

Charakterisierung von metallischen Lasersinterstrukturen

DIPLOMARBEIT

ausgeführt zum Zweck der Erlangung des akademischen Grades eines Master of Science (MSc)

> der Studienrichtung Maschinenbau unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Haas betreut von Dipl.-Ing. Martin Mortsch Institut für Fertigungstechnik

sowie

Assoc. Prof. Dipl.-Ing. Dr.techn. Norbert Enzinger Institut für Werkstoffkunde und Schweißtechnik

eingereicht an der Technischen Universität Graz Fakultät für Maschinenbau und Wirtschaftswissenschaften von

Markus Brillinger 1030718

Graz, 6. April 2015

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material, which has been quoted either literally or by content from the used sources.

Graz,

 Date

Signature

Eidesstattliche Erklärung¹

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz,

 Datum

Unterschrift

¹Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008; Genehmigung des Senates am 1.12.2008

Danksagung

Die vorliegende Abschlussarbeit stellt das Ende meines Studiums dar. Um so eine Arbeit in dieser Form erst zu ermöglichen, sind neben dem Verfasser noch eine Vielzahl anderer Personen nötig.

Zum einen sind das die Betreuer und unmittelbaren Ansprechpersonen vom Institut für Fertigungstechnik: Herr Prof. Dr. Franz Haas, Dr. Jörg Edler und DI Martin Mortsch. Das Team von der Werkstätte – Herr Franz Roschitz, Armin Pock und Daniel Arzberger – hat auch einen wichtigen Beitrag geleistet. Mein aufrichtiges Dankeschön!

Zum anderen möchte ich mich auch beim Institut für Werkstoffkunde und Schweißtechnik – allen voran bei Herrn Prof. Dr. Norbert Enzinger – sehr herzlich bedanken. Ohne seine Hilfe und Unterstützung wäre das Ganze nicht in dieser Form zustande gekommen. Nicht minder wichtig ist sein Team vom Labor, bestehend aus Thomas Friedl, Leander Herbitschek, Kurt Kerschbaumer, Herbert Penker, Daniel Prodinger und Gernot Stöfan.

Unserem Industriepartner Anton Paar GmbH in Graz sei ebenfalls gedankt. Herr DI Stefan Pfanner ist Mitarbeiter bei diesem Unternehmen und hat für die Herstellung der Prüfkörper mittels additiver Fertigungstechnologie Sorge getragen.

Ein weiterer Industriepartner ist TCM GmbH in Stainz. Herr Martin Treichler ermöglichte es mir, kostenlose Zerspanungsversuche durchzuführen. Einen herzlichen Dank dafür!

Der größte Dank gebührt aber meinen Eltern, Großeltern und Verwandten. Durch sie wurde mir ein Studium erst ermöglicht. Besonders freut es mich, dass meine Großmutter – Frau Prof. Dr. Emma Mayrhofer – die Korrekturlesung übernommen hat.

Mein aufrichtiger Dank gilt euch allen! Markus Brillinger Beteiligte Forschungseinrichtungen:

Institut für Fertigungstechnik

Institut für Werkstoffkunde und Schweißtechnik

Beteiligte Industriepartner:

Anton Paar GmbH

Kurzfassung - Abstract

Das Ziel dieser Arbeit ist es, mechanische und werkstoffkundliche Erkenntnisse von Bauteilen zu gewinnen, welche mit der Technologie des Selektiven Laserschmelzens (SLM) gefertigt werden. Dazu werden nach einer umfangreichen Literaturstudie (Kapitel 1 und 2) die Untersuchungen und die dafür benötigten Prüfkörper festgelegt (Kapitel 3). Die sich daraus abgeleiteten Ergebnisse dieser Untersuchungen werden sowohl grafisch als auch tabellarisch dargestellt (Kapitel 4). Eine kompakte Zusammenfassung aller Ergebnisse (Kapitel 5) gibt einen guten Überblick über die gewonnenen Erkenntnisse. Um zukünftige Forschungsprojekte und deren Relevanz für die Entwicklung dieser Technologie abschätzen zu können, rundet ein Ausblick (Kapitel 6) diese Arbeit ab.

The aim of this thesis is to find out the property of workpieces which are produced by the technology of Selective Laser Melting. Based on a lot of studies (chapter 1 and 2) the tests and the neccessary workpieces are defined by the author (chapter 3). The outcoming results of these tests are shown by illustrations, diagrams and tables (chapter 4). A short effective summary shows a good overview of all results (chapter 5). Chapter 6 contains a view of the scientific development concerning this technology.

Vorwort

Bohren, Schleifen, vielleicht auch Drehen oder Fräsen – das alles sind Bearbeitungen, welche der Großteil der Bevölkerung zumindest vom Namen her kennt. Die additive Fertigung, oder im Volksmund besser bekannt unter 3D - Druck, wird dagegen eher als unbekannt eingestuft, möchte man meinen.

Doch weit gefehlt! Laut einer BITKOM – Umfrage Ende 2013 kann sich zumindest jeder fünfte deutsche Bundesbürger (20 Prozent) vorstellen, einen 3D - Drucker zu nutzen, mit dem am PC entworfene Modelle als reale Gegenstände aus Kunststoff oder anderen Materialien ausgegeben werden können. Unter den 14 - bis 49 - Jährigen ist sogar jeder Vierte (25 Prozent) an einem 3D - Drucker interessiert. Viele Anwendungsmöglichkeiten des 3D - Drucks für Zuhause stecken zwar noch in den Kinderschuhen. Doch 3D - Drucker haben das Potenzial, dass auch Privatverbraucher auf ihre individuellen Bedürfnisse zugeschnittene Produkte schnell selbst herstellen können. [1]

Klingt interessant und innovativ? – Das ist es auch, zumindest wenn man den Medien Glauben schenken darf! Noch vor einiger Zeit nahm ich den 3D - Druck eher als Randerscheinung einer innovativen Produktionslandschaft wahr. Dann erfuhr ich im Jänner 2014 von einem interessanten Forschungsprojekt am Institut für Fertigungstechnik der Technischen Universität Graz. Dieses Projekt startete im März 2014 und sollte sich mit dem Direkten Metall Lasersintern (DMLS) beschäftigen. Dabei handelt es sich um ein spezielles, additives Herstellungsverfahren für Metalle, ähnlich dem 3D - Druck. Insbesondere sollten die Eigenschaften der erzeugten Bauteile aus Sicht eines Maschinenbauers untersucht werden.

Im Folgenden wird aus Gründen der sprachlichen Vereinfachung vorwiegend die männliche Form verwendet. Es sind jedoch stets Personen männlichen und weiblichen Geschlechts gleichermaßen gemeint.

Ich wünsche dem Leser mit der vorliegenden Arbeit viel Freude und hoffe, bei der einen oder anderen Person das Interesse für diese Technologie wecken zu können.

Graz, im März 2015 Markus Brillinger

Abkürzungsverzeichnis

Lateinische Buchstaben

Abkürzung	Bezeichnung	$\mathbf{Einheit}$
A	Bruchdehnung	%
Av	Kerbschlagarbeit	J
C	Konstante	_
d	Durchmesser	mm
E	Elastizitätsmodul	N/mm^2
F_X	Kraft in x-Richtung	N
F_Y	Kraft in y-Richtung	N
F_Z	Kraft in z-Richtung	N
F_{Zi}	einzelne Messwerte der Kraft in z-Richtung	N
f	Vorschub	mm/U
i	Index	_
k_c	spezifische Schnittkraft	N/mm^2
M_Z	Moment in z-Richtung	Nm
M_{Zi}	einzelne Messwerte des Moments in z-Richtung	Nm
n	Drehzahl	U/min
n	Anzahl der Messpunkte	_
P_C	Schnittleistung	W
P_V	Vorschubleistung	W
P_{ges}	Gesamtleistung	W
R_a	Mittenrauigkeit	μm
Re	Streckgrenze	N/mm^2
R_a	Mittenrauigkeit	μm
Rm	Zugfestigkeit	N/mm^2
$Rp_{0.2}$	Streckgrenze	N/mm^2
Rz	gemittelte Rautiefe	μm
Δt	Zeitintervall zwischen zwei Messpunkten	s
v_c	${ m Schnittgeschwindigkeit}$	m/min
z	Anzahl der Schneiden im Eingriff	_

Aufgabenstellung

Die Konstrukteure und Entwickler von heute haben oft Berührungsängste mit neuen, noch wenig erforschten Fertigungstechnologien. Diese Ängste sind nicht unbegründet, da nur eine genaue Kenntnis der verwendeten Fertigungstechnologie zu reproduzierbaren Ergebnissen führt. Diese wiederum ermöglichen eine konstant hohe Qualität der damit erzeugten Endprodukte.

Das Ziel dieses Forschungsprojektes ist sowohl die fertigungstechnische als auch die werkstoffkundliche Untersuchung von Bauteilen, die mit der Fertigungstechnologie des Direkten Metall Lasersinterns (DMLS) - auch Selektives Laserschmelzen (SLM) genannt - hergestellt werden. Folgende Eigenschaften sollen ermittelt werden:

- Festigkeit
- Härte
- Kerbschlagarbeit
- Mikrostruktur
- Maßhaltigkeit
- Oberflächenqualität
- mechanische Bearbeitbarkeit

Eine Gegenüberstellung dieser Ergebnisse mit den Eigenschaften eines herkömmlichen Halbzeuges legt Vor- und Nachteile dieser Fertigungstechnologie dar.

Die daraus gewonnenen Erkenntnisse sollen dem Entwickler neue Einsatzgebiete aufzeigen, dem Konstrukteur die Materialgrenzen nennen und dem Designer Gestaltungsfreiheit ermöglichen.

Inhaltsverzeichnis

Ei	desst	tattliche Erklärung	I					
D	Panksagung IV							
K	urzfa	ssung - Abstract	V					
V	orwoi	rt	'I					
A	bkürz	zungsverzeichnis VI	[]					
\mathbf{A}	ufgab	VII	Ĩ					
1	\mathbf{Einl}	leitung	1					
	1.1	Systematik der Fertigungsverfahren	1					
		1.1.1 Einteilung im deutschsprachigen Raum	1					
		1.1.2 Einteilung im angelsächsischen Raum	2					
	1.2	Additive Fertigungsverfahren	3					
2	Lite	eraturrecherche	6					
	2.1	Herstellungsprozesse	6					
		2.1.1 Selektives Lasersintern (SLS)	7					
		2.1.2 Direktes Metall Lasersintern (DMLS)	8					
	2.2	Werkstoff	1					
		2.2.1 Chemische Zusammensetzung	1					
		2.2.2 Gefügezusammensetzung	3					
		2.2.3 Wärmebehandlung	.4					
3	Unt	ersuchungsmethoden 1	8					
	3.1	Festigkeit	8					
	3.2	Härte	0					
	3.3	Kerbschlagarbeit	1					
	3.4	Mikrostruktur	2					
	3.5	Maßhaltigkeit	5					
	3.6	Oberflächenqualität	8					
	3.7	Mechanische Bearbeitbarkeit	8					
		3.7.1 Bohren	8					

7	\mathbf{Aus}	blick		86
6	\mathbf{Zus}	ammer	ıfassung	84
		5.7.3	Polieren	83
		5.7.2	Schleifen	82
		5.7.1	Bohren	75
	5.7	Mecha	nische Bearbeitbarkeit	75
	<u>.</u> .	5.6.3	Einfluss von Folgeprozessen	72
		5.6.2	Einfluss der Wärmebehandlung	71
		5.6.1	Einfluss geneigter Ebenen	68
	5.6	Oberfl	ächenqualität	68
		5.5.2	Einfluss der Wärmebehandlung	67
		5.5.1	Einfluss geneigter Ebenen	66
	5.5	Maßha	ltigkeit	66
		5.4.3	Schichtaufbau	62
		5.4.2	Gefügezusammensetzung	59
		5.4.1	Porösität	55
	5.4	Mikros	struktur	55
		5.3.4	Gegenüberstellung	54
		5.3.3	Halbzeug	53
		5.3.2	Lasergeschmolzenes Material mit Wärmebehandlung	52
		5.3.1	Lasergeschmolzenes Material ohne Wärmebehandlung	51
	5.3	Kerbso	hlagarbeit	51
		5.2.4	Gegenüberstellung	49
		5.2.3	Halbzeug	48
		5.2.2	Lasergeschmolzenes Material mit Wärmebehandlung	47
		5.2.1	Lasergeschmolzenes Material ohne Wärmebehandlung	46
	5.2	Härte		46
		5.1.4	Gegenüberstellung	44
		5.1.3	Halbzeug	42
		5.1.2	Lasergeschmolzenes Material mit Wärmebehandlung	40
	0.1	5.1.1	Lasergeschmolzenes Material ohne Wärmebehandlung	38
J	5 1	Festigl	eit.	38
5	Era	ohnisse		38
	4.2	Herste	llungsgeometrien	36
	4.1	Herste	llungsparameter	35
4	Pro	benher	stellung	35
		0.1.0		01
		373	Polieren	34
		372	Schleifen	33

Glossar

90

Literat	urverzeichnis	97
7.1	Datenblätter	106
7.2	Technische Zeichnungen	136
7.3	Messprotokolle	141
7.4	Sonstiges	151

1 Einleitung

Die Fertigungstechnik wird heutzutage als Grundlagendisziplin, wenn überhaupt, als Hilfswissenschaft in der Technik angesehen. In der Tat ist der mathematische Formalismus überschaubar und es gibt Unmengen an einfacher und verständlicher Literatur. Doch bei genauerer Betrachtung stellt man fest, dass es vor allem in dieser Disziplin auf die Erfahrung des Fertigungstechnikers ankommt, die in keiner Literatur zu finden ist.

Historisch kann man die Fertigungstechnik zu einer der ältesten technischen Wissenschaften zählen. Seit jeher versucht der Mensch, durch fertigungstechnische Kniffe Vorteile im alltäglichen Leben zu erzielen. Sei es in der Antike durch Verbindung zweier Holzarten zu einem Kompositbogen, um Pfeilen eine höhere Reichweite in einer Schlacht zu verleihen, oder sei es der Buchdruck (Johannes Gutenberg) mit standardisierten, beweglichen Lettern, um die rasche Ausbreitung von Neuigkeiten zu erreichen.

1.1 Systematik der Fertigungsverfahren

Systematisch wurde die Fertigungstechnik mit ihren Herstellungsprozessen mit Beginn der Industriellen Revolution im 18. Jahrhundert untersucht und klassifiziert. Während dieser Zeit entstanden auch Begriffe wie Produktion, Fertigung und Fabrikation. Gemeint ist heute das Gleiche wie damals: Die Herstellung von Wirtschafts- und Gebrauchsgütern.

1.1.1 Einteilung im deutschsprachigen Raum

Um Wirtschafts- und Gebrauchsgüter herzustellen, sind Fertigungsverfahren notwendig. Diese sind in der DIN 8580 systematisiert. Dabei werden 6 Hauptgruppen unterschieden, welche sich in zahlreiche tief gestaffelte Untergruppen aufspalten lassen. Klassifiziert werden Fertigungsprozesse bei dieser Norm nicht nur nach dem Herstellungsprinzip, sondern es wird auch auf die Veränderung der geometrischen Form des Bauteils und auf die Wandlung der Stoffeigenschaft innerhalb des verwendeten Materials Rücksicht genommen. Nachfolgende Abbildung 1.1 zeigt einen Auszug aus dieser Norm.

		Zusammenhalt schaffen	Zusammenhalt beibehalten	Zusammenhalt vermindern	Zusammenha	alt vermehren
	c	Hauptgruppe 1	Hauptgruppe 2	Hauptgruppe 3	Hauptgruppe 4	Hauptgruppe 5
ng der	Forn	Urformen (Formschaffen)	Umformen	Trennen	Fügen	
Änderu	jenschaft	(Stoffeig	Hauptgruppe 6 enschaften änderr	n durch	Beschichten
	Stoffeig		Umlagern von Stoffteilchen	Aussondern von Stoffteilchen	Einbringen von Stoffteilchen	

Abbildung 1.1: Einteilung der Fertigungsverfahren [2]

1.1.2 Einteilung im angelsächsischen Raum

Im angelsächsischen Raum hat sich eine andere Einteilung der Fertigungsverfahren durchgesetzt. Hierbei wird nicht mehr Bezug auf das Herstellungsverfahren an sich genommen, sondern die Einteilung orientiert sich ausschließlich an der Erzeugung der Geometrie [3]. Demnach wird die Gesamtheit der Fertigungsverfahren unterschieden in

- additive
- formative
- subtraktive

Fertigungsverfahren. Additive Fertigungsverfahren schaffen die gewünschte Geometrie durch Aneinanderfügen bzw. Auftragen von Volumselementen. Man nennt diese Fertigungsverfahren auch Schichtbauverfahren, weil die Geometrie aus einzelnen Schichten zusammengesetzt ist, welche sukzessiv nacheinander aufgetragen werden [4]. Alle Verfahren, die im herkömmlichen Sprachgebrauch als 3D - Druck bezeichnet werden, können dieser Untergruppe zugeordnet werden.

Formative Verfahren formen ein gegebenes Volumen in die gewünschte Geometrie um. Randbedingung ist die Volumskonstanz. Beispiele sind das Schmieden oder das Tiefziehen. [4]

Subtraktive Verfahren erzeugen die gewünschte Geometrie aus einem Halbzeug durch Abtragen definierter Bereiche, z.B. durch Drehen oder Fräsen. [4]

Weiters gibt es noch hybride Verfahren. Das sind jene Fertigungsverfahren, die eine Kombination der drei zuvor erwähnten Fertigungsgruppen darstellen und somit nicht eindeutig zugeordnet werden können. Darunter fallen zum Beispiel das Schweißen, das Härten und das Lackieren.

1.2 Additive Fertigungsverfahren

In weiterer Folge werden die additiven Fertigungsverfahren genauer betrachtet. Diese lassen sich wiederum zu Untergruppen zusammenfassen. Dabei ist es zweckmäßig, die Klassifizierung der Untergruppen nach dem Aggregatzustand des Ausgangsmaterials vorzunehmen, wie in Abbildung 1.2 verdeutlicht.

Abbildung 1.2: Einteilung der additiven Fertigungsverfahren [4]

In dieser Abbildung lassen sich alle additiven Fertigungsverfahren zuordnen. Diese werden auch als generative Fertigungsverfahren bezeichnet. Generative Fertigungsverfahren sind dadurch charakterisiert, dass das Hinzufügen von Material nur in diskretisierten Ebenen – also schichtweise – erfolgt. Die übereinander gestapelten Ebenen ergeben schließlich die Bauteilhöhe.

Vom Prinzip her unterliegen alle additiven Fertigungsverfahren dem gleichen Produktionsablauf, wenngleich der eigentliche Herstellungsprozess völlig unterschiedlich ist.

Am Anfang jeder additiven Fertigung steht das virtuelle CAD Modell. Dieses kann in verschiedenen Konstruktionsprogrammen erstellt worden sein. Mit diesen Daten kann jedoch eine Maschine, welche nach dem Prinzip der additiven Fertigung arbeitet, nichts anfangen. Alle diese Maschinen arbeiten ausnahmslos nach dem NC-Prinzip. Das heißt, dass Steuerungsbefehle in Form von Buchstabenund Zahlenkombinationen vorliegen müssen. Die Maschine arbeitet diese Befehle zeilenweise ab. Die CAD Konstruktionsprogramme können weder diesen direkten Maschinencode (nach dem NC Prinzip) noch andere Dateiformate ausgeben, welche additive Fertigungsmaschinen lesen können. Folglich müssen Zwischenprogramme die Konvertierung übernehmen. Grundlage für den 3D-Druck ist immer eine am Computer zuvor erstellte dreidimensionale CAD-Zeichnung, die ein Volumenmodell sein muss. Ein Volumenmodell beschreibt die gesamte Oberfläche eines Objekts, im Gegensatz dazu sind in einem Netz nur die Kanten beschrieben. Die dreidimensionale Zeichnung wird mit Hilfe eines CAD-Programms in ein Netz aus Dreiecksflächen umgewandelt und als STL-Datei exportiert. Der Export im STL-Format ist dabei nur eine Möglichkeit, wenn auch die gebräuchlichste. Die Abkürzung STL steht – je nach Lesart – entweder für Surface Tesselation Language oder Standard Triangulation Language. Beim Dateiformat STL handelt es sich um eine Standardschnittstelle vieler gängiger CAD-Systeme. Die Beschreibung der Modelloberfläche in Form des STL-Datenformats stellt einen Industriestandard dar und nahezu jede additive Fertigungsmaschine kann dieses Format verarbeiten. Im STL-Format wird die Oberfläche eines dreidimensionalen Körpers mit Hilfe von Dreiecksfacetten dargestellt (Triangulation). Die Dreiecksfacetten an der Oberfläche des Modells werden jeweils durch die drei Eckpunkte und eine dazugehörige Flächennormale beschrieben. Der Normalenvektor wird dazu genutzt, um zu ermitteln, welche Seite der Fläche nach innen oder nach außen zeigt. [5]

Anschließend wird das 3D-CAD-Modell mittels einer Software in gleich dicke, ebene Schichten geschnitten (Slice-Prozess), als NC-Code gespeichert und an die Fertigungsanlage übergeben. In einem automatisierten Bauprozess werden die gewünschten Objekte schichtweise aufgebaut. Je nach Verfahren schließt sich ein mehr oder weniger aufwändiger Folgeprozess zur Reinigung/Fertigstellung der Bauteile oder Aufbereitung für Folgeprozesse an. [6]

In folgender Abbildung 1.3 ist der zuvor besprochene Prozessablauf bis zum fertigen Bauteil grafisch dargestellt (Auszug aus der ISO 17296 [7]).

Abbildung 1.3: Prozessablauf der additiven Fertigung [7]

2 Literaturrecherche

In diesem Kapitel werden sowohl die Grundlagen des Fertigungsverfahrens erläutert als auch das verwendete Material.

2.1 Herstellungsprozesse

Zwei additive Fertigungsverfahren, die im Sprachgebrauch oft vertauscht werden, werden etwas näher erläutert:

- Selektives Lasersintern (SLS)
- Selektives Laserschmelzen (SLM)

Der Unterschied zwischen dem Selektiven Lasersintern und dem Selektiven Laserschmelzen besteht lediglich im Prozessablauf. Während beim Selektiven Laserschmelzen das Ausgangsmaterial (Metallpulver) mit Hilfe eines Lasers lokal über Schmelztemperatur erhitzt und somit aufgeschmolzen wird, dient der Laser beim Selektiven Lasersintern zum Erwärmen des Ausgangsmaterials und in weiterer Folge zum Auslösen des Sinterprozesses. Das Sintern bedeutet ein Aneinanderhaften der einzelnen Metallpulverpartikel an der Oberfläche, jedoch ohne dass diese aufgeschmolzen werden. Der Unterschied dieser Fertigungsprozesse ist an den Bauteiloberflächen (Abbildung 2.1) deutlich zu erkennen.

Abbildung 2.1: Nahaufnahmen von Bauteiloberflächen [8]: links: Selektives Laserschmelzen (SLM) rechts: Selektives Lasersintern (SLS)

2.1.1 Selectives Lasersintern (SLS)

Historisches

1986 wurde von Carl Deckard von der Universität von Texas in Austin ein der Stereolithographie ähnliches Verfahren patentiert und im gleichen Jahr noch eine Anlage gebaut. Ein Jahr später, 1987, wurde die Firma DTM (Desk Top Manufacturing) von Carl Deckard und Joe Beaman gegründet. Bereits 1989 wurde die erste Sinteranlage von der zuvor gegründeten Firma gebaut, allerdings nicht vertrieben. Die erste kommerzielle Anlage ging 1992 in die Serienproduktion und wurde ebenfalls von DTM vertrieben. [9]

Prozess

Zu Beginn wird eine Pulverschicht (Kunststoff, Metall oder Glas) auf eine Bauplattform aufgetragen. Anschließend erfolgt die Energieeinbringung mittels eines Lasers. Dabei wird das Pulver lokal bis knapp unter die Schmelztemperatur erhitzt, sodass ein Versintern der einzelnen Partikel stattfindet. Ein völliges Aufschmelzen des Pulvers findet nicht statt. Im Gegensatz zum herkömmlichen Sintern verzichtet dieses Verfahren auf eine lange Sinterzeit und hohen Druck. Daher ist dieser Prozess hauptsächlich thermisch getrieben. [4]

Ist der Bauprozess in der aktuellen Ebene abgeschlossen, bewegt sich die Plattform um eine Schichtstärke nach unten und der Vorgang beginnt von neuem. Dieser wiederholt sich so lange, bis die Herstellung des Bauteiles abgeschlossen ist. Der ganze Herstellungsprozess findet in einer Prozesskammer statt, welche mit inertem Schutzgas gefüllt ist. Abbildung 2.2 zeigt diesen Aufbau.

Abbildung 2.2: Prozessablauf beim Selektiven Lasersintern [10]

Werkstoff

Für den Prozess kann sowohl Kunststoff-, Metall- als auch Glaspulver verwendet werden. Bei Metallen verwendet man in der Regel ein Zweikomponentenpulver. Das ist ein Gemisch aus einem hochschmelzenden Grundmaterial und einer niederschmelzenden Zusatzkomponente (Binder). Der Laserstrahl verflüssigt die niedrigschmelzende Zusatzkomponente und sorgt somit für ein Verbinden der Pulverpartikel. Die hochschmelzende Komponente wird hingegen nicht aufgeschmolzen und es kommt somit zu keiner Gefügeveränderung des hochschmelzenden Grundmaterials. Die erreichbare Dichte bezogen auf das Vollmaterial ist bei diesem Verfahren relativ gering. – Es bleiben viele Poren zurück. Daher sind Nachfolgeprozesse unerlässlich. [4, 11]

2.1.2 Direktes Metall Lasersintern (DMLS)

Weitere Bezeichnungen für dieses Verfahren sind auch:

- Selektives Laserschmelzen (SLM)[®]
- LaserCUSING[®]

In dieser Arbeit werden Eigenschaften von Bauteilen untersucht, welche mit diesem Fertigungsverfahren hergestellt werden. In weiterer Folge wird dieses Verfahren, um falsche Assoziationen zum Sinterprozess zu vermeiden, als Selektives Laserschmelzen (SLM) bezeichnet und die Bezeichnung Selektives Metall Lasersintern (DMLS) wird vermieden.

Historisches

Das Selektive Laserschmelzen ist eine konsequente Weiterentwicklung des Selektiven Lasersinterns. Die Entwicklung des heute bekannten SLM Verfahrens begann 1994 in einer Kooperation zwischen EOS aus München und der Electrolux Rapid Develop Oy aus Turku, Finnland. [12]

Das Verfahren wurde 1995 von der Firma F&S Stereolithographietechnik GmbH zusammen mit dem Fraunhofer Institut für Lasertechnik (ILT Aachen) maßgeblich weiterentwickelt. Die erste kommerzielle Anlage wurde bereits im Sommer 1995 von EOS vertrieben.

Prozess

Die Grundidee besteht darin, das Verfahren des Selektiven Lasersinterns auf metallische Einkomponentenpulver anzuwenden. Dabei wird das Pulver lokal über Schmelztemperatur mittels Laser erhitzt und es bildet sich ein Schmelzbad. Dieses Schmelzbad verbindet sich mit der darunterliegenden Schicht und es entsteht somit eine schichtweise aufgebaute Bauteilgeometrie. Durch die Umwandlung in die flüssige Phase und das anschließende Erstarren kommt es zu Phasenumwandlungen, welche Auswirkungen auf die Festigkeit (Gefügeveränderungen) und die Maßhaltigkeit (Erstarrungsschrumpfung, Verzug beim Abkühlen) zur Folge haben. Theoretisch kann Porenfreiheit, also eine Dichte von 100% bezogen auf ein Vollmaterial, erreicht werden. Praktisch liegt man derzeit bei etwa99.8%.

Nachfolgend sind die wichtigsten Prozessparameter [13] für den Selektiven Laserschmelzprozess - wie in Abbildung 2.3 dargestellt - aufgelistet.

Abbildung 2.3: Prozessparameter beim Selektiven Laserschmelzen [13]

Wichtige Prozessparameter:

- Schichtdicke z_S
- Laserleistung P_L
- Fokusdurchmesser d_F
- Scangeschwindigkeit v_S
- Linienüberlappung
- Linienabstand h_S
- Prozessgas
- Bauraum
temperatur T_B

Der Prozess des Selektiven Laserschmelzens wird immer genauer erforscht und weiterentwickelt. In zahlreichen Forschungsarbeiten wurden die Einflüsse der Prozessparameter (zum Beispiel die inerte Schutzatmosphäre [14]) mit der Gefügestruktur und den daraus abgeleiteten mechanischen Eigenschaften sowohl durch experimentelle Versuche [15–38], als auch mit Hilfe von Modellen [39–42] und deren Simulationen in Zusammenhang gebracht. Es gab Untersuchungen, welche die anschließende mechanische Bearbeitung der so hergestellten Bauteile betrachteten [43–46]. Gegenstand vieler Forschungen sind nach wie vor die thermisch induzierten Spannungen und die sich daraus ergebenden Verformungen [47–52], welche eine schlechtere Maßhaltigkeit der gefertigten Bauteile mit sich bringt.

Werkstoff

Ein großes Interesse besteht an der Verarbeitung von verschiedenen metallischen Werkstoffen und deren unterschiedlichster Kombination mit anderen metallischen Komponenten, Legierungen genannt. Nachstehende 5 Hauptgruppen an Werkstoffen und deren Legierungen werden derzeit intensiv beforscht:

- Aluminium [52]
- Eisen [53, 54]
- Kupfer [40]
- Magnesium [26]
- Nickel [42]
- Titan [55, 56]
- Wolfram [45]

Folgende Parameter sind für ein Metallpulver maßgeblich, um es für den Prozess des Selektiven Laserschmelzens zu verwenden.

