the case of associative and commutative uninterpreted functions, one
has to extend the notion of congruence between two terms, because here the associative and commutative
law can be used to exchange the order of the arguments. Therefore we extend the term matching of the
congruence closure algorithm inside Z3 to take the associative and commutative property of functions
into account. This is done via term flattening. Furthermore, in the presence of associative and commuta-
tive functions, it is very important that one uses a reduction ordering on terms that is capable of handling
associative and commutative functions, here we use an existing ordering for associative and commuta-
tive uninterpreted functions. We also extend the deduction rule of the congruence closure to learn new
equalities that follow from equalities with associative and commutative functions. In the case of inverse
uninterpreted functions the standard congruence meaning can be used. However, the procedure has to
be extended to recognize and remove applications of inverse functions to each other, in order to sim-
plify terms. Also the deduction rule of the congruence closure algorithm has to be extended to deduce
new equalities that are a consequence of equalities containing inverse uninterpreted functions. Finally,
we propose a way of combining the two previous algorithms to get a congruence closure algorithm that
works with both associative and commutative uninterpreted functions and uninterpreted functions that
are inverse to each other. We also present an evaluation of the algorithms using our implementation
inside the Z3 theorem prover.





Kurzfassung

Gleichungen sind allgegenwärtig in der Mathematik und der Wissenschaft. Eines der Probleme, das
sich mit Gleichungen ergibt, ist die Frage, ob eine Gleichung logisch aus einer Menge von Gleichungen
mit nicht interpretierten Funktionen folgt. Eine nicht interpretierte Funktion ist eine Funktion, welche nur
ein Funktionssymbol und eine Arität besitzt. Dieses Problem lässt sich mittels eines Congruence Closure
Algorithmus lösen. In dieser Arbeit stellen wir drei Erweiterungen des Congruence Closure Algorithmus
vor, welche diesen um assoziative und kommutative Funktionen, zueinander inversen Funktionen und
der Kombination von beiden erweitern.

Normalerweise fordern Congruence Closure Algorithmen nur eine Eigenschaft von den nicht inter-
pretierten Funktionen, nämlich die funktionale Konsistenz. Hierbei handelt es sich um die Eigenschaft,
dass zwei Instanzen der selben Funktion gleich sein müssen, wenn die Parameter gleichwertig sind. Wir
erweitern den Congruence Closure Algorithmus des Z3 Theorem Provers mit der existierenden Theorie
der nicht interpretierten Funktionen modulo Assoziativität und Kommutativität. Des Weiteren stellen wir
einen Congruence Closure Algorithmus vor, welcher inverse nicht interpretierte Funktionen handhaben
kann. Im Falle von assoziativen und kommutativen nicht interpretierten Funktionen muss der Begriff der
funktionalen Konsistenz erweitert werden, da mittels Assoziativität und Kommutativität die Reihenfolge
der Parameter einer Funktion verändert werden kann. Deshalb erweitern wir den Algorithmus insofern,
als dass beim Vergleichen von Termen deren Assoziativität und Kommutativität berücksichtigt wird. Des
Weiteren wird eine spezielle Ordnung für Terme benötigt, welche auch mit assoziativen und kommuta-
tiven Funktionen funktioniert. Eine weitere wichtige Erweiterung ist die Lernfunktion des Congruence
Closure Algorithmus, denn auch hier müssen die zusätzlichen Eigenschaften der Funktionen berücksich-
tigt werden. Im Falle von nicht interpretierten Funktionen, die invers zueinander sind, kann die normale
Definition der funktionalen Konsistenz verwendet werden. In diesem Fall betreffen die Erweiterungen
die Anwendung von inversen Funktionen aufeinander, welche nicht nur erkannt, sondern auch entfernt
werden muss, da ansonsten nicht die einfachste Form eines Terms gefunden wird. Außerdem muss die
Lernfunktion des Algorithmus erneut angepasst werden, um Gleichungen, die aus der Präsenz von inver-
sen Funktionen folgen, auch erkennen zu können. Weiters stellen wir eine Möglichkeit der Kombinati-
on dieser beiden Algorithmen vor, um einen Congruence Closure Algorithmus zu erhalten, der sowohl
assoziative und kommutative als auch zueinander inverse Funktionen handhaben kann. Schlussendlich
präsentieren wir noch die Ergebnisse unserer Evaluierung, welche auf unserer Implementierung der Al-
gorithmen im Framework des Z3 Theorem Prover basieren.
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Chapter 1

Introduction

1.1 Background and Motivation

Software becomes more important in our lives everyday, but software often contains numerous flaws.
These flaws not only cost the companies a lot of money, sometimes they can also endanger the lives
of human beings. Therefore the development of software systems that are bug-free is very important,
especially for systems where the health of humans is at stake. There have been numerous examples where
bugs in software lead to huge costs or even the loss of human life. For example, in 1996 an Ariane-5
rocket launched by the European Space Agency was self-destructed due to a bug in the software [20].
The incorrect handling of a data conversion exception was the reason for the self-destruction and the
estimated costs of this bug were 370 million US dollar. However, an even more severe bug occurred in
1992. Here a bug in the software system of the MIM-104 patriot system caused the clock of the software
system to drift [39]. The MIM-104 patriot system is used to intercept enemy missiles. After about 100
hours of operation the system clock of the intercept system was wrong by about 1

3 of a second, which
caused the intercepting rocket to miss its target by about 600 meters. An Iraqi Scud rocket went on to
hit a barrack of the US military and 28 American soldiers were killed in the incident. More examples for
severe software bugs can easily be found [21].

A big part of the development of modern software systems is dedicated to guarantee the correctness of
the developed software. There exist a lot of methods which try to ensure the quality of a given program.
These methods range from informal methods like testing and simulation [34] to formal methods like
synthesis or proofs of correctness for software systems. However, the problem with testing is that it is
impossible to cover all possibilities due to the large input space. Then again the problem with formal
methods most often is that they are either not available or don’t scale for real world applications and
can therefore not be used [10]. Ongoing research in the area of formal methods is currently changing
this fact, today there exist tools that help with the verification of software or tools that are capable of
synthesising software systems.

1.1.1 Satisfiability and Satisfiability Modulo Theories

As mentioned above, the construction of correct software systems is as important as never before and one
technology that is often used in this context is satisfiability modulo theories (SMT) [29, 33]. SMT is an
extension of the classical satisfiability (SAT) problem, which is one of the most fundamental problems of
theoretical computer science [23] since it belongs to the set of the NP-complete problems. The classical
SAT problem is the question whether or not there exists an assignment of true or false values to the
literals of a propositional formula such that the overall formula becomes true. A propositional formula
is satisfiable if there exists an assignment of true and false values to its literals that makes the whole
formula true. If such an assignment does not exist the formula is unsatisfiable. For example the formula

1



2 1. Introduction

φ = a ∨ b is satisfiable, because the overall formula is true when both a and b are assigned to true.

In the case of SMT one considers the satisfiability of first-order logic formulas regarding a theory.
The theory is used to restrict the meaning of certain predicates and function symbols in the first-order
logic formula. For example in the theory of linear integer arithmetic the functions symbols + and − rep-
resent addition and subtraction for integers and the predicates < and = also have the usual mathematical
meaning associated with them. As mentioned earlier, SMT formula can be used for program verification
[24] for example by checking whether certain assertions hold inside a program or not. In this context one
is often not interested whether or not the assertion is true under any interpretation of the function +, but
wants to know whether the formula is satisfiable with the mathematical interpretation of the function +.
This is what background theories do, they fix the meaning of certain functions and predicates. Manifold
theories exist today, some of the more prominent theories cover linear integer arithmetic, uninterpreted
functions, array, and bit vectors.

1.1.2 Uninterpreted Functions and Congruence Closure

As previously mentioned, one important theory in the context of satisfiability modulo theories is the
theory of uninterpreted functions. In this theory function symbols do not have any predefined meaning
and the only predicate that is defined is = which has the usual mathematical interpretation [33]. A con-
gruence closure algorithm can be used to solve the satisfiability problem of a first-order logic formula
containing equalities and inequalities over uninterpreted functions. Famous congruence closure algo-
rithms were developed by Nelson and Oppen [35], Shostak [43], and Downey et al. [19]. More recent
algorithms include the one developed by Nieuwenhuis and Oliveras [37].

The theory of uninterpreted functions is interesting because it can be used as an abstraction in various
verification and synthesis applications. Burch and Dill [9] use uninterpreted functions as an abstraction in
their verification tool for the control logic of pipelined microprocessors. They use uninterpreted functions
to abstract the commands executed by the CPU like reading or writing to a register. Since some of the
abstracted functions fulfil the associative and commutative property they have stated that the availability
of a theory for uninterpreted functions modulo associative and commutative functions would be great.
The correctness of the processor is then checked by comparing the implementation description with the
specification of the processor. For this purpose both the implementation description and the specification
are described by transition systems. Based on the idea of Burch and Dill [9] Velev and Bryant [44]
created a tool that is capable of handling memory and functional units that have an undetermined latency.
Gulwani and Tiwari [24] have used a combination of linear integer arithmetic and uninterpreted functions
to verify assertions inside programs.

We developed a lock-set synthesis tool, which automatically synthesis lock-sets for simple C pro-
grams. Inside our tool we also use uninterpreted functions as abstraction for arithmetical operations,
since we are not interested in the exact result, but only that the program behaves the same as the se-
quential program would. However since arithmetical operators like + and · are both associative and
commutative we also need uninterpreted functions that are associative and commutative.

Satisfiability in the Context of Congruence Closure

Since we will use SMT solvers to solve the problem of equality with uninterpreted functions, we have to
clarify the meaning of satisfiability in this context. As stated earlier, the congruence closure algorithm
solves the problem of deciding whether or not an equality follows logically from a set of equations or
not. However, we will consider the problem whether or not a set of equations and inequalities containing
uninterpreted functions can be satisfied. This means the algorithm will search for values for all of the
occurring constants and function applications such that all the equalities and inequalities are fulfilled. If
such values can be found we call these values a model for the set of equalities and inequalities and the set
is satisfiable. Note that every satisfiable set has a model and if we can find a model for a set the set must
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be satisfiable. If no model for a set exists then we call the set unsatisfiable. In the case of unsatisfiable
sets we are interested in the contradiction. Therefore, it is important that the algorithms are capable of
producing proofs for the unsatisfiability of the given set of equalities and inequalities.

1.2 Problems Addressed in this Thesis

The problem of equality in the context of uninterpreted functions has been addressed in the literature
before [35, 43, 19, 3, 12, 30, 37], see Section 2 for a detailed discussion of the of similarities and
differences. The congruence closure algorithm can be used to solve the problem whether a given equality
follows from a set of equalities over uninterpreted functions. The only constraint on the uninterpreted
function is that if x = y then f(x) = f(y), the so called functional consistency property, no other
properties of f are known or assumed by the algorithm. In our work we focus on three extensions of
the standard algorithm. First congruence closure modulo associativity and commutativity. Here some of
the uninterpreted functions are assumed to fulfil the associative and commutative property. The second
extension is congruence closure modulo inverse functions, here two uninterpreted function symbols can
be inverse to each other, which means that the following property holds for the functions f and g if they
are inverse to each other f(g(x)) = g(f(x)) = x. The third extension we consider is the combination of
the two theories mentioned above, a congruence closure algorithm modulo associativity, commutativity
and inverse functions. The theory of congruence closure modulo associativity and commutativity was
addressed in the literature before [30, 12, 4], however only Conchon et al. [12] have actually implemented
their algorithm inside a theorem prover. Congruence closure modulo inverse functions was not addressed
before to our knowledge.

1.3 Outline of the Solution

In this thesis we will present three extensions of the standard congruence closure algorithm [35, 43, 19],
namely the extensions covering associativity and commutativity [4, 12, 30] and inverse functions, as well
as the combination of the two extensions. We have implemented our algorithms inside the Z3 theorem
prover [16] from Microsoft. Z3 is an state of the art theorem prover, which was developed with software
verification and analysis in mind. For this purpose it supports manifold theories. Moreover, Z3 is also
able to handle quantifiers as well. It has since participated in the SMT competition, where it has achieved
several top finishes within different categories. Z3 is freely available at http://z3.codeplex.com/.

1.3.1 Congruence Closure Modulo Associativity and Commutativity

As mentioned earlier, congruence closure modulo associativity and commutativity is an extension to
the standard congruence closure algorithm where some functions have the associative and commutative
property in addition to the functional consistency property. The theory of congruence closure modulo
associativity and commutativity was addressed in the literature before [30, 12, 4]. While the basic algo-
rithm stays the same in presence of associativity and commutativity, there are some changes that need
to be made for the congruence closure algorithm to respect the associativity and commutativity of func-
tions. These changes deal with term matching, which now has to be made with respect to associativity
and commutativity. This means that the terms f(a, f(b, c)) and f(b, f(a, c)) are the same if f is asso-
ciative and commutative, the definition of associativity and commutativity can be found in Section 4.2.
The other important change is that all the congruence closure algorithms use a deduction step to learn
new equalities from the equalities given as input to the procedure. Therefore, the deduction step of the
congruence closure algorithm has to be adapted to be compatible with associative and commutative un-
interpreted functions. The deduction step of the congruence closure algorithm is used to learn equalities
that logically follow from other equalities. Another change that needs to be made is the introduction

http://z3.codeplex.com/
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of a reduction ordering for terms that can handle associativity and commutativity, such an ordering was
presented by Rubio and Nieuwenhuis [40]. Given two terms a reduction ordering decides which of the
two terms is smaller. This is needed in the term replacement step of the algorithm.

1.3.2 Congruence Closure Modulo Inverse Functions

As in the case with associativity and commutativity when directly handling inverse functions inside the
congruence closure algorithm, we have to add additional steps to the procedure. In the case of inverse
functions these steps have to capture the following two problems. First a step that allows the system
to eliminate the application of inverse functions to a term, i.e. f(g(x)) = x, is inserted. The second
step is a deduction step that is used to learn new equations in the context of inverse functions. Like
in the associative and commutative case we need a more dedicated deduction step in the context of
inverse functions. To our knowledge the problem of congruence closure modulo inverse functions was
not addressed in the literature before.

1.3.3 Congruence Closure Modulo Associativity, Commutativity and Inverse Func-
tions

The last congruence closure algorithm we propose in our work is the combination of the two algorithms
mentioned before. In the case of congruence closure modulo associativity, commutativity and inverse
functions the equalities and inequalities can contain both associative and commutative as well as inverse
functions. Since associativity and commutativity are defined for binary functions and the inverse func-
tion property is defined for unary function, an uninterpreted function cannot have all three properties.
This fact makes the combination somewhat easier. We combined the two algorithms by extending the
associative and commutative congruence closure algorithm with the necessary steps to handle inverse
functions inside a congruence closure algorithm. This means that associative and commutative functions
are handled in the exact same way as in the pure congruence closure algorithm modulo associativity and
commutativity. However, the algorithm is also capable of removing the application of inverse functions
and to learn equalities that are a logical consequence of equalities with inverse functions in them.

1.4 Structure of this Thesis

The rest of this document is split into six chapters. In Chapter 3 we introduce the necessary notation and
background for the rest of this thesis. Nothing new is presented in this chapter.

In Chapter 4 we explain the various congruence closure algorithms that already exist, as well as
the extensions for associativity and commutativity, inverse functions, and the combination of the two
theories. All the algorithms in this chapter are explained with the help of rewrite systems.

The implementation of the algorithms is presented in Chapter 5. We will use various examples
to explain the differences between the theoretical algorithms and their implementation inside the Z3
theorem prover.

Chapter 6 contains the evaluation of the presented algorithms. All the algorithms are benchmarked
against the Z3 theorem prover using axioms for the additional properties of uninterpreted functions.

We then present related work of our algorithms in Chapter 2. Here we will discuss similar work and
point out the differences to our work.

Finally, in Chapter 7 we conclude our work with a summary and a discussion of the important points
made in this thesis. We also propose future work to extend this thesis.



Chapter 2

Related Work

2.1 Satisfiability Modulo Theories

Recent advances in the field of SAT and SMT solving have led to an explosion of applications for the
technology, especially in the field of verification.

Bozzano et al. [7] proposed a new way of combining two arbitrary theories for SMT solving. In their
work no theory solver for the combined theory is required. Instead, they only rely on solvers for the two
theories. Normally the Nelson-Oppen integration schema [36] is used for the combination of two disjoint
theories, which is explained in section 3.1.2. Their approach does not combine the two arbitrary theories
but uses the respective theory solvers in isolation from each other. The mutual consistency of the formula
is ensured by enumerating all possible equalities of interface variables from the purified formula. The
advantage of this method is that no dedicated solver for the combined theory is needed which makes the
combination of more than two theories easier.

2.2 Uninterpreted Functions

The logic of uninterpreted functions and equality has been used in the literature for various verification
tasks. Burch adn Dill [9] use in their verification tool for the control logic of pipelined microprocessors.
Because most of the bugs in a microprocessor design are in the control logic, they only verify the control
logic. In addition, there are other methods to prove the correctness of the data path of processors. To
prove the correctness Burch and Dill [9] convert both the behavioural and the implementation descrip-
tion into transition functions. The resulting transition functions are then used to determine whether the
implementation is in accordance with the behavioural description. Before a state of the implementa-
tion is compared with the specification state, all partial processed instructions in the pipeline need to be
finished (the pipeline is flushed). This is ensured in a way that does not change the user visible state.
Although this method cannot be used to verify modern processor architectures, it allows the verification
of pipelined processors, something that was not possible before.

Velev and Bryant [44] extended the idea of Burch and Dill [9] and used uninterpreted functions for
the verification of processors where both functional units and memory may have indeterminate latency.
In addition, they showed a way to model exceptions and branch prediction.

Gulwani and Tiwari [24] present an algorithm for assertion checking of programs. They use the
combined logic of uninterpreted functions and linear integer arithmetic for program abstraction before
they verify the assertions of the program. A surprising result of their work is that the problem is co-NP
hard, even for loop-free programs.

5
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2.3 Congruence Closure

Numerous congruence closure algorithms have been published in the literature so far. On the one hand
there are the three classical congruence closure algorithms by Nelson and Oppen [35], Shostak [43],
and Downey et al. [19]. A common property of all these algorithms is that they are formulated over
graphs. On the other hand there is the incremental algorithm by Nieuwenhuis and Oliveras [37], which
is also capable of producing explanations for obtained equalities. In contrast to the classical algorithms
this algorithm is not formulated on graphs. The runtime benefits from the incremental property of this
algorithm, since this algorithm is called a large number of times by DPLL procedures.

While none of these congruence closure algorithms is able to handle associative and commutative
function symbols directly, all can be extended to handle associative and commutative function symbols.

2.4 Congruence Closure Modulo Associativity and Commutativity

The idea of congruence closure modulo associativity and commutativity has been addressed before.
Marché [30] considered the problem of ground AC-completion. They showed that a canonical rewrite
system for a set of equalities, where some of the used uninterpreted functions are associative and com-
mutative must be finite. Furthermore they have proven, that the completion procedure in this case always
terminates with the canonical system as a result.

Jouannaud and Marché [28, 27] considered the problem of completion modulo associativity, commu-
tativity and identity. The addition of identity allows them to associate neutral elements with uninterpreted
functions. For example if x is the neutral element of the uninterpreted function f then the following prop-
erty holds: ∀y.f(x, y) = y. The introduction of identity for uninterpreted functions leads to the usage of
constrained rewrite systems instead of standard rewrite systems. In a constraint rewrite system, rewrite
rules have constraints associated with them. These constraints are used to ensure the termination of the
procedure in the presence of neutral elements.

Bachmair et al. [4] presented an abstract congruence closure algorithm modulo associativity and
commutativity. The difference between an abstract congruence closure and the standard congruence clo-
sure is that in the abstract setting the original signature is extended with new constants. These constants
are then used to abstract terms of the original equalities. This makes the rules smaller, rules only have a
maximum of one uninterpreted function application on each side. However this leads to a larger number
of rules in the rewrite system.

Conchon et al. [12] extended the ground AC-completion algorithm with Shostak theories. This
allows them to combine the ground AC-completion with other theories (like linear integer arithmetic).

Although all of these papers present rewrite systems to solve the problem of ground AC-completion,
Conchon et al. [12] were actually the only ones to implemented their algorithm inside a modern theorem
prover, their tool is named Alt-Ergo. The implementation of the algorithm within Z3 is the main contri-
bution of our work. Furthermore, none of the other authors have considered the problem of uninterpreted
function modulo inverse functions.



Chapter 3

Preliminaries

In this chapter we establish the needed notation as well as the needed background for the rest of this
thesis. We start by taking a look at satisfiability modulo theories, to be more precise, we start by recalling
first-order logic. Then we will focus on theories and finally we will explain how to solve satisfiability
modulo theory problems. The second part of this chapter is dealing with the theory and notation of
rewrite systems. We will use rewrite systems to explain all the congruence closure algorithms in this
thesis.

3.1 Satisfiability Modulo Theories

Satisfiability modulo theories is an instance of a constraint satisfaction problem, such constraint satis-
faction problems arise in numerous applications, like software or hardware verification [15]. The most
well-known instance of a constraint satisfaction problem is the classical propositional satisfiability prob-
lem (SAT). In the classical SAT problem the question is whether an assignment of true and false to
variables occurring in a Boolean, in such a way that the overall formula becomes true, exists. If such
an assignment can be found, the formula is said to be satisfiable and the corresponding assignment is
called a model for the formula, otherwise the formula is unsatisfiable [32]. A program that can decide
this problem is called a SAT solver. The classical SAT problem is NP-complete [23]. There are a lot
of problems where a more expressive language, like arithmetic, is needed. These problems can be ex-
pressed as first-order logic formulas where certain functions and predicates have a defined meaning. This
meaning is usually defined by a background theory. Examples for background theories are linear integer
arithmetic or the theory of arrays. The problem whether or not such formulas are satisfiable is called the
SMT problem and a procedure that can solve it is called an SMT solver.

3.1.1 First-Order Logic

Before we explain how theories can be used to extend first order logic formula and how the resulting
formulas can be solved, we want to briefly recall the principles of first-order logic. We will start by
defining the syntax of first-order logic, then we will look at terms and formulas in first-order logic, and
we will conclude by defining free variables, sentences and quantifier free formulas.

Syntax

The signature Σ of first-order logic formulas consists of three sets, the set of variables (V), the set of
functions (F), and the set of predicates (P) [26], where all function symbols in F and all predicate
symbols in P have an associated arity.

