
Fabian Mauroner, BSc

Hardware Resource Management in FPGA

based Multi-Core MCU Architectures

————————————–

MASTER’S THESIS

to achieve the university degree of
Master of Science

Master’s degree program: Telematics

submitted to

Graz University of Technology

Supervisor
Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat.

Marcel Carsten Baunach

Institute for Technical Informatics

Graz, May 2015

Kurzfassung

In den letzten Jahren wurde von vielen Anwendungen immer mehr Rechenleistung verlangt.

Auch im Bereich der eingebetteten Systeme spiegelt sich dieser Trend wieder. Eingebettete Sys-

teme besitzen ganz andere Anforderungen als Hochleistungscomputersysteme. So beschäftigt

man sich bei eingebetteten Systemen unter anderem mit diversen Echtzeitanforderungen, die

meist in Software bzw. von den eingesetzten Betriebssystemen zu gewährleisten sind. Der Sche-

duler hat die Aufgabe diese Anforderungen unter Berücksichtigung der Software-Spezifikation

zu bewältigen. Es gibt zahlreiche Scheduler die diese Aufgabe für komplett unabhängige Tasks

sehr gut ausführen. Möchten jedoch mehre Tasks eine Ressource gemeinsam verwenden, ist

die Aufgabe um einiges schwieriger. Um sie trotzdem zu bewältigen, werden sogenannte Res-

source Management Protokolle verwendet. Diese Protokolle helfen dem Scheduler dabei die

Tasks in der korrekten Reihenfolge abarbeiten zu lassen. In heutigen Rechnern findet man

Multicoreprozessoren, die auch in eingebetteten Systemen immer öfter Anwendung finden.

Die einzelnen Prozessoren auf einem Chip teilen sich den Zugriff auf gemeinsam verwendete

Ressourcen wie etwa Speicher oder Datenbusse. Die meisten Ressourcen können nicht von

verschiedenen Tasks gleichzeitig verwendet werden und müssen vor gegenseitiger Verwendung

geschützt werden. Viele Mikrocontrollerherrsteller verschieben dieses Problem in die Software

und so wurden diverse Vorgehensweisen und Implementierungvorgaben entwickelt. Bei deren

Umsetzung nimmt die interne Verwaltung jedoch eine hohe Rechenleistung ein bzw. werden die

Ressourcen den Prozessoren statisch zugeordnet. Allerdings arbeiten viele Geräte in einem sehr

dynamischen Umfeld und somit ist eine statische Zuordnung nicht immer geeignet. In verschie-

denen Industriesektoren, vorallem im Automobilsektor oder WSAN-Anwendungen (Wireless

Sensor/Actuator Network) werden häufig Mikrocontroller verwendet. Außer der geringen

Rechenleistung verfügen Mikrocontroller jedoch über sehr viele Vorteile die für Echtzeitsysteme

notwendig sind (keine cache-misses, geringe Stromaufnahme, günstig in der Anschaffung,

etc.). Da Mikrocontroller in bestimmten Anwendungsbereichen sehr gut geeignet sind, die

Softwarelösungen wegen der geringen Rechenleistung oft jedoch nur schwer umsetzbar sind,

wird in dieser Arbeit mit Hilfe einer Hardwareerweiterung das Ressourcen Management für

das dynamische Umfeld von Multicoreanwendungen realisiert.

iii

Abstract

In the last couple of years, applications have been expanding their need for computing power.

This rising computing power is also needed in embedded systems, which have other require-

ments than high performance computing systems. A real-time application has to maintain the

real-time constraints and the scheduler’s job is to dispatch the tasks in the correct order to keep

the time constraints. In systems where the tasks run independently of each other, the scheduler

does its job well. However, in cases where two or more tasks have to use the same resource,

more work has to be done for maintaining the constrained rules. To cope with this problem,

there are many resource manager policies. The resource manager is often included into the

kernel of an operating system and helps the scheduler to schedule the tasks into the correct

order.

In high performance computing systems, one can find architectures with multi-cores. Also

in embedded systems, the trend goes from single-core to multi-core architectures. The cores

within a single chip have access to peripherals, buses and other components, which are ac-

cessible from all cores at the same time. These so called resources can not, in most cases,

be simultaneously accessed by different cores, and this must be prevented reliably. Some

microcontroller producers push this problem to the software level, where some approaches

to handle it are available. These solutions on software level either demand high computing

power or static assignments that result in static software. In contrast, the real world has a

highly dynamical behavior. Moreover, microcontrollers have many advantages for real-time

systems (no cache miss, low power consumption, low cost, etc.) but their computing power is

low. The automotive domain or WSAN (Wireless Sensor/Actuator Network) are examples that

use microcontrollers in a dynamic environment. In fact, microcontrollers suit well for many

applications, but the software solution will not work on most of them, because it needs too

much computation power.

This work presents a way to handle resources dynamically in hardware for multi-core processor

architectures, keeping computation requirements low and, at the same time, maintaining all

real-time constraints.

v

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the

declared sources/resources, and that I have explicitly indicated all material which has been

quoted either literally or by content from the sources used. The text document uploaded to

TUGRAZonline is identical to the present master‘s thesis dissertation.

.............................. ...

date (signature)

vii

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich bei der Erstellung

dieser Arbeit unterstützt haben.

Ich möchte mich von ganzem Herzen bei Sabrina bedanken, die mir in den letzten Monaten

tatkräftig zur Seite gestanden ist und ohne die diese Arbeit nie zustande gekommen wäre!

Im Weiteren möchte ich mich bei meinem Betreuer Herrn Professor Marcel Baunach für die

Betreuung dieser Arbeit und die umfangreiche Unterstützung bedanken.

Ein großer Dank geht auch an Renata Gomes für das Korrekturlesen der Arbeit.

Zuletzt möchte ich mich noch bei meiner Familie und meinen Freunden bedanken die mich

in den letzten Jahren unterstützt haben und immer für mich da waren.

DANKE!

ix

Contents

Kurzfassung iii

Abstract v

1. Introduction 1
1.1. Terminology . 1

1.2. Problem . 3

1.3. Outline . 6

2. Related Work 7
2.1. Resource Management on Single-Core Architectures 7

2.2. Resource Management in Multi-Core Architectures 8

2.3. Hardware Resource Management . 10

3. Background 13
3.1. System Specification . 13

3.2. Multiprocessor Priority Ceiling Protocol . 14

3.3. openMSP430 . 16

3.4. SmartOS . 17

4. Hinted Multiprocessor Priority Ceiling Protocol 19
4.1. Timeout . 19

4.2. Dynamic Hinting . 20

4.3. Resource Manager . 21

4.4. FPGA Implementation Details . 22

4.5. SmartOS Implementation Details . 34

5. Evaluation 41
5.1. Test-bed . 41

5.2. FPGA standalone Test . 42

5.3. Use case: Shared Resources . 50

6. Conclusion and Future Work 55

xi

Bibliography 55

List of Figures 59

List of Tables 60

List of Listings 62

List of Acronyms 65

Appendix 67
A. Resource Manager Registers . 67

B. SmartOS extended data structure . 75

C. SmartOS extended API . 75

xii

1. Introduction

Multi-core development has been an important research domain in the last couple of years.

More cores on a die make it possible to reduce the power consumption while even increasing

the computational power. In addition, the multi-core environment allows one to bring more

applications into a one-chip solution, the so called System on Chip (SoC). Different domains

are interested in multi-core SoC solutions, like wearable devices, WSAN, or the automotive

sector. It does not only reduce the size of the final device but also the production costs.

Most research in the area of multi-core systems was done for high performance systems, like

workstations. In almost every new computer a multi-core CPU is integrated. A workstation is

designed for control structures and especially for high performance computation. Therefore,

the used CPU in a workstation is a general-purpose processor. However, an embedded system

has, in most cases, totally different requirements as a workstation. Hence, embedded systems

use a MCU. A MCU is a computation unit that is designed primarily for control applications, and

the embedded system is often used as a control unit. Control units are used in different safety

critical applications. Therefore, most embedded systems are also real-time systems. A real-time

system must guarantee that an incoming event is computed within a defined time, otherwise

severe consequences might follow. The real-time scheduler, which is well investigated, has to

maintain time constraints.

1.1. Terminology

Scheduling

For a single-core real-time system a lot of different scheduling approaches with all their benefits

and disadvantages exist. The scheduler has the job to schedule all tasks according to their

priorities to meet all time constraints. The priority of a task shows how important a task is

and there are many different approaches to define this priority. For real-time systems there

are two common approaches. One approach sets a static priority (SP) to every task, while

the Earliest Deadline First (EDF) approach sets a dynamic priority to every task. The dynamic

priority depends on the absolute deadline of a task. If the deadline of a task A is earlier than the

deadline of task B, task A gets a higher priority than task B. On a multi-core environment these

two approaches can be used in three different manners. One possibility is to use the scheduler

globally (G-EDF or G-SP), where all tasks could run on any core. The scheduler decides which

1

1. Introduction

task is moved to which core. Another approach is partition scheduling (P-EDF or P-SP). All

tasks are assigned statically to a core, where an independent scheduler runs and decides which

task should run next. Finally, the two approaches could be mixed into so-called clusters (C-EDF

or C-SP). The cores are split into clusters and the tasks are assigned to a cluster. This means,

that the task could run at all cores that are in its assigned cluster. As in partitioned scheduling,

on each cluster runs an independent scheduler. In the partial and clustered scheduling, the

different schedulers on each core do not have to be of the same type. Therefore, the systems

on every core or cluster are totally independent from each other.

Task

A task can be periodic or sporadic. In the case of a periodic task, the task’s release time is on

every regular interval time, while the sporadic task release time is irregular. A task can be in

different states. If the task runs on the core, it is in the running state. In the ready state are all

tasks that are ready to run, but can not yet run, e.g. when it has been preempted by another

more important task. A the task can also be in waiting state after suspending itself. Suspension

occurs when a task requests a resource that is not free, calls a sleep function, or waits for an

event.

Resources

Resources are components which are on a computer system. There are many different kinds

of resources with different characteristics. Some resources have to be used with an exclusive

access, to avoid functional problems or race conditions. Some resources, like the CPU, could be

used in a preemptive way. Many resources must be initialized and closed in a correct order and

therefore, a preemption could bring the resource to an invalid state. To ensure that the resource

is used exclusively, many approaches exist. One well-known approach are semaphores. Two

operations are used to allocate and deallocate a resource. A task can request for a resource and,

if it succeeds, the resource is allocated to the task that continues execution using the resource.

Otherwise, if another task holds the resource, the request will be refused and the task will have

to wait until the resource manager hands over the resource. Sha et al. [23] defines the term

blocking. A task is called blocked if it makes a resource request and has to wait for a lower

prioritized task that holds the requested resource. If the task waits for a higher priority task,

because of a resource request, the task is not called blocked. A task is only called blocked if

the priority inversion problem occurs. Section 2.1 shows some approaches to minimize the

blocking time. On a multi-core environment, the term blocking is extended to global blocking,

by Rajkumar et al. [22]. A task is called globally blocked if it has to wait for its requested

resource on every prioritized task. Section 2.2 shows approaches to reduce this kind of waiting

on a multi-core environment. On a multi-core environment, the resources are distinguished

2

1.2. Problem

into local and global resources. The local resources are only on one core and are handled

with a single-core resource management protocol. The global resources are shared over more

cores and are handled by a multi-core resource management protocol. The section between

the allocation and release of the resource is called critical section and is distinct between local

(lcs) and global (gcs) critical sections. Furthermore, a resource could be used by a task as a

short-term or long-term resource allocation [2]. If the task suspends itself in a critical section,

e.g. sleeping, the task uses the resource in a long-term way. Otherwise, it is called short-term

allocation. A long-time resource allocation is a long resource [9], which is a allocated resource

with a long critical section. If another resource allocation is done inside a critical section, it is

called nested resource allocation.

1.2. Problem

In systems where tasks are independent of each other, the scheduler does its work very well.

However, if the tasks have to be synchronized or a resource is concurrently accessed, a syn-

chronization mechanism is needed. Many methods, such as semaphores, locks, monitors

and Ada rendezvous [23], can be used for synchronization or for resource allocation. The

synchronization mechanisms causes a dependency between two or more tasks. This leads to

the well-known priority inversion problem [23, 5].

Priority inversion

The priority inversion problem occurs on a preemptive and prioritized task system [4]. The

highest prioritized task H preempts the lower prioritized running task L if it switches from

suspended state to ready state. This is the desired run. If the task H wants to allocate the same

resource that task L holds, the desired run is not possible anymore. Therefore, the task H is

blocked until the task L releases the requested resource. This blocking is also called priority

inversion, because the lower prioritized task L runs instead of the higher prioritized task H [23].

At bounded priority inversion, the maximum delay time is the maximal time of task L’s critical

section. Figure 1.1 shows an example of a bounded priority inversion. Further, [2] defines the

unbounded priority inversion problem, where an additional task M is involved. The task M

0 5

L

H

t

p(x)

running

Figure 1.1. – Bounded priority inversion.

3

1. Introduction

0 5

L

M

H

t

p(x)

running

Figure 1.2. – Unbounded priority inversion.

preempts the task L that holds the resource that task H wants. Therefore, task H has to wait

until task M has finished the execution and the task L releases the resource. The blocking time

of task H increases about the execution time of task M. Figure 1.2 shows an example of an

unbounded priority inversion. The two examples showed that the task H is resumed at a later

point. However, in the case of an unbounded priority inversion the maximum delay of the

task H is the critical section execution time and additionally the execution time of any tasks

that can preempt task L, which makes the delay unpredictable. This leads to unpredictable

behavior, may lead to deadline violations and even to deadlocks, which is not acceptable in

real-time systems. The priority inversion problem has to be handled with so-called resource

protocols that reduce the blocking times, and guarantee that no unbounded priority inversion

happens.

Long-term and Short-term resource allocation

In a whole system, many resources are used by different tasks at the same time. Therefore, some

tasks would be blocked. The duration of a blocking period depends on the length of the critical

section and the execution time of higher prioritized tasks. There exist some synchronization

protocols that minimize the blocking time. The time of the critical section is the execution

time inside a task’s critical section, but only for a short-term allocation, when the task does not

suspend itself while running inside its critical section. If the task suspend itself, we speak about

a long-term allocation [2]. The long-term allocation brings the problem that the blocking time

increases about the time where the task is suspended.

This problem can be prevented if long-term allocations are not allowed, but this is not always

possible. In highly dynamic environments, it is often necessary to hold resources for long-terms.

A common example is shown in Figure 1.3. Suppose that a log task uses the SPI bus to save

logging data on an SD-card, on which a file system runs. The motor controller uses the SPI

bus sporadically after receiving an event from the environment. The user task communicates

among the UART port with a user and uses the SPI bus to operate on the SD-Card. There exist

a lot of different approaches to design this behavior. One solution is to divide the bus into

4

1.2. Problem

SPI

U
A

R
T

motorcontroller

log

user

task

resource

long-term allocation

short-term allocation

Motor SD-card

Figure 1.3. – Short- and long-term resource allocation example.

time-divisions. However, this increases the power consumption, because drivers have to run

the header and tail on every time-slot. Furthermore, it is hard to decide how long a slot should

be and how many slots should be assigned to a task. On a dynamic environment, a time-slot

could be used only rarely, like the motor controller or the user access to the SD-card. Therefore,

some slots would be left free. Thus, it is necessary to manage this in a more dynamic way.