Wichtige Werkstoffparameter:

- Chemische Zusammensetzung
- Pulverkorngröße
- Korngrößenverteilung

Auf Grund der hohen Zahl an Prozess- und Werkstoffparametern und deren Abhängigkeiten untereinander besteht daher nur ein enges, werkstoffabhängiges Prozessfenster [13]. Die Prozessgrenzen in diesem Pozessfenster werden durch auftretende Bauteilfehler bestimmt: Zu geringer Wärmeeintrag (durch zu geringe Laserleistung und/oder zu hohe Scangeschwindigkeit bei großen Linienabständen) führt zu unvollständigem Aufschmelzen des Pulvers, wodurch im Schichtaufbau Delaminationen zu beobachten sind. Zu hohe Energiedichten begünstigen eine thermisch induzierte Rissbildung und ein teilweises Verdampfen des Werkstoffes [57]. Abbildung 2.4 zeigt solch ein Prozessfenster samt Prozessgrenzen für den Werkstoff 1.4404 [58]. Diese Prozessfenster sind für jeden Werkstoff individuell zu erforschen und stellen das Kernstück jedes Selektiven Laserschmelzprozesses dar.

Abbildung 2.4: Prozessfenster für den Werkstoff 1.4404 [58]

2.2 Werkstoff

Obwohl bei vielen Werkstoffen Forschungsbedarf besteht, wird in dieser Arbeit nur eine Legierung untersucht.

2.2.1 Chemische Zusammensetzung

Unter den vielen Eisenlegierungen wird die Stahlsorte 1.4542 ausgewählt, welche auch unter der Bezeichnung X5CrNiCuNb16-4 bekannt ist und international unter dem Namen Stainless Steel 17-4PH angeführt ist. Dieser Stahl hat eine chemische Zusammensetzung, wie in Tabelle 2.1 erläutert.

Tabelle 2.1: Chemische Zusammensetzung der Stahlsorte 1.4542 in %nach EN10088

Cr	Ni	Cu	Nb	Mn
15,00-17,00	$3,\!00\text{-}5,\!00$	$3,\!00\text{-}5,\!00$	$0,\!15-0,\!45$	< 1,50
Si	Mo	С	Р	S
< 0,70	$< 0,\!60$	$< 0,\!07$	< 0,04	< 0,03

In Abbildung 2.5 sind die Einflüsse der Legierungselemente [59] aufgelistet.

			Mecha	nische	Eigen	schafte											Magr	netisch	e Eige	nschaf	ten
Legierungselement	Härte	Festigkeit	Streckgrenze	նսոսվəը	Bunnündəsni∃	tieybidäzgsldosday	Elastizität	Warmfestigkeit	i9Aplüniwdวɛ9pɛpnuldüAdA	Rarbidbidng	Verschleißfestigkeit	3chmiedbarkeit	Zerspanbarkeit	ßunıəpunzıəV	Nitrierbarkeit	tiəygibnätsədtsoA	Hysteresis	Permeabilität	Koerzitivkraft	znənsməЯ	tsuhevttsW
Silizium	Ļ	~	ţ	\rightarrow	۲	\rightarrow	111	Ļ	\rightarrow	À	^ ^	\rightarrow	\rightarrow	\rightarrow	\rightarrow	ı	\uparrow	ţţ	$\uparrow\uparrow$	ı	$\uparrow \uparrow$
Mangan bei perlitischen Stählen	Ļ	4	Ļ	۲	۲	۲	Ļ	۲	\rightarrow	۲	\uparrow	Ļ	À	۲	۲	I					
Mangan bei austenitischen Stählen	$\stackrel{\uparrow \uparrow}{\rightarrow}$	~	\rightarrow	111	۲	'	ı	I	$\stackrel{\uparrow}{\rightarrow}$	ı	ı	111	111	$\stackrel{\uparrow}{\rightarrow}$	ı	ı		mn	agnetis	ch	
(Edelstähle)																					
Chrom	ţţ	ţ	ţ	\rightarrow	\rightarrow	\rightarrow	Ļ	Ļ	^† ↑	ţţ	~	\rightarrow	'	111	11	111			~	ţţ	
Nickel bei perlitischen Stählen	~	4	~	۱	۲	۲	ı	Ļ	$\uparrow\uparrow$	ı	\uparrow	\rightarrow	\rightarrow	\rightarrow	,	ı			11	ţţ	
Nickel bei austenitischen Stählen	\uparrow	4	\rightarrow	111	ţ	111	ı	111	$\uparrow\uparrow$	ı		111	111	\uparrow	,	ţţ		nnm	agnetis	ch	
Aluminium		ı	·	ı	\rightarrow	\rightarrow	ı	ı		ı		\uparrow	'	\uparrow	111	ı			11	ţţ	
Wolfram	~	¢	¢	\rightarrow	\rightarrow	۲	ı	111	$\uparrow\uparrow$	ţţ	111	\uparrow	\uparrow	\uparrow	Ļ	ı			111	111	
Vanadium	~	¢	¢	۱	۲	~	Ļ	11	$\uparrow\uparrow$	111	ţţ	~	'	\rightarrow	Ļ	Ļ					
Kobalt	~	¢	¢	\rightarrow	\rightarrow	\rightarrow	1	11	ţţ		111	\rightarrow	۲	\rightarrow	'	1		ţţ	111	111	
Molybdän	~	~	~	\rightarrow	\rightarrow	~		ţţ	${\rightarrow}$	111	ţ	\rightarrow	\rightarrow	ţ	ţţ	,			~		
Kupfer	~	~	ţ	٢	٢	۲		¢	'		'	111	۲	۲	'	¢					
Schwefel	'	ı	,	\rightarrow	\rightarrow	\rightarrow			1	'	'	† ††	111	'		\rightarrow					
Phosphor	~	~	~	\rightarrow	\rightarrow	$\uparrow \uparrow \uparrow$	ı	'	'	'	'	\rightarrow	ţ	'	'	ı					
																					ſ
↑ Erhöhung 🗼 Vermi	inderur	бĽ		°Ω ~	a. gleict	hbleiber	р	'	nicht c	charakte	ristisch	n oder u	inbekar	Int		mehi	rere Pfe	eile = st	ärkere	Wirkung	D

Abbildung 2.5: Einfluss der Legierungelemente [59]

Kohlenstoff:

Der Kohlenstoff ist das wichtigste und einflussreichste Legierungselement im Stahl, weshalb dieser hier getrennt angeführt ist. Mit zunehmendem Kohlenstoffgehalt steigen Festigkeit und Härtbarkeit des Stahles, wogegen Dehung, Schmiedbarkeit, Schweißbarkeit und Bearbeitbarkeit (durch spanabhebende Verfahren) verringert werden. Der Korrosionswiderstand gegenüber Wasser, Säuren und heißen Gasen wird durch Kohlenstoff praktisch nicht beeinflusst. [60]

Eine Stahlsorte der chemischer Zusammensetzung gemäß Tabelle 2.1 wird in verschiedenen Staaten entsprechend deren Normen unterschiedlich bezeichnet. Dies ist in Tabelle 2.2 gezeigt. Aber auch die Stahlerzeuger verwenden intern wiederum andere, von der Norm abweichende Bezeichnungen.

Staat	Norm	Bezeichnung
Deutschland	DIN	1.4542
Frankreich	AFNOR	Z7CNU15-05 / Z7CNU17-04Z
Europäische Union	EN	X5CrNiCuNb16-4
Vereinigte Staaten	ASTM	A564-89 17-4PH
von Amerika	AISI	630
Japan	JIS	SCS24/SUS630
International	UNS	S17400

Tabelle 2.2: Bezeichnung des Werkstoffes 1.4542 in verschiedenen Normen [61]

2.2.2 Gefügezusammensetzung

Das Diagramm nach Schaeffler stellt einen grafischen Zusammenhang zwischen der chemischen Zusammensetzung und den zu erwartenden Gefügebestandteilen dar. Nickel und Chrom sind im gewählten Werkstoff 1.4542 in großen Mengen vorhanden (siehe Tabelle 2.1). Nickel ist ein Austenitbildner und Chrom dagegen ein Ferritbildner. Trägt man das Nickel-Äquivalent über dem Chrom-Äquivalent für hochlegierten Stahl in einem Diagramm nach Schaeffler auf, können die jeweils auftretenden Gefügeanteile an Martensit, Austenit und Ferrit abgelesen werden. [62]

Die Werkstoffnorm gibt eine Bandbreite der Konzentrationen von einzelnen Legierungselementen an. Deshalb ist im folgenden Diagramm 2.6 nach Schaeffler [62] ein Bereich (rot) für die zu erwartenden Gefügeanteile dargestellt.

Demnach sind hohe Gefügeanteile an Martensit zu erwarten. Je nach chemischer Zusammensetzung können geringe oder hohe Anteile an Ferrit bzw. Austenit vorhanden sein. Wärmebehandlungen können die Gefügeanteile signifikant verändern, wie in weiterer Folge erläutert wird. Abbildung 2.6 zeigt daher nur einen groben Anhaltswert und keine exakte Prozentangabe der zu erwartenden Gefügeanteile.

Abbildung 2.6: Diagramm nach Schaeffler für hochlegierte Stähle [62]

2.2.3 Wärmebehandlung

In der Regel wird der Werkstoff 1.4542 wärmebehandelt. Das heißt, dieser Werkstoff wird eine gewisse Zeit lang einer bestimmten Temperatur, welche von der Raumtemperatur verschieden ist, ausgesetzt. Dies bewirkt eine Veränderungen der Werkstoffeigenschaften, was auf Gefügeveränderungen zurückzuführen ist. Folgende Temperaturen sind dafür entscheidend:

Austenitisierungstemperatur Ac1:

Diese Temperatur kennzeichnet beim Erwärmen eines Stahls den Beginn der Austenitbildung. Beim Werkstoff 1.4542 liegt diese - je nach Literaturangaben - zwischen 536 °C [63] und 627 °C [64].

Austenitisierungstemperatur Ac3:

Diese Temperatur kennzeichnet beim Erwärmen eines Stahls das Ende der Austenitbildung. Wird diese Temperatur überschritten, liegen im Werkstoffgefüge nur Austenit und keine anderen Gefügebestandteile vor. Die Literatur, betreffend die Stahlsorte 1.4542, führt diese Temperatur von 704 °C [64] bis 914 °C [63] an.

Martensitstarttemperatur Ms:

Bei entsprechend rascher Abkühlung kommt es zur Martensitbildung. Diese beginnt bei der Martensitstarttemperatur Ms. Das Schrifttum beziffert diesen Wert für den Stahl 1.4542 zwischen 65 °C [63] und 132 °C [65].

Martensitfinishtemperatur Mf:

Diese Temperatur ist dadurch charakterisiert, dass bei ihrer Unterschreitung dieser kein neuer Martensit im Gefüge gebildet wird. Bei der Stahlsorte 1.4542 ist diese als Raumtemperatur angeführt (etwa $30 \degree C$ [64]).

Eine Besonderheit der Stahlsorte 1.4542 liegt in der Veränderung der Werkstoffeigenschaften, welche durch Ausscheidungen hervorgerufen werden. Diese Ausscheidungen bestehen aus Kupfer und bilden sich durch einen Warmauslagerungsprozess [66]. Dieser findet unterhalb der Austenitisierungstemperatur Ac1 statt. In der Werkstoffnorm ASTM der Vereinigten Staaten von Amerika wird dieses Verhalten durch den Zusatz PH ('precipitation hardening' = Ausscheidungshärtung) an der Werkstoffbezeichnung gekennzeichnet.

In dieser Arbeit soll ein Vergleich der Materialeigenschaften von lasergeschmolzenen Bauteilen mit einem gleichwertigen Halbzeug stattfinden. Dem Einfluss der Wärmebehandlung auf die lasergeschmolzenen Bauteile muss dabei ebenfalls Rechnung getragen werden. Daher sind folgende Herstellungszustände miteinander zu vergleichen:

- Lasergeschmolzene Bauteile ohne Wärmebehandlung
- Lasergeschmolzene Bauteile mit Wärmebehandlung
- Bauteile aus konventionellem Halbzeug

Eine gute Übersicht dieser einzelnen Zustände gibt nachstehende Abbildung 2.7. Sie zeigt die gesamte Prozesskette vom Ausgangsmaterial (1.4542) zum Endprodukt.

Abbildung 2.7: Prozesskette vom Ausgangsmaterial zum Endprodukt

Lasergeschmolzene Bauteile

Der pulverförmige Grundwerkstoff vom Unternehmen EOS wird als STAINLESS STEEL GP1 bezeichnet. Chemisch gesehen, hat dieser Werkstoff eine dem 1.4542 vergleichbare Zusammensetzung. Der Selektive Laserschmelzprozess findet bei Anton Paar GmbH statt. Anschließend wird das geometrisch fertige Bauteil aus der Maschine entfernt und von Pulverresten befreit. Das Gefüge im Bauteil besteht zu dieser Zeit aus Martensit und Restaustenit. Bei der anschließenden Wärmebehandlung wird das Bauteil auf eine Temperatur von 650 °C erhitzt. Diese Teilaustenitisierung bewirkt eine Homogenisierung des Restaustenits und ein Anlassen des Martensits. Durch die Abkühlung danach bildet sich neuer Martensit, während der angelassene Martensit erhalten bleibt. Das Materialgefüge besteht daher aus Martensit und Restaustenit. Diagramm 2.8 zeigt diese Wärmebehandlung. Am Ende dieses Prozesses steht das lasergeschmolzene Bauteil mit Wärmebehandlung.

Bauteile aus Halbzeug

Der Stahlerzeuger BÖHLER EDELSTAHL GmbH bezeichnet ein Rohmaterial der chemischen Zusammensetzung laut Tabelle 2.1 als N700. Durch die Warmformgebung entsteht die geometrisch fertige Gestalt des Endprodukts, genannt Halbzeug. Das Materialgefüge des Halbzeuges besteht aus Austenit, Ferrit und Martensit. Die im Anschluss stattfindende Wärmebehandlung besteht aus zwei Schritten, dem Lösungsglühen und dem Warmauslagern. Beim Lösungsglühen wird das Halbzeug auf eine Temperatur von 1030 °C - 1060 °C erhitzt. Da diese über der Austenitisierungstemperatur Ac3 liegt, besteht das Werkstoffgefüge vollständig aus Austenit. Danach erfolgt ein rasches Abkühlen auf Raumtemperatur, Abschrecken genannt (mit Öl, Luft). Durch diese Abkühlung kommt es zur Martensitbildung. Das Gefüge des Halbzeuges besteht bei Raumtemperatur somit aus Martensit und Restaustenit (jener Austenit, der nicht in Martensit umgewandelt wurde). Der zweite Teil der Wärmebehandlung ist das darauf folgende Warmauslagern bei 550 °C für eine Dauer von 4 Stunden. Dabei wird der zuvor entstandene Martensit angelassen. Der Restaustenit bleibt unverändert erhalten. Während dieses Warmauslagerungsprozesses bilden sich die Kupferausscheidungen, die zu einer Veränderung der Materialeigenschaften führen. Die folgende Abkühlung an Luft bewirkt keine signifikante Gefügeveränderung. Nach dieser Wärmebehandlung (Abbildung 2.8) erhält das Halbzeug das zusätzliche Prädikat H1025. Die Werkstoffbezeichnung im Auslieferungszustand aus dem BÖHLER EDELSTAHL Erzeugerwerk ist demnach also N700 (H1025). Dieses Halbzeug wird vom Erzeugerwerk als Rundmaterial (Durchmesser: 12 mm, Länge: 3 m) bezogen (Datenblatt und Materialprüfzeugnis im Anhang).

Abbildung 2.8: Darstellung der Wärmebehandlungen

3 Untersuchungsmethoden

Um Eigenschaften wie die Festigkeit (mittels Zugversuch), die Kerbschlagarbeit (mittels Kerbschlagbiegeversuch), die Härte (mittels Vickershärtemessung), das Gefüge (mittels metallischer Schliffe und anschließender Ätzung), die Maßhaltigkeit (mittels Koordinatenmessgerät), die Oberflächenqualität (mittels optischem Oberflächenmesssystem) sowie die Zerspankräfte bei der mechanischen Fertigung zu ermitteln, werden Prüfkörper benötigt.

Für die Ermittlung bestimmter Eigenschaften (Festigkeit, Kerbschlagarbeit) gibt es genormte Prüfkörper. Für alle anderen Eigenschaften, welche untersucht werden, gibt es diesbezüglich keine Normung der Geometrie. Daher werden Prüfkörper vom Verfasser dieser Arbeit definiert.

Die Besonderheit des Selektive Laserschmelzprozesses liegt im schichtweisen Aufbau der Bauteile. Deshalb verhalten sich die zu prüfenden Materialeigenschaften in allen Koordinatenrichtungen unterschiedlich. Man nennt dieses Verhalten Anisotropie. [67–69]

Die zu untersuchenden Eigenschaften müssen daher in allen Koordinatenrichtungen geprüft werden. In weiterer Folge wird die Lage der Prüfkörper im Herstellungsprozess als Prüfrichtung bezeichnet. Die Koordiante z ist jene Baurichtung, in welche das Auftragen der Schichten erfolgt, während die Koordinaten x und y in der Plattformebene liegen.

Des Weiteren soll der Unterschied zwischen den Eigenschaften von konventionell hergestellten Objekten aus Halbzeug mit jenen, hergestellt durch das Selektive Laserschmelzen, verglichen werden. Dadurch ergibt sich eine gewisse Anzahl an Prüfkörpern, welche in den folgenden Unterkapiteln erläutert wird.

3.1 Festigkeit

Die Festigkeit wird in der Regel mittels Zugversuch ermittelt. Dieser ist nach DIN EN ISO 6892-1 [70] für metallische Werkstoffe bei Raumtemperatur genormt. Die Probenform ist in DIN 50125 [71] festgelegt und wird Zugprobe genannt. Für diesen Versuch wird die Probenform B6x30 (siehe Abbildung 3.1) gewählt. Das bedeutet die Geometrieform B (Rundproben mit Gewindeköpfen) mit einem Durchmesser von 6mm des Ausgangsquerschnitts und einer Messlänge von 30mm.

Der Zugversuch liefert charakteristische Werte wie den Elastizitätsmodul (E), die Streckgrenze (Re), die Zugfestigkeit (Rm) und noch weitere charakteristische Kenngrößen, wie zum Beispiel die Bruchdehnung (A). Durch die kontinuierliche Aufprägung einer äußeren Belastung werden in den Proben Spannungen induziert und die Proben beginnen sich zu dehnen. Werden diese Spannungen und die Dehnungen in ein Diagramm eingetragen, ergeben sich die sogenannten Arbeitslinien.

Abbildung 3.1: Zugprobe nach DIN 50125 - B6x30

Auf Grund der Anisotropie sind Zugproben in allen Koordinatenrichtungen sowohl mit als auch ohne Wärmebehandlung zu untersuchen. Als Vergleich dienen durchgeführte Zugversuche aus konventionellem Halbzeug. Folgende Tabelle 3.1 zeigt eine Übersicht der durchzuführenden Zugversuche.

	Prüfrichtung	Anzahl
Lagarragehmelgeneg Material	X	1
chno Wärmehehendlung	у	1
	Z	1
Laganmaghmalganag Matanial	X	3
mit Wörmebehendlung	у	3
	Z	3
Halbzeug	-	3

Tabelle 3.1: Probenmatrix für den Zugversuch

Von besonderer Bedeutung sind lasergeschmolzene Bauteile mit Wärmebehandlung. Es werden daher jeweils 3 Stück Zugproben untersucht, um statistisch gesicherte Erkentnisse zu erlangen. Ebenso relevant ist das Halbzeug N700 (H1025). Das lasergeschmolzene Material ohne Wärmebehandlung dient lediglich zum Vergleich, weshalb hier in jede Prüfrichtung lediglich eine Zugprobe untersucht wird.

Um das Bruchverhalten zu studieren, werden die Bruchflächen, welche durch den Zugversuch entstanden sind, mittels Rasterelektronenmikroskop (REM) untersucht.

3.2 Härte

Zur Feststellung der Härte gibt es mehrere Messverfahren: Für Metalle werden am häufigsten das Verfahren nach Brinell, das Verfahren nach Rockwell und das Verfahren nach Vickers verwendet. Sollen große Flächen vermessen werden, ist es zweckmäßig, ein automatisiertes Messgerät zu verwenden, welches an verschiedenen Punkten dieser Messfläche eine Härtemessung durchführt und anschließend zwischen diesen Punkten einen kontinuierlichen Verlauf interpoliert. Sowohl den interpolierten Werten als auch den Messwerten kann eine Farbskala zugeordnet werden, die der Größe des Wertes entspricht. Dies wird ein Mapping genannt. Jedoch ist auf Grund der Interpolation zu beachten, dass die Härtewerte für die Randzone des zu vermessenden Objektes nicht stimmen. Hier wird mit Messpunkten, welche außerhalb des Objektes liegen, ein Härteverlauf errechnet. Die dargestellte Härte am unmittelbaren Rand ist daher ein Artefakt.

Für die Härtemessung gibt es keine genormten Prüfkörper. Daher werden zwei lasergeschmolzene Zylinder (siehe Abbildung 3.2) hergestellt, von denen einer als Zwischenprodukt (ohne Wärmebehandlung) belassen wird, während der zweite Zylinder die Wärmebehandlung (gemäß Diagramm 2.8) durchläuft, und somit die Härte des Endproduktes repräsentiert. Vom Halbzeug, welches als Stangenmaterial vorlag, wird ebenfalls ein Stück abgetrennt. Diese drei Zylinder werden in Kunstharz eingebettet, um die Handhabung beim anschließenden Schleifen und Polieren zu verbessern. Nach dem Polieren erfolgt das Erstellen eines Mappings mittels Makrohärtemessung nach Vickers.

Abbildung 3.2: Referenzmodell 2

Für die Härte ist die Lage (Prüfrichtung) des Zylinders nicht relevant. Hier fließen andere Prozessparameter, wie zum Beispiel der Durchmesser des Laserstrahls, ein. Darauf wird im Kapitel 4 (Probenherstellung) auf Seite 35 näher eingegangen.

3.3 Kerbschlagarbeit

Um die Kerbschlagarbeit zu ermitteln, prüft man genormte Kerbschlagbiegeproben (nach DIN EN ISO 148-3 [72], siehe Abbildung 3.3) mit dem ebenfalls nach DIN EN ISO 148-1 [73] genormten Kerbschlagbiegeversuch nach Charpy. Die gemessene Energie, welche benötigt wird, um die Probe vollständig in zwei Teile zu trennen, wird als Kerbschlagarbeit bezeichnet. Die Kerbe dient einerseits als Sollbruchstelle, um eine definierte Lage der Bruchfläche zu erhalten, andererseits zur Herstellung eines dreiachsigen Spannungszustands während des Bruches.

Abbildung 3.3: Kerbschlagbiegeprobe nach DIN EN ISO 148-1 - KV

Die Kerbschlagarbeit hat jedoch begrenzte Aussagekraft. Sie besitzt lediglich vergleichenden Charakter und ist keine unmittelbare Kennzahl, welche in der Festigkeitsrechnung zur Dimensionierung und Konstruktion von Maschinen verwendet werden kann. Ein Maß, ob eine Kerbschlagbiegeprobe duktil oder spröde bricht, ist die laterale Breitung. Der ursprünglich rechteckige Querschnitt verformt sich beim Bruch. Die dadurch entstandene Breitenänderung wird als laterale Breitung bezeichnet. Die Untersuchung der Bruchflächen mittels Rasterelektronenmikroskop (REM) gibt ebenfalls Einsicht über das Bruchverhalten. Die Probenmatrix ist in folgender Tabelle 3.2 dargestellt. Ein großes Interesse besteht wiederum an den lasergeschmolzenen Kerbschlagbiegeproben mit Wärmebehandlung.

Tabelle 3.2: Probenmatrix für den Kerbschlagbiegeversuch

	Kerblage	Anzahl
Lagargagahmalzanag Matarial	yz	2
ahna Wärmahahandlung	XZ	2
onne warmebenandrung	xy	2
Lagangahmalganag Matanial	yz	3
mit Wärmababandlung	XZ	3
mit warmebenandrung	xy	3
Halbzeug	-	3

3.4 Mikrostruktur

In diesem Kapitel werden die Porösität, die Zusammensetzung des Gefüges und der Schichtaufbau lasergeschmolzener Bauteile untersucht. Folgende Schritte [74] sind dafür notwendig:

Probenentnahme

Sie muss möglichst dem Untersuchungszweck angepasst sein (Quer- oder Längsschliff etc.) und soll so erfolgen, dass keine Gefügeveränderungen infolge starker Erwärmung oder Verformung auftreten (mechanische, elektrochemische oder elektroerosive Verfahren).

Grobschleifen

Mit Schleifbändern oder Schleifscheiben der Körnungen 60-180 lassen sich Unebenheiten der Oberfläche, Verformungen und unerwünschte Schichten durch Materialabtrag entfernen.

Einfassen bzw. Einbetten

Zur besseren Handhabung oder/und zum Randschutz werden die Proben in Schliffhaltern eingespannt oder in Kunststoff warm oder kalt eingebettet.

Schleifen

Das Schleifen erfolgt manuell mit Schleifpapier, das auf rotierenden Scheiben aufliegt. Die Schleifpapierfolge ist üblicherweise 180, 240, 320, 400, 600, 800, 1000 (die Nummer gibt die Kornfeinheit an). Nach jedem Schleifprozess wird die Probe um 90° gedreht und in gleicher Schleifrichtung weitergeschliffen. Somit werden die Schleifriefen von dem vorher benutzten Papier beseitigt.

Polieren

Durch Polieren werden die vom Schleifprozess zurückbleibenden Schleifriefen beseitigt. Auf Samtoder Wolltücher aufgetragene geschlämmte Tonerde (Al_2O_3) , Poliergrün (Cr_2O_3) oder neuerdings ausschließlich Diamantpaste (mit Körnung von 15, 7, 3, 1 μm) dienen als Poliermittel.

Reinigen

Bei der Schliffherstellung ist Sauberkeit ein wichtiger Gesichtspunkt. Nach dem Polieren müssen die Schliffe gründlich gereinigt werden. Zurückgebliebene Reste der Probenpräparation (Schleifen, Polieren, etc.) können die Schliffauswertung oder das anschließende Ätzen empfindlich stören. Die Schliffe werden unter fließendem Wasser mit einem Wattebausch abgerieben. Zum Schluss werden die Proben noch mit Alkohol abgespült und anschließend getrocknet. Zum Trocknen wird meist ein Fön oder Händetrockner benutzt. Im Warmluftstrom trocknet der Alkohol sehr schnell, ohne Flecken oder Streifen zu hinterlassen. [62]

Je nachdem, ob die Porösität, die Gefügezusammensetzung oder der Schichtaufbau untersucht werden soll, sind folgende Schritte nach dem Reinigen notwendig: Die Porösität kann bereits nach dem erstmaligen Reinigen sehr gut untersucht werden. Um die Zusammensetzung des Gefüges zu bestimmen, ist eine anschließende Ätzung (V2A Beize, Lichtenegger-Bloech Beize) erforderlich. Der Schichtaufbau kann einerseits durch eine elektrochemischer Ätzung bestimmt werden. Andererseits ist es möglich, mittels Lichtenegger-Bloech Beize (besonders langer Ätzdauer und hohen Temperatur) mit anschließendem Polieren den Schichtaufbau herauszuarbeiten, wie in folgender Abbildung 3.4 dargestellt.

Ätzen

Als Ätzmittel dienen folgende elementare Säuren und Säuregemische, Beizen genannt:

Chemisches Ätzen mittels V2A Beize: [75]

Die V2A Beize gehört zu den gebräuchlichsten Ätzmitteln für nichtrostende Stähle. Der Austenit im Gefüge bleibt weiß, daher sind die Austenikorngrenzen deutlich erkennbar.

Zusammensetzung:

- 200 ml destilliertes Wasser
- 200 ml Salzsäure (32%)
- 20 ml Salpetersäure (65%)
- 0,6 ml Sparbeize (nach Dr. Vogels)

Temperatur: 50 - 70 °C Ätzdauer: ca. 10 - 30 Sekunden

Chemisches Ätzen mittels Lichtenegger-Bloech Beize: [62]

Dieses Farbätzmittel findet bei austenitischen Chrom-Nickel-Stählen seine Anwendung. Der Austenit wird nach kurzer Ätzdauer (ca. 30 Sekunden) hell bräunlich, danach dunkler braun (nach ca. 60 - 90 Sekunden) und nach langer Ätzdauer (ca. 150 Sekunden) kräftig braun gefärbt. Delta-Ferrit wird nicht gefärbt und bleibt weiß. Seigerungen unterscheiden sich aufgrund der chemischen Zusammensetzung zum Grundgefüge. Dies macht sich durch eine Farbänderung bemerkbar. Zusammensetzung:

- 100 cm^3 destilliertes Wasser
- 20 g Ammonium
hydrogendifluorid $\left((NH_4)HF_2\right)$
- 0,5 g Kalium
disulfit $\left(K_2S_2O_5\right)$

Temperatur: Raumtemperatur Ätzdauer: Sekunden bis Minuten

Elektrochemisches Ätzen mittels Oxalsäure:

Dieses Verfahren gibt bei lasergeschmolzenen Chrom-Nickel-Stählen hervorragend Auskunft über den Schichtaufbau.