7
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Terms

The set of terms π in first-order logic is defined as follows:

• if v ∈ V then v ∈ π,

• if f ∈ F with arity 0 then f ∈ π, and

• if f ∈ F with arity n and t1, . . . , tn ∈ π then f(t1, . . . , tn) ∈ π

Formulas

From terms we can define the meaning of formulas in first-order logic:

• if p ∈ P with arity n and t1, . . . , tn ∈ π then p(t1, . . . , tn) is a formula.

• if t1, t2 ∈ π then t1 = t2 is a formula.

• if φ and ψ are formulas then φ ∨ ψ, φ ∧ ψ, ¬φ, and φ→ ψ are formulas as well.

• if φ is a formula and x ∈ V then ∀x.φ and ∃x.φ are formulas as well.

Free Variables, Sentences and Quantifier Free Formulas

A variable x is a free variable in a formula φ if it is not bound by any quantifier. For example, if we
consider the formula ∀y.p(x, y) then the variable x is a free variable while the variable y is not, because
it is bound by the ∀ quantifier.

Further, a sentence denotes a formula which does not contain any free variables. So for example
∀x.∃y.p(x, y) is a sentence but ∀y.p(x, y) is not.

Finally, a formula which does not contain any quantifiers is called a quantifier-free formula. Thus
p(x, y) is a quantifier free formula, while ∀y.p(x, y) is not.

Semantics

After we have established the necessary notation for first-order logic we will take a brief look at the se-
mantics of first-order logic. The evaluation of first-order logic differs from the evaluation of propositional
formulas in some ways [26]. First, we need to know what the meaning of our functions and predicates
is, for example the function f can stand for the addition of integer numbers and the predicate p can stand
for the smaller relation an integer numbers. Second, in first-order logic we have variables that can stand
for many different things like students, animals, . . . , our universe of values. Third, quantifier change the
way that formulas are evaluated, for example ∀x.p(x) means that for every possible instance of x in our
universe of values the predicate p has to hold.

A model M of the pair (F,P), where F is the set of function symbols and P is the set of predicates,
consists of the following data [26]:

• A non-empty set A, which is the universe of concrete values.

• for each f ∈ F with arity 0, a concrete element fM of A.

• or each f ∈ F with arity n > 0, a concrete function fM : An → A.

• for each p ∈ P with arity n > 0, a subset pM ⊆ An.
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A look-up table or environment for a universe A is a function l : V → A [26]. By l[x 7→ a] we
denote the look-up table where the variable x is mapped to the value a, any other variable y is mapped to
l(y) respectively.

With the definition of models and look-up tables we are now able to give a semantic to formulas of
first-order logic. Given a model M and a look-up table l, we define the satisfaction relation M |=l φ,
where φ is a formula in first-order logic, by structural induction on φ [26]:

• p: If φ is of the form p(t1, . . . , tn), then we interpret the terms t1, . . . , tn in our set A by
replacing all variables with their values according to the look-up table l, we also interpret all
function symbols f ∈ F by fM. This computes concrete values a1, . . . , an of A for each of the
terms. NowM |=l p(t1, . . . , tn) holds if and only if (a1, . . . , an) is in the set pM.

• ∀x: The relationM |=l ∀xφ holds if and only ifM |=l[x7→a] ∀xφ holds for all a ∈ A.

• ∃x: The relationM |=l ∃xφ holds if and only ifM |=l[x7→a] ∃xφ holds for some a ∈ A.

• ¬: The relationM |=l ¬φ holds if and only if it is not the case thatM |=l φ holds.

• ∧: The relationM |=l φ1 ∧ φ2 holds if and only ifM |=l φ1 andM |=l φ2 hold.

• ∨: The relationM |=l φ1 ∨ φ2 holds if and only ifM |=l φ1 orM |=l φ2 hold.

From this we can define the notion of satisfiability for formulas in first-order logic. A formula φ
is satisfiable if and only if there is some model M and some environment l that M |=l φ holds [26],
otherwise the formula is unsatisfiable. For a more detailed description of the semantics of first-order
logic we refer to [26].

3.1.2 Theories

After we have established the notation of first-order logic, we will now define theories in the context of
satisfiability modulo theories. The definition is as follows [33]: A theory is a collection of sentences
over a signature Σ. We say that a formula φ is satisfiable modulo a theory T if T ∪ φ is satisfiable. For
example, consider the signature Σ consisting the symbols 0, 1, +, −, and <. Let Z be the structure that
interprets these symbols. If Z interprets these symbols in the usual way over the integers, then the set
of first-order sentences that are true in Z form the theory of linear integer arithmetic. A satisfiability
problem for a theory is said to be decidable if there exists a decision procedure for the quantifier free
case.

Common Theories

There exist a lot of different theories, but some theories have gained more attention than others. Some of
the more prominent theories are [33]:

• Linear Arithmetic: The signature of the linear integer arithmetic looks as follows Σ = {0, 1, +,
−, <, ≤, =}. Where all the predicates and functions have their usual mathematical meaning.

• Difference Arithmetic: Σ = {0, 1, −, ≤}, where − and ≤ again have their usual mathematical
meaning. A basic formula in difference arithmetic has the form x − y ≤ c, where x and y are
variables and c is a numerical constant. The overall formula then contains only logical connections
between these basic formulas.
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• Bit-Vectors: Σ = {+, −, <, ≤, =, bvor, bvand, bvnot, bvxor}. The theory of bit-vectors is simi-
lar to the linear integer arithmetic. Instead of using mathematical integers for numbers the theory
of bit-vectors uses bit-vectors to represent numbers. This form of representation for numbers is
the same as on computers, where integers also have a fixed size (e.g. 64-bit). The mathematical
operations + and − are calculated modulo the maximal number that can be represented with the
used bit-vector size. In addition to the arithmetical operators, bit-wise operators, like and or or,
can be used in the formulas for this theory.

• Uninterpreted functions: Is also called the theory of free functions. Many decision procedures
for other theories can be reduced to this one. For example, the theory of arrays is reduced to
the theory of uninterpreted functions. Function symbols occurring in formulas do not have a
predefined meaning in this theory and the only applicable relational operator is =. The decision
procedure for this theory is the construction of a congruence closure which can then be used to
decide whether or not an equality logically follows from a set of equalities, this is called the word
problem for a set of equalities.

Procedures that are capable of deciding the satisfiability of such theories are called theory solvers
[33].

Combination of Theories

In some cases it is not enough to use a single theory for solving. Instead multiple theories have to
be combined to solve a formula. In this case, some fundamental questions arise, for example is the
combination of two solvable theories still solvable or how does one get a decision procedure for the
combined theory [33]. Given two theories T1 and T2, we use T1⊕T2 to denote the combined theory that
is the union of the sentences of T1 and T2.

First we consider two strongly disjoint theories T1 and T2 over the signatures Σ1 and Σ2 respectively.
Two theories are strongly disjoint if Σ1 and Σ2 have no common sort symbols and thus also do not share
any function or predicate symbols [33]. Sorts in the context of SMT are like data-types in programming
languages, for example the sort integer is defined by the linear integer arithmetic. A decision procedure
in this case is easy, since the problem can be split up into two parts S1 and S2, where S1 only contains
literals of Σ1 and S2 only contains literals of Σ2.

The other case we can consider is if the theories T1 and T2 are disjoint. Two theories are disjoint
if they do not share any function or predicate symbols, they may however share sort symbols [33]. For
example the theory of linear integer arithmetic and the theory of arrays are disjoint because they don’t
share any function or predicate symbols but they both have the sort integer. Here the Nelson-Oppen
procedure [36] can be used to get a decision procedure for T1 ⊕ T2. The basic idea of this combination
is that the formula is transformed into a equisatisfiable pure formula. A formula over the signature
(Σ1 ∪ Σ2) is pure if every literal is a Σi literal for i = 1, 2. All quantifier free (Σ1 ∪ Σ2) formulas can
be transformed into a equisatisfiable pure formula [33]. This is done by using the following satisfiability
preserving transformation:

F [t] ; F [u] ∧ u = t where u is a fresh variable.

Consider the following example which uses the theory of linear integer arithmetic and the theory of
arrays: φ = load(y + 2, array) = x ∧ load(y − 5, array) = z, where load(pos, array) retrieves the
value stored at the position pos from the array array. Then the equisatisfiable pure formula looks as
follows, φp = (u1 = y+ 2∧u2 = x∧u3 = y− 5∧u4 = z)∧ (u2 = load(u1, array)∧u4 = load(u3,
array)). The resulting formula can then be checked for satisfiability. For more detailed information
about theories and the combination we refer to [33, 36].
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3.1.3 SMT Solving

Now that we have established the notion of satisfiability and defined what theories in the context of SMT
are, we can tackle the problem of solving SMT formulas. Today there are two basic methods that are
used to combine SAT solving with theory solvers, the eager and the lazy approach [38]. In the eager
approach the problem is transformed into an equisatisfiable propositional formula and a SAT solver is
then used to solve the SMT problem. A problem with this approach is that all theory information must be
encoded in the propositional formula. The lazy approach also converts the problem into a propositional
formula, but does not include theory information from the start. Thus, the SAT solver tries to find a
model for the propositional structure of the formula in the first step, with all terms and predicates from
the theory treated as propositional atoms. If the SAT solver is able to find such a model, the theory solver
is asked whether this model is consistent with the theory. If it is not, an additional clause is added to the
propositional formula which represents the conflict with the theory. The resulting formula is then again
checked by the SAT solver. If the SAT solver again finds a model this model is checked by the theory
solver. This cycle repeats until the SAT solver returns unsatisfiable or the theory solver determines that
the model is consistent with the used theory. From now on we only consider variable free and thus also
quantifier free instances of the SMT problem. An example for the necessary changes to the explained
algorithms in this section can be found in [31].

DPLL

Before we introduce an algorithm to solve SMT formulas, we take a look at the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [14, 13] for propositional satisfiability. DPLL can be described as transition
system with five simple rules [38], where the procedure is either in the FailState or in a state of the form
M ‖ F where M is a sequence containing the (partial) assignment and F is a formula in conjunctive
normal form (CNF). One important property of the sequence M is that it never contains both a literal
and its negation. Moreover with each literal in M there is an additional information associated whether
this literal is a decision literal or not. Decision literals in M are denoted by ld. A clause C is said to be
conflicting in a state M ‖ F,C if M |= ¬C, where all literal occurring in C are defined in M . Now we
can state the five transition rules that make up the classical DPLL algorithm:

• UnitPropagate:

M ‖ F,C ∨ l =⇒Ml ‖ F,C ∨ l if

{
M |= ¬C, and
l is undefined in M

In order for any CNF formula to be satisfied all the clauses have to be true. If there is a clause in
the formula where all but one literal are assigned false and the remaining literal is unassigned, we
can assign a value to this literal to make this clause true.

• PureLiteral:

M ‖ F =⇒Ml ‖ F if


l occurs in some clause of F,
¬l does not occur in some clause of F, and
l is undefined in M

A pure literal in F can always be assigned such that it is true. A literal is pure if it occurs in F but
its negation does not occur in F .

• Decide:

M ‖ F =⇒Mld ‖ F if

{
l or ¬l occurs in a clause in F, and
l is undefined in M

This rule captures a split case situation, if we extend M with l but do not find a model for the
formula F . Then we still have to consider adding ¬l. Thus, the literal is marked as a decision
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literal when adding it to the current partial model M . If we cannot find a model we use the
Backtrack rule to check if we can find a model with the negated literal from this decision.

• Fail:

M ‖ F,C =⇒ FailState if

{
M |= ¬C, and
M contains no decision literals

If M does not contain a decision literal but a clause C which evaluates to false, we have found a
conflict and know that the formula is unsatisfiable. We report this by changing into the FailState.

• Backtrack:

MldN ‖ F,C =⇒M¬l ‖ F,C if

{
MldN |= ¬C, and
N contais no decision literal

If a conflict clause C is detected but decision literals still remain, the Fail rule does not apply.
In this case the Backtrack rule is used to backtrack one decision level. The last decision made is
replaced with its negation and all subsequent assignments which followed the particular decision
are discarded. Note that Backtrack does not mark the literal as decision literal since the other
possibility has already been explored without success.

The procedure is finished when it reaches a final state, a state is final if their is no rule applicable. If
the final state is the FailState then the formula is unsatisfiable, otherwise the formula is satisfiable and
M contains the assignment for all literals occurring in the formula F . For the proof of this we refer to
[38].

The following example shows a run of the DPLL algorithm. It was taken from [38]:

∅ ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒Decide

ad ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒UnitPropagate

ad¬b ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒UnitPropagate

ad¬bc ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒UnitPropagate

ad¬bcd ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒Backtrack

¬a ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒UnitPropagate

¬ad ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒Decide

¬ad¬cd ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d =⇒UnitPropagate

¬ad¬cdb ‖¬a ∨ ¬b, b ∨ c,¬a ∨ ¬c ∨ d, b ∨ ¬c ∨ ¬d, a ∨ d

The last state of the system is the final state of the derivation andM is the model that satisfies the formula.

However, modern versions of the DPLL procedure do not implement the system as stated above.
They use several improvements, for example the PureLiteral rule is used as a preprocessing step rather
than a rule and the chronological backtracking is replaced with a more powerful backtracking mechanism
for efficiency reasons [38]. Learning conflict clauses has also been shown to improve the performance of
the algorithm and is usually done in practice [38]. We now take a look at a DPLL system with learning
and the more sophisticated backjump mechanism which consists of six rules: The rules Decide, Fail, and
UnitPropagate are taken from the classical DPLL shown above and the following rules are added:

• Backjump:

MldN ‖ F,C =⇒Ml′ ‖ F,C if



MldN |= C and there is
some clause C ′ ∨ l′ such that:
F,C |= C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in MldN



3.1. Satisfiability Modulo Theories 13

In contrast to backtracking, backjumping does not undo the last decision made but a decision
which is responsible for the conflict. Consider the following example to show the strength and the
application of the backjump rule [38]:

∅ ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒Decide

ad ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒UnitPropagate

adb ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒Decide

adbcd ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒UnitPropagate

adbcdd ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒Decide

adbcdded ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒UnitPropagate

adbcdded¬f ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b =⇒Backtjump

adb¬e ‖¬a ∨ b,¬c ∨ d,¬e ∨ ¬f, f ∨ ¬e ∨ ¬b

The clause f ∨¬e∨¬b is conflicting before the application of the backtracking step. This conflict
is a result of the decisions ad and ed together with their respective unit propagations, therefore
we can infer that the decisions are incompatible with each other. Moreover, the given clause set
entails ¬a∨¬e and ¬b∨¬e. Such clauses are called backjump clauses, since their presence would
have allowed a unit propagation at an earlier step [38]. Backjump now goes back to that level and
adds the unit propagation of that clause to the model. For the example if we use ¬b ∨ ¬e as the
backjump clause we end up in a state with the partial model adb¬e, when using a backjump step
instead of the backtracking step.

• Learn:

M ‖ F =⇒M ‖ F,C if

{
each atom of C occurs in F or in Mand
F → C

In modern implementations one can make additional use of the backjump clauses, by adding them
to the formula as learned clauses. This is called conflict driven learning and helps to avoid reaching
similar conflict states repeatedly. However, the rule stated here is more general and allows the
addition of any clause that is entailed by the formula. This represents a more general learning
approach then conflict driven learning.

• Forget:
M ‖ F,C =⇒M ‖ F if

{
F |= C

The Forget rule can be used to remove any clause C from F that is entailed by the remainder of
F . This includes clauses learned via the application of the Learn rule.

DPLL(T)

The DPLL algorithm from the previous section can be adapted to solve the SMT problem. One important
difference in this case is that instead of propositional literals we have to consider first-order terms and
predicates. This however does not change the rules Decide, Fail, and UnitPropagate since they still
regard all literals as syntactical units just like in the propositional case [38]. The only rules adapted
are Learn, Forget, and Backjump; here, entailment in F becomes entailment in the theory T . In the
following rules, |= denotes the propositional notion of satisfiability and |=T the first order notion of
entailment modulo the theory T .

• T-Learn:

M ‖ F =⇒M ‖ F,C if

{
each atom of C occurs in F or M
F |=T C
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• T-Forget:
M ‖ F,C =⇒M ‖ F if

{
F |=T C

• T-Backjump:

MldN ‖ F,C =⇒Ml′ ‖ F,C if


MldN |= ¬C and there is some clause C ′ ∨ l′ such that:
F,C |=T C

′ ∨ l′ and M |= ¬C ′, l′ is undefined in M , and
l′ or ¬l′ occurs in F or in MldN

With these rules we can now model the naive lazy approach for SMT solving [38]. Whenever we
reach a state that is final with respect to the application of the rules Decide, Fail, UnitPropagate, and
T-Backjump, the model M can be consistent with the theory T or not. In the case of consistency it is a
model for T . If it is inconsistent with the theory, then there exists a subset l1, . . . , ln of M for which
∅ |=T ¬l1 ∨ · · · ∨ ln. This clause can then be learned via a T-Learn step and the procedure can be
restarted. During this restart the clauses learned from the theory solver are kept as part of the formula.
For the proof of correctness for the DPLL(T) procedure we refer the interested reader to [38].

In practice there exist various improvements of this naive approach [38]. The difference of those
approaches to the naive one is that the clause learning is tighter incorporated in the solving process, i.e.,
the detection of inconsistencies with the theory is done before a final model is available. This has the
advantage that those conflicts are detected before the whole model is built and thus the procedure can be
restarted at an earlier point which yields a performance increase.

3.2 Rewrite Systems

Equations are an important part of mathematics and other sciences. Sometimes we want to solve equa-
tions, other times we want to check whether an other equality follows from a set of equalities. Rewrite
systems are directed equations, which can be used to replace subterms of an expression until the simplest
form of the term is obtained [18]. Rewrite systems are like non-deterministic Markov algorithms over
terms and have the full power of Turing machines. Essentially, rewriting is the theory of normal forms
and is related to Church’s Lambda Calculus and Curry’s Combinatory Logic [18].

Rewrite system are used to solve a plethora of problems. Buchberger and Loos [8] use term rewrit-
ing for algebraic simplification. The goal of algebraic simplification is to obtain simpler but equivalent
objects as well as to compute unique representatives for a class of equivalent objects. Baeten and Wei-
jland [5] show in their work that logic programs can be given semantics via term rewriting systems.
They also show that the addition of a priority ordering on the rewrite rules gives a procedural semantic
for the depth-first search rule inside Prolog. Rewrite systems can also be used directly for computa-
tion. Derschowitz [17] proposed a programming language similar to Prolog based on rewrite rules. The
main difference to Prolog is that rewrite rules are equivalences and not implications in Horn-clause form.
Hsiang [25] presented a first-order logic theorem prover based on a rewrite system. They developed a
canonical term-rewriting system for Boolean algebra, which allows them to translate first-order predicate
calculus into a form of equational logic.

Before we define the syntax of rewrite systems we consider the following example from [18]. This
is the “Coffee Can Problem”, where we have a can containing black and white beans arranged in some
order. We will represent the content of the can as a sequence of bean colors.

white white black black white white black black

The rewrite rules for our example are:

black white→ black

white black → black

black black → white
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The goal of the game is that we end up with the fewest possible number of beans left in the can. For our
example a possible sequence of derivations is:

white white black black white white black black

white white black black white black black

white white white white black black

white white white black black

white white black black

white black black

black black

white

3.2.1 Syntax

Terms

Terms in the case of rewrite systems are the same as in the first-order logic case, see Section 3.1.1. A
term is called a ground term if it does not contain a variable. We will call the set of ground termsG from
now on. We will use Fi to denote the set of all functions with arity i.

Any term in π can be visualized as a finite ordered tree, where the leaves are either variables from V
or constants from F0 [18]. The internal nodes of the tree consist of function symbols from F1 ∪ · · · ∪Fn
where n ≥ 1 and have a outdegree which is equal to the arity of the function. The position of a subterm
within another term can be represented in Dewey decimal notion, describing the way from the root to
the subterm. We write t |p for the subterm of t at the position p. Consider the following example:
if t = f(c, f(a, b)) then t |2.1 denotes the first subterm of t’s second subterm, which is the term a.
Furthermore t[s] means that s is a subterm occurring in t. Finally a subterm is a proper subterm of t if it
is distinct from t. If we replace a subterm of t at the position p with a term s we will write this as t[s]p.

A substitution σ is a replacement operation that maps variables to terms, written as {x1 → t1,
. . . , xm → tm} [18]. Note that only finitely many variables xi are not mapped to themselves. For-
mally a substitution is a function from V to π extended to a function from π to itself in a way that
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for each function in F and for every term in π. We say that two terms
s and t unify when there is a substitution σ such that sµ = tµ, with the substitution σ being the unifier.
We call the unifier σ the most general unifier (MGU) if, for all other unifiers τ the following property
holds: ∀s ∈ π : sτ = (sσ)ρ where ρ is an substitution.

Rewrite Rules

The difference between equations and rewrite rules is that equations are an unordered pair, but rewrite
rules are an ordered pair 〈l, r〉 over a set of terms π [18]. Rewrite rules are written as l → r. Because
rewriting rules are ordered, they are only used to replace instances of the left-hand side with instances
of the right-hand side, unlike equations which can be used in both directions. Furthermore, a set of
rewriting rules R over π is called a term-rewriting system.

We say that a term s ∈ π rewrites to a term t ∈ π with respect to R, written as s →R t, if s |p= lσ
and t = s[rσ]p for a rule l → r ∈ R, p being the position in s and σ being a substitution [18]. This is
equivalent to saying that t = u[lσ]p and s = u[rσ]p, for some position p in u. A term s is said to be
irreducible or in normal form if there is no term t in π such that s→R t.
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Properties of Rewrite Systems

A term-rewriting system can have some of the following properties [18]:

• Ground: A rewriting system is a ground rewriting system if all rules are ground, thus when all
rules are elements of G×G.

• Normalizing: A rewriting system is normalizing if every term has at least one normal form.

• Unique normalization: If every term has exactly one normal form the rewriting system has the
unique normalization property.

• Reduced: Let R be a rewriting system, if for every rule l → r ∈ R the right-hand side r of a rule
is irreducible under R and if for every term s that is smaller than l, s is also irreducible then the
rewrite system is said to be reduced.

• Convergent: If every possible sequence of rewriting leads to the same unique normal form for a
term the rewriting system is convergent, this property is sometimes also called canonical in the
literature. However we will use a different definition for canonical.

• Canonical: If a rewrite system is both reduced and convergent then it is called a canonical rewrite
system. In this thesis we use this definition when we refer to a canonical rewrite system.