Single-Core Protocols on a Multi-Core Environment

Single-core protocols are well researched and are used in many commercial and non-commercial

operating systems. Therefore, the idea to use the same protocols on a multi-core environment

is straightforward. Figure 1.4 shows the usage of the single-core resource protocol Priority

Ceiling Protocol (PCP) on a multi-core environment with two cores. On one core c0 runs task H

and task L; on the second core c1 runs task M. The task L is released at time 0 and before the

task M is released, the resource is allocated by the task L. The task M requests the resource,

but it is already assigned to the task L and therefore the task M suspends itself. The ceiling

priority of the resource is equal to task M’s priority, because only task M and task L use it. At

time 2, the task H is released. Task H has higher priority than the actual highest ceiling priority

on the system and therefore, task L is preempted. At this point the problem of a single-core

resource protocol occurs. The waiting time of the task M, until the allocation of the resource,

depends on the critical section time of the lower prioritized task as well as on all non-critical

section times of higher prioritized tasks on other cores outside a critical section. The aim of

many resource management protocols is to bound the blocking time to a function of critical

sections and not on non-critical codes [22]. Therefore, the possibility to test the system for

schedulability at development time is very pessimistic.

5

1. Introduction

0 5 10 15

L

M

H

t

p(x)

running (c0) running (c1)
ready waiting release finish

Figure 1.4. – PCP on a multi-core environment.

1.3. Outline

Chapter 2 presents some related works on resource management protocols and hardware

resource management peripherals.

In the next Chapter 3, the fundamentals for this work are introduced. The specification for

the whole system is specified. Besides, the base resource management protocol is described

in detail. The chapter concludes with the used technologies for the implementation of the

proposed approach.

Chapter 4 is the main part of this work and presents a new resource management protocol,

which is an extension of the base protocol presented in Chapter 3. The chapter concludes with

the implementation details of the FPGA and the software.

Chapter 5 contains the evaluation of the proposed resource management protocol. Firstly, the

used test-bed is presented and afterwards, the Hardware Resource Manager (HWRM) is tested

with well-directed stimulus. The chapter concludes with a case study of a general application.

Chapter 6 concludes the work with some potential future works and a summary of this work.

6

2. Related Work

In the past, the need of embedded real-time systems has grown. Therefore, multitasking

systems were invented. If more tasks use shared resources, they may interfere on each other

and the priority inversion problem may occur. To reduce this priority inversion problem, some

synchronization protocols were created. In the following section, some protocols for a single-

core environment are presented. Section 2.2 shows some protocols that could be used on a

multi-core environment because they eliminate the single-core protocol usage problem on a

multi-core environment. In the last section of this chapter, some solutions for a hardware

resource management are shown.

2.1. Resource Management on Single-Core Architectures

Sha et al. [23] invented the Priority Inheritance Protocol (PIP) and the Priority Ceiling Protocol

(PCP). Both protocols are developed for a fixed priority scheduling [19]. The idea of PIP is

that the priority of the task temporally rises to a higher priority than its base priority. If a

task L is in a critical section and a higher prioritized task H is blocked because of a resource

request, the task L inherits the priority of the task H. After releasing the resource, the temporally

risen priority falls back to its base priority. Consequently, the task H is blocked for at most the

duration of the critical section of task L [23]. Now it is possible to use the calculated maximal

blocking time to get a schedulability test at compile time. The PIP has two problems that have

to be handled. Firstly, PIP does not prevent deadlocks. Suppose a task 1 has the resource 1 and

the task 2 has the resource 2. At a later point, task 1 makes a request for resource 2 and task 2

makes a request for resource 1. This causes a deadlock, as both tasks will wait forever for the

requested resources and never release the resource they already own. Secondly, the PIP could

cause a chain of blocking. This means that the higher prioritized task has to wait for more than

one critical section of two or more lower-prioritized tasks.

These two problems are eliminated by using the PCP [23]. PCP defines a ceiling priority for

every used resource in the system. The ceiling priority of a resource is the highest task priority

which may use the resource. A task H can only enter into a critical section if its priority is

higher than the highest ceiling priority of resources already assigned to some tasks. Otherwise,

the task will be blocked. The task that does not cause a priority inversion runs with its base

priority until a priority inversion occurs. Then, the task inherits the highest task priority which

7

2. Related Work

is blocked at a resource request. This is the basic idea behind PCP, a more detailed description

can be found in [23].

The Stack Resource Policy (SRP) from Baker is an extension of the PCP. This protocol can be

used with read-writer locks, multiunit resources, a unique system wide stack and of course with

binary semaphore, like PCP does. Furthermore, SRP could also be used with an EDF-scheduling.

This protocol is not essential to understand this work, but for more details, I forward to [1].

In all presented protocols the critical section cannot be released by another more important

task. This leads to the problem that the blocking time of a critical section could be very long or,

much worse, the task suspends itself while it is in a critical section, e.g. timeout or waiting

for an event. Hence, the schedulability analysis has to keep this in mind. Baunach [5, 4, 3, 2]

invented a quasi-preemptive resource sharing, the so called dynamic hinting. The dynamic

hinting approach could be combined with PIP or PCP. In this approach, the protocol works

like the base protocol, but the task could be notified with a hint from its assigned resources. If

the request of a task is refused, the blocking task, which causes a priority inversion receives a

hint. The hint contains information as the requester’s priority or the maximal waiting time for

the resource request. Furthermore, in the case of PIP, a flag shows if a deadlock occurs. Thus,

the receiver can decide if collaborating or not. The hint can be received by calling a function

explicitly, an early wake up or by a task-defined hint handler. With this approach, the decision

of collaborating is totally defined in the context of the task that uses the resource. Therefore,

the long-time or long-term allocation is split dynamically by the task itself.

SmartOS, an operating system developed at the University of Würzburg, includes the dynamic

hinting approach [8, 2]. It has been developed especially for time-critical embedded systems.

2.2. Resource Management in Multi-Core Architectures

On a multi-core environment, the resource management has to control the access to a resource

by more than one core simultaneously. The research has gone in various directions. One

approach is to add a software layer [11, 16, 21, 13], that manages and forwards the entire

requests from the virtual processor on the top, to the physical multi-core environment at

the bottom. This leads to a huge computation power that does not exist on a MCU. This

virtualization approach uses a global scheduling proceeding. There is a global point in the

system, where the scheduling and therefore, the resource management is handled. The global

scheduler decides which task runs on which core. The opposite of a global scheduler is partial

scheduling. In this approach, the scheduler is assigned to a core and therefore, every core

runs independently from each other. Lastly, the hybrid scheduling is a mix of a global and a

partial scheduling proceeding. A scheduler manages more than one fixed assigned core but

the schedulers are independent from each other. In this thesis, I will focus only on the partial

scheduling approach.

8

2.2. Resource Management in Multi-Core Architectures

Rajkumar, Sha, and Lehoczky [22] extended the PCP to a multi-core version called Multiprocessor

Priority Ceiling Protocol (MPCP). This protocol works very similar to the single-core version,

with one major difference. In the single-core version, the tasks inherit the priority from a higher

prioritized task that makes a request for a common resource. Then, the task runs temporally

with the inherited priority. In the multi-core version, the tasks uses the highest priority in the

system and the ceiling priority to calculate its temporary priority. This is also called priority

boosting. I do not go into details here, but more precise information can be found in Chapter 3

and in [22].

The SRP multi-core version is called Multiprocessor Stack Resource Policy [14], and it has the

same properties as SRP in the single-core version. A task that requests a resource performs a

busy-waiting instead of self-suspension. This prevents other tasks from executing their code on

the same core and therefore, is it only applicable for very short critical sections. Gai et al. [14]

shows that Multiprocessor Stack Resource Policy (MSRP) performs even better than MPCP for

short critical sections.

Block et al. [9] introduced the Flexible Multiprocessor Locking Protocol (FMLP) that could be

used on a global and partial scheduling. This protocol performs a busy-waiting for short-time

resources and a self-suspension for long-time resources for a rejected resource request. The

programmer has to define which method should be used for each resource. The resources are

grouped into different groups that are protected by a group lock. In a group, it is only possible

to have all resources of short-time type or of long-time type. If a task is in a critical section, it

becomes non-preemptible, because this protocol does not support priority inheritance. In many

cases, it is hard to decide which type should be used for a resource.

O (m) Locking Protocol (OMLP) was invented by Brandenburg et al. [10]. The task has to hold

a virtual local resource to get access to a global resource. The virtual local resource exists

only once for each core. Every global resource has a FIFO queue and, on each core, there is

a priority-based queue. The task on the head of the local queue that assigns the virtual local

resource is also added to the global queue. Furthermore, its priority is boosted. Finally, the first

task in the global queue holds the global resource. This protocol is asymptotically optimal, this

means that in the worst case the blocking time for any task at any time has a constant upper

bound.

The Multiprocessor Synchronization protocol for real-time Open Systems (MSOS) in [20] shows

how resources could be shared on an independently developed real-time system. When the

task gets a resource, its priority is risen immediately. Therefore, it can be preempted only

from a higher prioritized task that is in a critical section, as in MPCP. MSOS defines that every

resource has a global FIFO queue and a local priority queue in each core. Every time a task on a

core requests a resource, it is added to the local queue and, on the global queue, the reference

to the core is added. The head of the global queue gets the resource and consequently the task

with the highest priority in the local queue gets the resource.

9

2. Related Work

All of the presented protocols protect against deadlocks. Furthermore, they all reduce the time

of a priority inversion to at most one critical section of lower prioritized tasks. However, the

problem for long-term and long-time resources remains. These restrictions are going to be

disposed in this work.

2.3. Hardware Resource Management

Freescale includes a Hardware Resource Manager (HWRM) into their MCP56xx and MPC57xx

series [24]. The semaphores, named in theses context lock gates, are requested and released

with a write operation to a register. To get a resource, the task has to write the number of the

core into a register and then the core status register shows if the semaphore is assigned to the

requested core. The resource is released when the task writes a special pattern to the same

register.

The XGATE-family from Freescale proposes another technique [18]. Two instructions are used

to set and to release the semaphores. After using the set semaphore opcode, the carry flag in

the status register shows if the request was successful. Thus, the requester has to check the

carry flag to know if the semaphore is hold by the core. This technique has the benefit that the

code is thread safe, because the status register is save in an interrupt or in a context switch.

In [25, 17], Texas Instruments shows their used semaphore hardware module. There is one

register for each resource that has to be used for requests and releases. The module includes

three different modes to access semaphores. In the first mode, direct semaphore request, the

request is done with a simple register reading. The read value shows if the core got the resource,

or which core holds it. The second mode is the indirect request. The request is done with

a write operation to the register. An interrupt notifies if the requested resource is granted.

This could be immediately after the request or at a later point in time. The third mode is the

combined mode, which is the combination of the two other modes. To request the semaphore,

the application has to read out the register. If the semaphore is free, the return value shows

this. Otherwise, the request goes into a queue and the core will be notified with an interrupt

when the semaphore is granted.

None of this, in commercial used approaches, uses a resource management protocol in its

HWRM. Therefore, the management protocol has to be implemented into software level to

each core. This brings a huge communication overhead for information about the priorities of

each task that the resource management protocol needs.

The dynamic hinting concept was also implemented into a multi-core environment. Baunach

[7, 12] uses an interrupt to indicate a hint, in case a more important core wants the resource.

The received hint is forwarded to the task that holds the resource and it decides to release the

resource earlier or not. The used resource management protocol is PIP and this brings some

problems with it, as for example deadlocks. Furthermore, the blocking time of a task could be

10

2.3. Hardware Resource Management

longer than one critical section of a lower prioritized task.

Hence, in this work I am going to combine the resource manager protocol for multi-core

environments with the hardware resource manager to overcome the prior showed problems.

11

3. Background

In the first section the definition for the used system is specified. The next section introduces

the Multiprocessor Priority Ceiling Protocol, the base resource protocol for the proposed Hinted

Multiprocessor Priority Ceiling Protocol (HMPCP) in Chapter 4. The used platform for the

FPGA implementation, the openMSP430, is introduced in Section 3.3. Finally, the last section

is going to show the used operating system in which the concept was integrated.

3.1. System Specification

In this section, the properties of the used system are formalized. The system consists of a set of

tasks T , cores C (n := #C), operating systems S and global resources R (m := #R).

Task

The tasks are scheduled independently on every core with a fixed priority (P-SP). Therefore,

the number of operating systems S is equal to the number of cores C , (#S
!
= #C). The set of

tasks Ti on a core ci ∈ C is defined as follows:

Ti ⊂ T ∧ {Ti ∩ T j|∀ j = 0...n− 1∧ j 6= i}= ; (3.1)

A task t i j ∈ Ti, where i is the core the task runs on and j is the task’s priority, is preemptive

with its defined WCET Ei j , relative deadline Di j , and the blocking time Bi j . It could be sporadic

or periodic, and if it is periodic, the period T̃i j is defined. Because of a static priority scheduling,

the base priority of a task Pt i j
is defined at compile time. The priority is ordered as follows:

Ptok
< Ptpl

with k < l ∧ o, p ∈ C (3.2)

This means, as higher the priority number is as higher is their priority and that is applied for

the whole system. The active priority p(t i j) ≥ Pt i j
of a task t i j, the priority that is used for

scheduling by the scheduler, is dynamically modified by the resource manager. At start-up the

active priority is equal to its base priority: p(t i j) = Pt i j

13

3. Background

Resources

All resources r ∈ R are shared across all cores in a non-preemptive way and are protected with

semaphores. The resources can be assigned only exclusively to one task at a time thus, to one

core. If a resource is assigned to a task t, the task becomes the task-resource owner

σr =

; if r is not assigned to a task

t ∈ T if r is assigned to task t
. (3.3)

The tasks t are statically assigned to a core c therefore, this leads to the core-resource owner

Θr =

ci ∈ C if σr = t ∧ t ∈ Ti

; otherwise
. (3.4)

Nested locks are allowed, therefore a task has the possibility to allocate more resources inside

its critical section. The resources hold by a task t are summarized in:

Rt = {r ∈ R|σr = t} (3.5)

If a tasks allocation is refused, the task is inserted into a waiting queue for the resource r. The

highest priority of a task t that is waiting for the resource r is defined as:

w(r) :=max{0, Pt | t waits for r} (3.6)

3.2. Multiprocessor Priority Ceiling Protocol

This section introduces the multiprocessor version of PCP that was developed by Rajkumar

et al. [22].

MPCP guarantees that the highest prioritized task that requests for a resource, waits at most

for one critical section time of a lower prioritized task. Therefore, the maximum blocking time

can be calculated and the schedulability analysis shows at development time if all deadlines

could be maintained.

The protocol has to know all tasks that use a resource. This could be hardcoded at development

time, but a better and more dynamic approach is to let task t register itself for every in-future-

needed resource r at startup:

ρr = {t ∈ T |t uses r} (3.7)

14

3.2. Multiprocessor Priority Ceiling Protocol

With the knowledge of ρr the ceiling priority c(r) of all resources r is calculated as:

c(r) :=

0 if ρr = ;

max{Pt | t ∈ ρr} else
(3.8)

The ceiling priority for every resource r is the maximal base priority of all tasks that use the

resource r. The calculation of all ceiling priorities c(r) results in the maximal ceiling priority

H =max {c(r) | r ∈ R} . (3.9)

The single-core version of PCP defines the current system ceiling priority

M =max{0, c(r) | r ∈ R∧σr 6= ;}. (3.10)

In the original version from Rajkumar et al. [22], nested locks are not allowed. Therefore,

for a successful resource request, the requested resource has to be free and the task priority

has to be higher than the current system ceiling priority M . To allow nested locks, it needs an

extension. To get a global resource and to allow nested locks, Equation (3.11) must hold. The

resource r is assigned to the task t if firstly, the resource is free and if secondly, the base priority

Pt is higher than the ceiling priority of all resources that are assigned to a task, excluding the

resources assigned to the requester task t.