Zusammensetzung: Oxalsäure $\left(C_{2}H_{2}O_{4}\right)$

Temperatur: Raumtemperatur

Ätzdauer: 100 Sekunden

Spannung: 200mA

Nach der abschließenden Reinigung, um die Schliffproben von Rückständen des Ätzmittels zu befreien, werden die geätzten Flächen unter dem Lichtmikroskop betrachtet.

3.5 Maßhaltigkeit

Für die Bestimmung der Maßhaltigkeit werden zwei Prüfkörper definiert, welche zur Bestimmung dieser Eigenschaft herangezogen werden.

Um den Einfluss des Bauprozesses auf unterschiedlich geneigte Ebenen zu untersuchen, stellt der Bauteil mit ungleich abfallenden Ebenen - wie in Abbildung 3.5 erkennbar - eine aussagekräftige Geometrie dar. Nach dem Herstellungsprozess wird diese Geometrie wärmebehandelt.

Abbildung 3.5: Referenzmodell 1

Die Abmessungen des in Abbildung 3.5 dargestellten Referenzmodells 1 sind wie folgt:

Abbildung 3.6: Referenzmodell 1
Um den Einfluss der Wärmebehandlung zu analysieren, werden zwei Zylinder (Referenzmodell 2, Abbildung 3.2) hergestellt. Einer wird nach dem Herstellungsprozess wärmebehandelt. Der andere Zylinder wird im Herstellungszustand belassen.

Ein Maß für die Qualität der Formgenauigkeit ist die Toleranz. Sie gibt Auskunft über die Maßhaltigkeit von einzelnen geometrischen Formen aber auch, wie sich mehrere geometrische Formen zueinander verhalten. Folgende Grafik 3.7 gibt einen Überblick über alle genormten Toleranzen.

Abbildung 3.7: Einteilung der Toleranzen [76]

In dieser Arbeit werden lediglich häufig vorkommende Formtoleranzen von kleinen bis mittelgroßen Bauteilen ermittelt. Folgende Formtoleranzen werden untersucht: Ebenheit, Rundheit und Zylinderform. Folgende Lagetoleranzen werden betrachtet: Parallelität, Neigung (Winkeligkeit) und Konzentrizität (Koaxialität).

Die Tabellen 3.3, 3.4 und 3.5 listen die zulässigen Abweichungen nach der Norm DIN ISO 2768 [77] auf. Erwähnenswert ist an dieser Stelle, dass es für Rundheit, Zylinderform, Parallelität und Konzentrizität keine Klassifizierung gibt. Lediglich für Längenmaße, Winkelmaße und Geradheit/Ebenheit gibt es eine Einteilung in Toleranzklassen (f. m. g. v. bzw. H. K. L).

			Längenmaße [mm]						
Toleranzklasse									
	von	0,5	3	6	30	120	400	1000	2000
	bis	3	6	30	120	400	1000	2000	4000
f (fein)		$\pm 0,05$	$\pm 0,05$	$\pm 0,1$	$\pm 0,15$	$\pm 0,2$	$\pm 0,3$	$\pm 0,5$	-
m (mittel)		$\pm 0,1$	$\pm 0,1$	\pm 0,2	\pm 0,3	$\pm 0,5$	± 0.8	\pm 1,2	± 2
g (grob)		$\pm 0,2$	$\pm 0,3$	$\pm 0,5$	± 0.8	$\pm 1,2$	± 2	± 3	± 4
v (sehr grob)		-	$\pm 0,5$	± 1	\pm 1,5	$\pm 2,5$	± 4	± 6	± 8

Tabelle 3.3: Allgemeintoleranzen für Längenmaße [78]

Tabelle 3.4: Allgemeintoleranzen für Winkelmaße [78]

	Winkelmaße [°]					
Toleranzklasse						
von	0	10	50	120	400	
bis	10	50	120	400		
f (fein) / m (mittel)	$\pm 1^{\circ}$	$\pm 0^{\circ} 30'$	$\pm 0^{\circ} 20'$	$\pm 0^{\circ} 10'$	$\pm 0^{\circ} 5'$	
g (grob)	$\pm 1^{\circ} 30'$	$\pm 1^{\circ}$	$\pm 0^{\circ} 30'$	$\pm 0^{\circ} 15'$	$\pm 0^{\circ} 10'$	
v (sehr grob)	$\pm 3^{\circ}$	$\pm 2^{\circ}$	$\pm 1^{\circ}$	$\pm 0^{\circ} 30'$	$\pm 0^{\circ} 20'$	

Tabelle 3.5: Allgemeintoleranzen für Geradheit und Ebenheit [78]

			Geradheit und Ebenheit [mm]						
Toleranzklasse									
	von	10	10	30	100	300	1000		
	bis		30	100	300	1000	3000		
Н		0,02	0,05	0,1	0,2	0,3	0,4		
К		0,05	0,1	0,2	0,4	0,6	0,8		
L		0,1	0,2	0,4	0,8	1,2	1,6		

3.6 Oberflächenqualität

Ein Maß für die Oberflächengüte ist die Rauheit. Zur Ermittlung dieser Rauheit gibt es mehrere Möglichkeiten: Einerseits lassen berührungslose optische Messverfahren mit Bildverarbeitungsprogrammen tiefe Einblicke in die Oberflächenbeschaffenheit zu. Andererseits gibt es aber auch berührende Verfahren, wie zum Beispiel das Tastschnittverfahren. Das Ziel beider Messverfahren ist es, Rauigkeitskenngrößen zu ermitteln. Rauigkeitskenngrößen, welche im Maschinenbau verwendet werden, sind unter anderem die gemittelte Rautiefe Rz und der Mittenrauwert Ra.

Von großem Interesse ist der Einfluss von geneigten Ebenen auf die Oberflächenqualität. Dazu eignet sich der Prüfkörper, wie in Abbildung 3.5 (Referenzmodell 1) dargestellt, mit unterschiedlich geneigten Ebenen hervorragend. Dieser Prüfkörper kann daher zur Untersuchung der Maßhaltigkeit und der Oberflächengüte gleichermaßen herangezogen werden.

Um die Auswirkung der Wärmebehandlung auf die Oberflächenqualität zu erfassen, werden jene zwei Zylinder (Referenzmodell 2, Abbildung 3.2) herangezogen, welche bereits bei der Untersuchung der Maßhaltigkeit verwendet werden.

Weiters wird der Einfluss des Glasperlenstrahlens auf die Qualität der Oberfläche des in Abbildung 3.5 (Referenzmodell 2) dargestellten Werkstücks untersucht. Dies ist ein häufiger Folgeprozess nach dem Selektiven Laserschmelzprozess, um die Oberflächenqualität zu verbessern. Dabei wird feinstes Glaspulver (gläserne Kugeln mit typischem Durchmesser von 70-110 μm und einer Härte von HRC 47) mit hoher Geschwindigkeit auf die Oberfläche gestrahlt, was einen Materialabtrag und somit eine Veränderung der Oberflächenrauigkeit zur Folge hat.

Weitere Folgeprozesse sind nicht nur das Glasperlenstrahlen, sondern auch konventionelle mechanische Bearbeitungsverfahren, wie zum Beispiel das Schleifen und das Polieren. Die erzielbaren Oberflächenqualitäten dieser Bearbeitungsverfahren werden ebenfalls untersucht. Da das Schleifen und Polieren unter Materialabtrag stattfindet (wie zum Beispiel das Bohren), bietet sich eine Themenzugehörigkeit zum folgenden Kapitel *Mechanische Bearbeitbarkeit* an.

3.7 Mechanische Bearbeitbarkeit

An dieser Stelle werden drei mechanischen Bearbeitungsverfahren im Zusammenhang mit dem Werkstoff 1.4542 untersucht.

3.7.1 Bohren

Ein Verfahren von großer Bedeutung ist das Bohren. Es bietet zum einen den Vorteil, ein Fertigungsverfahren zu sein, das ohne spezialisierte und teure Maschinen auskommt. Zum anderen ist es eines der häufigsten und daher sehr genau untersuchten Fertigungsverfahren. Zur Verfügung stehen drei Spiralbohrer folgender Bezeichnung:

- WDO-SUS-5D (Fa. OSG Tool Communication)
- M1805-0600AE (Fa. Miller Präzisionswerkzeuge)
- M9405-0600AE (Fa. Miller Präzisionswerkzeuge)

Das Ergebnis dieser Bohrversuche sollen sowohl Schnitt- und Vorschubleistung als auch die für die spanende Bearbeitung typische spezifische Schnittkraft sein. Dadurch ist einerseits ein Vergleich zwischen zwei Bohrern der Firma Miller Präzisionswerkzeuge andererseits zwischen zwei unterschiedlichen Herstellern (Fa. Miller Präzisionswerkzeuge und Fa. OSG Tool Communication) möglich. Folgende Materialen der chemischen Zusammensetzung laut Tabelle 2.1 werden mit diesen Bohrertypen spanend bearbeitet:

- Lasergeschmolzenes Material ohne Wärmebehandlung
- Lasergeschmolzenes Material mit Wärmebehandlung
- Halbzeug

Folgende Abbildungen 3.8 und 3.9 zeigen die von den Bohrerherstellern vorgegebenen Zerpanungsparameter.

Abbildung 3.9: Vorschübe

In diesen Abbildungen ist zu erkennen, dass sich die Zerspanungsparameter teilweise überlappen, manchmal aber auch weit von einander entfernt liegen. Da sowohl die Anzahl der zerspanbaren Prüfkörper limitiert sind und der Aufwand möglichst gering zu halten ist, wird Folgendes festgelegt: Da vorwiegend lasergeschmolzene Bauteile mit Wärmebehandlung spanend nachbearbeitet werden, wird ein Vergleich zwischen lasergeschmolzenem Material mit Wärmebehandlung und Halbzeug angestrebt. Ein Vergleich zwischen lasergeschmolzenem Material mit und ohne Wärmebehandlung soll nur zwischen den Bohrern des Herstellertypes Fa. Miller Präzisionswerkzeuge erfolgen. Um sowohl den Aufwand bei den Zerspanungsversuchen gering zu halten als auch eine Vergleichbarkeit aller Bohrertypen zu erhalten, werden alle drei Materialtypen (siehe oben) mit allen drei Bohrertypen mit folgenden Zerspanungsparamtern gebohrt:

$$v_c = 80 \ \frac{m}{min}$$
$$f = 0,18 \ \frac{mm}{U}$$

Es ergibt sich dadurch nachstehende Probenmatrix:

	WDO-SUS-5D	M1805-0600AE	M9405-0600AE
Lasergeschmolzenes Material	-	5	10
ohne Wärmebehandlung			
Lasergeschmolzenes Material	10	5	10
mit Wärmebehandlung			
Halbzeug	40	5	40

Tabelle 3.6: Probenmatrix für Bohrversuche $(v_c = 80 \ \frac{m}{min}, f = 0.18 \ \frac{mm}{U})$

Die zuvor erwähnten Zerspanungsparameter (Schnittgeschwindigkeit $v_c = 80 \frac{m}{min}$, Vorschub $f = 0, 18 \frac{mm}{U}$) gibt der Hersteller beim Bohrertyp WDO-SUS-5D exakt vor, beim Bohrertyp M9405-0600AE stimmt die Schnittgeschwindigkeit mit der Herstellerempfehlung ebenfalls überein, jedoch ergibt sich eine geringe Abweichung beim Vorschub. Der Bohrertyp M1805-0600AE benötigt laut Hersteller wesentlich geringere Schnittgeschwindigkeiten und Vorschübe. Es ist daher mit dem Bohrertyp M1805-0600AE eine Vergleichsmessung geplant, als Zerspanungsmaterial dient das Halbzeug. Diese Vergleichsmessung wird mit den Bearbeitungsparametern laut Hersteller (Schnittgeschwindigkeit $v_c = 60 \frac{m}{min}$, Vorschub $f = 0, 1 \frac{mm}{U}$) durchgeführt. Es ergibt sich folgende Probenmatix, anhand der ein Vergleich möglich ist.

Tabelle 3.7: Probenmatrix für eine Vergleichsmessung des M1805-0600AE

	M1805-0600AE	M1805-0600AE
	$v_c = 80 \ \frac{m}{min}$	$v_c = 60 \frac{m}{min}$
	$f=0,18 \ {mm \over U}$	$f = 0, 10 \ \frac{mm}{U}$
Halbzeug	5	5

Um die Schnitt- und Vorschubleistung zu ermitteln, stehen drei gemessene Kräfte und ein gemessenes Drehmoment zur Verfügung:

- Drehmoment Mz
- Vorschubkraft Fz
- resultierende Kraft in x-Richtung Fx
- resultierende Kraft in y-Richtung Fy

In Abbildung 3.10 sind diese drei Kräfte und ein Drehmoment als jene Reaktionen symbolisiert, welche der Spiralbohrer auf das zu bearbeitende Grundmaterial ausübt.

Abbildung 3.10: Spiralbohrer mit gemessenen Kräften und Moment

Um von den oben aufgelisteten Messwerten zu den Schnitt- und Vorschubleistungen und der spezifischen Schnittkraft zu gelangen, gelten folgende Zusammenhänge [78]:

$$P_C = \frac{1,2}{8} \cdot z \cdot d \cdot f \cdot k_c \cdot C \cdot v_c \tag{3.1}$$

 P_C ist die Schnittleistung, welche von der Maschine aufgebracht werden muss (ohne interne Maschinenverluste). Der Faktor 1,2 berücksichtigt dabei die Umrechnung der spezifischen Schnittkraft k_c , welche bei Drehversuchen ermittelt wurde (Literatur), auf das Bohren. Unter z ist die Anzahl der Schneiden im Eingriff zu verstehen. In der Regel gilt für die meisten Bohrer z = 2. Die Konstante C berücksichtigt die Größenordnung der Schnittgeschwindigkeit v_c .

$$C = \begin{cases} 1, 3 & \text{wenn } v_c \le 30 \ \frac{m}{\min} \\ 1, 1 & \text{wenn } v_c > 30 \ \frac{m}{\min} \end{cases}$$

Die Schnittleistung kann aber auch wie in folgender Gleichung 3.2 mit Hilfe des gemessenen Drehmoments M_Z und des Bohrerdurchmessers d ermittelt werden.

$$P_C = \frac{2 \cdot M_Z \cdot v_c}{d} \tag{3.2}$$

Nach Gleichung 3.3 wird die Vorschubleistung P_V ermittelt.

$$P_V = F_Z \cdot n \cdot f \tag{3.3}$$

Werden Gleichung 3.1 und 3.2 kombiniert, ergibt sich für die spezifische Schnittkraft k_c

$$k_c = \frac{16 \cdot M_Z}{1, 2 \cdot d^2 \cdot f \cdot z \cdot C} \tag{3.4}$$

Die Gesamtleistung P_{ges} , welche von der Maschine zur Verfügung gestellt werden muss, errechnet sich zu

$$P_{ges} = P_C + P_V \tag{3.5}$$

Da für M_Z und F_Z keine einzelnen Werte, sondern auf Grund der Messung diskrete Messwerte in einem Zeitbereich vorliegen, muss ein Weg gefunden werden, diese große Anzahl an Messwerten in einer einzigen Zahl zu verdichten.

Eine geeignete Möglichkeit bildet hier die diskrete Mittelwertbildung, ähnlich dem integralen Mittelwert für kontinuierliche Werte. Sei n die Anzahl jener Werte für F_{Zi} und M_{Zi} , für die folgende Bedingung¹ gilt:

$$F_{Zi} \ge 200 \ N \tag{3.6}$$

$$M_{Zi} \ge 1 \ Nm \tag{3.7}$$

So berechnet sich der Mittelwert mit der Messauflösung (Abtastrate) im Zeitbereich Δt zu

$$F_Z = \frac{\sum_{i=1}^n F_{Zi} \cdot \Delta t}{\sum_{i=1}^n \cdot \Delta t}$$
(3.8)

¹Die Bedingungen in 3.6 und 3.7 sind lediglich Annahmen, um eine systematische Abgrenzung der Messwerte der Bohrtätigkeit vom Leerlauf, welcher ebenfalls mitgemessen wird, zu ermöglichen.

$$M_Z = \frac{\sum_{i=1}^n M_{Zi} \cdot \Delta t}{\sum_{i=1}^n \cdot \Delta t}$$
(3.9)

Da während der Messung die Abtastrate $\Delta t \ (= \frac{1}{5000 \ Hz})$ konstant gehalten wird, können Terme in den Gleichungen 3.8 und 3.9 mit *n* als Anzahl der Messwerte vereinfacht werden zu

$$\sum_{i=1}^{n} F_{Zi} \cdot \Delta t = \Delta t \cdot \sum_{i=1}^{n} F_{Zi}$$
(3.10)

$$\sum_{i=1}^{n} M_{Zi} \cdot \Delta t = \Delta t \cdot \sum_{i=1}^{n} M_{Zi}$$
(3.11)

$$\sum_{i=1}^{n} \Delta t = \Delta t \cdot n \tag{3.12}$$

Somit ergeben sich die Gleichungen 3.8 und 3.9 zu 3.13 sowie 3.14.

$$F_{Z} = \frac{1}{n} \cdot \sum_{i=1}^{n} F_{Zi}$$
(3.13)

$$M_Z = \frac{1}{n} \cdot \sum_{i=1}^{n} M_{Zi}$$
(3.14)

Mit den Gleichungen 3.2, 3.3, 3.4, 3.13 und 3.14 erfolgt die Auswertung der Messungen, die Berechnung der Schnitt- und Vorschubleistung sowie die Ermittlung der spezifischen Schnittkraft.

Die Messung geschieht bei einer konstanten Frequenz (Abtastrate) von 5000 Hz. Der Kühlschmiermitteldruck wird - wie vom Hersteller vorgegeben - auf 80 bar festgelegt.

3.7.2 Schleifen

Das industrielle Schleifen ist ebenfalls ein mechanisches Bearbeitungverfahren, weshalb es an dieser Stelle erläutert wird. Am Institut für Werkstoffkunde und Schweißtechnik werden Schliffe verschiedener Körnung angefertigt. Dies geschieht mit Schleifpapier beklebten Maschinentischen, ähnlich der Tellerschleifmaschine. Durch die Wahl der Feinheit des Schleifpapieres wird der Einfluss verschiedener Körnungen untersucht. Schliffe mit folgender Kornbezeichung werden angefertigt:

- P4000
- P1200
- P120

Im Anhang auf Seite 151 ist die Zuordnung zwischen Kornbezeichnung und Korngröße des Schleifmittels nach FEPA-Klassifizierung² dargestellt.

3.7.3 Polieren

Für die erzielbare Oberflächenqualität durch das Polieren wird folgende Korngröße gewählt:

- 1 µm
- 3 µm

Bei sehr kleinen Korngrößen ist eine Bezeichnung nach FEPA-Klassifizierung zwar möglich, jedoch ist die Bezeichnung nach der Korngröße in μm auch eine Alternative.

 $^{^{2}\}mathrm{FEPA}=\mathrm{europ}\ddot{\mathrm{a}}\mathrm{ischer}$ Verband der Schleifmittelhersteller

4 Probenherstellung

Die Herstellung der Prüfkörper erfolgt bei Anton Paar GmbH. Verantwortlich dafür zeichnet Herr DI Stefan Pfanner.

4.1 Herstellungsparameter

Der Herstellungsprozess findet in der Selektiven Laserschmelzanlage M280 von EOSINT statt. Eine genaue Beschreibung dieses Maschinentypes befindet sich im Anhang auf Seite 111.

Folgende Prozess- und Werkstoffparameter - zusammengefasst als Herstellungsparameter bezeichnet - müssen laut Pulver- und Maschinenhersteller eingehalten werden, um den Stahl 1.4542 optimal zu verarbeiten:

Wichtige Prozessparameter:

- Schichtdicke $z_S = 20 \ \mu m$
- Laserleistung $P_L = 280 W$
- Fokusdurchmesser d_F
 - für Kontur: $d_F=0,\!3\text{-}0,\!4\ mm$
 - für Füllung: $d_F = 0,4-0,5 mm$
- Scangeschwindigkeit $v_S = 950 \ \frac{mm}{s}$
- Linienüberlappung 0,05 mm
- Linienabstand $h_S = 0.1 \ mm$
- Prozessgas: N_2 (erzeugt aus Druckluft durch integrierten Generator)
- Bauraum temperatur $T_B=80~^{\circ}\mathrm{C}$

Wichtige Werkstoffparameter:

- Chemische Zusammensetzung: 1.4542 (laut Tabelle 2.1)
- Pulverkorngröße¹
- Korngrößenverteilung¹

 $^{^1\}mathrm{Werden}$ vom Maschinenhersteller und Pulvererzeuger EOSINT nicht bekannt gegeben.

4.2 Herstellungsgeometrien

Abbildung 4.1 zeigt die herzustellenden Prüfkörpergeometrien im Bauraum der Selektiven Laserschmelzanlage angeordnet.

Abbildung 4.1: Darstellung aller Prüfgeometrien und Prüfrichtungen

Die Kerbschlagbiegeproben sind in Abbildung 4.1 blau dargestellt. Davon werden in jede Koordinatenrichtung (=Prüfrichtung) jeweils 5 Stück gefertigt. Von den rot dargestellten Zugproben werden in jede Prüfrichtung jeweils 4 Stück hergestellt. Zur Bestimmung der Maßhaltigkeit und der Oberflächenqualität befinden sich im rechten Bildbereich das grün dargestellte Referenzmodell 1 und zwei Stück des Referenzmodells 2, in der Abbildung mit Gelb angedeutet.

Aufmaß:

Die genormten Prüfkörper (Zugproben, Kerbschlagbiegeproben) müssen sehr hohe Oberflächenqualitäten aufweisen, damit die Oberflächenrauigkeit keinen Einfluss auf das Messergebnis hat. Diese hohe Oberflächenqualitäten sind mit dem Selektiven Laserschmelzprozess nicht erreichbar. Daher muss die Herstellung mit einem Aufmaß erfolgen. Das ist ein Wert, der dem Sollmaß hinzugefügt wird und eine Vergrößerung der ursprünglichen Geometrie bewirkt. Durch eine anschließende mechanische Bearbeitung (Drehen, Fräsen, etc.) wird dieses Aufmaß wieder entfernt. Die dabei entstehenden Oberflächenqualitäten sind - typisch für mechanische Bearbeitungen - im Vergleich zu Oberflächenqualitäten des Laserschmelzprozesses sehr gut. In dieser Arbeit wird ein ausreichendes Aufmaß von 1mm verwendet. Weiters werden die Zugproben ohne Gewinde und die Kerbschlagbiegeproben ohne Kerb im Laserschmelzprozess hergestellt. Das Herstellen des Gewindes sowie des Kerbes wird ebenfalls in der anschließenden mechanischen Bearbeitung durchgeführt.

Stützgeometrie:

Beim Selektiven Laserschmelzen treten je nach Form und Lage der Prüfkörpergeometrien Überhänge auf. Das bedeutet, die aufgetragenen Schichten im Prozess haben eine größere horizontale Ausdehung als die darunter liegenden Schichten. Dies hat zur Folge, dass das aufgeschmolzene Pulver sich nur an jenen Stellen mit den darunter liegenden Schichten verbindet, an denen sich bereits eine lasergeschmolzene Schicht im Untergrund befindet. An den anderen Stellen kommt es auf Grund der nicht vorhanden lasergeschmolzenen Schicht im Untergrund zu einer schlechen Verschmelzung der Pulverpartikel und zu großem thermischen Verzug. Daher werden Überhänge 'abgestützt'. -Es wird von Prozessbeginn an eine zusätzliche Struktur an jenen Stellen aufgebaut, an denen sich Überhänge befinden. Diese Struktur, Stützstruktur genannt, wird bei der Nachbearbeitung der Bauteile entfernt.

5 Ergebnisse

5.1 Festigkeit

5.1.1 Lasergeschmolzenes Material ohne Wärmebehandlung

In Abbildung 5.1 sind die Arbeitslinien der lasergeschmolzenen Zugproben ohne Wärmebehandlung dargestellt. Jede Arbeitslinie repräsentiert eine Messung.

Abbildung 5.1: σ - ε -Diagramm der lasergeschmolzenen Zugproben ohne Wärmebehandlung

Es zeigt sich eine deutlich ausgeprägte Anisotropie. Dies war gemäß [13] zu erwarten. Im elastischen Bereich verhalten sich alle Proben bis zur Streckgrenze (ca. 600 MPa) ähnlich. Erkennbar ist dies durch die deckungsgleichen Arbeitslinien. Ab der Streckgrenze ist jedoch eine Abweichung erkennbar. Bei gesamtheitlicher Betrachtung der Kurven muss festgestellt werden, dass sich die Arbeitslinien aller drei Proben deutlich unterscheiden.

Abbildung 5.2: Bruchfläche des lasergeschmolzenen Materials Wärmebehandlung: nein Prüfrichtung: z (E=176 GPa, Re=592 MPa, Rm=916 MPa)

Abbildung 5.2 zeigt die Bruchfläche einer lasergeschmolzenen Zugprobe ohne Wärmebehandlung in Prüfrichtung z. Im Bild links oben sind an den Rändern Bereiche eines Kegel-Tasse-Bruchs erkennbar. Mittig können kleine Risse festgestellt werden. Bei Vergrößerung (Bild rechts unten) sind Dimples zu sehen, welche bei duktilen Brüchen auftreten.

5.1.2 Lasergeschmolzenes Material mit Wärmebehandlung

Die Arbeitslinien der lasergeschmolzenen Zugproben mit Wärmebehandlung sind in Abbildung 5.3 dargelegt. Hierbei stellt eine Arbeitslinie den Mittelwert aus drei Zugversuchen dar. Das ist deshalb möglich, weil deren Streuungen sehr gering sind ($\pm 5 \frac{N}{mm^2}$ bei 1200 $\frac{N}{mm^2}$). Bei der Prüfrichtung y gab es jedoch einen Ausreißer (bei den Messprotokollen im Anhang auf Seite 145 ersichtlich). Deshalb wurden bei dieser Prüfrichtung nur zwei Zugproben zusammengefasst.

Abbildung 5.3: σ - ε -Diagramm der lasergeschmolzenen Zugproben mit Wärmebehandlung

Die Arbeitslinien zwischen x- und y-Prüfrichtung sind fast identisch. Der Verlauf der Arbeitslinie der z-Koordinate ist dennoch anders. Dies ist prozessbedingt der Fall: Durch das schichtweise Auftragen und Verschmelzen des Pulvers in der z-Baurichtung ergeben sich zwangsweise Abweichungen von den anderen Koordinaten, denn hier ist die Baurichtung gleich der Prüfrichtung [13].

Abbildung 5.4: Bruchfläche des lasergeschmolzenen Materials Wärmebehandlung: ja Prüfrichtung: z $(E=188\pm5$ GPa, Re= 586 ± 1 MPa, Rm= 1213 ± 3 MPa)

Abbildung 5.4 zeigt das Bruchbild einer lasergeschmolzenen Zugprobe mit Wärmebehandlung, welche in z-Richtung geprüft wurde. Hier sind Risse in der Bruchfläche bei deutlicher Vergrößerung erkennbar. Diese Zugprobe weist einen duktilen Bruch auf.

5.1.3 Halbzeug

In Abbildung 5.5 ist die Arbeitslinie des Halbzeuges dargstellt. Hier wurden wiederum drei Messungen auf Grund geringer Abweichungen zu einer Arbeitslinie zusammengefasst.

Abbildung 5.5: σ - ε -Diagramm des Halbzeuges

Der lineare Verlauf endet bei der Streckgrenze von 1100 MPa, gefolgt von einem Knick und einem steilen Abfall bis zum Bruch, der bei einer Dehnung von etwa 15 % stattfindet.

Abbildung 5.6 zeigt diese Bruchfläche. Der äußere Bereich weist radiale Risse auf, während in der Mitte ein rauer Bereich deutlich ausgeprägt ist. Dieses Bruchverhalten wird als Fräserbruch [79] bezeichnet. Es handelt sich um einen transkristallinen Gleitbruch (Bruch verläuft mitten durch den Kristall) mit Spaltbruchanteilen. Die Vergrößerung zeigt das facettenartige Bruchbild.

Abbildung 5.6: Bruchfläche des Halbzeuges Wärmebehandlung: -Prüfrichtung: - $(E=198\pm2$ GPa, Re=1142 ±1 MPa)

5.1.4 Gegenüberstellung

In Abbildung 5.7 sind die zuvor gezeigten Ergebnisse in einem Diagramm zusammengefasst.

Abbildung 5.7: σ - ε -Diagramm aller Zugproben im Vergleich

Der signifikante Unterschied zwischen lasergeschmolzenem Material und Halbzeug lässt sich im linear-elastische Bereich erkennen. Die Streckgrenze ist beim Halbzeug etwa doppelt so groß wie beim lasergeschmolzenen Material. Beim lasergeschmolzenen Material ist diese von der Prüfrichtung unabhängig und diese kann durch die angewendete Wärmebehandlung nicht verändert werden. Jedoch wird durch die Wärmebehandlung die Zugfestigkeit wesentlich erhöht. Nachstehende Tabelle 5.1 gibt vorheriges Diagramm in Zahlen wieder. Anzumerken ist hierbei, dass von den lasergeschmolzenen Zugproben ohne Wärmebehandlung jeweils nur ein Zugversuch durchgeführt wurde. Deshalb kann bei diesen Werten keine Standardabweichung angegeben werden. In Tabelle 5.2 sind zum Vergleich jene Werte angegeben, welche vom Maschinenhersteller im Materialdatenblatt für den Werkstoff 1.4542 (im Anhang auf Seite 116) angeführt sind.