In our work we will only consider ground and canonical rewrite systems, since only these can be
used to decide the problem of congruence closure. It is important that the system is canonical because
otherwise it cannot be used as a decision procedure, for example if the system is not canonical then there
exist terms which have more then one normal form. Since these normal forms are used to detect equality
of terms in the case of congruence closure, it is very important that the normal form of a term is unique.
The need for ground rewrite systems arise out of the fact that the completion procedures described in
Chapter 4 are only guaranteed to terminate if the set of equations is ground [30]. With a ground set of
equations the completion procedures always yield a ground and canonical rewrite system as result, see
Chapter 4 for more details.

3.2.2 Congruence

Replacing terms leads to the important notion of congruence [18]. An equivalence relation ≈ is a con-
gruence on a set of terms if f(s1, . . . , sn) ≈ f(t1, . . . , tn) whenever si ≈ ti for i = 1, . . . , n. This
results in the fact that the reflexive-transitive closure↔∗ of any rewrite relation→ is a congruence.

For terms s and t we write s ↔E t whenever s = u[lσ]p and t = u[rσ]p for some position p in
u, equation l = r, and a substitution σ [18]. Informally, s ↔E t denotes that s has a subterm which
can be replaced with the other side of an equation in E that makes it equal to t. The relation↔∗E is the
congruence closure of E, i.e. it is the smallest congruence over τ such that lσ ↔∗E rσ for l = r ∈ E and
all substitutions σ over π. We are interested in congruences because they allow us to learn new equalities
between terms, which are consequences of the given set of equations.

3.2.3 Completion

Before we discuss completion procedures for rewrite systems, we have to establish the notion of conflu-
ence [2]. A term rewriting system R is confluent, if for all s,t,t′ ∈ π, whenever s →∗R t and s →∗R t′,
then there exists a u ∈ π such that t →∗R u and t′ →∗R u. The confluence property means that one
can diverge from a common ancestor but there will always be a way to arrive at a common descendent.
This is important for rewrite systems because we want convergent rewrite systems, where every term has
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exactly one normal form that should always be found independent of the order in which possible rewrite
rules are applied.

When talking about confluence we also have to consider critical pairs of rewrite rules. Let l → r
and s → t be two rewrite rules with distinct variables, p be the position of a nonvariable subterm of s,
and µ the most general unifier of s |p and l. Then the equation tµ = sµ[rµ]p is a critical pair formed
by the two rules [18]. The presence of a critical pairs implies that there exist two possible rewritings for
some terms.

Confluence of finite terminating rewrite system can be decided [18]. However, if a rewriting system
fails the test, this is because a critical pair does not have a common normal form, then one needs a
completion procedure, which adds new rules such that the critical pair has a common normal form. This,
however, may generate new critical pairs which do not have a common normal form. Therefore, the
procedure must also generate rewrite rules for them, which leads to the fact that the procedure must not
arrive at a convergent system. In a convergent system, all critical pairs have a common normal form.
Although the completion procedure does not have to succeed in the unrestrained case [18], it does for
more constrained problems, see Chapter 4 for more details about the correctness of the used algorithms.

Before we explain a generic completion procedure for rewrite systems we have to establish what
a reduction ordering is. A relation � is a reduction ordering on the terms of a rewrite system if the
following properties hold [42, 41]:

• for all s ∈ π s � s does not hold.

• for all s, t ∈ π if s � t does hold then t � s does not.

• for all s, t, u ∈ π if s � t and t � u hold then s � u also holds.

• the set of terms π is well ordered with respect to�, that is, all nonempty subsets contain their least
element

• if ti � t′i then also f(t1, . . . , ti, . . . , tn) � f(t1, . . . , t′i, . . . , tn) for all functions f .

• if s � t then also sσ � tσ for all substitutions σ

A completion procedure works as follows [18]: Given a set of equations and a reduction ordering
(�) on the terms a completion procedure tries to find a canonical system. First the equations are used
to generate the initial rewrite rules for the rewrite system. Here the reduction ordering on terms is used
to decide the orientation of the rewrite rules that follow from an equation. For example, the equation
l = r generates the rewrite rule l → r if l � r or the rewrite rule r → l if r � l. The rewrite rules
generated by the procedure can always be used to simplify terms occurring in the remaining equations
or in already generated rules. After the initial rewrite system from the set of equations is finished, the
completion procedure generates critical pairs and orients them as well. Consider the critical pair s = t.
Suppose it can be simplified to u = v, where u and v are not identical. Then a rule u → v or v → u is
added to provide a rewrite proof for s = t. The orientation of the new rule is again decided with the help
of the reduction ordering on terms. This new rule is then used to form new critical pairs. The procedure
described here can have three different outcomes: a canonical system was found (success), nothing was
found (failure), or the procedure can loop forever (it generates an infinite canonical system).
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Chapter 4

Algorithms

After we have established the notion of rewrite systems and SMT in the previous chapter, we will look
at various congruence closure algorithms in this chapter. We will present the three algorithms we have
implemented inside Z3, namely congruence closure modulo associativity and commutativity, congruence
closure modulo inverse functions and the combination of the two. We will also describe the standard
congruence closure algorithm which neither takes associativity and commutativity nor inverse function
into account. We will state the three classical congruence closure algorithms from Shostak [43], Downey
et al. [19], and Nelson and Oppen [35]. Modern versions of the congruence closure algorithm use
certain optimization to be better suited for their specific application. For example the congruence closure
algorithm from Nieuwenhuis and Oliveras [37] was tailor-made to be used in modern SMT solvers, since
it was extended that an explanation for the result can be produced without increasing the runtime of the
algorithm.

The chapter is organized as follows. The first part is about the standard congruence closure as rewrite
system. After that we will explain how this algorithm can be modified to handle associativity and com-
mutativity. The last part of this chapter is about the modifications needed to cover uninterpreted functions
modulo inverse functions for both the standard congruence closure as well as the congruence closure al-
gorithm modulo associativity and commutativity.

4.1 Congruence Closure

In the following we give the completion procedure for obtaining a rewrite system for the standard con-
gruence closure algorithm. The state of the completion procedure is expressed by tuples (E;R), where
E is a set of ground equations over a signature Σ and R is the current set of rewriting rules. The proce-
dure starts in the state (E; ∅). The following six inference rules, with a suitable reduction ordering (�)
on terms, are used to build a rewrite system in the standard congruence closure case [18]. The reduction
ordering is used to orient equations from E when they are turned into rewrite rules, see Orient rule. As
noted in Section 3.2 equations in E are not orientated, while rewrite rules in R are always orientated.

• Delete:
(E ∪ {s = s};R) ` (E;R)
The delete rule is used to remove a trivial equation s = s from the set of equations.

• Compose:
(E;R ∪ {s→ t}) ` (E;R ∪ {s→ u}) if t→R u
The compose rule is used to rewrite the right-hand side of a rule, whenever possible. This rule
is used to ensure that the resulting rewrite system is reduced, which is one property a canonical
rewrite system must fulfil.

19
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• Simplify:
(E ∪ {s = t};R) ` (E ∪ {s = u};R) if t→R u
(E ∪ {s = t};R) ` (E ∪ {u = t};R) if s→R u
The simplify rule is used to rewrite the terms occurring on either side of an equation, whenever this
is possible.

• Orient:
(E ∪ {s = t};R) ` (E;R ∪ {s→ t}) if s � t
Orient is used to turn an equation into a rewrite rule. Since rewrite rules are only used in one
direction the equation has to be oriented before the rewrite rule may be added. This is done
according to the defined ordering of terms. If s � t then the rule s→ t is added, however if t � s
then the rule t→ s must be added.

• Collapse:
(E;R ∪ {s → t}) ` (E ∪ {u = t};R) if s →R u using the rule l → r ∈ R with (s � l) ∨ (s =
l ∧ s � r)
The collapse rule is used to rewrite the left-hand side of a rule s → t by a rule l → r. Whenever
the left-hand side of a rule is changed, the rule is removed from the set of rules and reinserted into
the set of equations. This step is necessary because after the left-hand side of a rule was changed
the property that it is smaller than the right-hand side of that rule can no longer be guaranteed.

• Deduce:
(E;R) ` (E ∪ {s = t};R) if s = t is a critical pair of the set of rules R
This rule is used to add critical pairs to the set of equations. As mentioned in Chapter 3 it is
important that all critical pairs have a rewrite rule, otherwise not all terms have a unique normal
form.

The procedure is finished if none of the rules described above can be applied. The result of the
procedure is a ground and canonical rewrite system. A proof idea for the correctness of the procedure
can be found in [3].

After we have established the completion procedure, we want to look at an example. Consider the
following set of equations E = {f(a, b) = a, b = c, f(c, c) = f(a, d), f(a, b) = d}. For term ordering
we use the following reduction ordering f � d � c � b � a. The steps of the completion procedure can
be seen in Table 4.1.

The resulting rewrite system can be used to show that the equation f(b, b) = f(f(a, c), f(d, b))
logically follows from the given set of equations. This can be seen in Table 4.2 where the reduction
of the two sides of the equation with the generated rewrite rules is shown. So the congruence closure
procedure can be used to solve the word problem for a set of equations, where we want to know whether
an equality logically follows from a set of equations.

4.1.1 Important Strategies

After we have established the inference rules for a congruence closure completion procedure in the
previous section, we now want to look at the most important congruence closure algorithms developed
by Shostak [43], Downey et al. [19], and Nelson and Oppen [35]. These algorithms can be seen as
different strategies how to use the inference rules from the completion procedure for congruence closure.
The key difference between the three algorithms is the order in which the inference rules are applied
to get a congruence closure for a given input. Another difference between the algorithms is the input
representation.
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Step E R Transition Rule
1 {f(a, b) = a, b = c,

f(c, c) = f(a, d),
f(a, b) = d}

∅ Orient f(a, b) = a ⇒
f(a, b)→ a

2 {b = c, f(c, c) = f(a, d),
f(a, b) = d}

{f(a, b)→ a} Simplify f(a, b) = d by
f(a, b)→ a

3 {b = c, f(c, c) = f(a, d),
a = d}

{f(a, b)→ a} Orient b = c⇒ c→ b

4 {f(c, c) = f(a, d), a = d} {f(a, b)→ a, c→ b} Simplify f(c, c) = f(a, d)
by c→ b

5 {f(b, b) = f(a, d), a = d} {f(a, b)→ a, c→ b} Orient f(b, b) = f(a, d) ⇒
f(a, d)→ f(b, b)

6 {a = d} {f(a, b)→ a, c→ b,
f(a, d)→ f(b, b)}

Orient d = a⇒ d→ a

7 ∅ {f(a, b)→ a, c→ b,
f(a, d)→ f(b, b), d→ a}

Collapse f(a, d) → f(b, b)
by d→ a

8 {f(a, a) = f(b, b)} {f(a, b)→ a, c→ b,
d→ a}

Orient f(a, a) = f(b, b) ⇒
f(b, b)→ f(a, a)

9 ∅ {f(a, b)→ a, c→ b, d→ a,
f(b, b)→ f(a, a)}

Table 4.1: The deduction steps for the congruence closure completion procedure for our example.

Step Left-Hand Side Right-Hand Side Rewrite Rule
1 f(b, b) f(f(a, c), f(d, b)) f(b, b)→ f(a, a)

2 f(a, a) f(f(a, c), f(d, b)) c→ b

3 f(a, a) f(f(a, b), f(d, b)) d→ a

4 f(a, a) f(f(a, b), f(a, b)) f(a, b)→ a

5 f(a, a) f(a, a)

Table 4.2: The necessary deduction steps to show that the equation f(b, b) = f(f(a, c), f(d, b))
logically follows from the set of equations, using the rewrite system built by the congru-
ence closure completion procedure.
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Step E R Inference Rule
1 {a = b, f(f(a)) = f(b)} ∅ Orient a = b

2 {f(f(a)) = f(b)} {b→ a} Simplify f(f(a)) = f(b) by
b→ a

3 {f(f(a)) = f(a)} {b→ a} Orient f(f(a)) = f(a)

4 ∅ {b→ a, f(f(a))→ f(a)}

Table 4.3: An example showing the steps of the completion procedure from Shostak’s congruence
closure algorithm.

Shostak’s Method

The basic implementation of the Shostak algorithm, without any performance boosts, is as follows [3].
The algorithm starts by picking an equation s = t from the set of equations E. This equation is then
simplified until no more simplification steps on the terms s and t are possible. If s and t simplify to the
same term, the equality is trivial and thus deleted from the set of equations using the deletion rule. If s
and t are different terms after the simplification steps the orientation rule is used to generate a rewrite
rule from the equation. After this rewrite rule is added to the set of rules, the algorithm performs all
possible collapse steps. After each of these collapse steps the algorithm performs all deduction steps that
arise out of the performed collapse step. When all collapse and deduction steps have been carried out,
the algorithm starts again by picking another equation from the set of equations. This cycle repeats until
the set of equations E is empty.

Shostak’s algorithm [43] can be described by the following combination of rules [3], where the
Simplification∗ means that the simplification rule is used until it cannot be applied anymore. By Simplification◦
Deletion we denote that first the simplification rule is used, followed by an application of the delete rule.
Shostak = (Simplification∗ ◦ (Deletion ∪ Orientation) ◦ (Collapse ◦ Deduction∗)∗)∗

An important property of Shostak’s method is that it is a dynamic congruence closure algorithm.
This allows the algorithm to accept new equations after some equations have already been processed,
which enables the procedure to work incrementally [3].

Now we want to look at an example how Shostak’s algorithm works, therefore we consider the
following set of equations E = {a = b, f(f(a)) = f(b)} [3]. The steps of the completion procedure
using Shostak’s strategy can be seen in Table 4.3.

Downey-Sethi-Tarjan

In this section we take a look at the congruence closure algorithm from Downey, Sethi and Tarjan [19].
The algorithm expects the input to be a directed acyclic graph (DAG), representing the terms used in the
equations, with an equivalence relation specified on its nodes [3], which represent the input equations.
Both the DAG and the equivalences on the nodes are specified as rewrite rules. For our running example
this means that the input to the procedure will be (∅, D1 ∪ C1) where D1 is the DAG of the input terms
and C1 represents the input equivalences over the nodes of the DAG. For the example from the previous
section we have the following sets, D1 = {a→ c0, b→ c1, f(c0)→ c2, f(c2)→ c3, f(c1)→ c4} and
C1 = {c0 → c1, c3 → c4}.

The algorithm works as follows. Since the input is already a partially finished rewrite system, some
rules are available at the start of the procedure, namely the input DAG and the equivalences over the DAG.
So the algorithm starts by using a possible collapse rule, if the use of the collapse rule enables a deduction
step the step is carried out as well. This is done until no more collapse steps are possible. After this the
equations that were moved to the E component via collapsing of rules and deduction are simplified and
deleted if they are trivial after the simplification. All non-trivial equations are converted into rewrite
rules via the orientation step of the completion procedure. If all equations in the E component have
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Step E R Inference Rule
1 ∅ {a → c0, b → c1, f(c0) →

c2, f(c2) → c3, f(c1) →
c4} ∪ {c0 → c1, c3 → c4}

Collapse f(c0) → c2 by
c0 → c1

2 f(c1) = c2 {a → c0, b → c1, f(c2) →
c3, f(c1)→ c4} ∪ {c0 → c1,
c3 → c4}

Simplify f(c1) = c2 by
f(c1)→ c4

3 c4 = c2 {a → c0, b → c1, f(c2) →
c3, f(c1)→ c4} ∪ {c0 → c1,
c3 → c4}

Orient c4 = c2

4 ∅ {a → c0, b → c1, f(c2) →
c3, f(c1)→ c4} ∪ {c0 → c1,
c3 → c4, c4 → c2}

Table 4.4: The steps of the completion procedure for congruence closure from Downey, Sethi, and
Tarjan.

been processed, the procedure starts again by trying to collapse rules and deduce new equations. The
procedure continues until no more collapse and deduction steps are possible and the set of equations E
is empty.

The Downey, Sethi, and Tarjan algorithm can be described by the following combination of inference
rules.
DST = ((Collapse ◦ (Deduction ∪ {ε}))∗ ◦ (Simplification∗ ◦ (Deletion ∪Orientation))∗)∗

where ε is the null inference rule which does not change the state of the procedure.

To get a better understanding of the algorithm we consider the example from the previous section.
This time we are using the congruence closure algorithm from Downey, Sethi, and Tarjan. The steps of
the completion procedure can be seen in Table 4.4.

Nelson-Oppen

In this section we introduce the Nelson-Oppen congruence closure strategy [3]. The Nelson-Oppen
procedure is quite different from the two strategies described above, it does not use the normal deduction
rule described above. Instead, it uses the following modified version of the deduction inference rule:

• NODeduction:
(E;R) ` (E ∪ {s = t};R) if there are two rules f(c1, . . . , cn) → s and f(d1, . . . , dn) → t ∈ R
such that ci → u and di → u for i = 1 . . . n
This deduction steps adds an equality between the right-hand side of two rewrite rules, if the left-
hand side of the two rewrite rules are congruent to each other.

The input for the Nelson-Oppen method is (E;D), where D is the input dag, like in the Downey,
Sethi, and Tarjan algorithm. The E component is initialized with the equivalences specified on the input
dag. For the running example the two sets look like this: D = {a → c0, b → c1, f(c0) → c2,
f(c2)→ c3, f(c1)→ c4} and E = {c0 = c1, c3 = c4}.

The procedure starts by selecting an equation from the set of equations E. This equation is then
simplified until no more simplification steps are possible. After the simplification, the equation is either
deleted if it is trivial or orientated if it is not trivial. After this the NODedcution rule is applied until no
more non-trivial equations can be learned from it. The procedure continues until the E component is
empty.
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1 {c0 = c1, c3 = c4} {a→ c0, b→ c1, f(c0)→ c2,
f(c2)→ c3, f(c1)→ c4}

Orient c0 = c1

2 {c3 = c4} {a → c0, b → c1, f(c0) →
c2, f(c2) → c3, f(c1) → c4,
c0 → c1}

NODeduction c2 = c4 from
f(c0) → c2 and f(c1) → c4
using the rule c0 → c1 for
establishing congruence be-
tween the left sides

3 {c2 = c4, c3 = c4} {a → c0, b → c1, f(c0) →
c2, f(c2) → c3, f(c1) → c4,
c0 → c1}

Orient c2 = c4

4 {c3 = c4} {a → c0, b → c1, f(c0) →
c2, f(c2) → c3, f(c1) → c4,
c0 → c1, c2 → c4}

Orient c3 = c4

5 ∅ {a → c0, b → c1, f(c0) →
c2, f(c2) → c3, f(c1) → c4,
c0 → c1, c2 → c4, c3 → c4}

Table 4.5: The steps of the completion procedure for congruence closure from Nelson and Oppen.

Now we can state the Nelson-Oppen strategy for congruence closure [3]:
NO = (Simplification∗ ◦ (Orientation ∪Deletion) ◦NODeduction∗)∗

Again using the same set of equations as in the previous two cases we want to illustrate how the
Nelson-Oppen method works. The steps of the procedure can be seen in Table 4.5.

4.2 Congruence Closure Modulo Associativity and Commutativity

In the previous section we established the completion procedure for the standard congruence closure,
now we will extend this completion procedure to take associativity and commutativity into account. In
order to achieve this the rules of the completion procedure have to be slightly modified. The modified
version of the completion procedure looks as follows [12]. In addition to the changes to the completion
procedure, the reduction ordering of terms must also be adjusted to handle the presence of associative,
commutative functions. There has been a lot of research in the area of term ordering in the presence of
associative and commutative functions. We will use the ordering introduced in [40].

Before we state the necessary changes to the completion procedure we give some important defini-
tions. A binary function f is commutative if the following property holds: ∀x, y.f(x, y) = f(y, x). A
binary function f is associative if the following property holds: ∀x, y, z.f(f(x, y), z) = f(x, f(y, z)).
The flattened form of a term flat(t) is obtained by using the following rules:

• flat(g(t1, . . . , tn)) = g(flat(t1), . . . , flat(tn)), where g is a function that is not associative and
commutative.

• flat(f(s, t)) = f(s1, . . . , sn, t1, . . . , tn, where f is an associative and commutative function and
flat(s) = f(s1, . . . , sn) and flat(t) = f(t1, . . . , tn)

Flattening removes nested applications of an associative and commutative function and transforms them
into one call with a variable number of arguments. For example the flattened form of the term t =
f(a, f(b, c)) is flat(t) = f(a, b, c). We use =AC to express that two terms are equal with respect to
associativity and commutativity, for example f(f(a, b), c) is equal to f(b, f(a, c)) with respect to asso-
ciativity and commutativity. One way to determine whether or not two terms are equal with respect to
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associativity and commutativity is to compare their flattened forms. When comparing commutative func-
tions one has to consider all permutations of the parameters to decide whether or not the two functions
are equal. By s→AC\R t we denote that s can be rewritten to t using the rewrite rules in R, where term
matching is done by the =AC operator. For example the term t = f(a, f(b, c)) can be rewritten using the
rule f(b, f(a, c)) → a, since f(a, f(b, c)) =AC f(b, f(a, c)). Not only term matching has to be done
in respect to the associativity and commutativity of functions also the reduction ordering (�) has to be
adapted to work in the presence of associative and commutative functions, a suitable reduction ordering
in presence of associative and commutative functions can be found in [40].

• Delete:
(E ∪ {s = t});R) ` (E;R) if s =AC t
Like in the standard congruence closure, this rule is used to delete trivial equations from the con-
text. But in the case of associativity and commutativity the triviality of an equation is extended
to cover associativity and commutativity, this means that an equation of the form f(a, f(b, c)) =
f(f(b, a), c) is considered trivial when f is an associative, commutative function.

• Compose:
(E;R ∪ {s→ t}) ` (E;R ∪ {s→ u}) if t→AC\R u
The compose rule is simply extended by taking associativity and commutativity into account when
rewriting the right-hand side of a rewrite rule. For example the rule f(x, f(y, z)) → f(b, a) can
be composed by the rule f(a, b)→ c if f is an associative commutative function.

• Simplify:
(E ∪ {s = t};R) ` (E ∪ {s = u};R) if t→AC\R u
(E ∪ {s = t};R) ` (E ∪ {u = t};R) if s→AC\R u
The simplify rule is again used to rewrite the left- and right-hand side of equations in E. When
rewriting terms the associativity and commutativity of functions is considered.

• Orient:
(E ∪ {s = t};R) ` (E;R ∪ {s→ t} if s � t
When turning an equation into a rewrite rule no changes are needed in the case of associative and
commutative functions.

• Collapse:
(E;R ∪ {s→ t}) ` (E ∪ {u = t};R if s→AC\R u by the rule l→ r ∈ R with s→ t � l→ r
The collapse rule also is only extended in the form that associativity and commutativity are used
when a rule’s left-hand side is rewritten, the rule still has to be reinserted into the set of equations
in order to obtain the correct orientation, after simplifying the left-hand side.

