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AbstratStrongly orrelated quantum impurity problems have been an important �eld of ondensed matter physisfor almost eighty years. Models have been designed to explore the manifold of quantum behavior observedin impurity doped materials. In reent years they served as a ornerstone in the theoretial understandingof novel nano-sale devies like quantum-dots or moleular eletronis. These devies have attrated avast amount of researh interest and gave remarkable, key-insights into the behavior of matter at theatomi sale, whih is so important for tomorrow's tehnology. In this thesis, the physis of quantumimpurity models is probed by means of the variational luster approah (VCA) and luster perturbationtheory. Making use of these methods, stati and dynami quantities of the single impurity Andersonmodel are studied. An expression for the VCA grand potential for a system in a non-interating in�nitebath is presented. Results for dynami orrelation funtions in di�erent parameter regimes are shownto be in good agreement with renormalization group results. We address the question of whether theelusive low energy properties of the model are properly reprodued within the framework of VCA. Theseare furthermore ompared to ontinuous time quantum Monte Carlo alulations. We also disuss resultsobtained by an alternative, i. e. self-onsistent formulation of VCA, whih was introdued reently inthe ontext of non-equilibrium systems. A non-equilibrium extension of the variational luster approahis applied to the problem of a strongly orrelated quantum dot under bias. Thereby the question ofhow to model systems out of equilibrium is addressed. We alulate the steady-state urrent as well asthe non-equilibrium density of states for suh a devie. Furthermore the properties of Graphene withrandomly positioned magneti vaanies is studied. This problem has aroused a lot of interest in reentexperiments with proton irradiated Graphene. Suh a setup poses a hallenge to any theoretial methodbeause it is not only strongly orrelated but highly disordered as well. It is shown that in the variationalluster approah it is possible to treat suh a system and harvest results for the density of states.
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KurzfassungStark-korrelierte Quanten-Vielteilhensysteme sind seit fast ahtzig Jahren ein wihtiges Arbeitsgebietim Bereih der Physik kondensierter Materie. Zur Beshreibung der vielfältigen, quantenmehanishenVorgänge, welhe zum Beispiel in Materialien mit Störstellen beobahtbar sind, wurden theoretishe Mod-elle entwikelt. In den letzten Jahren wurden diese Modelle auh zur Beshreibung von nano-skaligenBauteilen, wie Quantenpunkten oder molekularer Elektronik angewendet. Bauteile dieser Art haben einriesiges Forshungsinteresse generiert und liefern erstaunlihe Einsihten in das Verhalten von Materie aufatomaren Längenskalen. Diese Erkenntnisse sind unabdingbar für die Tehnologie von morgen. In dieserArbeit wird die Physik von Quanten-Störstellenmodellen mit Hilfe des Variationellen Cluster Zugangs(VCA) und der Cluster Störungsrehnung untersuht. Diese Methoden werden benutzt um statishe unddynamishe Gröÿen des Ein-Störstellen-Anderson Modells zu studieren. Hierfür wird ein Ausdruk für dasVCA Groÿkanonishe Potential, für Systeme in niht wehselwirkenden, unendlih groÿen Bädern präsen-tiert. Es wird gezeigt, dass die erzielten Resultate für dynamishe Korrelationsfunktionen in vershiede-nen Parameterbereihen mit Renormierungsgruppen-Rehnungen gut übereinstimmen. Weiterhin wirduntersuht, ob die shwer berehenbaren Niederenergieeigenshaften des Modells von VCA wiedergegebenwerden können. Diese werden auÿerdem mit kontinuierlihen Zeit - Quanten Monte Carlo Rehnungenverglihen. Zudem werden Ergebnisse, welhe mittels einer alternativen, selbstkonsistenten Formulierungvon VCA erzielt wurden, diskutiert. Eine Nihtgleihgewihts Erweiterung des Variationellen ClusterZugangs wird auf das Problem eines stark-korrelierten Quantenpunktes unter Spannung angewendet.Es wird beshrieben wie ein solhes Modellsystem im Nihtgleihgewiht modelliert und simuliert wer-den kann. Dabei wird der Strom im stationären Zustand und die Nihtgleihgewihts- Zustandsdihteberehnet. Weiters studieren wir die Eigenshaften von Graphen mit zufällig verteilten, magnetishenLeerstellen. Dieses Material hat in der letzten Zeit viel Interesse in Experimenten mit protonenbe-strahltem Graphen generiert. Solh ein System stellt allerdings eine Herausforderung für theoretisheMethoden dar, da es niht nur stark-korreliert sondern auh hoh ungeordnet ist. Es wird gezeigt, wiesolhe Systeme mit Hilfe des Variationellen Cluster Zugangs untersuht werden können. Ergebnisse für,unter anderem, die Zustandsdihte werden präsentiert.
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1. Introdution/MotivationThe rih physis of omplex impurities immersed in various materials is dominated by quantum e�ets.Solving the full interating many-body problem inluding eletron-eletron interations is impossible evenin the Born-Oppenheimer approximation [1℄, whih leads to a purely eletroni problem on a bakgroundlattie potential. Physial details like eletron-phonon interation or the random omponent of disorderompliate the problem even more. A starting point to gain insight into the underlying mehanisms isprovided by quantum impurity models. These models typially try to fous on the essential, renormal-ized, degrees of freedom, resorting to ariatures of the physial interations. However, the inherent manybody problem of these very simplisti models has proven to reveal its fasinating aspets only relutantlyover time. In general, models for the quantum mehanial desription of ondensed matter systems areunsolvable again. Powerful methods have been reated during the last entury to solve those models inthe one approximate way or the other limit. One of the prime models for a quantum impurity problemis the single impurity Anderson model [2℄. It onsists of a single magneti impurity (like an eletron in anarrow f-orbital) in an otherwise perfet metal (s-eletrons). This may be for example the ase for ironatoms immersed in gold. Amazing physial phenomena like the resistane minimum in doped metals aswell as an unexpeted behavior of the entropy and spei� heat have been qualitatively explained for the�rst time by Kondo in 1964 [3℄. He showed that below a ertain rossover temperature TK , named afterhim, the Kondo temperature, the physis drastially hanges. Inreased sattering is observed whihleads to an unexpeted inrease in resistivity [4℄. The key mehanism here is a third order e�et, namelyspin-�ip sattering. In a physial piture the loal magneti moments [5℄ of the impurities get sreenedbelow a temperature TK by the ondution eletrons. This leads to a singlet formation, losing all the mag-netism, whih is observed in spei� heat measurements. Kondo's perturbative alulation still su�eredfrom a low energy logarithmi divergene. His alulation was further re�ned by various authors in selfonsistent perturbative approahes as well as renormalization group based approahes, amongst others.Ten years later Wilson introdued a renormalization group method to obtain aurately the low energyproperties of this problem [6℄. One of the main reasons why the Kondo problem is so di�ult to solveis that the interations get non-perturbatively strong at low energies, a phenomenon termed asymptotifreedom in high energy physis. In 1981 an analyti Bethe Ansatz alulation beame available for statithermodynami quantities [7℄. Today a variety of di�erent methods are available for treating the singleimpurity Anderson model in an approximate way. It took about �fty years from the �rst experimentalobservations around 1930 to a sound theoretial understanding of the physis of magneti impurities inmetals. Even today some issues still remain unsolved, like for example the size and struture of thesreening loud [8℄. The extension to many-impurity models (like the periodi Anderson model), and theinterplay between impurities bares an even more elusive problem. This beomes important in the branhof heavy fermion physis, Kondo insulators, spin liquids or when studying the ompetition with RKKYinteration in a Doniah phase diagram [9℄.A renewed interest in methods to solve suh models originated in the 1990's for the desription of quantumdots and other mesosopi devies [10℄. In these arti�ial elements quantum e�ets, resembling loselythose of magneti impurities in metals, beome important. A great advantage over bulk systems lies inthe tunability of all system parameters, whih enables a better omparison to theoretial models. A widerange of tehnologial appliations like nano or moleular eletronis depend on the understanding ofe�ets like the giant magneto resistane, oulomb blokade or quantized ondution. These models arealso important in the �eld of quantum information proessing [11℄. The advent of dynamial mean �eldtheory [12, 13, 14, 15℄ fueled the interest in omputational methods to obtain dynami quantities of thesingle impurity Anderson model, whih ats as an auxiliary problem in that powerful method.The aim of this thesis is three-fold: The �rst step is to extend and apply luster perturbation theory andthe variational luster approah to the single impurity Anderson model. The goal is to obtain dynamiorrelation funtions and stati expetation values. The model is studied in great detail by means ofthese methods to establish a solid base upon whih further appliations and models of this lass may beonstruted. Parts of the results presented in this hapter have reently been published by the authorin ollaboration with Wolfgang von der Linden, Enrio Arrigoni and Markus Aihhorn in ref. [16℄. Allalulations done in this theses are for zero temperature, although the methods may be extended to the�nite temperature ase.One the methods are shown to yield good results for a single impurity in an equilibrium situation, the1



methods are extended to the non-equilibrium ase and the transport properties through a strongly orre-lated quantum dot are studied. The non-equilibrium properties of mesosopi devies, exhibiting strongorrelation phenomena are still not understood in detail today, but ruial for future tehnology [17℄.As a third part, magneti vaanies in Graphene are studied as an appliation to disordered quantumimpurity problems. This part is motivated by reent studies [18℄, whih showed that vaanies induedinto the Graphene lattie behave like magneti defets. Here the appliability of the method to stronglydisordered problems will be outlined.This work is strutured as follows: The methods to takle quantum impurity problems, used in this thesis,luster perturbation theory and the variational luster approah, will be disussed in detail in h. 2. Therest of the thesis, whih ontains the results of the work whih I arried out within my Master thesis work,is strutured into three main parts. The �rst one presenting results for the single impurity Andersonmodel in equilibrium (see h. 3). These results have been already published in ref. [16℄ by the authorin ollaboration with Wolfgang von der Linden, Enrio Arrigoni and Markus Aihhorn. The seond, onproviding data obtained for a strongly orrelated quantum dot out of equilibrium (see h. 4). Finally thethird part presents results obtained for the disordered problem of magneti vaanies in Graphene (seeh. 5).
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2. Numerial MethodsIn general the interating quantum many-body problem is unsolvable (exept for some limiting ases),although the governing equations are known exatly. Conduting severe simpli�ations and devisinga suitable model/e�etive Hamiltonian or ation for a given many-body system usually leads to anunsolvable problem again. To gain insights into these models one has to resort to sophistiated, often veryomputationally demanding, numerial methods. These methods may involve brute fore alulations,further approximations and/or �nite size saling. Today a large variety of numerial methods exist to�nd (approximate) solutions of interating quantum many-body models. Amongst the most famous are� mean �eld approahes (MF),� (diagrammati) perturbation theory (PT),� exat diagonalization (ED),� Quantum Monte Carlo (QMC) methods, whih is a very diverse �eld of its own,� Numerial- and Funtional-Renormalization Group (NRG/FRG),� methods based on variational wavefuntions,� the density matrix renormalization group (DMRG) or more generally matrix produt state (MPS)methods,� dynamial mean �eld theory (DMFT) and� many-body luster methods.Today's most aurate method to treat the single impurity problem may be the NRG [6℄ whih wasspei�ally designed for this model. The extension to the ase of several impurities proofs troublesomefor this approah. Continuous time QMC [19℄ is a statistially exat method yielding spetra in imaginaryfrequeny, whih need to be ontinued to the real energy axis in an ill-de�ned inversion proess, using forexample the maximum-entropy method [20, 21℄. This work is mainly onerned with luster perturbationtheory (CPT) [22, 23℄ and the variational luster approah (VCA) [24℄ whih are many-body lustermethods. An advantage of these methods is the �exible extensibility from a single- to the many- impurityproblem. It is adaptable to any geometries and dimensions. In addition dynami quantities, suh as theGreen's funtion, may be obtained as a funtion of a omplex variable z , whih may espeially be taken tobe the real energy axis ω. Two well known methods whih belong to the same family but are not furtherexplored in this work are luster/ellular dynamial mean �eld theory (CDMFT) and its momentumspae analogon the dynamial luster approximation (DCA).This hapter is organized as follows: First luster perturbation theory is introdued and a review on themethod of Green's funtion in ontext with CPT is presented in se. 2.1. Then the variational extension ofCPT, the variational luster approah is introdued in se. 2.3. An extension of VCA for in�nite referenesystems is presented in se. 2.3.2. An alternative formulation of VCA previously introdued in the ontextof non-equilibrium systems is desribed in se. 2.3.4. A short review of exat diagonalization algorithmsis given in se. 2.2 as in this work we use it as the bakbone for CPT/VCA. VCA furthermore relieson methods for �nding stationary points in many dimensions or in an alternative formulation roots ofmultivariate funtions, both will be reviewed shortly in se. 2.3.3 and se. 2.3.5. The reently introduednon-equilibrium VCA [25℄ is reviewed in se. 2.4.2. This method is based on the Keldysh Green's funtiontehnique, whih is introdued in se. 2.4.1.2.1. Cluster Perturbation TheoryIn this setion the main onepts of CPT will be reviewed. This setion serves also the purpose of settingthe notation for this doument. It is widely based on the exellent review artile by Sénéhal [26℄. Inthe following we onsider a general model Hamiltonian on any given (large/in�nite) lattie. The idea ofCPT [22, 23℄ is to use the results of a small system and extrapolate them to the thermodynami limit as3



disussed in the following. The rigorous derivation of CPT whih is possible within funtional integralformalism (see for example ref. [27℄) and may be found for example in ref. [28℄ will not be given here.Instead the fous lies on the tehnial implementation. As a ompromise a heuristi argument for theCPT equation is given. A good overview of the topi is also presented in ref. [29℄.CPT yields the single-partile Green's funtion Gσσ′
ij (z), whih is a matrix in site/spin spae and ingeneral a funtion of a omplex variable z. This argument z may be hosen to be z = iω + i0+ (where ω isa real energy) to yield the retarded Green's funtion, z = iω − i0+ to yield the advaned Green's funtionor z = iω to yield the Green's funtion on the Matsubara axis [30, 31℄. Here i0+ is short for

f(i0+) ≡ lim
η→0+

f(η) ,where the limit has to be taken at the end of all operations (i.e. integrals, . . . ). The single-partileGreen's funtion is one of the most important quantities in theoretial ondensed matter physis sine itallows the alulation of the single-partile spetral funtion
A(k, ω) = −

1

π
ImG(k, ω + i0+) . (2.1)This quantity may be measured in experiments by photo emission spetrosopy (PES), inverse photoemission spetrosopy (IPES) or angle resolved photo emission spetrosopy (ARPES), depending if oneis interested in the momentum dependene or not.Using exat methods, like exat diagonalization, it is possible to �nd the exat ground-state and the single-partile Green's funtion for small latties. Exat diagonalization is limited to system sizes of a few (upto ≈ 20) sites/orbitals whih is learly far from the large/in�nite systems we are interested in here. ForCPT the lattie under onsideration is �rst broken apart into smaller, exatly solvable tiles. The lusterGreen's funtion G′ is obtained for the tiles by an exat method (for example exat diagonalization). Inthe end the luster Green's funtions are sewed bak together to yield the total Green's funtion G. Nextthe proess of breaking apart a lattie will be outlined. How a Green's funtion may be obtained for aluster is disussed in se. 2.2. Beause this onstitutes a major part of CPT and is a powerful tehniqueof its own, it is presented in its own setion in detail, not to interrupt the introdution to CPT. Theproess of onstruting the total Green's funtion within the CPT approximation is disussed in se. 2.1.2.2.1.1. Cluster tilingConsider a large lattie γ of Lγ sites and its tiling into lusters C of LC sites eah. This reates asuperlattie Γ of LΓ sites. The original lattie γ is reovered upon attahing one luster C at eah site ofthe superlattie Γ. The oordinates of the lattie may be expressed as

r
γ
i = r

Γ
I + r

C
α , i→ (I,α) .The Lγ reiproal spae vetors kγ in the �rst Brillouin zone (BZ) of the original lattie BZγ may beexpressed as

k
γ =K + kΓ ,whereK belongs to both the reiproal superlattie Γ−1 and to BZγ while kΓ belongs to the Brillouin zoneof the superlattie BZΓ. The proess of onstruting a luster tiling is illustrated for simple ubi lattiesin one-, two- and three- dimensions in �g. 2.1. How the exat solution for one luster may be obtained byexat diagonalization is desribed in se. 2.2. Next we assume to have the ground-state properties and thesingle-partile Greens's funtion G′ of the luster obtained by some means and proeed by onstrutingthe Green's funtion of the total system G.2.1.2. Obtaining the total Green's funtionCPT is a luster extension of strong oupling perturbation theory [32, 33℄, valid to �rst order in theinter-luster hopping. It an be shown that the �rst order result for the lattie Green's funtion G isG−1(z,k) = G′(z) −T(k) , (2.2)where G′ is the luster Green's funtion and T ontains only the single-partile inter-luster terms. Thismeans usually the hoppings, whih onnet the lusters. This equation may be motivated heuristially4
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Figure 2.1.: Visualization of luster tilings for simple ubi latties in one- (top row), two- (middle row)and three-(bottom row) dimensions. The plot axis are saled with the lattie parameter
a. The one-dimensional lattie is a Nγ = 10 site lattie with N c = 2 site lusters. In thetwo-dimensional ase a Nγ = 6 × 6 site lattie with N c = 2 × 2 site lusters is shown. For thethree-dimensional ase a Nγ = 4×4×4 site lattie with N c = 2×2×2 site lusters was hosen.The left olumn shows the real spae lattie rγ , super-lattie rΓ and luster rC . The rightolumn shows the respetive k-spae piture where k

γ =K + kΓ.5



Figure 2.2.: Cluster tiling of a one-dimensional tight-binding model with on-site energy ǫ and nearest-neighbor hopping t. The hain is split into three-site lusters Ĥ′ (green). The matrix elementsof T, whih are the inter-luster hoppings are indiated in red.by onsidering Dyson's equation for the total system, as well as for the lusterG−1 = G−10 −ΣG′−1 = G′−10 −Σ
′ ,where the subsript 0 denotes free Green's funtions and Σ/Σ′ the self-energy of the total system/luster.Approximating the self-energy of the total system by the self-energy of the luster Σ = Σ′ it follows thatG−1 = G−10 −Σ′

= G−10 − (G′−10 −G′−1)
= G′−1 − (G′−10 −G−10 )
= G′−1 − ((z −H ′) − (z −H))
= G′−1 − (H −H ′)
= G′−1 −T ,where H/H ′ are the one-partile terms of the total Hamiltonian Ĥ / luster Hamiltonian Ĥ′. One seesthat all that is left in T are those single-partile terms of the Hamiltonian not present in the lusterHamiltonian Ĥ′, whih are the inter-luster hoppings. This is illustrated in �g. 2.2 for a one-dimensionaltight-binding system with on-site energy ǫ and nearest-neighbor hopping t. The hain is split into three-site lusters whih have to be solved individually. The matrix elements of T, whih are the inter-lusterhoppings are indiated in red. The proess of performing a CPT alulation is visualized in a �ow diagramin �g. 2.5. Next some important, exat relations for CPT will be disussed.2.1.3. Exat relations for CPTCPT beomes exat in three limiting ases:� CPT yields the exat solution for interation-strength U → 0. This means that for non-interatingsystems, where the self-energy Σ vanishes, CPT is exat.� It is exat in the limit hopping t→ 0, where one reovers the atomi problem.� CPT onverges to the exat total Green's funtion when the luster size LC approahes the systemsize Lγ : LC → Lγ . Usually one onsiders systems of in�nite size, then CPT is exat in the limit

LC →∞.Better approximations within CPT are usually not onstruted by onsidering higher orders in pertur-bation theory but by inreasing the luster size LC .6



In the next setion an outline of how to handle Green's funtions within CPT and derive important quan-tities like the ground-state energy, the momentum distribution and the density of states is presented. Thease of a Green's funtion onsisting of a set of isolated poles as it is the ase for translationally invariantinterating model Hamiltonians is onsidered in se. 2.1.4. This will be needed for the study of defets inGraphene. Then an overview of the analogous proedure for the ase of a not translationally invariantsystem oupled to a ontinuous bath is given in se. 2.1.5, whih requires a radially di�erent treatment.This will later be applied to the study of the single impurity Anderson model.2.1.4. CPT Green's funtions for disrete spetra of translationally invariantmodelsIn this setion the alulation of CPT Green's funtions for disrete spetra is outlined. For the basisof the Q-matrix formalism the reader is referred to se. 2.2.2. The CPT Green's funtion is determinedby the Green's funtion of the luster G′ and the inter-luster hopping matrix T by eq. (2.2). Insertingeq. (2.14) into eq. (2.2) one obtains in Q-matrix notationG(ω,k) = (11 −G′(ω)T(k))−1 G′
= (11 −Q′g′(ω)Q′�T(k))−1Q′g(ω)Q′�
= (11 +Q′g′(ω)Q′�T(k) + ...)Q′g′(ω)Q′�
= (Q′g′(ω) +Q′g′(ω)Q′�T(k)Q′g′(ω) + ...)Q′�
= Q′g′(ω) (11 +Q′�T(k)Q′g′(ω) + ...)Q′�
= Q′g′(ω) (11 −Q′�T(k)Q′g′(ω))−1Q′�
= Q′ 1

g′(ω)−1 −Q′�T(k)Q′Q′� .In the seond line the fration has been Taylor expanded and in the �fth line the terms have been re-olleted. The resulting expression is exat. Introduing a diagonal matrix for the exitation energies λ′of the luster
Λ′γγ′ ∶= λ

′
γδγγ′ , (2.3)one an further rewrite the expression for the Green's funtionG(ω,k) = Q′ 1

ω − (Λ′ +Q′�T(k)Q′)Q′� .Note that the energy ω-dependene is niely separated from the wavevetor k-dependene in this expres-sion. The dependene on k only appears in T(k).To put this into an even more handy form we introdue the matrixMk ∶= Λ′ +Q′�T(k)Q′ ,so that the CPT Green's funtion is then given byG(ω,k) = Q′ 1

ω −M(k)Q′� . (2.4)Upon solving the (ω-independent) eigenvalue problemMkXk =XkΛk, (2.5)it is possible to rewrite the fration appearing in eq. (2.4) as
1

ω −Mk

=Xk (ω −Λk)
−1

X−1k .The Λk are diagonal matries holding the exitation energies of the full system on the diagonal. Theyare the k-dependent equivalent to the Λ′ de�ned in eq. (2.3) for the luster solution. Inserting this result
7



into eq. (2.4) one obtains the k-dependent weights Qk for the CPT Green's funtionG(ω,k) = Q′Xk

²Q
k

(ω −Λk)
−1

X−1k Q′�
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶Q�

k

, (2.6)
[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .The last line indiates the matrix dimensions of the quantities above. HereNγ is the number of exitationsin Q and L the luster size. A slight ompliation arises here beause the luster tiling breaks thetranslational symmetry of the model.Green's funtion periodizationThe fatorization of the total lattie into lusters breaks the translational symmetry of the lattie. There-fore the total Green's funtion G depends on two wave vetors k and k

′, whih is ertainly not orretfor a periodi lattie. This may be irumvented by a periodization presription that provides a totalGreen's funtion G(ω,k), depending only on the indies of the physial unit ell and one wave vetor k.As outlined for example in ref. [26℄ one may impose a periodization upon the self-energy Σ or the Green'sfuntion G. Here the Green's-funtion periodization is pursued due to good results obtained by thatmethod. The periodization presription proposed for systems with a single orbital unit ell in ref. [34℄reads: G(ω,k) = 1

L

L

∑
rC ,rC

′
e
−ik⋅(rC−rC′) GrCrC

′ (ω,k)
=
1

L

L

∑
i,j

e−ik⋅(ci−cj) Gij(ω,k) .The ci are the luster basis vetors. This expression may be generalized for physial unit ells onsistingof more than one atom: Gαβ(ω,k) = Lphys.
L
∑
i∈α
∑
j∈β

e−ik⋅(ci−cj) Gij(ω,k) ,where α,β denote the translationally inequivalent lattie sites of the model under onsideration and Lphys.the size of the physial unit ell. Consider for example the ase of a six-site ring luster in Graphenewhih has a two-site physial unit ell:Gαβ(k, ω) = 2

6
∑

i∈{1,3,5}
∑

j∈{2,4,6}
e
−ik⋅(cC6

i
−cC6

j
) Gij(ω,k) .There is an elegant way to impose this periodization presription upon the total Greens' funtion eq. (2.6).Introduing the matrix F�

k
of dimension [Lphys. ×L]
F�

k
=

√
Lphys.
L

⎛⎜⎝
e−ik⋅ui e−ik⋅uj ...

e−ik⋅ui e−ik⋅uj ...

... ... ...