Festigkeit laut Messung
Festigkeit laut Messung

	Prüfrichtung	Elastizitätsmodul	Streckgrenze	Zugfestigkeit	Bruchdehnung
		E [GPa]	Re [MPa]	Rm [MPa]	A [%]
Lagangaghmalganag Matarial	X	172	615	1126	29
abra Wärmababandlung	У	178	620	1043	29
	Z	176	592	916	36
Lagangaghmalganag Matarial	X	187 ± 2	588 ± 2	1359 ± 4	20 ± 1
nit Wärmshahandlung	У	195 ± 5	590 ± 1	1342 ± 2	19 ± 0
	Z	188 ± 5	586 ± 1	1213 ± 3	26 ± 0
Halbzeug	-	198 ± 2	1142 ± 1	-	13 ± 0

45

Tabelle 5.2: Festigkeit laut Maschinenhersteller						
	Prüfrichtung	Elastizitätsmodul	Streckgrenze	Zugfestigkeit	Bruchdehnung	
		E [GPa]	Re [MPa]	Rm [MPa]	A [%]	
Lagorgogahmolzonog Matorial	X	170 ± 30	645 ± 50	930 ± 50	31 ± 5	
ohno Wärmehohandlung	У	170 ± 30	645 ± 50	930 ± 50	31 ± 5	
	Z	170 ± 30	630 ± 50	960 ± 50	35 ± 5	
Lagarraghmalganag Matarial	X	180	634	1100	29	
mit Wärmababandlung	У	180	634	1100	29	
	Z	180	595	980	31	

5.2 Härte

5.2.1 Lasergeschmolzenes Material ohne Wärmebehandlung

Nachfolgende Abbildung 5.8 zeigt ein lasergeschmolzenes Rundmaterial ohne Wärmebehandlung. Darüber ist die Härte als Funktion des Randabstandes aufgetragen. Der Rand ist in dieser Abbildung schwarz dargestellt. Dieser weist gegenüber der Mitte geringfügig größere Härtewerte auf.

Abbildung 5.8: Härte des lasergeschmolzenen Materials Wärmebehandlung: nein Schliffebene: xy

5.2.2 Lasergeschmolzenes Material mit Wärmebehandlung

Bei dem in Abbildung 5.9 dargestellten Mapping handelt es sich um ein lasergeschmolzenes Rundmaterial mit Wärmebehandlung. Es sind geringe Härteunterschiede zwischen Randzone und Mitte erkennbar.

Abbildung 5.9: Härte des lasergeschmolzenen Materials Wärmebehandlung: ja Schliffebene: xy

5.2.3 Halbzeug

In Abbildung 5.10 ist die Härte des Halbzeuges dargelegt. Es ist eine Härtesteigerung zur Mitte hin ersichtlich.

Wärmebehandlung: -Schliffebene: -

5.2.4 Gegenüberstellung

Ein Vergleich ist in Abbildung 5.11 dargestellt. Den unterschiedlichen Farben sind unterschiedliche Härtewerte zugeordnet.

Abbildung 5.11: Härtevergleich

- a) Halbzeug
- b) Lasergeschmolzenes Material ohne Wärmebehandlung
- c) Lasergeschmolzenes Material mit Wärmebehandlung

Abbildung 5.12 zeigt diesen Vergleich der Härtewerte über den Randabstand aufgetragen. Beim Halbzeug ist eine geringfügige Härtesteigerung zur Mitte ersichtlich. Bei lasergeschmolzenen Bauteilen ist eine erhöhte Härte der Randzone feststellbar und sie weisen geringere Härten als das Halbzeug auf. Auf Grund der unterschiedlichen Dicken der Prüfkörper ergeben sich zur Mitte hin unterschiedliche Randabstände. In den Tabellen 5.3 und 5.4 ist das Ergebnis der Härtemessung den Maschinenherstellerangaben gegenüber gestellt.

Abbildung 5.12: Ergebnisse der Härtemessung

	Härte
	[HV1]
Lasergeschmolzenes Material ohne Wärmebehandlung	235 ± 20

Tabelle 5.4: Härte laut Maschinenhersteller

	Härte
	[HV1]
Lasergeschmolzenes Material ohne Wärmebehandlung	230 ± 20

5.3 Kerbschlagarbeit

5.3.1 Lasergeschmolzenes Material ohne Wärmebehandlung

In Abbildung 5.13 ist eine lasergeschmolzene Kerbschlagprobe ohne Wärmebehandlung gezeigt. Die laterale Breitung ist relativ groß. Die vorhandenen Scherlippen sind deutlich ausgeprägt. Diese Tatsachen deuten auf ein sehr duktiles Bruchverhalten hin, welches durch eine Kerbschlagarbeit von 161 ± 5 J bestätigt wird.

Abbildung 5.13: Bruchfläche des lasergeschmolzenen Materials Wärmebehandlung: nein Kerblage: xy (Av=161±5 J)

5.3.2 Lasergeschmolzenes Material mit Wärmebehandlung

Um den Einfluss der Wärmebehandlung zu untersuchen, zeigt Abbildung 5.14 die Bruchfläche einer lasergeschmolzenen Kerbschlagbiegeprobe mit Wärmebehandlung. Sie weist ein homogenes Bruchbild mit Wabenstruktur auf. Auch hier sind Scherlippen und eine laterale Breitung erkennbar. Diese sind jedoch geringer ausgeprägt als bei dem lasergeschmolzenen Material ohne Wärmebehandlung. Das bedeutet, die Wärmebehandlung vermindert die Duktilität.

Abbildung 5.14: Bruchfläche des lasergeschmolzenen Materials Wärmebehandlung: ja Kerblage: xy (Av=89±2 J)

5.3.3 Halbzeug

In Abbildung 5.15 ist die Bruchfläche des Halbzeuges dargestellt. Die glatt wirkenden Flächen am Rand sind Scherlippen. Diese sind - wie die laterale Breitung - gering ausgeprägt. Die Vergrößerung der Aufnahme zeigt eine Wabenstruktur samt Dimples. Die Bruchfläche weist matte und hellgraue Bereiche auf, typisch für einen Verformungsbruch (duktil). Die Kerbschlagarbeit von 72 ± 2 J ist etwas geringer als jene des lasergeschmolzenen Materials.

Abbildung 5.15: Bruchfläche des Halbzeuges Wärmebehandlung: -Kerblage: -(Av=72±2 J)

5.3.4 Gegenüberstellung

In folgender Tabelle 5.5 sind die Kerbschlagarbeiten zusammengefasst dargestellt. Hohe Werte der Kerbschlagarbeit deuten auf ein duktiles Bruchverhalten hin, niedrige Werte hingegen auf weniger duktiles Bruchverhalten (das Material bricht wie Glas). Bei den lasergeschmolzenen Kerbschlagbiegeproben ohne Wärmebehandlung wurden Mittelwerte und die Abweichungen davon aus zwei durchgeführten Kerbschlagbiegeversuchen bestimmt. Bei allen anderen Proben wurden die Kerbschlagarbeiten aus drei Versuchen gemittelt. Deutlich erkennbar ist, dass die Wärmebehandlung die Kerbschlagarbeiten signifikant verringert. Im Materialdatenblatt des Maschinenherstellers finden sich hierzu keine Vergleichswerte.

	Kerblage	Kerbschlagarbeit
		Av [J]
Lagargaghmalzanag Matarial	yz	142 ± 2
chne Wärmebehandlung	XZ	140 ± 2
	xy	161 ± 5
Lagarraghmalganag Matarial	yz	80 ± 2
mit Wärmebebendlung	XZ	82 ± 4
	xy	89 ± 2
Halbzeug	-	72 ± 2

Tabelle 5.5: Ergebnisse des Kerbschlagbiegeversuchs

5.4 Mikrostruktur

5.4.1 Porösität

Folgende Schliffbilder weisen Poren auf. Diese sind als schwarze Punkte auf der ungeätzten Probe erkennbar. Die automatisierte Erfassung und Auswertung der Porengröße bezieht sich immer auf eine Fläche von 25 mm^2 .

Lasergeschmolzenes Material ohne Wärmebehandlung

Abbildung 5.16: Schliffbild des lasergeschmolzenen Materials

Wärmebehandlung: nein Schliffebene: xy Ätzung: keine

Abbildung 5.17: Verteilung der Porengrößen des lasergeschmolzenen Materials Wärmebehandlung: nein Schliffebene: xy Ätzung: keine

Die Anzahl der auf dem Messgebiet vorhandenen Poren mit einer größeren Ausdehnung als 1000 μm^2 beträgt 18 ± 8.

Lasergeschmolzenes Material mit Wärmebehandlung

In Abbildung 5.18 ist eine lasergeschmolzene Probe mit Wärmebehandlung abgebildet.

Im Vergleich zu Abbildung 5.17 ist in Abbildung 5.19 kein signifikanter Unterschied erkennbar. Die Anzahl der Poren, die eine Ausdehung von mehr als 1000 μm^2 auf der Messfläche besitzen, beträgt 16 ± 6 .

Abbildung 5.19: Verteilung der Porengröße des lasergeschmolzenen Materials Wärmebehandlung: ja Schliffebene: xy Ätzung: keine

Halbzeug

Folgende Abbildung 5.20 zeigt das Schliffbild des Halbzeuges. Im Gegensatz zum lasergeschmolzenen Material besitzt das Halbzeug signifikant mehr Poren, die aber deutlich kleiner sind.

Abbildung 5.20: Schliffbild des Halbzeuges Wärmebehandlung: -Schliffebene: -Ätzung: keine

Dies kann durch die Größenverteilung, welche in Abbildung 5.21 dargestellt ist, bestätigt werden.

Im Halbzeug gibt es nur vereinzelt Poren (1 ± 1) , die eine größere Ausdehung als 1000 μm^2 haben.

Gegenüberstellung

Ein Vergleich der Verteilungen der Porengröße zeigt Abbildung 5.22. Werden die Anteile der Porenflächen an der Gesamtfläche betrachtet, so ergibt sich Tabelle 5.6.

Abbildung 5.22: Vergleich der Porengrößenverteilungen

	Porenanteil [%]
Lasergeschmolzenes Material ohne Wärmebehandlung	0.33 ± 0.10
Lasergeschmolzenes Material mit Wärmebehandlung	0.30 ± 0.06
Halbzeug	0.62 ± 0.28

Tabelle 5	5.6:	Ergebnisse	der	Porengrößenau	swertung
-----------	------	------------	----------------------	---------------	----------

Weder beim Halbzeug noch beim lasergeschmolzenen Material ist Porenfreiheit gegeben. Die Wärmebehandlung des lasergeschmolzenen Materials hat nur geringen Einfluss auf die Anzahl und Größe der Poren. Im lasergeschmolzenen Material sind im Vergleich zum Halbzeug wenig Poren vorhanden. Obwohl im Halbzeug wenig große Poren vorhanden sind, weist es viele kleine Poren auf. Der gesamte Flächenanteil dieser Poren ist etwa doppelt so groß wie jener des lasergeschmolzenen Materials. Sowohl über die Porengröße als auch über deren Verteilung gibt das Materialdatenblatt keine Auskunft.

5.4.2 Gefügezusammensetzung

In den folgenden mit V2A Beize geätzten Schliffbildern ist der Austenit als weißer, der Martensit als grauer bis schwarzer Bildanteil zu erkennen. Das lasergeschmolzene Material ohne Wärmebehandlung befindet sich auf der linken Blatthälfte, jenes Material mit Wärmebehandlung auf der rechten Blatthälfte.

Abbildung 5.23: lasergeschmolzenes Material Wärmebehandlung: nein Schliffebene: yz Ätzung: V2A Beize

Abbildung 5.24: lasergeschmolzenes Material Wärmebehandlung: ja Schliffebene: yz Ätzung: V2A Beize

Abbildung 5.25: lasergeschmolzenes Material Wärmebehandlung: nein Schliffebene: xz Ätzung: V2A Beize

Abbildung 5.26: lasergeschmolzenes Material Wärmebehandlung: ja Schliffebene: xz Ätzung: V2A Beize

Abbildung 5.27: lasergeschmolzenes Material Wärmebehandlung: nein Schliffebene: xy Ätzung: V2A Beize

Abbildung 5.28: lasergeschmolzenes Material Wärmebehandlung: ja Schliffebene: xy Ätzung: V2A Beize

In den Schliffbildern sind keine weißen Bereiche vorhanden, daher befindet sich im Material kein Austenit. Die grau bis schwarze Färbung zeigt den Martensit an, der in großen Mengen vorhanden ist. In den Abbildungen 5.29 und 5.30 ist das Gefüge des Halbzeuges dargestellt. Es ist gleichmäßig mit Martensit durchwachsen.

Abbildung 5.29: Halbzeug Wärmebehandlung: -Schliffebene: -Ätzung: V2A Beize Abbildung 5.30: Halbzeug Wärmebehandlung: -Schliffebene: -Ätzung: V2A Beize Durch die Verwendung der Lichtenegger-Bloech Beize färben sich alle Gefügeanteile ins Bräunliche. Austenit färbt sich dunkelbraun bis schwarz, der Martensit hellbraun. Lediglich der Ferrit und die Seigerungen bleiben weiß.

Abbildung 5.31: lasergeschmolzenes Material Wärmebehandlung: nein Schliffebene: yz Ätzung: Lichtenegger-Bloech

Abbildung 5.32: lasergeschmolzenes Material Wärmebehandlung: nein Schliffebene: yz Ätzung: Lichtenegger-Bloech

Abbildung 5.33: Halbzeug Wärmebehandlung: -Schliffebene: -Ätzung: Lichtenegger-Bloech

Abbildung 5.34: Halbzeug Wärmebehandlung: -Schliffebene: -Ätzung: Lichtenegger-Bloech
Die in den Abbildungen 5.31 und 5.32 gezeigten Schliffbilder des lasergeschmolzenen Materials weisen vereinzelt Ferrit und Seigerungen auf. Der Austenit (dunkelbraun) ist ebenfalls nur in geringen Anteilen im Gefüge vorhanden. Den größten Gefügeanteil bildet der Martensit (hellbraun).

In Abbildung 5.33 und 5.34 sind die Schliffbilder des Halbzeuges dargestellt. Deutlich erkennbar sind die Austenitkörner mit eingelagertem Ferrit und Martensit.

5.4.3 Schichtaufbau

Ein funktionierender Schichtaufbau ist Kernstück jedes Laserschmelzprozesses. Auf folgenden Seiten wird dieser kurz umrissen.

Abbildung 5.35 zeigt den Einfluss des Laserfokus auf die Breite der Schmelzraupen. Die schwarzen durchgehenden Linien visualisieren die Fusionslinien zwischen den einzelnen Schmelzraupen. Kleinere Fokusdurchmesser können Werkstückkonturen genauer abbilden als große Fokusdurchmesser. Die größeren Energiedichten bewirken jedoch thermisch aktivierte Sinterprozesse außerhalb der aufgeschmolzenen Bereiche. Diese Sinterprozesse bewirken ein Anhaften dieser Sinterprodukte an der Bauteiloberfläche, Pelz genannt, wie im Bild ersichtlich.

Abbildung 5.35: Schichtaufbau des lasergeschmolzenen Materials Wärmebehandlung: ja Schliffebene: xz Ätzung: Oxalsäure

Im Verhältnis zum programmierten Laserfokus (Kontur: $d_F = 0, 3 - 0, 4 mm$, Füllung: $d_F = 0, 4 - 0, 5 mm$) sind die beobachteten Breiten der Schmelzraupen gering (Abbildung 5.35 und 5.36). Durch das teilweise Aufschmelzen der unterhalb liegenden Schicht bei der Herstellung wird die Ausdehung dieser Schmelzraupen reduziert. Bei benachbarten Schweißraupen ist dies ebenfalls der Fall. Daher kann die Ausdehung einer Schmelzraupe im Schliff nicht ganzheitlich erfasst werden.

Abbildung 5.36: Schichtaufbau des lasergeschmolzenen Materials Wärmebehandlung: nein Schliffebene: yz Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren

Abhängig von der Bauteilgeometrie wird in der Belichtungsstrategie definiert, mit welcher Laserleistung, Bahnvektorlänge, Bahnvektorfolge und Bahngeschwindigkeit die einzelnen Schmelzraupen aufgeschmolzen werden. Über die Belichtungsstrategie wird die Qualität der Schmelzraupen entscheidend beeinflusst. [4]

Sie entscheidet über die thermisch induzierten Eigenspannungen und den daraus resultierenden Verformungen. Diese Verformungen sind für die Maßhaltigkeit der hergestellten Bauteile entscheidend. Die Belichtungsstrategie ist daher ein Firmengeheimnis des Maschinenherstellers. Im Schliffbild 5.37 sind die hellen Flächen, begrenzt durch schwarze Linien, die Schmelzraupen. Diese verlaufen in unterschiedlicher Richtungen. In der Mitte des Bildes befindet sich eine horizontal ausgerichtete Schmelzraupe, welche in Bildebene verläuft. Die anderen auf diesem Bild ersichtlichen Schmelzraupen verlaufen hingegen normal zur Bildebene.

Ein guter Schichtaufbau zeichnet sich durch eine geringe Schwächung des Grundmaterials aufgrund der Schmelzraupen aus. Die Betrachtung der Schliffbilder von gerissenen Zugproben kann hierbei Auskunft geben. Der Zugversuch verursacht einen dreiachsigen Spannungszustand im Prüfkörper, welcher Risse hervorrufen kann. Die Grenzen der Schmelzraupen stellen natürliche Schwachstellen im Material dar, an denen sich Risse bevorzugt ausbreiten. Die Beurteilung solcher Risse ist daher ein Indiz für die Qualität des Schichtaufbaus. Die Abbildungen 5.38 und 5.39 zeigen solche Schliffbilder von Zugproben. Die Bruchfläche befindet sich links im Bild. Ein großer Riss ragt tief in das Bauteil hinein. Die Vergrößerung zeigt, dass sich der Riss durch die Schmelzraupen hindurch erstreckt.

Abbildung 5.37: Schichtaufbau des lasergeschmolzenen Materials

Wärmebehandlung: nein Schliffebene: xz Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren

Abbildung 5.38: Schichtaufbau des lasergeschmolzenen Materials

Wärmebehandlung: ja Schliffebene: xz Prüfrichtung: z Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren

Abbildung 5.39: Schichtaufbau des lasergeschmolzenen Materials

Wärmebehandlung: ja Schliffebene: yz Prüfrichtung: z Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren

Bei Belastung des Materials in eine andere Prüfrichtung zeigt sich ähnliches Verhalten, wie in Abbildung 5.40 ersichtlich.

Abbildung 5.40: Schichtaufbau des lasergeschmolzenen Materials

Wärmebehandlung: ja Schliffebene: yz Prüfrichtung: x Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren

Durch Bewertung der Rissverläufe kann gefolgert werden, dass das verfahrensbedingte Auftagen der Schichten keine zusätzliche Schwächung des Grundwerkstoffes darstellt.

5.5 Maßhaltigkeit

5.5.1 Einfluss geneigter Ebenen

Wird der Einfluss von geneigten Ebenen auf die Maßhaltigkeit untersucht, so ergeben sich für den in Abbildung 3.5 definierten Prüfkörper folgende Abweichungen von der geometrischen Idealgestalt.

Abbildung 5.41: Maßhaltigkeit des lasergeschmolzenen Materials Wärmebehandlung: ja

In Abbildung 5.41 ist zu erkennen, dass alle Abweichungen kleine Werte besitzen. Das bedeutet, die vorgegebene Geometrie kann in sehr engen Toleranzen hergestellt werden (hohe Genauigkeit). Jedoch ist die Winkeligkeit der Stirnfläche (parallel zur Blattebene) im Verhältnis zu einer anderen Fläche (in Abbildung 5.41 mit B gekennzeichnet) relativ groß (0.1635). Herstellungsbedingt treten im Material Eigenspannungen auf, welche durch die Wärmebehandlung verstärkt werden und die Geometrie des Prüfkörpers verändern.

5.5.2 Einfluss der Wärmebehandlung

Der Einfluss der Wärmebehandlung wird an Zylindern untersucht, wie in Abbildung 5.42 dargestellt. Von den zwei hergestellten Zylindern wurde einer im Herstellungszustand belassen, während der andere Zylinder der Wärmebehandlung unterworfen wurde.

Abbildung 5.42: Maßhaltigkeit des lasergeschmolzenen Materials Wärmebehandlung: a) nein b) ja

Sowohl Rundheit als auch Zylinderform nehmen geringe Werte an. Das lässt auf hohe Genauigkeit und Maßhaltigkeit schließen. Lediglich die Koaxialität des Zylinders ohne Wärmebehandlung weicht erheblich von den Größenordnungen der anderen Messwerte ab. Bei dem wärmebehandelten Zylinder (Abbildung 5.42b) ist diese Abweichung hingegen nicht so stark ausgeprägt. Da es sich nicht um denselben Zylinder handelt, kann ein Zusammenhang mit der Wärmebehandlung nicht belegt werden.

5.6 Oberflächenqualität

5.6.1 Einfluss geneigter Ebenen

In folgender Grafik (Abbildung 5.43) ist der Einfluss von geneigten Ebenen auf die Oberflächenqualität dargestellt.

Abbildung 5.43: Oberflächenqualität des lasergeschmolzenen Materials Wärmebehandlung: ja

Es sind signifikante Unterschiede in der Oberflächenbeschaffenheit zu erkennen, auf die in weiterer Folge näher eingegangen wird.

In Abbildung 5.44 ist die Nahaufnahme einer horizontalen Oberfläche dargestellt. Erkennbar sind verschiedene pfeilförmige Strukturen, welche Schmelzraupen sind. Werden die Rauigkeiten entlang einer Schmelzraupe und quer dazu ermittelt, ergeben sich unterschiedliche Werte. Während die Oberflächenqualität entlang solch einer Schmelzraupe sehr gut ist (Mittenrauwert: Ra = 0,65 μm , Gemittelte Rautiefe: Rz = 2,07 μm), ist die Oberfläche quer dazu etwas schlechter (Mittenrauwert: Ra = 0,89 μm , Gemittelte Rautiefe: Rz = 3,39 μm), was sich in erhöhten Rauigkeitswerten widerspiegelt.

Abbildung 5.44: Winkel zur Horizontalen: 0° Mittenrauwert: Ra = 0,89 / 0,65 μm Gem. Rautiefe: Rz = 3,39 / 2,07 μm

Eine um den Winkel von 30° zur Horizontalen geneigte Ebene ist in Abbildung 5.45 dargestellt. Es befinden sich kleine kugelförmige Gebilde auf der Oberfläche. Dies wird als Pelzbildung bezeichnet und wurde bereits erörtert. Die Oberfläche ist im Vergleich zur horizontalen Ebene deutlich rauer.

Abbildung 5.45: Winkel zur Horizontalen: 30° Mittenrauwert: Ra = 4,85 μm Gem. Rautiefe: Rz = 21,82 μm

Im Vergleich von Abbildung 5.46 zu Abbildung 5.45 ist eine deutliche Pelzbildung erkennbar. Dieser Effekt tritt bei geneigteren Ebenen (60° zur Horizontalen) stärker auf. Die Oberfläche ist mit einem Mittenrauwert von Ra = 9,07 μm und einer gemittelten Rautiefe von Rz = 32,98 μm auch deutlich rauer als die zuvor gezeigten Flächen.

Abbildung 5.46: Winkel zur Horizontalen: 60° Mittenrauwert: Ra = 9,07 μm Gem. Rautiefe: Rz = 32,98 μm

In Abbildung 5.47 ist eine vertikale Oberfläche gezeit. Diese ist zur Gänze vom Pelz bedeckt. Im Vergleich zu den vorherigen Abbildungen ist erkennbar, dass sich sowohl die Anzahl als auch die Größe der Pelzpartikel mit zunehmendem Neigungswinkel erhöht. Diese Oberfläche (Mittenrauwert Ra = 7,92 μm , Gemittelte Rautiefe Rz = 37,98 μm) weist die größte Rauigkeit auf.

Abbildung 5.47: Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 7,92 μm Gem. Rautiefe: Rz = 37,37 μm

5.6.2 Einfluss der Wärmebehandlung

An der Fläche mit der größten Rauigkeit (Neigungswinkel von 90° zur Horizontalen) wird der Einfluss der Wärmebehandlung auf die Oberflächenqualität untersucht.

Abbildung 5.48 zeigt eine Oberfläche direkt nach dem Herstellungsprozess.

Abbildung 5.48: Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 8,16 μm Gem. Rautiefe: Rz = 42,20 μm

In Abbildung 5.49 ist die gleiche Oberfläche nach der Wärmebehandlung dargestellt, äquivalent zu Abbildung 5.47. Die Struktur hat sich im direkten Vergleich zu Abbildung 5.48 kaum verändert. Die gemittelte Rautiefe (Rz) ist nach der Wärmebehandlung geringfügig kleiner.

Abbildung 5.49: Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 8,10 μm Gem. Rautiefe: Rz = 32,61 μm

5.6.3 Einfluss von Folgeprozessen

Die Auswirkungen des Glasperlenstrahlens als Folgeprozess auf die Oberflächenqualität wird untersucht. Jener Prüfkörper mit unterschiedlich geneigter Ebenen wird dazu verwendet.

Abbildung 5.50: Oberflächenqualität des lasergeschmolzenen Materials Wärmebehandlung: ja Folgeprozess: Glasperlenstrahlen

Auf nachfolgender Seite ist der Einfluss des Glasperlenstrahlens auf die Oberflächenqualität genauer erläutert.

Abbildung 5.51: Winkel zur Horizontalen: 0° Mittenrauwert: Ra = 1,50 μm Gem. Rautiefe: Rz = 5,05 μm

Abbildung 5.52: Winkel zur Horizontalen: 30° Mittenrauwert: Ra = 1,80 μm Gem. Rautiefe: Rz = 7,03 μm

Abbildung 5.53: Winkel zur Horizontalen: 60° Mittenrauwert: Ra = 2,67 μm Gem. Rautiefe: Rz = 9,46 μm

Abbildung 5.54: Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 1,72 μm Gem. Rautiefe: Rz = 7,17 μm

In den Abbildungen 5.51 bis 5.54 sind bei den Rauigkeitswerten geringe Unterschiede zu erkennen. Diese lassen sich auf das kleine Messgebiet (siehe Maßstab) im Verhältnis zur gesamten Fläche und somit zu keiner ganzheitlichen Erfassung zurückführen. Da beim Glasperlenstrahlen alle Ebenen gleich bearbeitet werden, muss die sich ergebende Rauigkeit unabhängig vom Ursprungszustand dieser Ebenen sein. Folgende Tabelle 5.7 fasst die gemessenen Oberflächenrauigkeiten zusammen.

Tabelle 5.7: Oberflächenqualität laut Messung

	Neigungswinkel zur Horizontalen			
	0°	30°	60°	90°
Lasergeschmolzenes Material	k.A.	k.A.	k.A.	Ra = 8,15 μm (c)
ohne Wärmebehandlung				$ m Rz = 42,\!20 \; \mu m \; (c)$
	Ra = 0,89 μm (a)	Ra = 4,85 μm	$ m Ra=9,07~\mu m$	$\mathrm{Ra}=7{,}92~\mu m$
Lasergeschmolzenes Material	Rz = 3,39 μm (a)	Rz = 21,82 μm	$\mathrm{Rz}=32{,}98~\mu m$	$\mathrm{Rz}=37{,}37~\mu m$
mit Wärmebehandlung	Ra = 0,65 μm (b)			$\mathrm{Ra}=8{,}10~\mu m~(\mathrm{c})$
	Rz = 2,07 μm (b)			$\mathrm{Rz}=32{,}61~\mu m~\mathrm{(c)}$
Oberflächen	Ra = 1,50 μm	Ra = 1,80 μm	${\rm Ra}=2{,}67~\mu m$	$\mathrm{Ra}=1,72~\mu m$
${ m glasperlengestrahlt}$	$ m Rz=5,05~\mu m$	$ m Rz=7,03~\mu m$	$ m Rz=9,46~\mu m$	$ m Rz=7,\!17~\mu m$

Anmerkungen:

a) Messrichtung quer zu den Schmelzraupen

b) Messrichtung entlang der Schmelzraupen

c) Ermittelung am Zylinder und nicht am Referenzmodell 1

Tabelle 5.8: Oberflächenqualität laut Maschinenhersteller

	Neigungswinkel zur Horizontalen			
	0°	30°	60°	90°
Oberflächen	Ra = 2,5 - 4,5 μm	Ra = 2,5 - 4,5 μm	Ra = 2,5 - 4,5 μm	Ra = 2,5 - 4,5 μm
mikrogestrahlt	$\mathrm{Rz}=15$ - $40~\mu m$	$ m Rz = 15$ - $40~\mu m$	$\mathrm{Rz}=15$ - $40~\mu m$	$ m Rz = 15$ - $40~\mu m$

5.7 Mechanische Bearbeitbarkeit

5.7.1 Bohren

Werden die Messungen der Bohrversuche nach Kapitel 3 ausgewertet, ergeben sich Tabelle 5.9 (Schnittleistung P_C), Tabelle 5.10 (Vorschubleistung P_V) und Tabelle 5.11 (spezifische Schnittkraft k_c). Für den Bohrprozess ist die Gesamtleistung (die Summe aus Schnitt- und Vorschubleistung) entscheidend, denn diese muss von der Maschine zur Verfügung gestellt werden.