• Deduce:
(E;R) ` (E ∪ {s = t};R) if s = t ∈ headCP (R) where headCP (R) = {f(b, r′) =
f(b′, r)|l→ r ∈ R, l′ → r′ ∈ R∃aµ : l =A Cf(aµ, b) ∧ l′ =A Cf(aµ, b′)}
Deduce is again used to add equations for critical pairs to the rewrite system. In the case of as-
sociative, commutative functions critical pairs are overlaps between left-hand side of rules with
regard to associativity and commutativity. The left-hand sides of two rules overlap whenever there
exists an aµ, which is maximal, that is part of both left-hand sides. Suppose we have the following
two rewrite rules f(a, b) → c and f(a, d) → e. Then aµ = a and deduction yields the following
equation: f(c, d) = f(e, b). This can be seen by considering the following reductions, the term
f(f(a, b), d) can be rewritten using f(a, b)→ cwhich yields the term f(c, d) or it can be rewritten
using f(a, d) → e which results in the term f(e, b). Thus the term f(c, d) and the term f(e, b)
must be equal and we need a rewrite rule to capture this critical pair.
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Again the procedure is finished if none of the above rules can be applied anymore. The result is a
ground and canonical rewrite system for the congruence closure of the given set of equalities. The proof
for the correctness of the procedure can be found in [3].

The completion procedure stated above can be used to generate a congruence closure modulo associa-
tivity and commutativity for the example taken from [12], where the set of equations isE = {f(a1, a4) =
a1, f(a3, a6) = f(a5, a5), a5 = a4, a6 = a2} and we use f � a6 � · · · � a1 as the reduction ordering.
The steps to generate the rewrite system for this set of equations can be seen in Table 4.6.

The resulting rewrite system can then be used to check whether the equality a1 = f(a1, f(a6, a3))
logically follows from the set of equations. The necessary deduction steps for the proof are shown in
table 4.7

The application of the rewrite system to the equation a1 = f(a1, f(a6, a3)) shows that this equation
logically follows from the set of equations, because both terms have the same normal form in regard to
the rewrite system.

4.3 Congruence Closure Modulo Inverse Functions

After we have established the completion procedure for congruence closure and congruence closure
modulo associativity and commutativity in the previous sections, this section is going to deal with a new
extension of the congruence closure algorithm, namely the congruence closure modulo inverse func-
tions. Two functions f and g are inverse to each other if the following property holds ∀x : f(g(x)) =
g(f(x)) = x. We will denote this by f = g−1.

A completion procedure that handles the presence of inverse functions directly needs the following
two additional rules. It is important to state that both the standard congruence closure completion pro-
cedure or the associative, commutative congruence closure completion procedure can be extended by
adding the two rules to handle inverse functions as well.

We use s =f=g−1 t to denote that the terms t and s are equal with respect to functions f and
g being inverse to each other. For example the terms s = f(g(a)) and t = g(f(a)) are equal to
each other, since both can be simplified to a. By s →f=g−1 t we denote that s =f=g−1 t, where the
occurrence of f(g(x)), x being an arbitrary term, inside the term s has been replaced with x. For example
h(f(g(a)))→f=g−1 h(a).

• Application:
(E ∪ {s = t};R) ` (E ∪ {u = t};R) if f = g−1 and s→f=g−1 u
(E ∪ {s = t};R) ` (E ∪ {s = u};R) if f = g−1 and t→f=g−1 u
This rule is used to eliminate the occurrence of any inverse function application. By inverse func-
tion application we denote the occurrence of the term f(g(x)) or the term g(f(x)) where f = g−1

anywhere within a given term. In this case the term can immediately be replaced with x. This rule
can be used on both sides of an equation.

• IFDeduction:
(E;R ∪ {f(s)→ t}) ` (E ∪ {s = g(t)};R ∪ {f(s)→ t}) if f = g−1

(E;R ∪ {t→ f(s)}) ` (E ∪ {s = g(t)};R ∪ {t→ f(s)}) if f = g−1

This rule is used to add equations to the context that logically follow from the presence of inverse
functions. Consider the following example: From the equation f(s) = t the equation s = g(t)
logically follows when f = g−1. Note that rewrite rules that follow from equalities learned via
IFDeduction do not need to be considered for further IFDeduction steps, since the learned equality
would be trivial. For our example from g(t) → s, the rewrite rule for the equality s = g(t), the
following equality follows f(s) = t, which is the equality justifying the rewrite rule f(s)→ t and
thus the equality is trivial.
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Step E R Inference Rule
1 {f(a1, a4) = a1,

f(a3, a6) = f(a5, a5),
a5 = a4, a6 = a2}

∅ Orient f(a1, a4) = a1

2 {f(a3, a6) = f(a5, a5),
a5 = a4, a6 = a2}

{f(a1, a4)→ a1} Orient f(a3, a6) = f(a5, a5)

3 {a5 = a4, a6 = a2} {f(a1, a4) → a1,
f(a3, a6)→ f(a5, a5)}

Orient a5 = a4

4 {a6 = a2} {f(a1, a4) → a1,
f(a3, a6) → f(a5, a5),
a5 → a4}

Compose f(a3, a6 →
f(a5, a5) by a5 → a4

5 {a6 = a2} {f(a1, a4) → a1,
f(a3, a6) → f(a4, a4),
a5 → a4}

Orient a6 = a2

6 ∅ {f(a1, a4) → a1,
f(a3, a6) → f(a4, a4),
a5 → a4, a6 → a2}

Collapse f(a3, a6) →
f(a4, a4) by a6 → a2

7 {f(a3, a2) = f(a4, a4)} {f(a1, a4) → a1, a5 → a4,
a6 → a2}

Orient f(a3, a2) = f(a4, a4)

8 ∅ {f(a1, a4) → a1, a5 →
a4, a6 → a2, f(a3, a2) →
f(a4, a4)}

Deduce f(a1, a4) =
f(a1, f(a3, a2)) from
f(a11, a4) → a1 and
f(a4, a4)→ f(a3, a2)

9 {f(a1, a4) =
f(a1, f(a3, a2))}

{f(a1, a4) → a1, a5 →
a4, a6 → a2, f(a3, a2) →
f(a4, a4)}

Simplify f(a1, a4) =
f(a1, f(a3, a2)) by
f(a1, a4)→ a1

10 {a1 = f(a1, f(a3, a2)) {f(a1, a4) → a1, a5 →
a4, a6 → a2, f(a3, a2) →
f(a4, a4)}

Orient a1 = f(a1, f(a3, a2))

11 ∅ {f(a1, a4) → a1,
a5 → a4, a6 → a2,
f(a3, a2) → f(a4, a4),
f(a1, f(a3, a2))→ a1}

Table 4.6: The steps of the associative commutative congruence closure completion procedure for
the example.

Step Left-Hand Side Right-Hand Side Rewrite Rule
1 a1 f(a1, f(a6, a3)) a6 → a2
2 a1 f(a1, f(a6, a3)) f(a1, f(a3, a2))→ a1
3 a1 a1

Table 4.7: Shows the deduction steps for the equation a1 = f(a1, f(a6, a3)) when using the
rewrite system generated by the associative commutative congruence closure comple-
tion procedure.
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The procedure is finished if no more rules can be applied. The result is a ground and canonical
rewrite system. Any congruence closure algorithm that terminates and returns a ground and canonical
rewrite system, can be extended with this rules to handle inverse functions and it will still terminate
with a ground and canonical rewrite system. For a proof idea of this we consider the two rules which
are added. The first rule removes applications of inverse functions to each other. Since there can only
be finitely many such application, the rule can only be applied finitely often. Thus the procedure must
still terminate if the underlying procedure terminates. As the rule does not change the R component
of the state or introduces variables, the generated rewrite system must still be ground and canonical if
the underlying procedure generates such a system. The second rule generates at most two equality for
each rule in the rewrite system. If the underlying procedure terminates, it can only produce finitely
many rules, thus only finitely many new equations are added. Rules added from these equations do not
need to be considered for further IFDeductions, because the equations learned from those deductions are
trivial. Thus the procedure still terminates if the underlying procedure terminates. Again the rule does
not change the R component or introduces variables. Therefore, the generated rewrite system will still
be ground and canonical if the underlying procedure generates a ground and canonical system.

After the necessary extensions to the completion procedure have been explained we are going to
look at two examples. The first example illustrates using the standard congruence closure procedure
extended with inverse functions, while the second one uses the associative, commutative congruence
closure completion procedure extended with inverse functions.

For the first example consider the following set of equationsE = {f(g(e)) = a, g(c) = b, u(g(c), c) =
u(a, u(b, c))} where f = g−1, with the reduction ordering u � g � f � e � d � c � b � a. The
necessary deduction steps for the congruence closure completion procedure with inverse functions can
be seen in Table 4.8.

This example shows that real implementations of this algorithm will perform one simple optimiza-
tion, namely there should be no IFDeductions from equations that where added via IFDeductions.

The resulting rewrite system can then be used to check whether u(b, c) = u(e, u(g(c), f(b))) logi-
cally follows from the given equations. The deduction steps for this proof can be seen in Table 4.9. Note
that before using the rewrite system to check whether or not an equality logically follows, one has to able
the application rule to the equality which should be checked until this is not possible anymore.

The generated rewrite system shows that the equation u(b, c) = u(e, u(g(c), f(b))) is a logical
consequence from the given set of equations.

Now we consider the associative, commutative congruence closure completion procedure extended
with inverse functions. For this purpose we use the following set of equationsE = {u(a, b) = c, u(f(g(d)), a) =
e, f(a) = b}, where u is an associative commutative function and f = g−1, with the reduction ordering
u � g � f � e � d � c � b � a. The steps of the completion procedure can be found in Table 4.10.

In this example we applied the optimization that no IFDeduction steps are performed on equations
that were learned via an IFDeduction step. This was done to keep the example shorter.

This set of rewrite rules can be used to show that the equation u(u(g(b), b), d) = u(e, f(a)) is indeed
a logical consequence of the set of equations given above. Table 4.11 contains the proof of this fact.
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Step E R Inference Rule
1 {f(g(e)) = a, g(c) = b,

u(g(c), c) = u(a, u(b, c))}
∅ Application f(g(e)) = a

2 {e = a, g(c) = b,
u(g(c), c) = u(a, u(b, c))}

∅ Orient e = a

3 {g(c) = b, u(g(c), c) =
u(a, u(b, c))}

{e→ a} Orient g(c) = b

4 {u(g(c), c) = u(a, u(b, c))} {e→ a, g(c)→ b} Simplify u(g(c), c) =
u(a, u(b, c)) by g(c)→ b

5 {u(b, c) = u(a, u(b, c))} {e→ a, g(c)→ b} IFDeduce f(b) = c from
g(c)→ b

6 {u(b, c) = u(a, u(b, c)),
f(b) = c}

{e→ a, g(c)→ b} Orient u(b, c) = u(a, u(b, c))

7 {f(b) = c} {e → a, g(c) → b,
u(a, u(b, c))→ u(b, c)}

Orient f(b) = c

8 ∅ {e → a, g(c) → b,
u(a, u(b, c)) → u(b, c),
f(b)→ c}

IFDeduce g(c) = b from
f(b)→ c

9 {g(c) = b} {e → a, g(c) → b,
u(a, u(b, c)) → u(b, c),
f(b)→ c}

Simplify g(c) = b by g(c)→
b

10 {b = b} {e → a, g(c) → b,
u(a, u(b, c)) → u(b, c),
f(b)→ c}

Delete b = b

11 ∅ {e → a, g(c) → b,
u(a, u(b, c)) → u(b, c),
f(b)→ c}

Table 4.8: The steps performed by the congruence closure completion procedure extended with
inverse functions.

Step Left-Hand Side Right-Hand Side Rewrite Rule
1 u(b, c) u(e, u(g(c), f(b))) e→ a

2 u(b, c) u(a, u(g(c), f(b))) g(c)→ b
3 u(b, c) u(a, u(b, f(b))) f(b)→ c

4 u(b, c) u(a, u(b, c)) u(a, u(b, c))→ u(b, c)

5 u(b, c) u(b, c)

Table 4.9: The necessary proof steps to show that the equation u(b, c) = u(e, u(g(c), f(b))) log-
ically follows from the given set of equations. The used rewrite system was generated
with the congruence closure completion procedure with inverse functions.
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Step E R Inference Rule
1 {u(a, b) = c,

u(f(g(d)), a) = e,
f(a) = b}

∅ Orient u(a, b) = c

2 {u(f(g(d)), a) = e, f(a) =
b}

{u(a, b)→ c} Application u(f(g(d)), a) =
e

3 {u(d, a) = e, f(a) = b} {u(a, b)→ c} Orient u(d, a) = e

4 {f(a) = b} {u(a, b)→ c, u(d, a)→ e} Deduce u(c, d) = u(e, b)
from u(a, b) → c and
u(d, a)→ e

5 {f(a) = b, u(c, d) =
u(e, b)}

{u(a, b)→ c, u(d, a)→ e} Orient f(a) = b

6 {u(c, d) = u(e, b)} {u(a, b) → c, u(d, a) → e,
f(a)→ b}

IFDeduce g(b) = a from
f(a)→ b

7 {u(c, d) = u(e, b), g(b) =
a}

{u(a, b) → c, u(d, a) → e,
f(a)→ b}

Orient u(c, d) = u(e, b)

8 {g(b) = a} {u(a, b) → c, u(d, a) →
e, f(a) → b, u(e, b) →
u(c, d)}

Orient g(b) = a

9 ∅ {u(a, b) → c, u(d, a) → e,
f(a) → b, u(e, b) → u(c, d),
g(b)→ a}

Table 4.10: The steps performed by the congruence closure modulo associativity and commutativ-
ity completion procedure extended with inverse functions.

Step Left-Hand Side Right-Hand Side Rewrite Rule
1 u(u(g(b), b), d) u(e, f(a)) g(b)→ a

2 u(u(a, b), d) u(e, f(a)) u(a, b)→ c

3 u(c, d) u(e, f(a)) f(a)→ b

4 u(c, d) u(e, b) u(e, b)→ u(c, d)

5 u(c, d) u(c, d)

Table 4.11: Application of the rewrite system generated by the congruence closure modulo associa-
tivity and commutativity completion procedure with inverse functions to the equation
u(u(g(b), b), d) = u(e, f(a)). This shows that the equation is a logically consequence
of the given set of equations.



Chapter 5

Implementation

In the previous chapters we established SMT, rewrite systems, as well as the various congruence closure
algorithms. This chapter presents the prototype implementation of the congruence closure modulo asso-
ciativity and commutativity and the congruence closure modulo inverse functions algorithms as well as
their combination. All three algorithms were implemented inside the Z3 theorem prover [16]. The Z3
theorem prover is written in C++ and is publicly available at http://z3.codeplex.com/. Z3 provides a
textual user interface and supports a lot of different background theories, including linear integer arith-
metic, uninterpreted functions with equality, the theory of arrays, real numbers, quantifiers. Z3 is also
capable of producing models for satisfiable formulas, as well as producing a proof of unsatisfiability for
formulas which are not satisfiable.

5.1 Congruence Closure in Z3

The previous chapters have dealt with the theoretical background of congruence closure algorithms.
This section introduces the congruence closure algorithm as it is implemented inside the Z3 theorem
prover. It is important to note that in practice congruence closure algorithms are not implemented as
pure rewrite systems, but employ several enhancements in order to be more efficient. A modern variant
of a congruence closure algorithm was introduced by Nieuwenhuis and Oliveras.[37].

5.1.1 Definitions

Before we state the congruence closure algorithm that is used by Z3, we declare a few terms and data
structures that we will use throughout the explanations of the various implemented congruence closure
algorithms.

The congruence class of an element a is the set containing all elements that are equal to a, including
a itself. In our setting each congruence class has an representative element associated with it. The
representative element is an element of the congruence class and it is used instead of all other elements
of the congruence class during the computation of the congruence closure algorithm. The context of the
Z3 theorem prover is the set of all congruence classes for the elements occurring in the formula.

Z3 uses proof trees to represent the various congruence classes. A proof tree is a tree with directed
edges for which the following properties hold. The representative element of the class is the root of
the tree. All elements of the proof tree have a path to the representative element of the congruence
class. Each edge in the tree has a justification for the equality of the elements it connects associated with
it. There are two types of justifications inside the Z3 theorem prover, EQUATION and CONGRUENCE.
EQUATION is used for elements that are equal because there is an equality in the input between them,
and CONGRUENCE is used for equalities that are not in the input but learned during the procedure. The
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advantage of using proof trees is that they can be easily used to generate proofs for the equality of two
elements contained in the congruence class. For this, one simply has to search a common ancestor of the
two elements one wants to prove to be equal. A common ancestor is an element that is reachable from
both elements in the proof tree. Such an element has to exist, since all elements in the proof tree can
reach the root of the congruence class. In order to prove the equality of the elements one has to prove
that both are equal to the common ancestor, this can be done using the justifications associated to the
edges of the proof tree.

The enode data structure is used by Z3 to represent all terms and equalities that occur inside a
formula. An enode stores the following information:

• Root: The representative element of the enodes congruence class.

• Class Size: The number of elements in this enodes congruence class.

• Parents: The set of enodes which have this enode as a parameter. For example the enode
f(a, b) is a parent of the enodes a and b.

• Next Node: The pointer to the next enode in the proof tree. A justification for the equality between
this enode and its next enode is associated with this pointer.

A congruence table is a hash-map that is used to recognize congruences between elements that have
the same top-level function symbol. For each function symbol with arity > 0, one congruence table is
created inside the Z3 theorem prover. Each element with a function symbol at the top is inserted into
the congruence table of the top-level function symbol. The hash value of an element is based on its
parameters, for example the element f(a, b) uses the terms a and b to calculate its hash value.

5.1.2 Congruence Closure Algorithm

After we have explained the terms and the data structures, we now can state the congruence closure
algorithm used by the Z3 theorem prover. We will start by giving a basic description of the necessary
steps to perform a congruence closure for a given set of equalities and inequalities. After that, we will
explain how the steps are carried out inside the Z3 theorem prover.

At the start of the procedure all terms are in their own congruence class. The procedure then starts
to add equalities from the input formula to the context. Whenever an equality is added, the congruence
classes of the two elements have to be merged, the merge of congruence classes is an union of the
two sets. During the merge a new representative element has to be chosen for the merged congruence
class. After that we have to check if the added equality allows us to learn a new equality due to the
functional consistency property. For example, if we add the equality a = b then we learn the equality
f(a, b) = f(a, a). If the two sides of a learned equality are not in the same congruence class, the
congruence classes of the two elements have to merged. If at one point after a merge the resulting
congruence class contains two elements which should not be equal, then we can stop the procedure and
return that the given set of equalities and inequalities is unsatisfiable. If all equalities from the input and
all learned equalities can be processed without detecting a contradiction the input is satisfiable.

Now we want to explain how these basic steps are performed inside the Z3 theorem prover. At the
start of the solving process all equalities from the input are added to the equalities to propagate queue,
which holds all equalities that still need to be processed, and all enodes with a function symbol at the
top-level are added to their respective congruence table. After that the first equality from the equalities to
propagate queue is added to the context. There are four enodes involved in this process, n1 the side of
the equation with the smaller number of elements in the congruence class, n2 side of the equation with
the larger number of elements in the congruence class, r1 the root (representative) element of n1, and r2
the root element of n2. If both sides have the same number of elements in their congruence class then



5.1. Congruence Closure in Z3 33

n1 is the left-hand side of the equation and n2 is the right-hand side. An equation is considered trivial if
r1 = r2 and trivial equation are not added to the context.

In the basic algorithm the merging of congruence classes is a simple union of the two sets, however,
since the Z3 theorem prover uses proof trees to store the congruence classes rather than sets we have to
explain how two proof trees can be merged. The first step during this merge is that the path from n1 to
r1 in the tree is inverted. This can be done since all edges are equalities and thus can be used in both
directions. After this step n1 is the new root of the proof tree for the congruence class of n1. This step is
necessary since the next step adds a directed edge from n1 to n2, which merges the two proof trees to one
common proof tree. In order to show that the resulting proof tree is indeed a proof tree for the merged
congruence class we consider the following two cases. First, all elements of the congruence class of r2
are still in the tree and have a path to r2. Second, all elements of the congruence class of r1 are also
still in the tree and after inverting the path from n1 to r1, all elements have a path to n1. Since n1 is
connected with n2 and n2 has a path to r2 all elements in the congruence class of r1 have a path to r2,
thus the tree is a proof tree for the merged congruence class with r2 being the representative element.

The deduction step from the basic algorithm is done with the help of the congruence table inside
the Z3 theorem prover. As mentioned earlier, each enode uses the root of its parameters to calculate
its hash value. Whenever two congruence classes are merged the parents of enodes in the congruence
class of n1 have to update their hash value, since elements in this congruence class now use r2 instead
of r1 as their root element. This recalculation can lead to the fact that two enodes have the same hash
value, for example if c is the root element of b, then the enodes f(a, b) and f(a, c) have the same hash
value. Two enodes that have the same hash value, have to be equal to each other, thus if they are not
already in the same congruence class then an equality between the two elements is added to the equalities
to propagate queue.

The procedure continues until either the equalities to propagate queue is empty and no contradiction
was found, then the input is satisfiable or till a contradiction is detected after a merge of two congruence
classes. A contradiction is detected, if the left-hand side and the right-hand side of an inequality are in the
same congruence class. This check is carried out in the same phase as the hash update, since inequalities
are also among the parents of enodes.

Listing 5.1 shows the congruence closure algorithm explained above as pseudocode. The function
Z3_congruence_closure is the main function that processes the equalities to propagate queue,
named eq_queue here, and calls the function add_equality to merge the congruence classes.
add_equality merges the two congruence classes as explained above. Note that for the sake of
simplicity the functions update_hash, report_conflict, merge, and conflict_reported
are not stated in detail, as they were either explained before or their exact implementation is not necessary
for the understanding of the algorithm.