⎞⎟⎠ . × ζα,i , (2.7)where .× denotes an element wise produt and the matrix ζα,i is one for luster sites i whih are trans-lationally equivalent to the site α of the physial unit ell (i.e. belongs to the same Bravais-sub-lattie),and zero otherwise:
ζα,i =

⎧⎪⎪⎨⎪⎪⎩
1 if luster site i is translationally equivalent to site α of physial unit ell
0 otherwise .The periodized Green's funtion Gper is obtained by applying the transformation eq. (2.7) to eq. (2.6)Gper(ω,k) = F�

k
Qk²Qper,k (ω −Λk)−1 Q�

k
Fk²Q�per,k (2.8)

[Lphys. ×Lphys.] = [Lphys. ×Nγ][Nγ ×Nγ][Nγ ×Lphys.] .8



It follows that the periodized weights Q�per,k are given byQper,k = F�
k
Q′XkQ�per,k =X−1k Q′�Fk .Eq. (2.8) onludes the derivation of the expression for the single-partile Green's funtion. Next wederive some useful quantities from this funtion. Note that within CPT only the single-partile Green'sfuntion is available. Beause CPT builds upon an interating ground-state, Wik's theorem [35℄ doesnot hold. This prevents the alulation of higher orrelation funtions by standard means.Quantities derived from the Green's funtionThe (retarded) Green's funtion enables the alulation of the single-partile spetral funtion A(ω,k)eq. (2.1). In this setion all quantities are matries in the spae of orbitals of the unit ell i and spin σ(and of energy ω and wavevetor k). For spin symmetri Hamiltonians one usually obtains the Green'sfuntion G for one spin diretion only, so all alulated quantities have to be multiplied by a fator oftwo. The single-partile spetral funtion A(ω,k) provides information about the density of states ρ(ω)

ρ(ω) = ∫
1.BZ. dk A(ω,k) = 1

N
∑
k

A(ω,k) ,where N is the number of k-points in the �rst BZ. The momentum distribution n(k) is given by
n(k) = ∫ ǫF

−∞
dω A(ω,k) .A quantity of partiular interest is the average oupany < n >ij (matrix in spae of physial unit ell)

< n >ij = ∫
1.BZ. dk n(k) = 1

N
∑
k

n(k)
=

1

N
∑
k
∫

ǫF

−∞
dω A(ω,k)

=
1

N
∑
k
∫

0

−∞
dω δ(ω − ωγ)Wγ

=
1

N
∑
k

∑
λ∶ωλ<0

Qper,kQ�per,k .Here Wγ denotes the weight of exitation γ. The average oupany per site is given by < n >
< n > =

1

N
∑
k

∑
λk<0

1

Lphys. tr (Qper,kQ�per,k) .Note that the spin index is absorbed into the index of the site in this notation. The ground-state energyper site is given by
ωo = ∫

ǫF

−∞
dω ω ρ(ω)

=
1

N
∑
k

∑
λk<0

1

Lphys. tr (Qper,kΛkQ�per,k) .The single-partile gap ∆sp is simply given by the sum of the magnitude of the lowest positive and highestnegative eigenvalue of M eq. (2.5)
∆sp = min

λγ>0
λγ +max

λγ<0
λγ .Next the ase of lusters with mixed disrete/ontinuous spetra is disussed.

9



2.1.5. CPT Green's funtions for mixed disrete/ontinuous spetra of modelswithout translational symmetryUp to now we have dealt with translationally invariant models. These were broken apart into tiles -whih were all equal. One suh representative tile ould be solved exatly for the single-partile Green'sfuntion G′ whih was made up of a set of disrete poles. Dealing with non-translationally invariantmodels, or models where the translational period is too large to be represented by one, exatly-solvable,luster, one an imagine breaking suh models into di�erent tiles. Consider for example the ase of thesingle impurity Anderson model outlined in se. 3.1. Suh tiles may involve lusters (for example in�nitenon-interating baths) whih yield ontinuous spetra/branh uts of the Green's funtion on the realaxis ω. These an not be represented onveniently by a �nite number of poles, whih makes the Q-matrixformalism not a good hoie. Some interating parts of the system however may be most onvenientlyexpressed in this formalism. In the end we are left with lusters whih are only partly representable in theform of Q-matries. The way to proeed here is to evaluate G′Q, the part of the Green's funtion whihwas represented in Q-matrix form, and G′C , the part whih was represented by other means, separately.From there on one has to work with those funtions evaluated at disrete points zi. One therefore losesthe favorable representation of all quantities whih follows from the single-partile Green's funtion, interms of eigenvalue problems, and has to resort to numerial integration of G′(zi).Expliitly the (numerially stable) alulation of single-partile expetation values from the Green's fun-tion G(zi) will be outlined in the following. Note that here G stands for any Green's funtion, not justthe one of the total system. This disussion is of ourse also appliable to systems disussed in the lastsetion, but it is absolutely neessary here. A zero temperature expetation value of a single-partileoperator in terms of the fermioni Green's funtion is given by
< cic�j > = 1

β
∑
ωn

Gij(ωn)eiωn0
+

= −∫
C

dz

2πi
Gij(z) ez0+

= −∫
CA

dz

2πi
Gij(z) − Q�Q

z − ρ

=
δij

2
+
1

π
∫
∞

0
dωReGij(iω) .Here β denotes the inverse temperature. The integration of the Green's funtion along the real axis isvery troublesome due to the numerially neessary onvergene fator 0+. To ahieve a stable integration,the integral is deformed to the omplex plane (for ontour CA see �g.D.2) and re-expressed as an integralover the Matsubara axis. The integral is regularized by the large onstant δ (see app.D). The details ofthis alulation are analogous to those for the integral for the grand potential, outlined in detail in app.D.In the next setion a review of exat diagonalization is given, whih is used to obtain the ground-stateproperties of Green's funtions of lusters, in this work.2.2. Solving lusters - Exat DiagonalizationTo gain insight into the physis governed by a partiular Hamiltonian operator one may want to alulatevarious ground- and exited state properties. In order to evaluate any observables or orrelation funtionsthe stationary many body Shrödinger equation

Ĥ ∣Ψ⟩n = En ∣Ψ⟩n ,has to be solved. This represents an algebrai eigenvalue problem of large dimension. The Hamiltonian Ĥhas to be expressed in a suitable basis resulting in a hermitian / symmetri matrix in the omplex / realase. There is a great variety of methods available to solve suh problems numerially. Even greater asthe variety of methods itself are the means by whih one may ategorize them. Maybe the most relevantriterion for our appliation is the separation of methods whih are sometimes termed full solvers andmethods whih are often referred to as sparse solvers. A full solver is one whih usually needs to store thefull matrix representation of the Hamiltonian in memory and will yield the entire eigenvalue spetrumand all orresponding eigenvetors. Sparse solvers on the ontrary may be used with a matrix storedin a sparse format (i.e. omitting the storage of zeros) and will in general yield one or some eigenvaluesonly. The very di�erent nature of these two lasses of eigensolvers makes them favorable for di�erentappliations. The big issue in quantum many-body problems is that the size of the Hilbert spae grows10



exponentially with system size [36℄. Therefore the dimension of the Hamiltonian matrix and the statevetors ∣Ψ⟩ may exeed a ritial size exponentially fast. Consider for example the size of the Hilbertspae M for the Hubbard model [37℄
M =

L

∑
N↑

L

∑
N↓

L!

N↑! (L −N↑)! L!

N↓! (L −N↓)! = 4L ,where L is the number of lattie sites and N↑ andN↓ are the number of eletrons with spin up and downrespetively. Depending on the hard- and software a double preision �oating point number takes 64 bits(whih makes it aurate to about 16 deimal digits). Taking into aount that in general one has to dealwith omplex numbers it will take 16 byte to store one matrix element or one oe�ient for a basis vetor.So for a system onsisting of L = 4 sites the amount of memory needed to store the full hamiltonian matrixwill be roughly one megabyte, whih is of ourse nothing on modern mahines. Examining a model madeup of six sites the same matrix will already take about 300 megabytes. To see the dilemma one is faingonsider eight sites: In this ase the matrix needs more or less 79 gigabytes of memory. Finally the matrixrepresentation of a twenty site system would need the extraordinary number of ≈ 1016 gigabytes. As anamusing side remark it may be mentioned that a system of only seventy sites would need 1080 bits to bestored whih is about the estimated number of atoms in the whole known universe. It should be notedat this point that in general it is possible to take into aount symmetries of the Hamiltonian to reduethe size of the Hilbert spae onsiderably making alulation of slightly enlarged systems feasible. Theexponential growth of the size however annot be irumvented. Another dramati aspet is runtime.Full eigenvalue solvers in general sale like N3, where N is the dimension of the problem. To onludethis short disussion about feasibility it is to be mentioned that solving the full eigenvalue problem isnumerially exat and yields aess to all physial quantities. The appliation of full eigenvalue solvers ishowever only possible for systems not exeeding matrix sizes of N ≈ 2000×2000 (whih translates to eightsites for typial many body models) due to runtime reasons. The only way to expand in system size isto use sparse eigenvalue solvers. One of suh methods, the Lanzos algorithm, is used extensively in thiswork to alulate the groundstate of system for up to sixteen sites. The Band Lanzos algorithm an beused to obtain information about exited states, like the single-partile Green funtion, in a very goodapproximation. In the setions to follow, a method for full diagonalization the QR methods is brie�ymentioned in se. 2.2.3 as it is used in this work to deal with small systems (system size L < 7). Themain fous here will lie on sparse solver for hermitian matries. The Lanzos algorithm will be disussedin some detail in se. 2.2.1 as it is an essential part of this work. Se. 2.2.2 reviews the Band Lanzosmethod whih is used to obtain the single-partile Green funtion and degenerate groundstates vetors.2.2.1. Groundstate properties - The Lanzos algorithmThe method ommonly known as Lanzos algorithm [38℄ is an iterative projetion method suitable tosolve large hermitian eigenvalue problems. In this work the Lanzos algorithm is used to obtain thegroundstate properties of lusters for CPT/VCA. Here a short overview of the method should be provided.This paragraph is loosely based on the good and pratial overview of eigenvalue solvers by Bai et al. [39℄and the short but very good review in ref. [29℄.The Lanzos algorithm is appliable to the standard hermitian eigenvalue problem
H ∣v⟩ = E ∣v⟩ .This method yields a few extremal eigenvalues and eigenvetors of H with high preision. The matrix His the matrix-representation of the Hamiltonian Ĥ in the Fok-basis H = ⟨n1, n2, ..., nM ∣ Ĥ ∣n′1, n′2, ..., n′M ⟩.This method may be onsidered a standard tool of many-body physis beause it has omparativelylow memory requirements. In the most primitive version only three state vetors ∣vi⟩ and the sparseHamiltonian need to be stored in memory.The algorithm starts out with a (random) initial vetor ∣v0⟩ upon whih the orthonormal basis V of theKrylov subspae K is onstruted by sequential appliation of the matrix H . The Krylov subspae after

n-iterations is given by
Kn(H, ∣v0⟩) = span{∣v0⟩ ,H ∣v0⟩ ,H2 ∣v0⟩ ,H3 ∣v0⟩ , . . . ,Hn ∣v0⟩} .An approximation for H is obtained after n iterations by projeting H onto the Krylov subspae

H̃ ≈ V T H V , (2.9)
11



where V ontains the n vetors ∣vi⟩ as olumns. The matrix V is of dimensions [M × n] where M isthe dimension of H . Therefore the approximation to H , H̃ is a small matrix of dimensions [n × n] =[n ×M][M ×M][M × n]. Diagonalization of H̃ yields
UT H̃ U =D , (2.10)where the eigenvetors of H̃ are the olumns of U and the diagonal matrix D ontains the orrespondingeigenvalues of H̃ . Plugging eq. (2.10) bak into eq. (2.9) one �nds that D ontains the approximativeeigenvalues (Ritz values) of H

UT V T´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
XT

H V U±
X

≈D ,from whih one an also see that the olumns of X ≈ V U are the approximate eigenvetors of H .Next the individual steps of the algorithm will be disussed. The starting point is a random vetor ∣v0⟩of dimension M . The suessive Krylov vetors are onstruted by appliation of H and onseutiveorthogonalization (and normalization):̃
∣vn+1⟩ =H ∣vn⟩ − ǫn ∣vn⟩ − βn ∣vn−1⟩ (2.11)

ǫn = ⟨vn∣H ∣vn⟩
βn =

√⟨̃vn∣ṽn⟩ = ⟨̃vn∣ vn⟩
∣vn+1⟩ = ∣̃vn+1⟩√⟨̃vn+1∣ṽn+1⟩ ,Here tilded quantities ∣̃v⟩ denote non-orthonormal vetors, while ∣vn⟩ denote the orthonormal ones. Theprojetion H̃ of H onto the Krylov subspae may be read o� from eq. (2.11)

⟨vm∣H ∣vn⟩ = ⟨vm∣ ṽn+1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
βn+1δm,n+1

+ǫn ⟨vm∣vn⟩´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
δm,n

+βn ⟨vm∣ vn−1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δm,n−1

,whih leads to a tridiagonal form of the Hamiltonian
H̃ =

⎛⎜⎜⎜⎜⎜⎝

ǫ0 β1 0 0 ⋯
β1 ǫ1 β2 0 ⋯
0 β2 ǫ2 β3 ⋯
0 0 β3 ǫ3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎠
,whih has to be diagonalized by some other standard method. Convergene is reahed when the hangein the ground state energy between two suessive iterations is smaller than a given limit

∣ωn
0 − ω

n−1
0 ∣ ≤ lim .Additionally the iteration has to stop when the Krylov subspae is exhausted for a given starting vetor∣v0⟩

βn =
√⟨̃vn∣ṽn⟩ ≤ lim .Espeially for small systems the results should be heked by running the algorithm twie with di�erentstarting vetors. A saver onvergene-riterion is to monitor the ≈ 5 lowest lying energies individuallyto notie rossings after some iterations. This algorithm is used in this work to obtain the ground-stateof Ĥ. Its extended version, the Band Lanzos algorithm, is introdued in the next setion to deal withsingle-partile Green's funtions.2.2.2. Single-partile Green's funtions - The Band Lanzos algorithmThe Band Lanzos algorithm is used in this work to ompute the single-partile Green's funtions. Thedesription of the mehanis of the algorithm, given here, follows ref. [39℄ losely. The spetral (Lehmann)representation of the single partile Green's funtion for the zero temperature ase in the energy domain12



is given byGσσ′
ij (z) =∑

α

⎛⎝∑n
α⟨Ψ0∣ cσi ∣n⟩α α⟨n∣ cσ′�j ∣Ψ0⟩α

z − (ωα
n − ωα

0 ) − η ∑
m

α⟨Ψ0∣ cσ′�j ∣m⟩α α⟨m∣ cσi ∣Ψ0⟩α
z + (ωα

m − ωα
0 )

⎞⎠ . (2.12)The sum over α denotes a sum over a possibly d-fold degenerate set of groundstates. For groundstatesof �xed partile number, the sums over n and m denote the subspaes with N0 + 1 (partile part) and
N0 − 1 (hole part) partiles respetively (all other matrix elements vanish identially). The index η is −1for Fermions and +1 for Bosons.This may be reast in a onvenient matrix form the so-alled Q-matries [40℄Gσσ′

ij (z) =∑
α

⎛⎝∑γ Qσ
iγ

1

z − λγ

Q
σ′�
jγ

⎞⎠
α

(2.13)Qσ�
iγ =
⎧⎪⎪⎨⎪⎪⎩

1√
d
< γ∣ĉσ�i ∣Ψ0 > partile part

1√
d
< Ψ0∣ĉσ�i ∣γ > hole part

λγ =
⎧⎪⎪⎨⎪⎪⎩
ωγ − ω0 partile part
ω0 − ωγ hole part .To ease the notation the degeneray index α is suppressed on the individual quantities. Furthermorethe sum over γ is over a set of orthonormal basis-states having one more partile than the groundstate(partile part) and one less partile than the groundstate (hole part). The exited state energies aredenoted by ωγIntroduing the diagonal matrix
gγγ′(ω) ∶= δγγ′

ω − λγ

,the Green's funtion may be rewritten in matrix formG(ω) = Q g(ω)Q� (2.14)[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .HereNγ is the size of the exited state spae and L the size of the physial system. It should be noted thatthe dimension of the Green's funtion is of system size (in general of system-size times spin multipliity).The matries Q, ontaining the weights of the exitations, are of dimension L ×Nγ . The matrix g is theonly dynami quantity and is diagonal of size Nγ ×Nγ .The Band Lanzos method uses a blok of L starting vetors, whih are, in our ase, onstruted fromthe appliation of the respetive reation c
σ�
i and annihilation c

σ
i operators on the ground state ∣Ψ0⟩ ofan L-site system

{∣v1⟩ = cσ�1 ∣Ψ0⟩ , ∣v2⟩ = cσ�2 ∣Ψ0⟩ , . . . , ∣vL⟩ = cσ�L ∣Ψ0⟩} ,
{∣v1⟩ = cσ1 ∣Ψ0⟩ , ∣v2⟩ = cσ2 ∣Ψ0⟩ , . . . , ∣vL⟩ = cσL ∣Ψ0⟩} .As the previous lines indiate this proedure has to be done for the N0 + 1 partile setor and for the

N0−1 partile setor individually. If the model is spin symmetri it su�es to onsider one spin diretion
σ - otherwise one has to take are of di�erent spin diretions too. In this work the groundstate ∣Ψ0⟩ isdetermined beforehand by the Lanzos algorithm. The Band Lanzos algorithm proeeds similarly to theoriginal Lanzos algorithm by onstruting the blok Krylov subspae, this time starting from L vetors
Kn(H, ∣v⟩i) = span{∣v⟩1 , ∣v⟩2 , . . . , ∣v⟩L ;H ∣v⟩1 ,H ∣v⟩2 , . . . ,H ∣v⟩L ; . . . ;Hn ∣v⟩1 ,Hn ∣v⟩2 , . . . ,Hn ∣v⟩L} .Again an orthonormal basis of n vetors is onstruted to projet H onto this subspae. While in thease of the Lanzos algorithm the �rst ourrene of a linearly dependent vetor in the Krylov subspaeindiates that the subspae is exhausted, for the Band Lanzos proedure this point is more subtle.Starting with a set of L vetors the �rst ourrene of a linearly dependent vetor does not mean thatthe blok Krylov subspae is exhausted. It simply indiates that the linearly dependent vetor and allvetors onstruted from onseutive appliation ofH onto this vetor do not ontain any new information.Therefore this vetor is removed from the sequene in a proess termed de�ation. The ondition for linear13



dependeny is
βn =

√⟨̃vn∣ṽn⟩ ≤ lim .After L de�ations the algorithm has to be stopped beause the blok Krylov subspae is exhausted. After
n iterations the algorithm has generated n orthonormal basis vetors and L −D andidates for the nextpossible vetors. Here D denotes the number of de�ations undergone in the �rst n iterations. The BandLanzos algorithm will generate a banded matrix H̃ whose eigenvalues are the approximate eigenvalues of
H . Orthogonality only has to be expliitly enfored among 2(L−D)+ 1 onseutive Lanzos vetors andone de�ation has ourred, against D earlier vetors. Therefore the resulting matrix H̃ is banded withbandwidth 2(L−D)+1, where the bandwidth is redued by 2 every time a de�ation ours. Additionallyeah de�ation auses H̃ to have nonzero elements p in a row/olumn outside of the banded part atrow/olumn index n−L+D(k) where n is the number of the iteration at whih the de�ation has ourredand D(k) is the number of de�ations already ourred at iteration n. As an example, onsider the ase of
L = 4 starting vetors and assume that during the �rst n = 10 iterations, de�ations have ourred at steps
n1 = 7 and n2 = 9. These two de�ations orrespond to deleting the vetors H2 ∣v⟩3 and H3 ∣v⟩1 as well asall vetors whih would be onstruted from them by appliation of H . The struture of the generatedmatrix H̃ would then be

H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x x x

x x x x x x

x x x x x x p p p p

x x x x x x x

x x x x x x x x

x x x x x x x p p

p∗ x x x x x x

p∗ x x x x x x

p∗ p∗ x x x x

p∗ p∗ x x x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
Here x denotes potentially nonzero entries within the banded part and p denotes potentially nonzeroentries due to de�ations. Note that the two de�ations have redued the initial bandwidth 2L + 1 = 9 to
2(L −D) + 1 = 5.To obtain the Q matrix representation eq. (2.13) of the Green's funtion we need both the exitationenergies ωγ for the position of the exitations and the exited state-vetors ∣γ⟩ for the respetive weights.The exitation energies are obtained as the eigenvalues of the matrix H̃ . The weights follow from the jthiteration vetor

∣vj⟩ = 1

Nj

(∣̃vj⟩ − j−1
∑
i=1
∣vi⟩ ⟨vi∣ ṽj⟩) , (2.15)where Nj =

√⟨̃vj ∣ṽj⟩ is the norm of the vetor. To evaluate the weight of for example the N0 + 1 partilesetor Q�
γi = ⟨γ∣ cσ�i ∣Ψ0⟩, eq. (2.15) has to be rearranged

∣̃vj⟩ =Nj ∣vj⟩ + j−1
∑
i=1
∣vi⟩ ⟨vi∣ ṽj⟩ .Multiplying this equation by ⟨γ∣, one obtainsQ�

γi = ⟨γ∣ ṽj⟩ = Nj ⟨γ∣vj⟩ + j−1
∑
i=1
⟨γ∣ vi⟩ ⟨vi∣ ṽj⟩ .All quantities ourring in this equation are aessible within the Band Lanzos proedure. The norm Njand ⟨vi∣ ṽj⟩ are alulated at the orthogonalization step and ⟨γ∣ is the omplex onjugate of the eigenvetorof the matrix H̃ whih is an approximate eigenvetor of H .One an understand the suess of this method sine the Lanzos method onverges to the extremaleigenvalues in a given subspae. One an target the orret subspae for single-partile exitations by theexpliit hoie ∣vi⟩ = c�i /ci ∣Ψ0⟩ as the starting vetors for Band Lanzos. Then the algorithm will yieldthose exitations having the largest weight very aurately. In the alulations 300 exitations in the

N0+1- and Nγ = 300 in the N0−1 setor are evaluated, although it turns out that for most Hamiltonians,14



at system sizes suitable for ED, Nγ ≈ 100 exitations in total are more than su�ient to exhaust the sumrule
−
1

π
∑
k
∫
∞
−∞

dω ImG(ω,k) = 1 , (2.16)and therefore obtain an aurate Green's funtion within numerial preision. This means although theBand Lanzos method is an iterative algorithm yielding not all eigenvalues and eigenvetors in prinipleneeded for the determination of the Green's funtion, it turns out to be a more or less exat method forthis appliation.For small systems it is possible to obtain all eigenvalues and eigenvetors by full diagonalization. Thisyields all the required information about the system.2.2.3. Full diagonalizationAlthough the fous of this work is learly on large sale sparse eigenvalue problems for whih iterativealgorithms like the Lanzos- (or Arnoldi- in the non-hermitian ase) algorithm are appropriate, it is oftenonvenient to have a full eigenvalue solver at hand. A full solver yields all eigenvalues and eigenvetors.Suh solvers are e�iently implemented in standard numerial pakages like LAPACK [41℄. In this workthe QR method [42, 43℄ is used to fully diagonalize small systems (L ≤ 6). A summary of this method isunfortunately beyond the sope of the present work. For a reent review see for example Watkins [44℄.Having all eigenvalues and eigenvetors of a given matrix at hand, it is straight forward to ompute theGreen's funtion by using the spetral representation eq. (2.12). The exited state vetors ∣γ⟩ are theeigenvetors of the orresponding subspae of the Hamiltonian whih are all obtained within numerialauray by full diagonalization. The exitation energies ωγ are the respetive eigenvalues. Using QR forsystem-sizes between two and six sites and Band Lanzos between seven and sixteen sites, the questionarises if one an go to larger systems. The limiting fator for Band Lanzos besides runtime is mainlymemory onsumption. It turns out that a method is urrently under development, whih enables aessto larger systems, as will be disussed in the next setion.2.2.4. A possibility to reah larger systems - Matrix Produt State LanzosReently an iterative Lanzos based eigensolver using matrix produt states has been developed [45℄.The advantage of this method is the minimal memory onsumption at the ost of a trunation of theHamiltonian whih indues a new soure of error eah time the Hamiltonian is applied to a state-vetor.For omputing Green's funtions this algorithm urrently works very well for the ≈ 10 poles with largestweight. Enabling aess to system sizes whih are easily double the size reahable with a 'lassi' Band-Lanzos method. However the Band Lanzos method is able to really reprodue enough poles withorresponding weights aurately to exhaust the sum rule eq. (2.16). It turns out that the ≈ 10 auratepoles obtained by MPS-Lanzos lak approximately 1% of the sum rule for system sizes not reahablewith Band Lanzos. For Hubbard systems up to ≈ 14 sites, the results of the two methods are the same.The interfae to CPT is provided again by the Q-matrix formalism. As preliminary alulations for theSIAM show (see se. 3.3.7) the missing spetral weight, in the MPS method, manifests itself in a spuriousbehavior of the single-partile spetral funtion A(ω) in the viinity of ω = 0 after CPT/VCA. This meansthat CPT/VCA are extremely sensitive to an aurate luster solution for the Green's funtion. Thisalgorithm is still under development and gives hope to double the CPT/VCA luster/referene system Lsizes in the near future. After disussing some options for solving lusters we turn to a method whih isable to improve dramatially on CPT results.2.3. Variational Cluster ApproahIn this setion the variational luster approah will be reviewed. An alternative self-onsistent formulationof the VCA suitable for equilibrium as well as non-equilibrium problems will be disussed. An expressionfor the grand potential for in�nite-size referene systems will be presented. VCA is in general apable ofdealing with fermioni- [46, 47, 48, 49, 50, 51℄ as well as bosoni- [52℄ systems. In ontrast to CPT it maybe applied in broken symmetry phases [53, 54, 55℄. Disordered systems [56, 57℄ may be treated using VCA.Reently an extension of VCA to non-equilibrium problems was introdued [25℄. The models whih havebeen investigated by VCA are numerous. VCA was inter alia applied to the fermioni Hubbard model [58℄,the Bose-Hubbard model [59℄, the Falio�-Kimball model [60℄, the Periodi Anderson model [61℄ andthe Jaynes-Cummings-Lattie model [62℄. Reently VCA was ombined with ab-initio band-struture15



Figure 2.3.: Diagrammati de�nition of the Luttinger-Ward funtional Φ[G]. The double lines denotethe fully interating propagator G, the dashed lines the interation.alulations [63℄. Appliations to spin systems [64℄ however have failed up to now.In the following a short introdution to this method shall be presented.2.3.1. Variational Cluster Approah - TheoryThe variational luster approah may be seen as a variational extension of CPT based on the self-energyfuntional approah (SFA) [65, 66℄. This setion is widely based on the review artile by Pottho� [67℄ aswell as ref. [52℄.We are interested in the interating single-partile Green's funtion G of a given Hamiltonian
Ĥ(x, U) = ĤI(x) + ĤII(U) , (2.17)onsisting of a one-partile part ĤI and a two-partile interation part ĤII . In the SFA the Luttinger-Ward funtional Φ[G] [68℄ is used as a starting point to onstrut the generalized grand potential fun-tional Ω[G,G0]

Ω[G,G0] = Φ[G] −Tr{(G−10 −G−1)G} +Tr{ln (−G)} , (2.18)where the subsript 0 denotes the non-interating Green's funtion. The trae Tr is short for Tr ≡ 1
β ∑

ωn

tr,where β is the inverse temperature, the sum is over fermioni Matsubara frequenies and the small formtrae tr denotes a sum over lattie sites and spin. The Luttinger-Ward funtional Φ[G] is de�ned as thesum over all two-partile irreduible diagrams. The funtional derivative of Φ[G] with respet to theinterating Green's funtion yields the self-energy Σ