Tabelle 5.9: Ergebnisse der Bohrversuche: Schnittleistungen P_C [W] Bohrertyp: alle Zerspanungsparameter: $v_c = 80 \ \frac{m}{min}, \ f = 0.18 \ \frac{mm}{U}$ Material: alle

	WDO-SUS-5D	M1805-0600AE	M9405-0600AE
Lasergeschmolzenes Material	*)	1405 ± 81	1233 ± 24
ohne Wärmebehandlung			
Lasergeschmolzenes Material	1249 ± 32	1474 ± 183	1240 ± 15
mit Wärmebehandlung			
Halbzeug	1056 ± 12	1277 ± 14	1083 ± 4

*) ... Bohrerbruch, daher keine Auswertung

Tabelle 5.10: Ergebnisse der Bohrversuche: Vorschubleistungen P_V [W] Bohrertyp: alle Zerspanungsparameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: alle

	WDO-SUS-5D	M1805-0600AE	M9405-0600AE
Lasergeschmolzenes Material	*)	13 ± 1	15 ± 1
ohne Wärmebehandlung			
Lasergeschmolzenes Material	15 ± 1	13 ± 1	15 ± 1
mit Wärmebehandlung			
Halbzeug	15 ± 1	14 ± 1	16 ± 1

*) ... Bohrerbruch, daher keine Auswertung

Tabelle 5.11: Ergebnisse der Bohrversuche: spezifische Schnittkräfte $k_c \; [\frac{N}{mm^2}]$ Bohrertyp: alle

Zerspanungsparameter: $v_c=80~\frac{m}{min},~f=0.18~\frac{mm}{U}$ Material: alle

	WDO-SUS-5D	M1805-0600AE	M9405-0600AE
Lasergeschmolzenes Material	*)	2956 ± 170	2595 ± 50
ohne Wärmebehandlung			
Lasergeschmolzenes Material	2628 ± 67	3101 ± 384	2610 ± 31
mit Wärmebehandlung			
Halbzeug	2222 ± 26	2687 ± 29	2279 ± 8

*) ... Bohrerbruch, daher keine Auswertung

Die in den Tabellen 5.9 bis 5.11 gezeigten Werte sind uneingeschränkt nur für den Bohrertyp M9405-0600AE gültig. Werden kleine Abweichungen von den Zerspanungparametern laut Bohrerhersteller zugelassen, kann damit auch der Bohrertyp WDO-SUS-5D verglichen werden. Die Zerspanungsparameter des Bohrertyps M1805-0600AE liegen dennoch weit außerhalb der Herstellervorgaben. Daher zeigen folgende Tabellen 5.12 und 5.13 einen Vergleich dieses Bohrertyps zwischen den Bohrparametern laut Hersteller und jenen in Tabelle 5.9.

Tabelle 5.12: Ergebnisse der Bohrversuche: Vergleichsmessung

Bohrertyp: M1805-0600AE

Zerspanungsparameter: $v_c=60~\frac{m}{min},~f=0.10~\frac{mm}{U}$ (lt. Hersteller) Material: Halbzeug

	M1805-0600AE		
	Schnittleistung P_C [W]	Vorschubleistung P_V [W]	spez. Schnittkraft $k_c \left[\frac{N}{mm^2}\right]$
Halbzeug	519 ± 1	3 ± 1	2623 ± 1

Tabelle 5.13: Ergebnisse der Bohrversuche

Bohrertyp: M1805-0600AE Zerspanungsparameter: $v_c = 80 \ \frac{m}{min}, \ f = 0.18 \ \frac{mm}{U}$ Material: Halbzeug

		M1805-0600AE	
	Schnittleistung P_C [W]	Vorschubleistung P_V [W]	spez. Schnittkraft $k_c \left[\frac{N}{mm^2}\right]$
Halbzeug	1277 ± 14	14 ± 1	2687 ± 29

In Tabelle 5.14 ist das Verhältnis zwischen Vorschub- und Schnittleistung exemplarisch dargestellt. Die Vorschubleistung ist im Vergleich zur Schnittleistung sehr gering (etwa 1%-2%).

Tabelle 5.14: Ergebnisse der Bohrversuche: Leistungsaufteilung

Bohrertyp: M9405-0600AE Zerspanungsparameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: Halbzeug

	M9405-0600AE		
	Schnittleistung P_C [%]	Vorschubleistung P_V [%]	
Halbzeug	98,55	1,45	

Abbildung 5.55 dient zur Veranschaulichung der Tabellen 5.9 bis 5.11. Auf der Ordinate ist die Gesamtleistung P_{ges} aufgetragen. Ein Vergleich der unterschiedlichen Bohrertypen wird anhand dieser Darstellung möglich: Die benötigte Gesamtleistung bei der Zerspanung von Halbzeug ist tendenziell geringer. Die Bohrertypen WDO-SUS-5D und M9405-0600AE benötigen etwa die gleiche Zerspanungsleistung. Der Bohrertyp M1805-0600AE zerspant alle Materialien unter großem Energiebedarf. Dennoch kann keine ganzheitliche Beurteilung erfolgen. Aufgrund des Bohrerbruches fehlen Vergleichswerte.

Werden bezüglich der Zerspanungsparameter die unterschiedlichen Bohrerherstellerangaben berücksichtigt, zeigt sich für den Bohrertyp M1805-0600AE ein wesentlich geringerer Leistungsbedarf bei Zerspanungsbedingungen laut Hersteller (Schnittgeschwindigkeit $v_c = 60 \frac{m}{min}$, Vorschub $f = 0.10 \frac{mm}{U}$). Dies gilt jedoch nur bei dem Halbzeug. Der Bohrertyp M1805-0600AE schneidet im Vergleich zu den anderen Bohrertypen deutlich besser ab, wie in Abbildung 5.56 gezeigt.

Die Bohrertypen WDO-SUS-5D und M9405-0600AE sind somit am besten für die Zerspanung von lasergeschmolzenem Material und auch Halbzeug geeignet aufgrund des geringsten Leistungsbedarfs (Zerspanungsleistung). Werden Vergleichsmessungen einbezogen, so ist die Zerspanung von Halbzeug mit dem Bohrertyp M1805-0600AE unter deutlich geringerem Leistungsbedarf möglich. Es ist daher vernünftig, die Zerspanungsparameter laut Herstellerangaben einzuhalten. Damit kann ein möglichst geringer Leistungsbedarf erzielt werden. Dieser Leistungsbedarf steht im direkten Zusammenhang mit der Leistungsaufnahme der Bearbeitungsmaschine. Mittels der Abbildungen 5.55 und 5.56 kann der energetische und somit finanzielle Aufwand für die Herstellung eines Bohrloches ermittelt werden. Allerdings ist hinzuzufügen, dass sich der finanzielle Aufwand sowohl aus den Energiekosten als auch aus der Lebensdauer des Werkzeuges (=Standzeit) zusammensetzt. Letzteres wurde aus Zeit- und Kostengründen nicht näher untersucht. Die Aussagekraft im Hinblick auf die Wirtschaftlichkeit ist daher nicht gegeben.

Auftretende Spänetypen bei den durchgeführten Bohrversuchen

Ein weiterer Aspekt der mechanischer Bearbeitbarkeit sind die auftretenden Spänetypen.

Spänetypen beim Bohrertyp M9405-0600AE

Abbildung 5.57 zeigt den Spantyp, welcher bei Verwendung des Bohrertyps M9405-0600AE und Zerspanparameter laut Herstellerangaben entsteht, wenn Halbzeug zerspant wird. Es handelt sich dabei um einen kurzbrechenden Bröckelspan. Dieser Spantyp ist für die Zerspanung wünschenswert, da sich lange Späne nachteilig auf die Späneabführung und die Oberflächenqualität auswirkt.

Abbildung 5.57: Halbzeug Wärmebehandlung: -Bohrertyp: M9405-0600AE Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$

In Abbildung 5.58 tritt ebenfalls ein kurzbrechender Span auf. Folglich sind die Zerspanungsparameter optimal gewählt für diesen Bohrertyp in Kombination mit dem Werkstoff 1.4542. An der Innenseite (dunkler Bereich) sind große Scherzonen zu erkennen.

Abbildung 5.58: lasergeschmolzenes Material Wärmebehandlung: ja Bohrertyp: M9405-0600AE Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$

Spänetypen beim Bohrertyp M1805-0600AE

Der Bohrertyp M1805-0600AE erzeugt bei $v_c = 80 \frac{m}{min}$ und $f = 0.18 \frac{mm}{U}$ einen kurzbrechenden Span. Diese Zerspanungsparameter sind wesentlich verschieden von den Herstellerangaben. Das Ergebnis ist daher nicht repräsentativ für das industrielle Bohren mit dem Bohrertyp M1805-0600AE.

Abbildung 5.59: Halbzeug Wärmebehandlung: -Bohrertyp: M1805-0600AE Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$

Bei einer Schnittgeschwindigkeit von $v_c = 60 \frac{m}{min}$ und einem Vorschub von $f = 0.10 \frac{mm}{U}$ erzeugt der Bohrprozess mit dem Bohrertyp M1805-0600AE eine längliche Spanform, wie in Abbildung 5.60 gezeigt. Das lässt auf ein schlechtes Reißen der Spanlocken untereinander schließen.

Abbildung 5.60: Halbzeug Wärmebehandlung: -Bohrertyp: M1805-0600AE Parameter: $v_c = 60 \frac{m}{min}, f = 0.10 \frac{mm}{U}$

Spänetypen beim Bohrertyp WDO-SUS-5D

Abbildung 5.61 zeigt die entstehende kurze, leicht abzuführende Spanform beim Bohrertyp WDO-SUS-5D. Die Zerspanungsparameter entsprechen jedoch nicht exakt den Herstellerangaben. Dennoch kann auf Grund der geringen Abweichung der Zerspanungsparameter diese Spanform mit jener der anderen Bohrertypen verglichen werden.

Abbildung 5.61: Halbzeug Wärmebehandlung: -Bohrertyp: WDO-SUS-5D Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$

Rechts (Abbildung 5.62) ist eine Spanform zu erkennen, welche ähnlich zu Abbildung 5.58 ist. Dadurch kann auf ähnliches Bruchverhalten bei der Zerspanung geschlossen werden.

Abbildung 5.62: lasergeschmolzenes Material Wärmebehandlung: ja Bohrertyp: WDO-SUS-5D Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$

5.7.2 Schleifen

Folgende Abbildungen zeigen die mittels Schleifen hergestellten Oberflächen. In Abbildung 5.63 sind große Schleifspuren zu erkennen. Dies lässt sich auf die grobe Körnung der Schleifscheiben zurückführen. Durch Erhöhung der Körnung, was eine Verkleinerung der Schleifkorndurchmesser bedeutet, werden die Schleifspuren kleiner (siehe Abbildungen 5.64 und 5.65). Bei Vergleich der Abbildungen 5.63, 5.64 und 5.65 muss festgehalten werden, dass mit kleiner werdendem Schleifkorndurchmesser die Anzahl der Schleifspuren steigt, aber deren Größe sinkt. Weiters sinkt mit kleinerem Schleifkorndurchmesser die Oberflächenrauigkeit (Tabelle 5.15).

Abbildung 5.63: Geschliffen P120

Abbildung 5.64: Geschliffen P1200

Abbildung 5.65: Geschliffen P4000

	$\operatorname{Schleifen}$		
Bezeichnung	Ra $[\mu m]$	Rz $[\mu m]$	
P120	0,30	2,80	
P1200	0,04	0,40	
P4000	$0,\!02$	$0,\!52$	

Tabelle 5.15: Oberflächenqualität Schleifen

Wird der Schleifkorndurchmesser noch mehr verkleinert, spricht man vom Polieren, wie in weiterer Folge erklärt.

5.7.3 Polieren

Nachstehende Abbildungen zeigen vergrößerte Aufnahmen der Oberfläche, hergestellt mit einem Schleifkorndurchmesser von 3 μm (Abbildung 5.66) und 1 μm (Abbildung 5.67).

Abbildung 5.66: Poliert 3 μm

Abbildung 5.67: Poliert 1 μm

Tabelle 5.16 zeigt die entstandenen Oberflächenrauigkeiten beim Polieren.

	Polieren		
${ m Schleifkorndurchmesser}$	Ra $[\mu m]$	Rz $[\mu m]$	
$3 \ \mu m$	0,11	0,36	
$1 \ \mu m$	0,04	0,32	

Tabelle 5.16: Oberflächenqualität Polieren

Beim Schleifen kann festgehalten werden, dass die Oberflächenrauigkeit mit abnehmendem Schleifkorndurchmesser sinkt. Beim Vergleich der Tabellen 5.15 und 5.16 ist dies nicht durchgängig der Fall. Durch einen Vergleich mit der Literatur [78] muss davon ausgegangen werden, dass die Messwerte für das Polieren falsch sind. Der Grund konnte nachträglich in der gewählten Auflösung des optischen Messgerätes gefunden werden. Hier wurde eine Auflösungstiefe von 400 nm in vertikaler Richtung verwendet. Das bedeutet, die Oberfläche wird in Schichten von 400 nm optisch 'zerteilt', die Oberflächenstruktur dieser Schichten grafisch aufgenommen und dannach mittels PC verarbeitet. Eine vertikale Auflösung von 400 nm kann derartig fein bearbeitete Oberflächen nicht richtig messen, da die Oberflächenstruktur bei weitem kleiner als diese Auflösung ist.

6 Zusammenfassung

In diesem Kapitel werden die wichtigsten Erkenntnisse zusammengefasst.

Festigkeit

Bei der Festigkeit ist ein deutlicher Unterschied zwischen Halbzeug und dem lasergeschmolzenen Material erkennbar. Die Elastizitätsgrenze des Halbzeuges ist etwa doppelt so groß wie jene des lasergeschmolzenen Materials. Die Streckgrenze des lasergeschmolzenen Materials unterscheidet sich minimal in den unterschiedlichen Prüfrichtungen. Zugfestigkeit und Bruchdehnung weichen bei unterschiedlichen Prüfrichtungen jedoch deutlich voneinander ab. Eine verfahrensbedingt große Anisotropie ist vorhanden. Die Wärmebehandlung des lasergeschmolzenen Materials wirkt sich vorteilhaft auf die Isotropie des Werkstoffes aus. - Es gleichen sich die Zugfestigkeiten den Prüfrichtungen x und y an.

Härte

Die Härteverläufe weichen deutlich voneinander ab. Durch die Wärmebehandlung kann die Härte des lasergeschmolzenen Materials gesteigert werden. Beim lasergeschmolzenen Material sind Tendenzen zu geringerer Härte bei erhöhtem Randabstand zu erkennen. Das Halbzeug verhält sich umgekehrt: Im Inneren liegt eine größere Härte als in den Randschichten vor.

Kerbschlagarbeit

Das lasergeschmolzene Material zeigt auch hier eine deutliche Anisotropie. Durch eine Wärmebehandlung kann diese Anisotropie vermindert werden, jedoch sinkt die Kerbschlagarbeit hin zu niedrigeren Werten (nicht mehr so duktil wie ohne Wärmebehandlung) und gleicht sich dem Halbzeug, welches die geringsten Werte aufweist, an.

Mikrostruktur

Der Flächenanteil der Poren im lasergeschmolzenen Materials ist etwa halb so groß wie der des Halbzeuges. Durch eine Wärmebehandlung kann diese nur geringfügig verringert werden. Das Gefüge sowohl des lasergeschmolzenen Materials als auch des Halbzeuges besteht aus Martensit, durchzogen von geringen Anteilen Austenit, Ferrit und Seigerungen. Der Schichtaufbau funktioniert gut und stellt keine Schwächung des Grundmaterials dar.

Maßhaltigkeit

Die Maßhaltigkeit von kleinen bis mittelgroßen lasergeschmolzenen Werkstücken ist in der Regel sehr gut. Das heißt, die Toleranzklassen f und H können gefertigt werden. Unter Umständen kann es zu größeren Abweichungen von diesen Toleranzklassen kommen. Die Gründe dafür wurden nicht untersucht. Derartige Abweichungen können als stochastisch angesehen werden, daher ist bei kritischen Maßen eine Prüfung der Maßhaltigkeit zu empfehlen.

Oberflächenqualität

Die Orientierung der Ebenen wirkt sich beim Laserschmelzprozess auf die Oberflächenqualität enorm aus: Horizontal ausgerichtete Ebenen haben geringste Rauigkeiten, vertikal orientierte Ebenen besitzen die größten Rauigkeiten. Durch die Wärmebehandlung können diese Rauigkeiten nicht verändert werden. Ein anschließendes Glasperlenstrahlen schafft eine gleichmäßige Oberflächenrauigkeit. Vertikal orientierte Ebenen werden geglättet, allerdings werden auf Grund des Bauprozesses sehr glatte Flächen (horizontale Ebenen) wieder aufgeraut.

Mechanische Bearbeitbarkeit

Die zerspanende Bearbeitbarkeit von lasergeschmolzenem Material ist gegeben. Bei Verwendung der vom Hersteller vorgegebenen Zerspanungsparametern tritt ein sehr kurzbrechender Span beim Bohrprozess auf. Die benötigte Zerspanungsleistung hängt signifikant vom gewählten Bohrertyp ab. Die Angaben des Herstellers begünstigen eine energieeffiziente Zerspanung. Die beim Schleifen erreichbaren Oberflächenqualitäten entsprechen jenen, welche in der Fachliteratur zu finden sind. Das Polieren erzeugt - wie erwartet - sehr feine Oberflächenstrukturen. Der Erfassung dieser Strukturen muss jedoch besondere Aufmerksamkeit zugemessen werden.

7 Ausblick

In dieser Arbeit wurde der Grundstein für zukünftige Forschungsarbeiten im Bereich der additiven Fertigung gelegt. Anknüpfende Arbeiten können tiefere Einblicke über die Auswirkung der Anisotropie des Materials auf praxisnahe Bauteilstrukturen geben. Ebenso kann der Einfluss der Wärmebehandlung umfassender betrachtet werden. Ein noch sehr unerforschtes Gebiet dieser Technologie ist die Fluidtechnik. Die Dichtheit von Laserschmelzstrukturen sowie die Abrasion durch strömende Medien ist eine Herausforderung in der Fluidtechnik. Kommende Untersuchungen sollten vor allem hier das große Potenzial aufzeigen, das diese Technologie mit sich bringt.

Generell gewinnt diese Technologie zunehmend an Bedeutung. In der Medizintechnik (Dentaltechnik, Prothesenbau,...) wird die Technologie des Selektiven Laserschmelzens bereits in einigen Kliniken sehr erfolgreich bei der Behandlung von Patienten angewandt. Das Anwendungsgebiet dieser Technologie bleibt jedoch nicht nur auf die Medizintechnik beschränkt. Überall dort, wo individuelle und komplexe Geometrien gefertigt werden sollen, wird dieser Produktionsprozess über kurz oder lang Einzug halten. Im Maschinenbau bedeutet das, Bauteile zu konstruieren, die strömungsund/oder festigkeitsoptimiert sind und nicht an Restriktionen der zerspanenden Fertigung gebunden sind. Das wiederum bedeutet ein Umlernen der Konstrukteure, was Zeit in Anspruch nimmt. Die nächste Generation von Ingenieuren muss daher diesen Prozess kennen und die sich daraus ergebenden Vorteile anzuwenden wissen. Folglich müssen an den Hochschulen und Universitäten zukünftige Techniker mit diesem Wissen ausgestattet werden. Eine Lehrveranstaltung, welche sich mit dem Thema der additiven Fertigung beschäftigt, muss daher auch an einem modernen Fertigungstechnikinstitut der Technischen Universität Graz angeboten werden.

Der Prozess des Selektiven Laserschmelzens stellt dabei nur ein mögliches Verfahren im breiten Spektrum der additiven Fertigung dar. Dennoch ist es jener Prozess, welcher bisher am meisten erforscht ist und bei dem große Anstrengungen - von Seiten der Wissenschaft (Universitäten) und der Anwendung (Wirtschaft) - unternommen werden, um umfassendes Wissen über diese Technologie zu erlangen.

Bezüglich der verarbeitbaren Materialien wird die Auswahl immer vielfältiger und unübersichtlicher. Die Kosten des Rohmaterials für den Prozess des Selektiven Laserschmelzenes sind nicht unerheblich. Im Vergleich zum Halbzeug sind diese sogar exorbitant hoch. Zukünftige Forschungen müssen danach trachten, Rohmaterialien für diesen Prozess konstengünstig herzustellen und somit zur Wirtschaftlichkeit dieser Prozesse beizutragen. Wohin sich diese Technologie in Zukunft noch bewegen wird, ist bis dato unklar. Letztlich wird aber auch diese Technologie ihren Platz in der Produktionslandschaft finden und somit die Fertigungstechnik dauerhaft verändern.

Glossar

Anisotropie: Anisotropie stammt aus dem Griechischen und bezeichnet die Richtungsabhängigkeit der physikalischen Eigenschaften eines Stoffes. Bei Kristallen begünstigt das regelmäßige, periodische Gitter von Atomen die Richtungsabhängigkeit (Anisotropie) vieler physikalischer Eigenschaften. Die Anisotropie einer Eigenschaft des Kristalls hängt von der kristallographischen Struktur ab. [80]

Dehngrenze: Bei Arbeitslinien mit stetigem Übergang vom elastischen in den plastischen Bereich, also ohne ausgeprägte Streckgrenze, wird anstelle der Streckgrenze eine Dehngrenze bestimmt. Üblicherweise ist dies die 0,2%-Dehngrenze $Rp_{0,2}$, welche jene auf den Ausgangsquerschnitt bezogene Last ist, bei der nach Wegnahme der Belastung die bleibende Dehnung 0,2% der Messlänge beträgt. [74]

Fertigungsverfahren: Ein Fertigungsverfahren ist ein Prozess, bei dem Güter und Waren hergestellt werden. Diese werden innerhalb des Prozesses aus anderen Materialien hergestellt. Diese Herstellung kann per Hand oder auch maschinell erfolgen. [81]

Generative Fertigungsverfahren: Bei allen generativen Fertigungsverfahren entstehen die Bauteile durch das Fügen von Schichten gleicher Dicke. Die Formgebung jeder Schicht erfolgt in der x-y-Ebene, der sogenannten Bauebene und damit flächig. Die dritte Dimension entsteht nicht als kontinuierliche z-Koordinate, sondern durch das Aufeinanderfügen der Einzelschichten. Generative Verfahren sind deshalb, streng genommen, $2\frac{1}{2}$ D-Verfahren. [4]

Halbzeug: Vorgefertigte Rohmaterialformen werden unter dem Oberbegriff Halbzeug geführt. Dazu gehören z.B. Coils, Stangen, Bleche und Rohre. Es gibt unzählig verschiedene Halbzeugarten, die sich in Form und Abmessungen sowieso Material- und Oberflächenqualität und Toleranzklasse unterscheiden. Daher stellen Halbzeuge die verbreitetste Lieferform für Metallwerkstoffe dar. Durch eine Normung lassen sich Halbzeuge in einer gleichbleibenden Qualität herstellen und besser vergleichen. In der Fertigung werden Halbzeuge so gewählt, dass sie in Form und Abmessungen möglichst nah dem herzustellenden Produkt entsprechen. Dadurch kann eine rationelle und kostengünstige Fertigung gewährleistet werden. Bei der Verarbeitung wird nicht das ganze Halbzeug direkt verwendet, sondern es erfolgt vorher ein Zuschnitt durch ein geeignetes Trennverfahren, z.B. Sägen, welcher zum Fertigteil verarbeitet wird. [82]

Kerbschlagbiegeversuch: Bei der Versuchsdurchführung wird eine doppelseitig auf zwei Auflager und gegen zwei Widerlager liegende Probe durch das Schlagwerk mit einem einzigen Schlag durchgebrochen. Die dabei verbrauchte Schlagarbeit Av wird gemessen. [74] Lösungsglühen: Durch Lösungsglühen werden Kaltverfestigungen bei austenitischen Stählen reduziert. Das Stahlwerkstück wird dabei auf Temperaturen zwischen 1000 °C und 1100 °C gebracht. Abhängig von der Werkstückgröße kann die Erhitzungsdauer zwischen 30 Minuten und einigen Stunden betragen. Hat die Hitze das Werkstück ganz durchdrungen, wird es im Wasser abgeschreckt. Der Nachteil des Verfahrens liegt in der gegebenenfalls sehr langen Haltezeit unter hohen Temperaturen, was zu einer Grobkornbildung führen kann (ungünstige Ausprägung des Kornwachstums). [83]

Stereolithographie: In der Stereolithographie wird ein lichtaushärtender Kunststoff (Photopolymer) von einem Laser Schicht um Schicht ausgehärtet. Die Standfestigkeit des Werkstücks auf der Bauplattform wird durch eine Stützkonstruktion erreicht. Die Stereolithographie ermöglicht eine präzise Fertigung mit sehr feinen Strukturen und glatten Oberflächen. [84]

Streckgrenze: Weist ein metallischer Werkstoff eine Streckgrenze auf, erfolgt zu einem bestimmten Zeitpunkt im Versuchsverlauf eine plastische Verformung ohne Zunahme der Kraft. [74]

Tastschnittverfahren: Das Tastschnittverfahren ist eine Methode zur messtechnischen Beschreibung von Oberflächen. Bei der Rauheitsmessung mit mechanischen Tastschnittgeräten wird eine Tastspitze aus Diamant mit konstanter Geschwindigkeit über die Oberfläche einer Probe (Werkstück) gezogen. Das Messprofil ergibt sich aus der vertikalen Lageverschiebung der Tastspitze, die in der Regel durch ein induktives Wegmesssystem erfasst wird. Zur messtechnischen Beschreibung einer Oberfläche werden aus dem Messprofil genormte Rauheitskenngrößen gewonnen. [85]

Vickershärte: Bei der nach DIN EN ISO 6507 geregelten Härteprüfung wird eine gleichseitige Diamantpyramide mit einem Spitzenwinkel von 136° mit einer genormten Prüfkraft für ca. 10 bis 15 Sekunden in die Oberfläche einer Probe eingedrückt, die Diagonalen des entstandenen Eindrucks werden vermessen und daraus wird die Härte berechnet. Je nach Größe der Prüfkraft unterscheidet man zwischen Vickers-Härteprüfung ($F \ge 49,03N$), Vickers-Kleinkrafthärteprüfung ($1,961N \le F \le 49,03N$) und die Vickers-Mikrohärteprüfung ($0,098N \le F \le 1,961N$).

Wärmebehandlung: Die Wärmebehandlung ist ein Vorgang, in deren Verlauf ein Werkstück oder ein Bereich eines Werkstückes absichtlich Temperatur-Zeit-Folgen und/oder chemischen Einwirkungen ausgesetzt wird, um ihm Eigenschaften zu verleihen, die für seine Weiterverarbeitung oder Verwendung erforderlich sind. [86]

Zugfestigkeit: Die Zugfestigkeit ist definiert als das Verhältnis der höchsten erreichten Kraft zum Ausgangsquerschnitt. [74]

Zugversuch: Der Versuch besteht darin, eine Probe durch Zugbeanspruchung zu dehnen, im Allgemeinen bis zum Bruch, um eine oder mehrere mechanische Kenngrößen zu bestimmen. Sofern nicht anders festgelegt, wird der Versuch bei Raumtemperatur zwischen 10 °C und 35 °C durchgeführt. Das während eines Versuches aufgezeichnete Kraft (F) – Verlängerungs (ΔL) – Diagramm, oder besser, das daraus abgeleitete Spannungs ($\sigma = \frac{F}{S_0}$) – Dehnungs ($\varepsilon = \frac{\Delta L}{L_0}$) – Diagramm bzw. die Arbeitslinie eines Werkstoffes kennzeichnet am anschaulichsten sein Verhalten. S_0 ist dabei die Querschnittsfläche, L_0 die Länge bei Versuchsbeginn. [74]

Literatur

- Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. 3D-Drucker: Erwartungen steigen. Presseinformationn. 14.07.2014. URL: http://www.bitkom. org/de/presse/8477_79836.aspx (besucht am 04.11.2014).
- [2] Fertigungsverfahren Begriffe, Einteilung. Norm. 2003.
- [3] Marshall Burns. "The Household Fabricator". In: Panel Discussion on Future Directions in Solid Freeform Fabrication (1993).
- [4] Andreas Gebhardt. Generative Fertigungsverfahren. Rapid Prototyping Rapid Tooling Rapid Manufactoring. Carl Hanser Verlag, München, 2007.
- [5] Petra Fastermann. 3D-Druck / Rapid Prototyping. Eine Zukunftstechnologie kompakt erklärt. Springer Vieweg Verlag, Heidelberg, 2012.
- [6] Gerhard Pahl u. a. Pahl/Beitz Konstruktionslehre. Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung. Springer Vieweg Verlag, Heidelberg, 2013.
- [7] Additive manufacturing General principles. Norm. Okt. 2014.
- [8] Th. Herbert. "LaserCUSING Latest applications and examples from practice". In: Metal Additive Manufacturing Conference 2014 ().
- [9] Prezi Inc. A Brief History of Selective Laser Sintering. 14.08.2013. URL: http://prezi.com/idnnfutexals/a-brief-history-of-selective-laser-sintering/ (besucht am 01.10.2014).
- [10] J. Ovtcharova. Techn. Ber. Universität Karlsruhe (TH): Institut für Rechneranwendung in Planung und Konstruktion (RPK), 2001.
- [11] Christian Ströh. Maschinenbauer erfindet Drucker für Gegenstände. In Bastelkellern tauchen Drucker auf, die Objekte Schicht für Schicht erstellen. Tüftler finden Baupläne und Software im Internet. 15.08.2010. URL: http://www.abendblatt.de/wirtschaft/article1599861/ Maschinenbauer-erfindet-Drucker-fuer-Gegenstaende.html (besucht am 02.10.2014).
- Shellabear, M. and Nyrhilä, O. DMLS-Development history and state of the art. 21.09.2004.
 URL: http://laseroflove.files.wordpress.com/2009/10/dmls_history.pdf (besucht am 10.10.2014).
- [13] Eberhard Abele u. a. "Validierung einer Qualifizierungsmethodik für neue Werkstoffe für laserbasierte Strahlschmelzverfahren". In: RT - Forum für Rapid Technologie (8/2011).