1 Z3_congruence_closure ( ) {
2 while (not conflict_reported ( ) and eq_queue .has_element ) {
3 e = eq_queue .top ;
4 add_equality (e .lhs , e .rhs , e .js ) ;
5 }
6 if (conflict_reported ( ) )
7 return unsat ;
8
9 return sat ;

10 }
11
12 add_equality (lhs : enode , rhs : enode , js : justification ) {
13 if (lhs .class_size > rhs .class_size ) {
14 n1 = rhs ;
15 r1 = rhs .root ;
16 n2 = lhs ;
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17 r2 = lhs .root ;
18 } else {
19 n1 = lhs ;
20 r1 = lhs .root ;
21 n2 = rhs ;
22 r2 = rhs .root ;
23 }
24
25 if (r1 == r2 )
26 return ;
27
28 foreach e in r1 .class {
29 e .root = r2 ;
30 }
31
32 foreach node in r1 .class {
33 foreach e in node .parents {
34 e .update_hash ( ) ;
35 if (e .is_dis_eq ( ) and e .lhs .root == e .rhs .root )
36 report_conflict (e , n1 , n2 ) ;
37 }
38 }
39
40 r2 .proof_tree = merge (r1 .proof_tree , r2 .proof_tree , n1 , n2 ) ;
41 }

Listing 5.1: The pseudocode representation of the Z3 congruence closure algorithm.

5.1.3 Examples

Example 1

We will illustrate the congruence closure algorithm inside Z3 with the help of an example, which is
shown in Listing 5.2. The example uses the SMT-LIBv2 input language [11]. It starts by declaring the
logic that is used by the formula (set-logic QF_UF), which is the theory of uninterpreted func-
tions with equality (EUF). After the declaration of the background theory, a sort named I is declared,
with the (declare-sort I) command. A sort in SMT is comparable to a data-type in program-
ming languages, e.g., the background theory of linear integer arithmetic provides the predefined sort
Int, which represents (mathematical) integers. It is important to note that we only declare the sort,
which means we are not restricting the possible values that exist in this sort. After the sort declaration
the function symbols used in the formula are declared. The first function symbol that is declared is the
function f which takes two parameters of the type I and returns a value of the type I, as seen in the
(declare-fun f (I I) I) command. Then we declare the unary function g, which takes a pa-
rameter of the sort I and returns a value of the type I, this is done in Line 6. In the following lines,
three functions a, b, and c are declared, they act as constants in the examples since they do not take any
parameters. This completes the definition of the signature of the formula and we are now ready to state
the formula itself, which is done with one or more assert statements. In this case one assert state-
ment which asserts three equalities ({f(a, b) = a, g(b) = c, f(g(b), b) = c}) as well as three inequalities
({¬(b = c),¬(a = b),¬(a = c)}) is used. Form now on we will us a 6= b as abbreviation for 6 (a = b).
The (check-sat) command is used to start the solving process of the formula. The last command in-
voked in the example is the (exit) command, which causes the SMT solver to close. This is necessary
because some SMT solvers like Z3 support incremental solving. Additional equations can be added to
the already solved formula, where the SMT solver does not start a new but extends the current solution.
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This can potentially result in a decreased runtime for certain applications, where incremental solving can
be used.

1 (set−logic QF_UF )
2
3 (declare−sort I )
4
5 (declare−fun f (I I ) I )
6 (declare−fun g (I ) I )
7 (declare−fun a ( ) I )
8 (declare−fun b ( ) I )
9 (declare−fun c ( ) I )

10
11 (assert
12 (and
13 (= (f a b ) a )
14 (= (g b ) c )
15 (= (f (g b ) b ) c )
16 (not (= b c ) )
17 (not (= a b ) )
18 (not (= a c ) )
19 )
20 )
21
22 (check−sat )
23 (exit )

Listing 5.2: Example for the congruence closure algorithm in Z3. This example is written in the
SMT-LIBv2 input format. It declares five functions and asserts three equalities as
well as three inequalities.

As stated earlier each term and each equality and inequality is represented as an enode. For the
example the following enodes are constructed: {a, b, c, f(a, b), g(b), f(g(b), b), f(a, b) = a, g(b) = c,
f(g(b), b) = c, b 6= c, a 6= b, a 6= c}. At the start of the procedure, each enode is in its own congruence
class and therefore each enode is its own root as well. Thus, the size of each congruence class is 1. The
initial congruence classes have the following members: {a} , {b} , {c} , {f(a, b)} , {g(b)} , {f(g(b), b)},
where the underlined elements are the root elements of the respective congruence class. At the start of
the procedure, the next pointers for the proof tree start with NULL, since all congruence classes have only
one element.

After all the enodes have been constructed and inserted into their congruence tables, the procedure
starts to add equations to the current context, starting with the equations from the asserted formula. The
equations are added in the order they appear in the original formula. The first equation added in our
example is f(a, b) = a. Adding an equation to the context leads to the merging of the two corresponding
congruence classes. In this example, both the congruence class of f(a, b) and the one of a have the size 1,
which leads to the merging of the congruence class of f(a, b) into the congruence class of a, this means
that n1 = f(a, b) and n2 = a. Since both n1 and n2 are the root elements of their congruence classes,
r1 and r2 get the following values r1 = n1 and r2 = n2. Now that the four enodes involved have their
value we can check whether or not the equation is redundant. An equation is redundant when r1 = r2
since the two sides of the equation are already in the same congruence class, which is not the case in
the example. The first step in the merging process is that all elements in the congruence class of r1 get
a new root element r2. Since this root change causes the hash value of any enode that is a parent of
an enode in the congruence class of r1 to change, these enodes have to recalculate their hash values.
After updating the hash values, the proof trees of the two congruence classes have to be merged. This
finishes the merging process of the two congruence classes and after the merge the congruence classes
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have the following elements: {a, f(a, b)}, {b}, {c}, {g(b)}, {f(g(b), b)}. The corresponding proof
trees for the congruence classes can be seen in Figure 5.1. Note that only the proof trees for congruence
classes with more than one element are shown.

f(a,b)

a

EQUATION

Figure 5.1: The proof trees after the equation f(a, b) = a was added to the context. Only the proof
trees for congruence classes with more than one element are shown. The edges are
labelled with the justification for the equality of the two corresponding elements.

The next equality processed by Z3 is the equality g(b) = c from the asserted formula. Since again
both congruence classes have only one member, the congruence class of g(b) is merged into the congru-
ence class of c. The four enodes are assigned the following values n1 = r1 = g(b) and n2 = r2 = c.
Here the root change of elements in the congruence class of r1 leads to a recalculated hash value for an
enode. The enode f(g(b), b) has to recalculate its hash value, since the new root of g(b) is c, f(g(b), b)
uses the arguments c and b for the calculation of its hash value. But since no other enode uses the pa-
rameters c and b for its hash value no new equations are learned from this root change. The congruence
classes after the merge have the following elements: {a, f(a, b)}, {b}, {c, g(b)}, {f(g(b), b)} and the
corresponding proof trees for the congruence classes can be seen in Figure 5.2.

f(a,b)

a

EQUATION

g(b)

c

EQUATION

Figure 5.2: The proof trees after the equation g(b) = c was added to the context. Only the proof
trees for congruence classes with more than one element are shown. The edges are
labelled with the justification for the equality of the two corresponding elements.

The next step adds the last equality from the asserted formula to the context, f(g(b), b) = c. Here
the congruence class of f(g(b), b) is merged into the congruence class of c, since the congruence class
of c is bigger then the congruence class of f(g(b), b). Thus, the four enodes have the following values
n1 = r1 = f(g(b), b) and n2 = r2 = c. The merge of the two congruence classes leads to the following
congruence classes: {a, f(a, b)}, {b}, {c, g(b), f(g(b), b)}. The corresponding proof trees for the
congruence classes can be found in Figure 5.3.

This finishes the congruence closure procedure for the example, since all equations from the asserted
formula were processed and no new equations were detected during the solving process. The example
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f(a,b)

a

EQUATION

g(b)

c

EQUATION

f(g(b),b)

EQUATION

Figure 5.3: The proof trees after the equation f(g(b), b) = c was added to the context. Only the
proof trees of congruence classes with more than one element are shown. The edges
are labelled with the justification for the equality of the two elements.

is satisfiable, since at the end of the procedure the enodes a, b, and c are all in separate congruence
classes.

If we make a slight change to our example, we get a model for our formula. Listing 5.3 shows the
modified example. The change is that we inserted the (get-model) command at the end, in order to
tell the Z3 SMT solver that we want a model for our formula.

1 (set−logic QF_UF )
2
3 (declare−sort I )
4
5 (declare−fun f (I I ) I )
6 (declare−fun g (I ) I )
7 (declare−fun a ( ) I )
8 (declare−fun b ( ) I )
9 (declare−fun c ( ) I )

10
11 (assert
12 (and
13 (= (f a b ) a )
14 (= (g b ) c )
15 (= (f (g b ) b ) c )
16 (not (= b c ) )
17 (not (= a b ) )
18 (not (= a c ) )
19 )
20 )
21
22 (check−sat )
23 (get−model )
24 (exit )

Listing 5.3: The modified example with the get-model command to retrieve a model for the
formula.

The insertion of the get-model command does not change the way our formula gets solved, it just
adds an additional step at the end of the chain. After the propagation of our equalities is finished, all
terms occurring in the formula are assigned a value. For this purpose, Z3 iterates all the enodes and
assigns them values according to the congruence class they are in. First, enodes that take no parameter
are assigned and from those values the various functions get defined. A model for the formula is shown
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in Listing 5.4.

1 (model
2 ; ; universe for I :
3 ; ; I !val !1 I !val !2 I !val !0
4 ; ; −−−−−−−−−−−
5 ; ; definitions for universe elements :
6 (declare−fun I !val !1 ( ) I )
7 (declare−fun I !val !2 ( ) I )
8 (declare−fun I !val !0 ( ) I )
9 ; ; cardinality constraint :

10 (forall ( (x I ) ) (or (= x I !val ! 1 ) (= x I !val ! 2 ) (= x I !val ! 0 ) ) )
11 ; ; −−−−−−−−−−−
12 (define−fun b ( ) I
13 I !val ! 1 )
14 (define−fun a ( ) I
15 I !val ! 0 )
16 (define−fun c ( ) I
17 I !val ! 2 )
18 (define−fun f ( (x !1 I ) (x !2 I ) ) I
19 (ite (and (= x !1 I !val ! 0 ) (= x !2 I !val ! 1 ) ) I !val !0
20 (ite (and (= x !1 I !val ! 2 ) (= x !2 I !val ! 1 ) ) I !val !2
21 I !val ! 0 ) ) )
22 (define−fun g ( (x !1 I ) ) I
23 (ite (= x !1 I !val ! 1 ) I !val !2
24 I !val ! 2 ) )
25 )

Listing 5.4: Shows the model generated by Z3 for the example. It gives values to all the
constants and provides a table for the used functions.

The model declaration starts by defining the values that exist in our sort I. For the example, we have
three different values for elements of the sort type I. These are the values I!val!0, I!val!1, and
I!val!2, the forall application assures that elements of the type I only take one of the three values.
After the values that exist in the formula are established, the model gives values for the term occurring
in the formula, starting with the three constants a, b, and c. The last declaration tells which values the
functions take for specific input values. As we can see in the function declaration only the instances
which occur as terms in the formula are explicitly considered in the model for the function, all other
instances are abbreviated in the else branch.

Example 2

We can also consider the following change to the example from Listing 5.2, to illustrate how Z3 handles
formulas that are unsatisfiable and how proofs of unsatisfiability are generated by the Z3 theorem prover.
The modified example is shown in Listing 5.5.

1 (set−logic QF_UF )
2 (set−option :produce−proofs true )
3
4 (declare−sort I )
5
6 (declare−fun f (I I ) I )
7 (declare−fun g (I ) I )
8 (declare−fun a ( ) I )
9 (declare−fun b ( ) I )
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10 (declare−fun c ( ) I )
11
12 (assert
13 (and
14 (= (f a b ) a )
15 (= (g b ) c )
16 (= (f (g b ) b ) c )
17 (= (f c b ) b )
18 (not (= b c ) )
19 (not (= a b ) )
20 (not (= a c ) )
21 )
22 )
23
24 (check−sat )
25 (get−proof )
26 (exit )

Listing 5.5: The example was extended with an additional equation to make it unsatisfiable.
Additionally the commands to provide a proof of unsatisfiability were added

We can look at the needed changes to make the example unsatisfiable as well as to generate a proof
of unsatisfiability. In order to make the example unsatisfiable we added an additional equation to our
formula, namely f(c, b) = b. To get a proof of unsatisfiability we added the following two commands
to the input file, (set-option :produce-proofs true). This commands tells the Z3 SMT
solver that it should generate a proof if the formula is unsatisfiable. With the (get-proof) command
the proof of unsatisfiability can be retrieved from the Z3 theorem prover.

The solving process for this formula again starts by adding the equality f(a, b) = a to the context.
The addition of this equality leads to same result as in the previous case, except that we have an ad-
ditional congruence class for the enode f(c, b). However, when we add the second equation to the
context (g(b) = c) we have stated that the enode f(g(b), b) has to recalculate its hash value. As stated
above, it uses the arguments c and b to calculate its new hash value since c is the root element of the
congruence class that g(b) is in. But in this example we have a second enode (f(c, b)) that uses the
arguments c and b to calculate its hash value. Thus, we learn the following equation from our hash-table
f(g(b), b) = f(c, b). This equation gets added to the equations to propagate queue with the justification
CONGRUENCE. The congruence classes after this merging contain the following elements: {a, f(a, b)},
{b}, {c, g(b)}, {f(g(b), b)}, {f(c, b)}, the corresponding proof trees for the congruence classes stay the
same as shown in Figure 5.2.

The addition of the third equation from the asserted formula f(g(b), b) = c to the context. Here
again all the things stated above also hold true in this case and the congruence classes after the merge
look like this: {a, f(a, b)}, {b}, {c, g(b), f(g(b), b)}, {f(c, b)}. Figure 5.3 shows the proof trees for the
congruence classes that contain more than one element.

After that, we add the last equation from the asserted formula to the context (f(c, b) = b). In this
case we choose to merge the congruence class of f(c, b) into the congruence class of b and thus, the four
enodes have the following values n1 = r1 = f(c, b) and n2 = r2 = b. The root change for elements in
the congruence class of r1 does not lead to the recalculation of any hash values. The congruence classes
contain the following elements after all equations from the formula have been added: {a, f(a, b)}, {b,
f(c, b)}, {c, g(b), f(g(b), b)}. The proof trees for the congruence classes can be seen in Figure 5.4.

Now all the equations contained in the asserted formula have been propagated, but since a new
equation was learned during the propagation the procedure is not finished in this case. The equality
f(g(b), b) = f(c, b) still needs to be added to the context. When this equality is added to the context
the congruence class of f(c, b) is merged into the congruence class of f(g(b), b) due to the number of
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f(a,b)

a

EQUATION

g(b)

c

EQUATION

f(g(b),b)

EQUATION

f(c,b)

b

EQUATION

Figure 5.4: The proofs trees after the equation f(c, b) = b has been added to the context. Only the
proof trees for congruence classes with more than one element in them are shown. All
edges are labelled with the justification for the equality of the two associated elements.

elements in the congruence classes. For our example the four enodes are assigned as follows n1 =
f(c, b), r1 = b, n2 = f(g(b), b), and r2 = c. The change of the root element for all elements in the
congruence class of r1 leads to re-computation of the hash values of the following enodes: f(a, b),
g(b), f(g(b), b), f(c, b) but no new equalities are learned from these changes. The enode b has two
inequalities a 6= b and b 6= c as parents. Since the root of b changed the inequalities have to be checked
for contradictions. The inequality a 6= b is still fulfilled but the second inequality b 6= c is no longer true
since b and c are in the same congruence class, which leads to the fact that the formula is unsatisfiable.
Since we now know that the formula is unsatisfiable the procedure is finished, regardless of the fact
whether all equations have been propagated or not. The final congruence classes contain the following
enodes, {a, f(a, b)}, {c, g(b), f(g(b), b), b, f(c, b)}. The corresponding proof trees for the congruence
classes are shown in Figure 5.5. Please note that f(c, b) no longer points to b but that the edge was
reversed. This was done while merging the corresponding proof trees.

f(a,b)

a

EQUATION

g(b)

c

EQUATION

f(g(b),b)

EQUATION

f(c,b)

b

EQUATION

CONGRUENCE

Figure 5.5: The proof trees at the end of the procedure for the modified example. Only the proof
trees for congruence classes with more than one element are shown. The edges are
labelled with the justification for the equality of the elements.

In Listing 5.6 we can see the proof of unsatisfiability provided by the Z3 SMT solver.

1 (get−proof )
2 ( (set−logic QF_UF )
3 (proof
4 (let ( ($x16 (= b c ) ) )
5 (let ( ( ?x9 (g b ) ) )
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6 (let ( ( ?x12 (f ?x9 b ) ) )
7 (let ( ($x13 (= ?x12 c ) ) )
8 (let ( ($x20 (= a c ) ) )
9 (let ( ($x21 (not $x20 ) ) )

10 (let ( ($x18 (= a b ) ) )
11 (let ( ($x19 (not $x18 ) ) )
12 (let ( ($x17 (not $x16 ) ) )
13 (let ( ( ?x14 (f c b ) ) )
14 (let ( ($x15 (= ?x14 b ) ) )
15 (let ( ($x11 (= ?x9 c ) ) )
16 (let ( ( ?x7 (f a b ) ) )
17 (let ( ($x8 (= ?x7 a ) ) )
18 (let ( ($x22 (and $x8 $x11 $x13 $x15 $x17 $x19 $x21 ) ) )
19 (let ( (@x43 (asserted $x22 ) ) )
20 (let ( (@x48 ( | and−elim | @x43 $x13 ) ) )
21 (let ( (@x58 (trans (symm ( | and−elim | @x43 $x15 ) (= b ?x14 ) ) (monotonicity

(symm
22 ( | and−elim | @x43 $x11 ) (= c ?x9 ) ) (= ?x14 ?x12 ) ) (= b ?x12 ) ) ) )
23 (let ( (@x50 ( | and−elim | @x43 $x17 ) ) )
24 ( | unit−resolution | @x50 (trans @x58 @x48 $x16 ) false ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

)

Listing 5.6: Proof of unsatisfiability for the modified example provided by the Z3 SMT solver.

The proof of unsatisfiability shown in Listing 5.6 is built with the help of the proof tree shown in
figure 5.5 in the following way. The inequality that leads to the contradiction is b 6= c. The proof trees
contains all the information needed to construct the proof, one just has to follow the way from b to c in
order to construct the proof. The first step in the proof chain is the proof of the equality b = f(b, c)
which can be retrieved via an and elimination on the asserted formula. The second step is the proof for
the congruence of f(c, b) and f(g(b), b). For this proof one needs to prove the following two equalities
c = g(b) and b = b. In order to prove that c = g(b) holds, the proof tree contains the information that
g(b) and c are asserted to be equal and therefore the proof is again an and elimination on the original
formula. The second proof is trivial, since b is always equal to b. After constructing the two necessary
proofs, the proof for f(g(b), b) = f(c, b) can be constructed, since g(b) is proven to be equal to c and b
is equal to b so due to the functional consistency of uninterpreted functions f(g(b), b) must be equal to
f(c, b). The last step of the proof is the equality between f(g(b), b) and c, which again is asserted in the
original formula. The contradiction can then be constructed from the previously constructed proof that
b = c and the asserted inequality between b and c.

5.2 Congruence Closure Modulo Associativity and Commutativity

In the previous section we have explained how the standard congruence closure algorithm in Z3 [16]
works. Now we want to take a look at the extensions we made to handle associative and commutative
functions as well. We introduced the necessary rewrite rules to handle associative commutative functions
in Section 4.2.

5.2.1 Congruence Closure Algorithm

In this section we will explain the changes we made to the data structures as well as the algorithm
to handle associative and commutative uninterpreted functions. We will start by briefly describing the
changes to the data structures defined in 5.1.1. Then we will explain how we modified the congruence
closure algorithm to handle the theory of uninterpreted functions with equality modulo associativity and
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commutativity.

In the context of associative and commutative functions, each enode of an associative and commu-
tative function symbol has a list of current arguments associated with it. The list of current arguments
stores the flattened list of arguments the function currently has. Note that the list of current arguments
is always sorted and always contains at least two elements. For example, if the function f is associative
and commutative the current arguments of the term f(b, f(a, c)) are {a, b, c}. This list of arguments is
used to compare whether or not two terms are equal considering the associativity and commutativity of
the function, since two terms that are equal have the same list of current arguments. This list is also used
to calculate the hash value of an enode.

We also added a current set of rules to the context of the Z3 theorem prover. The current set of rules
stores all the rewrite rules that are generated during the run of the procedure.

While the basic congruence closure procedure stays the same, some changes are necessary to handle
associative and commutative functions. A reduction ordering is now used to decide the assignment of
the four enodes. n1 now is the side of the equation which has the bigger root element according to
the reduction ordering, while n2 is the side of the equation that has the smaller root element according
to the reduction ordering. r1 is still the root element of n1 and r2 is the root element of n2. We use the
reduction ordering introduced by Rubio and Nieuwenhuis [40]. If the two sides of the equality are the
same according to the reduction ordering n1 is the left-hand side of the equality and n2 is the right-hand
side of the equality.

The merging process of two proof trees stays the same as in the non associative and commutative
case, however, before the hash values of enodes are recalculated due to the root change, a rewrite rule
for the equality is generated, if the justification for the equality is CONGRUENCE, then no rewrite rule will
be generated, since this rule would be trivial. The generated rewrite rule is always of the form r1 → r2.
After the rewrite rule is generated and added to the current set of rules, all possible collapse and compose
steps are carried out for the current set of rules. After that the current set of rules is used to carry out all
possible simplification steps on the terms occurring in the formula. During this simplification, the current
arguments of terms occurring in the formula change to reflect the changed argument list of an function
application. For example, the rewrite rule f(a, b) → a can be used to simplify the current arguments
of f(b, f(a, c)) to {a, c}. However, the rule cannot be used to simplify the current arguments of the
term f(a, b), since a term must always have at least two elements in the list of current arguments, this
simplification is reflected in the changed root for the term f(a, b). After this step the hash values of the
enodes is recalculated. As in the standard algorithm, if two elements have the same hash, they have to
be equal and an equality between them is added to the equalities to propagate queue.

After all equalities from the equalities to propagate queue were processed, an additional step is car-
ried out. This step is the associative and commutative deduction step described in Section 4.2. Equalities
that are recognized during this step are added to the equalities to propagate queue. These equalities have
the newly introduced justification of SUPERPOSITION, since the associative and commutative deduc-
tion step is sometimes also called AC-Superposition [4]. During this deduction step new enodes are
created for terms that do not occur in the formula but are discovered to be equal to other terms.

The algorithm is finished if a contradiction is detected or if the equalities to propagate queue is
empty and no new equalities are learned using the associative and commutative deduction step. If a
contradiction is detected, the input is unsatisfiable, otherwise it is satisfiable.