δΦ[G]
δG = Σ , (2.19)as may be inferred from its diagrammati de�nition (see �g. 2.3). Taking a derivative orresponds inthe diagrammati language roughly to taking out an interating propagator. At this point it should bementioned, that VCA may be onstruted ompletely non-perturbatively [69, 67℄. It an be shown thatexpression eq. (2.19) is loally invertible. Legendre transforming the Luttinger-Ward funtional Φ[Σ]

F [Σ] = Φ[Σ] −Tr{ΣG} ,allows for expressing Σ[G]
β
δF [Σ]
δΣ

= −G[Σ] .one may rewrite eq. (2.18)
Ω[Σ,G0] = F [Σ] −Tr ln (−G−10 +Σ) . (2.20)The funtional derivative of the self-energy funtional Ω[Σ,G0] with respet to Σ yields Dyson's equationat the stationary point
δΩ[Σ,G0]

δΣ
= −G + (G−10 −Σ)−1 != 0 . (2.21)This is an equation for the physial self-energy Σ given the Luttinger-Ward funtional F [Σ] and thefree Green's funtion G0. Eq. (2.19) and eq. (2.21) omprise a set of two equations for the two unknown16



Figure 2.4.: The spae of self-energies Σ is restrited by those whih may be generated by the single-partile parametrization of an exatly solvable referene-system Σ′.funtions G and Σ.The Luttinger-Ward funtional is a universal funtional in the sense, that only depends on the interationand is not a funtional of G0. This means systems sharing the same interation part in their Hamiltonianhave the same Luttinger-Ward funtional. This fat is exploited in introduing a so alled �referenesystem�
Ĥ′(x′, U) = Ĥ′I(x′) + ĤII(U) ,de�ned on the same lattie and having the same two-partile term ĤII as the original Hamiltonianeq. (2.17), but may di�er in the one-partile terms x′. Here primed quantities denote quantities belongingto the referene system. This means it di�ers from the the original system in G0. The point of eretingthis auxiliary system is to hoose it to be an exatly solvable one. To be de�nite one usually hooses itto be a luster deomposition of the original system. The Luttinger-Ward funtional is eliminated fromthe equations by omparing eq. (2.20) for the original and the referene system

Ω[Σ,G0] = F [Σ] −Tr{ln (−G−10 +Σ)}
− Ω′[Σ,G′0] = − (F [Σ] −Tr ln (−G′−10 +Σ))
⇒ Ω[Σ,G0] = Ω′[Σ,G′0] −Tr ln (−G′−10 +Σ) +Tr ln (−G−10 +Σ)

= Ω′[Σ,G′0] −Tr ln (−G′[Σ]) +Tr ln (−G[Σ]) . (2.22)Note that for bosoni systems the ±-signs of the seond and third term are interhanged. Also notethat in VCA the self-energy Σ is taken to be the self energy of the referene system Σ′, whih is usuallynot expliit in the notation. Eq. (2.22) is still exat if the referene system is able to provide the exatself-energy of the full system. In pratie the single-partile parameters x
′ of the referene system arefree to be varied sine this does not hange the interating part and eq. (2.18) still holds. This meansthat the funtional Ω[Σ,G0] eq. (2.22) beomes a funtion of those parameters

Ω(x′) = Ω′(x′) +Tr ln (−G(x, x′)) −Tr ln (−G′(x′)) , (2.23)The VCA approximation onsists therefore in restriting the spae of available self-energies to thoseprodue-able by the referene system and its single-partile parametrization (see �g. 2.4). The stationarityondition determining the physial parameters eq. (2.21) is then given by
∇x

′Ω(x′) != 0 . (2.24)Note that this is a dynami variational priniple sine it involves G(ω) and therefore exited states. TheGreen's funtion G of the physial system Ĥ is obtained by the CPT equation (eq. (2.2)). This time inontrast to CPT the matrix T = G′−10 −G−10 ontains all single partile terms not inluded in the referenesystem as well as the deviation, introdued by VCA, ∆x ≡ x′ − x of the single-partile parameters of thereferene system x
′ with respet to the ones of the original system x. Some remarks about the de�nitionof signs in G′ and T are appropriate. The signs of the variational parameters are �xed by the Dyson
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equation eq. (2.21) G−1 = G′−1 −T
= (ω −H) −T
= ω − (H +T) .This means that if a variationally introdued parameter δα for a one partile quantity is de�ned in H (andtherefore G) as: (α + δα)Ô, it, of ourse, is negative in T: −δα. For parameters whih are intrinsiallynegatively de�ned in H (i.e. usually the hopping t) it is like follows: in H (and therefore G): −(α+ δα)Ôand in T: +δα. For the evaluation of Dyson's equation eq. (2.21) several forms may be usedG−1 = G′−1 −TG = G′ +G′TG = G′ +GTG′G = (11 −G′T)−1G′ .The last one is partiularly useful for numerial alulations beause only one inversion is needed. Theproess of performing a CPT/VCA alulation is summarized in a �ow diagram in �g. 2.5. Next we turnto the question of how the self-energy funtional eq. (2.23) may be evaluated numerially.2.3.2. Evaluation of the self-energy funtionalThe grand potential in the form of eq. (2.23) has to be evaluated numerially in order to �nd its stationarypoint and thus the optimal single-partile parameters x′stat. In ref. [26℄ two methods to evaluate eq. (2.23)have been proposed. One is based on an exat (analyti) frequeny integration, whih yields an expressioninvolving sums over exitation energies. Therefore it is espeially suited for problems, where the full Q-matrix representation of the luster as well as the total system is available (see se. 2.1.4). The seondoption would be a numeri frequeny integration. This is the way to go in dealing systems, whoseexitations an not be put into Q-matrix form entirely (see se. 2.1.5). As we shall see the real integralshave to be transformed to omplex ontour integrals in order to ahieve a stable numerial routine. Inthe following both ases will be disussed. The �rst one is needed for the alulations for Graphene,although here the numerial integration would be appliable too, however with slightly less auray.The seond method is used for the single impurity Anderson model, where the spetrum is not expliitlyrepresentable by a �nite number of poles.The evaluation of the �rst term of eq. (2.23): Ω′(x′), whih is the grand potential of the luster, is thesame in both ases. It may be alulated from the partition funtional

Z = e−βΩ′(x′) =∑
n

e−β ω′n ,whih redues in the limit of zero temperature (β → +∞) to the ontribution of the ground state energyof the luster ω′0 only
lim

β→+∞∑n e−β ω
′
n = e−β ω

′
0 .Therefore, in the zero temperature ase, the grand potential of the luster Ω′(x′) is given by its ground-state energy ω′0

Ω′(x′) = ω′0 .Next we turn to the two di�erent approahes of evaluating the additional terms in eq. (2.23).Exat frequeny integrationThis method of evaluating the grand potential eq. (2.23) is used for systems, where the full Q-matrixrepresentation of the luster as well as the total system is available. In this work this is the ase in thestudy of defets in Graphene (see h. 5). The results (for example obtained in ref. [26℄) will be statedhere without derivation, sine the alulation is rather lengthy and was not part of this work. It may for
18
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Figure 2.5.: Flow hart diagram for a CPT/VCA alulation.
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example be found in ref. [29℄. The analyti frequeny integration of eq. (2.23) (for fermions) leads to
Ω(x) = Ω′(x′) + 1

β
∑
γ

ln ∣1 − e−β λ′γ ∣ − 1

β

1

NΓ
∑
kΓ

∑
γ

ln ∣1 − e−β λγ(kΓ)∣ ,whih redues in the ase of zero temperature (β → +∞) to
Ω(x) = Ω′(x′) − ∑

Reλ′γ<0 λ′γ + 1

NΓ
∑

Reλγ(kΓ)<0
λγ(kΓ) .Note that in the bosoni ase the ±-signs in front of term two and three are exhanged. The exitationenergies of the luster λ′γ are obtained in eq. (2.3), while the exitation energies of the total system fora given superlattie wavevetor kΓ are available from the diagonalization of eq. (2.5). Note that the lastsum goes over the 1st BZ of the superlattie Γ. NΓ is the number of points on the superlattie Γ, i.e.the number of lusters in the total system. All quantities in this expression are readily available. Nextwe turn to the ase where those quantities are not easily aessible in Q-matrix form and a numerifrequeny integration has to be used.Numerial frequeny integration for in�nite referene systemsIn this setion we have in mind a speial kind of referene system, whih is not expressible in Q-matrixform and of in�nite extent. This is the ase for the single impurity Anderson model, although theexpressions derived in this setion are appliable to any system of that kind. We onsider a referenesystem onsisting of two parts, one being a �nite interating system, the luster, and one a non-interatingsystem of in�nite size, the environment. The grand potential Ω′(x′) is given by the sum of the grand-potentials of the luster part of the referene system (Ω′luster) and of the environment part of the referenesystem (Ω′env). The last part being in�nite but onstant and we onsider from now on the shifted grandpotential Ω(x) −Ω′env.We start out by disussing the Green's funtion G for an in�nite referene system. This system isrepresented by the Green's funtion of the referene system and G′ and TG′ = (G′cc G′ceG′ec G′ee) , T = (Tcc TceTec 0

) ,where the subsript c denotes the sites of the luster part of the referene system, while the olletiveindex e denotes the sites of the environment part of the referene system. Up to this point all matriesinvolving environment indies have in�nite size. As far as the Green's funtion itself is onerned thisis no problem as we are primarily interested in the luster part of the referene system given by Gcc forwhih the Dyson equation redues toGcc = G′cc +G′ccTccGcc +G′ccTceGecGec = G′eeTecGccGcc = G′cc +G′ccΣ̃ccGcc

Σ̃cc ∶= Tcc +TceG′eeTecAs far as the grand potential is onerned, the alulation to eliminate the in�nite environmental degreesof freedom is rather lengthy and presented in app.C. Based on this result the numerial frequenyintegration of eq. (2.23) is possible. Again this results in tedious work following ref. [26℄, whih is donein detail in app.D. Starting out from
Ω(x′) = Ω′(x′) −Tr ln (11 −TG′(x′)) ,and performing a transformation to a omplex ontour integral as well as an integral regularization, oneends up with

Ω(x′) −Ω′env = ω′0,luster(x′) + tr (T)
−
1

π
∑
σ
∫
∞

0
dω ln ∣det (11cc − Σ̃cc(iω)G′cc(iω))∣ .This integral may be evaluated as suggested in ref. [26℄ by integrating from 0 to Λ1, from Λ1 to Λ2 and from

Λ2 to ∞. Λ1 and Λ2 represent two harateristi sales in the problem (for example the smallest/largest20



eigenvalue of the Hamiltonian matrix). For the last part of the integral a substitution ω̃ = 1
ω
is performed.In this work an adaptive Gauss Legendre integrator (see for example ref. [70℄) for the evaluation of theintegrals is used. Having disussed how the grand potential is evaluated for a given set of single-partileparameters x′ we proeed by disussing methods to �nd its stationary point.2.3.3. Finding stationary points of the grand potentialIn VCA the stationary point of the grand potential funtional has to be determined. The stationarypoint of the grand potential Ω(x′) whih is in general a multivariate funtion may be a maximum, aminimum or a saddle-point. Generally enormously large deviations from the physial parameters x donot make sense. Therefore it is di�ult to apply a standard numerial algorithm. In fat I am notaware of an algorithm whih �nds arbitrary stationary points of a (often quite ompliated) multivariatefuntion with boundary onstraints. Literature exists for the so alled Nudged elasti band [71℄ anddimer methods [72℄ whih are not suitable for the problem at hand. The approah taken here is toseparate alulations involving low dimensional (one to two variational parameters) parameter spaes,where the nature of the stationary point is often known from the general higher dimensional ase, whereit is impossible to predit the nature of the stationary point. For example it is known that varying thehemial potential (or on-site energy), the stationary point is always a maximum. We furthermore foundthat varying the hopping, there exist in most parameter regions three stationary points, one whih is anunphysial maximum and two equivalent minima. For further disussion see se. 3.3.1.In this work a Brent method [70℄, whih ombines a paraboli interpolation with the golden setionalgorithm is used for one variational parameter if the stationary point is known to be a minimum or amaximum. For higher dimensional ases, where the stationary point is known to be either a minimumor a maximum, a derivative free Nelder-Mead simplex algorithm [73℄ is used. Both these algorithms areavailable from standard numerial libraries like GSL [74℄. For the mehanis of these methods the readeris referred to the literature sine a desription of these algorithms would go beyond the sope of thiswork. In the general ase where the nature of the stationary point is not known a self-made algorithmis used whih is based on paraboli interpolation. The idea is that the funtion Ω(x′) is �tted by a highdimensional paraboloid, whereby the onseutive points, by whih the paraboloid is �t, ontrat to thestationary point. Sine this method was developed spei�ally for this appliation it is presented in thefollowing. A similar method may exist in literature, but no perfetly suitable standard-algorithm ouldbe found. During the �nalisation of this thesis E. Arrigoni pointed out to me a similar method presentedin ref. [53℄ se. III.D, whih inludes a suggestion for improvement.Finding stationary points in many dimensionsOur goal here is to �nd the stationary point of the Nx dimensional funtion Ω(x). Therefore we approx-imate this funtion by a quadrati form

(xi)T C x
i ,where C is a symmetri matrix with

NC =
N2

x
+ 3Nx + 2
2

,independent unknown oe�ients. To identify the oe�ients of C, NC trial vetors xi, i = [1, . . .NC]are needed
x
i =

⎛⎜⎜⎜⎜⎜⎝

xi
1

xi
2

⋮
xi
Nx

1

⎞⎟⎟⎟⎟⎟⎠
.This leads to a system of equations for the oe�ients of C

(xi)T C x
i = Ω(xi), i = [1, . . . NC] . (2.25)
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Consider as an example the two-dimensional ase: Nx = 2, whih leads to NC = 6. We need six, three-dimensional trial points xi to obtain the system
(xi)T C x

i = Ω(xi)
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.The NC trial vetors are hosen in the viinity of an initial guess for the stationary point xS
0

x
i = xS

0 +∑
j

gijβjej , (2.26)where the funtion gij may be hosen to take integer values ∈ [0,±1,±2, . . .] to enage x
S
0. A guess forthe stationary point of Ω(x) is given by the stationary point of its loal quadrati approximation by

∇Ω(x) ≈ ∇((xS)T C x
S) != 0 ,where the oe�ients of C are known from eq. (2.25). This leads to another system of equations for theapproximation of the stationary point xS

∇(xS)T C x
S + (xS)T ∇C x

S != 0

2C x
S != 0 ,whih may be solved by bringing the onstant terms to the right. Again for the two-dimensional examplethis takes the form

C11x
S
1 +C12x

S
2

C12x
S
1 +C22x

S
2

=
−C13

−C23
.The newly obtained approximation for the stationary point xS is then taken to be a new guess xS

0 andthe proedure is repeated until the point stabilizes from one iteration to the next. One important pointto note here is that the onvergene is strongly dependent on the funtion βj whih is used to quantifythe size of the age around x
S
0 in eq. (2.26). This funtion has to ontrat to a point, the loser oneomes to the true stationary point to avoid instabilities. This onludes the disussion of VCA based onthe grand potential Ω. Next we turn to a di�erent, self-onsistent formulation of VCA.2.3.4. Self onsistent VCAIn this work we ompare results obtained by the onventional VCA whih we from now on term VCAΩ toan alternative formulation VCASC. The need for an alternative formulation is motivated by the extensionof VCA to non-equilibrium systems whih will be disussed in se. 2.4. The onventional VCAΩ may notbe straight forwardly used in the non-equilibrium situation sine it relies on the grand potential whih isnot well de�ned in this ase. The self-onsistent reformulation of VCA: VCASC was reently developedin ref. [25℄ to treat systems out of equilibrium, although it an equally be adopted in equilibrium. Up tonow this formulation laks a rigorous fundamental mathematial justi�ation although it may be relatedto CDMFT in some limits [25℄.In VCASC the variational parameters x

′ are determined by omparing stati expetation values of thereferene system and the total system. The idea of this self-onsistent approah is to use a referenesystem whih resembles the full system best. The strategy is to �nd those values x
′ for the set ofparameters of the referene system whih let the expetation values of their orresponding single-partileoperators < Ô >luster,x′ oinide with those of the full system < Ô >CPT,x,x′ . Here, the angle braketsdenote expetation values in the referene and the full system oupled by CPT or VCA respetively.Consider the on-site energies ǫ′f and ǫ′s as variational parameters. One then has to look for those luster22



parameters ǫ′f and ǫ′s whih ful�ll the relations
⟨n̂f

σ⟩luster,ǫ′
f
,ǫ′s

!= ⟨n̂f
σ⟩CPT,ǫf ,ǫs,ǫ

′
f
,ǫ′s

(2.27)
L−1
∑
i

⟨n̂i
σ⟩luster,ǫ′

f
,ǫ′s

!=
L−1
∑
i

⟨n̂i
σ⟩CPT,ǫf ,ǫs,ǫ

′
f
,ǫ′s

.The sum is over all non-interating sites inluded in the luster. Eq. (2.27) amounts to solving a systemof non-linear equations in eah step of the self onsisteny yle. In general it is possible to vary eahsingle partile parameter separately. For reasons of keeping the numeris tratable in this work we restritourselves to one ǫ′s only, whih we take to be the same for eah site. Extension to a larger number of
ǫ′s is straightforward. To �x this parameter we require the average partile density on the noninterat-ing sites to ful�ll the ondition eq. (2.27). In some situations, the hybridization matrix element V ′ andthe intra-luster hopping t′ will alternatively be onsidered as variational parameters. Then the parti-le number expetation values in eq. (2.27) are replaed by hopping expetation values. Again for t weuse a single variational parameter for hopping between all unorrelated sites and �x it by requiring themean value of hopping in the luster and the full system to oinidene. An improved multidimensionalNewton-Rhapson algorithm is used to �nd the roots of the system eq. (2.27). In some parameter regionsno solution may be found.2.3.5. Finding the roots of multi-variate funtionsIn ontrast to the standard formulation where one has to �nd stationary points of the grand potential
Ω, the self-onsistent formulation requires �nding the roots of a non-linear system of equations. In thiswork a modi�ed Newton-Rhapson method [70℄ is used to solve a non-linear system like eq. (2.27). TheNewton-Rhapson proedure onverges to a root by an iterative proess. A starting point x0 for the roots,is updated by the presription

xn+1 = xn − [Jf(xn)]−1 f(xn) ,where Jf is the Jaobian de�ned as
Jf(x) =

⎛⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xN

⋮ ⋮ ⋱ ⋮
∂fN
∂x1

∂fN
∂x2

⋯ ∂fN
∂xN

⎞⎟⎟⎟⎟⎠
,whih is alulated by a �nite-di�erene approximation to the partial-derivative.The self-onsistent VCASC introdued in the last two setions provides the basis for the non-equilibriumformulation of VCA, whih will be disussed in the next setion.2.4. Non-equilibrium Variational Cluster ApproahThe extension of CPT/VCA to the non-equilibrium ase was started by Balzer et al. [75℄ who studiedshort-time behavior using CPT. Knap et al. [25℄ were investigating the long-time, steady-state of two-dimensional Hubbard systems using a self-onsistent VCASC. In this work the long-time, steady-statebehavior of a strongly orrelated quantum dot, modeled by the SIAM, is investigated by VCASC. Inthis setion the non-equilibrium extension of VCA will be presented. First a short introdution to theKeldysh-Green's funtion tehnique, on whih the non-equilibrium VCA is based, is presented in se. 2.4.1.Then the self-onsistent VCASC introdued in se. 2.3.4, will be extended to the non-equilibrium ase inse. 2.4.2.2.4.1. The Keldysh-Green's funtion tehniqueHere the basis of the Keldysh-Green's funtion tehnique are outlined. This setion is based on the verynie review artile by Jauho [76℄. Further information on the topi is available at the more omprehensivereviews ref. [77℄ or ref. [78℄. Introdutory leture notes are available in ref. [79℄ and ref. [80℄. A goodoverview is presented in the book by Haug and Jauho [81℄. The ontour ordered (Keldysh-) Green'sfuntion tehnique was named after the pioneering work by Keldysh [82℄, although earlier losely related23



approahes exist, for example by Shwinger [83℄ and Feynman and Vernon [84℄.One great advantage of non-equilibrium Keldysh Green's funtion theory is that it is formally similar tothe equilibrium theory. Consider a system desribed by a general Hamiltonian
Ĥ = Ĥ0 + Ĥ1(t) ,where the time dependent part is assumed to vanish in the distant past t→ −∞, so

Ĥ1(t) ≡ 0 for t < 0 ,Adiabatially swithing on the interation Ĥ1(t) = e−0+∣t∣ V̂ (t), the interation attains its full strength attime t = 0. Note that this implies that at time t → −∞ all operators in the Heisenberg-piture OH equaloperators in the interation representation with respet to Ĥ0, OI,Ĥ0(−∞). Zero-temperature equilibriummany-body theory may be formulated in terms of the time-ordered Green's funtion [85, 86℄GT

ÂB̂
(x1, t1;x2, t2) = −i ⟨Ψ0∣ ˆ̂T (ÂH(x1, t1)B̂H(x2, t2)) ∣Ψ0⟩⟨−∞∣−∞⟩ . (2.28)The index x, representing spae, spin, . . . will be suppressed from now on to fous on the important indexin this hapter whih is time t. The time-ordering operator is de�ned as

ˆ̂
T (Â(t)B̂(t′)) = ⎧⎪⎪⎨⎪⎪⎩

Â(t)B̂(t′) if t > t′
B̂(t′)Â(t) if t′ > t (2.29)

= θ(t − t′) Â(t)B̂(t′) + η θ(t′ − t) B̂(t′)Â(t) , (2.30)where η = +1 for bosons and η = −1 for fermions. Note that averages over thermal ensembles in the �nitetemperature formalism are not onsidered in this work, and therefore no referene to them is made inthis setion. An extension of the onepts presented here however is easily possible. A troublesome thingwith expression eq. (2.28) is that it involves the unknown ground-state ∣Ψ0⟩ of an interating Hamiltonian
Ĥ. We assume that the ground-state at time t → −∞ is given by the solvable ground-state ∣−∞⟩ of Ĥ0.Thus the interating ground-state ∣Ψ0⟩ is given by time evolution

∣Ψ0⟩ = S(0,−∞) ∣Φ0⟩ .It is onvenient to transform to the interation representation with respet to Ĥ0

∣ΨI,Ĥ0(t)⟩ = S(t,−∞) ∣ΨH⟩ = S(t,−∞) ∣−∞⟩
ˆOH(t) = S(−∞, t)ÔI,Ĥ0(t)S(t,−∞)

S(t2, t1) = ˆ̂
T (e−i ∫ t2

t1
dt′ Ĥ1(t′)) .This yields an expression for the time-ordered Green's funtion eq. (2.28) for t1 > t2GT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞, t1)ÂI,Ĥ0(t1)S(t1,−∞)S(−∞, t2)B̂I,Ĥ0(t2)S(t2,−∞) ∣−∞⟩⟨−∞∣−∞⟩ .Using S(t1,−∞)S(−∞, t2) = S(t1, t2) and re-introduing the time-ordering whih permits us to exhangeoperators at di�erent times within it, one obtainsGT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞, t1) ˆ̂T (S(t1,−∞)ÂI,Ĥ0(t1)B̂I,Ĥ0(t2)) ∣−∞⟩

⟨−∞∣−∞⟩ ,where S(−∞, t1) an not be pulled inside ˆ̂
T sine it is itself not time-ordered, remember −∞ < t2 < t1 < ∞by onstrution. Expressing ⟨−∞∣ = ⟨∞∣S(+∞,−∞) and ombining S(∞,−∞)S(−∞, t1)S(t1,−∞) =

S(∞,−∞) yields an operator whih is time-ordered by itself and may be pulled inside the time-ordered
24



Figure 2.6.: The Keldysh ontour (losed-time-ontour) for systems without initial orrelations. Opera-tors are de�ned at a time t and on a branh c on the omplex ontour.produt at the ost of introduing the state in the distant future ∣+∞⟩GT

ÂB̂
(t1, t2) = −i ⟨+∞∣

ˆ̂
T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨+∞∣S(+∞,−∞) ∣−∞⟩ . (2.31)The way the time-dependent part of the Hamiltonian Ĥ1(t) was introdued it is adiabatially swithedon and o� again. We therefore assume that the system �nds its way bak to the ground-state of Ĥ0at times t → +∞ and we have ∣+∞⟩ = eiφ ∣−∞⟩. This relation is made rigorous in the Gell-Mann andLow theorem [87℄, whih is satis�ed in this ase (Ĥ(t → +∞) = Ĥ(t → −∞) = Ĥ0, plus adiabati time-dependene in-between). Therefore one ends up withGT

ÂB̂
(t1, t2) = −i ⟨−∞∣

ˆ̂
T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨−∞∣S(+∞,−∞) ∣−∞⟩ , (2.32)whih serves as a starting point for perturbation theory.At this point the non-equilibrium ase starts to deviate. In the non-equilibrium situation it is notreasonable that by adiabatially swithing o� the interation, the system will return to its non-interatingground-state. This means ∣+∞⟩ = eiφ ∣−∞⟩ does not hold any longer and we are left without knowledgeof the �nal state. This fores us to take the unknown ∣+∞⟩ out of eq. (2.31) to obtainGT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞,+∞) ˆ̂T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨−∞∣S(−∞,+∞)S(+∞,−∞) ∣−∞⟩ ,where again S(−∞,+∞) an not be pulled inside the time-ordering. The 'trik' here is to introdue theso-alled losed-path or Keldysh- ontour (see �g. 2.6) and de�ne eah objet not only at a ertain time tbut also on a ertain branh of the ontour c = {+,−}. Note that this ontour is valid for systems withoutinitial orrelations, where t0 may be taken to −∞. Extending the time-ordering operator ˆ̂
T eq. (2.30) tothe ontour-ordering operator ˆ̂

Tc

ˆ̂
Tc (Â(t, c)B̂(t′, c′)) = ⎧⎪⎪⎨⎪⎪⎩

Â(t, c)B̂(t′, c′) if {t, c} > {t′, c′}
B̂(t′, c′)Â(t, c) if {t′, c′} > t, c} ,whih orders operators along the ontour, it is possible again to pull everything inside the orderingGTc