- [14] X.J. Wang u. a. "The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy". In: Materials Science & Engineering A597 (2014), 370-375.
- [15] A. Simchi. "Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features". In: Materials Science and Engineering (2006), S. 148–158.
- [16] E. Brandl u.a. "Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior". In: *Materials and Design* 34 (2012), S. 159–169.
- [17] K. Muralia u. a. "Direct selective laser sintering of iron-graphite powder mixture". In: Journal of Materials Processing Technology 136 (2013), 179–185.
- [18] B. Guijun u. a. "Microstructure and tensile properties of superalloy IN100 fabricated by microlaser aided additive manufacturing". In: *Materials and Design 60* (2014), S. 401–408.
- [19] J. Schwerdtfeger und C. Körner. "Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss". In: *Intermetallics* 49 (2014), S. 29–35.
- [20] K.N. Amato u.a. "Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting". In: Acta Materialia 60 (2012), S. 2229–2239.
- [21] Suo Suo Hongbo u. a. "Microstructure and Mechanical Properties of Ti-6Al-4V by Electron Beam Rapid Manufacturing". In: Rare Metal Materials and Engineering 43 (2014), S. 780– 785.
- [22] D. Tomusa u. a. "Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting". In: *Physics Procedia* 41 (2013), 823–827.
- [23] K.Y. Benyounis, O.M. Fakron und J.H. Abboud. "Rapid solidification of M2 high-speed steel by laser melting". In: *Materials and Design 30* (2009), 674–678.
- [24] Q. Jia und D. Gu. "Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties". In: Journal of Alloys and Compounds 585 (2014), 713-721.
- [25] J.P. Kruth u.a. "Selective laser melting of iron-based powder". In: Journal of Materials Processing Technology 149 (2004), 616–622.
- [26] P. Lin, Z. Zhang und L. Ren. "The mechanical properties and microstructures of AZ91D magnesium alloy processed by selective laser cladding with Al powder". In: Optics and Laser Technology 60 (2014), 61–68.
- [27] C. Yan u.a. "Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting". In: *Materials and Design 55* (2014), 533–541.
- [28] K. Zhang u.a. "Characterization of stainless steel parts by Laser Metal Deposition Shaping". In: Materials and Design 55 (2014), 104–119.

- [29] H. Attar u. a. "Manufacture by selective laser melting and mechanical behavior of commercially pure titanium". In: *Materials Science and Engineering A 593* (2014), 170–177.
- [30] P. Edwards und M. Ramulu. "Fatigue performance evaluation of selective laser melted Ti-6Al-4V". In: Materials Science & Engineering A598 (2014), 327-337.
- [31] S. Shimizu u.a. "Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061". In: Acta Materialia 74 (2014), 234–243.
- [32] K.A. Mumtaz, P. Erasenthiran und N. Hopkinson. "High density selective laser melting of Waspaloy". In: journal of materials processing technology 195 (2008), 77–87.
- [33] X.P. Li u. a. "Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties". In: *Materials Science & Engineering* A606 (2014), 370-379.
- [34] I. Yadroitsev u. a. "Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder". In: *Applied Surface Science 254* (2007), 980–983.
- [35] T. Bormanna u.a. "Microstructure of selective laser melted nickel-titanium". In: MATERI-ALSCHARACTERIZATION 94 (2014), S. 189–202.
- [36] P. Fischer u.a. "Pulsed laser sintering of metallic powders". In: Thin Solid Films 453-454 (2004), S. 139-144.
- [37] B. Zhang, L. Dembinski und C. Coddet. "The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder". In: *Materials Science & Engineering A584* (2013), 21–31.
- [38] K. Osakada und M. Shiomi. "Flexible manufacturing of metallic products by selective laser melting of powder". In: International Journal of Machine Tools & Manufacture 46 (2006), 1188-1193.
- [39] M. Van Elsen u. a. "Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing". In: International Journal of Heat and Mass Transfer 50 (2007), 4872–4882.
- [40] D. Dai und D. Gu. "Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments". In: *Materials and Design* 55 (2014), S. 482–491.
- [41] I. Yadroitsev u.a. "Single track formation in selective laser melting of metal powders". In: Journal of Materials Processing Technology 210 (2010), 1624–1631.
- [42] P. Nie, O.A. Ojo und Z. Li. "Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy". In: Acta Materialia 77 (2014), 85–95.
- [43] K.G. Prashanth u. a. "Friction welding of Al-12Si parts produced by selective laser melting". In: Materials and Design 57 (2014), S. 632-637.

- [44] F. Abe u.a. "The manufacturing of hard tools from metallic powders by selective laser melting". In: Journal of Materials Processing Technology 111 (2001), 210–213.
- [45] K. Maeda und T.H.C. Childs. "Laser sintering (SLS) of hard metal powders for abrasion resistant coatings". In: Journal of Materials Processing Technology 149 (2004), 609-615.
- [46] A. Riemer u. a. "On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting". In: Engineering Fracture Mechanics 120 (2014), 15–25.
- [47] M. Matsumoto u. a. "Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing". In: International Journal of Machine Tools & Manufacture 42 (2002), 61-67.
- [48] A. Vasinonta und J.L. Beuth. "Measurement of interfacial toughness in thermal barrier coating systems by indentation". In: Engineering Fracture Mechanics 68 (2001), S. 843–860.
- [49] A. Vasinonta, J.L. Beuth und M. Griffith. "Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures". In: Journal of Manufacturing Science and Engineering 129 (2007), S. 101–109.
- [50] A.H. Nickel, D.M. Barnett und F.B. Prinz. "Thermal stresses and deposition patterns in layered manufacturing". In: *Materials Science and Engineering A317* (2001), 59–64.
- [51] J.L. Beuth und S.H Narayan. "Residual stress-driven delamination in deposited multi-layers". In: International Journal for Solid Structures 33 (1996), S. 65–78.
- [52] S. Scudino u.a. "Powder metallurgy of Al-based metal matrix composites reinforced with b-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties". In: Acta Materialia 57 (2009), 4529–4538.
- [53] M. Badrossamay und T.H.C. Childs. "Further studies in selective laser melting of stainless and tool steel powders". In: International Journal of Machine Tools & Manufacture 47 (2007), 779–784.
- [54] G. Ziółkowski u.a. "Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology". In: archives of civil and mechanical engineering 14 (2014), 608–614.
- [55] Y.-J. Liang u.a. "Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material". In: *Materials Science & Engineering A599* (2014), 242–246.
- [56] L. Mullen u. a. "Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone In-Growth Constructs, Suitable for Orthopedic Applications". In: *Journal of Biomedical Materials Research Part B: Applied Biomaterials 89B* (2009), 325–334.

- [57] X Tian und et al. "Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi's method". In: Journal of the European Ceramic Society 29 (2009), 1903–1915.
- [58] Fraunhofer IFAM Dresden. Pulvermetallurgische Verfahren für die generative Fertigung. URL: https://tu-dresden.de/die_tu_dresden/fakultaet_maschinenwesen/ifww/ professuren/prof_fuer_pm_sinter_und_verbundwerkstoffe/lehre/skripte_pm/ vogenfert (besucht am 15.01.2015).
- [59] Massblech GmbH. Einfluss der Legierungselemente auf die Eigenschaften des Stahles. 2008.
 URL: www.massblech.de (besucht am 10.01.2015).
- [60] C.W. Wegst. Nachschlagewerk Stahlschlüssel. Verlag Stahlschlüssel Wegst GmbH, Marbach, 1992.
- [61] Deutsche Edelstahlwerke. 1.4542. 2008. URL: http://www.dew-stahl.com/fileadmin/ files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1. 4542_de.pdf (besucht am 10.03.2015).
- [62] Lober, Dietmar. Informationen über Stahl für Metallografen. URL: http://www.metallograf.
 de/start.htm?/probenvorbereitung/mikro19.htm (besucht am 10.12.2014).
- [63] I. Mitelea, I. Bordeasu und S.-E. Katona. Techn. Ber. Brno, Czech Republic: Politehnica University of Timisoara.
- [64] GRUPPO LUCEFIN S.p.A. Ausscheidungshärtende Stähle. 2011. URL: http://www.lucefin. com/wp-content/files_mf/1.4542pha63025.pdf (besucht am 07.01.2015).
- [65] AKSteel. Product Data 17-4 PH STAINLESS STEEL. 2014. URL: http://www.aksteel. com/pdf/markets_products/stainless/precipitation/17-4_PH_Stainless_Steel_PDB_ 201404.pdf (besucht am 06.02.2015).
- [66] A. Zhaoyun Chen, Zhou Guijuan und Z. Chen. "Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching". In: *Materials Science and Engineering* (2012), 536-541.
- [67] T. Niendorf u. a. "Highly Anisotropic Steel Processed by Selective Laser Melting". In: Metallurgical and Materials Transactions 44B (2013), S. 794–796.
- [68] W. E. Luecke und J. A. Slotwinski. "Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing". In: Journal of Research of the National Institute of Standards and Technology 119 (2004), S. 398–419.
- [69] E. Chlebus u.a. "Microstructure and mechanical behaviour of Ti6Al7Nb alloy produced by selective laser melting". In: *Materials Characterization 62* (2011), 488–495.
- [70] Metallische Werkstoffe Zugversuch Teil 1: Pr
 üfverfahren bei Raumtemperatur. Norm. Dez. 2009.

- [71] Prüfung metallischer Werkstoffe Zugproben. Norm. Juli 2009.
- [72] Metallische Werkstoffe Kerbschlagbiegeversuch nach Charpy, Teil 3: Vorbereitung und Charakterisierung von Charpy-V-Referenzproben für die indirekte Prüfung der Prüfmaschinen (Pendelschlagwerke). Norm. Juni 2009.
- [73] Metallische Werkstoffe Kerbschlagbiegeversuch nach Charpy Teil 1: Pr
 üfverfahren. Norm. Jan. 2011.
- [74] Norbert Enzinger. Techn. Ber. LV Nr. 303.004. Kopernikusgasse 24/I, A-8010 Graz, Österreich: Institut für Werkstoffkunde und Schweißtechnik, 2012.
- [75] Günter Petzow. Metallographisches, keramographisches, plastographiches Ätzen. Borntraeger, Berlin, 2006.
- [76] Susanna Labisch und Christian Weber. Technisches Zeichnen. Springer Fachmedien, Wiesbaden, 2014.
- [77] Allgemeintoleranzen; Toleranzen für Längen- und Winkelmaße ohne einzelne Toleranzeintragung. Norm. Juni 1991.
- [78] Ulrich Fischer u. a. Tabellenbuch Metall. Europa Lehrmittel, Wien, 2008.
- [79] G. Lange. Systematische Beurteilung technischer Schadensfälle. Wiley-VCH Verlag, 1997.
- [80] Gemmologisches Institut WIFI Linz. Edelsteinkunde 1. URL: http://www.gemmologie.at/ mediaCache/Anisotrop_Isotrop_269186.pdf (besucht am 30.10.2014).
- [81] Ute Imkenberg und Thorsten Mauch Datenverarbeitung GbR. Fachwissen Technik. URL: http: //www.fachwissen-technik.de/verfahren/fertigungsverfahren.html (besucht am 30.10.2014).
- [82] Pelmer, Pascal. Metall Technik Wissen. URL: http://www.metall-wissen.de/halbzeug/ (besucht am 04.11.2014).
- [83] Aunkofer, Benjamin. www.der-wirtschaftsingenieur.de. URL: http://www.derwirtschaftsingenieur.de/index.php/warmebehandlung-von-stahl/ (besucht am 04.11.2014).
- [84] Hördler rapid engineering. Hördler rapid engineering Prototypenbau. URL: http://www. hoerdler.de/stereolithographie/stereolithographie.htm (besucht am 30.10.2014).
- [85] Jenoptik AG. Jenoptik AG. URL: http://www.jenoptik.com/de-taktile-messtechniktechnologie (besucht am 30.10.2014).
- [86] Begriffe der Wärmebehandlung von Eisenwerkstoffen. Norm. 1994.
- [87] PrinWest Trace Agency. FEPA Standards 2006. URL: http://www.fepa-abrasives.org/ (besucht am 10.11.2014).

Abbildungsverzeichnis

1.1	Einteilung der Fertigungsverfahren [2]	2
1.2	Einteilung der additiven Fertigungsverfahren [4]	3
1.3	Prozessablauf der additiven Fertigung [7]	5
2.1	Nahaufnahmen von Bauteiloberflächen [8]: links: Selektives Laserschmelzen (SLM)	
	rechts: Selektives Lasersintern (SLS)	6
2.2	Prozessablauf beim Selektiven Lasersintern [10]	7
2.3	Prozessparameter beim Selektiven Laserschmelzen [13]	9
2.4	Prozessfenster für den Werkstoff 1.4404 [58]	11
2.5	Einfluss der Legierungelemente [59]	12
2.6	Diagramm nach Schaeffler für hochlegierte Stähle [62]	14
2.7	Prozesskette vom Ausgangsmaterial zum Endprodukt	15
2.8	Darstellung der Wärmebehandlungen	17
3.1	Zugprobe nach DIN 50125 - B6x30	19
3.2	Referenzmodell 2	20
3.3	Kerbschlagbiegeprobe nach DIN EN ISO 148-1 - KV	21
3.4	Prozessablauf bei der Mikrostrukturuntersuchung	23
3.5	Referenzmodell 1	25
3.6	Referenzmodell 1	25
3.7	Einteilung der Toleranzen [76]	26
3.8	Schnittgeschwindigkeiten	29
3.9	Vorschübe	29
3.10	Spiralbohrer mit gemessenen Kräften und Moment	31
4.1	Darstellung aller Prüfgeometrien und Prüfrichtungen	36
5.1	σ - ε -Diagramm der lasergeschmolzenen Zugproben ohne Wärmebehandlung	38
5.2	Bruchfläche des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Prüfrichtung: z	
	$(E{=}176~\mathrm{GPa},\mathrm{Re}{=}592~\mathrm{MPa},\mathrm{Rm}{=}916~\mathrm{MPa})~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots$	39
5.3	$\sigma\text{-}\varepsilon\text{-}\mathrm{Diagramm}$ der lasergeschmolzenen Zugproben mit Wärmebehandlung	40
5.4	Bruchfläche des lasergeschmolzenen Materials	
------	---	----
	Wärmebehandlung: ja	
	Prüfrichtung: z	
	$(E=188\pm5~\mathrm{GPa},\mathrm{Re}=586\pm1~\mathrm{MPa},\mathrm{Rm}=1213\pm3~\mathrm{MPa})$	41
5.5	σ - ε -Diagramm des Halbzeuges	42
5.6	Bruchfläche des Halbzeuges	
	Wärmebehandlung: -	
	Prüfrichtung: -	
	$(E=198\pm2~GPa,Re=1142\pm1~MPa)~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots$	43
5.7	σ - ε -Diagramm aller Zugproben im Vergleich	44
5.8	Härte des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Schliffebene: xy \ldots	46
5.9	Härte des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: xy \ldots	47
5.10	Härte des Halbzeuges	
	Wärmebehandlung: -	
	Schliffebene:	48
5.11	Härtevergleich a) Halbzeug b) Lasergeschmolzenes Material ohne Wärmebehandlung	
	c) Lasergeschmolzenes Material mit Wärmebehandlung	49
5.12	Ergebnisse der Härtemessung	50
5.13	Bruchfläche des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Kerblage: xy	
	$(Av=161\pm 5 J)$	51
5.14	Bruchfläche des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Kerblage: xy	
	$(Av=89\pm 2 J)$	52
5.15	Bruchfläche des Halbzeuges	
	Wärmebehandlung: -	
	Kerblage: -	
	$(Av=72\pm 2 J)$	53
5.16	Schliffbild des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Schliffebene: xy	
	Ätzung: keine	55

5.17	Verteilung der Porengrößen des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Schliffebene: xy	
	Ätzung: keine	55
5.18	Schliffbild des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: xy	
	Ätzung: keine	56
5.19	Verteilung der Porengröße des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: xy	
	Ätzung: keine	56
5.20	Schliffbild des Halbzeuges	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: keine	57
5.21	Verteilung der Porengröße des Halbzeuges	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: keine	57
5.22	Vergleich der Porengrößenverteilungen	58
5.23	lasergeschmolzenes Material	
	Wärmebehandlung: nein	
	Schliffebene: yz	
	Ätzung: V2A Beize	59
5.24	lasergeschmolzenes Material	
	Wärmebehandlung: ja	
	Schliffebene: yz	
	Ätzung: V2A Beize	59
5.25	lasergeschmolzenes Material	
	Wärmebehandlung: nein	
	Schliffebene: xz	
	Ätzung: V2A Beize	59
5.26	lasergeschmolzenes Material	
	Wärmebehandlung: ja	
	Schliffebene: xz	
	Ätzung: V2A Beize	59

5.27	lasergeschmolzenes Material	
	Wärmebehandlung: nein	
	Schliffebene: xy	
	Ätzung: V2A Beize	60
5.28	lasergeschmolzenes Material	
	Wärmebehandlung: ja	
	Schliffebene: xy	
	Ätzung: V2A Beize	60
5.29	Halbzeug	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: V2A Beize	60
5.30	Halbzeug	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: V2A Beize	60
5.31	lasergeschmolzenes Material	
	Wärmebehandlung: nein	
	Schliffebene: yz	
	Ätzung: Lichtenegger-Bloech	61
5.32	lasergeschmolzenes Material	
	Wärmebehandlung: nein	
	Schliffebene: yz	
	Ätzung: Lichtenegger-Bloech	61
5.33	Halbzeug	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: Lichtenegger-Bloech	61
5.34	Halbzeug	
	Wärmebehandlung: -	
	Schliffebene: -	
	Ätzung: Lichtenegger-Bloech	61
5.35	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: xz	
	Ätzung: Oxalsäure	62
5.36	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Schliffebene: yz	
	Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren	63

5.37	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: nein	
	Schliffebene: xz	
	Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren	64
5.38	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: xz	
	Prüfrichtung: z	
	Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren	64
5.39	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: yz	
	Prüfrichtung: z	
	Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren	65
5.40	Schichtaufbau des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Schliffebene: yz	
	Prüfrichtung: x	
	Ätzung: Lichtenegger-Bloech Beize mit anschließendem Polieren	65
5.41	Maßhaltigkeit des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	66
5.42	Maßhaltigkeit des lasergeschmolzenen Materials	
	Wärmebehandlung: a) nein b) ja	67
5.43	Oberflächenqualität des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	68
5.44	Winkel zur Horizontalen: 0° Mittenrauwert: Ra = 0,89 / 0,65 μm Gem. Rautiefe: Rz	
	$=3,39$ / 2,07 μm	69
5.45	Winkel zur Horizontalen: 30° Mittenrauwert: Ra = 4,85 μm Gem. Rautiefe: Rz =	
	$21,82 \ \mu m \qquad \dots \qquad$	69
5.46	Winkel zur Horizontalen: 60° Mittenrauwert: Ra = 9,07 μm Gem. Rautiefe: Rz =	
	$32,98 \ \mu m$	70
5.47	Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 7,92 μm Gem. Rautiefe: Rz =	
	$37,37 \ \mu m$	70
5.48	Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 8,16 μm Gem. Rautiefe: Rz =	
	$42,20 \ \mu m \qquad \dots \qquad$	71
5.49	Winkel zur Horizontalen: 90° Mittenrauwert: Ra = 8,10 μm Gem. Rautiefe: Rz =	
	$32,61 \ \mu m$	71
5.50	Oberflächenqualität des lasergeschmolzenen Materials	
	Wärmebehandlung: ja	
	Folgeprozess: Glasperlenstrahlen	72

5.51	Winkel zur Horizontalen: 0° Mittenrauwert: Ra $=1,50~\mu m$ Gem. Rautiefe: Rz $=5,05$	
	μm	73
5.52	Winkel zur Horizontalen: 30° Mittenrauwert: Ra $=$ 1,80 μm Gem. Rautiefe: Rz $=$	
	7,03 μm	73
5.53	Winkel zur Horizontalen: 60° Mittenrauwert: Ra $=$ 2,67 μm Gem. Rautiefe: Rz $=$	
	9,46 μm	73
5.54	Winkel zur Horizontalen: 90° Mittenrauwert: Ra $=$ 1,72 μm Gem. Rautiefe: Rz $=$	
	7,17 μm	73
5.55	$\label{eq:expectation} Ergebnisse \ der \ Bohrversuche: \ Gesamtleistung \ Bohrertyp: \ alle \ Zerspanung sparameter:$	
	$v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: alle	78
5.56	Ergebnisse der Bohrversuche: Gesamtleistung Bohrertyp: M1805-0600 AE Zerspa-	
	nungsparameter: alle Material: Halbzeug	78
5.57	Halbzeug	
	Wärmebehandlung: -	
	Bohrertyp: $M9405-0600AE$	
	Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$	79
5.58	lasergeschmolzenes Material	
	Wärmebehandlung: ja	
	Bohrertyp: $M9405-0600AE$	
	Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$	79
5.59	Halbzeug	
	Wärmebehandlung: -	
	Bohrertyp: M1805-0600AE	
	Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$	80
5.60	Halbzeug	
	Wärmebehandlung: -	
	Bohrertyp: M1805-0600AE	
	Parameter: $v_c = 60 \frac{m}{min}, f = 0.10 \frac{mm}{U}$	80
5.61	Halbzeug	
	Wärmebehandlung: -	
	Bohrertyp: WDO-SUS-5D	
	Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$	81
5.62	lasergeschmolzenes Material	
	Wärmebehandlung: ja	
	Bohrertyp: WDO-SUS-5D	
	Parameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$	81
5.63	Geschliffen P120	82
5.64	Geschliffen P1200	82
5.65	Geschliffen P4000	82
5.66	Poliert 3 μm	83

5.67	Poliert 1 μm
7.1	Lasergeschmolzenes Material ohne Wärmebehandlung
7.2	Lasergeschmolzenes Material mit Wärmebehandlung
7.3	Halbzeug N700 (H1025)
7.4	Zusammenhang zwischen Kornbezeichnung und Korngröße [87]

Tabellenverzeichnis

2.1	Chemische Zusammensetzung der Stahlsorte 1.4542 in $\%$ nach EN10088	11
2.2	Bezeichnung des Werkstoffes 1.4542 in verschiedenen Normen [61]	13
3.1	Probenmatrix für den Zugversuch	19
3.2	Probenmatrix für den Kerbschlagbiegeversuch	21
3.3	Allgemeintoleranzen für Längenmaße [78]	27
3.4	Allgemeintoleranzen für Winkelmaße [78]	27
3.5	Allgemeintoleranzen für Geradheit und Ebenheit [78]	27
3.6	Probenmatrix für Bohrversuche $(v_c = 80 \ \frac{m}{min}, f = 0.18 \ \frac{mm}{U})$	30
3.7	Probenmatrix für eine Vergleichsmessung des M1805-0600AE	30
5.1	Festigkeit laut Messung	45
5.2	Festigkeit laut Maschinenhersteller	45
5.3	Härte laut Messung	50
5.4	Härte laut Maschinenhersteller	50
5.5	Ergebnisse des Kerbschlagbiegeversuchs	54
5.6	Ergebnisse der Porengrößenauswertung	58
5.7	Oberflächenqualität laut Messung	74
5.8	Oberflächenqualität laut Maschinenhersteller	74
5.9	Ergebnisse der Bohrversuche: Schnittleistungen P_C [W] Bohrertyp: alle Zerspanungs-	
	parameter: $v_c = 80 \ \frac{m}{min}, f = 0.18 \ \frac{mm}{U}$ Material: alle	75
5.10	Ergebnisse der Bohrversuche: Vorschubleistungen P_V [W] Bohrertyp: alle Zerspa-	
	nungsparameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: alle	75
5.11	Ergebnisse der Bohrversuche: spezifische Schnittkräfte $k_c \left[\frac{N}{mm^2}\right]$ Bohrertyp: alle Zer-	
	spanungsparameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: alle	76
5.12	Ergebnisse der Bohrversuche: Vergleichsmessung Bohrertyp: M1805-0600AE Zerspa-	
	nungsparameter: $v_c = 60 \frac{m}{min}$, $f = 0.10 \frac{mm}{U}$ (lt. Hersteller) Material: Halbzeug	76
5.13	Ergebnisse der Bohrversuche Bohrertyp: M1805-0600AE Zerspanungsparameter: $v_c =$	
	80 $\frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: Halbzeug	76
5.14	Ergebnisse der Bohrversuche: Leistungsaufteilung Bohrertyp: M9405-0600AE Zerspa-	
	nungsparameter: $v_c = 80 \frac{m}{min}, f = 0.18 \frac{mm}{U}$ Material: Halbzeug	77
5.15	Oberflächenqualität Schleifen	82
5.16	Oberflächenqualität Polieren	83

Anhang

Im Folgenden werden alle weiterführenden Informationen zum Material, der Probengeometrie und der Auswertung zur Verfügung gestellt.

7.1 Datenblätter

Folgende Datenblätter sind hier enthalten:

- Produktionsmaschine EOSINT M280
- Pulver EOS Stainless Steel GP1
- Halbzeug BÖHLER N700 (H1025)
- Halbzeug Materialprüfzeugnis

Laser-Sinter-System **EOSINT M 280** zur Herstellung von Werkzeugeinsätzen, Prototypen und Endprodukten direkt aus Metall

Die Technologie: Laser-Sintern als Schlüssel für e-Manufacturing

Laser-Sintern ist bekannt als die Technologie für den kürzesten Weg von der Idee zur Marktreife eines Produktes. Innovative Unternehmen der unterschiedlichsten Branchen nutzen das Verfahren für e-Manufacturing – die schnelle, flexible und kostengünstige Produktion direkt aus elektronischen Daten für alle Phasen des Produktlebenszyklus.

Das System:

e-Manufacturing auch in einem industriellen Umfeld Die EOSINT M 280 ist eine nochmals verbesserte Version der EOSINT M 270, des am Markt führenden Systems zur additiven Fertigung von Metallteilen. Sie erzeugt hochwertige metallische Bauteile direkt auf der Basis dreidimensionaler CAD-Daten vollautomatisch, in nur wenigen Stunden und ohne den Einsatz von Werkzeugen. Per Direktem Metall-Laser-Sinter Verfahren (DMLS) werden Bauteile Schicht für Schicht durch Schmelzen eines feinen Metallpulvers mit Hilfe eines Laserstrahls aufgebaut, womit auch extrem komplexe Geometrien wie Freiformflächen, tiefe Schlitze und dreidimensionale Kühlkanäle erzeugt werden können.

Das System ist optional erhältlich mit einem 200 oder 400 Watt Faserlaser. Diese Laser zeichnen sich durch eine hohe Strahlqualität und Leistungsstabilität aus und können per Laser Power Monitoring (LPM) während des Bauprozesses überwacht werden. Zusammen mit dem optimierten Gas Management System gewährleistet dies auch im dauerhaften Produktionseinsatz optimale, einheitliche Prozessbedingungen für höchste und konstante Bauqualitäten. Das System unterstützt darüber hinaus eine Prozessführung sowohl unter Stickstoff-Schutzgas-

atmosphäre als auch unter Argon. Dadurch kann das System eine große Bandbreite an Werkstoffen verarbeiten, von Leichtmetallen über Edel- und Werkzeugstähle bis hin zu Superlegierungen.

Die über viele Jahre weiterentwickelte Prozesssoftware beinhaltet viele intelligente Belichtungsstrategien und Features, die es ermöglichen, den Bauprozess für viele Werkstofftypen und Anwendungen anzupassen und zu optimieren. EOS bietet für die EOSINT M 280 eine Vielzahl von Metall-Pulverwerkstoffen mit entsprechenden, anwendungsoptimierten Parameter-

sätzen an. Diese erzeugen Bauteile mit standardisierten Eigenschaftsprofilen, den sogenannten Part Property Profiles (PPPs). Mit einer intensiven Prozessentwicklung und durchgängigen Qualitätssicherung aller relevanten Produkte sorgt EOS darüber hinaus für höchste Zuverlässigkeit.

Durch eine Vielzahl von Optionen und weiteres Zubehör kann der Systemumfang an verschiedene Kundenbedürfnisse angepasst werden. Integrated Process Chain Management (IPCM) Module ermöglichen eine erhöhte Produktivität, Qualität und Benutzerfreundlichkeit und können ebenfalls jederzeit ergänzt werden.

Die Qualität der gefertigten Bauteile sowie die Produktivität der EOSINT M 280 und die ergonomische Peripherie machen das System zu einem idealen Produktionswerkzeug für eine wirtschaftliche, Losgrößen angepasste Fertigung von Bauteilen in allen Phasen des Produktlebenszyklus. Es eignet sich damit hervorragend für den Einsatz in einem industriellen Umfeld.

Die Software: Automatisch zu höchster Produktivität

EOS bietet verschiedene Softwarepakete für die Aufbereitung der CAD-Daten und die Rückverfolgbarkeit der Produktionsabläufe an. Um dem Anwender zu jedem Zeitpunkt den Überblick über produktionsrelevante Daten zu ermöglichen, wurde EOSTATE entwickelt. Die Software bereitet die Produktionsdaten über frei definierbare Zeiträume und in übersichtlicher Form auf. Den Erfordernissen der Anwender wird mit den integrierten Modulen Basic, Quality Assurance, Controlling und Machine Park Management (MPM) Rechnung getragen. Sie sorgen dafür, dass die Prozessabläufe übersichtlicher und somit kontrollierbarer werden.