Listing 5.7 shows the modified congruence closure algorithm as pseudo-code. The changes are
the introduction of the reduction ordering (ac_greater) and the use of the functions add_rule,
update_rules, and simplify_enodes inside the merge function. These functions are used to
generate rules, to update the rules and to update the current arguments of the enodes during the merging
as described above. Note that the deduction step is not shown here, because it only adds equations for
critical pairs to the equalities to propagate queue.
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1 ac_congruence_closure ( ) {
2 while (not conflict_reported ( ) and eq_queue .has_element ) {
3 e = eq_queue .top ;
4 add_equality (e .lhs , e .rhs , e .js ) ;
5 if (not eq_queue .has_element )
6 deduce_new_equalities ( ) ;
7 }
8 if (conflict_reported ( ) )
9 return unsat ;

10
11 return sat ;
12 }
13
14 add_equality (lhs : enode , rhs : enode , js : justification ) {
15 if (ac_greater (lhs .root , rhs .root ) ) {
16 n1 = rhs ;
17 r1 = rhs .root ;
18 n2 = lhs ;
19 r2 = lhs .root ;
20 } else {
21 n1 = lhs ;
22 r1 = lhs .root ;
23 n2 = rhs ;
24 r2 = rhs .root ;
25 }
26
27 if (r1 == r2 )
28 return ;
29
30 add_rule (r1 , r2 ) ;
31 update_rules ( ) ;
32 simplify_enodes ( ) ;
33
34 foreach e in r1 .class {
35 e .root = r2 ;
36 }
37
38 foreach node in r1 .class {
39 foreach e in node .parents {
40 e .update_hash ( ) ;
41 if (e .is_dis_eq ( ) and e .lhs .root == e .rhs .root )
42 report_conflict (e , n1 , n2 ) ;
43 }
44 }
45
46 r2 .proof_tree = merge (r1 .proof_tree , r2 .proof_tree , n1 , n2 ) ;
47 }

Listing 5.7: The pseudocode representation of the congruence closure algorithm modulo
associativity and commutativity.

Another important change is the fact that the dedicated congruence closure modulo associativity and
commutativity does not create a complete model for satisfiable examples. Not complete in this case
means that only the instances needed during the computation of the input are shown in the model. This
is a design decision, since the creation of a complete model would mean that all possible instances of the
associative and commutative law have to be generated, which would lead to a significant time overhead.



44 5. Implementation

5.2.2 Examples

Example 1

In the example shown in Listing 5.8 we define one associative and commutative function f that takes two
parameters. Associativity and commutativity are denoted by the :ac addition in the function declaration.
We also declare three constants a, b, and c. Our set of equations is E = {f(a, f(b, c)) = f(a, b),
f(b, f(a, c)) = c, f(a, b) = a} with one inequality {b 6= c}.

1 (set−logic QF_ACUF )
2
3 (declare−sort I )
4
5 (declare−fun f (I I ) I :ac )
6 (declare−fun a ( ) I )
7 (declare−fun b ( ) I )
8 (declare−fun c ( ) I )
9

10 (assert
11 (and
12 (= (f a (f b c ) ) (f a b ) )
13 (= (f b (f a c ) ) c )
14 (= (f a b ) a )
15 (not (= b c ) )
16 )
17 )
18
19 (check−sat )
20 (exit )

Listing 5.8: The example with associative commutative functions. This example is satisfiable.

We have the following enodes in the example: {a, b, c, f(a, b), f(a, c), f(b, c), f(a, f(b, c)),
f(b, f(a, c)), f(a, f(b, c)) = f(a, b), f(b, f(a, c)) = c, f(a, b) = a, b 6= c}, when these enodes are
created and inserted into their congruence table, we immediately discover a new congruence between the
enodes f(a, f(b, c)) and f(b, f(a, c)). Both enodes have the same current arguments, namely {a, b,
c}. This learned equality is appended to the list of equalities which have to be propagated. At the start
of the procedure the list contains all the equations from the asserted formula. The congruence classes
at the beginning of the procedure look like this: {a}, {b}, {c}, {f(a, b)}, {f(a, c)}, {f(a, f(b, c))},
{f(b, f(a, c))}, {f(b, c)}. Again, the underlined elements are the root elements of their corresponding
congruence class.

After the enodes have been created and inserted into their congruence tables, the algorithm starts to
propagate equalities, again starting with the equations asserted in the formula. So the first equality added
to the context is f(a, f(b, c)) = f(a, b). As mentioned earlier, in the context of associative and com-
mutative uninterpreted functions one has to use a reduction ordering to decide which congruence class
should get merged into the other. Here the decision is made that the congruence class of f(a, f(b, c))
should get merged into the congruence class of f(a, b). The four enodes are assigned the following
values n1 = r1 = f(a, f(b, c)) and n2 = r2 = f(a, b). The rewrite rule created for this equation is
f(a, f(b, c)) → f(a, b). These rewrite rules are also used to simplify the current arguments of associa-
tive and commutative functions. In this case however the rule cannot be used to simplify any current
arguments, since there is no enode which has f(a, f(b, c)) as a strict subterm. The next step consists of
updating the root element of all elements in the congruence class of r1. This leads to the re-computation
of hash values for non associative and commutative enodes as explained in Section 5.1.2. The merging
of the proof trees is also performed as described earlier. The congruence classes contain the following
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elements after the merge: {a}, {b}, {c}, {f(a, b), f(a, f(b, c))}, {f(a, c)}, {f(b, f(a, c))}, {f(b, c)}.
The corresponding proof trees are illustrated in Figure 5.6.

f(a,f(b,c))

f(a,b)

EQUATION

Figure 5.6: The proof trees after the equation f(a, f(b, c)) = f(a, b) was added to the context by
the congruence closure modulo associativity and commutativity algorithm. The figure
only contains proof trees for congruence classes that have more than one element.
The edges are labelled with the justification for the equality of the two corresponding
elements.

The next equation that gets added to the context is f(b, f(a, c)) = c. Both enodes are the root
of their respective congruence classes and therefore the reduction ordering decides that the congruence
class of f(b, f(a, c)) gets merged into the congruence class of c. Thus, the four enodes get assigned
the following values, n1 = r1 = f(b, f(a, c)) and n2 = r2 = c. The corresponding rewrite rule that
gets added to the context is f(b, f(a, c)) → c. The addition of this rewrite rule allows a collapse step
of the first rule, the first rule thus changes to become f(a, b) → c. Note that during rule collapsing, the
rules get reorientated immediately instead of re-adding them to the set of equations. The changed first
rule, however, can then be used to collapse the second rule to become f(c, c) → c. Next these rules are
used to simplify the current arguments of the terms occurring in the formula. In this example the two
enodes f(a, f(b, c)) and f(b, f(a, c)) are simplified to have {c, c} as current arguments. After that, the
root element of all enodes in the congruence class of r1 are updated to become r2, no new equations
are discovered during this step. Finally, the proof trees for the two congruence classes get merged.
This leads to the following congruence classes: {a}, {b}, {c, f(b, f(a, c))}, {f(a, b), f(a, f(b, c))},
{f(a, c)}, {f(b, c)} with their corresponding proof trees displayed in Figure 5.7. Note that we just write
the original form of the enodes in the congruence classes and proof trees and not the form with their
current arguments.

f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

Figure 5.7: The proof trees after the equation f(b, f(a, c)) = c has been added to the context.
The figure only contains the proof trees for congruence classes that contain more than
one element. The edges are labelled with the justification for the equality of the two
elements associated with them.
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After this, the last asserted equation (f(a, b) = a) gets added to the context. Again, both enodes
are the root of their respective congruence classes. Therefore the reduction ordering chooses to merge
the congruence class of f(a, b) into the congruence class of a. Therefore, we have n1 = r1 = f(a, b)
and n2 = r2 = a and the rule f(a, b) → a gets added to the context. The addition of this rule allows
a collapse step on the rule f(a, b) → c which changes to become c → a. This rule can then be used to
compose and collapse the rule f(c, c) → c to become f(a, a) → a. The current set of rules is {c → a,
f(a, a) → a, f(a, b) → a}. With these rules the simplification of the associative and commutative
uninterpreted functions enodes leads to the discovery of the following congruences. First applying
c → a to f(b, c) and f(a, b) leads to the discovery of the equation f(b, c) = f(a, b). The second
congruence we discover is the congruence between f(a, f(b, c)) and f(a, c) since using the rules c→ a
and f(a, b) → a makes both sides equal. Note we do not consider the congruence of f(b, f(a, c)) and
f(a, c) because f(b, f(a, c)) is congruent to f(a, f(b, c)). After the merging, the congruence classes
contain the following elements: {a, f(a, b), f(a, f(b, c))}, {b}, {c, f(b, f(a, c))}, {f(a, c)}, {f(b, c)}.
The corresponding proof trees for the congruence classes can be seen in Figure 5.8.

f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

a

EQUATION

Figure 5.8: The proof trees for the congruence classes after the equation f(a, b) → a has been
added to the context.

After adding all asserted equations to the context, the equations that were learned during the pro-
cedure are added to the context as well. The first equation learned in this example was the congruence
of f(a, f(b, c)) and f(b, f(a, c)), which was discovered during the enodes creation. The respective
root elements are a and c. The reduction ordering decides that the congruence class of f(b, f(a, c)) gets
merged into the congruence class of f(a, f(b, c)), thus n1 = f(b, f(a, c)), r1 = c, n2 = f(a, f(b, c)),
and r2 = a. However, this equality is justified by a congruence and thus no rule is created, as those
rules would be trivial rules. Although the rules remain unchanged, the root elements of enodes in the
congruence class of r1 get changed. The corresponding proof trees also get merged. So after the merge
the congruence classes contain the following elements, {a, f(a, b), f(a, f(b, c)), c, f(b, f(a, c))}, {b},
{f(a, c)}, {f(b, c)}. The proof trees for the congruence classes are displayed in Figure 5.9.

The next congruence that was learned was f(b, c) = f(a, b). The corresponding root elements
are f(b, c) and a. Thus the reduction ordering chooses to merge the congruence class of f(b, c) into
the congruence class of a which leads to the following assignment of the four enodes, n1 = r1 =
f(b, c), n2 = f(a, b), and r2 = a. Since this equation is also justified by a congruence again no rule is
changed. So after the merging the congruence classes contain the elements {a, f(a, b), f(a, f(b, c)), c,
f(b, f(a, c)), f(b, c)}, {b}, {f(a, c)}. Their corresponding proof trees can be seen in Figure 5.10.
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f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

a

EQUATION

CONGRUENCE

Figure 5.9: The proof trees for the congruence classes after the equation f(a, f(b, c)) =
f(b, f(a, c)) was added to the context by the congruence closure modulo associativity
and commutativity algorithm.

f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

a

EQUATION

CONGRUENCE

f(b,c)

CONGRUENCE

Figure 5.10: The proof trees for the congruence classes after the congruence f(b, c) = f(a, b) has
been added to the context by the associative and commutative congruence closure
algorithm.

The last congruence that was learned during the propagation of the asserted equations was f(a, c) =
f(a, f(b, c)) with f(a, c) and a as root elements of the congruence classes. The reduction ordering is
used to decide that the congruence class of f(a, c) must be merged into the congruence class of a. No
rule is created for these equations since it’s a congruence and no new congruences are learned during the
merge process. After the merging we have the following congruence classes: {a, f(a, b), f(a, f(b, c)),
c, f(b, f(a, c)), f(b, c), f(a, c)}, {b} with their corresponding proof trees in Figure 5.11.
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f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

a

EQUATION

CONGRUENCE

f(b,c)

CONGRUENCE

f(a,c)

CONGRUENCE

Figure 5.11: The proof trees after the congruence f(a, c) = f(a, f(b, c)) has been added to the
context by the congruence closure modulo associativity and commutativity algorithm.

Now that all equations are propagated, the algorithm tries to deduce new equations using the de-
duction rule introduced in Section 4.2. The current rules for the example are {c → a, f(a, a) → a,
f(a, b)→ a}, thus the overlap between the two rules f(a, a)→ a and f(a, b)→ a has to be considered.
The AC superposition is calculated as follows:

f(a, a)→ a and f(a, b)→ a

f(f(a, a), b) =AC f(f(a, b), a)

f(a, b) = f(a, a)

The equation learned via AC superposition is f(a, b) = f(a, a). Since there is no enode for the term
f(a, a) in the asserted formula, the term is now created. Like all other enodes that are created, it starts
in its own congruence class as root of this class. However, when inserting it into the congruence-table for
the function f, a new congruence between f(a, a) and f(a, f(b, c)) is learned. This congruence is added
to the equalities to propagate queue. After the creation of the enode f(a, a) is finished, the equation
f(a, b) = f(a, a) with the justification SUPERPOSITION is added to the equalities to propagate queue.

After the deduction step the equalities to propagate queue is non-empty, thus the procedure still has
to add equations to the context. The next equation in the equalities to propagate queue is the congruence
between f(a, a) = f(a, f(b, c)), with the root elements f(a, a) and a. Here the congruence class of
f(a, a) gets merged into the congruence class of a and the resulting congruence classes after the merge
are: {a, f(a, b), f(a, f(b, c)), c, f(b, f(a, c)), f(b, c), f(a, c), f(a, a)}, {b}. The corresponding proof
trees can be seen in Figure 5.12.

The last remaining equality in the equalities to propagate queue is f(a, b) = f(a, a), which was the
result of the AC superposition step. However, since both enodes are already in the same congruence
class, there is nothing left to do and the procedure is finished.

When we now ask the Z3 theorem prover to give us a model for the above example, we get the output
shown in Listing 5.9.

1 (model
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f(a,f(b,c))

f(a,b)

EQUATION

f(b,f(a,c))

c

EQUATION

a

EQUATION

CONGRUENCE

f(b,c)

CONGRUENCE

f(a,c)

CONGRUENCE

f(a,a)

CONGRUENCE

Figure 5.12: The proof trees after the congruence f(a, a) = f(a, f(b, c)) has been added to the
context by the congruence closure algorithm modulo associativity and commutativity.

2 ; ; universe for I :
3 ; ; I !val !1 I !val !0
4 ; ; −−−−−−−−−−−
5 ; ; definitions for universe elements :
6 (declare−fun I !val !1 ( ) I )
7 (declare−fun I !val !0 ( ) I )
8 ; ; cardinality constraint :
9 (forall ( (x I ) ) (or (= x I !val ! 1 ) (= x I !val ! 0 ) ) )

10 ; ; −−−−−−−−−−−
11 (define−fun b ( ) I
12 I !val ! 1 )
13 (define−fun a ( ) I
14 I !val ! 0 )
15 (define−fun c ( ) I
16 I !val ! 0 )
17 (define−fun f ( (x !1 I ) (x !2 I ) ) I :ac
18 (ite (and (= x !1 I !val ! 1 ) (= x !2 I !val ! 0 ) ) I !val !0
19 (ite (and (= x !1 I !val ! 0 ) (= x !2 I !val ! 0 ) ) I !val !0
20 I !val ! 0 ) ) )
21 )

Listing 5.9: The model returned by the Z3 SMT solver for the example using associative
commutative functions.

We can see that the Z3 solver has assigned the value I!val!0 to the first congruence class and the
value I!val!1 to the second congruence class, which only contains the term b. The first thing to note
about models for associative commutative functions is, the model contains only values for arguments
that where needed during the solving process. This means that the model is not complete for associative
commutative functions but contains all the instances that are needed to assign values to the terms occur-
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ring in the formula. Complete models are not generated because it takes to long to create all the instances
of the associative and commutative law and thus would have a negative impact on the performance of
the solver. The second thing to note is that only one entry is created for two arguments. This means that
the same arguments just switched in place are not in the table, because the functions are commutative
and thus the value is the same. This is done to keep the model small. Thus, if the formula contains both
f(1, 2) and f(2, 1), assuming f is an associative and commutative function, only the first occurring term
will be in the model the other term has the same result and therefore does not need an own entry.

Example 2

The second example we want to consider is an unsatisfiable example in order to show how proofs of
unsatisfiability are created. Therefore, we consider the formula shown in Listing 5.10.

1 (set−logic QF_ACUF )
2 (set−option :produce−proofs true )
3
4 (declare−sort I )
5
6 (declare−fun f (I I ) I :ac )
7 (declare−fun a ( ) I )
8 (declare−fun b ( ) I )
9 (declare−fun c ( ) I )

10
11 (assert
12 (and
13 (= (f a b ) a )
14 (= (f a c ) b )
15 (not (= (f a c ) (f b b ) ) )
16 )
17 )
18
19 (check−sat )
20 (get−proof )
21 (exit )

Listing 5.10: Example of an unsatisfiable SMT formula containing associative commutative
functions. The commands to retrieve the proof are also included in the example.

The solving process for this example follows the same principles as before and we therefore are not
going into details here. When adding the equations from the formula, two rules are created, f(a, b)→ a
and f(a, c) → b. The superposition of these two rules leads to the equation f(a, c) = f(b, b), which
contradicts the assertion. The corresponding proof from the Z3 solver is shown in Listing 5.11.

1 ( (set−logic QF_ACUF )
2 (proof
3 (let ( ( ?x12 (f b b ) ) )
4 (let ( ( ?x10 (f a c ) ) )
5 (let ( ($x13 (= ?x10 ?x12 ) ) )
6 (let ( ($x11 (= ?x10 b ) ) )
7 (let ( ($x14 (not $x13 ) ) )
8 (let ( ( ?x7 (f a b ) ) )
9 (let ( ($x8 (= ?x7 a ) ) )

10 (let ( ($x15 (and $x8 $x11 $x14 ) ) )
11 (let ( (@x36 (asserted $x15 ) ) )
12 (let ( (@x40 ( | and−elim | @x36 $x11 ) ) )
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13 (let ( (@x39 ( | and−elim | @x36 $x8 ) ) )
14 (let ( (@x41 ( | and−elim | @x36 $x14 ) ) )
15 ( | unit−resolution | @x41 (symm ( | AC−superposition | @x39 @x40 (= ?x12 ?x10 )

) $x13 )
16 false ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

Listing 5.11: The corresponding proof of unsatisfibility for the example shown in Listing 5.10.

Proofs of unsatisfiability for formulas containing associative and commutative functions are created
in the same way as in the standard congruence closure case. The only extension necessary is that two
additional proof rules are needed. The first rule is a rule that captures the equality of terms with regard
to associativity and commutativity, an example of this proof step is:

(|associativity-commutativity| (= (f b (f a c)) (f a (f b c))))

The second addition is the rule to capture the superposition between two rules, as shown in Listing
5.11. All the other steps for the proof generation are done in the same way as explained during the
standard congruence closure algorithm again utilizing the constructed proof tree.

5.3 Congruence Closure Modulo Inverse Functions

After presenting the implementation of the congruence closure algorithm inside the Z3 theorem prover
as well as the necessary extension to handle associative and commutative functions in the previous two
sections, we now want to explain the changes we made to the congruence closure algorithm to handle in-
verse functions. The necessary theory for a congruence closure modulo inverse functions was established
in Section 4.3.

5.3.1 Congruence Closure Algorithm

In this section we explain changes we made to the standard congruence closure algorithm inside the Z3
theorem prover to handle inverse functions. For an explanation of the used terms and data structures see
Section 5.1.1. The only addition to the data structures is the introduction of two new justifications for
equalities. One justification for the Application rule and one justification for the IFDeduce rule.

The basic algorithm stays the same as described in Section 5.1.2 and thus we are not going to restate
it here. However, the following changes were made to handle inverse functions inside the congruence
closure algorithms. Whenever an enode is created for a term it is checked whether the Application rule
can be used. It is important to note that the check and the use of the Application rule are only made for
the two top most function symbols. For example, the enode f(g(x)), where f = g−1, is simplified
using the Application rule, while the term h(g(f(x))) is not, since this simplification was already added
during the creation of g(f(x)). Another change to the theoretical Application rule is that instead of
directly rewriting the term, an equality between the left-hand side and the right-hand side of the used
rewrite rule is added to the equalities to propagate queue. For example, instead of directly using the
rewrite rule f(g(x))→ x, where f = g−1, as done by the Application rule, the equality f(g(x)) = x is
added to the equalities to propagate queue.

The IFDeduce rule was added during the adding step of equalities to the context. After the merging
of the congruence classes is finished and the hash values of enodes were updated, the deduction step
for inverse functions is carried as an additional step. At this, the added equality implicitly generates the
rewrite rule r1 → r2, we do not actually create or add rewrite rules in the congruence closure modulo
inverse functions algorithm, for which then all possible IFDeduction steps are carried out. For example,
if we add the equality f(x) = a, where f = g−1, to the context the following equality is generated by
the IFDeduce rule, g(a) = x.
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Listing 5.12 shows the congruence closure algorithm modulo inverse functions as pseudocode. The
only change in the pseudocode compared to the original Z3 congruence closure algorithm is the addition
of the deduction step at the end of the merging function add_equality. Note that the additional step
of adding equalities for enodes containing inverse function applications at the top is not shown in the
pseudo-code, since this step is carried out during the creation of the respective enodes.

1 inv_congruence_closure ( ) {
2 while (not conflict_reported ( ) and eq_queue .has_element ) {
3 e = eq_queue .top ;
4 add_equality (e .lhs , e .rhs , e .js ) ;
5 }
6 if (conflict_reported ( ) )
7 return unsat ;
8
9 return sat ;

10 }
11
12 add_equality (lhs : enode , rhs : enode , js : justification ) {
13 if (lhs .class_size > rhs .class_size ) {
14 n1 = rhs ;
15 r1 = rhs .root ;
16 n2 = lhs ;
17 r2 = lhs .root ;
18 } else {
19 n1 = lhs ;
20 r1 = lhs .root ;
21 n2 = rhs ;
22 r2 = rhs .root ;
23 }
24
25 if (r1 == r2 )
26 return ;
27
28 foreach e in r1 .class {
29 e .root = r2 ;
30 }
31
32 foreach node in r1 .class {
33 foreach e in node .parents {
34 e .update_hash ( ) ;
35 if (e .is_dis_eq ( ) and e .lhs .root == e .rhs .root )
36 report_conflict (e , n1 , n2 ) ;
37 }
38 }
39
40 r2 .proof_tree = merge (r1 .proof_tree , r2 .proof_tree , n1 , n2 ) ;
41
42 deduce_new_equalities_with_inv_functions (r1 , r2 ) ;
43 }

Listing 5.12: The pseudocode representation of the congruence closure algorithm modulo
inverse function.

It is important to note that the congruence closure algorithm modulo inverse functions also does not
create a complete model for satisfiable examples, as in the congruence closure modulo associativity and
commutativity case only the instances needed during the solving process are in the model. This decision
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was made to keep the time overhead for model generation as small as possible.