σr = ; ∧ Pt >max{0, c(s) | s ∈ R∧σs 6= ; ∧σs 6= t} (3.11)

If Equation (3.11) cannot be maintained, the task suspends itself and is inserted itself into a

priority waiting queue. The task is resumed if it is the head of the priority waiting queue and

the condition is true.

To ensure that the priority inversion of a task is maximum one critical section of another task,

the priority of the task has to be adjusted dynamically at run-time. The priority of the task,

which causes a priority inversion, has to change. Rajkumar et al. [22], proposes to change the

priority already at the beginning of the critical section. This reduces the management overhead,

but could prevent some independent tasks from executing. A better solution is to adjust the

priority only if it is needed. Therefore, the priority is changed when is changed as soon as a

priority inversion occurs, i.e. when a higher prioritized task is inserted into the waiting queue.

In the PCP the task that causes a priority inversion inherits the priority of the blocked task. On

the other hand, in the multi-core version, this is not possible, because of the problem shown in

Section 1.2. Thus, the critical section should not be preempted by other tasks that are running

outside their critical section [22]. To keep to this, the active priority of task t is calculated

15

3. Background

0 5 10 15

L

M

H

t

p(x)

running (c0) running (c1)
ready waiting release finish

H+1+M

Figure 3.1. – Multiprocessor Priority Ceiling Protocol example.

according to Equation (3.12), which in the literature is called priority boosting.

p(t) :=

H + 1+ c(r) if task t ∈ T causes priority inversion on a resource r

Pt otherwise
(3.12)

Figure 3.1 demonstrates an example of MPCP. Consider that three tasks run on a system.

Task M is assigned to core c1 and task L and task H are assigned to the core c0. Task H is

the highest prioritized task and task L the one with the lowest priority in the system. Task L

is released first and requests a resource. It immediately gets the resource because it is free.

Afterwards, task M on the other core is resumed. Consequently, both tasks are running on

their assigned core. At time 1, task H is released and preempts task L in its critical section.

Until now, no priority inversion occurs. Thus, all priorities of the tasks are the same as their

base priority. At time 2 task M requests for the resource that is assigned to task L. Task M is

suspended and another task could run on the core. Now, a priority inversion occurs: the higher

prioritized task M waits for the lower prioritized task L. Hence, the priority of task L is boosted

and preempts task H. After releasing the resource, the boosted priority falls back to its base

priority and the resource is overhanded to task M. Thus, the blocking time of task M is, in the

worst-case, the WCET of task L’s critical section.

3.3. openMSP430

Girard [15] has developed the openMSP430 project1. It is an instruction compatible open

source implementation of the MSP430 MCU, which is a 16 Bit RISC architecture from Texas

Instruments. It has only a few differences to the original, as the cycles of all operation are not

exactly the same. The project includes a debugger and some peripherals, which are written in

Verilog. In addition, it can be synthesized for a FPGA or for an ASIC. For the code generation

the same compiler as for the original MSP430 can be used, such as GCC, a well-known open

source compiler for the MSP430. Furthermore, the project adds the support for a multi-core

environment. Every instantiated core communicates with only one debug interface. Every core

1http://opencores.org/project,openmsp430

16

http://opencores.org/project,openmsp430

3.4. SmartOS

has a program and memory interface that is connected to a memory. Further, each core has its

own interface to communicate with the peripherals.

3.4. SmartOS

SmartOS [2, 8] is an operating system developed at the University of Würzburg. The aim of

this operating system is time awareness and resource management, which is important for

dynamic systems, as Wireless Sensor Networks (WSNs). SmartOS brings many new concepts,

for example the timestamping of interrupt events [6]. Timestamps are very useful for a real-time

system, because they bring a time sense into the application and could be used to guarantee

the reaction of an interrupt within a defined deadline. The timestamp concept in SmartOS

reduces the discretion time error of the timestamps in average to zero [6]. This leads to more

precise timestamps.

Hardware interrupts are traditionally handled at a privileged mode in the kernel. This can slow

down the whole system, because the kernel can not be preempted by a task. If an interrupt

is handled for a low prioritized task, a higher prioritized task has to wait for the kernel exit.

This is similar to a priority inversion. To eliminate this problem, the interrupts are forwarded

to application level and handled there. Therefore, interrupts can be preempted by a higher

prioritized task.

To synchronize tasks, SmartOS introduces events and mutexes. Moreover, SmartOS adds

exception handling in a pure C written code. This makes the program more readable because

the error handling is handled at one point. Another focus of SmartOS is the resource handling.

The resources can be accessed with two simple methods: get and release. Moreover, the get

function allows to wait a maximum time for the resource request. This enables the programmer

to define hard real-time constraints that the operating system tries to manage. The return value

shows if the time is over or the resource is assigned to the core. At compile time, the programmer

could decide if he uses PIP or PCP as resource protocol. To reduce priority inversions, SmartOS

adds the dynamic hinting approach.

Dynamic Hinting

Priority inversion is a major problem for real-time systems. Some resource protocols reduce

the blocking time to a maximum of one critical section execution time of lower prioritized

tasks. Traditionally, the critical section cannot be divided. Therefore, the time in the critical

section could be very long for long-time and for long-term resource allocation. For this reason,

the dynamic hinting approach was created. The non-preemptive resource is handled in a

quasi-preemptive way. The task has the power to decide if it releases the resources earlier

or not, based on the blocked task’s priority and on its situation. This is important, because

17

3. Background

the task has to bring the resource back to the same status as before, when it resumes with

the resource. SmartOS provides three methods, which allow the task to react to a hint. The

easiest way is to query the hint at specific positions in the code. The explicit query does not

work well for long-term allocated resources. In the time where the task is suspended, it makes

more sense to give the resource to a more important task if it needs it. Hence, the kernel

calls, e.g. sleep, waitEvent, getResource, could return earlier as the defined timeout. The

return-value shows the occurrence of a hint and the task could query the hint information as

in the first approach. There, the hint is handled by an explicit query or by a self-suspension

call that resumes earlier. However, if the code runs for a long time without explicit query and

no kernel calls, the hint is not received. Therefore, a third approach exists, where a handler

manages the hint. This concept works very similarly to an interrupt, but the handler runs in the

context of the task. The handler could be changed dynamically at runtime and could therefore

react to a hint accordingly to the actual state of the task.

18

4. Hinted Multiprocessor Priority Ceiling
Protocol

This chapter will show the extended specifications and operations of my proposed HMPCP

that is based on the MPCP from Rajkumar et al. [22]. The first section extends the resource

management protocol with timeouts, because the base protocol does not support timeout

operations. In the second section, I combine the base protocol with dynamic hinting, developed

by Baunach [5, 4, 3, 2]. The last three sections show the structure of the developed resource

manager and the implementation details of the FPGA and the software extension.

4.1. Timeout

Timeouts are very useful features in an operating system and can be used to define hard real-

time constraints. A task suspends itself for a defined maximum time if the resource allocation

request was negative. Thus, the task does not prevent other tasks to run on the core while

it waits for a resource. Furthermore, the maximum waiting time is limited. This means that

a refused request cannot persist in a forever waiting if the resource is never released by the

owner task.

The HMPCP also has to manage the timeout operation. If no priority inversion on a resource

occurs anymore because of a timeout, the boosted priority has to be revoked to the base priority.

Figure 4.1 shows an example of the priority fallback. The task L runs on core c0 and the task H

runs on core c1. At time 0 task L is released and before task H is released, the resource is

0 5 10

L

H

t

p(x)

running (c0) running (c1)
ready waiting release finish

H+1+H
priority
rising

priority
falling

Figure 4.1. – Example of a priority rising, because of a priority inversion and a priority
falling after the elimination of the priority inversion.

19

4. Hinted Multiprocessor Priority Ceiling Protocol

assigned to task L. Between time 1 and time 2 both tasks run continuously on different cores.

At time 2 task H requests the resource owned by task L. Since the resource can not be allocated

by task H, the priority of task L is increased to its boosted priority. Task H waits for a maximum

time of four time slots, afterwards its request is expired. At this point, no priority inversion

occurs anymore and the boosted priority is no longer needed. Task L priority falls back to its

defined base priority.

4.2. Dynamic Hinting

Many resources are non-preemptive and some tasks could hold a resource for a long-term. In

the case that the task suspends itself with an assigned resource, the blocking time of a waiting

task could increase dramatically. Therefore, the resources should be released earlier if a priority

inversion occurs. However, this has to be decided by the task. It is important that the resources

are not released by the resource manager or by the operating system, than in this case the

resources are handled in a preemptive way. The task should have the possibility to save the

actual resource state and to close the resource correctly before releasing it. A quasi-preemptive

approach was invented by Baunach and is called dynamic hinting. In dynamic hinting, a hint is

sent to the task that causes a priority inversion. The hint includes the priority of the requested

task. With this information, the task decides if to release the resources earlier or not.

To get a hint, it is necessary to find all resources that causes a priority inversion. This critical

resources crit(t) ⊂ R of a task t are defined in Equation (4.1).

crit(t) := {Rt |∃r ∈ R, w(r)> Pt} (4.1)

The set includes resources that are assigned to task t that has a lower base priority than the

tasks that are requesting a resource. Therefore, the hint is sent to task t according to the

following condition:

hint(t) :=

w(r) if r ∈ crit(t)

; otherwise
(4.2)

The hint includes the information about the requester’s priority to decide if collaborating or not.

Figure 4.2 shows an example of the dynamic hinting on a multi-core environment. Suppose

that three tasks are running on three different cores. Task L is the first one that requests the

resource and therefore gets the resource. At time 1 task M requests the same resource, but the

allocation is refused. Because of the priority inversion, task L receives a hint and has its priority

boosted. The hint is handled, but the task decides to ignore it. Hence, its priority remains

boosted. Later, the task H on the core c2 requests the same resource. One more time, task L

receives a hint, but this time it decides to collaborate. It executes the tail for the component

20

4.3. Resource Manager

0 5 10

L

M

H

t

p(x) hint handling

running (c0) running (c1)
ready waiting release finish

running (c2)

Figure 4.2. – Hinted Multiprocessor Priority Ceiling Protocol example.

and releases the resource. The task with the highest priority allocates the resource and resumes

its work. The priority of task L is reduced back to its base priority, because the resource is not

assigned to it anymore. At time 5 the resource is released by task H and assigned to task M

considering that it has a higher priority than task L. As soon as task L has the possibility to

resume, it reallocates the resource and proceeds with its execution.

4.3. Resource Manager

Only a few resource protocols give explanations on how the protocol should be implemented.

There are many solutions and they usually depend on the underlying architecture. I used an

architecture with a non-shared memory. Hence, the communication between cores is only pos-

sible over global semaphores that are offered by the resource manager. In this implementation,

the resource management is divided into two layers as shown in Figure 4.3. The upper layer,

core c0

SWRMOS s0

task t0,0 task t0,k

core cn-1

SWRMOS sn-1

task tn-1,0 task tn-1,l

Hardware Resource Manager (HWRM)

hint passingresource request

Figure 4.3. – The hierarchy of the implemented Hinted Multiprocessor Priority Ceiling
Protocol (HMPCP).

21

4. Hinted Multiprocessor Priority Ceiling Protocol

the Software Resource Manager (SWRM), is implemented into the operating system and the

lower level, the HWRM, into the hardware. The HWRM is used as a normal MCU-component,

like a timer. Making the HWRM as dynamically as possible is only achievable if the HWRM

has no knowledge about tasks. The number of tasks on a core, with a few exceptions, is never

constant. This means, that the HWRM would have to use a dynamic structure for handling

all tasks, or to reserve so many places as the operating system could manage. This approach

would use to much space on the hardware. Thus, the HWRM has no knowledge about tasks.

To reduce programming errors, the access to the HWRM is always done from the local SWRM

on every core implemented into the kernel. The hint from the HWRM is received by the SWRM

and then is forwarded to the associated task.

4.4. FPGA Implementation Details

MCUs often do not have a protection for memory and peripherals, because no MMU or MPU

is implemented. This leads to the disadvantage that an incorrect software could bring the

system into a failure state or a peripheral is accessed without an assigned semaphore. For

this reason, the programmer has to pay more attention to avoid software errors. The used

architecture MSP430 does not implement memory or peripherals protection. Now, the HWRM

adds a protection mechanism for the shared peripherals that are protected by the semaphores.

This can be reached by using a crossbar switch. Figure 4.4 shows the general structure of

the HWRM. The HWRM has, for each core, an own peripheral bus and additionally an own

register set. This allows every core to use the register concurrently. Moreover, the bus is not

shared between cores and the resource manager. The advantage is that every core could add

non-shared peripherals which are accessible only from its peripheral bus. Another advantage

is that for the usage of the peripheral bus no bus synchronization mechanism is needed. The

resource manager manages all core operations concurrently and assigns the resource to the

core, according to the implemented resource management protocol. If a resource is assigned to

a core, the appropriated resource is connected via crossbar to the core. The crossbar switch

protects against the connection of more than one core to a peripheral, therefore a bus access

conflict between cores can never occur. The resource manager could have more resources

(m := #R) than peripherals (k := number of peripherals), since some resources are not related

to a peripheral, but used for task synchronization over cores.

The resource management protocol is implemented into the HWRM. To manage the resources,

the resource manager implements an array Qr for every resource with the length equal to the

number of cores, as shown in Figure 4.5. Every core has an exact position in the array it array

is internally handled as a priority queue. The array item is the base priority Pt of the task t

that will receive the resource. Section 4.5 explains which task should be added to the waiting

array, because this array handling is managed by the operating system si ∈ S. The core with

22

4.4. FPGA Implementation Details

SCTL

SFGL

SFGH

SOP

SINFL

SINFH

SCL

PeripherialcBusc0

SCTL

SFGL

SFGH

SOP

SINFL

SINFH

SCL

PeripherialcBusc1

SCTL

SFGL

SFGH

SOP

SINFL

SINFH

SCL

PeripherialcBuscn-1

shared
peripherial

CrossbarcSwitch

HardwarecResourcescManager

r0 r1 rk-1 rm-1

shared
peripherial

shared
peripherial

Figure 4.4. – Structure of the Hardware Resource Manager (HWRM).

the highest item, consequently the highest prioritized task that waits for the resource, is going

to be handled next for this resource. If the HMPCP assigns the resource to a core, the core is

Hardware Resource ManagerSoftware Resource Managers

qr,0

qr,1

qr,n-1

Qr

r∈R

Θr=c0

s0

s1

sn-1

Pt0,1
Pt0,5

Pt0,31

Ptn-1,9

Ptn-1,9Ptn-1,8

Figure 4.5. – Hardware array and software queue for resource management.

23

4. Hinted Multiprocessor Priority Ceiling Protocol

the core-resource owner Θr of the resource r. Moreover, the task’s priority Pσr
of the assigned

task is used for the protocol management.

Registers

Every core that uses the HWRM has its own register set, as shown in Appendix A.