ÂB̂
(t1, c1; t2, c2) = −i ⟨−∞∣

ˆ̂
Tc (S(−∞,−;+∞)S(+∞;−∞,+)ÂI,Ĥ1(t1,+)B̂I,Ĥ1(t2,+)) ∣−∞⟩

⟨−∞∣S(−∞,−;+∞)S(+∞;−∞,+) ∣−∞⟩ , (2.33)This means one lets the system evolve in the forward time diretion from − ∣∞⟩ to ∣+∞⟩ and then bakfrom ∣+∞⟩ to ∣−∞⟩ in the bakwards time diretion. Thereby all interations are unwind. This essentiallyomes along with a doubling of degrees of freedom sine every operator ating at time t now ats at time
t on ontour c. Eq. (2.33) de�nes the four-omponent single-partile Green's funtion in Keldysh spae
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G++(t1, t2) = GTc

cc�(t1,+; t2,+) = GT (t1, t2) = −i < ˆ̂
T (c(t1)c�(t2)) > time-ordered Green's funtion,G+−(t1, t2) = GTc

cc�(t1,+; t2,−) = G<(t1, t2) = −η i < c�(t1)c(t2) > lesser Green's funtion, (2.34)G−+(t1, t2) = GTc

cc�(t1,−; t2,+) = G>(t1, t2) = −i < c(t1)c�(t2) > greater Green's funtion, (2.35)G−−(t1, t2) = GTc

cc�(t1,−; t2,−) = GT̄ (t1, t2) = −i < ˆ̄̂
T (c(t1)c�(t2)) > anti-time-ordered Green's funtion .These four Green's funtions are not linearly independent, sineGT +GT̄ = G> +G< = GK .This allows performing a rotation in Keldysh-spae

(GT G<G> GT̄)↦ (GR GK

0 GA) = G̃ , (2.36)where the rotated form is denoted G̃ and will be used in this work. The individual Green's funtionsontained in G̃ areGR
cc�(t1, t2) = 1

2
(GT −GT̄ −G< −G>) = θ(t1 − t2) (G> −G<) retarded Green's funtion,GA

cc�(t1, t2) = 1

2
(GT −GT̄ +G< −G>) = θ(t2 − t1) (G< −G>) advaned funtion,GK

cc�(t1, t2) = 1

2
(GT +GT̄ +G< +G>) = G< +G> Keldysh Green's funtion . (2.37)Sine the greater- and the lesser- Green's funtion G>/ G< are by de�nition anti-hermitian (see eq. (2.35)and eq. (2.34)), two handy relations follow GA = (GR)�GK = −(GK)� . (2.38)In the next setion the marriage of VCA with the onepts presented here will be desribed.2.4.2. Non-equilibrium VCASCIn non-equilibrium VCA [25℄ the single-partile Green's funtion is alulated in Keldysh-spae G̃ eq. (2.36).This means that it is in general a matrix in Keldysh, site, spin, . . . indies and a funtion of energy ω andwavevetor k. Sine the original formulation of VCA based on the grand potential is not well de�ned inthe non-equilibrium situation, here the alternative- self-onsistent formulation presented in se. 2.3.4 willbe used.One may rewrite eq. (2.27) in a more formal way in the non-equilibrium ase

∫
∞
−∞

dω

2π
tr τ̂1 ∂ (G̃′0)−1

∂x′
(G̃′ − G̃) = 0 ,Where τ̂1 is the �rst Pauli matrix in Keldysh spae. Having the variational riterion and the foundationsof Keldysh-Green's funtions at hand it is straight forward to apply non-equilibrium VCA. Consider asystem onsisting of an interating region and a non-interating environment of in�nite size. At time

t → −∞ these two omponents are deoupled until at a ertain time the oupling is swithed on. Weare interested in the long-time, steady-state behavior of the oupled system. As in the non-equilibriumase, the referene-systems (i.e. interating luster and non-interating environment) have to be exatlysolvable. The retarded Green's funtion is then alulated as in the equilibrium ase, from whih theadvaned Green's funtion may be obtained by taking the hermitian-onjugate. The Keldysh part of theGreen's funtion for fermions, before oupling to the environment is given byGK(ω,µ) = (GR(ω)−GA(ω)) (1 − 2pFD(ω,µ,β)) , (2.39)where pFD(ω,µ,β) is the Fermi-Dira distribution eq. (D.1). The last part of this equation may berewritten in the zero temperature ase as (1 − 2pFD(ω,µ,β)) = sign(ω − µ). Note that this is the onlyquantity in whih the hemial potential µ enters. This proedure will be illustrated by the partiularexample of a quantum dot in h. 5. It is interesting to mention here, that the authors of ref. [75℄ found that26



the short-time dynamis of a non-equilibrium system are remarkably well aptured within CPT. Howeverthe long-time behavior annot be expeted to ome out reasonable within CPT, sine the system does notknow that it is subjeted to a non-equilibrium situation. The self-onsisteny within VCASC introduesthis ruial and neessary feedbak. In the following the alulation of several important quantities likesingle-partile expetation values, the steady-state urrent-density and the e�etive-distribution funtionshall be outlined.Stati single-partile expetation valuesIn this paragraph an expression for single-partile expetation values is presented to be used in the self-onsisteny ondition se. 2.3.4. The expetation value is expressed in terms of the Keldysh Green'sfuntion as follows
< c�icj > = 1

2
(< c�icj > + < c�icj >)

=
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2
< c�icj − cjc�i + δij >

=
δij

2
−
i

2
(i < c�icj > −i < cjc�i >)
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δij
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2
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δij
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2
GK

ji(t, t)
=
δij

2
+
1

2
∫
∞
−∞

dω

2π
ImGK

ij (ω) .Here the orrelator was �rst symmetrized and re-expressed in terms of lesser- and greater- Green's funtion(eq. (2.34) and eq. (2.35)) in line four. Then those were ombined to yield the equal-time Keldysh Green'sfuntion eq. (2.37) in line �ve. Finally an equal-time Fourier-transformation was applied to express theKeldysh Green's funtion in the energy domain. Note that upon numerially evaluating this integral aonvergene study in 0+ is absolutely neessary. Too small values of 0+ will yield zero for the orrelatorwhile too large values will yield arbitrarily wrong numbers. The problem is that GK does not possess theanalyti properties of a Green's funtion (like GR) and behaves rather like a spetral funtion. Thereforerewriting this integral as a omplex ontour integral as in app.D is not possible.Next an expression for the steady-state urrent density will be presented.Steady-state urrent densityHere a representation for the steady-state urrent density in terms of Keldysh-Green's funtions in sitespae is given. For a detailed derivation see ref. [81℄ or ref. [76℄. We onsider a general Hubbard-likeinterating model system. The Hamiltonian is given by
Ĥ =∑

i

ǫin̂i +∑
i

Uin̂
↑

i n̂
↓

i − ∑
<ij>/{l,r}

tijc
�
icj − tlr (c�l cr + c�rcl) ,where l and r are the two sites between whih we intend to measure the urrent. The notation of otherquantum numbers is suppressed here. The urrent-density from site l to site r is given by the timeevolution of the expetation value of the total partile-number to the left of site l
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tii+1 < c�ici+1 − c�i+1ci >) , (2.40)where in the �rst line the ourrene of the eletroni harge e was indiated, whih is then set to one inthe spirit of this doument. Note that also the expliit dependene on time t, indiated in the �rst line27



is dropped in favor of a onvenient notation. It is important to keep in mind that all operators c and
c� at at the same time t here. The last line may be obtained sine n̂l ommutes with the rest of theHamiltonian and we are interested in the urrent to the right! This an be seen from the ommutators

[n̂i, c
�
j] = c�icic�j − c�jc�ici = c�icic�j + c�ic�jci
= c�icic�j + c�i (δij − cic�j) = c�iδij (2.41)

[n̂i, cj] = c�icicj − cjc�ici = c�icicj − (δij − c�icj) ci
= c�icicj − δijci − c�icicj = −ciδij (2.42)

[n̂i, n̂j] = [n̂i, c
�
j]cj + c�j[n̂i, cj] = c�iδijcj − c�jciδij = 0 , (2.43)whih follow from the elementary fermioni ommutators

{ci, c�j} = δij , {ci, cj} , = 0 {c�i , c�j} = 0 , (2.44)and the relations
[â, b̂ĉ] = [â, b̂]ĉ + b̂[â, ĉ] = {â, b̂}ĉ − b̂{â, ĉ} . (2.45)Here [â, b̂] = âb̂ − b̂â denotes the ommutator and {â, b̂} = âb̂ + b̂â the anti-ommutator. Proeeding withthe evaluation of the sums left in eq. (2.40) (, whih partially anel,) we end up with an expression forthe urrent
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lr (ω) . (2.46)Here the operators were symmetrized in the seond line to obtain an expression for the urrent in termsof the Keldysh Green's funtion instead of lesser Green's funtions. In the third line the de�nition of thelesser- and greater- Green's funtions (eq. (2.34) and eq. (2.35)), and in the fourth line the de�nition ofthe Keldysh Green's funtion eq. (2.37) were used. In the sixth line eq. (2.38) was used to exhange the
r, l labels of the Keldysh Green's funtion. From the seond-last to the last line a Fourier transformationof the equal-time Keldysh Green's funtion to energy spae was done. In the last line the trae over spinomponents was added, whih has to be exeuted to alulate the total urrent of all spin �avors. In VCAeq. (2.46) may be evaluated beause GK

lr an be diretly obtained. One may also use the symmetrizedform
jij =

tij
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∑
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∫
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dω

2π
Re (GKσ

ij (w) −GKσ
ji (w)) . (2.47)The ontinuity equation is ful�lled for that relation, but numerial simulations show that it will beviolated if the urrent is alulated with a �nite numerial broadening 0+. Therefore it is very importantto set 0+ ≡ 0 when obtaining Green's funtions for urrent alulations.To round up the disussion about non-equilibrium properties, the e�etive distribution funtion is de�nedin the next paragraph.
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E�etive distribution funtionIn equilibrium the Keldysh omponent of the Green's funtion is given by eq. (2.39). One may de�ne ane�etive distribution funtion in non-equilibrium
pe�(ω,µ) = 1

2
−

GK(ω,µ)
2 (GR(ω) −GA(ω)) . (2.48)Note that GR,A,K are still matries in site, spin, . . . spae and the above relation is not well de�ned. Ingeneral the e�etive distribution funtion an not be expeted to be the same for eah element after theoupling to the environment has been swithed on. In this work three partiular de�nitions are explored
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(GK
ij (ω,µ))

2∑
ij

(GR
ij(ω) −GA

ij(ω)) .The �rst option is taking a partiular site (i.e. the orrelated site when dealing with quantum-dotsystems), the seond option may be to trae over the Green's funtion matries in site/spin spae anda third to average over all matrix elements. They all show qualitatively the same piture, although the�rst version gives the best result. Remarkably the imaginary part of the e�etive distribution funtionstays almost zero as it should be, but an not be expeted from the de�nition. Results for the e�etivedistribution funtion are obtained in se. 4.2.This onludes the hapter on the methods used throughout this thesis. In the next hapter, resultsobtained for the SIAM will be presented.
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3. The single impurity Anderson model inequilibriumThe single impurity Anderson model (SIAM) is one of the most widely studied models in ondensedmatter physis. It was introdued to desribe the e�ets of magneti transition metal impurities im-mersed in metalli hosts [2, 88℄. Originally it was derived to apture remarkable physial propertieslike the resistane minimum [5, 3℄ at a spei� temperature sale TK [89℄ or the anomalous magnetisuseptibility and spei� heat of suh materials. Quantum impurity models have further been appliedto understand the adsorption of atoms onto surfaes [90, 91, 92℄. In addition, they are of theoretialinterest as solvable models of quantum �eld theories [6, 93℄. A renewed interest in understanding and al-ulating dynami quantities of these models was reated with the advent of dynamial mean-�eld theory(DMFT) [15, 12, 13℄. In the foundations of this theory quantum impurity models have to be solved asan auxiliary problem. The behavior of various magneti phenomena and the remarkable branh of heavyfermion physis is desribed by strongly orrelated quantum impurity models [94, 95℄, like the periodiAnderson impurity model.As one an imagine, beause of the enormously large area of appliation, a wide range of methods and ap-proximations have been suggested for the solution of the SIAM. They however prove to be a very deliatesubjet beause standard perturbative approahes diverge [89℄. Prominent tehniques inlude a self onsis-tent perturbative expansion [96℄ and Bethe Ansatz tehniques [97℄ for one dimensional problems. The lowenergy physis are very well desribed by numerial renormalization group (NRG) [98℄, funtional renor-malization group (FRG) [99, 100, 101℄ and density matrix renormalization group (DMRG) [102, 103, 104℄.There is a range of slave partile methods [105, 106℄ available as well as methods based on Hubbard'sX-operator tehnique [37, 107℄ and alulations using variational wavefuntions [90℄. Valuable physi-al insight has been gained by using equation of motion tehniques applying di�erent approximationshemes [81℄. Quantum Monte Carlo (QMC) methods in general su�er from the sign problem for thislass of models [19℄. Early results were nevertheless ahieved for example in ref. [108℄. For moderatesystem sizes the Hirsh-Fye QMC [109℄ algorithm has proven to ahieve good results. In the past yearsdi�erent approahes to ontinuous time QMC [19℄ have been applied very suessfully to solve quantumimpurity models espeially in appliation with DMFT. In this ontext exat diagonalization methodshave been used to solve small systems [110℄.As of today some limits of quantum impurity models are understood with great preision but there ap-pear several gaps to be bridged. The low energy properties of these models are reprodued very wellby renormalization group based approahes. These approahes in general have trouble to apture thehigh energy parts of the spetrum. The same may be said about QMC methods whih if appliable yielddynami quantities in imaginary time. The analyti ontinuation to the real energy axis is ill ondi-tioned. Spetra obtained by for example the maximum-entropy method [20, 21℄ have a large unertaintyfor higher energies. Exat diagonalization methods, in priniple, grant aess to low as well as highenergy parts of the spetrum at the same time. Due to the prohibitively large Hilbert spae however onlysmall systems (about ten to twenty sites) may be treated with this method, whose low-energy behavioris expeted to deviate from the one of the in�nite lattie. Nevertheless, the advantage onsists in the fatthat the spetral properties may be determined diretly on the real energy axis. Besides the issue of thelow energy sale, also the �exibility to adapt to various impurity on�gurations and geometries is limitedin most methods.Here, luster perturbation theory (CPT) [22, 23℄ and the variational luster approah (VCA) [24, 65, 66℄are applied to the single impurity Anderson model. These luster methods attempt at bridging the gapbetween diagrammati approahes and exat diagonalization. In ontrast to QMC based methods, dy-nami quantities may be evaluated diretly on the real energy axis. The omputational ost of performinga CPT/VCA alulation is moderate, i.e. of the order of standard exat diagonalization. We will showthat these methods reprodue important features of the low energy part as well as of the high energy partof the spetrum. The great �exibility and versatility of the method allows for treatment of all sorts ofimpurity on�gurations in any dimension. The CPT/VCA results for the SIAM presented in this hapterhave already been published by us in a slightly less exhaustive manner in ref. [16℄.We start out by de�ning the SIAM. 30



3.1. The single impurity Anderson modelIn real spae the SIAM is de�ned by the model Hamiltonian
ĤSIAM = Ĥondution + Ĥimpurity + Ĥhybridization . (3.1)A tight binding band of non-interating eletrons with nearest neighbor hopping ⟨i, j⟩ is desribed by
ĤLondution = ǫs L

∑
i

∑
σ

c
�
iσ ciσ − t ∑

⟨i, j⟩σ
c
�
iσ cjσ , (3.2)where ǫs is the on-site energy of the partiles and t is the overlap integral between neighboring sites. Theoperators c�iσ and ciσ, respetively, reate and annihilate eletrons on site i with spin σ. The parameter

L is taken to be in�nity and is introdued here for onvenient notation in later hapters where thisHamiltonian will be deomposed in real spae. The impurity Hamiltonian onsists of a single site withloal Coulomb repulsion U ,
Ĥimpurity = ǫf ∑

σ

f �
σ fσ +U n̂

f
↑
n̂
f
↓
, (3.3)with f �

σ reating an eletron with spin σ and on-site energy ǫf loated at the impurity. The partilenumber operator is de�ned as n̂f
σ = f

�
σ fσ. Finally the oupling between the non-interating bath orbitalsand the impurity is given by

Ĥhybridization = −V ∑
σ

(c�
Iσ

fσ + f
�
σ cIσ) , (3.4)where V is the hybridization matrix element between the free eletroni site I ∈ [1, L] and the impurity(see �g. 3.2 for illustration).The Anderson width ∆ is de�ned as

∆ ≡ π V 2 ρs(ǫF = 0) = V 2

t
, (3.5)where, for simpliity, we have taken ∆ at the enter of the bath density of states. The loal densityof states of the ondution eletrons ρs(0) is given for the model de�ned in eq. (3.2) by ρs(0) = 1

π t(see eq. (3.23)). In the forthoming disussion we refer to the partile-hole symmetri ase when we set
ǫf = −U

2
.A �rst impression of the behavior of this model may be obtained by onsidering the ondution eletronsand the impurity in isolation (V = 0). This atomi limit then onsists of an s-eletron Fermi sea withFermi energy ǫF and a single state of the f-eletrons. For ǫf < ǫf +U and ǫf < ǫF , the impurity is doublyoupied and for ǫF < ǫf + U and ǫF < ǫf , the impurity is unoupied. The interesting loal momentregion arises in a parameter regime where the impurity is singly oupied.In disussing the physis of an impurity one often resorts to an e�etive Hamiltonian whih fouses onthe essential spin �utuations (the Kondo Hamiltonian) and then applies renormalization group ideas toharvest its physis. A disussion of those important ideas is beyond the sope of this work and may befound for example in ref. [111, 89℄.The detailed disussion of this model will be started by a mean �eld analysis in se. 3.2, to get a �rstimpression of the physis of this model. Then the two-site problem, the Anderson moleule, will bepresented in se. 3.3.3. It provides di�erent kinds of insights into the behavior of the SIAM. The basiresults of this alulation will be arried over to be used as a luster perturbation theory (CPT) /variational luster approah (VCA) referene system in a semi-analytial way. Finally we will turn to thedisussion of the CPT/VCA results.3.2. Mean �eld analysis of the Single Impurity Anderson ModelIt is instrutive to attempt a mean �eld analysis of the SIAM. This analysis was �rst undertaken byAnderson [2℄. The alulation, ornated with some helpful explanations and �gures, is also available inthe overview artile by Coleman [112℄.To proeed analytially with the SIAM, a Hartree-type mean �eld deoupling is undertaken. Note thatin Hubbard-type models, with loal interations only, the exhange part is always zero. The four fermion
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part of the Hamiltonian eq. (3.1) is split by the presription
(∆n̂f

σ) (∆n̂
f−σ) = (n̂f

σ− < n
f
σ >)(n̂f−σ− < nf,−σ >)

= n̂f
σn̂

f−σ − n̂f
σ < n

f−σ > −n̂f−σ < nf,σ > + < nf
σ >< n

f−σ >
!= 0 .Introduing the order parameters φσ ∶=< nf

σ > the interation part of Ĥimpurity may be reast in a quadratiform
ĤMFimpurity = ǫf∑

σ

f �
σfσ +U (n̂f

σφ−σ + n̂
f−σφσ − φσφ−σ) .In a higher order equation of motion treatment of this model, it may be seen expliitly that this typeof mean �eld treatment neglets �utuations in the f oupany altogether. As we will see later this isa terrible approximation for this model, sine the main physis at low temperatures omes exatly fromthese �utuations.The struture of the following alulation is as follows. At �rst the bare f-eletron propagator gσff(ω) willbe determined by the equation of motion tehnique and so will the s-eletron propagator gσss(ω). The self-energies arising due to the hybridization Σhybridization and the Coulomb interation ΣU are determined.Note that Σhybridization, stritly speaking, is not a true self-energy beause it arises from one-partileterms. These four ingredients will be put together, using Dyson's equation, to generate the mean �eldresult for the f-eletron propagator.The bare f-eletron Green's funtion is given by

ω gσff(ω) = ω << fσ;f �
σ >>ω =< {fσ, f �

σ} > + << [fσ, Ĥf];f �
σ >>ω

= 1+ << [fσ, ǫf∑
σ

f �
σfσ];f �

σ >>ω

= 1 + ǫf << [fσ, n̂f
σ];f �

σ >>ω
= 1 + ǫf << fσ;f �

σ >>ω

gff(ω) = 1

ω − ǫf
. (3.6)In the third line relation eq. (2.42) was applied. A similar alulation yields the bare s-eletron Green'sfuntion

gss(ω) = 1

ω − ǫk
. (3.7)The Coulomb self-energy ΣU is given by

ΣσU = Uφ−σ . (3.8)The hybridization self-energy Σhybridization is given by
Σhybridization =∑

k

∣Vk∣2
ω − ǫk

= ∫
∞
−∞

dǫ

π

π∑
k

∣Vk∣2δ(ǫ − ǫk)
ω − ǫ

.Assuming that V is loal in real spae, it is a onstant in k spae and an be taken out of the sum.Usually this expression is further simpli�ed by approximating the ondution eletron density of states
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∑
k

δ(ǫ − ǫk) by its value at the Fermi energy. Then the approximate self-energy reads
Σhybridization(ω + i0+) ≈ ∫ D

−D
dǫ

π

∣V ∣2πρ(ǫ)
ω + i0+ − ǫ

(3.9)
=
∆

π
∫

D

−D
dǫ

1

ω + i0+ − ǫ

=
∆

π
(iπδ(ω − ǫ) sign (0+) +ReP∫ D

−D
dǫ

1

ω − ǫ
)

=
∆

π
(iπ +Re ln(ω +D

ω −D
))

≈
∆

π
(iπ + 2 ω

D
+O( ω

D
)3) .D denotes the half bandwidth 2t. For the evaluation of the integral in the third line in the sense ofa distribution the well known result of Sokhozky-Plemelj was used. In the last line the logarithm wasexpanded for small ω

D
. The �nal approximate expression for the self-energy valid at low energies/wide-bands therefore is

Σhybridization(ω + i0+) ≈ ∆

πt
ω + i∆ ≈ i∆ . (3.10)The real part is small and may be ignored or put into a small renormalization of ǫf . Approximationeq. (3.10) is good in the Kondo regime, where the spetrum is peaked at the Fermi energy only. Thisapproximation breaks down, when the interation strength exeeds a ritial value Uc and the spetrumsplits into two peaks. Having all neessary quantities at hand we proeed by �nding an expression forthe full Green's funtion Gσ

ff(ω) of the f-eletrons. Using Dyson's equation, Einstein's onvention forsummation, and auxiliary indies i and j whih run over s and f eah, we �nd
Gσ

ff(ω) = gff(ω) + gfi(ω)Tij(ω)Gjf (ω)
= gff(ω) + gfs(ω)Tss(ω)Gsf(ω)
+ gfs(ω)Tsf(ω)Gff(ω)
+ gff(ω)Tfs(ω)Gsf(ω)
+ gff(ω)Tff(ω)Gff(ω) .The o�-diagonal free Green's funtions gfs(ω) are zero as well as the element Tss(ω). So we have

Gσ
ff(ω) = gff(ω) + gff(ω)Tfs(ω)Gsf(ω) + gff(ω)Tff(ω)Gff(ω) . (3.11)To proeed we need the o� diagonal Green's funtion Gsf (ω) whih is obtained in an analogous way

Gσ
sf(ω) = gsf(ω) + gsi(ω)Tij(ω)Gjf (ω)

= gss(ω)Tsf(ω)Gff(ω) . (3.12)Inserting eq. (3.12) into eq. (3.14) we obtain the full f Green's funtion
Gσ

ff(ω) = gff(ω) + gff(ω)Tfs(ω)gss(ω)Tsf(ω)Gff(ω) + gff(ω)Tff(ω)Gff(ω)
=
⎛⎜⎜⎜⎝
1 − gff(ω)Tfs(ω)gss(ω)Tsf(ω)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σhybridization −gff(ω)Tff(ω)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
ΣU ⎞⎟⎟⎟⎠

−1

gff(ω) . (3.13)Inserting the expressions for the free Green's funtions eq. (3.6) and eq. (3.7) and for the self-energieseq. (3.10) and eq. (3.8) into eq. (3.13) we an write
Gσ

ff(ω) = 1

ω − ǫf −Σhybridization −ΣU
=

1

ω − (ǫf +Uφ−σ) + i∆ . (3.14)
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From the result eq. (3.14) one an now proeed and evaluate a quantity of interest, the density of statesof the f-eletrons
ρσf (ω) = − 1

π
ImG

σ,ret
ff
(ω)

= −
1

π

∆

(ω − (ǫf +Uφ−σ))2 + (∆)2 . (3.15)To determine the mean �eld parameters self onsistently one may evaluate the f partile numbers perspin nf
σ

nf
σ = ∫

0

−∞
dωρσf (ω)

= −
∆

π
∫

0

−∞
dω

1

(ω − (ǫf +Uφ−σ))2 + (∆)2
= −

1

π
∫
− (ǫf +Uφ−σ)

∆

−∞
dχ

1

χ2 + 1

=
1

π
arot( ǫf +Uφ−σ

∆
) . (3.16)It is onvenient to introdue an oupany nf =< ∑

σ
nf
σ > and a magnetization Mf =< n

f
↑
− nf

↓
>. Themean �eld equations then beome

nf =
1

π
∑
σ

arot(ǫf + U
2
(nf − σMf)
∆

) (3.17)
Mf =

1

π
∑
σ

σarot( ǫf + U
2
(nf − σMf)
∆

) (3.18)The mean �eld equations eq. (3.18) enable us to alulate the density of states of the f-eletrons eq. (3.14)expliitly. To do so the following iteration may be applied:1. Guess starting order parameters φ(0)
↑

and φ
(0)
↓

.2. Calulate the density of states ρσ,(i)
f

for eah spin by using equation eq. (3.15).3. Calulate the oupation number n(i)
f

and the magnetization M
(i)
f

using equation eq. (3.18).4. Chek if the n
(i)
f
= n(i−1)

f
and M

(i)
f
= M (i−1)

f
. If the oupation number and magnetization is nothanging any more within a ertain auray the iteration has onverged. If not start again from1) with new φ