Technische Daten

Bauvolumen (inkl. Bauplattform)	250 mm x 250 mm x 325 mm
Lasertyp	Yb-Faserlaser, 200 W oder 400 W (optional)
Präzisionsoptik	F-Theta-Linse, Hochgeschwindigkeits-Scanner
Scangeschwindigkeit	bis zu 7,0 m/s
Variabler Fokusdurchmesser	100 - 500 μm
Stromanschluss	32 A
Leistungsaufnahme	maximal 8,5 kW / typisch 3,2 kW
Stickstoffgenerator	integriert
Druckluftanschluss	7.000 hPa; 20 m³/h
Abmessungen (B x T x H)	
System	2.200 mm x 1.070 mm x 2.290 mm
System Empfohlener Aufstellraum	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m
System Empfohlener Aufstellraum Gewicht	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m ca. 1.250 kg
System Empfohlener Aufstellraum Gewicht Datenaufbereitung	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m ca. 1.250 kg
System Empfohlener Aufstellraum Gewicht Datenaufbereitung Software	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m ca. 1.250 kg EOS RP Tools; EOSTATE Magics RP (Materialise)
System Empfohlener Aufstellraum Gewicht Datenaufbereitung Software CAD Schnittstelle	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m ca. 1.250 kg EOS RP Tools; EOSTATE Magics RP (Materialise) STL. Optional: Konverter zu allen gängigen Formaten
System Empfohlener Aufstellraum Gewicht Datenaufbereitung Software CAD Schnittstelle Netzwerk	2.200 mm x 1.070 mm x 2.290 mm min. 4,8 m x 3,6 m x 2,9 m ca. 1.250 kg EOS RP Tools; EOSTATE Magics RP (Materialise) STL. Optional: Konverter zu allen gängigen Formaten Ethernet

EOS GmbH Electro Optical Systems Hauptniederlassung Robert-Stirling-Ring 1 D-82152 Krailling bei München Tel.: +49 89 893 36-0 Fax: +49 89 893 36-285

EOS Niederlassungen

EOS France Tel.: +33 437 49 76 76

EOS India Tel.: +91 44 28 15 87 94

EOS Italy Tel.: +39 0233 40 16 59

EOS Korea Tel.: +82 32 552 82 31

EOS Nordic & Baltic Tel.: +46 31 760 46 40

EOS of North America Tel.: +1 248 306 01 43

EOS Singapore Tel.: +65 6430 05 50

EOS Greater China Tel.: +86 21 602307 00

EOS UK Tel.: +44 1926 62 31 07

www.eos.info • info@eos.info

Think the impossible. You can get it.

EOS StainlessSteel GP1 für EOSINT M 270

Für die EOSINT M-Systeme sind mehrere Werkstoffe mit einem breiten Anwendungsbereich für e-Manufacturing verfügbar. EOS StainlessSteel GP1 ist ein rostfreies Edelstahlpulver, welches speziell für Verarbeitung auf EOSINT M 270-Systemen optimiert wurde. Für EOSINT M-Systeme sind auch andere Werkstoffe verfügbar, weitere Werkstoffe werden ständig neu entwickelt. Informationen zu diesen Werkstoffen enthalten die entsprechenden Materialdatenblätter.

Dieses Dokument bietet eine kurze Beschreibung über Hauptanwendungen sowie eine Tabelle technischer Daten. Systemanforderungen sind dem entsprechenden Informationsangebot zu entnehmen.

Beschreibung, Anwendung

EOS StainlessSteel GP1 ist ein vorlegierter Edelstahl in feiner Pulverform. Seine chemische Zusammensetzung entspricht der US-Stahlklassifikation 17-4 PH und der europäischen Werkstoffnummer 1.4542. Diese Art Stahl zeichnet sich durch eine hohe Korrosionsbeständigkeit, gute mechanische Eigenschaften und besonders durch eine hervorragende Duktilität ohne weitere Nachbehandlung aus. Sie findet weite Verbreitung bei Industrieanwendungen.

Dieser Werkstoff ist ideal für viele Teilebau-Anwendungen (DirectPart) wie Funktionsteile, Kleinserien, Unikate oder Ersatzteile. Standardparameter bewirken ein vollständiges Schmelzen des Werkstoffs im gesamten Bauteil bei einer Schichtdicke von 20 µm. Um den Bauprozess zu beschleunigen, ist es auch möglich die Hülle/Kern-Bauweise anzuwenden.

Bei Standardparametern sind die mechanischen Eigenschaften in allen Richtungen annähernd identisch. Bauteile aus EOS StainlessSteel GP1 können maschinell bearbeitet, draht- und senkerodiert, geschweißt, mikro-gestrahlt, poliert und beschichtet werden. Unbelichtetes Pulver kann wieder verwendet werden.

Typische Anwendungen des Werkstoffes:

- Industrieanwendungen einschließlich Funktionsteilen, Kleinserien, Unikaten oder Ersatzteilen
- Teile, die eine hohe Korrosionsbeständigkeit, Sterilisierbarkeit, etc. erfordern
- Teile, die eine besonders hohe Festigkeit und Duktilität erfordern

EOS GmbH - Electro Optical Systems

Telefax: +49 (0)89 / 893 36-285 Internet: www.eos.info

Technische Daten

Allgemeine Prozess- und geometrische Daten

Empfohlene minimale Schichtdicke (µm)	20 µm
Typisch erreichbare Bauteilgenauigkeit (μm)	
- kleine Bauteile [1]	± 20 – 50 μm
- größere Bauteile [2]	± 0,2 %
Kleinste Wandstärke (mm) [3]	0,3 - 0,4 mm
Oberflächenrauhigkeit (µm)	
- nach Mikrostrahlen	R₂ 2,5 – 4,5 µm, Ry 15 - 40 µm
- nach Polieren	R₂ bis zu < 0,5 (kann sehr fein poliert sein)
Volumenrate (mm³/s) [4]	
- Standardparameter (volle Dichte)	2 mm³/s
- Hülle/Kern-Parameter	4 mm³/s

[1] Erfahrungswert von Anwendern bezüglich Maßgenauigkeit typischer Geometrien, z. B. \pm 20 µm, wenn für bestimmte Teilegruppen Parameter optimiert werden können oder \pm 50 µm, wenn eine neue Geometrie zum ersten Mal gebaut wird.

[2] Bei größeren Bauteilen kann die Genauigkeit durch Nachtempern bei 650 °C für 1 Stunde verbessert werden.

[3] Mechanische Stabilität abhängig von der Geometrie (Wandhöhe usw.) und Anwendung

[4] Die Volumenrate ist ein Maß für die Baugeschwindigkeit während der Laserbelichtung. Die gesamte Baugeschwindigkeit ist abhängig von der durchschnittlichen Volumenrate, der Beschichtungsdauer (je nach Anzahl der Schichten) und anderen Faktoren wie z.B. DMLS-Einstellungen.

Physikalische und chemische Eigenschaften der Bauteile

Materialzusammensetzung	Stahl mit Legierungselementen Cr (15 – 17,5 Gew%) Ni (3 – 5 Gew%) Cu (3 – 5 Gew%) Mn (max. 1 Gew%) Si (max. 1 Gew%) Mo (max. 0,5 Gew%) Nb (0,15 – 0,45 Gew%) C (max. 0,07 Gew%)
Relative Dichte bei Standardparametern (%)	ca. 100 %
Dichte bei Standardparametern (g/cm³)	7,8 g/cm ³

Mechanische Eigenschaften der Bauteile [5]

	wie gebaut	nach Tempern bei 650 °C für 1 Stunde
Zugfestigkeit nach MPIF 10 (MPa)		
- in horizontaler Richtung (XY)	min 850 MPa typisch 930 <u>+</u> 50 MPa	typisch 1100 MPa
- in vertikaler Richtung (Z)	min 850 Mpa typisch 960 ± 50 MPa	typisch 980 MPa
Streckgrenze		
(Rel, untere Streckgrenze)		
- in horizontaler Richtung (XY)	min 530 Mpa typisch 586 <u>+</u> 50 MPa	typisch 590 MPa
- in vertikaler Richtung (Z)	min 530 Mpa typisch 570 <u>+</u> 50 MPa	typisch 550 MPa
(ReH, Obere Streckgrenze)		
- in horizontaler Richtung (XY)	min 595 typisch 645 <u>+</u> 50 MPa	typisch 634 MPa
- in vertikaler Richtung (Z)	min 580 Mpa typisch 630 <u>+</u> 50 MPa	typisch 595 MPa

E-Modul	170 <u>+</u> 30 GPa	typisch 180 GPa
Reißdehnung (%)		
- in horizontaler Richtung (XY)	min 25 % typisch 31 ± 5 %	typisch 29 %
- in vertikaler Richtung (Z)	min 25 % typisch 35 ± 5 %	typisch 31 %
Härte [6]		
- wie gebaut	ca. 230 ± 20 HV1	
- geschliffen und poliert [7]	ca. 250 - 400 HV1	

[5] Mechanische Prüfung nach ISO 6892:1998(E) Anhang C, proportionale Prüfteile, Durchmesser des schmalen Bereiches 5 mm, Maßstab 25 mm

[6] Härteprüfung durch Vickers (HV) entsprechend DIN EN ISO 6507-1. Zu beachten ist, dass je nach angewandter Messmethode der gemessene Härtewert niedriger als die normale Härte sein kann – abhängig von der Oberflächenrauheit. Um ungenaue Ergebnisse zu vermeiden, sollte die Härte auf einer polierten Oberfläche gemessen werden.

[7] Material härtet sich lokal bei Bearbeitung.

Thermische Eigenschaften der Bauteile

Wärmeausdehnungskoeffizient (m/m°C)	14 x 10 ⁻⁶
Wärmeleitfähigkeit / (W/m°C)	
- bei 20 °C	13
- bei 100 °C	14
- bei 200 °C	15
- bei 300 °C	16
Max. Betriebstemperatur (°C)	550

Die Angaben beziehen sich auf die Verwendung der Werkstoffe mit den EOSINT M 270 Systemen nach aktueller Spezifikation (einschließlich der neuesten freigegebenen Prozesssoftware PSW und ggf. für das betreffende Material spezifizierter Hardware) und gemäß Betriebsanleitung. Alle angegebenen Werte sind Näherungswerte. Wenn nicht anders angegeben, beziehen sich die angegebenen mechanischen und physikalischen Eigenschaften auf Standardparameter und in horizontaler Richtung gebaute Probe-Bauteile. Sie sind von den verwendeten Bauparametern und –strategien abhängig und können je nach Anwendung vom Bediener variiert werden. Die Angaben entsprechen dem heutigen Stand unserer Erkenntnisse. Sie haben nicht die Bedeutung, bestimmte Eigenschaften des Produkts oder die Eignung für einen konkreten Einsatzzweck zuzusichern.

 $\mathsf{EOS}^{\$}, \mathsf{EOSINT}^{\$}, \mathsf{DMLS}^{\$}$ und $\mathsf{DirectPart}^{\$}$ sind eingetragene Warenzeichen der EOS GmbH.

 $\ensuremath{\mathbb{C}}$ 2009 EOS GmbH – Electro Optical Systems. Alle Rechte vorbehalten.

NICHTROSTENDER STAHL 17-4 PH STAINLESS STEEL 17-4 PH

BÖHLER N700 I S D EXTRA®

Eigenschaften

Nichtrostender martensitischer aushärtbarer Cr-Ni-Cu-Stahl mit hoher Festigkeit und Zähigkeit. Eine weitere Festigkeitssteigerung kann durch Kaltumformung mit anschließendem Auslagern erfolgen.

Als Alternative zum konventionell erschmolzenen BÖHLER N700 EXTRA ist

BÖHLER N700 ISOEXTRA, produziert nach dem Elektroschlacke-Umschmelzverfahren (ESU) oder umgeschmolzen unter Vakuum als

BÖHLER N700 VMR.

Properties

Martensitic precipitation hardenable

chromium-nickel-copper steel possessing high strength and toughness.

Further strengh increments can be obtained by cold forming, followed by a precipitation hardening treatment.

The alternative to conventionally melted BÖHLER N700 EXTRA is

BÖHLER N700 ISOEXTRA produced by the **Electroslag remelting procedure** (ESR) or remelted under vacuum at **BÖHLER N700 VMR**.

Verwendung

Application

Luft- und Raumfahrt, Raketenbau, Maschinenbau, Energietechnik, Meß- und Regeltechnik.

Aircraft and rocket engineering, mechanical engineering, power generation, measuring and control technique

Chemische Zusammensetzung (Anhaltswerte in %) / Chemical composition (average %)						
С	Si	Mn	Cr	Ni	Cu	Nb
0,04	0,25	0,40	15,40	4,40	3,30	0,30

Normen		Standards		
EN / DIN < 1.4542 > X5CrNiCuNb16-4 < 1.4548 > X5CrNiCuNb17-4-4	AISI 630	UNS S17400	AMS 5604 5622 5643	
AFNOR Z6CNU17-04	JIS SUS 630			

Anwendung bei erhöhten Temperaturen: Geeignet bis 350°C. Kurzzeitig bis max. 50°C unter der Auslagerungs- temperatur.	High-temperature applications: Suidet up to 350°C. For short periods, may be used at temperatures up to 50°C max. below the precipitation hardening temperature.
Tieftemperaturanwendungen: Zustand H900 (480): Bei Zähigkeitsanforderungen sollte dieser Zustand nicht für tiefe Temperaturen verwendet werden.	Cryogenic applications: Condition H900 (480): If the steel also has to fulfil specific toughness requi- rements, this conditions should not be used for sub- zero applications.
Zustand H925 (500):	Condition H925 (500):
Für generelle Benützung bis -18°C.	For general use down to -18°C.
Bei keinen Anforderungen an die Kerbschlagarbeit	If no specific impact strength requirements are im-
ist die Benützung bis -196°C möglich.	posed, this condition is suidet for temperatures
(z.B. Ventilsitze).	down to -196°C (e.g. for valve seats).
Zustand H1150 (620): P930	Condition H1150 (620): P930
Bis -79°C.	Suidet down to -79°C.
Zustand H1150-M (620-M): P800	Condition H1150-M (620-M): P800
Bis -196°C	Suidet down to -196°C.
Prinzipiell sind Auslagerungstemperaturen unter	Principally, precipitation hardening temperatures
550°C für Teile mit speziellen Anforderungen an die	below 550°C are not recommended for compo-
Kerbschlgarbeit bei tiefen Temperaturen nicht zu	nents subject to specific impact strength require-
empfehlen.	ments at low temperatures.
Für kritische Tieftemperaturanwendungen empfeh-	For critical cryogenic applications we recommend
len wir unsere Marke BÖHLER N701 (15-5PH), wel-	our BÖHLER N701 (15-5PH) grade, which xhibits
che höhere Kerbschlagarbeit aufweist.	elevated impact energy values.

Service temperatures

P.... Wärmebehandlungszustand nach DIN EN 10088-3

Verwendungstemperaturen

P.... Heat treatment condition to DIN EN 10088-3

BÖHLER N700 I S D EXTRA®

Warmformgebung

Schmieden: 1150 bis 850°C Luftabkühlung

Wärmebehandlung

Lösungsglühen: 1030 bis 1060°C Öl, Luft

Auslagern:

Zustand H900 (480): 480°C (900°F) / 1 h / Luft

Zustand H925 (500): 500°C (925°F) / 4 h / Luft

Zustand H1025 (550): P1070 550°C (1025°F) / 4h / Luft

Zustand H1075 (580): 580°C (1075°F) / 4 h / Luft

Zustand H1100 (600): P960 600°C (1100°F) / 4 h / Luft

Zustand H1150 (620): P930 620°C (1150°F) / 4 h / Luft

Zustand H1150-M (620-M): P800 760°C (1400°F) / 2 h / Luft + 620°C (1150°F) / 4 h / Luft

P.... Wärmebehandlungszustand nach DIN EN 10088-3

Gefüge im lösungsgeglühtem Zustand: Martensit + Austenit + Ferrit

Gefüge in ausgehärtetem Zustand: Martensit + Austenit + Ferrit + intermetallische phasen

Hot forming

Forging: 1150 to 850°C (2102 to 1562°F) Air cooling

Heat treatment

Solution annealing: 1030 to 1060°C (1886 to 1940°F) Oil, air

Age hardening:

Condition H900 (480): 480°C (900°F) / 1 h / Air

Condition H925 (500): 500°C (925°F) / 4 h / Air

Condition H1025 (550): P1070 550°C (1025°F) / 4 h / Air

Condition H1075 (580): 580°C (1075°F) / 4 h / Air

Condition H1100 (600): P960 600°C (1100°F) / 4 h / Air

Condition H1150 (620): P930 620°C (1150°F) / 4 h / Air

Condition H1150-M (620-M): P800 760°C (1400°F) / 2 h / Air + 620°C (1150°F) / 4 h / Air

P.... Heat treatment condition to DIN EN 10088-3

Structure as solution annealed: Martensite + austenite + ferrite

Structure as precipitation hardened: Martensite + austenite + ferrite + intermetallic phases

BÖHLER N700 | **S D EXTRA**®

Mikroskopischer Reinheitsgrad

Micro cleanliness

Vergleich des mikrokopischen Reinheitsgrades an unterschiedlichen Erschmelzungs- und Umschmelzvarianten nach DIN 50602 Methode K1. Comparison of micro cleanliness in different melting or remelting methods in acc. to DIN 50602 method K1.

Schweißen

Sowohl die WIG als auch die elektrische Lichtbogenschweißung sind anwendbar.

Das Schweißen soll nur in lösungsgeglühtem Zustand durchgeführt werden.

Die Wärmeeinbringung ist möglichst gering zu halten.

Eine Vorwärmung auf 100 bis 200°C ist nur bei Wandstärken über 25 mm und bei massiven Gußstücken zu empfehlen.

Die Wärmebehandlung nach dem Schweißen muß auf die geforderten mechanischen Werte abgestimmt werden und kann aus einem Lösungsglühen, einem Auslagern oder einem Lösungsglühen und Auslagern bestehen.

Schweißzusatzwerkstoffe

Auf Anfrage

Welding

The steel can be welded using the TIG or the electric arc welding process, but welding operations should be conducted on parts in the solution annealed condition only.

Keep heat input as low as possible, preheat to 100 to 200°C only if component thickness exceeds 25 mm or for welding heavy castings. Post-weld heat treatment can be varied as required by the specified mechanical properties and may consist in a solution anneal, a precipitation hardening treatment, or a combination of both.

Filler metals

Upon request

Mechanische Eigenschaften bei Raumtemperatur nach DIN EN 10088-3

Mechanical properties at room temperature to DIN EN 10088-3

Wärmebehand- lungszustand	Produkt	Dimension mm	Härte ¹⁾ (Anhaltswerte)	0,2 Grenze	Zugfestigkeit	Dehnı	ung A ₅	Kerbschl	agarbeit
Condition	Product	Size mm	Hardness ¹⁾ (average values)	0.2% proof stress N/mm ² min.	Tensile strength N/mm²	Elonga %	tion A ₅ min.	Impact s (ISO J m	strength -V) nin.
			HB / HV			L	Q	L	Q
Lösungsgeglüht Solution annealed	St	100	max. 360		max. 1200				
					L				
P800	St	100		520	800 - 950	18		75	
P930				720	930 - 1100	16		40	
P960				790	900 - 1160	12			
P1070				1000	1070 - 1270	10			
P850	BI	50		600	850 - 1050	14 ²⁾	142)		
P950				800	950 - 1150	12 ²⁾	12 ²⁾		
P1070				1000	1070 - 1270	10 ²⁾	10 ²⁾		
SR630					max. 1050				

- $L = L\ddot{a}ngs, \qquad Q = Quer$
- St = Stab, Bl = Blech

2) Blech 3 mm Dicke

- P = Ausscheidungsgehärtet
- SR = Spannungsarmgeglüht

maßgebend ist die Zugfestigkeit.

L = Longitudinal, Q = TransverseSt = Bars, BI = Sheet or plate

P = Precipitation hardened

 $\mathsf{SR}=\mathsf{Stress}\ \mathsf{relieving}\ \mathsf{annealed}$

1) Not valid for inspection purposes for which tensi-

- le strength is the ruling property.
- 2) Sheet or plate 3 mm thickness

Warmfestigkeitseigenschaften

1) Die Härte ist für die Abnahme nicht bindend,

High temperature properties

	Produkt	Wärmebehand- lungszustand	Temperatur / Temperature					
	Product	Condition	100°C	150°C	200°C	250°C	300°C	
	St	P800	500	490	480	470	460	
0,2 Grenze		P930	680	660	640	620	600	
0.2% proof stress N/mm ² min.		P960	730	710	690	670	650	
		P1070	880	830	800	770	750	
	BI	P850	680	660	640	620	600	
		P950	730	710	690	670	650	
		P1070	880	830	800	770	750	

Mechanische Eigenschaften bei Raumtemperatur nach ASTM A564

Gültig für Stabstahl und Schmiedestücke: bis 300 mm Durchmesser, für Bleche bis 60 mm Dicke

Mechanical properties at room temperature to ASTM A564

Bars and forgings: up to 300 mm diameter Sheet and plate: up to 60 mm thickness

Wärmebehand- lungszustand	Härte ¹) (Anhaltswerte)	0,2 Grenze	Zugfestigkeit	Dehnu	$\log A_{s}$	Einschr	nürung	Kerbschl	agarbeit
Condition	Hardness ¹⁾ (average values)	0.2% proof stress N/mm ² min.	Tensile strength N/mm ²	Elongat %	tion A₅ min.	Reductior %	n of area min	Impact : (ISO	strength I-V)
	HB / HV			L	Q	L	Q	L	Q
Lösungsgeglüht Solution annealed	max. 365	~900	~1100	~10		~40			
H900	400 -450	1170	1310	8	6	38	25	20	10
H925	375 - 430	1070	1170	10	8	40	28	22	12
H1025	330 - 390	1000	1080	12	10	45	30	25	20
H1075	300 - 370	900	1000	13	11	45	32	28	23
H1100	290 - 360	800	965	14	12	48	35	35	27
H1150	270 - 340	750	930	16	13	50	38	42	32
H1150-M	260 - 310	790	790	18	15	55	40	75	48

 $L=L\ddot{a}ngs, \ \ Q=Quer$

L = Longitudinal, Q = Transverse

1) Die Härte ist für die Abnahme nicht bindend, maßgebend ist die Zugfestigkeit. 1) Not valid for inspection purposes for which tensile strength is the ruling property.

Für andere Produkte oder Abmessungen sind die Werte zu vereinbaren.

The values for other products and dimensions shall be established by agreement.

Oberflächenbehandlung

Nitrieren:

Nitrieren vermindert die Korrosionsbeständigkeit . Es wird verwendet, wenn ein erhöhter Reib- oder Verschleißwiderstand gefordert wird (z.B. Bei Pumpenwellen).

Plasmanitrieren: in Kombination mit Aushärtebehandlung; Einhärtetiefe: 0,1 bis 0,15mm

Erreichbare Oberflächenhärte: ca. 67 HRC (umgerechnet)

Entzundern:

Die am meisten verwendete Methode ist das **Sand**strahlen.

Beizen nach dem Lösungsglühen oder nach der Warmformgebung kann mit den gleichen Methoden wie bei den austenitischen nichtrostenden Standardstälen durchgeführt werden.

Passiviert oder leicht gebeizt kann in einer 10% Salpeter-,

2% Fluor-Wasserstoff-Säure bei 40 bis 60°C und einigen Minuten Haltedauer werden.

Diese Behandlung beseitigt auch die durch das Lösungsglühen hervorgerufene Verfärbung der Oberfläche.

Diese Farbschicht kann die Korrosionsbeständigkeit vermindern.

Eine Entfernung kann auch durch **Elektropolieren** durchgeführt werden.

Entzundern nach der **Salzbadmethode** führt zu einem Auslagerungseffekt.

Surface treatment

Nitriding:

The nitriding process reduces the steel's corrosion resistance. It is applied in cases where increased friction and wear resistance is required (e. g. for pump shafts).

Plasma nitriding: in combination with precipitation hardening; Hardness penetration depth: 0,1 - 0,15 mm

Obtainable surface hardness: approx. 67 HRC (converted).

Descaling:

The method most frequntly employed is that of **sandblasting**.

Pickling after solution annealing or after hot forming may be performed by the same methods as are employed for stainless austenitic standard steel grades.

Passivation or slight pickling can be carried out in a 10% nitric acid, 2% hydrofluoric acid at 40 to 60°C, with a holding time of a few minutes. This treatment also removes the surface discoloration caused by solution annealing. These stains may reduce the material's corrosion resistance. Removal is also possible be **electropolishing**. Descaling according to the **salth bath method** exerts an ageing effect.

Auslagerungsschaubild

- 1, I....Zugfestigkeit in N/mm²
- 2, II....0,2-Grenze in N/mm²
- 3, III...Kerbschlagarbeit (ISO-V), in J
- 4, IV...Dehnung A $_5$ in %

Precipitation hardening chart

- 1, I....Tensile strength, in N/mm²
- 2, II....0.2% proof stress, in N/mm²
- 3, III....Impact strength (ISO-V), in J
- 4, IV....Elongation $A_5,$ in %

I, II, III, IV Mindestwerte für Stabstahl bis 300 mm (Längswerte)

1, 2, 3, 4 Typische Werte

I, II, III, IV

Minimumvalues for bar measuring up to 300 mm (longitudinal values)

1, 2, 3, 4 ... Typical values

Warmfestigkeitsschaubild

- 1....Zugfestigkeit in N/mm²
- 2....0,2-Grenze in N/mm²
- 3....Einschnürung in %
- 4....Dehnung A_5 in %

High temperature strength chart

- 1....Tensile strength, in N/mm²
- 2....0.2% proof stress, in N/mm²
- 3....Reduction of area, in %
- 4....Elongation A_5 , in %

Typische Werte / Typical values

---- Zustand / Condition H900 (480)

O---O Zustand / Condition H1025 (500)

□-•-□ Zustand / Condition H1150 (620)

BÖHLER N700 I S D EXTRA®

Maßänderung

Beim **Lösungsglühen:** Kontraktion in Längsrichtung ca. 0,2%

Beim Aushärten:

Kontraktion bei verschiedenen Aushärtetemperaturen gegenüber dem Lösungsgeglühten Zustand. **Dimensional change**

During **solution annealing:** Contraction in longitudinal direction approx. 0,2%

During precipitation hardening:

Contraction at different precipitation hardening temperatures compared with the as solution annealed condition.

Beständigkeitsschaubilder

Für den gesamten Konzentrations- und Temperaturbereich einer Säure lassen sich die experimentell ermittelten Gewichtsverluste übersichtlich in sogenannten Beständigkeitsschaubilder darstellen. Diese enthalten als Abszisse die Konzentration und als Ordinate die Temperatur; die Linien gleicher Gewichtsverluste sind als Parameter eingetragen. In den folgenden Schaubildern wurden die Linien gleicher Gewichtsverluste von 0,3 g/m² x h eingetragen. Als wirtschaftliche Grenze wird allgemein ein Gewichtsverlust von 0,3 g/m² x h angesehen.

Corrosion resistance diagrams

In the diagrams shown, constant weight losses determined experimentally on specimens exposed to the attack of different acids are plotted as a function of temperature and acid concentration.

The curves represent constant weight losses of 0.3 $g/m^2\,x\,hr.$

Generally, a weight losses of $0.3 \text{ g/m}^2 \text{ x}$ hr is considered the limit beyond which the use of the steel becomes uneconomical.