A register that can be found at almost every peripheral is a configuration register. In this

component, it is called Semaphore Control Register (SCTL). A flag (IFG) shows if an interrupt

is pending. The interrupt flag could be polled by software or an ISR is called. The ISR is only

called if this is enabled by the IE flag. Many peripherals on the MSP430 clear the interrupt

pending flag automatically before the ISR is called. In my resource manager, this must be done

manually by setting the EOI flag. This flag is necessary to let the resource manager know when

the interrupt was finally handled. Moreover, there is a flag for synchronization of the whole

system at startup. The tasks have to announce their base priority for every used resource by

using the Semaphore Ceiling Register (SCL). This is necessary for the resource management

protocol. After all tasks announced their priority, the operating systems notifies this to the

HWRM by setting the CF flag in the SCTL register. Afterwards, it waits for the flag until it is

read as set. The flag is going to be read out as a 1 if all cores have written a 1 into it. This

synchronization mechanism guarantees that all ceiling priorities are set correctly, consequently

the resource management protocol works correctly with all known priorities.

The registers Semaphore Flag Low Register (SFGL) and Semaphore Flag High Register (SFGH)

are used to show if the resource r is assigned to the core c, (c ∈ Θr).

Semaphore Operation Register (SOP) is the register for handling the resource requests and

releases. Additionally, this register is used to change the actual priority in the array Qr or

to remove the item from the array. To perform one of the four operations (request, release,

overwrite, timeout) with the SOP register, it is necessary to write on the register the operation’s

code, and then read it, in order to execute the operation. Listing 4.1 makes a resource allocation

request. Firstly, the resource number, the task priority and the selected operation are written

into the register. Secondly, the register read takes the written information and executes the

operation. In case of an allocation operation, the returned value shows if the request was

successful or not. This write and read operations must be done atomically. This means, no

1 SOP = ALOC | num << 8 | priority ; // Set the register items
2 if(SOP == 0) // Read operation executes the request
3 // allocation refused
4 else
5 // allocation successful

Listing 4.1 – Semaphore Operation Register (SOP) usage example.

24

4.4. FPGA Implementation Details

context switches or interrupts may occur. Mostly, resource requests are done in the kernel of

an operating system and this is in most cases not interruptible. If the resource allocation is

refused, the request is inserted into the array Qr on the HWRM. The SOP register also allows

to overwrite the array item of its core. The overwrite command could evoke a problem. If the

item in the array is removed by the HWRM, because the resource is already assigned to the

core, the overwrite operation adds a new item into its position in the array. Theoretically, the

assigned item has to be overwritten. To eliminate this race condition the resource manager

detects an assignment problem and recovers it by removing the assignment and adding the new

item to the array. If no assignment problem occurs, the priority of the assignment is updated.

The timeout operation is very similar to the overwrite operation; a race condition could also

occur. The timeout operation should remove the item in the array, but if the resource is already

assigned to the core, the resource manager has to recover this. It releases the assigned resource

and assigns the next allocation according to the management protocol. A further operation

that the HWRM offers is the deallocation operation. It is used to release the assigned resource.

For the interrupt handling two registers are used: Semaphore Information Low Register (SINFL)

and Semaphore Information High Register (SINFH). This registers contain information about

the type of interrupt and the number of the resource for which the interrupt is thrown. Moreover,

they contain information of the maximum ceiling priority H and the ceiling priority c(r) of the

resource r for calculating the boost priority. A requester-priority field is also included in the

register, which is needed for hints.

Resource request

The HWRM has to manage any resource request, including concurrent requests from different

cores. Listing 4.2 is the Verilog implementation to handle resource requests. The generate

instruction indicates the compiler to generate this piece of code for every resource, consequently

this code is calculated simultaneously for every resource. The iteration marks all cores which

make a request for the resource in the index_request array. Moreover, it searches the core

with the highest requester-priority. This is important, because only the highest priority requester

gets the resource, according to the resource management protocol. Lines 14 to 16 define the

condition which the request must fulfill to get the resource immediately. As part of the condition,

the priority has to be greater than the ceiling_core priority. It represents the ceiling priority

of all resources that are assigned to cores excluding the core itself. The priority verification for

the core itself, is already done on the software level. If all cores request the same resource at

the same time, the highest core number has the highest priority. Finally, the core that has the

highest request priority and a successful condition, gets the resource immediately. All other

requests are added to the waiting array. They are going to be handled by the resource manager

later on.

25

4. Hinted Multiprocessor Priority Ceiling Protocol

1 generate
2 for(per_gen =0; per_gen < ‘R_NR; per_gen = per_gen +1) begin
3 always @ * begin : freealloc_or_request
4 reg [‘C_NR -1:0] index_alloc ;
5 reg [‘C_NR -1:0] index_request ;
6 index_alloc = ’h0;
7 index_request = ’h0;
8

9 // Search the core with the highest priority which does a request
10 for (core_inst =0; core_inst < ‘C_NR; core_inst = core_inst +1) begin
11

12 if (request_cmd [core_inst][per_gen]) begin // allocation command
13 index_request = index_request | (1 << core_inst);// save every request
14 if (ceiling_core [core_inst] < sop_prty [core_inst]// allocation possible
15 & (~| sema[per_gen] | | res_releasing [per_gen])
16 & alloc_max [core_inst])
17 index_alloc = (1 << core_inst);
18 end else if(overwrite_cmd [core_inst][per_gen]) // overwrite command
19 index_request = index_request | (1 << core_inst);
20 end
21

22 // Only one request could allocate the resource at one cycle!
23 res_free_alloc [per_gen] = index_alloc ;
24 res_request [per_gen] = index_request & ~ index_alloc ;
25 end

Listing 4.2 – Finding all resource requests and maximal one resource allocation to a
core.

HMPCP resource assignment

If the resource allocation can not be granted immediately, the request, with the requesting

task’s priority, is inserted into the waiting array. When a resource is released, the next task to

be assigned to it must be defined by the resource manager. How to search the next resource,

which will be assigned to a core, can be calculated in different ways. A simple way to do

this would be to find the highest priority in the waiting array by iterating over all resources

and all array items sequentially. This leads to a bad performance, because the complexity is

finally O (#R ·#C). Therefore, searching for the next resource and core that will be connected

together is divided into three simultaneous executing parts. Listing 4.3 searches the highest

priority for every resource and for every core that is in the waiting queue and it checks, in case

of a request, the requester-priority. The highest priority and the core number are going to be

saved for the next step, showed in Listing 4.4. Since only one resource can be assigned to a

core per request, according to the HMPCP, the resource with the highest priority is searched.

In case of two resources with the same maximum, the resource with the lower number is

selected first. The register res_index saves the selected resource, which will be assigned to

a core next. In the last step, shown in Listing 4.5, every resource has to save the number of

the core and the priority that will be connected next with the resource. The core number

and priority are saved concurrently for every resource, because the code is in a generate

26

4.4. FPGA Implementation Details

1 generate
2 for(per_gen =0; per_gen < ‘R_NR; per_gen = per_gen +1) begin
3 always @ (*) begin : search_highest_priority_per_resource
4 reg [‘C_NR -1:0] tmp_index ;
5 reg [6:0] tmp_max ;
6 reg [6:0] req_max ;
7 tmp_index = ’h0;
8 tmp_max = ’h0;
9 req_max = ’h0;

10

11 for(core_inst =0; core_inst < ‘C_NR; core_inst = core_inst +1) begin
12 if(res_request [per_gen][core_inst] // inclusive actual requests
13 & sop_snum [core_inst][per_gen]) begin
14 if(tmp_max <= sop_prty [core_inst]) begin
15 tmp_max = sop_prty [core_inst];
16 tmp_index = 1 << core_inst ;
17 end
18 if(req_max < sop_prty [core_inst])
19 req_max = sop_prty [core_inst];
20 end else begin
21 if(res_queue_valid [per_gen][core_inst] // queue items
22 & (tmp_max <= res_queue [per_gen][core_inst]))begin
23 tmp_max = res_queue [per_gen][core_inst];
24 tmp_index = 1 << core_inst ;
25 end
26 end
27 end /* end core_inst */
28 // save maximum priority with the number of that core
29 max[per_gen] = tmp_max ;
30 core_index [per_gen] = tmp_index ;
31 res_request_highest_priority [per_gen] = req_max ;
32 end
33 end
34 endgenerate

Listing 4.3 – Find the core number for each resource with the highest priority,
which requested the resource and save that into a register with the
corresponding priority.

1 always @ (*) begin : next_res_to_handle
2 reg [‘R_NR -1:0] tmp_index ;
3 reg [6:0] tmp_max ;
4 tmp_index = ’h0;
5 tmp_max = ’h0;
6

7 for(per_inst =0; per_inst < ‘R_NR; per_inst = per_inst +1) begin
8 if(tmp_max < max[per_inst]) begin
9 tmp_max = max[per_inst];

10 tmp_index = 1 << per_inst ;
11 end
12 end /* end per_inst */
13 // resource number with the highest priority
14 res_index = tmp_index ;
15 end /* next_res_to_handle */

Listing 4.4 – Find the resource number with the highest priority in all waiting queues.

27

4. Hinted Multiprocessor Priority Ceiling Protocol

1 generate
2 for(per_gen =0; per_gen < ‘R_NR; per_gen = per_gen +1) begin
3 always @ (*) begin
4 res_next_core [per_gen] = (res_index [per_gen])? core_index [per_gen]: ’h0;
5 res_next_priority [per_gen]= (res_index [per_gen])? max[per_gen] :6’h0;
6 end
7 end
8 endgenerate

Listing 4.5 – Set for every resource the core number which core will get the resource
as next.

block. Since, only one resource can be assigned to a core (see Listing 4.4), only one resource

(res_next_core[per_gen]) gets the identifier of that core. With the separation into three

parallel computing parts the complexity is reduced to O (#R+#C), but with a higher area

usage in the hardware.

Rise, Fall and Allocation signal

The signals that notify a task of a new allocated resource or of changing its priority according

to HMPCP are described in this section. Listing 4.6 is the Verilog implementation for this

operation. The HWRM detects a priority inversion and signals the associated core with a rise

priority message, which is also a hint message. A rise signal is thrown if some core executes

a resource request, which has a higher priority than the actual priority of the assigned task.

The higher requester-priority is additionally saved for the hint. After a priority inversion is

eliminated due to a timeout, the priority of a task has to be set back to its base priority. The

priority can be set back if and only if all priorities in all waiting arrays are lower than the actual

assigned resource, thus no priority inversion occurs. The fall signal is only forwarded if the

priority was already risen.

After a refused resource request, the request is going to be inserted into the waiting array. If

the condition in lines 32 to 38 is true, the resource is assigned to the waiting core in the next

cycle. This can happen only if the core contains the highest priority in the waiting array for

this resource, see line 33. Further, the current system ceiling priority is lower than the priority

of the waiting one and a core releases its resource.

All this three signals are used to synchronize the internal status and they are forwarded to the

interrupt section of the HWRM.

28

4.4. FPGA Implementation Details

1 for(core_gen =0; core_gen < ‘CORE_NR ; core_gen = core_gen + 1) begin
2 for (per_gen =0; per_gen < ‘RM_SEM_SIZE ; per_gen = per_gen + 1) begin
3 always @ (*) begin : rise_fall_alloc_signal
4 reg tmp_rise , tmp_fall ;
5 reg [6:0] max_priority ;
6 reg tmp;
7 reg core_releasing ;
8

9 tmp_rise = 1’b0;
10 tmp_fall = 1’b1;
11 max_priority = (rise_signal [core_gen][per_gen]) ? rise_priority_dly : ’h0;
12 core_releasing = 1’b0;
13

14 for (per_inst =0; per_inst < ‘RM_SEM_SIZE ; per_inst = per_inst +1) begin
15

16 tmp = | res_request [per_inst]
17 & res_priority [per_gen] < res_request_highest_priority [per_inst];
18 tmp_rise = tmp_rise | tmp;
19

20 if(tmp & max_priority < res_request_highest_priority [per_inst])
21 max_priority = res_request_highest_priority [per_inst];
22

23 tmp_fall = tmp_fall
24 & (res_next_priority [per_inst] < res_priority [per_gen]);
25 core_releasing = core_releasing | | res_releasing [per_inst];
26 end
27

28 rise_priority [core_gen][per_gen] = max_priority ;
29 rise_one_shot [core_gen][per_gen] = tmp_rise & sema[per_gen][core_gen];
30 fall_one_shot [core_gen][per_gen] = tmp_fall & sema[per_gen][core_gen]
31 & priority_risen [core_gen][per_gen];
32 alloc_one_shot [core_gen][per_gen] =
33 res_next_core [per_gen][core_gen] // core ,res next one to assign ?
34 & current_ceiling < res_next_priority [per_gen] // MPCP condition
35 & core_releasing // another core releases the resource
36 & ~| res_free_alloc [per_gen] // prevent alloc. while another free_alloc
37 & ~ res_remove_queue [per_gen][core_gen]// prevent handover at concurrent
38 & ~ res_overwrite_queue ; // ... timeout or overwrite
39 end
40 end /* end per_gen */
41 end /* end generate cpu */

Listing 4.6 – Calculation for the rise, fall and allocation signals.

29

4. Hinted Multiprocessor Priority Ceiling Protocol

Interrupt

Interrupts are used by the HWRM to inform the core about a new important message that must

be handled by the operating system. The Semaphore Information Low Register (SINFL) and

Semaphore Information High Register (SINFH) give the operating system the information from

the resource manager. There are three types of interrupts: allocation, rise and fall. The operat-

ing system distinguishes between them through the SINFL register. The allocation interrupt

is responsible for notifying the core that it receives a resource after waiting for it. The rise

interrupt notifies the core that the priority of one of its tasks has been boosted. Additionally, it

also notifies the core if a new hint is available for it. The fall interrupt notifies the core when

a previously boosted task priority is set back to the base priority. This interrupt can only be

thrown if a prior rise interrupt was handled. Furthermore, the HWRM eliminates potential race

conditions, e.g. the fall interrupt is pending and the kernel operation releases the resource.

After exiting the kernel mode, the interrupt would be executed. Hence, the resource manager

detects an already released resource and cancels the fall interrupt.

Listing 4.7 shows the code that checks for the next interrupt. This code is generated for

every core. Therefore, a simultaneous interrupt handling of every core is possible. Every

core iterates over every peripheral, from line 20 to line 37, to search for the next inter-

rupt. In each iteration the allocation, rise and fall signals are checked. The alloc_signal,

rise_signal and fall_signal which are checked in the conditions are signals inhered from

the alloc_one_shot, rise_one_shot and fall_one_shot signals, see Section 4.4.

For every kind of interrupt, the highest prioritized peripheral number that has to throw an

interrupt is saved. The core can handle only one interrupt at a time, therefore all interrupts

must be handled one after another. The most important interrupt must be thrown firstly and

this is handled from line 40 to line 54. To throw the interrupts in a useful order, the allocation

interrupt has the highest priority followed by the rise and the fall interrupt. The selected

interrupt is only thrown to the core if an older interrupt handling was successful. Therefore, if

the interrupt was handled successfully by the software, the code has to notify this by setting

the EOI flag in the SCTL register. Thus, the HWRM can throw the next queued interrupt.

Additionally, a register (irq_next_num) is used to save the peripheral number that throws the

interrupt to the core. This register is used to set the content in the SINFL and SINFH registers.