(i)
↑
= 1

2
(n(i)

f
+M (i)

f
) and φ

(i)
↓
= 1

2
(n(i)

f
−M (i)

f
).It should be mentioned that the mean �eld self-onsisteny onverges in all parameter regions. Theonvergene is slowest in the viinity of the ritial interation strength Uc. Starting order parameters of

< nf
↓
>= 0.8 and < nf

↑
>= 0.2 as well as a mixing sheme for the order parameter

Φi = (1 − χ)Φi−1 + χΦsuggested
i ,where the mixing parameter χ was taken to be 0.75, to obtain onvergene in all parameter regions,within ten to twenty iterations (see �g. 3.1 (mid left)).One more quantity worth investigating is the ritial interation strength Uc for whih a loal momentwill form. We set the magnetization to Mf = 0+ in eq. (3.18) and replae the seond equation with itsderivative with respet to Mf .
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π
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∆π
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2
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∆
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Rewriting the �rst of these equations
ǫf + Uc

2
nf

∆
= ot(πnf

2
)and inserting into the seond yields

Uc = π∆(1 + ot(πnf

2
)) (3.19)The impurity density of states ρσf (ω) for di�erent interation strengths U , in the partile-hole symmetriase, is examined in the mean �eld approximation. The density of states of the s-eletrons was taken froma semi-in�nite, one-dimensional, tight-binding hain eq. (3.23). The hybridization used was ∆ = 0.1. Thisresembles the setup used in the more sophistiated CPT/VCA treatment of the SIAM in later setions.The mean �eld spetrum undergoes an unphysial rossover to a magnetially polarized solution at

Uc

∆
= π(1 + ot (π

2
)) = π (see eq. (3.19)). This observed splitting into spin up and spin down omponentsis unphysial and an be traed bak to be a remnant of the mean �eld approximation. The spetra,indiating a phase-transition, aused by a zero-dimensional impurity are therefore unphysial. To make itexpliit, the mean �eld treatment predits a quantum phase transition, whih is not there. Nevertheless aomparison of the, often applied, approximation for the hybridization self-energy Σhybridization eq. (3.10)with the numerially exat expression of Σhybridization eq. (3.9) was undertaken. In �g. 3.1 (bottom left)the impurity density of states is shown as it was obtained applying the approximation eq. (3.10), forvarious values of interation strength U . In �g. 3.1 (bottom right) the same is shown for the numeriallyexat expression of Σhybridization eq. (3.9). It may be observed that as long as the spetrum onsists of asingle peak at the Fermi energy (U < Uc), the results obtained with approximate Σhybridization eq. (3.10)are idential to those obtained with the numerially exat expression of Σhybridization eq. (3.9). As soon asthe peaks split, the approximate self-energy starts to deviate. A omparison of the spetra obtained withthe two di�erent treatments of the hybridization self-energy is shown in �g. 3.1 (mid right). Note thatthe sum rule eq. (2.16) is ful�lled for all urves although the results obtained with the exat hybridizationself-energy have a higher amplitude than those obtained within the approximation. The splitting (gap) ofthe spin up and spin down omponents as a funtion of interation strength U is shown in �g. 3.1 (top left)for both ways of treating the hybridization self-energy. The order-parameters nf , Mf , < nf

↓
> and < nf

↑
>are visualized in as a funtion of interation strength U in �g. 3.1 (top right), using the approximate

Σhybridization as well as the exat Σhybridization. The result for a mean �eld rossover diagram is shown inse. 3.3.10 together with the CPT/VCA result. These mean �eld results will be used in se. 4.5 to get anidea of the non-equilibrium behavior of a quantum dot. Having a rough idea of the physis of the SIAMwe proeed by a more sophistiated treatment of the SIAM in terms of CPT/VCA.3.3. CPT/VCA for the single impurity Anderson modelTo apply this approah to the SIAM we start by splitting the physial model under onsideration intoappropriate piees (see �g. 3.2), whih will serve as referene systems. Here we onsider a referene systemonsisting of two parts. One part, onsisting of a luster of size L, whih ontains the interating impuritysite
Ĥluster = ĤL−1ondution + Ĥimpurity + Ĥhybridization , (3.20)and a seond part, the environment, whih ontains the rest of the ondution band

Ĥenvironment = Ĥ∞ondution . (3.21)The original Hamiltonian may now be rewritten as
ĤSIAM = Ĥluster + Ĥenvironment +Tinter . (3.22)Here Tinter is the part of T desribing the hopping from luster to environment, whih is the only termnot inluded in the referene system. For the SIAM the two bare Green's funtions G′luster and G′envneeded for eq. (2.2) may be evaluated separately. Beause G′luster is representable by a disrete set ofpoles, the Q-matrix formalism (see se. 2.2.2) is used. G′env has a branh ut along the real axis and is notQ-matrix representable. Therefore, for the SIAM, the version of CPT as disussed in se. 2.1.5 applies.The luster Green's funtion G′luster is determined by exat diagonalization of eq. (3.20). Open boundary35



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

U/∆

ga
p

 

 

Σ
V
 approx.

Σ
V
 exact

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

U/∆

or
de

r 
pa

ra
m

et
er

 

 

<nf>

<mf>

<nf
↑
>

<nf
↓
>

5 10 15 20 25

−1

−0.5

0

0.5

1

iteration index t

or
de

r 
pa

ra
m

et
er

 

 

<nf>=1.00

<mf>=−0.00
<nf

↑
>=0.50

<nf
↓
>=0.50

−40 −20 0 20 400

5

10

15

20

25

30
0
2
4  

ω/∆

 

ρ f

U/∆

spin ↑
spin ↓

−40 −20 0 20 40
0102030
0

1

2

3

4
 

ω/∆

 

ρ f

U/∆

spin ↑
spin ↓

−40 −20 0 20 40
0102030
0

1

2

3

4
 

ω/∆

 

ρ f

U/∆

spin ↑
spin ↓

Figure 3.1.: Results obtained by the mean �eld treatment of the SIAM in the partile-hole symmetriase. The parameters used here were V = 0.3162, ǫs and t = 1. (Top Left) Unphysialsplitting of the mean �eld spin up and spin down omponents in the density of states as afuntion of interation strength U . The ross marks the analytial result for the transitioneq. (3.19). (Top Right) Order parameters as a funtion of interation strength U . The resultfor the approximate hybridization self-energy (ΣV is short for Σhybridization) is plotted inolor, while the result for the exat hybridization self-energy is indiated in dashed blak.(Mid Left) The evolution of the order parameters of a single run using U
∆
= 2. (Mid Right)Single-partile spetrum as a funtion of interation strength U . A omparison for resultsobtained with the approximate and the exat hybridization self-energy is shown. Again theexat results are plotted in blak. (Bottom Left) Single-partile spetrum as a funtion ofinteration strength U obtained with the approximate hybridization self-energy. (BottomRight) Single-partile spetrum as a funtion of interation strength U obtained with theexat hybridization self-energy. 36



Figure 3.2.: Illustration of the single impurity Anderson model. The model onsists of a hain of non-interating sites with nearest neighbor hopping t and on-site energy ǫs. An impurity sitemay be added to one of the sites representing a seond orbital with on-site energy ǫf andloal Coulomb interation U . This orbital hybridizes with the ondution eletrons via ahybridization matrix element V . The in�nite non-interating hain is trunated at some site
L yielding a luster of variable size inluding the impurity site and a hain of non-interatingsites. These deomposed systems are in the end oupled via a hopping element t.onditions are used throughout this work. The Lanzos algorithm is applied to �nd the groundstate anda Band Lanzos method to obtain the Green's funtion as desribed in se. 2.2. The Green's funtionof the environment G′env is given analytially by the Green's funtion of a semi-in�nite tight bindinghain [113℄ genv,i,j(z) = f0,i−j(z)− f0,i+j(z) (3.23)

fi,j(z) = −i sign(Imz)√
4∣t∣2 − (z − ǫs)2

⎛⎝ − z − ǫs
2∣t∣

+ i sign(Imz)
¿ÁÁÀ

1 − (z − ǫs
2∣t∣ )

2⎞⎠
∣i−j∣ ,where fi,j is the retarded / advaned Green's funtion of the in�nite tight binding hain if the imaginarypart of ω is positive / negative. It should be noted that the density of states obtained from this Green'sfuntion has a semi-irular shape and may be expressed as

ρs(ω) = − 1
π
Im (genv,i,j(ω + i0+)) =Re⎛⎝√4t2 − (ω − ǫs)2

2πt2
⎞⎠ . (3.24)The CPT/VCA alulations are for numerial onveniene performed with hopping t = 1 and hybridization

V = 0.3162 whih yields ∆ = 0.1. However we plot all quantities in units of ∆. The on-site energy ǫs istaken to be zero unless expliitly stated.First we disuss the hoie of the variational parameters used in VCA for this model (see se. 3.3.1). Thein�uene of the position of the impurity within the �nite luster part of the referene system is explainedin se. 3.3.2. We start our disussion of the CPT/VCA results in se. 3.3.3 by investigating the two-siteproblem (Anderson moleule) analytially and performing a semi-analyti CPT/VCA. This serves alsothe purpose of making the reader familiar with the CPT/VCA proedure using a small referene system,where all quantities may be expressed on paper. Then the question of dimensionality of the model isdisussed in se. 3.3.6 by presenting results for an impurity embedded in a two- and three- dimensionalbath. We explore the in�uene of the struture of the environment in se. 3.3.4 by deforming the bath'sdensity of states. The question of how large the luster part of the referene system has to be hosen willbe disussed in se. 3.3.5. The possible use of very large luster parts of the referene system is disussedin se. 3.3.7. Then we turn to the atual physial results of the model. Several benhmarking dynamiquantities of the SIAM were evaluated. In the following setions, results for the impurity density ofstates will be presented and ompared to NRG and DMRG data. We will elaborate on the strengths andweaknesses of the method as well as the omparison of CPT to VCA. Furthermore, we will disuss therelation between VCASC, where the variational parameters are determined self onsistently via eq. (2.27)and VCAΩ, where the variational parameters are de�ned at the stationary point of the grand potential.We will show that the Kondo resonane is reprodued within the framework of CPT/VCA and that thevariational results ful�ll ertain analyti relations like the Friedel sum rule (eq. (3.45)). The method willbe shown to provide reasonably aurate results in a wide range of parameter regimes of the model. Low37



energy properties related to the Kondo temperature TK will be disussed in ontext with renormalizationgroup results. The imaginary frequeny Green's funtion and self-energy will be ompared to CT-QMCresults. A modi�ed referene system, with expliitly broken spin symmetry is examined in se. 3.3.13.We start out by disussing the hoie of variational parameters within VCA.3.3.1. Choie of variational parametersIn VCA one an, in priniple, optimize all possible single-partile parameters whih are present in theoriginal model, as well as additional ones. By adding bath sites not present in the original model, oneinludes dynamial ontributions to the luster Green's funtion. The numerial di�ulty inreases withthe number of variational parameters. For the VCASC ase a multidimensional root �nding algorithmhas to be adopted. For the VCAΩ ase, a saddle point in many dimensions has to be loated. Sine theallowed set of variational parameters limits the searh spae for the self-energies one will �nd a solution inthis restrited spae only. It is therefore desirable to vary as many single partile quantities as possible.A balane has to be found between a large spae of available self energies and numerially feasiblemultidimensional algorithms. Many works have addressed the question of whih parameters are the mostneessary to vary and how the hoie of variational parameters will in�uene or limit the results [26℄.As disussed in refs. [46, 114℄, it is important to inlude an overall hemial potential as a variationalparameter in order to preserve thermodynami onsisteny. As a ompromise, we will take two variationalparameters x = {ǫf , ǫs}, whih overs the overall hemial potential. Note that this amounts to shiftingan overall on-site energy in the whole luster plus an extra independent shift at the orrelated site. Forthe variation of on-site energies we observe the grand potential Ω to be maximal at the stationary pointwhih is in agreement with results for other models. Further parameters in the SIAM are the hopping
t and the hybridization V . As disussed for example in ref. [115℄, the variation of hopping parametersis not straightforward. For the VCAΩ approah, we observe a maximum of Ω at ∆V = −V in the enterof two symmetri stationary points (see �g. 3.5 (right)). The two symmetri lying minima are equivalentand are due to the fat that the self-energy is an even power of V . As one tunes the parameters away frompartile hole-symmetry this stationary point is lost in the rossover region from the Kondo plateau to adoubly or unoupied impurity (see se. 3.3.9). In this parameter region the hopping t and hybridization
V are probably not appropriate to be used as variational parameters within VCAΩ.In the following, we always hoose the set x = {V } or x = {V, t} for alulations at partile-hole symmetrysine the variation of on-site energies will always yield zero deviations from the physial parameters andthus reprodue the CPT result here. For all other parameter regions it is su�ient to onsider x = {ǫf , ǫs}as variational parameters.Sine the luster part of the referene system is a �nite system, we expet spurious e�ets dependingon the loation of the impurity within the luster. How the position of the impurity within the lusterin�uenes the results is disussed in the next setion.3.3.2. Even-Odd E�et - hoie of the impurity positionCPT/VCA rely on the Green's funtion of a luster of size L whih is obtained by exat diagonalization.Due to this fat it is unavoidable that some e�ets of the �nite size luster a�et the solution of thefull system. (Exept in the ase of vanishing interation strength (U = 0).) Therefore suitable lustershave to be hosen on a basis of physial results. Some aspets of this are disussed by Balzer et al. [114℄in the ontext of DMFT and VCA and by Hand et al. [116℄ in the ontext of DMRG. In this work weonsider lusters of even size only. For these systems the groundstate does in general not su�er from spindegeneray. Furthermore, the spatial position of the impurity is important. This an be inferred from thebath's density of states, whih vanishes for ω = 0 at every seond site. It may also be seen in the strutureof the groundstate, for whih the size of the degenerate setors alternates with the geometrial size of theluster. In the forthoming alulations we always plae the impurity at the far end of the in�nite hain,although essentially the same results are ahieved by attahing it to site two, four, et. inside the hain.We start out our disussion of the physial results by treating an Anderson moleule in isolation and thenarrying its solution over to a CPT/VCA referene system. This enables a semi-analytial treatment interms of CPT and VCA. Then the more sophistiated evaluation using numeri CPT/VCA for largerreferene systems will follow.3.3.3. Semi-analytial expressions for VCA of the two-site problemThe partile-hole symmetri two-site SIAM is onsidered here in detail to gain a better understandingof the behavior of CPT/VCA. The ground-state energy is obtained by diagonalization. A solution forthe 2 × 2 luster Green's funtion G′ is presented as well as an expression for the CPT/VCA Green's38



funtion G after oupling to a semi-in�nite hain. The only non vanishing natural variational parameterfor this system is the hybridization V . Expressions for the self-energy Σ(∆V ), the grand potential
Ω(∆V ) and the grand potential derivative dΩ(∆V )

d∆V
are found. Finally the optimal luster parameter

V ′stat.(U) = V +∆Vstat.(U), the e�etive mass m∗(U) (see se. 3.3.11) and the Kondo temperature TK(U)(see se. 3.3.11) are obtained as a funtion of interation-strength U .Consider a orrelated site desribed by annihilation and reation operators fσ and f �
σ with Coulombinteration U and on-site energy ǫf oupled to a non-interating site with orresponding annihilation andreation operators cσ and c�σ and on-site energy ǫs. The Hamiltonian for this system is given by

Ĥ2site = U n̂↑
f
n̂↓
f
+ ǫf ∑

σ

f �
σfσ + ǫs ∑

σ

c�σcσ − (V +∆V )∑
σ

(f �
σcσ + c

�
σfσ)

= U n̂↑
f
n̂↓
f
−
U

2
∑
σ

n̂σ
f − V

′ ∑
σ

(f �
σcσ + c

�
σfσ) . (3.25)In the seond line the transition to the partile-hole symmetri ase was made by setting ǫs = 0 and

ǫf = −U
2
. For CPT V ′ = V the parameter of the original model. For VCA V ′stat.(U) = V +∆V stat.(U)where ∆V stat.(U) is determined via the stationary point of the grand potential Ω within VCAΩ (seese. 2.3.1) or self onsistently via single partile expetation values within VCASC (see se. 2.3.4).The two-site Hamiltonian will be oupled to a semi-in�nite non-interating environment

Ĥenv. = −t ∑
<ij>
∑
σ

(c�σcσ + c�σcσ) , (3.26)by CPT/VCA via
Ĥe = −t∑

σ

(c�3,σcσ + c�σc3,σ) ,where c3 denotes the �rst site of the semi-in�nite hain eq. (3.26) and c the unorrelated site in the luster3.25.The CPT equation for the Green's funtion de�nes the variational parametersG−1 = G′−1 −T
= ω − (Ĥ2site +T) .So T onsists of of the inter-luster hopping and the term whih has been subtrated from the referenesystem eq. (3.25) ∆V : T = TCPT +TVCA ,TCPT = Ĥe ,TVCA =∆V ∑

σ

(f �
σcσ + c

�
σfσ) .The matrix form of T is expliitly given byT = ⎛⎜⎝ 0 ∆V 0

∆V 0 −t
0 −t 0

⎞⎟⎠ . (3.27)Ground state energyAs a �rst step the ground state energy for this system shall be obtained by diagonalization of the Hamil-tonian eq. (3.25). To make work easy, it is advisable to �nd noninterating subspaes by investigatingthe symmetries of this system. The Hamiltonian onserves the number of partiles
N̂ =∑

i

∑
σ

n̂σ
i =∑

σ

(n̂σ
f + n̂

σ
c ) .
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To show this we evaluate
[Ĥ2site, N̂ ] = U ∑

σ′
[n̂↑

f
n̂↓
f
,(n̂σ′

f + n̂
σ′
c )]

−
U

2
∑
σ

∑
σ′
[n̂σ

f ,(n̂σ′
f + n̂

σ′
c )]

− V ′ ∑
σ

∑
σ′
[(f �

σcσ + c
�
σfσ) ,(n̂σ

′
f + n̂

σ
′

c )] . (3.28)Using the identities eq. (2.45), the elementary fermioni ommutators eq. (2.44), the ommutators eq. (2.41),eq. (2.42), eq. (2.43) and
[c�icj , n̂k] = [c�icj, c�kck] = −[c�k, c�icj]ck − c�k[ck, c�icj]

= − ({c�
k
, c

�
i}cj − c�i{c�k, cj}) ck − c�k ({ck, c�i}cj − c�i{ck, cj})

= δjkc�icj − δikc�icj . (3.29)on eq. (3.28) it follows immediately that
[Ĥ2site, N̂ ] = 0 .The total spin projetion Ŝz is de�ned as

Ŝz =
1

2
∑
i

(n̂↑i − n̂↓i) .In the same manner as above it is easy to show that the Hamiltonian onserves the total spin projetion
[Ĥ2site, Ŝz] = 0 .In addition the Hamiltonian ommutes with the total Spin Ŝ

2.Therefore the many-partile basis may be onstruted respeting these symmetries. This results in non-interating subspaes for (N = 0, Sz = 0), (N = 1, Sz = ± 1
2
), (N = 2, Sz = 0,±1), (N = 3, Sz = ± 1

2
),(N = 4, Sz = 0). Sine the Hamiltonian is partile-hole symmetri it su�es to investigate the N = 0(N = 4), N = 1 (N = 3) and N = 2 subspaes:� The N = 0 (N = 4) subspaeis spanned by ∣0,0⟩ (∣↑↓, ↑↓⟩) where the naming onvention is ∣s, f ⟩. The orresponding matrixelement is ⟨0,0∣ Ĥ2site ∣0,0⟩ = 0. So the eigenenergies EN,Sz

i and eigenvetors ∣Ψ⟩N,Sz

i are given by
∣Ψ⟩000 = ∣0,0⟩ , E00

0 = 0∣Ψ⟩400 = ∣↑↓, ↑↓⟩ , E40
0 = 0� The N = 1 (N = 3) subspaeis spanned by {∣ ↑,0 >, ∣0, ↑>} ({∣ ↑, ↑↓>, ∣ ↑↓, ↑>}) (and the spin symmetri states). The orrespondingmatrix elements an be read o� straight forwardly from the Hamiltonian:

∣ ↑,0 > ∣0, ↑>∣ ↑,0 > 0 −V ′∣0, ↑> −V ′ −U
2

40



The eigenenergies EN,Sz

i and eigenvetors ∣Ψ⟩N,Sz

i are given by
∣Ψ⟩1,+ 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↑,0 > +∣0, ↑> , E
1,+ 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩1,+ 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↑,0 > +∣0, ↑> , E
1,+ 1

2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩1,− 1

2

0 = −
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√
U2 + 16V ′2
4V ′
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1,− 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩1,− 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′
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2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩3,+ 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↑, ↑↓> +∣ ↑↓, ↑> , E
3,+ 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩3,+ 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↑, ↑↓> +∣ ↑↓, ↑> , E
3,+ 1

2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩3,− 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↓, ↑↓> +∣ ↑↓, ↓> , E
3,− 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩3,− 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↓, ↑↓> +∣ ↑↓, ↓> , E
3,− 1

2

1 = −
1

4
(U −√U2 + 16V ′2)� The N = 2 subspaeis spanned by {∣ ↑, ↑>, ∣ ↓, ↓>, ∣ ↑, ↓>, ∣ ↓, ↑>, ∣0, ↑↓>, ∣ ↑↓,0 >}. The orresponding matrix elements are:

∣ ↑, ↑> ∣ ↓, ↓> ∣ ↑, ↓> ∣ ↑↓,0 > ∣0, ↑↓> ∣ ↓, ↑>∣ ↑, ↑> −U
2∣ ↓, ↓> −U

2∣ ↑, ↓> −U
2

−V −V∣0, ↑↓> −V 0 −V∣ ↑↓,0 > −V 0 −V∣ ↓, ↑> −V −V −U
2Here one an identify the three triplet states

∣Ψ⟩2,+10 = ∣ ↑, ↑> , E
2,+1
0 = −

U

2

∣Ψ⟩2,−10 = ∣ ↓, ↓> , E
2,−1
0 = −

U

2

∣Ψ⟩2,00 = ∣ ↓, ↑> −∣ ↑, ↓> , E
2,0
0 = −

U

2
.Note that the minus sign in the last triplet state arises due to the minus sign when exhanging twofermions. The other three states are

∣Ψ⟩21 = ∣0, ↑↓> −∣ ↑↓,0 > , E2
1 = 0

∣Ψ⟩22 = ∣ ↑, ↓> −U −
√
U2 + 64V ′2
8V ′

∣ ↑↓,0 > −U −
√
U2 + 64V ′2
8V ′

∣0, ↑↓> +∣ ↓, ↑> ,
E2

2 = −
1

4
(U +√U2 + 64V ′2)

∣Ψ⟩23 = ∣ ↑, ↓> −U +
√
U2 + 64V ′2
8V ′

∣ ↑↓,0 > −U +
√
U2 + 64V ′2
8V ′

∣0, ↑↓> +∣ ↓, ↑> ,
E2

3 = −
1

4
(U −√U2 + 64V ′2) .The energy levels of the two-site model (Anderson moleule) are plotted in �g. 3.3 for various parameters.There one an niely see the e�ets of hybridization and interation. The plots show the behavior ofdegeneraies and level (anti-) rossings. For positive U the groundstate energy is found in the N = 2setor and is given by

E0 = −
1

4
(U +√U2 + 64V ′2) .41



We will next turn to the onstrution of the system's Green's funtion.Cluster Green's funtionThe luster Green's funtion G′ may be obtained from the Lehmann representation using the results ofthe previous setion. Here we pursue a di�erent often very useful way. We onstrut the luster Green'sfuntion from the Green's funtion of the orrelated site f by using the equation of motion tehnique.It is always possible to onstrut all elements of Gij if the Green's funtions of the orrelated sites areknown exatly.Shönhammer and Brenig alulated the Green's funtion of the orrelated site for this model perturba-tiveley and showed that their expression beomes exat in the limit of vanishing bandwidth [90℄. Thisis exatly the ase onsidered here, where the impurity site is oupled to a single non-interating site,providing a bath with vanishing bandwidth. They obtainedG′ff(z) = 1

z − Γ′(z) −Σ′(z) ,where the hybridization Γ′(z) in our ase is given by
Γ′(z) = V ′2

z
,and the self-energy Σ′(z) is given by

Σ′(z) = U2

4

z − 9Γ′(z) . (3.30)The G′ff is the 1,1 element of G′ij . Sine we are onsidering a two-site system the other elements may beonstruted by solving the Green's funtion of a one-site hain G′0ss and oupling it via V ′ to the f-site.The Green's funtion of the free site is given byG′0ss(z) = 1

z
. (3.31)G′ij may be then be obtained from a Dyson-like equationG′fs = G′0fs +G′fαHαβG′0βs

= G′0fs +G′ffHffG′0fs +G′ffHfsG′0ss +G′fsHsfG′0fs +G′fsHssG′0ss .
Hαβ denotes the o�-diagonal single-partile terms of the Hamiltonian eq. (3.25)

Hαβ = ( 0 −V ′
−V ′ 0

) .Sine Hαβ ontains only o�-diagonal elements and G′0fs = 0 we are left with:G′fs(z) = G′ff(z)HfsG′0ss(z)
= −V ′G′ff(z)G′ss(z) .Due to symmetry G′sf (z) = G′fs(z). The last missing element is obtained as followsG′ss = G′0ss +G′sαHαβG′0βs

= G′0ss +G′sfHfsG′0ss
= G′0ss + V ′2G′0ssG′ffG′0ss .This general proedure of obtaining all elements of the interating luster Green's funtion from theGreen's funtion of the interating site (whih has to be obtained exatly by some method beforehandfor a system of length L) and the matrix Green's funtion of a free hain of length L − 1 is outlined in
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app. E. The Green's funtion of the semi-in�nite environment is given byG′ee(z) = z − i sign (Imz)√4t2 − z2
2t2

.The luster Green's funtion for the two-site Anderson system and environment is �nally given byG′(z) = ⎛⎜⎜⎜⎜⎝ 1
z−Γ′(z)−Σ′(z) −