BÖHLER N700 I S D EXTRA

40

Salpetersäure in % / Nitric acid in %

20

60

Schwefelsäure H₂SO₄

20

0 0 Sulphuric acid H₂SO₄

1....Weight loss, 0.3 g/m² x hr Condition H1100 2....Weight loss, 0.3 g/m² x hr Condition H1150-M

3....Boiling point curve

Bearbeitungshinweise	tungshinweise (Wärmebehandlungszustand ausscheidungsgehärtet, Richtw				
Drehen mit Hartmetall					
Schnittiefe mm	bis 1	1 bis 4	4 bis 8		
Vorschub mm/U	bis 0,1	0,1 bis 0,3	0,3 bis 0,6		
BÖHLERIT- Hartmetallsorte	SB10, SB20, EB10	SB20, EB10, EB20	SB30, EB20, HB10		
ISO - Sorte	P10, P20, M10	P20, M10, M20	P30, M20, K10		
		Schnittgeschwindigkeit, m/min	ı		
Wendeschneidplatten Standzeit 15 min	140 bis 40	110 bis 30	80 bis 25		
Gelötete Hartmetallwerkzeuge Standzeit 30 min	110 bis 35	90 bis 25	60 bis 15		
Beschichtete Wendeschneidplatten Standzeit 15 min BÖHLERIT ROYAL 121 BÖHLERIT ROYAL 131	bis 160 bis 130	bis 160 bis 130	bis 110 bis 90		
Schneidwinkel für gelötete Hartmetallwerkzeuge Spanwinkel Freiwinkel Neigungswinkel	12 bis 20 6 bis 8° 0°	12 bis 15° 6 bis 8° 0°	12 bis 15° 6 bis 8° - 4°		
Drehen mit Schnellarbeitsstahl					
Schnittiefe mm	0,5	3	6		
Vorschub mm/U	0,1	0,5	1,0		
BÖHLER/DIN-Sorte		S700 / DIN S10-4-3-10			
		Schnittgeschwindigkeit, m/min	1		
Standzeit 60 min	30 bis 20	20 bis 15	18 bis 10		
Spanwinkel Freiwinkel Neigungswinkel	14 bis 18° 8 bis 10° 0°	14 bis 18° 8 bis 10° 0°	14 bis 18° 8 bis 10° - 4°		

Fräsen mit Messerköpfen					
Vorschub mm/U	bis 0,2	0,2 bis 0,3			
Schnittgeschwindigkeit, m/min					
BÖHLERIT SBF/ ISO P25	90 bis 60	70 bis 40			
BÖHLERIT SB40/ ISO P40	60 bis 40	50 bis 25			

Bohren mit Hartmetall					
Bohrerdurchmesser mm	3 bis 8	8 bis 20	20 bis 40		
Vorschub mm/U	0,02 bis 0,05	0,05 bis 0,12	0,12 bis 0,18		
BÖHLERIT / ISO-Hartmetallsorte	HB10/K10	HB10/K10	HB10/K10		
Schnittgeschwindigkeit, m/min					
	50 bis 35	50 bis 35	50 bis 35		
Spitzenwinkel	115 bis 120°	115 bis 120°	115 bis 120°		
Freiwinkel	5°	5°	5°		

Recommendation for machining

(Condition precipitation hardened, average values)

Turning with carbide tipped tools				
depth of cut mm	to 1	1 to 4	4 to 8	
feed, mm/rev.	to 0,1	0,1 to 0,3	0,3 to 0,6	
BÖHLERIT grade	SB10, SB20, EB10	SB20, EB10, EB20	SB30, EB20, HB10	
ISO grade	P10, P20, M10	P20, M10, M20	P30, M20, K10	
		cutting speed, m/min		
indexable carbide inserts edge life 15 min	140 to 40	110 to 30	80 to 25	
brazed carbide tipped tools edge life 30 min	110 to 35	90 to 25	60 to 15	
hardfaced indexable carbide inserts edge life 15 min BÖHLERIT ROYAL 121 BÖHLERIT ROYAL 131	to 160 to 130	to 160 to 130	to 110 to 90	
cutting angles for brazed carbide tipped tools rake angle clearance angle angle of inclination	12 to 20° 6 to 8° 0°	12 to 15° 6 to 8° 0°	12 to 15° 6 to 8° - 4°	
Turning with HSS tools				
depth of cut, mm	0,5	3	6	
feed, mm/rev.	0,1	0,5	1,0	
HSS-grade BOHLER/DIN	S700 / DIN S10-4-3-10			

	cutting speed, m/min				
edge life 60 min	30 to 20	20 to 15	18 to 10		
rake angle clearance angle angle of inclination	14 to 18° 8 to 10° 0°	14 to 18° 8 to 10° 0°	14 to 18° 8 to 10° - 4°		

Milling with carbide tipped cutters							
feed, mm/tooth	to 0,2	0,2 to 0,3					
	cutting speed, m/min						
BÖHLERIT SBF/ ISO P25	90 to 60	70 to 40					
BÖHLERIT SB40/ ISO P40	60 to 40	50 to 25					

Drilling with carbide tipped tools					
drill diameter, mm	3 to 8	8 to 20	20 to 40		
feed, mm/rev.	0,02 to 0,05	0,05 to 0,12	0,12 to 0,18		
BÖHLERIT / ISO-grade	HB10/K10	HB10/K10	HB10/K10		
cutting speed, m/min					
		cutting speed, m/min			
	50 to 35	cutting speed, m/min 50 to 35	50 to 35		
top angle	50 to 35 115 to 120°	cutting speed, m/min 50 to 35 115 to 120°	50 to 35 115 to 120°		

Physikalische Eigenschaften	Pł	nysical properties	5
Dichte bei / Density at	20°C	7,80k	g/dm³
Wärmeleitfähigkeit bei / Thermal conductivity at	20°C	16,0V	V/(m.K)
Spezifische Wärme bei / Specific heat at	20°C	500J.	/(kg.K)
Spez. elektr. Widerstand bei / Electrical resistivity at	20°C	0,71C)hm.mm²/m
Elastizitätsmodul bei / Modulus of elasticity at	20°C	200 x 10 ³ N	l/mm²
Magnetisierbarkeit Magnetic properties		vorhanden magnetic	

Wärmeausdehnung zwischen 20°C und°C, 10 ⁻⁶ m/(m.K) bei Thermal expansion between 20°C and°C, 10 ⁻⁶ m/(m.K) at							
100°C	200°C	300°C	400°C				
10,9		11,1					

Elastizitätsmodul, 10 ³ N/mm ² bei Modulus of elasticity, 10 ³ N/mm ² at							
20°C	100°C	200°C	300°C	400°C			
200	195	185	175	170			

Für Anwendungen und Verarbeitungsschritte, die in der Produktbeschreibung nicht ausdrücklich erwähnt sind, ist in jedem Einzelfall Rücksprache zu halten. As regards applications and processing steps that are not expressly mentioned in this product description/data sheet, the customer shall in each individual case be required to consult us.

Überreicht durch: Your partner:

www.bohler-edelstahl.com

Die Angaben in diesem Prospekt sind unverbindlich und gelten als nicht zugesagt; sie dienen vielmehr nur der allgemeinen Information. Diese Angaben sind nur dann verbindlich, wenn sie in einem mit uns abgeschlossenen Vertrag ausdrücklich zur Bedingung gemacht werden. Bei der Herstellung unserer Produkte werden keine gesundheits- oder ozonschädigenden Substanzen verwendet.

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

N700 DE 10.2001 EM-WS

ABNAHMEPRÜFZEUGNIS INSPECTION CERTIFICATE EN 10204-3.1

Cert. No.: 154237 / 2014.02.25 Blatt/Sheet/Page:1 / 4

Besteller/Purchaser/Acheteur:

Böhler Uddeholm Deutschland GmbH Division Böhler Hansa Allee 321 DE-40549 Düsseldorf DEUTSCHLAND

Bestell-Nr./Purchaser order No./No. de commande:

4100209174 / 2013.10.18

Werksauftrags-Nr./Works order-No./No. de la commande de l'usine: 1621417 / 2013.10.18

Prüfgegenstand/Object of test/Object d`examen:

BÖHLER N701 VMR W-Nr. 1.4545, 15-5 PH, E-Z5 CNU 15-05 Stabstahl, gewalzt, lösungsgeglüht, ausgehärtet, entspannt ECOBLANK LN 668/IT h11 Geradheit: 1,0 mm/m Endenausführung: 2E warmgetrennt Anwendung: Luft/Raumfahrt BÖHLER N701 VMR W-No. 1.4545, 15-5 PH, E-Z5 CNU 15-05 bars, rolled, solution annealed, precipitation hardened, stress relieved ECOBLANK LN 668/IT h11 Straight Denominat.: 1,0 mm/m Endcondition: 2x hot abrasive cut Application: Aviation/Space Ind.

ISO 9001:2008 certification BS EN 9100:2009 certification EN ISO 14001:2004 certification

Empfänger/Consignee/Destinaire: BÖHLER UDDEHOLM LUFTFAHRTLAGER Division Böhler Luftfahrtlager Hansa Allee 321 DE-40549 Düsseldorf DEUTSCHLAND

Empfängerref.-Nr./Receiver reference-No./Rèfèrence destinaire:

Lieferschein-Nr./Delivery note-No./Avisd'expedition du client: 51122843 / 2014.02.18

Anforderungen/Requirements/Exigence:

WL 1.4545 Teil 1 Januar 1989 Zustand/Condition 1.4545.4 DIN 65038 Teil 1 August 1989 DIN 65038 Teil 2 August 1983 ABS 5455 Issue 3 January 2006 AIMS 01-04-003 Issue 3 March 2009 IPS 01-04-003-02 Issue 4 November 2012 LAT 1-9037 Issue 15 class B ASNA 3294 Issue K 08.2012 Dimension code 4900 AMS 5659N Zustand/Condition H1025

Umfang der Lieferung/Volume of delivery/liste descriptive

Pos./Los	Abmessung Dimensions Dimensions	Länge Length Longueur	Stückzahl No. of Pieces No. de Pieces	Gewicht kg Weight kgs Poids kg	MatID	Prüf-Nr. Test No. Eprouvette	Schmelze-Nr. Heat No. No. de coulee
10/1	RD 14 mm	2.500 - 3.000 mm		1047,0	BMB5	1354896-1	Y87706

Qualitätswärmebehandlung / Quality heat treatment

Zustand/Condition 1.4545.4 Zustand/Condition H1025	Temperatur Temperature	Haltezeit Soak time	Abkühlung Cooling
Lösungsgeglüht / Solution annealed	1038°C	0,5 h M	Ventilator / Rapid air
Ausgehärtet / Precipitation hardened	570°C	4 h M	Luft/Air
Entspannt / Stress relieved	520°C	4 h M	Luft/Air

M...Haltezeit auf Zieltemperatur nachdem das Materialzentrum die Toleranzgrenze erreicht hat.

M...holding time at nominal temperature after center of material has reached the tolerance limit.

Aushärtetemperatur 570°C weicht von AMS 5659N, WL 1.4545 Teil 1 Januar 1989, AIMS 01-04-003 Issue 3 March 2009 und LAT 1-9037 Issue 15 class B ab. Precipitation hardening temperature 570°C deviates from AMS 5659N, WL 1.4545 Teil 1 Januar 1989, AIMS 01-04-003 Issue 3 March 2009 and LAT 1-9037 Issue 15 class B.

ABNAHMEPRÜFZEUGNIS INSPECTION CERTIFICATE EN 10204-3.1

Cert. No.: 154237 / 2014.02.25 Blatt/Sheet/Page:2 / 4 ISO 9001:2008 certification BS EN 9100:2009 certification EN ISO 14001:2004 certification

MARIAZELLERSTRASSE 25 8605 KAPFENBERG/AUSTRIA

Chemische Zusammensetzung/Chemical Composition/Composition chimique (%)												
Schmelzan Erschmelzur	Schmelzanalyse/Chemical Composition Erschmelzungsart/Steelmaking Process: Airmelt+VAR									Schmelze-Nr. Heat No. No. de coulee		
C 0,037	Si 0,31	Mn 0,59	P 0,0	17 (S),0010	Cr 14,9)4	Mo 0,19	Ni 5,16	Cu 3,32	Nb 0,27	Y87706
Ta 0,002												Y87706
Metallogra	aphische l	Intersuc	hung / Me	etallogra	aphic ex	aminat	ion					
Makroätzprüfung / Macro etch examinationMakroätzprüfung nach ASTM A 604/A 604M - 07Macro etch test acc.to ASTM A 604/A 604M - 07Ätzmittel / Etch media: 50% H2O, 50% HCL (25-38%)Class 1Severity AClass 2Severity AClass 3Severity AClass 4Severity A												
Nichtmeta Nichtmeta Non metal Vergrößer K1=0 Nichtmeta	Nichtmetallische Einschlüsse / Non metallic inclusions Nichtmetallische Einschlüsse nach DIN 50602 September 1985 Verfahren K Non metallic inclusions acc.to DIN 50602 September 1985 method K Vergrößerung / Magnification: 50:1, 100:1 K1=0											
Non metal	llic inclusio	ons acc.t	o ASTM	E45-13	method	D and	IGC 04	.24.111	-7.111			
Vergrößer	ung / Mag	nificatior	n: 50:1, 1	00:1	`		<u> </u>	-				
		F	4	Ŀ	3	(ز 	L				
Test-Nr. Test-No.	Grad Grade	dünn thin	dick heavy	dünn thin	dick heavy	dùnn thin	dick heavy	dùnn thin	dick heavy			
16	0,5	-	-	-	-	-	-	7	-			
17	0,5	-	-	-	-	-	-	5	-			
Ferritgehaltbestimmung / Ferrite content evaluation Der Ferritgehalt wurde nach AMS 2315G bestimmt. The ferrite content was determined acc.to AMS 2315G. Ätzmittel/Etch media = H2O 100ml, HCL 25ml, FeCL3 8ml Vergrößerung/Magnification = 50:1, 100:1, 200:1												
Ferritgeha	lt / Ferrite	content		0				0			0	
Korngrößenbestimmung / Grain size evaluation Die Korngröße wurde nach ASTM E112-12 bestimmt. The grain size was determined acc.to ASTM E112-12. Ätzmittel / Etch media: H2O 100ml, HCL 25ml, FeCL3 8ml Vergrößerung / Magnification: 50:1, 100:1, 500:1												
				Rand/	Rim			1/2 Rad	ius	Zentru	um/Center	
Korngröße	e / Grain s	ize		8				8			8	
Gefügeuntersuchung / Micrographic examination Das Gefüge wurde nach internem Böhler Standard bestimmt. The microstructure was determined acc.to internal bohler standard. Ätzmittel / Etch media: H2O 100ml, HCL 25ml, FeCL3 8ml Vergrößerung / Magnification: 50:1, 100:1, 500:1 Martensitisches Gefüge / Martensitic structure												

REGISTERED OFFICE OF THE COMPANY: KAPFENBERG; REGISTER COURT LANDESGERICHT LEOBEN FN 294435v

ISO 9001:2008 certification BS EN 9100:2009 certification EN ISO 14001:2004 certification

Blatt/Sheet/Page:3 / 4

Mechanische Eigenschaften/Mechanical Properties

Zugversuchproben / Tensile test properties

Probenlage der Zugversuchproben / Orientation of the tensile test properties

L = längs, longitudinal; LA = längs, Rand / longitudinal, near surface; L2 = längs, halber Radius / longitudinal, 1/2 radius;

Q = quer / transverse; QA = quer, Rand / transverse, near surface; Q2 = quer, halber Radius / transverse, 1/2 radius;

TA = tangential, Rand / tangential, near surface

Z = Zentrum, center

Zugversuch im Lieferzustand/Tensile test in delivery condition

*Legende / *Key S = Schopf / Top H = Härtester / hardest M = Mitte / Middle W = Weichster / softest B = Boden / Bottom			-	Dehngrenze Yield Strength	Zugfestigkeit Ultimate Tensile Strength	Dehi Elong	nung gation	Einschnürung Reduction of Area	
Prüf-Nr.	*StkNr.	Prüfnorm	Lage	Temp.	Rp0,2	Rm	A4	A5	Z
Test no.	*Piece no.	Testing standard	Location	grd C	MPa	MPa	9	6	%
					>=1000	>=1069	>=12		>=45
1354896-1	16	ASTM A370-12a	LA	23	1060	1077	21		73
					>=1000	1070 - 1200		>=12	>=45
1354896-1	16H	EN 2002-001-06	LA	23	1037	1070		18	70
1354896-1	17W	EN 2002-001-06	LA	23	1035	1071		17	69

Kerbschlagversuchproben / Impact test properties

Probenlage der Kerbschlagversuchproben / Orientation of the impact test properties

L = längs, longitudinal; LA = längs, Rand / longitudinal, near surface; L2 = längs, halber Radius / longitudinal, 1/2 radius;

Q = quer / transverse; QA = quer, Rand / transverse, near surface; Q2 = quer, halber Radius / transverse, 1/2 radius;

TA = tangential, Rand / tangential, near surface

Z = Zentrum, center

Kerbschlagversuch im Lieferzustand/Impact test in delivery condition

*Legende / *Key H = Härtester / hardest W = Weichster / softest	Kerbschlagarbeit Impact energy				
Prüf-Nr.	*StkNr.	Prüfnorm	Lage	Temp.	Charpy-V
l est no.	[^] Piece no.	l esting standard	Location	grd C	J
					>=80
1354896-1	16H	EN ISO 148/1-10	LA	23	179 183 178
1354896-1	17W	EN ISO 148/1-10	LA	23	173 177 191
					>=35
1354896-1	16H	EN ISO 148/1-10	LA	-30	177 143 152
1354896-1	17W	EN ISO 148/1-10	LA	-30	161 167 171

Härteprüfung im Lieferzustand/Hardness test in delivery condition

				Metho	ode
Prüf-Nr. Test no.	Stk. Nr. Piece no.	Prüfnorm Testing standard	Prüfort Location	HBW 5/750	HRC
				331 - 401	35 - 42
1354896-1	16	ASTM E10-12	Zugversuch / tensile test	352	
1354896-1	-	ASTM E10-12, DIN EN ISO 6506-1	Stäbe / bars	331-340	
1354896-1	16H	EN ISO 6508-1	Zugversuch / tensile test		35,7
1354896-1	17W	EN ISO 6508-1	Zugversuch / tensile test		35,9
ISO 9001:2008 certification BS EN 9100:2009 certification EN ISO 14001:2004 certification

Zerstörungsfreie Prüfung / Nondestructive examination

Verwechslungsprüfung (Spektralanalyse) nach internem Böhler Standard: Positive Materialidentifikation Material identification test (Spectrographic analysis) acc.to internal bohler standard: Positive material identification

100% Ultraschallprüfung nach AMS STD 2154 Rev. A 2012-10 Type I mit Phased Array Das Material entspricht der Qualitätsklasse AA. 100% Ultrasonic test acc. to AMS STD 2154 Rev. A 2012-10 Type I using Phased Array The material fulfils quality class AA.

100% Ultraschallprüfung nach IGC 04.25.115 Issue B 07.02.2003 mit Phased Array. Das Material entspricht der Qualitätsklasse AA. 100% Ultrasonic test acc. to IGC 04.25.115 Issue B 07.02.2003 using Phased Array. The material fulfils quality class AA.

100% Oberflächenprüfung nach DIN EN 10277-1. Das Material entspricht der Qualitätsklasse 4. Eine Wirbelstromprüfung wurde durchgeführt. Die Stäbe sind frei von unzulässigen Oberflächenfehlern. 100% Surface Inspection acc.to DIN EN 10277-1. The material fulfils quality class 4. An Eddy Current test was performed. The bars are without unacceptable surface defects.

Stufendrehversuch nach AMS 2300L. Das Material entspricht den Anforderungen. Step down test acc.to AMS 2300L. The material fulfils the requirements.

Radioaktivitätskontrolle/Radioactivity inspection: Co-60<0,1Bq/g; hiermit kleiner als Grenzwert in der anzuwendenten Spezifikation IAEA RS-G-1.7 für unbedenkliche Stoffe. therefore smaller than upper limit required according to specification IAEA RS-G-1.7 for inoffensive material.

Das Material wurde hergestellt, erprobt, überprüft und geprüft in Übereinstimmung mit der Kundenbestellung und den referenzierten Spezifikationen und erfüllt die Anforderungen, sofern nicht anders in diesem Abnahmezeugnis angegeben. Ohne schriftliche Genehmigung der Böhler Edelstahl GmbH & Co KG darf dieses Zeugnis, außer im Ganzen, nicht vervielfältigt werden. Die Aufzeichnung von falschen, fingierten oder betrügerischen Erklärungen oder Eintragungen auf diesem Dokument, kann gemäß österreichischem Recht (Strafgesetzbuch §223ff) bestraft werden.

Material has been produced, sampled, inspected and tested in accordance with the customer purchase order and referenced specifications and conforms to the requirements unless otherwise noted in this inspection certificate. The certificate shall not be reproduced, except in full, without the written approval of Böhler Edelstahl GmbH & Co KG. The recording of false, fictions or fraudulent statements or entries on the document may be punished by Austrian law(Austrian Penal Code 223ff).

be partieried by rabilitarian(rabilitari										
Wir bestätigen hiermit, dass die obeng	/ir bestätigen hiermit, dass die obengenannten Erzeugnisse den Bestellvorschriften entsprechen.									
We hereby certify that the above ment	/e hereby certify that the above mentioned products are consistent with the order prescriptions.									
Nous certifions que les produits enum	lous certifions que les produits enumeres ci-dessus sont conformes aux prescriptions de la commande.									
Zeichen des Lieferwerks:	Besic	htigung und Nachmessung: Keine Beanstan	adung Zeichen des Prüfers:							
Brand of Manufacturer:	Inspe	action and Checking of Dimensions: Satisfactor	Dry Symbol of Inspector:							
Marques de l'usine:	Inspe	action of Control des dimensions: Satisfaisa	Ant Symbole de l'inspecteur:							
BOHLER Edelstahl GmbH & Co KG Mariazellerstrasse 25 8605 Kapfenberg, AUSTRIA www.bohler-edelstahl.com	3	alexander.wagner@bohler-edelstahl.at AUSSTELLER/ ORIGINATOR / AUTEUR	DER ABNAHMEBEAUFTRAGTE/ INSPECTOR REPRESENTATIVE/ DU CONTROLEUR							

REGISTERED OFFICE OF THE COMPANY: KAPFENBERG; REGISTER COURT LANDESGERICHT LEOBEN FN 294435v

7.2 Technische Zeichnungen

Auf nachfolgenden Seiten sind der Reihe nach die Probenformen sowohl im Herstellungszustand als auch im bearbeiteten Zustand dargestellt.

- Zugprobe
- Kerbschlagbiegeprobe
- Referenzmodell 1
- Referenzmodell 2

Zugprobe DIN 50125 – B6x30 Bauform

7.3 Messprotokolle

Um die Nachvollziehbarkeit sowohl der Messungen als auch der Auswertungen zu gewährleisten, sind an dieser Stelle die Messprotokolle anschließend beigefügt.

- Zugversuch
- Härte (vollständige Mappings)
- Kerbschlagbiegeversuch

Zur Probenbezeichnung: Der **erste Index** stellt die Prüfrichtung dar, in welche die Proben laserschmelzend hergestellt wurden. Der **zweite Index** zeigt den Wärmebehandlungszustand (J=Ja, N=Nein). Als **dritten Index** wurde eine fortlaufende Nummerierung gewählt.

Überschrift	:	TU Graz-Prüfpro	oto	koll-Z	ugversuo	ch			
Prüfnorm	:	DIN EN ISO 689	92-	1 Ver	fahren B	(lagegesteuert)			
Probentyp	:	Gewinde							
Prüfer	:	Herbert Penker							
Prüfgeschw	inc	ligkeiten	:	Verfa	ahren B	Geschwindigkeit Streckgrenze	:	10	MPa/s
Vorkraft		-	:	200	Ν	Prüfgeschwindigkeit	:	20	%/min
Geschwindi	gk	eit E-Modul	:	10	MPa/s				

Prüfergebnisse:

		Art und Bezeichnung	R _{p0.2}	Rm	Ag	Amanuell	Z	mE	Fm	Lo	Lu
Legende	Nr		MPa	MPa	%	%	%	GPa	kN	mm	mm
	1	X_N_1	612	1126	26.75	29.1	57	172	31.85	30.2	39
	2	Y_N_1	617	1043	25.15	29.1	57	178	29.48	30.2	39
	3	Z_N_1	548	916	33.20	35.8	63	176	25.90	30.2	41

Überschrift :	TU Graz-Prüfpr	otok	oll-Z	ugversuc	h			
Prüfnorm :	DIN EN ISO 68	92-1	Ver	fahren B (lagegesteuert)			
Probentyp :	Gewinde							
Prüfer	Herbert Penker							
Prüfgeschwir Vorkraft Geschwindig	ndigkeiten keit E-Modul	: Y : 2	Verfa 200 10	ahren B N MPa/s	Geschwindigkeit Streckgrenze Prüfgeschwindigkeit	:	10 20	MPa/s %/min

Prüfergebnisse:

		Art und Bezeichnung	R _{p0.2}	Rm	Ag	Amanuell	Z	mE	Fm	Lo	Lu
Legende	Nr		MPa	MPa	%	%	%	GPa	kN	mm	mm
	4	X_J_1	547	1361	22.00	20.9	44	188	38.47	30.2	36.5
	5	X_J_2	560	1355	21.89	19.2	45	188	38.31	30.2	36
	6	X_J_3	559	1362	22.75	19.2	44	185	38.50	30.2	36

Überschrift	:	TU Graz-Prüfpro	oto	koll-Z	ugversuc	h			
Prüfnorm	:	DIN EN ISO 689	92-	1 Ver	fahren B	(lagegesteuert)			
Probentyp	:	Gewinde							
Prüfer	:	Herbert Penker							
Prüfgeschw	inc	ligkeiten	:	Verfa	ahren B	Geschwindigkeit Streckgrenze	:	10	MPa/s
Vorkraft			:	200	Ν	Prüfgeschwindigkeit	:	20	%/min
Geschwindi	gk	eit E-Modul	:	10	MPa/s				

Prüfergebnisse:

		Art und Bezeichnung	R _{p0.2}	Rm	Ag	Amanuell	Z	mE	Fm	Lo	Lu
Legende	Nr		MPa	MPa	%	%	%	GPa	kN	mm	mm
	7	Y_J_1	671	1574	15.87	10.9	21	176	44.50	30.2	33.5
	8	Y_J_2	559	1343	22.56	19.2	44	191	37.99	30.2	36
	9	Y_J_3	565	1340	22.70	19.2	45	198	37.90	30.2	36

Überschrift	:	TU Graz-Prüfpro	oto	koll-Z	ugversu	ch			
Prüfnorm	:	DIN EN ISO 689	92-	1 Ver	fahren B	(lagegesteuert)			
Probentyp	:	Gewinde							
Prüfer	:	Herbert Penker							
Prüfgeschw	inc	ligkeiten	:	Verfa	ahren B	Geschwindigkeit Streckgrenze	:	10	MPa/s
Vorkraft			:	200	Ν	Prüfgeschwindigkeit	:	20	%/mir
Geschwindi	gk	eit E-Modul	:	10	MPa/s				

Prüfergebnisse:

		Art und Bezeichnung	R _{p0.2}	Rm	Ag	Amanuell	Z	mE	Fm	Lo	Lu
Legende	Nr		MPa	MPa	%	%	%	GPa	kN	mm	mm
	10	Z_J_1	585	1213	26.65	25.8	46	193	34.30	30.2	38
	11	Z_J_2	586	1215	26.60	25.8	45	187	34.36	30.2	38
	12	Z_J_3	584	1210	26.17	25.8	43	183	34.22	30.2	38

Überschrift	:	TU Graz-Prüfpro	oto	koll-Z	ugversucl	n			
Prüfnorm	:	DIN EN ISO 689	92-	1 Ver	fahren B (lagegesteuert)			
Probentyp	:	Gewinde							
Prüfer	:	Herbert Penker							
Prüfgeschw Vorkraft Geschwindi	inc gk	ligkeiten eit E-Modul	:	Verfa 200 10	ahren B N MPa/s	Geschwindigkeit Streckgrenze Prüfgeschwindigkeit	:	10 20	MPa/s %/min

Prüfergebnisse:

		Art und Bezeichnung	R _{p0.2}	Rm	Ag	Amanuell	Z	mE	Fm	Lo	Lu
Legende	Nr		MPa	MPa	%	%	%	GPa	kN	mm	mm
	13	N_1	1142	775	10.35	12.6	71	195	21.91	30.2	34
	14	N_2	1143	814	10.34	12.6	70	200	23.02	30.2	34
	15	N_3	1141	751	10.36	12.6	71	198	21.23	30.2	34

Vollständige Härtemappings

Abbildung 7.1: Lasergeschmolzenes Material ohne Wärmebehandlung

Abbildung 7.2: Lasergeschmolzenes Material mit Wärmebehandlung

Abbildung 7.3: Halbzeug N700 (H1025)

Prüfprotokoll für den Kerbschlagbiegeversuch nach Charpy ISO 148-1:2009

Arbeitsvermögen des Pendelschlagwerkes: **300 [J]** Probenform:**Probe mit V-Kerb 55x10x10** Werkstoff:- Datum: **04.07.2014** Prüfer: **Penker** Blatt: **1 v.1**

Proben Nr.:	Prüftemp. °C]	KV ₂ [J]	Anmerkung:
1	22	144	Probenbezeichnung: A; Richtung: X; Wärmebehandlung: Nein
2	22	140	Probenbezeichnung: B; Richtung: X; Wärmebehandlung: Nein
3	22	138	Probenbezeichnung: C; Richtung: Y; Wärmebehandlung: Nein
4	22	142	Probenbezeichnung: D; Richtung: Y; Wärmebehandlung: Nein
5	22	156	Probenbezeichnung: E; Richtung: Z; Wärmebehandlung: Nein
6	22	166	Probenbezeichnung: F; Richtung: Z; Wärmebehandlung: Nein
7	22	78	Probenbezeichnung: G; Richtung: X; Wärmebehandlung: Ja
8	22	82	Probenbezeichnung: H; Richtung: X; Wärmebehandlung: Ja
9	22	82	Probenbezeichnung: []; Richtung: X; Wärmebehandlung: Ja
10	22	86	Probenbezeichnung: M; Richtung: Y; Wärmebehandlung: Ja
11	22	78	Probenbezeichnung: N; Richtung: Y; Wärmebehandlung: Ja
12	22	87	Probenbezeichnung: O; Richtung: Y; Wärmebehandlung: Ja
13	22	90	Probenbezeichnung: S; Richtung: Z ; Wärmebehandlung: Ja
14	22	91	Probenbezeichnung: T; Richtung: Z; Wärmebehandlung: Ja
15	22	87	Probenbezeichnung: []; Richtung: Z ; Wärmebehandlung: Ja
16	22	70	Probenbezeichnung: 🛛; Halbzeug N700
17	22	74	Probenbezeichnung: W; Halbzeug N700
18	22	70	Probenbezeichnung: 🛛; Halbzeug N700

ISO 148-1:2009

7.4 Sonstiges

Körnung Bezeichnung		Korngröße in µm
GROB	P12 P16 P20 P24 P30 P36 P40 P50 P60 P80	1815 1324 1000 764 642 538 425 336 269 201
MITTEL	P100 P120 P150 P180 P220 P240 P280	$ \begin{array}{r} 162 \\ 125 \\ 100 \\ 82 \\ 68 \\ 58,5 \pm 2 \\ 52,2 \pm 2 \end{array} $
FEIN	P320 P360 P400 P500 P600	46,2 ± 1,5 40,5 ± 1,5 35,0 ± 1,5 30,2 ± 1,5 25,8 ± 1
SEHR FEIN	P800 P1000 P1200 P1500 P2000 P2500	21,8 ± 1 18,3 ± 1 15,3 ± 1 12,6 ± 1 10,3 ± 0,8 8,4 ± 0,5

Abbildung 7.4: Zusammenhang zwischen Kornbezeichnung und Korngröße [87]