30

4.4. FPGA Implementation Details

1 generate
2 for(core_gen =0; core_gen < ‘C_NR; core_gen = core_gen + 1) begin
3

4 always @ (*) begin : next_irq
5 reg [7:0] index_rise , index_fall , index_alloc ;
6 reg [6:0] max_rise , max_fall , max_alloc ;
7

8 index_rise = ’hff;
9 index_fall = ’hff;

10 index_alloc = ’hff;
11 max_rise = ’h0;
12 max_fall = ’h0;
13 max_alloc = ’h0;
14

15 irq_rise [core_gen] = ’h0;
16 irq_fall [core_gen] = ’h0;
17 irq_alloc [core_gen] = ’h0;
18 irq_new [core_gen] = ’h0;
19

20 for (per_inst =0; per_inst < ‘R_NR; per_inst = per_inst +1) begin
21 // search for every event the highest priority
22 if (alloc_signal [core_gen][per_inst]
23 & (max_alloc < res_next_priority [per_inst])) begin
24 index_alloc = per_inst ;
25 max_alloc = res_next_priority [per_inst];
26 end
27 if(rise_signal [core_gen][per_inst]
28 & (max_rise < rise_priority [core_gen][per_inst])) begin
29 index_rise = per_inst ;
30 max_rise = rise_priority [core_gen][per_inst];
31 end
32 if (fall_signal [core_gen][per_inst]
33 & (max_fall < res_priority [per_inst])) begin
34 index_fall = per_inst ;
35 max_fall = res_priority [per_inst];
36 end
37 end
38

39 // set the interrupt signal according the interrupt priority
40 if(index_alloc != ’hff) begin /* Highest Priority */
41 irq_alloc [core_gen][index_alloc] = 1’b1;
42 irq_next_num [core_gen] = index_alloc ;
43 irq_new [core_gen][index_alloc] = eoi_acc [core_gen];
44 end else if (index_rise != ’hff) begin
45 irq_rise [core_gen][index_rise] = 1’b1;
46 irq_next_num [core_gen] = index_rise ;
47 irq_new [core_gen][index_rise] = eoi_acc [core_gen];
48 end else if (index_fall != ’hff) begin /* Lowest Priority */
49 irq_fall [core_gen][index_fall] = 1’b1;
50 irq_next_num [core_gen] = index_fall ;
51 irq_new [core_gen][index_fall] = eoi_acc [core_gen];
52 end else begin
53 irq_next_num [core_gen] = ’h0;
54 end
55 end
56 end
57 endgenerate

Listing 4.7 – Search the next interrupt to throw independently for each core.

31

4. Hinted Multiprocessor Priority Ceiling Protocol

Resource Utilization

I evaluated the number of LookUp Tables (LUTs), Flip-Flops (FFs), Block Random Access Mem-

ories (BRAM) and Digital Signal Processors (DSPs) of the whole system with different numbers

of instantiated cores and resources. All the measurements are taken from the implementation

report in the Vivado 2014.4 for the Xilinx Artix-7 XC7A100T (Speed Grade-1) FPGA. Table 4.1

summarizes the space utilization for each part of the FPGA for different configurations. BRAM

and DSP are not needed by the HWRM, but specific to each core. Therefore, their space usage

remains constant if the number of cores is constant.

Configuration LUT FF BRAM DSP

#C=1, #R=2 2612 (4.12 %) 1141 (0.90 %) 15 (10.74 %) 1 (0.42 %)
#C=1, #R=4 3113 (4.91 %) 1217 (0.96 %) 15 (10.74 %) 1 (0.42 %)
#C=1, #R=8 4844 (7.64 %) 1369 (1.08 %) 15 (10.74 %) 1 (0.42 %)
#C=2, #R=2 4901 (7.73 %) 2003 (1.58 %) 29 (21.48 %) 1 (0.83 %)
#C=2, #R=4 5915 (9.33 %) 2130 (1.68 %) 29 (21.48 %) 2 (0.83 %)
#C=2, #R=8 8939 (14.10 %) 2371 (1.87 %) 29 (21.48 %) 2 (0.83 %)
#C=3, #R=2 7227 (11.40 %) 2866 (2.26 %) 44 (32.22 %) 3 (1.25 %)
#C=3, #R=4 8781 (13.85 %) 3043 (2.40 %) 44 (32.22 %) 3 (1.25 %)
#C=3, #R=8 13 365 (21.08 %) 3373 (2.66 %) 44 (32.22 %) 3 (1.25 %)
#C=4, #R=2 9478 (14.95 %) 3740 (2.95 %) 58 (42.96 %) 4 (1.67 %)
#C=4, #R=4 11 292 (17.81 %) 3956 (3.12 %) 58 (42.96 %) 4 (1.67 %)
#C=4, #R=8 17 061 (26.91 %) 4387 (3.46 %) 58 (42.96 %) 4 (1.67 %)
Xilinx XC7A100T 63 400 126 800 135 240

Table 4.1. – Resource utilization with different configurations.

The FPGA resources needed by LUTs and FFs, on the contrary, depend on both number of

cores and of resources, as shown in Figure 4.6. Since the HWRM needs more registers if more

(a) LookUp Table (LUT) utlization. (b) Flip-Flop (FF) utlization.

Figure 4.6. – Diagrams of the FPGA resource utilization with different configurations.

32

4.4. FPGA Implementation Details

resources are instantiated and for every core, a new register set must be created. Therefore,

the space needed will increase for every added core or resource.

Performance

The performance measurements are done for the same FPGA and with the same development

environment as for the Resource Utilization. The development environment gives the infor-

mation about the Worst Negative Slack (WNS) into a report file. The WNS demonstrates the

remaining time between the longest path time on the system and the constrained clock time.

The contained clock in my environment is the MCLK. It is an 8 MHz clock, which corresponds

to a period of 125 ns. Table 4.2 shows the WNS with different environment configurations

and the resulting maximal achievable frequency for the MCLK. Moreover, it shows that for

some configurations, with a negative WNS, the timing constraints cannot be fulfilled with the

targeted 8 MHz frequency.

Configuration WNS max freq.

#C=1, #R=2 81.57 ns 23.03 MHz

#C=1, #R=4 66.94 ns 17.22 MHz

#C=1, #R=8 23.86 ns 9.89 MHz

#C=2, #R=2 69.74 ns 18.10 MHz

#C=2, #R=4 41.42 ns 11.96 MHz

#C=2, #R=8 0.26 ns 8.02 MHz

#C=3, #R=2 59.58 ns 15.29 MHz

#C=3, #R=4 39.19 ns 11.65 MHz

#C=3, #R=8 −5.92 ns 7.64 MHz

#C=4, #R=2 49.97 ns 13.33 MHz

#C=4, #R=4 24.89 ns 9.99 MHz

#C=4, #R=8 −17.01 ns 7.04 MHz

Table 4.2. – Performance re-
sults with different
configurations
(fMC LK = 8MHz).

Figure 4.7. – Maximal achievable fre-
quency with different
configurations.

Figure 4.7 shows the results in a graphical representation. It shows that the maximal achievable

frequency decreases rapidly with only a few cores and/or resources more. The cause of this

behavior is that the implementation is totally optimized for speed, because all its work is done

in only one cycle. Therefore, it is necessary to iterate over all cores and resources in only one

cycle and this needs the use of combinational logic that slows down the maximum achievable

frequency. Furthermore, the HWRM is a centralized module. With many instantiated cores

33

4. Hinted Multiprocessor Priority Ceiling Protocol

and peripherals that are all connected to this single point, the paths increase and therefore the

WNS is reduced.

4.5. SmartOS Implementation Details

The Software Resource Manager (SWRM) is implemented in the operating system si ∈ S and

extends local resource management with global resources. It works as a middleware, because

the local resources are going to be handled locally and in the case of global resources, the

commands are forwarded to the HWRM. The HWRM has for every resource and for every core

only one room in the array for all tasks. Therefore, the resource manager on the software side

must insert the correct task into the HWRM array, as shown in the example of Figure 4.5. To

manage this, for every resource r ∈ R a local priority queue qr is needed, which is ordered by

task priority. The head of the queue qr is inserted into the waiting array Qr on the HWRM.

At startup the HWRM and the internal structures have to be initialized as in Listing 4.8. First,

every task t has to announce its base priority Pt to the HWRM for every resource it might use.

Afterwards, for every global resource, the locally used structure is going to be initialized. The

counter nr , which counts the number of reentrant resource allocations from the same task, is

set to zero. The owner of each resource is set to "no task" and the locally waiting queue is

cleared. Finally, the interrupts have to be enabled for receiving the interrupts from the HWRM.

The SmartOS Resource Control Block (RCB) is extended with a field to indicate the global

resource number. If the field is set to 0xFFFF, the resource is configured as a local resource

and is therefore handled with the local resource manager algorithms. In the case of a global

resource, the syscalls (see Appendix C) are handled by the global resource manager algorithms,

which are shown in the next sections.

1 HW_RM_INIT (){
2 /* all tasks set their ceiling priorities */
3 while(r ∈ R){
4 nr := 0 // reentrant allocation counter
5 σr := ; // owner
6 qr := ; // priority waiting queue
7 }
8 /* enable hardware resource manager interrupts */
9 }

Listing 4.8 – Initialization of the Hardware Resource Manager (HWRM) and the
initialization of the data structures in the Software Resource Manager
(SWRM).

34

4.5. SmartOS Implementation Details

Resource allocation

Before a task can use a resource, it must allocate the resource. Listing 4.9 shows the pseudo

code for the global resource allocation, executed in kernel mode. Therefore, the code cannot

be interrupted. There are three different possible paths. In the first case, the resource r is just

assigned to task t, because it is the task-resource owner σr of resource r therefore, nothing has

to be done in the HWRM. The counter nr only needs to be incremented to handle the releasing

operation correctly.

In the second case, the software resource allocation queue is empty, hence no other task is

waiting for the global resource r in the current core. Before forwarding the allocation command

to the hardware, the hardware has to check if, according to MPCP, the allocation command is

permitted or not. In the lines 9 to 11, the highest base priority of all tasks, without itself, in the

core which are assigned to some resources are searched. In the case that the base priority of

the requester is higher than the calculated maximum, the allocation command is sent from

the operating system to the HWRM, see line 14. Otherwise, an overwrite command is sent

to the resource manager, see line 16. The overwrite command only inserts the task into the

resource manager without allocating it immediately. This process is necessary, because the

HWRM checks only the ceiling priorities without the requester core to allow nested locks.

1 allocation (t , r) {
2 ret := 0
3

4 if(σr == t){ //r is just assigned to t
5 nr := nr + 1;
6 return
7 } else if(qr == ;){
8 max := 0
9 while(s ∈ R)

10 if(max < Pσs
∧σs 6= t ∧σs 6= ;)

11 max = Pσs
12

13 if(max < Pt)
14 ret := ALLOCATION (Pt , r);
15 else
16 ret := OVERWRITE (Pt , r); // insert into the hardware queue
17 } else {
18 if(P_{head(q_r)} < Pt)
19 ret := OVERWRITE (Pt , r); // overwrite the actual queue item
20 }
21

22 if(ret 6= 0)
23 σr := t;
24 else {
25 qr = qr ∪ {t};
26 supsend (t);
27 }
28 }

Listing 4.9 – Resource request handling for a global resource.

35

4. Hinted Multiprocessor Priority Ceiling Protocol

In the last case, the waiting queue is not empty. In the case that the requester’s priority Pt

is higher than the head of the local queue qr , an update is needed in the HWRM, with an

overwrite command. In the lines 22 to 27, the return values from the allocation and overwrite

commands, which come from the HWRM, are checked. If the commands return a zero, the

resource is not assigned to the task and therefore, the task is inserted into the local queue and

is moved to suspended state. It will stay in this state until the resource is assigned to the task.

Otherwise, task-resource owner σr is set to t and the task t remains executing. Not only the

allocation operation could return a positive resource allocation flag, but also the overwrite

operation. This is needed, because other cores on the system remain operative. It could happen

that the waiting resource request is being assigned to the requesting core, while the core is

running in the kernel mode, where interrupts are disabled. The assignment interrupt is not

necessary anymore, because the return value of the overwrite command just shows the resource

allocation.

Resource deallocation

After a successful assignment of a resource the task has the possibility to release the resource.

Listing 4.10 demonstrates the pseudo code for the release of resource r. As in the allocation,

the release also runs in kernel mode. Before releasing the resource, the function checks how

often the resource was allocated by the same task. The resource is deallocated if, and only if,

the number of allocations was equal to the number of releasing, for the same resource and

for the same task. If this condition is true, the release command is sent to the HWRM and the

owner of the resource is set to empty. Then, the rise bit in the bit-field rt is cleared, that shows

an early received rise signal from the resource manager for the resource r. If no flag in the

bit-field rt is set anymore, the active priority p(t) of task t is set to its base priority Pt , because

it could happen that the priority is boosted because of a caused priority inversion.

1 deallocation (t ,r){
2 nr := nr - 1;
3 ASSERT(nr ≥ 0);
4 if(nr == 0){
5 DEALLOCATE (r);
6 σr := ;
7

8 rt &= ~(1 << id(r));
9 if(rt == 0)

10 p(t) := Pt ;
11 }
12 }

Listing 4.10 – Resource releasing handling of a global resource.

36

4.5. SmartOS Implementation Details

Resource timeout

The operating system offers the possibility to limit the maximum waiting time of a task for

a resource request through a timeout or a deadline. In the meantime, the task remains in

suspended state and cannot execute other code. If the maximum time is elapsed, the pseudo

code in Listing 4.11 is executed from the operating system, hence in kernel mode. First of

all, the task t is removed from the local waiting queue qr and the task is set to ready state.

Afterwards the HWRM is notified about this new event. Figure 4.8 demonstrates the used

operation, depending on the state of the local queue qr and the position of the the task in

it. If the timeout request is not the head of the local waiting queue, nothing needs to be

communicated to the HWRM. However, if it is the head and there is no request that could

replace the timed out request, the operating system uses the timeout command to remove it

from the HWRM’s waiting array Qr . If other tasks also wait in the local queue qr , the overwrite

command is used in order to replace the request in the global array Qr . The overwrite command

returns a value to show if the resource is already assigned to the core. If the resource has just

been assigned to the core, the head task in the queue is switched to ready state, because it is

1 timeout (t ,r){
2 old_head := head(qr);
3 qr = qr \ {t};
4 resume (t)
5

6 if(qr == ;) // only task t was in the queue
7 TIMEOUT (r);
8 else if (old_head == t){ // task t was the head of the queue
9 s := head(qr);

10 ret := OVERWRITE (Ps , r); // notify the HWRM about the new head
11 if(ret 6= 0){ // resource is just assigned
12 σr := s;
13 qr = qr \ {s};
14 resume (s)
15 }
16 }
17 }

Listing 4.11 – Timeout handling for a timeouted global resource request.

Hardware Resource ManagerSoftware Resource Managers

qr,0

qr,1

Qr
s0

s1

Pt0,21

timeout(r)

overwrite(Pt0,9
,r)

no command
to HWRM

{ Pt0,21
Pt0,9

Pt0,5
Pt0,1

Pt1,5
Pt1,5

Figure 4.8. – Used operations of timed out tasks.

37

4. Hinted Multiprocessor Priority Ceiling Protocol

the new owner of the resource and it is removed from the waiting queue.