5.3.2 Example

The following example will be used to illustrate how the congruence closure algorithm modulo inverse
functions works:

1 (set−logic QF_IUF )
2 (set−option :produce−proofs true )
3
4 (declare−sort I )
5
6 (declare−fun f (I ) I )
7 (declare−fun g (I ) I :INV f )
8 (declare−fun h (I ) I )
9 (declare−fun i (I ) I :inv h )

10 (declare−fun x ( ) I )
11 (declare−fun y ( ) I )
12 (declare−fun a ( ) I )
13
14 (assert
15 (and
16 (= (g (f x ) ) a )
17 (= a (i (h (i (h y ) ) ) ) )
18 (not (= x y ) )
19 )
20 )
21
22 (check−sat )
23 (get−proof )
24 (exit )

Listing 5.13: The example for the congruence closure algorithm modulo inverse functions
inside Z3. This example is unsatisifiable and contains the commands to retrieve
the proof of unsatisfiability.

The example declares four unary functions: f , g, h, and i with the following properties g = f−1

and i = h−1. It also uses three constant symbols x, y, and a. For this example the following enodes
are created by the Z3 theorem prover: {x, a, f(x), g(f(x), g(f(x)) = a, y, h(y), i(h(y)), h(i(h(y))),
i(h(i(h(y)))), a = i(h(i(h(y)))), x 6= y}.

When these enodes are created, the following inverse function application equalities are learned:
g(f(x)) = x, i(h(y)) = y, h(i(h(y))) = h(y), and i(h(i(h(y)))) = i(h(y)). These equalities are added
to the equalities to propagate queue with the justification INVERSE FUNCTION APPLICATION.
The initial congruence classes look like this: {x}, {a}, {f(x)}, {g(f(x))}, {y}, {h(y)}, {i(h(y))},
{h(i(h(y)))}, {i(h(i(h(y))))}.

The first equality that gets added to the context, like always, is the first equation from the asserted
formula, g(f(x)) = a. Since no associative and commutative uninterpreted functions are used, the
decision which class gets merged into which is again based on the size of the classes, or in this case
which class is on the right-hand side of the added equation if they have the same size. The four enodes
get the following values: n1 = r1 = g(f(x)) and n2 = r2 = a. The root changes cause no new equation
to be detected since there are no parents of g(f(x)) that are not equalities. However f(a) = f(x)
can be deduced from the equality using the deduction rule for inverse functions. After the merging the
congruence classes have the following elements: {x}, {a, g(f(x))}, {f(x)}, {y}, {h(y)}, {i(h(y))},
{h(i(h(y)))}, {i(h(i(h(y))))}. The corresponding proof trees can be seen in Figure 5.13.
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g(f(x))

a

EQUATION

Figure 5.13: The proof trees after the equation g(f(x)) = a has been added to the context by
the congruence closure algorithm modulo inverse functions. Only proof trees for
congruence classes with more than one element are shown. All the edges are labelled
with the justification of the equality for the two associated elements.

Next, the equation a = i(h(i(h(y)))) is added to the context. Here the congruence class of i(h(i(h(y))))
gets merged into the congruence class of a since the congruence class of a has a higher cardinality. The
four enodes inside Z3 have the following values n1 = r1 = i(h(i(h(y)))) and n2 = r2 = a. The
root changes again cause no new equations to be learned, however a new equation can be learned via
the inverse function deduction rule, h(a) = h(i(h(y))). The congruence classes after the merge have
the following members {x}, {a, g(f(x)), i(h(i(h(y))))}, {f(x)}, {y}, {h(y)}, {i(h(y))}, {h(i(h(y)))}
and the corresponding proof trees can be seen in Figure 5.14.

g(f(x))

a

EQUATION

i(h(i(h(y))))

EQUATION

Figure 5.14: The proof trees for the congruence classes after the equation a = i(h(i(h(y)))) has
been added to the context by the congruence closure algorithm modulo inverse func-
tions.

After all equations from the asserted formula were propagated, the learned equations must be propa-
gated by the congruence closure algorithm. The first equation that was learned during the procedure was
g(f(x)) = x. Here the congruence class of x gets merged into the congruence class of g(f(x)), since
the congruence class of g(f(x)) contains more elements. The four enodes are assigned as follows
n1 = r1 = x, n2 = g(f(x)), and r2 = a. Here no new equalities of any kind are learned and thus the
congruence classes after the merge look like this: {a, g(f(x)), i(h(i(h(y)))), x}, {f(x)}, {y}, {h(y)},
{i(h(y))}, {h(i(h(y)))}, with the proof trees illustrated in Figure 5.15.

The next equality that gets added is i(h(y)) = y. At this the congruence class of i(h(y)) is merged
into the one of y because both have the size one. No equations are learned during the merging of the class
and thus the congruence classes after the merge have the following elements, {a, g(f(x)), i(h(i(h(y)))),
x}, {f(x)}, {y, i(h(y))}, {h(y)}, {h(i(h(y)))}. The associated proof trees can be seen in Figure 5.16.
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g(f(x))
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Figure 5.15: The proof trees for the congruence classes after the equation g(f(x)) = x has been
added to the context by the congruence closure algorithm modulo inverse functions.
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Figure 5.16: The proof trees for the congruence classes after the equation i(h(y)) = y has been
added to the context by the congruence closure algorithm modulo inverse functions.

The next equation that was learned during the creation of the enodeswas h(i(h(y))) = h(y). Since
both congruence classes have the same size the congruence class of h(i(h(y))) is merged into the con-
gruence class of h(y). During the merging process the following equation can be learned with the inverse
function deduction rule, i(h(i(h(y)))) = y. After the merging we have the following congruence classes:
{a, g(f(x)), i(h(i(h(y)))), x}, {f(x)}, {y, i(h(y))}, {h(y), h(i(h(y)))} with the corresponding proof
trees shown in Figure 5.17.

The following topmost element of the equalities to propagate queue is i(h(i(h(y)))) = i(h(y)).
Here the congruence class of i(h(y)) gets merged into the congruence class of i(h(i(h(y)))). The four
enodes are assigned the following values n1 = i(h(y)), r1 = y, n2 = i(h(i(h(y)))), and r2 = a.
During the merge of the classes the context gets unsatisfiable since the two enodes y and x are in the
same congruence class, which is in violation with the inequality stating that x and y can’t have the same
value. As mentioned earlier at this point the algorithm stops, since a contradiction was detected and
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g(f(x))
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EQUATION
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h(y)

h(i(h(y)))
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Figure 5.17: The proof trees for the congruence classes after the equation h(i(h(y))) = h(y)
has been added to the context by the congruence closure algorithm modulo inverse
functions.

thus the formula is unsatisfiable. Listing 5.14 shows the corresponding proof of unsatisfiability for the
example. Figure 5.18 illustrates the proof trees that were used for the generation of the proof.

g(f(x))

a

EQUATION

i(h(i(h(y))))

EQUATION

x

INVERSE FUNCTION 
APPLICATION

y

i(h(y))

INVERSE FUNCTION
APPLICATION

h(y)

h(i(h(y)))

INVERSE FUNCTION
APPLICATION

INVERSE FUNCTION
APPLICATION

Figure 5.18: The proof trees for the congruence classes after the equation i(h(i(h(y)))) = i(h(y))
has been added to the context by the congruence closure algorithm modulo inverse
functions.

1 ( (set−logic QF_IUF )
2 (proof
3 (let ( ($x16 (= x y ) ) )
4 (let ( (@x56 (symm ( | inverse function application | (= y (i (h y ) ) ) ) (= (i

(h y ) )
5 y ) ) ) )
6 (let ( (@x54 (symm ( | inverse function application | (= (i (h y ) ) (i (h (i (

h y ) ) ) )
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7 ) ) (= (i (h (i (h y ) ) ) ) (i (h y ) ) ) ) ) )
8 (let ( ( ?x11 (h y ) ) )
9 (let ( ( ?x12 (i ?x11 ) ) )

10 (let ( ( ?x13 (h ?x12 ) ) )
11 (let ( ( ?x14 (i ?x13 ) ) )
12 (let ( ($x15 (= a ?x14 ) ) )
13 (let ( ($x17 (not $x16 ) ) )
14 (let ( ( ?x6 (f x ) ) )
15 (let ( ( ?x7 (g ?x6 ) ) )
16 (let ( ($x9 (= ?x7 a ) ) )
17 (let ( ($x18 (and $x9 $x15 $x17 ) ) )
18 (let ( (@x39 (asserted $x18 ) ) )
19 (let ( (@x43 ( | and−elim | @x39 $x15 ) ) )
20 (let ( (@x42 ( | and−elim | @x39 $x9 ) ) )
21 (let ( (@x60 (trans (trans ( | inverse function application | (= x ?x7 ) ) @x42

(= x a
22 ) ) @x43 (= x ?x14 ) ) ) )
23 (let ( (@x44 ( | and−elim | @x39 $x17 ) ) )
24 ( | unit−resolution | @x44 (trans (trans @x60 @x54 (= x ?x12 ) ) @x56 $x16 )

false ) ) ) )
25 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

Listing 5.14: Shows the proof of unsatisfiability for the example with inverse functions.

The proof in Listing 5.14 shows the necessary steps to proof that both x and y are equal to a and thus
must be equal to each other. Like in the associative and commutative case, two additional proof rules
were added: one rule that allows the removal of inverse function applications, seen in Listing 5.14, and
a proof rule for equations learned via the inverse function deduction rule.

5.4 Congruence Closure Modulo Associativity, Commutativity and
Inverse Functions

The previous section showed how we extended the standard congruence closure algorithm inside the
Z3 theorem prover to handle inverse functions. In this section we show how the congruence closure
algorithm modulo associativity and commutativity introduced in Section 5.2 can be extended to han-
dle inverse functions. The resulting algorithm is a congruence closure algorithm modulo associativity,
commutativity and inverse functions.

5.4.1 Congruence Closure Algorithm

In this section we explain the needed changes to the congruence closure algorithm to get a congruence
closure algorithm modulo associativity, commutativity and inverse functions. We explained the exten-
sions to cover associativity and commutativity in Section 5.2.1 and we will use this algorithm as starting
point for our congruence closure algorithm modulo associativity, commutativity and inverse functions.

We extended the congruence closure algorithm modulo associativity and commutativity, as explained
in Section 5.2.1, in the same way as we extended the standard congruence closure algorithm in order to
handle inverse function. During the creation of enodes for the terms occurring in the formula the
Application rule, introduced Section 4.3, is inserted in the exact same way as described in Section 5.3.1.
We also added the IFDeduce rule in the exact same way as described in Section 5.3.1. The only difference
with the IFDeduce rule to the standard case is that the rewrite rule is added to the current set of rewrite
rules as described for the congruence closure algorithm modulo associativity and commutativity, see
Section 5.2.1.
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Listing 5.15 shows the pseudocode of the congruence closure algorithm modulo associativity, com-
mutativity, and inverse functions. Again the additional step during the creation of the enodes, which
adds equalities for inverse functions, is not shown.

1 aci_congruence_closure ( ) {
2 while (not conflict_reported ( ) and eq_queue .has_element ) {
3 e = eq_queue .top ;
4 add_equality (e .lhs , e .rhs , e .js ) ;
5 if (not eq_queue .has_element )
6 deduce_new_equalities ( ) ;
7 }
8 if (conflict_reported ( ) )
9 return unsat ;

10
11 return sat ;
12 }
13
14 add_equality (lhs : enode , rhs : enode , js : justification ) {
15 if (ac_greater (lhs .root , rhs .root ) ) {
16 n1 = rhs ;
17 r1 = rhs .root ;
18 n2 = lhs ;
19 r2 = lhs .root ;
20 } else {
21 n1 = lhs ;
22 r1 = lhs .root ;
23 n2 = rhs ;
24 r2 = rhs .root ;
25 }
26
27 if (r1 == r2 )
28 return ;
29
30 add_rule (r1 , r2 ) ;
31 update_rules ( ) ;
32 simplify_enodes ( ) ;
33
34 foreach e in r1 .class {
35 e .root = r2 ;
36 }
37
38 foreach node in r1 .class {
39 foreach e in node .parents {
40 e .update_hash ( ) ;
41 if (e .is_dis_eq ( ) and e .lhs .root == e .rhs .root )
42 report_conflict (e , n1 , n2 ) ;
43 }
44 }
45
46 r2 .proof_tree = merge (r1 .proof_tree , r2 .proof_tree , n1 , n2 ) ;
47
48 deduce_new_equalities_with_inv_functions (r1 , r2 ) ;
49 }

Listing 5.15: The pseudo-code of the congruence closure algorithm modulo associativity,
commutativity, and inverse functions.
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It is important to note that we do not generate complete models with this algorithm, since the time
needed to generate all the instances of the associative and commutative law or of inverse function in-
stances for a complete model has a negative impact on the overall performance of the algorithm.

5.4.2 Example

Listing 5.16 shows the example we will use to illustrate how the congruence closure algorithm modulo
associativity, commutativity and inverse functions works. The formula consists of the associative and
commutative uninterpreted function f and the two unary functions g and h, which are inverse to each
other. The following three equations f(a, b) = c, f(f(a, a), f(b, b)) = d, f(g(h(h(g(c))))), c) = e as
well as the inequation d 6= c are asserted. During the creation of the of the enodes, in this example,
the following two equalities were learned, h(g(c)) = c and g(h(h(g(c)))) = h(g(c)). Both equations
were learned via the inverse function application rule. At the beginning of the procedure we have the
following congruence classes: {a}, {b}, {f(a, b)}, {c}, {f(a, a)}, {f(b, b)}, {f(f(a, a), f(b, b))}, {d},
{g(c)}, {h(g(c))}, {h(h(g(c)))}, {g(h(h(g(c))))}, {f(g(h(h(g(c)))), c)}, {e}.

1 (set−logic QF_ACIUF )
2 (set−option :produce−proofs true )
3
4 (declare−sort I )
5
6 (declare−fun f (I I ) I :ac )
7 (declare−fun g (I ) I )
8 (declare−fun h (I ) I :inv g )
9 (declare−fun a ( ) I )

10 (declare−fun b ( ) I )
11 (declare−fun c ( ) I )
12 (declare−fun d ( ) I )
13 (declare−fun e ( ) I )
14
15 (assert
16 (and
17 (= (f a b ) c )
18 (= (f (f a a ) (f b b ) ) d )
19 (= (f (g (h (h (g c ) ) ) ) c ) e )
20 (not (= d e ) )
21 )
22 )
23
24 (check−sat )
25 (get−proof )
26 (exit )

Listing 5.16: An example containing associative commutative functions as well as inverse
function applications. This example is unsatisfiable.

The first equation that gets added by the procedure is f(a, b) = c. Since the theory of uninterpreted
functions with associative and commutative functions is used, a reduction ordering is used to decide
which congruence class gets merged into the other. The reduction ordering chooses to merge the congru-
ence class of f(a, b) into the congruence class of c. The resulting four enodes are n1 = r1 = f(a, b)
and n2 = r2 = c, while the generated rule is r1 → r2, which can be used to simplify the term
f(f(a, a), f(b, b)) to use {c, c} as current arguments. The merge process does not lead to the discov-
ery of further equations. The congruence classes after the merge have the following elements, {a},
{b}, {c, f(a, b)}, {f(a, a)}, {f(b, b)}, {f(f(a, a), f(b, b))}, {d}, {g(c)}, {h(g(c))}, {h(h(g(c)))},
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{g(h(h(g(c))))}, {f(g(h(h(g(c)))), c)}, {e}. The proof trees for the congruence classes are visualized
in Figure 5.19.

f(a,b)

c

EQUATION

Figure 5.19: The proof trees for the congruence classes after the equation f(a, b) = c has been
added to the context by the congruence closure algorithm modulo associativity, com-
mutativity and inverse functions.

f(f(a, a), f(b, b)) = d is the topmost equation from the equalities to propagate queue and thus gets
added to the context. Here the reduction ordering decides that the congruence class of f(f(a, a), f(b, b))
should be merged into the congruence class of d. During the merge process no rules can be changed and
no new equations are learned. The congruence classes after the merging contain the following elements:
{a}, {b}, {c, f(a, b)}, {f(a, a)}, {f(b, b)}, {d, f(f(a, a), f(b, b))}, {g(c)}, {h(g(c))}, {h(h(g(c)))},
{g(h(h(g(c))))}, {f(g(h(h(g(c)))), c)}, {e}. Figure 5.20 shows the corresponding proof trees for the
congruence classes.
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Figure 5.20: The proof trees for the congruence classes after the equation f(f(a, a), f(b, b)) = d
has been added to the context by the congruence closure algorithm modulo associa-
tivity, commutativity and inverse functions.

The last equation asserted in the formula that gets added to the context is f(g(h(h(g(c)))), c) = e.
Here the congruence class of f(g(h(h(g(c)))), c) gets merged into the congruence class of e. During the
merging process no rules are changed and no new equations are learned. The congruence classes after
the merging are {a}, {b}, {c, f(a, b)}, {f(a, a)}, {f(b, b)}, {d, f(f(a, a), f(b, b))}, {g(c)}, {h(g(c))},
{h(h(g(c)))}, {g(h(h(g(c))))}, {f(g(h(h(g(c)))), c)}, {e, f(g(h(h(g(c)))), c)} with their correspond-
ing proof trees in Figure 5.21.

After all equations from the original formula have been added to the context, newly learned equa-
tions are added to the context. The first equation learned was h(g(c)) = c. Here the congruence
class of h(g(c)) is merged into the congruence class of c. The rule created for this equality does not
change the current rules and also does not allow to learn any new equations. The congruence classes
after the merge have the following elements: {a}, {b}, {c, f(a, b), h(g(c))}, {f(a, a)}, {f(b, b)}, {d,
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Figure 5.21: The proof trees for the congruence classes after the equation f(g(h(h(g(c)))), c) = e
has been added to the context by the congruence closure algorithm modulo associa-
tivity, commutativity and inverse functions.

f(f(a, a), f(b, b))}, {g(c)}, {h(h(g(c)))}, {g(h(h(g(c))))}, {f(g(h(h(g(c)))), c)}, {e, f(g(h(h(g(c)))), c)},
with the proof trees displayed in Figure 5.22.
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Figure 5.22: The proof trees for the congruence classes after the equation h(g(c)) = c has been
added to the context by the congruence closure algorithm modulo associativity, com-
mutativity and inverse functions.

The next equation that was learned during the creation of the enodeswas g(h(h(g(c)))) = h(g(c)).
The four enodes for this equation are n1 = r1 = g(h(h(g(c)))), n2 = h(g(c)), and r2 = c. During
the merge process the following congruence is learned f(f(a, a), f(b, b)) = f(g(h(h(g(c)))), c), which
also allows to collapse the first learned rule f(f(a, a), f(b, b))→ d by the rule f(g(h(h(g(c)))), c)→ e
since both rules use the current arguments {c, c} and thus are equal under associativity and commuta-
tivity for the current context. The first rule becomes d → e, due to the hash values which are used in
the comparison of d and e. In addition, the following equation can be deduced using the inverse func-
tion deduction rule: h(c) = h(h(g(c))). The congruence classes after the merging are, {a}, {b}, {c,
f(a, b), h(g(c)), g(h(h(g(c))))}, {f(a, a)}, {f(b, b)}, {d, f(f(a, a), f(b, b))}, {g(c)}, {h(h(g(c)))},
{f(g(h(h(g(c)))), c)}, {e, f(g(h(h(g(c)))), c)}. Figure 5.23 shows the proof trees for the congruence
classes.

The last equation added to the context is the learned congruence of f(f(a, a), f(b, b)) and f(g(h(h(g(c)))), c),
with the root elements d and e. Here the congruence class of d is merged into the congruence class of e.
However, this makes the current context unsatisfiable, which causes the procedure to stop. The proof of
unsatisfiability provided by the Z3 theorem prover can be found in Listing 5.17. The proof was generated
using the proof tree shown in Figure 5.24. In the construction of the proof both the rules for associative
and commutative uninterpreted functions as well as for inverse uninterpreted functions were used. The
proof shows that the given set of equations causes the terms f(f(a, a), f(b, b)) and f(g(h(h(g(c)))), c)
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Figure 5.23: The proof trees for the congruence classes after the equation g(h(h(g(c)))) =
h(g(c)) has been added to the context by the congruence closure algorithm modulo
associativity, commutativity and inverse functions.

to be equal, which in turn leads to the equality of d and e. However, this is a contradiction to the asserted
inequality of d and e.
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Figure 5.24: The proof trees for the congruence classes after the equation f(f(a, a), f(b, b)) =
f(g(h(h(g(c)))), c) has been added to the context by the congruence closure algo-
rithm modulo associativity, commutativity and inverse functions.

1 ( (set−logic QF_ACIUF )
2 (proof
3 (let ( ($x22 (= d e ) ) )
4 (let ( ( ?x15 (g c ) ) )
5 (let ( ( ?x16 (h ?x15 ) ) )
6 (let ( ( ?x17 (h ?x16 ) ) )
7 (let ( ( ?x18 (g ?x17 ) ) )
8 (let ( ( ?x19 (f ?x18 c ) ) )
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9 (let ( ($x21 (= ?x19 e ) ) )
10 (let ( ($x23 (not $x22 ) ) )
11 (let ( ( ?x11 (f b b ) ) )
12 (let ( ( ?x10 (f a a ) ) )
13 (let ( ( ?x12 (f ?x10 ?x11 ) ) )
14 (let ( ($x14 (= ?x12 d ) ) )
15 (let ( ( ?x7 (f a b ) ) )
16 (let ( ($x9 (= ?x7 c ) ) )
17 (let ( ($x24 (and $x9 $x14 $x21 $x23 ) ) )
18 (let ( (@x45 (asserted $x24 ) ) )
19 (let ( (@x50 ( | and−elim | @x45 $x21 ) ) )
20 (let ( (@x56 (trans ( | inverse function application | (= ?x18 ?x16 ) ) ( |

inverse func
21 tion application | (= ?x16 c ) ) (= ?x18 c ) ) ) )
22 (let ( (@x65 (symm (monotonicity @x56 (= ?x19 (f c c ) ) ) (= (f c c ) ?x19 ) ) )

)
23 (let ( (@x67 (trans (monotonicity ( | and−elim | @x45 $x9 ) (= ?x12 (f c c ) ) )

@x65 (=
24 ?x12 ?x19 ) ) ) )
25 (let ( (@x70 (trans (trans (symm ( | and−elim | @x45 $x14 ) (= d ?x12 ) ) @x67

(= d ?x1
26 9) ) @x50 $x22 ) ) )
27 (let ( (@x51 ( | and−elim | @x45 $x23 ) ) )
28 ( | unit−resolution | @x51 @x70 false ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

Listing 5.17: The corresponding proof of unsatisfiability for the example with both associative
commutative and inverse functions.