V ′
z

z−Γ′(z)−Σ′(z) 0

−
V ′
z

z−Γ′(z)−Σ′(z)
1−Σ

′(z)
z

z−Γ′(z)−Σ′(z) 0

0 0
z−i sign (Imz)√4t2−z2

2t2

⎞⎟⎟⎟⎟⎠
. (3.32)Next we will use the CPT equation to obtain the Green's funtion of the total system.CPT/VCA Green's funtionFor the CPT/VCA proedure it is more onvenient to use the inverse G′−1(z)G′−1(z) = ⎛⎜⎝z −Σ′(z) V ′ 0

V ′ z 0

0 0 G′−1ee (z)
⎞⎟⎠ . (3.33)Here T is the inter-luster hopping matrix inluding the variational parameter ∆V for VCA. The inverseof the total Green's funtion is then given byG−1(z) = G′−1(z) −T

=
⎛⎜⎝
z −Σ′(z) V 0

V z t

0 t G′−1ee (z)
⎞⎟⎠ .After some algebra one may extrat the total Green's funtion of the orrelated siteGff(z) = zG′−1ee (z) − t2(z −Σ′(z))(zG′−1ee (z)− t2) − V 2G′−1ee (z)

=
1

z − V 2 ( 1
z−t2G′ee ) −Σ′(z)

=
1

z − V 2 ( 2

z+i sign (Imz)√4t2−z2
) −Σ′(z)

=
1

z − V 2 (z−i sign (Imz)√4t2−z2

2t2
) −Σ′(z)

=
1

z − V 2G′ee(z)−Σ′(z)
=

1

z − Γ(z)−Σ′(z) .Note that due to the CPT/VCA approximation the self-energy stays the self energy of the luster! Theonly term hanging from the luster to the total Green's funtion, is the hybridization to the environment.So instead of the hybridization to an isolated site Γ′(z) = V ′2G′0ss the Green's funtion now depends onthe hybridization to an in�nite hain Γ(z) = V 2G′ee. Furthermore the variational parameter ∆V appearsin the self energy Σ′(z) only.To perform a VCA alulation, an expression for the grand potential is needed.Grand Potential Ω(∆V )The grand potential Ω is given by (see eq. (2.23))
Ω(∆V ) = ω′0(∆V ) + tr (T (∆V )) − 1

π
∫
∞

0
dωRe (tr (ln (11 −T(∆V )G′(iω,∆V )))) .
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Plugging in the luster groundstate eq. (3.31), the luster Green's funtion eq. (3.33) and the matrix T(eq. (3.27)) one obtains a semi-analyti expression for the grand potential Ω(U,V,∆V, t)
Ω(U,V,∆V, t) = 1

4
(−U −√U2 + 64V ′)2) − 2

π
∫
∞

0
dω ln⎛⎝ 1

N1(ω)
⎛⎝72V 4 +U2w2 + 44V 2w2 + 4w4 + 36∆V 2 (2V 2 +w2) + 72∆V V (2V 2 +w2)
+w
√
4t2 +w2 (36∆V 2 +U2 + 72∆V V + 4 (9V 2 +w2))⎞⎠⎞⎠ ,

N1(ω) = 2⎛⎝36∆V 4 + 144∆V 3V + 36V 4 +U2w2 + 40V 2w2 + 4w4

+ 8∆V 2 (27V 2 + 5w2) + 16∆V (9V 3 + 5V w2)⎞⎠ .The grand potential Ω(U,∆V ) is shown in �g. 3.5 (right) for t = 1.0 and V = 0.3162. To �nd its stationarypoint, the derivative with respet to ∆V is needed.Stationary point of the grand potential Ω(∆V )The stationary point of Ω with respet to ∆V is given by the derivative
dΩ(∆V )
d (∆V ) = ∇∆V ω

′
0(∆V ) + ∇∆VTr (T (∆V )) − ∇∆V

1

π
∫
∞

0
dωRe (tr (ln (11 −T(∆V )G′(iω,∆V ))))

= ∇∆V ω
′
0(∆V ) − 1

π
∫
∞

0
dωRe (tr (∇∆V ln (11 −T(∆V )G′(iω,∆V ))))

= ∇∆V ω
′
0(∆V ) − 1

π
∫
∞

0
dωRe⎛⎝tr⎛⎝(11 −T(∆V )G′(iω,∆V ))−1 (∇∆VT(∆V )G′(iω,∆V ))

+ (11 −T(∆V )G′(iω,∆V ))−1 (T(∆V )∇∆VG′(iω,∆V ))⎞⎠⎞⎠ .The seond term in the �rst line vanishes beause T (eq. (3.27)) has o�-diagonal elements only. Uponplugging in the luster groundstate eq. (3.31), the luster Green's funtion eq. (3.33) and the matrix T
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(eq. (3.27)) one obtains a semi-analyti expression for the derivative of the grand potential Ω
dΩ

d (∆V ) = −16V ′√
U2 + 64V ′2

+
16V ′
π
∫
∞

0
dω

1

N2(ω)
⎛⎝648V 2V ′4 (3.34)

+ 18 (18∆V 4 + 72∆V 3V + 26V 4 + 2∆V V (U2 + 44V 2) +∆V 2 (U2 + 116V 2))w2

+ (72∆V 2 +U2 + 144∆V V + 80V 2)w4 + 4w6

+
√
4t2 +w2 (4w5 +w3 (U2 + 72V ′2) +w (18V ′2 (U2 + 18V ′2)))⎞⎠ ,

N2(ω) = (2592V 2V ′6) + ⎛⎝36V ′2⎛⎝36∆V 4 + 144∆V 3V + 3U2V 2 + 124V 4 (3.35)
+ 2∆V V (U2 + 160V 2) +∆V 2 (U2 + 304V 2)⎞⎠⎞⎠w2

+
⎛⎝1584∆V 4 +U4 + 6336∆V 3V + 84U2V 2 + 2192V 4

+ 4∆V 2 (19U2 + 2528V 2) + 8∆V (19U2V + 944V 3)⎞⎠w4

+ (8 (38∆V 2 +U2 + 76∆V V + 42V 2))w6 + 16w8

+
√
4t2 +w2

⎛⎝w (36V ′4 (U2 + 36V ′2)) +w5 (8 (U2 + 38V ′2)) + 16w7

+w3⎛⎝1584∆V 4 +U4 + 6336∆V 3V + 76U2V 2 + 1584V 4

+∆V 2 (76U2 + 9504V 2) + 8∆V (19U2V + 792V 3)⎞⎠⎞⎠ .Setting the derivative to zero one obtains a nonlinear integral equation. An analyti evaluation of theintegral is not possible. The roots may be obtained numerially. The integrand of eq. (3.34) is shown in�g. 3.4. The derivative of the grand potential eq. (3.34) is plotted for various values of U in �g. 3.5 (left).The root in the enter at ∆V = −V is unphysial beause it would yield a luster solution orrespondingto an atomi limit and therefore will never be able to reprodue the thermodynami limit with inreasingluster size. Furthermore areful examination of eq. (3.34) shows that the equation breaks down for
∆V = −V , beause all ∆V drop out. The evolution of V ′ with U is shown in �gure �g. 3.5 (right). Herewe diretly try to get a handle on the low energy properties by alulating the e�etive mass, whih isinversely proportional to the Kondo temperature.E�etive MassThe e�etive mass is de�ned in eq. (3.48). Inserting the self-energy for the two-site system eq. (3.30) oneobtains

m∗(U)
m∗(0) = 1 − U2

4

d

dω
Im( iω

−ω2 − 9V ′2
) ∣

ω=0+

= 1 +
U2

4

d

dω
( ω

ω2 + 9V ′2
) ∣

ω=0+

= 1 +
1

36
( U
V ′
)2 . (3.36)Note that for U = 0 the e�etive mass is one as it is supposed to be. Furthermore one sees that within thisapproximation (self energy of the two site luster), the Kondo temperature whih is inversely proportionalto the e�etive mass beomes proportional to

TK(U)∝ (V ′stat.(U)
U

)2 .46
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Unfortunately the luster parameter V ′stat, whih makes the Grand Potential stationary, annot be de-termined analytially but a numerial determination of the roots of eq. (3.34) is feasible. This results ina perfet exponential behavior of m∗(U) and TK(U). The exponent may be obtained by an exponential�t (R2 = 1) and is given by
TK ∝ e−γ π

8∆
U ,with

γ = 0.6511 .The e�etive mass is plotted in �g. 3.7 (right). As a referene the Bethe Ansatz result for T −K1 and valuesobtained by FRG [100℄ are plotted. The fator α = 1 exept for the VCA data α = 1
γ
to aount for themismath in the exponent. The issue of obtaining an exponential sale but not the orret exponent forthe funtional dependene on U is observed in various methods (see for example variational wavefuntionswhere the issue was ured by introduing a better Ansatz by Shönhammer [117℄ or FRG [118℄).After showing that VCAΩ is apable of reating an exponential sale in U , it is interesting to investigatethe behavior of VCASC.Self onsistent VCAHere we attempt to obtain the VCASC solution for the two-site problem. The only variational parameteris ∆V and therefore we determine the expetation value of < f �c > self onsistently. The hoppingexpetation value is given by

< f �c >= − 2
π
∫
∞

0
dωG12(iω) .Evaluation of this expetation value in the luster yields

< f �c >luster = − 2
π
∫
∞

0
dω

4(∆V + V ) (9(∆V + V )2 +w2)
36(∆V + V )4 + (U2 + 40(∆V + V )2)w2 + 4w4

. (3.37)Evaluation of this expetation value in the total system gives
< f �c >CPT= − 2

π
∫
∞

0
dω

8V

8V 2 +
w(U2+36(∆V +V )2+4w2)(w+√4t2+w2)

9(∆V +V )2+w2

. (3.38)Upon requiring the two expetation values to oinide
< f �c >luster !=< f �c >CPT , (3.39)the optimal value of ∆V is obtained.The numerial evaluation of eq. (3.39) as a funtion of V ′ = V +∆V is shown for U = 1 and t = 1 in �g. 3.6(top). A omparison of the hopping expetation value in the luster eq. (3.37) and after oupling to theenvironment eq. (3.38) is shown in �g. 3.6 (bottom). It is immediately obvious that VCASC does notful�ll the same limits as VCAΩ for U → 0. In VCAΩ the grand potential beomes �at in this limit andno stationary point an be found. In VCASC however the two expetation values do not oinide in thislimit. However the equation breaks down at this point. The optimal value for the luster parameter V ′is shown in �g. 3.7 (left) and yield no satisfatory behavior. The e�etive mass (�g. 3.7 (right)) obtainedwith those values of V ′ does not show an exponential dependene on U .This onludes the disussion of the two-site problem. We now proeed by investigating the e�ets ofthe environment density of states on the luster part of the referene system.3.3.4. Comparing a �at band to a semi-irular density of states of theenvironmentThe density of states, reated by disseting the one-dimensional tight-binding hain at any site, has asemi-irular shape. The orresponding Green's funtion may be evaluated analytially (see eq. (3.23))and is shown in �g. 3.8 (left). The parameters hosen for the plot were ǫs = 0 and t = 1.In this setion the in�uene of the shape of the density of states of the bath on the results shall beevaluated. For that purpose the 'natural' semi-irular density of states of the model is replaed by a �at48
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A�at(ω) = ⎧⎪⎪⎨⎪⎪⎩ 1

2D
−D < ω <D

0 else ,where D denotes the half-bandwidth and the onstant is hosen to respet the sum rule eq. (2.16). TheGreen's funtion for this density of states may be onstruted by �rst inverting eq. (3.43) whih yields theimaginary part Im (G�at(z)) = − π
2D

within the band. Then one may use Kramers-Kronig relations [1℄
Re (G�at(ω)) = 1

π
P ∞∫
−∞

Im (G�at(ω′))
ω′ − ω

dω′ ,to obtain the real part. The Green's funtion of the �at band therefore is given byG�at(z) = − 1

2D
ln(z −D

z +D
) ,In the following this density of states of the environment will be ompared to the semi-irular one.Therefore the half-bandwidth is hosen to be D = π

2
t for the �at density of states, to obtain the same ∆as in the semi-irular ase (see eq. (3.5)). The Green's funtion of the �at band is shown in �g. 3.8 (left).CPT results for the impurity density of states, for a L = 8-site luster, are shown in �g. 3.8 (mid, right).The plots show urves for di�erent values of interation strength U (using ∆ = 0.1). The data in themiddle shows results obtained by using the semi-irular tight-binding density of states, while the rightplot shows data using the �at band. The spetra are very similar. Espeially in the low energy region,there is no di�erene, sine they depend predominantly on the value of the environmental density of statesat the Fermi energy. Several other quantities (like the e�etive mass or the stati-spin suseptibility) wereevaluated for both kinds of environment giving more or less equivalent results.The luster part of the referene system is of �nite length. To examine the severity of this approximationspin-spin and density orrelation funtions are evaluated in the next setion.3.3.5. Estimating the neessary extent of the referene system: spin/densityorrelationsIn this setion an attempt is made to estimate the neessary extent of the luster part of the referenesystem to ahieve good results within CPT/VCA. Calulations of stati expetation values (see se. 3.3.9)revealed, that muh smaller lusters su�e in the parameter region where the impurity is essentially zero-50
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< Ŝi Ŝj > =< Ŝz

i Ŝ
z
j²̂

Z

+ Ŝx
i Ŝ

x
j + Ŝ

y
i Ŝ

y
j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F̂

> , (3.40)for the SIAM, we transform this expression to one involving fermioni operators (and number operators)instead of spins. Using
Ŝz =

1

2
(n̂↑ − n̂↓) ,�rst operator Ẑ transforms to

Ẑ =
1

4
(n̂↑i − n̂↓i)(n̂↑j − n̂↓j) .Expressing the x and y omponents of the spin by spin-ladder operators

Ŝ+ = Ŝx + iŜy = c↑�c↓ (3.41)
Ŝ− = Ŝx − iŜy = c↓�c↑ , (3.42)the seond part of eq. (3.40) F̂ takes the form
F̂ =

1

2
(Ŝ−i Ŝ+j + Ŝ+i Ŝ−j ) .Representing the spin-ladder operators by fermioni operators eq. (3.42) one arrives at the fermionirepresentation of F̂

F̂ =
1

2
(c↓�i c

↑

i c
↑�
j c
↓

j + c
↑�
i c
↓

i c
↓�
j c
↑

j ) .Furthermore the density-density orrelation funtion < ninj > is examined, whih onsists of four Fermi-operators.The typial behavior of the spin-spin vetor, spin-spin z and density-density orrelations as a funtion ofdistane away from the impurity is shown in �g. 3.9 (left), for the non-interating ase in a ten-site luster.The loal values at the impurity an be alulated easily and are < Sz2
0 >= 0.125 and < S2

0 >= 0.375. Aplot of the spin-spin vetor orrelation < S0Send > of a large parameter region of the SIAM is shown51
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∆
= 2. For details of the parameter regions of the SIAM seese. 3.3.10. As is learly visible from the �gure, the orrelations have already faded away in the regionswhere the impurity is zero- or doubly oupied and are still there in the Kondo- and rossover regime.Similar alulations for larger systems (up to L = 16) showed essentially the same behavior. Based onan extrapolation in system size L of the spin-spin orrelation funtions we estimate the need of ≈ 50-sitelusters in the Kondo regime of the SIAM for CPT. This disussion does not apply to VCA, where thesituation is entirely di�erent and muh smaller lusters are su�ient as will be shown in the forthomingdisussion. This behavior an be well understood from the involved physis. In the Kondo regime belowa temperature sale TK , the impurities loal moment gets sreened by the ondution eletrons to makeup a singlet state. The question of how many eletrons ontribute to the sreening and how large thissreening loud is, is still open today. Many onepts have been suggested but up to now ontroversialtheoretial preditions exist [8, 119℄. New ideas may require very di�erent ways of thinking [120℄. It hasnever been possible to measure this extent in experiment. Bulk measurements are muh too less sensitiveto detet this length sale ξK = TK

vF
(vF denotes the Fermi veloity), whih typially behaves like
χ(r) = χ0 +

cos (2kF r)
r2

f ( r

ξK
)These experiments measure for example the Knight-shift, but the 1

r2
dependene of the suseptibilityrenders the parameter ξK invisible. Experiments on nano-devies up to now have been fruitless beauseof the extent of the sreening loud into the leads. Very reent sanning tunneling mirosopy (STM)based measurements only an give hints [121℄.We model the SIAM by an in�nite tight-binding hain. The e�ets of embedding an impurity in higherdimensions is investigated in the next setion.3.3.6. E�ets of an impurity embedded in higher dimensionsIn this work the SIAM is modeled by a one-dimensional hain. The e�ets of embedding the impurity intwo- or three dimensions are studied here within CPT. The two- or three dimensional bath is obtained bya mapping of the one-dimensional hain to an e�etive higher dimensional model, whih is only possiblein the ase of a single impurity. This proess, involving a resaling of the hopping parameters in thehain, is outlined in detail in app. F.In �g. 3.10, the impurity density of states is shown for an impurity embedded in di�erent dimensions.The results were obtained using CPT based on L = 10-site lusters. The result for one-, two-, and threedimensions shows the same harateristi features. Therefore we onlude, that dimensionality does not52
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ii is obtained from the retarded Green's funtion Gσ,ret
ii (ref. [27℄)

Aσ
ii(ω) = − 1

π
ImGσ,ret

ii (ω) . (3.43)The diagonal element at the impurity site Aσ
ff(ω) desribes the impurity density of states ρσf (ω). Aphysial property of the SIAM whih poses a hallenge to numerial methods is the Kondo-Abrikosov-Suhl resonane often referred to as Kondo peak [3℄. It arises in the parameter regime where the magnetimoment of the impurity is sreened by the ondution eletrons to form a singlet state [112℄. The partile-hole symmetri model lies in the enter of this Kondo region. This quasipartile exitation is for examplenot aptured in mean �eld approahes (see se. 3.2). With inreasing interation strength U the numerialsolution beomes inreasingly hallenging. 53
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Figure 3.11.: Loal single-partile spetral funtion as a funtion of ω. For interation strength U
∆
= 8,on-site energy ǫf

∆
= −4 and a numerial broadening of 0+ = 10−6. The CPT results based ona Band Lanzos luster solver for system sizes L = 6 to L = 12 are denoted BL. The CPTresults based on a MPS Lanzos luster solver for system sizes L = 6 to L = 20 are denotedMPS. For small systems the Band Lanzos and the MPS Lanzos results agree. For largersystems, not aessible to Band Lanzos, the MPS Lanzos produes a spurious result inthe viinity of ω = 0 due to missing weight in the Q-matries. This behavior is expeted tobe ured in the near future beause the method is still under development.In this setion we elaborate on the results for the density of states in the partile-hole symmetri ase.Results for the single-partile spetral funtion eq. (3.43) of the impurity site are shown in �g. 3.13. Asa referene, the spetra obtained with NRG and DMRG from Peters [104℄ are plotted. Renormalizationgroup approahes like NRG are espeially suited to reprodue the low energy quasi partile exitations ofthis model and therefore serve as a referene for our data. The CPT spetral weight at ω = 0 appears toobroad in the plot in omparison with the NRG result. This is partly due to a large numerial broadeningof 0+ = 0.05. Due to the nature of the CPT method we annot expet it to reprodue the low energyspetrum as well as RG alulations do. The height of the Kondo resonane is too small in this �gurebeause of the large 0+ whih was used to ompare to DMRG data only. However the height onvergeswith 0+ → 10−6 to the result predited by sattering theory (see se. 3.3.9). The energetially higherexitations like the Hubbard bands loated at ω ≈ −ǫf and ω ≈ −ǫf + U develop more and more withinreasing length of the luster part of the referene system L. A omparison of the enter of gravityfor those developing bands of the L = 14 site CPT result and the L = 50 site DMRG result are in goodqualitative agreement. There are spurious strutures in the spetral density, originating from the lusterGreen's funtion of the �nite system, preventing ontinuous bands to form. We would like to note thatthe aurate determination of the Green's funtion of the referene system is of prime importane. Aninauray in pole-positions or pole-weights for very small but non-vanishing weights will yield spuriousartifats in the spetra in the viinity of ω = 0 as shown in se. 3.3.7.To improve upon the result of CPT we onsidered the hopping matrix element t and the hybridizationmatrix element V as variational parameters. The parameters used for the evaluation of the referenesystem were determined with two di�erent methods. VCAΩ results are depited in the plot for a L = 10site luster. As shown in the �gure this method strongly redues the �nite size peaks in the Hubbardbands. The width of the Hubbard bands is reprodued orretly for high values of U where the FWHMwithin VCA is given by ≈ 1.9∆. This omes very lose to the expeted 2∆ [90, 122℄ of the atomi bands.This method improves the spetral properties of the Kondo resonane with respet to CPT, bringingit loser to the L = 50 site DMRG result. The data obtained using the self onsistent VCA approahVCASC agree very well with the result based on VCAΩ. One should note that the two broad Lorentzianhigh energy peaks (in VCAΩ as well as VCASC) onsist of many exitations whih will be revealedupon repeating this alulation with smaller 0+. The low omputational e�ort of CPT/VCA proofsadvantageous at alulating spetra. The VCA proedure (for a twelve site luster) usually onvergesin minutes to hours on a standard workstation PC, while more demanding numerial methods oftenneed days to a week to onverge. Furthermore, the spetra are exatly determined from the Lehmannrepresentation and no ill-posed analytial ontinuation is required in omparison to methods working inimaginary time or imaginary frequeny spae. To our knowledge the most aurate spetra available forthis model so far are published in ref. [123℄. 54
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Figure 3.12.: Cluster- and CPT solution of a six- and a twelve-site interating luster for the single-partilespetral funtion of the SIAM. The left olumn shows the luster-, the right olumn, theCPT result. The top row shows the L = 6-site results, while the bottom row shows the
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A spatially resolved image of the spetral funtion, alulated with CPT, for the parameter set used in�g. 3.13 () is shown in �g. 3.14 (left). The qualitative piture would be the same in VCA, merely thestrutures are slightly shifted. This inreased piture reveals how the perturbation introdued by theimpurity is fading away slowly in an alternating fashion. At every seond site away from the impurity adip at ω = 0 is present, whih is usually referred to as Fano dip.A zoom to the Kondo peak in the loal density of states of the impurity is shown in �g. 3.14 (right) fordi�erent values of interation strength U , in the partile-hole symmetri ase, obtained by VCAΩ. Thepinning of the height of the Kondo resonane may be observed, as well as an exponential narrowing ofits width. A more detailed look on the spetral region of the Kondo resonane is provided in �g. 3.15.The CPT/VCAΩ data is ompared to NRG and FRG data as well as results obtained from a restritedHartree-Fok alulation from Karrash et al. [100℄. The CPT/VCA results are plotted for lengths ofthe luster part of the referene system L = 2,4,6,8 and 10 for two di�erent sets of parameters. Theresults for higher L are always loated towards the enter of the �gure. The results orresponding to theresonane at ω = 0 were obtained for the partile-hole symmetri model. For this set of parameters weused the hybridization V as a variational parameter. The seond peak shown entered around ω/∆ ≈ 0.8orresponds to a parameter set right at the border of the Kondo region. The variational parameters usedaway from partile-hole symmetry are x = {ǫf , ǫs}. One an see that the CPT result is not onverged forthe L = 10 site luster yet. In ontrast, the VCAΩ result seems to onverge muh faster. Although inthe plot it looks like the VCA result does not improve muh upon a restrited Hartree-Fok alulation,in the following we will show that CPT/VCA yields results in all parameter regimes of the SIAM whihannot be reprodued within a mean �eld treatment (see se. 3.2).The variational parameters obtained for the two sets of parameters shown in �g. 3.15 (left) are presentedin �g. 3.14 (right). In addition to the VCAΩ parameters, whih were used for the results above, thevariational parameters obtained in VCASC are also depited. We plotted the di�erene of the parameterof the referene system x
′ to the physial parameter x: ∆x. All parameters appear to onverge to zero withinreasing length of the luster part of the referene system L. Notie that the self onsistent approahalways leads to a ∆x of greater magnitude with respet to VCAΩ. Remarkably, the spetrum obtained byVCAΩ and VCASC for the parameter set x = {ǫf , ǫs} is in very good agreement although the variationalparameters are rather di�erent. The most striking di�erene is that the self onsistent approah yields anegative ∆ǫf while the Ω based VCA yields a positive ∆ǫf . This is however ompensated by the di�erent

∆ǫs. Using the hybridization V as a variational parameter, the ∆V obtained by VCAΩ and VCASC agreerather well. Remarkably, the resulting density of states is very di�erent, whih shows that the alulationis extremely sensitive to this parameter.Overall one an onlude that VCA reprodues the medium and high energy regions of the spetrumreasonably well. The VCA result improves enormously upon the CPT data. In general, the results fromVCAΩ and VCASC agree very well with eah other. Next we turn to the examination of stati expetationvalues.3.3.9. Impurity density of states and oupationThe oupation of the impurity site is given at temperature T = 0 by
< nf

σ > =
1

2
+
1

π
∫
∞

0
dωReGσ

ff(iω) . (3.44)This integral may be evaluated from the imaginary frequeny Green's funtion, whih in turn is diretlyaessible within CPT/VCA.To see whether CPT/VCA are good approximations in all parameter regions of the SIAM, we vary theon-site energy of the impurity ǫf at �xed interation strength U . The loal impurity density of states atthe hemial potential (ω = µ = 0) and the impurity oupation number are plotted for various lengths ofthe luster part of the referene system L = 2,4,6 and 8 for the same model parameters. The VCAΩ resultis shown in �g. 3.16 (left), the CPT data in �g. 3.17 (left) and in �g. 3.16 (right) a VCASC alulation. Westart out by disussing the VCAΩ result (�g. 3.16 (left)). The variational parameters x used within VCAΩare the on-site energy of the impurity ǫf and the on-site energies of the unorrelated luster sites ǫs. Thedensity of states ρf(0) displays a pronouned plateau whih is related to the existene of a quasipartilepeak (Kondo resonane) pinned at the hemial potential. The parameter regions leading to an empty(ǫf < 0) or to a doubly oupied (ǫf > U) impurity do not show the Kondo resonane, as expeted. In thehalf �lled region whih lies in between, virtual spin �utuations lead to a pronouned quasi partile peakat the hemial potential. We observe that the result onverges with inreasing length of the luster partof the referene system L to the physially expeted result. Due to the variational parameters onsidered,the deviations of the results as a funtion of L are rather small as ompared to CPT where the results56
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σ >, and the density of states:
ρf,σ(0) = Nf