Interrupt handling

An interrupt is a useful concept to interrupt the execution flow for an important message from

peripherals. The HWRM has one interrupt that is used for three kinds of messages. The highest

prioritized messages notify the assignment of a resource to a core. If a resource request for

a resource r was refused, the task’s priority is inserted into the HWRM array Qr . Afterwards,

when the resource is assigned to the requested core, according to HMPCP, the operating system

will be notified with the allocation interrupt and handle it as in Listing 4.12. The hardware

1 ISR_ALLOC (){
2 r := rISR; // read from register
3 t := head(qr)
4

5 σr := t;
6 qr := qr \ {t};
7 resume (t);
8 }

Listing 4.12 – Allocation interrupt handling.

provides in a register which resource is currently assigned to the core. The head task of the

local waiting queue qr is going to be resumed for its execution. Moreover, it is removed from

the local waiting queue and the resource owner is set to the new task. The second message that

the HWRM sends to the operating system is that a priority inversion occurs with the associated

hint information. This interrupt is handled as shown in Listing 4.13. The resource number is

read out from the SINFL register. The owner task σr of the resource r is going to be boosted

according to the HMPCP, but only for the first rise interrupt. Furthermore, it uses a bit-flag rt

for every task t that shows for which resource the task is risen. This is important to handle,

because the HWRM has no knowledge about tasks. Therefore, the rise and fall interrupts are

also sent more than once to a task, for every assigned resource an interrupt. At the end of

this interrupt handling, the hint is sent to the task that causes the priority inversion. The hint

1 ISR_RISE_HINT (){
2 r := rISR; // read from register
3 t := σr
4 if(rt == 0)
5 p(t) := H + 1+ c(r) // boosted priority
6 rt |= 1 << id(r);
7 send_hint (t, hint_infos); // hint_infos read from registers
8 }

Listing 4.13 – Rise and hint interrupt handling.

38

4.5. SmartOS Implementation Details

1 ISR_FALL (){
2 r := rISR; // read from register
3 t := σr
4

5 rt &= ~(1 << id(r));
6 if(rt == 0)
7 p(t) := Pt // set to base priority
8 }

Listing 4.14 – Fall interrupt handling.

includes information such as the priority of the resource requester.

The timeout operation could have the side effect that a priority inversion is eliminated. This

leads to the reduction of the task’s boosted priority to its base priority as shown in Listing 4.14.

The resource is going to be removed from the rise indication bit-flag rt . If no rise flag is set

anymore, the priority of the task is set back to its base priority. It means that the task does not

cause a priority inversion anymore with its assigned resources.

39

5. Evaluation

This chapter demonstrates the evaluation of the implemented Hinted Multiprocessor Priority

Ceiling Protocol. The first section introduces the test-bed used for the implementation and for

the time and functional measurements. Section 5.2 starts with some time behavior measure-

ments for the implemented HWRM. In addition, it shows some test benches of the hardware

implementation. These test benches test the functional behavior. The chapter concludes with a

use case of two shared resources, which simulated a common resource allocation pattern.

5.1. Test-bed

For the test-bed, the development board NexysTM4 DDR Artix-7 FPGA Board2 from Digilent is

used. On the board an Artix-7 FPGA from Xilinx is mounted. For synthesis, the tool Vivado

2014.4 from Xilinx is used. Xilinx offers a free available version called WebPack that can

be downloaded for free from their website3. The development board has many input and

output pins that are used for time measurements. Furthermore, the FPGA involves a huge

number of LUTs, FFs and BRAM. The internal memory is used for program and data memory.

Figure 5.1 shows the general structure of the test environment. The processor is a symmetric

quad-core, what means that all four cores are identical. The cores are openMSP430 cores,

each one using its own data and program memory. Therefore, there is no need for memory

partitioning. Hence, there is no need for concurrent bus access. The peripheral bus of each

core is connected with the resource manager. There are some peripherals between the cores

and the peripheral bus, which are local and accessible only for the bus owner. For every core

there is a timerA peripheral that can be used by the operating system. Moreover, each core has

its own multiplier and watchdog. The SFRs are special registers in the MSP430 architecture.

They include the enable and disable register for global interrupts and NMIs. OpenMSP430

extends this with a register in which the number of cores on the system is stored, as well as

the core’s own number. On the development board, a 100 MHz oscillator is mounted. This

oscillator is divided in a 8 MHz clock, corresponding to a period of 125 ns, and is used for the

whole system. The openMSP430 includes two components shared by the whole system: the

GPIO and the UART. Both components are protected by the HWRM and are only accessible if

2http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,719,1337&Prod=NEXYS4DDR
3http://www.xilinx.com/support/download.html

41

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,719,1337&Prod=NEXYS4DDR
http://www.xilinx.com/support/download.html

5. Evaluation

ROM

c0

RAM
SFRs

UU16x16
Multiplier

Watchdog

GPIO

TimerA

UART

openMSP430_0

ROM

c1

RAM
SFRs

UU16x16
Multiplier

WatchdogTimerA

openMSP430_1

ROM

c2

RAM
SFRs

UU16x16
Multiplier

Watchdog TimerA

openMSP430_2

ROM

c3

RAM
SFRs

UU16x16
Multiplier

Watchdog TimerA

openMSP430_3

R
e
s
o
u
r
c
e
U

M
a
n
a
g
e
r

Figure 5.1. – Test enviroment for the evaluations.

the resource is assigned to the core.

The USB-ISS4 device is used as a debug interface. This interface could be used as a USB to SPI,

I2C, GPIO or UART converter. The openMSP430 debugger could be used with UART and I2C.

In case of UART, for every core an own interface is needed. The I2C is a bus, which can be used

to communicate with all cores with only two lines: SCL and SDA. Every core is assigned with a

unique address and this makes it possible for the debugger to communicate with a sole core.

Moreover, there is a broadcast address, where all cores receive the commands.

The debugger does not only allow to debug the program on the core, but also to upload the

ELF-file into the program memory. Besides, it is also possible to upload the program by using

the broadcast address. Thus, all program memories are written at the same time. Certainly, all

program memories have the same content, but the core uses the core number from the SFR

register to decide which parts in the program should be run by it.

For the measurements, analog measures are done with the Lecroy WaveAce 102 oscilloscope

and digital logic measures with the PicoScope 2205 MSO oscilloscope.

5.2. FPGA standalone Test

This section shows the test outcomes of the HWRM without an operating system. Firstly, it

shows the timings of the allocation and release operation. Afterwards, some test benches for

the functional operations are shown. It starts with the resource assignment, like the allocation

4http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm

42

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm

5.2. FPGA standalone Test

operation or the assignment of a queued resource request by the HWRM. Further, the timeout

and overwrite operators are tested. This shows the assignment recovery of the HWRM to

prevent race conditions. The section is concluded with tests for the interrupt throwing.

Time Measurements

The HWRM has the job to assign and dissociate a resource to and from a core. The core sends

the command to the resource manager via a peripheral register. After receiving a request or

a release command, the HWRM is going to manage the command immediately. Figure 5.2a

shows the resource assignment of a free resource to a requested core. It shows that the resource

is assigned to the core after about 126 ns, which is the period of one clock cycle. This means

that a free resource is assigned to the core in the next cycle. For the case of a resource release,

the resource is deallocated from a core after about 126 ns. Figure 5.2b shows the deallocation

of the resource after a release command from the core. Moreover, the resource is deallocated

from the core after one clock cycle, as the allocation of a free resource.

If tasks on cores are blocked for execution because of a refused resource allocation, the requester

cores are inserted into the array on the HWRM. This could happen if the allocation is not

possible, because of the resources manager rules. After releasing an assigned resource, the

resource manager manages the next assignment of a queued resource request. Figure 5.2c

shows the assignment handover of a released resource to a queued resource request. One

cycle after the release command, the resource r0 is deallocated from the core, as shown in

Figure 5.2b. Concurrently, the queued request for resource r1 is assigned to the requested core.

(a) Free resource allocation
(blue = request
red = allocation).

(b) Assigned resource
deallocation
(blue = release
red = allocation).

(c) Resource handover
(blue = resource r0
red = resource r1).

Figure 5.2. – Time measurements of resource allocations/deallocations on the HWRM.

43

5. Evaluation

Resource assignment

On a multi-core environment, resource requests could be done, in contrary to a single-core

environment, from more than one core. Therefore, the resource manager must be able to

manage the resource requests concurrently. Listing 5.1 demonstrates a concurrent resource

request at lines 6 and 7. The measured assignments of the resource are shown in Figure 5.3a

and Figure 5.3b explains the same with a resource allocation graph. Firstly, the highest-priority

request gets the resource. After core c3 releases resource r0, the HWRM has two options to

assign the next resource to a core, because two requests have the same priority. One option is

to assign resource r0 to core c2 and the other option is to assign resource r1 to core c0. In my

implementation, the resource r0 is assigned to core c2, because of the lower resource number.

The lower the resource number, the higher the priority, in the case of equal task priorities which

perform a request. After executing this assignment, the second option is going to be used. In

the next step, core c0 releases resource r1, then the resource r0 is assigned to core c1 by the

HWRM. Similar as before, the lower resource number is assigned first. Here it is important

that both resources r0 and r1 are not assigned to the core c1, although both resource requests

priorities are equal. The reason for this is that this access pattern is not possible from a single

task, because the task sleeps if the resource request is refused. Therefore, the code simulates

the resource request from two different tasks in an operating system. The rest of the code is

straightforward.

1 /* initialization */
2 SET_CEIL (0, 16);
3 SET_CEIL (1, 15);
4

5 /* C_0 */ /* C_1 */ /* C_2 */ /* C_3 */
6 ALLOCATE (0, 13); ALLOCATE (0, 14); ALLOCATE (0, 15); ALLOCATE (0, 16);
7 ALLOCATE (1, 15); ALLOCATE (1, 14); ALLOCATE (1, 13); ALLOCATE (1, 12);
8 DEALLOCATE (0);
9 SCTL |= EOI;

10 DEALLOCATE (0);
11 SCTL |= EOI;
12 DEALLOCATE (1);
13 SCTL |= EOI;
14 DEALLOCATION (0);
15 SCTL |= EOI;
16 DEALLOCATE (1);
17 SCTL |= EOI;
18 DEALLOCATE (0);
19 SCTL |= EOI;
20 DEALLOCATE (1);
21 SCTL |= EOI;
22 DEALLOCATE (1);

Listing 5.1 – Example of a concurrent resource request and the resource assignment
depending of the priority.

44

5.2. FPGA standalone Test

(a) Resource assignment output.

c0 c1 c2 c3

13 14 15 16

15 14 13 12

13 14 15

15 14 13 12

13 14

15 14 13 12

13 14

14 13 12

13

14 13 12

13

13 12 13 12 12

r0

r1

t=0 t=1 t=2 t=3

t=4 t=5 t=6 t=7

r0

r1

r0

r1

r0

r1

r0

r1

r0

r1

r0

r1

r0

r1

c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

highest priority waiting

(b) Resource allocation graph.

Figure 5.3. – Resource assignment over the time of the executed code in Listing 5.1.

Listing 5.2 shows an example of nested locks and the resource assignment of more than

one resource at a time. The output of the measures are shown in Figure 5.4. At line 8, the

resource r0 is assigned to the core c1. In the next lines, the core c0 requests the resources r3

and r2, both are immediately assigned to it. The resource r3 is assigned to the core because the

requested priority is higher than the ceiling priority of resource r0. Therefore, the priority of

the requested resource is higher than the current system ceiling priority M . The allocation of

resource r2 is also granted although the priority is not higher than the current system ceiling

priority M . However, the HWRM only checks the ceiling priority of all other cores, except the

own core. That means, the ceiling priority excluding the core itself is 1, from the allocated

resource r0 to core c1. This access pattern is simulating a nested resource request by one task.

If the request is done by another task on the same core, this is handled by the local SWRM

that prevents a resource request to the HWRM. At line 11 the core c1 produces one more time

a resource request, but now the allocation is refused. The reason for that is that the ceiling

priority on all cores excluding itself is higher than the requested priority. Therefore, the task

must wait and after a defined timeout, if it still can not allocate the resource, the resource

request is removed. Figure 5.4 shows the output of the assigned resources to the cores and

that the resource r1 is never assigned to the requested core.

45

5. Evaluation

1 /* initialization */
2 SET_CEIL (0, 1);
3 SET_CEIL (1, 2);
4 SET_CEIL (2, 3);
5 SET_CEIL (3, 4);
6

7 /* C_0 */ /* C_1 */
8 ALLOCATE (0 ,1); /* allocation */
9 ALLOCATE (3 ,3); /* allocation */

10 ALLOCATE (2 ,3); /* allocation */
11 ALLOCATE (1 ,2); /* allocation refused */
12 TIME_OUT (1);
13 DEALLOCATE (3);
14 DEALLOCATE (2);
15 DEALLOCATE (0);

Listing 5.2 – Example code of nested locks and allocation prevention by the HWRM.

Figure 5.4. – Resource assignment output of the nested locks example in Listings 5.2.

Timeout operation

In a real-time environment the timeout operation is a useful approach to define hard real-time

constraints. The HWRM has no knowledge about time. Therefore, this problem has to be

handled by the operating system. To manage timeouts, the HWRM offers the timeout command

to signal the HWRM to remove the request from the global waiting array. This operation could

only be used if the local software waiting queue is empty, otherwise the overwrite command

must be used. Listing 5.3 shows an example of the execution of the timeout operation and in

Figure 5.5 the resulted resource assignments are shown. Firstly, all cores are requesting for

the resource concurrently and the core c3 gets the resource, because of the highest request

priority. Afterwards, it releases the resource and the resource is handed over to core c2, because

it has the highest priority in the waiting array. Here, the interrupts are disabled and therefore,

the resource assignment is not signaled to the core. The core c2 has no knowledge about the

assigned resource and executes the timeout operation. The item in the waiting array was

already removed because the resource is assigned to the core. Now, the HWRM detects this,

releases the allocated resource and hands it over to the next core c1, which has the highest

priority in the array.

46

5.2. FPGA standalone Test

1 /* initialization */
2 SET_CEIL (0 ,13);
3

4 /* C_0 */ /* C_1 */ /* C_2 */ /* C_3 */
5 ALLOCATE (0, 10); ALLOCATE (0, 11); ALLOCATE (0, 12); ALLOCATE (0, 13);
6 DEALLOCATE (0);
7 /* C_2 gets the resource */
8 TIME_OUT (0);
9 /* C_1 gets the resource */

Listing 5.3 – Example code that illustrate the timeout operation.

Figure 5.5. – Resource assignment output of the timeout example in Section 5.2.

Overwrite operation

The resource manager offers for every resource and for every core only one space to save a

priority of a requesting task. Therefore, in some situations, the array item has to be updated,

because of a new head in the software resource waiting queue. The resource manager offers

the overwrite operation, which overwrites the array item. Listing 5.4 shows an example of

the execution of this operator in line 7. At the beginning of this example, the resource r0 is

requested concurrently from all cores and the resource is assigned to the core with the highest

number. In my implementation, the core with the highest number has the highest priority. After

releasing the assigned resource from core c3, it will be assigned to core c2 because of its highest

number. This is also shown in Figure 5.6. The core c2 that holds the resource r0 executes

an overwrite operation and sets the priority to a lower value than the other resource request

priorities inside the array. In this case, the HWRM detects this incorrect assigned resource

allocation, releases the resource automatically and assigns it to core c1. Moreover, the released

allocation is inserted into the array to get the resource at a later moment.

Figure 5.6. – Resource assignment output which shows the recovery handling from the
HWRM with the example code in Listing 5.4.

47

5. Evaluation

1 /* initialization */
2 SET_CEIL (0 ,4);
3

4 /* C_0 */ /* C_1 */ /* C_2 */ /* C_3 */
5 ALLOCATE (0 ,4); ALLOCATE (0 ,4); ALLOCATE (0 ,4); ALLOCATE (0 ,4);
6 DEALLOCATE (1);
7 OVERWRITE (0 ,3);
8 SCTL |= EOI;
9 DEALLOCATE (0);

10 SCTL |= EOI;
11 DEALLOCATE (0);
12 SCTL |= EOI;
13 DEALLOCATE (0);

Listing 5.4 – Example code which recover the assignment of a resource by using the
overwrite operation.