64 5. Implementation



Chapter 6

Evaluation

In the previous chapter we have presented the implementation of the algorithms for congruence closure
modulo associativity and commutativity, congruence closure modulo inverse functions, and the combi-
nation of both. This chapter contains the evaluation of the performance of these algorithms. The first
part of the chapter focuses on the performance of the associative commutative congruence closure algo-
rithm. The second part of this evaluation deals with the congruence closure modulo inverse functions.
The last part of the chapter concentrates on the performance of the combined theory of associativity and
commutativity with inverse functions.

All experiments in this chapter were performed on an Intel Core i7 CPU with 3.5 GHz and 16 GB
RAM. The runtimes were determined by averaging over 10 runs that were conducted for each test-file.
For all test-files a timeout of 30 minutes was used.

6.1 Congruence Closure Modulo Associativity and Commutativity

In order to evaluate the performance of the congruence closure algorithm modulo associativity and com-
mutativity we have decided to compare our algorithm against Z3 with associativity and commutativity
as axioms.

The axioms for associativity and commutativity in SMT-LIBv2 format are given in Listing 6.1:

1 (forall ( (x I ) (y I ) ) (= (f x y ) (f y x ) ) )
2 (forall ( (x I ) (y I ) (z I ) ) (= (f x (f y z ) ) (f (f x y ) z ) ) )

Listing 6.1: The axioms for associativity and commutativity in SMT-LIBv2 format.

Here f is the function that should have the associative and commutative property and I is the sort
type of our terms in the example. The first line states that the functions is commutative, i.e., the order of
the arguments does not matter, and the second line states that the associative property, i.e., the bracketing
also does not have any influence on the semantics of a given expression.

Table 6.1 shows the average run time of the congruence closure algorithm modulo associativity and
commutativity and the congruence closure algorithm with axioms for examples containing associative
commutative uninterpreted functions. An average runtime of TIMEOUT means that all 10 runs that were
conducted timed out for the example.

All examples named qf_acuf_XX.smt2 are our own test files while all files named test__eqs-XX__depth-
YY.smt2 are from [12], and used with their friendly permission. All files with the name pattern test__eqs-
XX__depth-YY_U.smt2 are just the negated versions of the file with the same name pattern. Since all
examples from [12] represent valid formulas, their originals are satisfiable and the corresponding negated
version (suffix _U) are unsatisfiable.
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Testfilename Runtime CC mod AC Runtime Z3 with Axioms verdict
qf_acuf_01.smt2 13.3 13.2 unsat
qf_acuf_02.smt2 13.4 12.7 unsat
qf_acuf_03.smt2 13.7 13 unsat
qf_acuf_04.smt2 23.5 TIMEOUT sat
qf_acuf_05.smt2 13.4 12.8 unsat
qf_acuf_06.smt2 14.1 107.6 sat
qf_acuf_07.smt2 14.2 TIMEOUT sat
qf_acuf_08.smt2 13.9 13.8 unsat
qf_acuf_09.smt2 72.6 TIMEOUT sat
qf_acuf_10.smt2 14.2 12.8 unsat
qf_acuf_11.smt2 14.3 13.7 unsat
qf_acuf_12.smt2 14 14.4 unsat
qf_acuf_13.smt2 21.3 20567 sat
qf_acuf_14.smt2 13.4 13.1 unsat
qf_acuf_15.smt2 13.6 12.5 unsat
qf_acuf_16.smt2 52.3 TIMEOUT sat
qf_acuf_17.smt2 13.9 12.3 unsat
qf_acuf_18.smt2 14.9 12.6 unsat
qf_acuf_19.smt2 15.1 OUT OF MEMORY sat
qf_acuf_20.smt2 17.6 TIMEOUT sat
qf_acuf_21.smt2 14.3 14.3 sat
qf_acuf_22.smt2 14 12.5 unsat
qf_acuf_23.smt2 13.8 12.6 unsat
qf_acuf_24.smt2 13.5 13.4 unsat
qf_acuf_25.smt2 13.9 13 unsat
qf_acuf_26.smt2 13.8 12.6 unsat
qf_acuf_27.smt2 14 12.7 unsat
test__eqs-12__depth-3.smt2 27.5 167984.4 sat
test__eqs-12__depth-3_U.smt2 33657.5 224.2 unsat
test__eqs-3__depth-12.smt2 40 OUT OF MEMORY sat
test__eqs-3__depth-12_U.smt2 39.4 OUT OF MEMORY unsat
test__eqs-3__depth-3.smt2 20.5 TIMEOUT sat
test__eqs-3__depth-3_U.smt2 20.1 24.8 unsat
test__eqs-3__depth-6.smt2 25.5 TIMEOUT sat
test__eqs-3__depth-6_U.smt2 25.2 9304.8 unsat
test__eqs-6__depth-12.smt2 26.2 OUT OF MEMORY sat
test__eqs-6__depth-12_U.smt2 1613.2 OUT OF MEMORY unsat
test__eqs-6__depth-3.smt2 18.5 59.1 sat
test__eqs-6__depth-3_U.smt2 449.9 62.6 unsat
test__eqs-6__depth-6.smt2 20.4 TIMEOUT sat
test__eqs-6__depth-6_U.smt2 762.1 49075.8 unsat

Table 6.1: The average runtime of the associative commutative congruence closure compared with
Z3 with axioms. All runtimes are in ms and were averaged over 10 runs.
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Figure 6.1: The comparison between the congruence closure algorithm modulo associativity and
commutativity and the congruence closure algorithm where the associativity and com-
mutativity are axiomatized. All examples contained in this graphic are unsatisfiable.

When comparing the runtime of the congruence closure modulo associativity and commutativity
with Z3 using axioms we see that the strength of the dedicated congruence closure algorithm lies in the
solving of examples that are satisfiable. In the following paragraphs we will analyse the performance for
different groups of examples in more detail.

Figure 6.1 compares the standard congruence closure algorithm, where the associative and commu-
tative property of functions has been added via axioms, with the congruence closure algorithm modulo
associativity and commutativity described in Section 5.2. This plot only contains examples that are un-
satisfiable out of the group qf_acuf_XX.smt2. As we can see both algorithms are able to handle these
examples quite well. The reason for this result is the model based quantifier instantiation (MBQI) done by
Z3 for the axioms, which is quickly able to identify the needed instances of the associative and commu-
tative law to show that the given formula is unsatisfiable. MBQI is a technique used by Z3 when solving
formulas containing quantifiers. The MBQI is used to decide which instances of quantifiers should be
generated first, the decision is based on the currently build model inside the Z3 theorem prover, for more
details about the MBQI we refer to [22].

In Figure 6.2 the comparison between the two algorithms is shown for unsatisfiable formulas that
have a more complex structure, the examples out of the group test__eqs-XX__depth-YY_U.smt2. Here
we can see that for two test files (test__eqs-12__depth-3_U.smt2 and test__eqs-6__depth-3_U.smt2) our
implementation takes longer to find the conflict than the model based quantifier instantiation of the Z3
solver with standard congruence closure. But for all other examples our approach is either as fast as
the model based quantifier instantiation or faster. For two examples (test__eqs-3__depth-12_U.smt2 and
test__eqs-6__depth-12_U.smt2) the Z3 solver with standard congruence closure and axioms did not find
a solution, because the solver ran out of memory during the solving process.
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Figure 6.2: Comparison between congruence closure modulo associativity and commutativity and
congruence closure with axioms for unsatisfiable examples from Conchon et al.
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Figure 6.3: The runtime comparison for the two congruence closure algorithms on satisfiable ex-
amples.

The picture, however, drastically changes when we compare the performance of the two algorithms
on satisfiable examples. For the nine examples, out of the group qf_acuf_XX.smt2, that are satisfiable
the standard congruence closure is only able to calculate the result for three of them, while our imple-
mentation is able to solve all nine of them, where the slowest example has an average runtime of 72.6ms.
For five examples Z3 runs into a timeout using axioms and for one example the solver runs out of mem-
ory during the solving process. This really shows the improvement that is achievable when integrating
associativity and commutativity inside the congruence closure algorithm. The problem here for the stan-
dard algorithm with MBQI is, that the MBQI does not help solving satisfiable examples, since the order
in which the instances of the quantifiers are generated does not lower the number of instances that have
to be generated. Figure 6.3 shows the runtime comparison for the satisfiable examples out of the group
qf_acuf_XX.smt2.

The same results can be observed when we evaluate the implementation using the examples from
[12]. The standard congruence closure algorithm with axioms is able to calculate the result only for two
of the seven benchmark files. For three files the timeout is reached before the algorithm was finished and
for two files the Z3 solver ran out of memory before the process was finished. The runtime comparison
for these examples can be seen in Figure 6.4.

6.2 Congruence Closure Modulo Inverse Functions

In this section we take a look at the performance of the congruence closure algorithm modulo inverse
functions. Like in the previous section, we will benchmark our implementation against the Z3 solver
using the standard congruence closure algorithm with axioms for the inverse function property. Listing
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Figure 6.4: The runtime comparison between the congruence closure algorithm modulo associa-
tivity and commutativity and the congruence closure algorithm with axioms using the
satisfiable examples from Conchon et al.
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Testfilename Runtime for CC Mod-
ulo Inverse Functions
in ms

Runtime for CC with
Axioms in ms

Verdict

qf_iuf_01.smt2 16.6 12.4 unsat
qf_iuf_02.smt2 13.3 12.1 unsat
qf_iuf_03.smt2 13.6 12.4 unsat
qf_iuf_04.smt2 14 TIMEOUT sat
qf_iuf_05.smt2 15.2 TIMEOUT sat
qf_iuf_06.smt2 13.2 12.4 unsat

Table 6.2: The runtime comparison between the standard congruence closure with axioms and con-
gruence closure modulo inverse functions.

6.2 shows the axioms for inverse functions, where f = g−1.

1 (forall ( (x Int ) ) (= f (g (x ) ) x ) )
2 (forall ( (x Int ) ) (= g (f (x ) ) x ) )

Listing 6.2: The axioms for inverse functions in the SMT-LIB v2 format.

Table 6.2 shows the average runtimes for the congruence closure algorithm modulo inverse func-
tions and the congruence closure algorithm with axioms for test-files containing uninterpreted inverse
functions.

Figure 6.5 shows the runtime comparison for the six examples with inverse functions. Two of the six
examples were actually satisfiable. For both of them the congruence closure algorithm with axioms for
the inverse functions was not able to calculate a solution, due to running into the timeout of 30 minutes.
For the other four examples both algorithms were able to calculate the result in a similar time period.
This again shows that the quantifier based model instantiation inside Z3 is able to quickly identify the
needed instances of the axioms in order to arrive at a contradiction, but struggles with examples that are
satisfiable.

6.3 Congruence Closure Modulo Associativity, Commutativity and
Inverse Functions

In the previous two sections we looked at the performance of the congruence closure algorithm modulo
associativity and commutativity and the congruence closure algorithm modulo inverse function against
the standard algorithm, where the additional information has to be added as an axiom. We found out
that especially in the satisfiable case the extended algorithms achieve a much better performance than the
congruence closure algorithm with axioms. In this section we will evaluate the combination we described
in Section 5.4.

The axioms for associativity and commutativity can be found in Listing 6.1 and the axioms for
inverse functions are shown in Listing 6.2. Table 6.3 shows the average runtimes for the congruence
closure algorithm modulo associativity, commutativity and inverse functions and the congruence closure
algorithm with axioms for examples containing both uninterpreted functions which are associative and
commutative and inverse uninterpreted functions.

As we can see, the trend regarding the results from the previous two evaluations continuous with
the congruence closure modulo associativity, commutativity and inverse functions. Both the congruence
closure algorithm modulo associativity, commutativity and inverse functions and the congruence closure
algorithm with axioms are able to solve all unsatisfiable examples. Here there do not exist any significant
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Figure 6.5: The runtime comparison between congruence closure modulo inverse functions and
the congruence closure with axioms.

Testfilename Runtime for CC
Modulo Associativ-
ity, Commutativity
and Inverse Func-
tions in ms

Runtime for CC with
Axioms in ms

Verdict

qf_aciuf_01.smt2 13.3 12.6 unsat
qf_aciuf_02.smt2 14.2 12.7 unsat
qf_aciuf_03.smt2 14 13 unsat
qf_aciuf_04.smt2 14 12.8 unsat
qf_aciuf_05.smt2 14.5 12.7 unsat
qf_aciuf_06.smt2 15.4 12.7 unsat
qf_aciuf_07.smt2 16.3 TIMEOUT sat
qf_aciuf_08.smt2 14.7 OUT OF MEMORY sat
qf_aciuf_09.smt2 41.5 OUT OF MEMORY sat
qf_aciuf_10.smt2 20.3 OUT OF MEMORY sat

Table 6.3: The average runtimes for the combined theory of associativity, commutativity and in-
verse functions.
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Figure 6.6: Shows the average runtimes for the congruence closure algorithm modulo associativity,
commutative and inverse functions and the congruence closure algorithm with axioms.

differences in the runtime. This can easily be seen in Figure 6.6, which illustrates the runtime comparison
between the two algorithms. However, if we consider the examples that are satisfiable, the congruence
closure algorithm with axioms is not capable of calculating the result for a single one. From the four
examples that were actually satisfiable the congruence closure algorithm with axioms runs into the time-
out once and exceeds the memory limit in the other three cases. This again shows that the model based
quantifier instantiation is able to handle unsatisfiable formulas but struggles with satisfiable examples.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this work we presented our implementation of the congruence closure algorithm modulo associativity
and commutativity [4, 12, 30] inside the Z3 theorem prover [16]. Although the theory of congruence
closure modulo associativity and commutativity is not new, only the Alt-Ergo theorem prover has built in
support for it. We also presented an algorithm for congruence closure modulo inverse functions, as well
as the implementation of the algorithm, something that was not done before to our knowledge. Further we
proposed a way how the two algorithms can be combined to get a congruence closure algorithm modulo
associativity, commutativity, and inverse functions. Finally, we presented the experimental results of our
implementation.

7.1.1 Congruence Closure Modulo Associativity and Commutativity

Although some work was done in the field of congruence closure modulo associativity and commutativ-
ity [12, 4, 30] before only the Alt-ergo theorem prover has built-in support for the theory of uninterpreted
functions with associativity and commutativity [6]. We extended the congruence closure algorithm in-
side Z3 theorem prover to handle these axioms directly in the congruence closure algorihtm rather than
adding them as additional axioms to the formula. As the results of our evaluation have shown, dedicated
congruence closure algorithms outperform the standard congruence closure algorithm with axioms. This
can easily be seen for satisfiable examples, where the Z3 theorem prover struggles to find models for the
formulas, when using axioms for associativity and commutativity. For the case of unsatisfiable examples
both the dedicated algorithm and the standard algorithm have nearly the same performance.

The key difference between the standard congruence closure algorithm and the congruence closure
algorithm modulo associativity and commutativity is the use of a dedicated reduction ordering, which
must be capable of handling associative and commutative functions. Such a reduction ordering was
introduced in [40]. Another key difference is the matching of subterms during the algorithm. In the
presence of associative and commutative functions this matching becomes more difficult. Since one has
to match terms considering the associative and commutative property of the functions symbols, for this
purpose we consider the flattened form of associative and commutative functions during this matching
process. A very important step in the completion procedure for congruence closure modulo associativity
and commutativity is the deduction step. The equalities learned during this step are very important for
the correctness of the algorithm, as these equalities cover critical pairs.
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7.1.2 Congruence Closure Modulo Inverse Functions

In Section 4.3 we introduced a congruence closure algorithm modulo inverse functions, something that
was not done before to our knowledge. Like the congruence closure algorithm modulo associativity
and commutativity, the congruence closure algorithm modulo inverse functions is an extension of the
standard congruence closure algorithm. In order to handle inverse functions directly in the congruence
closure algorithm we added two rules to the completion procedure. One rule allows the completion
procedure to remove the application of inverse functions, i.e. g(f(x)) = x if g = f−1. The other rule is
a dedicated deduction rule for inverse functions.

As in the associative and commutative case, the experimental results of our work show that the
extension of the congruence closure algorithm allows to solve more examples compared to using axioms
to cover the additional properties of the uninterpreted functions. Again, we were able to solve examples
that are satisfiable with our algorithm whereas the standard algorithm with axioms struggles to solve
such formulas.

7.1.3 Congruence Closure Modulo Associativity, Commutativity and Inverse Func-
tions

We also presented a way to combine the theories of equality with uninterpreted functions modulo associa-
tivity and commutativity and equality with uninterpreted functions and inverse functions. An important
thing to note about the combination is that the two theories are disjoint, since associativity and commu-
tativity are defined for binary functions, while inverse functions are unary. This means that there are no
functions that are associative, commutative and an inverse of another function at the same time. Thus, the
completion procedure for the combined theory is an extension of the completion procedure for the asso-
ciative and commutative case. As with the completion procedure for congruence closure modulo inverse
functions, the completion procedure for congruence closure modulo associativity and commutativity was
extended with the two rules needed to handle inverse functions.

The experiments again show that the dedicated congruence closure algorithm for the two combined
theories beats the standard congruence closure algorithm with axioms, especially in the case of satisfiable
examples. Again, this result can be explained by the fact that the dedicated algorithm only deduces
critical pairs during the deduction step. Whereas the standard algorithm with axioms tries to build a
complete model for which all the possible instances of the associative and commutative law as well as
all applications of inverse functions have to be created.

7.2 Discussion

7.2.1 Evaluation

Our evaluation has shown that the strength of the dedicated congruence closure algorithms lies in the
solving process for satisfiable formulas. A considerable performance increase is brought by the fact that
the dedicated procedures only generate critical pairs instead of all instances of the laws for associativity,
commutativity, and inverse functions. This is evident in the fact that already small satisfiable examples
are unsolvable with axioms due to the high number of instances generated from the axioms. However,
when considering unsatisfiable examples no performance increase was achieved. This shows that the
model based quantifier instantiation done by Z3 for these formulas performs very good at detecting the
instances of the mathematical laws that are needed to proof unsatisfiability of the given formula.

The evaluation in our opinion clearly shows that dedicated congruence closure algorithms for as-
sociativity, commutativity and inverse functions are needed. Without explicit support, the solving of
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satisfiable formulas is not feasible, either because of the long runtime or the fact that the solver runs out
of memory while generating instances of the mathematical laws.

7.2.2 Proofs of Unsatisfiability and Models

Two important things in the context of SMT are the proof of unsatisfiability and the model for satisfiable
examples. The proof of unsatisfiability shows the deduction rules required to infer the conflict from the
formula. In the context of congruence closure modulo associativity and commutativity, two new proof
rules were added to the Z3 theorem prover. The two rules are used for equality modulo associativity
and commutativity and for equalities that are results of the associative and commutative deduction step
in the completion procedure. In the case of inverse functions, another two rules were added to the
proof framework. Again, these rules govern the equality of terms regarding inverse functions and the
equalities learned via inverse function deduction steps. Our algorithm is capable of producing proofs of
unsatisfiability for formulas containing associative, commutative and inverse uninterpreted functions.

As we have stated in the description of our implemented algorithms (Chapter 5) we have not imple-
mented a complete model generation. Instead of all possible instances, only the needed instances of the
function are in the model. This decision was made since the generation of a complete model containing
all the instances would lead to a significant increase of the runtime and thus is simply not desirable.

If the need for a complete model arises this can easily be implement inside the SMT solver or the
partial model taken from the SMT solver can be extended by the application to fill out the gaps in the
model. However, from our point of view a model containing all the critical pairs and the instances present
in the formula is enough for the most applications regarding the theory of uninterpreted functions modulo
associativity, commutativity and inverse functions.

7.3 Future Work

Although we have defined a useful framework for handling uninterpreted functions with associativity,
commutativity and inverse functions, there is still a lot of work to be done.

7.3.1 Evaluation

We presented a first evaluation of the algorithms described in Chapter 5 and this evaluation showed the
performance gain that can be achieved when using a dedicated congruence closure over the standard
congruence closure algorithm with axioms for additional properties. During our evaluation we used
our own examples as well as examples provided by Conchon et al. [12]. However, we think it would
be beneficial to have a common, publicly available pool of examples for the theory of uninterpreted
functions with associativity, commutativity and inverse functions.

7.3.2 Combination with Model Based Quantifier Instantiation (MBQI)

Our preliminary evaluation showed that the model based quantifier instantiation might not be able to deal
well with satisfiable examples, but handles unsatisfiable examples really well. Thus, it might be possible
to use the MBQI to enhance the deduction steps of the dedicated algorithms. The same heuristic the
MBQI uses to decide which instances of the axioms should be instantiated could be used to decide which
of the possible deduction steps should be carried out by the dedicated algorithm. This could yield in a
performance increase for the dedicated algorithms in the case of unsatisfiable examples. However, this
does not change the performance of the dedicated algorithms in the case of satisfiable examples, since
here all of the deduction steps have to be carried out anyway and the order of them does not matter.
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7.3.3 Combination with other Theories

A further interesting topic is the combination of the theory of uninterpreted functions modulo associa-
tivity, commutativity and inverse functions with other powerful theories, like linear integer arithmetic.
This combination would allow to solve more complicated problems, as well as the development of new
encodings for existing problems, due to the availability of a dedicated logic.

The list of potentially useful combinations is of course long, thus we are only going to pick a few
representative logics. For example, the combination with the theory of arrays would allow to use arrays
in formulas containing associative, commutative and inverse uninterpreted functions. Another interesting
theory might be the theory of linear integer arithmetic. Moreover, the addition of quantifiers could help
to increase the number of problems that can be solved.

Besides the combination of the presented theories with others, the addition of more extensions to the
congruence closure algorithm is worth considering. For example, the theory of uninterpreted functions
modulo idempotent functions or a combination of associative, commutative and idempotent uninterpreted
functions could be very interesting. Another extension where there already exists a theoretical foundation
would be the completion modulo associativity, commutativity and identity [27, 28]. In this extension, the
uninterpreted functions have neutral elements, an element e is a neutral element if the following property
holds ∀a.f(e, a) = a, which can be defined in the formula.

Finally, we can conclude that dedicated congruence closure algorithms are needed to efficiently han-
dle the theories of uninterpreted functions with equality modulo associativity and commutativity, uninter-
preted functions modulo inverse functions and the combination of the two. In this work we presented our
implementation of the congruence closure modulo associativity and commutativity algorithm, as well as
introduced a congruence closure modulo inverse functions algorithm. Furthermore, we proposed a way
how the two algorithms can be combined and we presented the results of our evaluation of the various
algorithms, but there is still a lot of work to be done in the future.
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