π∆
sin2 (π < nf

σ >
Nf

) . (3.45)Here Nf denotes the degeneray of the f orbital and < nf
σ > its mean oupation. In our ase Nf = 2and the mean oupation in the Kondo regime < nf >≈ 1. Note that the Friedel sum rule represents theanalogon of Luttinger's theorem [126℄ in the theory of Fermi-liquids [127℄. This is why the physis ofthe impurity is often referred to as loal Fermi liquid behavior. Sine both of these quantities an beevaluated independently, we an hek the validity of the Friedel sum rule in our approximation. Resultsare shown in �g. 3.16 applied to the L = 8 site VCAΩ results. The VCAΩ results ful�ll the Friedel sumrule almost in the whole Kondo region. At the rossover to a zero or doubly oupied impurity the Friedelsum rule is not ful�lled exatly any more but approximated very well. In the region farther outside itagain is perfetly ful�lled. The variational parameters of VCA are ruial to ful�ll the Friedel sum ruleas an be seen from a CPT alulation (�g. 3.17) whih violates it in all parameter regions. It appearsas if VCAΩ with variational parameters x = {ǫf , ǫs} naturally drives the system to ful�ll this ondition.The VCASC result (�g. 3.16 (right)) violates the sum rule too. This is not a feature of VCASC in generalbut rather has to do with the hoie of variational parameters, whih was just x = {ǫf} in this ase. TheVCASC result for two variational parameters x = {ǫf , ǫs} looks qualitatively like the respetive VCAΩresult. 58



−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

ω/∆

ρ f

 

 

NRG
FRG
RHF
CPT
VCA

Ω

−0.2 0 0.2 0.4 0.6 0.8 1

3.06

3.08

3.1

3.12

3.14

3.16

3.18

2 4 6 8 10 12
−4

−3

−2

−1

0

L

∆ 
x/

∆

 

 

VCA
Ω

 ∆ ε
f

VCA
Ω

 ∆ ε
s

VCA
Ω

 ∆ V

VCA
SC

 ∆ ε
f

VCA
SC

 ∆ ε
s

VCA
SC

 ∆ V
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∆V (olive) orresponds to the alulation at partile-hole symmetry. Lines are only guidesto the eye.
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2
orresponds tothe partile-hole symmetri ase. The Friedel sum rule (eq. (3.45)) was applied to the L = 8result (dotted-violet). It is drastially violated. However the results are far from onvergedfor the small lengths of the luster part of the referene system onsidered here. (Right)Density of states of the impurity site at ω = 0 for di�erent lengths of the luster part of thereferene system L = 2,4,6 and 8 (dark brown, yan, olive and magenta) as a funtion ofthe interation strength U . The impurity on-site energy ǫf is kept onstant at ǫf /∆ = −10.The numerial broadening is hosen to be 0+ = 10−6. The set of single partile parametersonsidered for variation within VCAΩ is x = {ǫf , ǫs}. The inset shows the CPT results.energy of the impurity. The di�erent regimes of the SIAM, as obtained by an atomi limit alulation(see se. 3.1), are indiated by blak lines. These lines divide the physis into regions where the impurityis doubly, singly or not oupied. In the singly oupied region (U

2
> ∣ǫf + U

2
∣) loal moments and theirsreening is expeted to appear. This region whih bestrides the one enlosed by blak lines is theregion where Kondo physis may take plae within this approximation. The parameter regions where theimpurity is empty or doubly oupied lie above and below this one. More sophistiated methods will leadto a smearing out of the border of these regions and introdue a rossover area with ompeting e�ets. Aboundary expeted between a single resonane and a loal moment behavior where the single resonaneis split into two for spin up and spin down respetively is given by mean �eld theory (see se. 3.2). Themean �eld boundary is obtained from eq. (3.19). The plot shows that the Kondo plateau is reproduedvery well by VCAΩ. The Friedel sum rule eq. (3.45) is ful�lled in all parameter regions in ontrast to theCPT result, whih learly shows a weak behavior. The VCAΩ results are almost onverged for lengths ofthe luster part of the referene system L ≈ 6. Inreasing L yields better results in the rossover region.Results obtained by means of CPT do not reprodue the Kondo plateau very well for small length ofthe luster part of the referene system. We estimate that CPT needs a length of the luster part ofthe referene system of L ≈ 50 to reprodue the Kondo plateau as good as VCA with L = 6 sites. Thespurious spetral weight arising in the plot in some regions of U < 0 may arise as a numerial artifat ofthe VCA proedure.The average impurity oupation for the same parameter region is shown in �g. 3.19. The result obtainedwith VCAΩ (�g. 3.19 (left)) learly shows the Kondo plateau where the impurity is singly oupied. Theparameter regions of a doubly oupied or empty impurity lead to a density of states in the impuritywhih is zero at the hemial potential (ompare to �g. 3.18). The CPT result (�g. 3.19 (right)) againshows, that CPT would need muh larger luster sizes. A similar behavior is also found at examiningthe spin-spin orrelations of the luster part of the referene system (see �g. 3.9 (right)). Note that utsat ertain parameter values through the plots: �g. 3.18 and �g. 3.19 are presented in �g. 3.16 (left) and�g. 3.17 (left) for a more detailed overview. The results of this setion have been obtained using VCAΩwith variational parameters x = {ǫf , ǫs}. It should be noted that using only x = {ǫf} already yields goodresults. As mentioned in se. 3.3.9, CPT needs quite large lengths of the luster part of the referenesystem L to onverge to the VCA results. Having shown that VCA produes overall good results in all61
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parameter regions for the general features of the spetra, we turn to the muh harder aessible ase ofthe low energy properties.3.3.11. Low energy properties, Kondo TemperatureIn this setion we examine the low energy properties of the symmetri SIAM. In the strong oupling limita single sale, the Kondo temperature TK , governs the low energy physis. This sale may be extratedfrom the width of the Kondo resonane in the loal density of states.The Kondo temperature TK is known from Bethe Ansatz results for the partile-hole symmetri SIAM [7,128℄
TK =

√
∆U

2
e−γ π

8∆
U , γ = 1 . (3.46)This sale whih is inversely proportional to the spin-�ip rate of the impurity divides the physis ofthe SIAM into two regions. A loal moment behavior of the impurity, where the spin is free and alow temperature region where the loal spin and the ondution eletrons beome entangled and form asinglet state [111℄.Quantities whih depend inversely on TK are the e�etive mass m∗ and the stati spin suseptibility

χm. We investigate and ompare the results for the sale TK obtained from the diret determinationof TK (from the full width at half maximum and the spetral weight of the Kondo resonane) and theinverse quantities m∗ and χm. We �nd that the results of all four measurements turn out to yield theorret qualitative behavior in VCAΩ. However in a region where the dependene of TK is exponentiallydependent on the interation strength U the exponential prefator is not predited orretly. Thereforewe introdue a saling fator γ eq. (3.46) whih turns out to be the same for all four ways of determining
TK . In partiular this fator is independent of the set of parameters used. The saling fator may bealulated semi-analytially for a referene system onsisting of a two site luster and the semi-in�niteenvironment within VCAΩ and VCASC (x = {V }) (see se. 3.3.3). The alulation for VCAΩ leads to anintegral expression for the stationary point of the grand potential Ω with respet to ∆V from whih theoptimal ∆V an be obtained numerially (see se. 3.3.3). The Kondo sale may be determined from theso obtained values of V ′(U) =∆V (U) + V by

TK(U)∝ (V ′(U)
U
)2 . (3.47)This leads to a perfet exponential behavior with an exponent de�ned in eq. (3.46) where

γ = 0.6511 .In the following subsetions the numerial results obtained by VCAΩ will be plotted in semi-logarithmiplots over a saled x-axis: α U
∆
, where α = 1

γ
for the VCAΩ results. The issue of obtaining an exponentialsale but not the orret exponent for the funtional dependene on U is ommon to various approximatemethods (for example variational wavefuntions where the issue was ured by introduing an extendedAnsatz by Shönhammer [117℄, saddle-point approximations of a funtional integral approah [129℄ orFRG [118℄). A faint analogy may be drawn here to Gutzwiller approximation, where an exponentialenergy sale in U arises by a renormalized hybridization parameter V [9℄, whih seems also to be the asefor VCAΩ.The self-onsistent alulation for VCASC also leads to an integral expression for the determination of

∆V . This expression is obtained by requiring the expetation values of the hopping from the impuritysite to the �rst site in the hain in the luster to be the same as the expetation value in the full solution.This proedure does not yield an exponential sale in U . The optimal luster parameter V ′ shows spuri-ous behavior as a funtion of U (see se. 3.3.3). We onlude that VCASC with x = {V } annot reproduethe low energy properties of the SIAM, while VCAΩ yields the orret behavior apart from a fator.
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E�etive Mass - Quasipartile RenormalizationThe e�etive mass m∗ is de�ned as the quasipartile renormalization [100℄
m∗(U)
m∗(0) = 1 −

d[ImΣσ
ff(iω,U)]
dω

∣
ω=0+

=
d[ImGσ

ff(iω,U)]
dω

∣
ω=0+
×

(d[ImGσ
ff(iω,0)]
dω

∣
ω=0+
)−1 , (3.48)where we introdued the dependene on the interation strength U expliitly. In the Kondo regime, thisquantity beomes inversely proportional to the Kondo temperature.We want to answer the question whether the Kondo sale is aptured by CPT/VCA or not. Therefore weompare the funtional form and the exponent obtained from the e�etive mass and the analyti resultfor TK eq. (3.46). The result for the e�etive mass obtained within V CAΩ is shown in �g. 3.20 (left).The variational parameter used was x = {V }. The funtional form is reprodued well by VCAΩ(i.e. itstarts out quadratially and goes over to an exponential behavior in the Kondo region). However theexponent ( π

8∆
) is not reprodued orretly. VCAΩ yields a lower exponent of ≈ (γ π

8∆
). The fator γ isde�ned in se. 3.3.3, determined from a semi-analytial alulation of TK within VCAΩ. This additionalfator is the same for all initial parameters (within the Kondo regime), it is partiularly independent of

∆. Therefore the x-axis for the CPT/VCA results is saled by α = 1
γ
to see that the funtional form of thee�etive mass mathes the NRG result [100℄ to a very good approximation. The VCA results are alreadyonverged for small luster sizes of L = 6 while the CPT results onverge rather slowly. An attempt wasmade to extrapolate the CPT data to L → ∞. It is interesting to observe that this extrapolated urveoinides niely with the VCA result (L=6) in the low U region. Note that for this quantity the VCAresult is almost independent of the length of the luster part of the referene system as will be motivatedin se. 3.3.12.Kondo Spetral Weight and Half WidthSine the height of the Kondo resonane is �xed by the Friedel sum rule eq. (3.45) the width and theweight (area) of the peak are proportional to the Kondo temperature TK . Obtaining the spetral weightor full width at half maximum (FWHM) of the Kondo resonane from the spetrum introdues a largeunertainty. Nevertheless we made an attempt, to get an idea of the behavior of TK . We �xed the spetralweight by the �rst minimum to the left and to the right of the entral peak. In general the e�etive massand stati spin suseptibility will yield more reliable results but it is instrutive to ompare these fourways of determining TK .Shown in �g. 3.20 (right) is the evolution of the spetral weight and the FWHM of the Kondo resonanewith inreasing interation strength U . The data were alulated using VCAΩ with a variational param-eter x = {V } for the partile-hole symmetri SIAM. For the results shown in the plot the x-axis of theVCA result has been saled by the same fator α as in the previous setion for easier omparison to theBethe Ansatz result.Stati spin suseptibilityThe stati spin suseptibility χm is given by the linear response to an applied magneti �eld B in zdiretion

χm(U) = −d (⟨nf↑⟩ − ⟨nf↓⟩)
dB

∣
B=0

. (3.49)In the Kondo regime this quantity too beomes inversely proportional to the Kondo temperature. For thealulations in this setion we introdue an additional spin dependent term in the impurity Hamiltonianeq. (3.3)
Ĥmagneti =∑

σ

σ
B

2
f �
σ fσ. (3.50)
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TK
≈ 100. For all alulations 1.2×109MC updates where onduted, with a sweep size of 100 updates, plus a 10% thermalization period.To ensure that the Kondo resonane is orretly reprodued by CT-QMC we evaluated the MatsubaraGreen's funtion for various values of inverse temperature β. The height of the Kondo resonane is givenby the Friedel sum rule eq. (3.45) to be Im(Gff(iω = 0)) = −10 for the parameters used here (∆ = 0.1). Toobtain Im(Gff(iω = 0)) we extrapolate twie, �rst in iω → 0 for eah β, then we use these results and ex-trapolate to T → 0. The extrapolation to iω → 0 is done linearly using the �rst two Matsubara frequenies.The imaginary part of Gff(iω) and the extrapolated value to iω → 0 are shown in the inset of �g. 3.22(left) for β ∈ [10,1200]. Those extrapolated values are plotted as a funtion of temperature (�g. 3.22(left)). These data points are then extrapolated to T → 0 using a �t by a rational model funtion. Theresult learly shows the onset of the Kondo resonane when the temperature is lowered below the Kondotemperature TK . The extrapolation to T = 0 shows very good agreement (Im(Gff(iω = 0)) ≈ −10.1) withthe result expeted from the Friedel sum rule within the unertainty. It is important to note that theCT-QMC results onverge very niely in β. Although for higher β lower Matsubara frequenies beomeavailable, the overall shape of the Green's funtion does not hange signi�antly.Therefore we may ompare the T = 0 CPT/VCA results for the Green's funtion and self-energy to the66
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Σff(iω) in �g. 3.23 (right). From the imaginary part of Σff(iω) one an infer the onvergene of theCPT/VCA result with larger length of the luster part of the referene system L. The real part of theself-energy Re(Σff(iω) = µ = −ef = U
2
= 0.4) is again exatly reprodued within CPT/VCA.In the following, we disuss the self-energy Σ(iω) for the two interesting ases of very low and very highMatsubara frequeny. We start out by onduting an expansion of the self-energy Σ(z) for high Mat-subara frequenies (z = iω → ∞) whih shall be outlined here brie�y. The self-energy matrix is de�nedby

Σ(z) = G−10 −G−1
= z −T −G−1 .Here T is the one-partile part of the Hamiltonian. In the partile-hole symmetri ase onsidered hereit ontains all the hoppings as well as the on-site energy of the impurity ǫf = −U

2
. We ondut a seriesexpansion in powers of z−1 of Σ(z). Apart from the real onstant Tii all z-dependent terms of Σii(z) areanti-symmetri in z. Therefore even powers in z±2l , l > 0 vanish. Expanding the Green's funtion G(z)
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Figure 3.23.: (Left) Comparison of the self-energy of the impurity Σff(iω) times energy ω obtained byCT-QMC (β = 400), CPT and VCAΩ. The CPT/VCA results were obtained for lengthsof the luster part of the referene system of L = 2,4,6,8 and 10. CPT as well as VCAΩbeome exat for high Matsubara frequenies. The legend for this �gure is the same asfor �g. 3.22 (right) and is displayed there. (Right) Comparison of the imaginary part ofthe self-energy of the impurity Im(Σff(iω)) obtained by CT-QMC (β = 400), CPT andVCAΩ. The CPT/VCA results were obtained for lengths of the luster part of the referenesystem of L = 2,4,6,8 and 10. An expansion of Σ(iω) for large iω eq. (3.51) is additionallyshown (straight line at − (U
2
)2). CPT/VCA always reprodues the exat self-energy for highMatsubara frequenies. The legend for this �gure is the same as for �g. 3.22 and is displayedthere.yields for the self-energy Σ(z)

Σ(z) = −T − z ∞
∑
m=1
(−1)mXm ,

X =
∞
∑
n=1

z−nCn ,
(Cn)ij = ⟨Ψ0∣ai (∆Ĥ)na�j ∣Ψ0⟩

+ (−1)n ⟨Ψ0∣a�j(∆Ĥ)nai ∣Ψ0⟩ ,where ∆Ĥ = Ĥ − ω0. Colleting powers of z yields a umulant-like expansion for the self-energy Σ(z)
Σ(z) = ∞∑

n=1
z−nΣn , where

Σ0 = −T +C1 , and
Σ1 = C2 −C2

1 .Here we onsider the zeroth and �rst order in z−1 only and obtain for Σ(iω)
Σff(iω) = U

2
−

i

ω
(U
2
)2 +O( 1

iω
)3 , (3.51)where the self-energy at the impurity site Σff is the only non-vanishing matrix element of Σij . This resultis plotted as a referene in �g. 3.23 (right). Due to the nature of the CPT/VCA approximation thesemethods always yield the exat self-energy for high Matsubara frequeny as shown in �g. 3.23 (left). Thelow energy properties examined in the previous setion depend basially on the slope of the MatsubaraGreen's funtion at (iω) = 0+. The results shown in �g. 3.22 (right) and �g. 3.23 (right) show that thisslope is underestimated by CPT/VCA in omparison to CT-QMC, at least at the small lengths of theluster part of the referene system available. The qualitative piture however shows a good agreementwith the expeted physis. 68
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Figure 3.24.: (Left) Grand potential Ω−Ω′0,env (eq. (D.18)) as a funtion of the interation strength U/∆(see legend). The data was obtained by studying a L = 4 site luster oupled to an in�nitelead. The numerial broadening used was 0+ = 10−6. The rosses indiate the respetiveminimum of the grand potential. There exists a ritial Uc/∆ ≈ 4.3 above whih a �nite
B′x is preferred by the system. (Right) The splitting of the Kondo resonane aused by anapplied magneti �eld in x diretion is shown for di�erent values of the auxiliary �eld B′x.The plots were obtained using VCA (i.e. the physial �eld Bx is always zero). Instead oftaking the parameter B′x at the stationary point of the grand potential (this value wouldbe B′x/∆ ≈ 1.9 for the parameters used) we expliitly plug in a �xed value for B′x. Thelength of the luster part of the referene system used was L = 6 for the model parameters
U/∆ = 12. The numerial broadening used was 0+ = 10−6.The above results suggest a possible appliation of VCA as an impurity solver for zero temperatureDMFT. The results would not su�er from a bath trunation error as in exat diagonalization basedDMFT. A big advantage would be the low demand on omputational power of VCA and the qualitativelyorret loal density of states. To round the disussion up, a symmetry breaking �eld is introdued inthe referene system in hope for better results.3.3.13. Introduing a symmetry breaking �eldWe explore the possibility to improve the VCAΩ results ahieved by varying the internal single partileparameters of the model by introduing a symmetry breaking 'spin �ip �eld' at the impurity site. Theterm added to the impurity Hamiltonian eq. (3.3)

Ĥ�ip = Bx (f �
↑
f
↓
+ f �
↓
f
↑
) , (3.52)expliitly breaks the onservation of spin in the luster solution. We are interested in the model with aphysial parameter Bx = 0 so this variable may only attain a �nite value as a variational parameter B′xin the referene system. This is motivated by the atual physis of the impurity at whih ondutioneletrons undergo spin �ip sattering. Our �ndings indiate that any �nite value of B′x splits the Kondoresonane and has thus to be disarded on physial grounds for the physial system under investigation.While this prevents the appliation of this �eld to improve the VCA results, it gives very nie insightin the physis of the SIAM as desribed by CPT/VCA. We �nd that a ritial interation strength Udepending on the length of the luster part of the referene system exists, whih separates solutions whihwould prefer a �nite B′x from those whih would prefer B′x = 0. The ritial interation strength for L = 4is given by Uc/∆ ≈ 4.3. The grand potential Ω −Ω′0,env is plotted for various interation strengths U in�g. 3.24 (left). For an analogous alulation for L = 6 site lusters a value of Uc/∆ ≈ 4.1 is ahieved. Themean �eld result would yield a ritial interation strength Uc/∆ = π for the parameters used here. Weinterpret this value as a signature of the onset of loal moment behavior. The values for Uc are of oursenot to be taken literally, they depend very muh on the �nite size of the luster under investigation.However, the fat that a ritial U exists, signals that the essential physis of the SIAM is reprodued byour approah.The splitting of the Kondo resonane aused by a non-zero variational �eld B′x is shown in �g. 3.24(right). The value of U/∆ = 12 used for this alulation lies in the region above Uc where the system69



prefers a nonzero �eld B′x. This ends the disussion of the CPT/VCA results in equilibrium. In the nextsetion we turn to the non-equilibrium ase.
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4. Non-equilibrium transport through astrongly-orrelated quantum dotSine the early 1990's the �eld of (then) bulk Kondo physis was enrihed by the study of arti�ial nano-sale strutures, exhibiting similar physis in a muh more ontrol- and tune-able way [133, 134, 135℄.Numerous experimental studies [10, 136, 137, 138, 138℄ established a new �eld for both equilibriumKondo physis as well as non-equilibrium phenomena in those devies. One espeially remarkable devieproviding suh a playground for quantum impurity models is a quantum dot [139℄. These small unitsmay be used in a single-eletron transistor setup, exhibiting Coulomb blokade e�ets. Quantum dots,sometimes referred to as arti�ial atoms, resemble the physis of a magneti impurity in a metal, whenonneted to metal leads by tunneling barriers. In a metal the magneti moment of the impurity, above theKondo temperature TK provides a loal moment, usually in a, singly oupied, narrow f-orbital. Loweringthe temperature below TK , the sreening of this moment leads to the remarkable Kondo physis. Quantumdots, with an odd number of eletrons, are apable of resembling this behavior as shown in �g. 4.1. Thegreat advantage of arti�ial nano strutures is, that eah parameter may be ontrolled experimentally.A quantum dot, onneted to left-, and right leads, as well as a gate eletrode, may be modeled bythe SIAM. The tunnel ouplings to the leads VL and VR, are the analogues of the hybridization matrixelements of f- and s-eletrons in a bulk impurity system and may be ontrolled by the gate voltage. Theenergy levels of the dot and orrelation e�ets may be engineered by using di�erent materials, sizes andgeometries of the dot. Suh devies are subjeted to strong orrelations beause of the marosopiallyentangled states arising from virtual spin �ip sattering [10℄.The non-equilibrium behavior of suh systems under bias poses an unsolved issue even today. Early worksref. [140, 141, 142, 143℄ gave some essential insight into the basi non-equilibrium physis. A good overviewof semi-lassial approahes is presented in the book by Rihter [144℄. A sound theoretial base of thenon-equilibrium Kondo physis was developed during the last twenty years ref. [145, 146, 147, 148, 149℄.Qualitative results for any bias voltage are extremely hard to obtain beause it is expeted, that the dotstays in the strong oupling regime also at high bias voltages [150℄ (Vbias > TK). Several ideas to takle theinterating non-equilibrium problem are presented in ref. [151℄. A omparison of many body perturbationtheory and time dependend density funtional theory is available in ref. [152℄. The involved time salesare disussed for example in ref. [153℄. Some progress was made in reent years using non-equilibriumFRG [154, 155, 156℄, QMC [157, 158℄, dual-fermion approahes [159, 160℄ and with the introdution ofsattering Bethe Ansatz [161, 162℄. The appliability of a master-equation was explored in ref. [163℄.DMRG was used to get insight into one-dimensional problems ref. [164, 165℄. Reently it was noted thatthe logarithmi disretization used in NRG auses problems, when one wants to predit the long-timebehavior of non-equilibrium systems [166℄. In this publiation we do not onsider any additional harging
Figure 4.1.: Shemati energy diagram of a quantum dot (reprodued from ref. [10℄). The spin-degeneratelevel of the dot is singly oupied. A depopulation as well as a double-oupation of the dot isenergetially unfavorable. The tunnel ouplings to the left and right lead are denoted ΓL and

ΓR. Those leads onsist of Fermi seas �lled up to their respetive hemial potential µL and
µR. A possible virtual spin �ip event, whih is the essene of the Kondo e�et, is depitedhere. (Left) Initial state of the quantum dot: single-oupation. (Mid) The dot's eletronmay tunnel o� the orrelated region in a virtual proess. (Right) It is replaed by an eletronof another spin �avor. Another proess for suh an event may be a virtual double-oupation.71



Figure 4.2.: Density of states in a quantum dot (reprodued from ref. [10℄). The Kondo e�et revealsitself as a harateristi resonane in the loal density of states of the quantum dot. (Left)In an equilibrium situation the resonane is loated at the Fermi-energy. (Right) In a non-equilibrium situation the Kondo peak splits into two, one pinned at the hemial potentialof the left lead, and one pinned at the hemial potential of the right lead.e�ets, whih are important for a real devie. A study of suh e�ets and the involved sreening andrelaxation time sales was done in ref. [167℄ using perturbative methods. Very reent results obtainedby a non-equilibrium extension of the FRG for the interating resonant level model beame available inref. [168℄.The expeted non-equilibrium behavior is pitured in �g. 4.2. A splitted Kondo resonane is pinned atthe hemial potentials of the respetive leads [169℄.In this hapter we use the non-equilibrium formulation of VCA (see se. 2.4) to obtain non-equilibriumproperties of the SIAM in the strongly orrelated regime. Results for the e�etive distribution funtion arepresented in se. 4.2. An expression for the urrent in the non-interating ase is obtained in se. 4.3. Thelinear-response urrent in the Kondo-regime will be disussed in se. 4.4. A omparison of the CPT/VCAresults to mean �eld theory is presented in se. 4.5. Finally results for the urrent and density of states asobtained by CPT/VCA are disussed in se. 4.6. The behavior of the VCA variational parameters will bedisussed there. All parameter regions of the SIAM will be explored and also systems with asymmetrioupling to left and right leads will be investigated. We start out by presenting the model of a quantumdot within CPT/VCA in se. 4.1.4.1. Modeling of a quantum dot system out of equilibriumTo obtain non-equilibrium properties for the quantum dot system, the SIAM out of equilibrium has tobe solved, as explained in the last setion. The non-equilibrium VCA may be applied to this problem insplitting the in�nite system into three parts (see �g. 4.3). A left (unorrelated) lead, whih is modeledby a semi-in�nite tight-binding hain (see eq. (3.23)). A entral orrelated region, whih onsists of aSIAM (see eq. (3.1)) in real spae on a �nite size luster. And a right lead, whih is again modeled bya semi-in�nite tight-binding hain. Note that it is ruial that the leads (reservoirs) are of in�nite size,otherwise no steady state will be reahed. The proedure of splitting is similar to the one onsideredin the equilibrium ase and is desribed in se. 3.3. The Green's funtions of the referene system areobtained as in the equilibrium ase. However here a two by two Keldysh Green's funtion is used (seese. 2.4). The luster part of the referene system, this time, onsists of the impurity, sitting in themiddle of the luster. The sites to the left of the impurity belong formally to the left lead (and thereforehave on-site energies ǫL and hemial potential µL). The sites to the right of the impurity belong to theright lead and have the respetive parameters. In inreasing the size of the luster part of the referenesystem symmetrially to the left and right of the impurity, we treat more and more sites of the leadsexatly, whih would ultimately onverge to the exat solution of the total system when L→∞. Pratialsystem sizes however are limited again to L ≤ 16. A bias voltage may be applied by shifting the hemialpotential and the on-site energies of the leads simultaneously. This is always done in an asymmetrimanner: µL = ǫL = −ǫR = −µR = Vbias
2