Interrupt throwing

The aim of a resource management protocol is to reduce the time of priority inversions. The

solution in the HMPCP is to boost the priority of the task that causes a priority inversion. The

core c1 with the two assigned resources, in Listing 5.5, causes a priority inversion with both

resources. Thus, the priority of the tasks should be increased to their boost priority. The timeout

could have the side effect that the priority inversion is eliminated. In that case, the boosted

priority should be set back to the task’s base priority. The information to let the operating

system know about rising or falling of the task’s priority is signaled with an interrupt from the

HWRM as shown in Figure 5.7. For every assigned resource to a core, an interrupt is generated

and the operating system manages, with the information from the HWRM, the priorities of

the tasks. Besides, the example code shows the detection of a priority inversion when a rise

interrupt is thrown. Firstly, it is detected when the core c1 makes a request for the just assigned

resource r0, because of its higher priority. Secondly, it detects a priority inversion at the request

from core c2 to the resource r2, which is not assigned to the core c0, although it has a higher

priority than the assigned resources to core c0 (1 and 2). This happens, because the priority of

core c2 resource request(4) is not higher than the actual ceiling priority (4).

A rise interrupt is thrown from the HWRM if a task causes a priority inversion. The fall interrupt

Figure 5.7. – Rise and fall interrupt signals of the example code in Listing 5.5.

48

5.2. FPGA standalone Test

1 /* initialization */
2 SET_CEIL (0, 4);
3 SET_CEIL (1, 4);
4 SET_CEIL (2, 4);
5

6 /* C_0 */ /* C_1 */ /* C_2 */
7 ALLOCATE (0 ,1);
8 ALLOCATE (1 ,2);
9 ALLOCATE (0 ,3);

10 SCTL |= EOI; /* ack rise irq res0 */
11 SCTL |= EOI; /* ack rise irq res1 */
12 TIME_OUT (0);
13 SCTL |= EOI; /* ack fall irq res0 */
14 SCTL |= EOI; /* ack fall irq res1 */
15 ALLOCATE (2 ,4);
16 SCTL |= EOI; /* ack rise irq res0 */
17 SCTL |= EOI; /* ack rise irq res1 */
18 TIME_OUT (2);
19 SCTL |= EOI; /* ack fall irq res0 */
20 SCTL |= EOI; /* ack fall irq res1 */
21

22 DEALLOCATE (0);
23 DEALLOCATE (1);

Listing 5.5 – Example code which produces rise and fall interrupts, by requests from
a owner resource and a request from a non owner resource.

is thrown if the priority inversion is eliminated by a timeout of the requested task. The interrupts

can be handled only sequentially. Firstly the rise interrupt is thrown because its priority is higher

than the one of the fall interrupt. The interrupt could be handled only in situations where

the processor is outside kernel mode, because kernel mode deactivates interrupts. Listing 5.6

simulates a situation in kernel mode. Core c0, which owns the resource has disabled the

interrupts. The second core c1 requests for the resource r0, but the request is refused because it

is not free. An interrupt, to boost the task’s priority, is sent to the core c0 to which the resource is

assigned. The interrupt cannot be detected, because of the disabled interrupts. Afterwards the

timeout operation is called from core c1. The fall interrupt will be thrown, after acknowledging

the rise interrupt. The request is canceled with the timeout operation and consequently the

priority inversion is eliminated. Figure 5.8 demonstrates the output signal of the interrupt

signals, the assignment of the resource and the entry of a request in the waiting array. The rise

interrupt is immediately thrown after a refused resource request. The queue entry signal is

risen after a cycle, but the HWRM takes the refused resource request into consideration just at

the time of a resource request. Afterwards, the rise interrupt is canceled, while the queued core

is removed by a timeout operation and the fall interrupt is also canceled. With this recovery,

the code must not handle the interrupts of a just removed priority inversion.

49

5. Evaluation

1 /* initialization */
2 SET_CEIL (0, 11);
3

4 /* C_0 */ /* C_1 */
5 ALLOCATE (0, 10);
6 /* enter kernel mode */
7 ALLOCATE (0, 11);
8 TIME_OUT (0);
9 DEALLOCATE (0);

10 /* exit kernel mode */

Listing 5.6 – Example code where the interrupt is canceled by the HWRM.

Figure 5.8. – Output signals of the code in Listing 5.6.

5.3. Use case: Shared Resources

This section presents a common resource sharing problem on an embedded real-time system.

Suppose that three tasks are running on three different cores c0 . . . c2. Every task has a different

resource access pattern, as shown in Figure 5.9. The task t0,51 on the core c0, with base priority

Pt0,51
= 51, uses the GPIO component in a short-term allocation way. In the same way the task

t2,52 with base priority Pt0,52
= 52 on core c2 uses the UART component. The third task t1,50

on core c1 uses both resources, the GPIO and the UART, in a long-term way. This means that

this task suspends itself while it owns the resources. Task t1,50 is the task on the system with

the lowest priority, therefore, it could cause the priority inversion problem. The two tasks

task t0,51 task t1,50 task t2,52

GPIO UART

task

resource

long-term allocation

short-term allocation

Figure 5.9. – Structure of the shared resources example.

50

5.3. Use case: Shared Resources

which make a short-allocation, use the resources very shortly: they request the resource, send

a header. Then they use the component and, before the resource is released, the tail is sent

to close the resource. That critical section never uses a functionality which suspends the task.

However, the task t1,50 suspends itself during an allocated resource, like demonstrated in

Listing 5.1. All tasks already announced the HWRM about their base priority for every used

resource. Afterwards, both resources are assigned by the task t1,50 and the header of both

components is executed. The task accesses the GPIO and UART components. This is followed

by a sleep of 200µs and finally an access to the GPIO component happens one more time.

This execution is repeated five times. Afterwards, the components are closed by calling the

tail functions and the resources are released. This flow is repeated every 5 ms (period of the

task t1,50 is T̃1,50 = 5ms). Listing 5.1a does not collaborate in the case of a hint. Listing 5.1b

however, releases its resources on every hint but needs some extra code for handling it. For the

second resource request in line 10, the code checks for an early wake-up. If an early wake-up is

thrown, the just assigned GPIO resource is released and the task requests one more time for it.

Thereby, the task shortens the time of priority inversion. After getting the resource, the request

for the second resource is started one more time. At line 28 the task sleeps for 200µs. It could

return earlier than 200µs, in case a hint, caused by a priority inversion, is received. In the

example both resources are closed and released by the task. Afterwards, it resumes to allocate

the resources like at lines 10 to 14. After assigning both resources once again, it checks for a

remaining sleep. Otherwise, it resumes with the normal execution flow.

Here, a concurrent run of all tasks is tested. The two higher prioritized tasks t0,51 and t2,52 are,

for convenience, periodic tasks with a period of T0,51 = 3.5 ms and T0,55 = 3 ms. Certainly, they

could also be sporadic tasks. The test measures the blocking time, both for the conventional

approach and the one time with the dynamic hinting approach. The results are listed in

Table 5.1. The blocking time B0,51 contains the time of priority inversion caused by task t1,50.

Blocking time No hinting With hinting

average case B2,52 688.0µs 302.7µs
worst case B2,52 794.6µs 319.4µs

average case B0,51 856.5µs 399.7µs
worst case B0,51 1229.0µs 465.1µs

Table 5.1. – Average and worst case waiting time measurements.

However, the blocking time B2,52 contains additionally the priority inversion delay caused

by task t0,51. This delay is very short, because it allocates the resource, then it does a GPIO

operation and releases the resource immediately. The blocking times show that the blocking

time of task t0,51 is longer than the time of task t2,52. The reason for that is that task’s t1,50

GPIO resource allocation has a longer critical section time than the UART resource assignment.

The table also shows, for this test case, a drastic reduction of the blocking time with the usage

51

5. Evaluation

1 OS_DECLARE_TASK (t_1 , 100, 50);
2 OS_TASKENTRY (t_1) {
3 Time_t tdeadline ;
4

5

6 getCurrentTime (& tdeadline);
7 while (1) {
8

9 while (! getResource (& reGPIO));
10 while (! getResource (& reUART));
11

12

13

14

15 uart_header ();
16 gpio_header ();
17

18 for(int i = 0; i < 5; i++){
19 Time_t tNext;
20

21 P3OUT |= 0x80;
22 putchar (1);
23 P3OUT &= ~0 x80;
24

25 getCurrentTime (& tNext);
26 tNext += 200;
27

28 sleepUntil (& tNext);
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 }
44 P3OUT &= ~0 x80;
45 uart_tail ();
46 gpio_tail ();
47 releaseResource (& reGPIO);
48 releaseResource (& reUART);
49

50

51 tdeadline += 5000;
52 sleepUntil (& tdeadline);
53 }
54 }

(a) No collaboration on a hint.

1 OS_DECLARE_TASK (t_1 , 100, 50);
2 OS_TASKENTRY (t_1) {
3 Time_t tdeadline ;
4

5 os_DHSetEarly (HINT_PRIORITY);
6 getCurrentTime (& tdeadline);
7 while (1) {
8

9 while (! getResource (& reGPIO));
10 while(getResource (& reUART) == -1){
11 releaseResource (& reGPIO);
12 /* no assigned resource */
13 while (! getResource (& reGPIO));
14 }
15 uart_header ();
16 gpio_header ();
17

18 for(int i = 0; i < 5; i++){
19 Time_t tNext;
20

21 P3OUT |= 0x80; /* -------- */
22 putchar (1); /* workload */
23 P3OUT &= ~0 x80; /* -------- */
24

25 getCurrentTime (& tNext);
26 tNext += 200; /* wait 200 us */
27

28 while(sleepUntil (& tNext) == -1){
29 /* early wake up */
30 uart_tail ();
31 gpio_tail ();
32 releaseResource (& reGPIO);
33 releaseResource (& reUART);
34

35 /* reallocate both resources */
36 while (! getResource (& reGPIO));
37 while(getResource (& reUART) == -1){
38 releaseResource (& reGPIO);
39 /* no assigned resource */
40 while (! getResource (& reGPIO));
41 }
42 }
43 }
44 P3OUT &= ~0 x80;
45 uart_tail ();
46 gpio_tail ();
47 releaseResource (& reGPIO);
48 releaseResource (& reUART);
49

50

51 tdeadline += 5000; /* period 5ms */
52 sleepUntil (& tdeadline);
53 }
54 }

(b) Collaboration on every hint.

Listing 5.1 – Task t1,50 which uses two resources (GPIO and UART) in a long-term resource
allocation way.

52

5.3. Use case: Shared Resources

of the dynamic hinting approach. Figure 5.10 graphically shows the blocking time reduction for

about the first 50 ms of the simulation. The blue signal in the analog plots is the waiting time

of task t0,51 and the red one for task t2,52. This signals come directly from the waiting array in

the HWRM. The digital signals in the bottom of the plots are the resource assignments to the

cores. The signal D0 shows the assignment of the resource r0 to the core c0. The second signal

(D1) shows the assignment of the same resource to the core c1. Signals D5 and D6 demonstrate

the assignment of resource r1 respectively to core c1 and to core c2. As the results and the

figure show, the approach can reduce the blocking time of higher prioritized tasks, even with

higher management overhead.

53

(a) Output signals without dynamic hinting.

(b) Output signals with dynamic hinting.

Figure 5.10. – Outcomes of the use case example for about the first 50 ms.

6. Conclusion and Future Work

The aim of this thesis was to improve the resource management for real-time multi-core

environments. The result is a new resource management protocol, called Hinted Multiprocessor

Priority Ceiling Protocol, which is based on the well-known multi-core resource management

protocol MPCP and on the dynamic hinting concept. The proposed resource manager is divided

into a software and a hardware layer. The HWRM enables cores to access global resources.

Moreover, it protects the external peripherals from concurrent access. The HWRM includes

the resource management protocol and therefore, it signals the software side about new

assignments, priority adjustments, and hints. The hints allow to use the resources in a quasi-

preemptive way. Therefore, it can help to reduce the allocation delay of long-time and long-term

resources. Upon receiving a hint, a task has the possibility to collaborate, because it knows best

how to handle the conflicting resource correctly. The test case has shown that the blocking is

extremely reduced in the average-case. Therefore, this new programming paradigm has a high

potential and provides many opportunities to improve the real-time resource management for

multi-core environments. Nevertheless, there exist many ideas on how to improve the proposed

resource management protocol: One extension could be the integration of a hardware timer.

This could move the timeout handling from software level to hardware level. The absolute

request timeout for a resource is a useful parameter for the information within a hint. The

more information the hint contains the better the task could react to it, e.g. by applying a

time-utility-function. Another topic could be to analyze the protocol in a more theoretical

way, since the schedulability analysis from the initial protocol MPCP does not support the

specification of resource allocation timeouts. Additionally, the hinting processing should be

integrated into the schedulability analysis. Otherwise, the analysis of the base protocol would

probably be too pessimistic. In this work, only global resources are handled. A future work

could analyze the integration of local resources into this concept, like nested locks of global and

local resources. The implemented HWRM is a centralized component, whose complexity grows

with increasing number of cores and resources. As shown in the performance measurements,

temporal constraints with more cores or resources might thus not be fulfilled anymore. To

eliminate this problem, one could develop a decentralized approach of the proposed concept

with constant or even predictable behavior.

55

Bibliography

[1] T. P. Baker. “A stack-based resource allocation policy for realtime processes.” In: Proc.

11th Real-Time Systems Symposium. Vol. 11. IEEE, Dec. 1990, pp. 191–200.

[2] M. Baunach. “Advances in Distributed Real-Time SensoSensor/Act System Operation.”

PhD thesis. Julius-Maximilians-Universität Würzburg, 2012.

[3] M. Baunach. “Collaborative Memory Management for Reactive Sensor/Actor Systems.”

In: IEEE 35th Conference on Local Computer Networks (LCN). Vol. 35. IEEE, Oct. 2011,

pp. 953–960.

[4] M. Baunach. “Dynamic hinting: Collaborative real-time resource management for reactive

embedded systems.” In: Journal of Systems Architecture 57 (2011), pp. 799–814.

[5] M. Baunach. “Dynamic Hinting: Real-Time Resource Management in Wireless Sensor/Act

or Networks.” In: 15th IEEE International Conference on Embedded and Real-Time Com-

puting Systems and Applications (RTCSA’09). Vol. 15. IEEE, Aug. 2009, pp. 31–40.

[6] M. Baunach. “Handling Time and Reactivity for Synchronization and Clock Drift Calcula-

tion in Wireless Sensor/Actuator Networks.” In: Proc. of the 3rd International Conference

on Sensor Networks. 2014, pp. 63–72.

[7] M. Baunach. “Towards Collaborative Resource Sharing under Real-Time Conditions

in Multitasking and Multicore Environments.” In: IEEE 17th Conference on Emerging

Technology & Factory Automation (ETFA). Vol. 17. IEEE, Sept. 2012, pp. 1–9.

[8] M. Baunach, R. Kolla, and C. Mühlberger. “Introduction to a Small Modular Adept

Real-Time Operating System.” In: 6. Fachgespräch Sensornetzwerke. Aachen, 2007.

[9] A. Block, H. Leontyev, B. B. Brandenburg, and A. James H. “A Flexible Real-Time Locking

Protocol for Multiprocessors.” In: 13th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA 2007). Vol. 13th. IEEE, Aug. 2007,

pp. 47–56.

[10] B. B. Brandenburg and J. H. Anderson. “Optimality Results for Multiprocessor Real-Time

Locking.” In: Proc. 31st Real-Time Systems Symposium (RTSS). IEEE, Nov. 2010, pp. 49–

60.

57

[11] G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Arzen, V. Romero, and C.

Scordino. “Resource Management on Multicore Systems: The ACTORS Approach.” In:

IEEE Micro 31 (2011), pp. 72–81.

[12] E. Dilger. “Quasi-Präemptive Ressourcenverwaltung in Hardware.” Report at University

of Würzburg. 2011.

[13] J. Fornaeus. “Device hypervisors.” In: Proc. 47th ACM/IEEE Design Automation Conference

(DAC). Anaheim, CA, USA: IEEE, June 2010, pp. 114–119.

[14] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca. “A comparision of

MPCP and MSRP when sharing resources in Janus multiple-processor on a chip platform.”

In: 9th IEEE Real-Time and Embedded Technology and Applications Symposium. Vol. 9.

IEEE, May 2003, pp. 189–198.

[15] O. Girard. openMSP430. 1.14. Dec. 2013.

[16] G. Heiser. “The role of virtualization in embedded systems.” In: Proc. IIES ’08 Proceedings

of the 1st workshop on Isolation and integration in embedded systems. 2008, pp. 11–16.

[17] KeyStone Architecture Semaphore2 Hardware Module (SPRUGS3A). Texas Instruments.

Apr. 2012.

[18] J. Krücken. How to Configure and Use the XGATE on S12X Devices (AN2685). Freescale

Semiconductor, Inc. Mar. 2004.

[19] J. Lehoczky, L. Sha, and Y. Ding. “The rate monotonic scheduling algorithm: exact

characterization and average case behavior.” In: Proc. Real Time Systems Symposium.

IEEE, Dec. 1989, pp. 166–171.

[20] F. Nemati, M. Behnam, and T. Nolte. “Independently-developed Real-Time Systems on

Multi-cores with Shared Resources.” In: 23rd Euromicro Conference on Real-Time Systems

(ECRTS). Vol. 23. IEEE, July 2011, pp. 251–261.

[21] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and S. E. Smith. “Multicore

Resource Management.” In: IEEE Micro 28 (2008), pp. 6–16.

[22] R. Rajkumar, L. Sha, and J. P. Lehoczky. “Real-time Synchronization Protocols for Multi-

processors.” In: Proc. Real-Time Systems Symposium. IEEE, Dec. 1988, pp. 259–269.

[23] L. Sha, R. Rajkumar, and J. P. Lehoczky. “Priority Inheritance Protocols: An Approach

to Real-Time Synchronization.” In: IEEE Transations on Computer 39.9 (Sept. 1990),

pp. 1175–1185.

[24] M. Sim. A Practical Approach to Hardware Semaphores (AN4805). Freescale Semiconduc-

tor, Inc. Jan. 2014.

[25] TMS320TVI6487/8 Semaphore (SPRUEF6C). 8 February Revised. Texas Instruments. Dec.

2008.

58

List of Figures

1.1. Bounded priority inversion. 3

1.2. Unbounded priority inversion. 4

1.3. Short- and long-term resource allocation example. 5

1.4. PCP on a multi-core environment. 6

3.1. Multiprocessor Priority Ceiling Protocol example. 16

4.1. Example of a priority rising, because of a priority inversion and a priority falling

after the elimination of the priority inversion. 19

4.2. Hinted Multiprocessor Priority Ceiling Protocol example. 21

4.3. The hierarchy of the implemented Hinted Multiprocessor Priority Ceiling Protocol

(HMPCP). 21

4.4. Structure of the Hardware Resource Manager (HWRM). 23

4.5. Hardware array and software queue for resource management. 23

4.6. Diagrams of the FPGA resource utilization with different configurations. 32

4.7. Maximal achievable frequency with different configurations. 33

4.8. Used operations of timed out tasks. 37

5.1. Test enviroment for the evaluations. 42

5.2. Time measurements of resource allocations/deallocations on the HWRM. 43

5.3. Resource assignment over the time of the executed code in Listing 5.1. 45

5.4. Resource assignment output of the nested locks example in Listings 5.2. 46

5.5. Resource assignment output of the timeout example in Section 5.2. 47

5.6. Resource assignment output which shows the recovery handling from the HWRM

with the example code in Listing 5.4. 47

5.7. Rise and fall interrupt signals of the example code in Listing 5.5. 48

5.8. Output signals of the code in Listing 5.6. 50

5.9. Structure of the shared resources example. 50

5.10.Outcomes of the use case example for about the first 50 ms. 54

59

List of Tables

4.1. Resource utilization with different configurations. 32

4.2. Performance results with different configurations (fMC LK = 8 MHz). 33

5.1. Average and worst case waiting time measurements. 51

61

List of Listings

4.1. Semaphore Operation Register (SOP) usage example. 24

4.2. Finding all resource requests and maximal one resource allocation to a core. . . 26

4.3. Find the core number for each resource with the highest priority, which requested

the resource and save that into a register with the corresponding priority. 27

4.4. Find the resource number with the highest priority in all waiting queues. 27

4.5. Set for every resource the core number which core will get the resource as next. 28

4.6. Calculation for the rise, fall and allocation signals. 29

4.7. Search the next interrupt to throw independently for each core. 31

4.8. Initialization of the Hardware Resource Manager (HWRM) and the initialization

of the data structures in the Software Resource Manager (SWRM). 34

4.9. Resource request handling for a global resource. 35

4.10.Resource releasing handling of a global resource. 36

4.11.Timeout handling for a timeouted global resource request. 37

4.12.Allocation interrupt handling. 38

4.13.Rise and hint interrupt handling. 38

4.14.Fall interrupt handling. 39

5.1. Example of a concurrent resource request and the resource assignment depending

of the priority. 44

5.2. Example code of nested locks and allocation prevention by the HWRM. 46

5.3. Example code that illustrate the timeout operation. 47

5.4. Example code which recover the assignment of a resource by using the overwrite

operation. 48

5.5. Example code which produces rise and fall interrupts, by requests from a owner

resource and a request from a non owner resource. 49

5.6. Example code where the interrupt is canceled by the HWRM. 50

5.1. Task t1,50 which uses two resources (GPIO and UART) in a long-term resource

allocation way. 52

63

List of Acronyms

ASIC Application-Specific

Integrated Circuit

BRAM Block Random Access

Memory

CPU Central Processing Unit

C-EDF Clustered Deadline First

C-SP Clustered Static Priority

DSP Digital Signal Processor

EDF Earliest Deadline First

ELF Executable and Linking

Format

FF Flip-Flop

FIFO First In First Out

FMLP Flexible Multiprocessor

Locking Protocol

FPGA Field Programmable Gate

Array

G-EDF Global Earliest Deadline First

G-SP Global Static Priority

HMPCP Hinted Multiprocessor

Priority Ceiling Protocol

HWRM Hardware Resource Manager

GCC GNU Compiler Collection

GPIO General Purpose

Input/Output

I2C Inter-Integrated Circuit

ISR Interrupt Service Routine

LUT LookUp Table

MCLK Main CLocK

MCU Micro Controller Unit

MMU Memory Management Unit

MPCP Multiprocessor Priority

Ceiling Protocol

MPU Memory Protection Unit

MSOS Multiprocessor

Synchronization protocol for

real-time Open Systems

MSP430 Mixed Signal Processor 430

MSRP Multiprocessor Stack

Resource Policy

NMI Non-Maskable Interrupt

OMLP O (m) Locking Protocol

OS Operating System

PCP Priority Ceiling Protocol

PIP Priority Inheritance Protocol

65

P-EDF Partitioned Earliest Deadline

First

P-SP Partitioned Static Priority

RCB Resource Control Block

RISC Reduced Instruction Set

Computer

SCL Semaphore Ceiling Register

SCTL Semaphore Control Register

SFGH Semaphore Flag High

Register

SFGL Semaphore Flag Low

Register

SFR Special Function Register

SINFH Semaphore Information High

Register

SINFL Semaphore Information Low

Register

SoC System on Chip

SOP Semaphore Operation

Register

SP Static Priority

SPI Serial Peripheral Interface

SRP Stack Resource Policy

SWRM Software Resource Manager

UART Universal Asynchronous

Receiver Transmitter

USB Universal Serial Bus

WCET Worst Case Execution Time

WNS Worst Negative Slack

WSAN Wireless Sensor/Actuator

Network

WSN Wireless Sensor Network

66

Appendix

A. Resource Manager Registers

Register Short Form Register Type Address Initial State

Semaphore control SCTL Read/Write 0100H Reset with POR5

Semaphore flags low SFGL Read only 0102H Reset with POR

Semaphore flags high SFGH Read only 0104H Reset with POR

Semaphore operation SOP Read/Write 0106H Reset with POR

Semaphore information low SINFL Read only 0108H Reset with POR

Semaphore information high SINFH Read only 010AH Reset with POR

Semaphore ceiling SCL Write only 010CH Reset with POR

Register Bit Conventions

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

(w) No register bit implemented;

writing a 1 results in a pulse.

The register bit is always read

as 0.

-0,-1 Condition after PUC

-(0),-(1) Condition after POR

5Power On Reset

67

SCTL, Semaphore control

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 CF EOI IE IFG

r0 r0 r0 r0 rw-(0) r0(w) rw-(0) rw-(0)

CF Bit 3 Ceiling finish. Setting CF = 1 notifies the resource manager that the core

has announced all the used resources with the associated task priority. The

flag CF will be read with 1 if all cores have set the CF flag.

EOI Bit 2 End of interrupt. Setting EOI = 1 clears the interrupt flag and notifies that

the interrupt was handled.

1 The interrupt is handled and is ready for the next interrupt.

IE Bit 1 Interrupt enable. This bit enables the IFG interrupt request.

0 Interrupt disabled.

1 Interrupt enabled.

IFG Bit 0 Interrupt flag. Is automatically cleard if the EOI is setted.

0 No interrupt pending.

1 Interrupt pending.

68

SFGL, Semaphore flags low

15 14 13 12 11 10 9 8

SFG15 SFG14 SFG13 SFG12 SFG11 SFG10 SFG9 SFG8

r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0)

7 6 5 4 3 2 1 0

SFG7 SFG6 SFG5 SFG4 SFG3 SFG2 SFG1 SFG0

r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0)

SFG Bit n Semaphore flag.

0 Semaphore n is assigned to the core.

1 Semaphore n is not assigned to the core.

69

SFGH, Semaphore flags high

15 14 13 12 11 10 9 8

SFG31 SFG30 SFG29 SFG28 SFG27 SFG26 SFG25 SFG24

r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0)

7 6 5 4 3 2 1 0

SFG23 SFG22 SFG21 SFG20 SFG19 SFG18 SFG17 SFG16

r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0) r-(0)

SFG Bit n Semaphore flag.

0 Semaphore n+16 is assigned to the core.

1 Semaphore n+16 is not assigned to the core.

70

SOP, Semaphore operation

15 14 13 12 11 10 9 8

OP SNUM

r0 w w w w w w w

7 6 5 4 3 2 1 0

STATUS PRTY

r w w w w w w w

OP Bits Operation. Defines the operation which is sent to the resource manager.

14-13 00 Release semaphore. Deallocates the actually assigned resource.

The command is ignored if the resource is not assigned to the

core.

01 Allocate semaphore. Makes a resource request and returns a 1

in the STATUS field if the allocation was successful.

10 Timeout. Remove the queued request from the waiting array.

11 Overwrite. Overwrite the array item with a new value. A 1

is returned in the STATUS field if the resource was already

assigned to the core.

SNUM Bits Semaphore number. Defines the semaphore number to which the operation

refers to.

12-8

STATUS Bit 1 Operation status. Shows the return value of the allocation/overwrite opera-

tion.

0 Semaphore is not allocated to the core.

1 Semaphore is allocated to the core.

PRTY Bits Priority. The priority of the task which calls the operation.

6-0

71

SINFL, Semaphore information low

15 14 13 12 11 10 9 8

0 RPRTY

r0 r r r r r r r

7 6 5 4 3 2 1 0

AF RF FF SNUM

r r r r r r r r

RPRTY Bits Requester-priority. Shows the priority of the blocked task in case of a hint.

14-8

AF Bit 7 Allocation flag.

1 The interrupt is an allocation notification.

RF Bit 6 Rise and hint flag.

1 The interrupt is a rise priority/hint notification.

FF Bit 5 Fall flag.

1 The interrupt is a fall priority notification.

SNUM Bits Semaphore number. The interrupt is associated with this semaphore number.

4-0

72

SINFH, Semaphore information high

15 14 13 12 11 10 9 8

0 HCEIL

r0 r r r r r r r

7 6 5 4 3 2 1 0

0 CEIL

r0 r r r r r r r

HCEIL Bits Highest Ceiling. The ceiling priority of all resources on the entire system.

14-8

CEIL Bits Ceiling. The ceiling priority of the semaphore number SNUM in SINFL.

6-0

73

SCL, Semaphore ceiling

15 14 13 12 11 10 9 8

0 0 0 CSNUM

r0 r0 r0 w w w w w

7 6 5 4 3 2 1 0

0 PRTY

r0 w w w w w w w

CSNUM Bits Ceiling Semaphore number. The ceiling priority is set for this semaphore

number.

12-8

PRTY Bits Priority. The priority of the task that uses the semaphore number CSNUM in

this register.

6-0

74

B. SmartOS extended data structure

Resource Control Block (RCB)

typedef struct {
Event_t release_event ; // the event connected to this resource
TaskId_t owner ; // the owner task (NIL_ID for not allocated)
char flags ; // flags for Dynamic Hinting
char *name ; // resource name (for debugging only)
short (* fInit)(void); // resource initialization
short (* fGet)(const Time_t * deadline); // called during first allocation
short (* fRelease)(void); // called during last deallocation

short globalID ; // global resource ID (0xFFFF = local resource)
} Resource_t ; /* size = 7 words */

C. SmartOS extended API

Resources Declaration

OS_DECLARE_RESOURCE (name);
OS_DECLARE_RESOURCE_EXT (name , f *fInit , f *fGet , f * fRelease);

OS_DECLARE_GLOBAL_RESOURCE (name , id);

OS_DECLARE_GLOBAL_RESOURCE_EXT (name , id , f *fInit , f *fGet , f * fRelease);
OS_IMPORT_RESOURCE (name);

Resources Functions

void releaseResource (Resource_t * resource);
int getResourceUntil (Resource_t *resource , Time_t * deadline);
int getResourceFor (Resource_t *resource , Delay_t timeout);
int getResource (Resource_t * resource);
int testResource (Resource_t * resource);
int isResourceOwner (TaskId_t taskID , Resource_t * resource);

75

	Kurzfassung
	Abstract
	1 Introduction
	1.1 Terminology
	1.2 Problem
	1.3 Outline

	2 Related Work
	2.1 Resource Management on Single-Core Architectures
	2.2 Resource Management in Multi-Core Architectures
	2.3 Hardware Resource Management

	3 Background
	3.1 System Specification
	3.2 Multiprocessor Priority Ceiling Protocol
	3.3 openMSP430
	3.4 SmartOS

	4 Hinted Multiprocessor Priority Ceiling Protocol
	4.1 Timeout
	4.2 Dynamic Hinting
	4.3 Resource Manager
	4.4 FPGA Implementation Details
	4.5 SmartOS Implementation Details

	5 Evaluation
	5.1 Test-bed
	5.2 FPGA standalone Test
	5.3 Use case: Shared Resources

	6 Conclusion and Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Appendix
	A Resource Manager Registers
	B SmartOS extended data structure
	C SmartOS extended API