. Note again that the unorrelated sites in the luster whih aresituated to the left (right) of the impurity formally belong to the lead and therefore also have on-siteenergies of ǫL(ǫR). To maintain partile-hole symmetry we are therefore limited to lusters with anodd-number of sites L = 3,5,7,9,11,13 and 15. Observations showed that every seond of these systems
L = 5,9 and 13 su�ers from a �nite-size gap, whih loses with inreasing luster size. This arises due to72



Figure 4.3.: A quantum dot is modeled within VCA by the SIAM. The referene system onsists of threeparts: A left (unorrelated) lead, whih is modeled by a semi-in�nite tight-binding hain. Aentral orrelated region, whih onsists of a SIAM in real spae on a �nite size luster. Anda right lead, whih is again modeled by a semi-in�nite tight-binding hain.the fat that an even number of sites sits to the right as well as to the left of the impurity. Therefore inthe following only L = 3,7 and 11 site lusters will be used.The e�etive distribution funtion will be disussed in the next setion.4.2. E�etive distribution funtionThe e�etive distribution funtion was de�ned in eq. (2.48). We start out by analytially evaluating itfor a generi system. Suppose we have again a semi-in�nite left lead l, a �nite size, entral (interating)region c and a semi-in�nite right lead r. To evaluate the e�etive distribution funtion we need to obtainthe retarded, advaned and Keldysh omponents of the total Green's funtion in the entral region. Theluster Green's funtion in Keldysh spae is given in blok formG̃′ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
G′Rl G′KlG′Rc G′KcG′Rr G′KrG′Al G′Ac G′Ar

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,where R,K and A denote retarded, Keldysh and advaned Green's funtions respetively. In general eahGreen's funtion in this expression again is a matrix in site/spin spae. Coupling the environments to theleads by CPT eq. (2.2) requires the inverse luster Green's funtion G̃′−1 and the inter-luster hoppingmatrix in Keldysh spaeG̃′−1 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝G′R−1l
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.The CPT equation G̃−1 = G̃′−1 − T̃, yields the total Green's funtion in Keldysh spae. The Keldyshomponent is given byG̃K = ⎛⎝
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The retarded/advaned omponents areG̃R/A
=
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.The e�etive distribution funtion pe� is given by pe� = 1

2
− GK

c

2(GR
c −GA

c ) (see eq. (2.48)). Here we onsiderthe �rst de�nition, where all Green's funtions are evaluated at a spei� site.
pe� = G′Ac +G′Kc −G′Rc + t2G′Ac G′Rc (G′Al +G′Kl −G′Rl +G′Ar +G′Kr −G′Rr )

2 (G′Ac −G′Rc + t2G′Ac G′Rc (G′Al −G′Rl +G′Ar −G′Rr )) (4.3)From here on we onsider the entral region to onsist of a single-non-interating site, although thedisussion is also valid for multi-site interating entral regions. The luster Green's funtions beforeoupling (at zero temperature), are then given by (see eq. (2.39))G′R/Ac (ω) = 1

ω ± i0+
(4.4)G′R/A/K

c/l/r (ω) = (G′Rc/l/r(ω, ǫc/l/r) −G′Ac/l/r(ω, ǫc/l/r)) sign(ω − µc/l/r) . (4.5)Plugging eq. (4.4) and eq. (4.5) into eq. (4.3) and olleting terms (G′Rc/l/r −G′Ac/l/r) = 2iIm(G′Rc/l/r) =
−2πiρc/l/r one obtains

pe� = πt2 (ρl + ρr − ρlsign(ω − µl) − ρrsign(ω − µr))) + (0+ − 0+sign(ω − µc))
2 (πt2(ρl + ρr) + 0+) .Upon taking the limit 0+ → 0, one sees that all ontributions of the luster drop out

pe�(ω,Vbias) = 1

2
−
1

2

ρl(ω, ǫl)sign(ω − µl) + ρr(ω, ǫr)sign(ω − µr)
ρl(ω, ǫl) + ρr(ω, ǫr) . (4.6)This shows that the e�etive distribution funtion at zero temperature, de�ned via one site of the entralregion, does not depend on the entral region at all. More importantly it does not depend on theinteration U , but solely on the applied bias voltage Vbias = µl −µr with ǫl = µl and ǫr = µr. Furthermoreit is purely real as it is to be expeted for a distribution funtion. It redues to the Fermi-Dira distributionin the limit Vbias = 0.An expliit result for a non-interating tight-binding system under bias whih onsists of two semi-in�niteleads and a single-site entral region is plotted in �g. 4.4. The densities of states for the left and right lead,needed for the evaluation of eq. (4.6) are given in eq. (3.23). This generi behavior does not hange withinreased system size and is independent of the luster parameters inluding interation, as mentionedbefore. Note that the top point of the trapezoid-shaped struture in the lower part of �g. 4.4 at Vbias

∆
= 40ours exatly at the point where the density of states of the left and right lead stop overlapping.Using the basi results for the Green's funtion obtained here, a referene expression for the urrent ofa non-interating system will be presented in the next setion.4.3. Current in the non-interating aseThe urrent in the non-interating ase (U = 0), for both spin diretions, may be evaluated using theformula for the urrent eq. (2.47) and the Keldysh Green's funtion GK

lc and GK
cl evaluated in eq. (4.2)

j = ∫
∞
−∞

dωRe⎛⎝ − (G′Al −G′Rl )V 2

N ⎛⎝ − 2i0+sign(ω − µc) + 2i0+sign(ω − µl)
+ V 2(G′Ar (−sign(ω − µr) + sign(ω − µl)) +G′Rr (−sign(ω − µl) + sign(ω − µr)))⎞⎠⎞⎠

N = 2π (0+ + i ((G′Rl +G′Rr )V 2 − ω)) (0+ − i(G′Al +G′Ar )V 2 + iω) ,74



Figure 4.4.: E�etive distribution funtion eq. (4.6) for a tight-binding hain under bias. The hopping tis hosen to be one. A bias of Vbias = µl − µr, with ǫl = µl and ǫr = µr, was applied by anti-symmetrially shifting the hemial potentials of the left and right lead starting from zero.The axis are saled with ∆ = 0.1, to make omparison to other plots more easy. (Left) Zoomto the relevant parameter region of this work. (Right) The same but for a larger parameterspae.whih may be simpli�ed by taking the limit 0+ → 0

j = 2πV 4∫
∞
−∞

dω
ρlρr(sign(ω − µl) − sign(ω − µr))((G′Al +G′Ar )V 2 − ω)((G′Rl +G′Rr )V 2 − ω)

= 4πV 4∫
µr

µl

dω
ρlρr((G′Al +G′Ar )V 2 − ω)((G′Rl +G′Rr )V 2 − ω) , (4.7)All urrents in this thesis will be given in units of hopping t = 1. The expression in the integrand ispurely real, beause GR = (GA)�. Here the left/right Green's funtions of the environment are givenin eq. (3.23). It is interesting to ompare this result to ref. [170℄, where an expression for the urrentthrough an interating region is derived. The urrent under bias is obtained from this expression bysetting Vbias

2
= ǫl = µl = −µr = −ǫr. The urrent under doping is obtained by setting d

2
= µl = −µr = and

ǫr = ǫl = 0. These two urrents are plotted in �g. 4.5. One an learly see the e�ets of the leads' bandsin the biased ase.As a referene value for CPT/VCA alulations, the linear response urrent in the Kondo-regime willbe derived in the next setion.4.4. Linear response in the Kondo regimeAording to ref. [140, 81℄, the ondutane may be alulated using a Landauer-type formula generalizedto interating systems
σ =

i e2

h̵
∑
σ
∫
∞
−∞

dω

2π

dpFD(ω,µ,β)
dω

Γσ
L(ω)Γσ

R(ω)
Γσ
L
(ω) + Γσ

R
(ω)2iIm (Gσ(ω + i0+)) . (4.8)This formula is valid for proportional leads ΓL(ω) = αΓR(ω) in a steady-state situation. Here − 1

π
Im (Gσ(ω + i0+))is the interating density of states in the system. Γσ

i are the hybridizations with the i = L,R left andright lead
Γσ
i (ω) = 2π∑

k

∣V σ
k ∣2 δ(ω − ωσ

k ) .As always we use units of e = h̵ = 1. We are interested in the zero temperature ondutane for a partile-hole symmetri system with hemial potential µ = ǫF = 0 and symmetri leads ΓL(ω) = ΓR(ω). Thereforethe derivative of the Fermi-Dira distribution funtion pFD(ω,µ,β) redues to δ(ǫF = 0). The oupling75
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ΓL(R) = Γ(ω) = πV 2ρL(R)(ω) , (4.9)where ρ(ω) is the loal density of states of the �rst site of the non-interating lead (i.e. here a semiirularLDOS of a semi-in�nite tight binding hain). Plugging all this information into eq. (4.8) the ondutanefor both spin hannels is given by
σ = 2i∫

∞
−∞

dω

2π
δ(0)Γ(ω)

2
(−π)(− 1

π
Im (G(ω + i0+)))

= Γ(0)Im (G(i0+)) .The hybridization at the Fermi energy, for the semi-in�nite tight binding hain (hopping t), is given by
Γ(0) = πV 2 1

tπ
=
V 2

t
=∆ .For a symmetri impurity the height of the Kondo resonane at ω = 0 is given by 1

π∆
. So

−
1

π
Im (G(ω + i0+)) = 1

π∆
.This result is only valid in the Kondo regime at zero temperature and for very small bias voltages.Therefore we are left with a linear-response ondutane (for both spin hannels) of

σ =
1

π
, (4.10)whih remarkably is independent of all system parameters (∆, t, V, ...) and espeially independent of theinteration strength U , as long as the system is in the Kondo regime. This of ourse arises from thepinning and onstant height of the Kondo peak. Note that this is exatly the result for the ondutanequantum

σ0 =
2e2

h
=

e2

πh̵
,whih reprodues in units of e = h̵ = 1 the above result 4.10.Although mean �eld theory produes qualitatively wrong results for the SIAM (see se. 3.2), it is inter-esting to ompare CPT/VCA to some other tehnique before proeeding further.
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4.5. Doped leads: A omparison of luster perturbation theory tomean �eld resultsIn this setion we examine the ase of lead-doping (instead of applying a bias voltage). In this ase thebands of the leads do not shift altogether (ǫl,r = 0), only the hemial potentials of the leads are shiftedin an asymmetri manner with doping d
2
= µl = −µr. This an be ahieved, for example, by introduingdopants into the lead material, or by applying pressure to suitable materials. This ase is interesting,beause it allows for omparison to a spei� form of the Meir-Winegreen-Lee formula [140, 81℄. Thisform is obtained by rewriting eq. (4.8) for our purpose here

j = i∑
σ
∫
∞
−∞

dω

2π
(pFD,L(ω,µ,β) − pFD,R(ω,µ,β)) Γσ

L(ω)Γσ
R(ω)

Γσ
L(ω) + Γσ

R(ω)2iIm (Gσ(ω + i0+)) ,whih is again only valid for the ase of a bias voltage in the wide band limit, or the ase of doping witharbitrary bands. Inserting eq. (4.9) and the Fermi-Dira distributions at zero temperature eq. (D.1) oneobtains for the urrent
j = πV 2∑

σ
∫

µR

−µL

dω ρE(ω)ρσf (ω) . (4.11)To arrive at this expression, we assumed that the right and left leads have an equal density of states ρE .The urrent therefore is given essentially by the density of states in the interating site ρσf .To obtain a rough estimate for the urrent, the mean �eld results for the interating impurity ρσf are used(see se. 3.2). As noted there, the mean �eld single-partile spetra are qualitatively wrong. Furthermore,using the density of states ρσf from the mean �eld equations gives an equilibrium density of states whihis not a good approximation for large doping. Results for the urrent under doping are shown in �g. 4.6(left) with the approximate hybridization self-energy and �g. 4.6 (right) with the exat hybridizationself-energy. Note that all urrents are evaluated in both spin hannels. This approah provides a startingpoint to ompare more sophistiated methods to.In the following the mean �eld results for the urrent obtained by eq. (4.11) are ompared to CPT resultsof L = 3,7 and 11 site lusters in �g. 4.7. The mean �eld urrents are obtained by eq. (4.11) using themean �eld density of states eq. (3.15). The CPT urrents are obtained by eq. (2.47) using the CPTproedure. The urrent was obtained by CPT as well as MF for various values of interation-strength Uin the partile-hole symmetri ase. The hybridization was hosen to be V = 0.3162 and the hopping inthe hain was t = 1. As an be seen from the plots, CPT performs dramatially better than MF beauseit orretly reprodues the Kondo resonane. The CPT results show a pronouned �nite-size struture.It is however questionable if CPT is a good approximation for large doping, beause the CPT self-energyagain does not "know of" the non-equilibrium situation. This point may be ured by introduing a self-onsistent feedbak as it is done in non-equilibrium VCA in the next setion. As the results in equilibriumsuggest, VCA with variational parameters x = {V, t} may strongly redue the CPT �nite-size e�et (see�g. 3.13 and disussion there). It is interesting to note that the integration in eq. (4.11) is essentiallyover a semi-irle from ρE(ω) times a Lorentz peak at ω = 0 from ρσf (ω). This is true as long as themean �eld solution does not break the symmetry. The semi-irle may be approximated by a �at band ofheight 1
πt
, beause away from ω = 0, ρσf (ω) is essentially zero. Putting this into eq. (4.11) and examiningthe ase of large doping (µL = −µR greater than the bandwidth) the urrent takes the value of 2∆. Afteromparing CPT/VCA to mean �eld results, we turn to the more interesting and more di�ult ase of astrongly orrelated quantum dot under bias.4.6. A biased quantum dot: CPT/VCA resultsHere we onsider a orrelated quantum dot whih is oupled to two leads (left, right). To study theperformane of CPT/VCA we split the referene system into three parts: left lead, interating regionand right lead. The interating region onsists of the orrelated site and additional unorrelated sites tothe left and to the right of it whih belong to the leads but are treated within the diagonalization of theluster - thereby reating a better approximation. The hemial potential of the left lead µL as well as theon-site energy ǫL are set equal. To apply a bias voltage to the devie this parameter is then sanned fromzero to some value and the orresponding parameter for the right lead is tuned in exatly the negativediretion asymmetrially. So we have µL = ǫL = −ǫR = −µR = Vbias

2
. Note that the unorrelated sites inthe luster whih are situated to the left (right) of the impurity formally belong to the lead and thereforealso have on-site energies of ǫL(ǫR). 77



−50 0 50
−0.3

−0.2

−0.1

0

0.1

0.2

0.3
 

doping d/∆

 

cu
rr

en
t−

de
ns

ity
 j

0.0
3.0
6.1
9.1
12.1
15.2
18.2
21.2
24.2
27.3

−50 0 50
−0.3

−0.2

−0.1

0

0.1

0.2

0.3
 

doping d/∆

 

cu
rr

en
t−

de
ns

ity
 j

0.0
3.0
6.1
9.1
12.1
15.2
18.2
21.2
24.2
27.3

Figure 4.6.: Mean �eld results, in the partile-hole symmetri ase, for the urrent under doping obtainedby eq. (4.11). The legend indiates di�erent values of interation strength U
∆
. The hybridiza-tion was hosen to be V = 0.3162 and the hopping in the hain was t = 1. A spurious mean�eld gap opens at the ritial interation strength Uc

∆
= 3.14. (Left) Results obtained usingthe approximate MF hybridization self-energy. (Right) Results obtained using the exat MFhybridization self-energy.
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Figure 4.7.: Comparison of the CPT and MF urrents under doping. Shown are the CPT results for
L = 3,7 and 11 site lusters as well as the MF results using the exat hybridization self-energy. All urves are for partile-hole symmetri parameters. The hybridization was hosento be V = 0.3162 and the hopping in the hain was t = 1. The plots from top, left to bottomright show results for interation strength U

∆
= 0,4,12,20,40 and 80. The linear responseresult, valid in the Kondo regime, eq. (4.10) is also indiated. The analyti result for U = 0was alulated using eq. (4.7).
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In the following CPT and non-equilibrium VCA alulations are performed for the SIAM under bias. Thenon-equilibrium VCA results in this hapter were alulated with one variational parameter x = {∆t}.This variational o�set was added to all hoppings, in the luster (t′ = t +∆t) as well as the hybridization(V ′ = V + ∆t) to the orrelated site, uniformly. The variational parameter is �xed by requiring theaverage over all expetation values in the luster to oinide with the orresponding average in the totalsystem after oupling to the leads. All alulations were done for three di�erent sizes of the luster partof the referene system L = 3,7 and 11. The hybridization parameter was hosen to be V = 0.3162 andthe hopping to be t = 1, whih yields again ∆ = 0.1. All alulations were done in three parameterregions. In the partile-hole symmetri ase: ǫf = −U
2
(Kondo regime), in a parameter region where theimpurity is zero-oupied: ǫf = −U

2
+2U and in a parameter region, where the impurity is doubly-oupied:

ǫf = −U
2
− U . Di�erent values of interation-strength U

∆
= 4,8,12 and 20 where investigated in eah ofthese ases. Results for the behavior of the variational parameters will be given, as well as data obtainedfor the urrent and the non-equilibrium density of states.4.6.1. Behavior of the variational parametersThe resulting parameter-shift ∆t = t′ − t is shown for di�erent interation strengths U

∆
and luster sizes

L in �g. 4.8 in the partile-hole symmetri ase: ǫf = −U
2
(Kondo regime). The same data is shownin �g. 4.9 in a parameter region where the impurity is zero-oupied: ǫf = −U

2
+ 2U and in �g. 4.10 ina parameter region, where the impurity is doubly-oupied: ǫf = −U

2
− U . A similar behavior for allinteration strengths is observed.4.6.2. CurrentThe urrent-density eq. (2.46) (for both spin hannels) is examined here, for di�erent values of the inter-ation strength U

∆
= 4,8,12 and 20. The urrent was measured between the left lead and the �rst site ofthe system and it was heked that the ontinuity equation is ful�lled. This is ahieved by alulatingthe urrent with 0+ = 0.The urrent for a singly-oupied impurity is plotted in �g. 4.11. The CPT/VCA urrent yields the or-ret linear response urrent for small bias voltages. It is interesting to observe, that VCA always departssooner from the linear response behavior than CPT with inreasing interation strength U . This is tobe expeted due to an exponential thinning of the Kondo resonane with inreasing U [171℄. The linearresponse urrent is independent of the interation strength U in the Kondo regime. This is due to thefat, that CPT as well as VCA respet the Friedel sum rule in the partile hole symmetri ase. Theurrent under bias goes to zero as soon as the bands of the leads stop overlapping (here at Vbias/∆ = 40).In those ases, where this happens before reahing this bias voltage, the vanishing of the urrent is dueto e�ets in the dot. As expeted non-equilibrium VCA strongly suppresses the �nite-size e�ets of theluster. This is also seen in equilibrium where VCA leads to the formation of ontinuous Hubbard bandswhile CPT yields more separated peaks for small system sizes (see �g. 3.13 and disussion there). Forlower interation strengths (see for example U/∆ = 4), the CPT/VCA results for di�erent luster sizesoinide almost. For large interation strength (see for example U/∆ = 20) they depart from eah other,respeting the linear response and high voltage limits. A pronouned two-peak struture seems to evolvefor the non-equilibrium VCA L = 7 result with inreasing interation-strength U . The maximum urrentdereases monotonially with interation-strength U .The urrent for a zero-oupied impurity is plotted in �g. 4.12. As one an see by omparing to the linearresponse urrent of the Kondo regime, the urrent here is muh smaller than in the Kondo regime. It isremarkable that the CPT and VCA results for all luster sizes lie almost on top of eah other. Note thatin this ase eah plot has a di�erently saled y-axis.The urrent for a doubly-oupied impurity is plotted in �g. 4.13. Again the urrent is muh smaller thanin the Kondo regime and CPT and VCA perform very similar.4.6.3. Density of statesThe loal density of states in the impurity is shown in �g. 4.14 for the partile-hole symmetri ase, for

L = 3, L = 7 and L = 11 site lusters respetively. The LDOS is plotted in a density plot as a funtion ofenergy ω (horizontal) and applied bias voltage (vertial). The splitting of the Kondo resonane, whihresides at ω = 0 for zero bias, is observed in both CPT and non-equilibrium VCA. In the non-equilibriumsituation the Kondo resonane splits into two peaks. A linear splitting, depending on interation strength
U , is observed in non-equilibrium VCA. For high voltages the LDOS seems to saturate. Note that the79
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Figure 4.11.: Non-equilibrium VCA urrent under bias. Shown are results for system-sizes L = 3,7 and 11in eah plot. The �gures from top, left to bottom, right are for di�erent interation-strengths
U
∆
= 4,8,12 and 20. These results are for the singly-oupied impurity: ǫf = −U

2
. Thehybridization was hosen to be V = 0.3162 and the inter-hain hopping t = 1. The linear-response result for the urrent, valid for this setup, is shown in addition. Note that the

L = 11-site VCA data for U
∆
= 12 and 20 is missing due to repeated trouble with the �lesystem at lengthy alulations.

83



−40 −20 0 20 40

−0.15

−0.1

−0.05

0

0.05

0.1

0.15 U/∆=4, ε
f
/∆=6

bias V/∆

cu
rr

en
t−

de
ns

ity
 j

 

 

CPT, L=3
VCA, L=3
CPT, L=7
VCA, L=7
CPT, L=11
VCA, L=11
lin. resp.

−40 −20 0 20 40

−0.015

−0.01

−0.005

0

0.005

0.01

0.015 U/∆=8, ε
f
/∆=12

bias V/∆

cu
rr

en
t−

de
ns

ity
 j

−40 −20 0 20 40
−6

−4

−2

0

2

4

6
x 10

−3

U/∆=12, ε
f
/∆=18

bias V/∆

cu
rr

en
t−

de
ns

ity
 j

−40 −20 0 20 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

U/∆=20, ε
f
/∆=30

bias V/∆

cu
rr

en
t−

de
ns

ity
 j

Figure 4.12.: Non-equilibrium VCA urrent under bias. Shown are results for system-sizes L = 3,7 and 11in eah plot. The �gures from top, left to bottom, right are for di�erent interation-strengths
U
∆
= 4,8,12 and 20. Note that the linear-response result for the urrent in the Kondo regimeis indiated as a guide for the eye. This devie is not in the Kondo regime. Also note thedi�erent sale on the y-axis. These results are for the zero-oupied impurity: ǫf = −U

2
+2U .The hybridization was hosen to be V = 0.3162 and the inter-hain hopping t = 1.
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Figure 4.13.: Non-equilibrium VCA urrent under bias. Shown are results for system-sizes L = 3,7 and 11in eah plot. The �gures from top, left to bottom, right are for di�erent interation-strengths
U
∆
= 4,8,12 and 20. Note that the linear-response result for the urrent in the Kondo regimeis indiated as a guide for the eye. This devie is not in the Kondo regime. These resultsare for the doubly-oupied impurity: ǫf = −U

2
− U . The hybridization was hosen to be

V = 0.3162 and the inter-hain hopping t = 1.
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L = 11-site VCA results look a bit broader, whih is due to the lower resolution of the images. While theCPT results produe a periodi struture in bias voltage, the VCA data shows a linear splitting of theKondo peak up to a saturation region.The loal density of states in the impurity is shown in �g. 4.15 in the zero-oupied ase. The loal densityof states in the impurity is shown in �g. 4.16 in the doubly-oupied ase. In the zero- and doubly-oupiedase, the DOS shows one of the Hubbard bands. Otherwise it looks pretty unspetaular. As alreadymentioned when disussing the urrent, in these parameter regions CPT and VCA yield similar resultsfor all luster sizes.After examining these three distint parameter sets, i.e. a singly-, doubly-, and un-oupied impurity,in detail, a wider piture resolving the whole parameter spae of the SIAM shall be presented.4.6.4. Current in all parameter regionsIn this setion the urrent through the dot under bias is analyzed as a funtion of the impurity on-siteenergy ǫf at �xed interation strength U . The three ases studied in detail in the last setion are of ourseinluded. By sweeping ǫf and alulating the urrent under bias at eah ǫf , it is possible to study thebehavior of the urrent in the di�erent parameter regimes of the SIAM. Due to demanding omputationaltime needed for these alulations, we limit ourselves to L = 3-site CPT/VCA here. The whole proedureand parameters are virtually idential to those used in the last setion. The results for the urrent as afuntion of bias voltage and on-site energy are shown in �g. 4.17 for interation strengths U/∆ = 4 and 8and in �g. 4.18 for interation strengths U/∆ = 12 and 20. In both �gures CPT and VCA results for
L = 3 and ∆ = 0.1 are shown. As noted already previously the di�erenes between CPT and VCA for lowinteration strength (see U/∆ = 4) are rather small. However going to larger interation strength theybeome large (see U/∆ = 20). Note that this is the three-site result, so no two-peak struture developsin the VCA urrent, as seen in �g. 4.11. It is interesting to observe that in all ases the largest urrent isobtained exatly at the rossover points from the Kondo to the un- or doubly oupied impurity (theseregions are marked by blak-dashed lines in the plots). It is also interesting that the VCA proedureyields a muh more uniform urrent upon variation of the on-site energy in the Kondo regime as the CPTalulation does. This result undermines one more that outside of the Kondo plateau CPT and VCAyield virtually the same result for all system sizes.Next we brie�y touh upon the ase of di�erent ouplings to the two leads: ΓL ≠ ΓR.4.6.5. Asymmetri tunneling to the leadsIn this setion the e�ets of an asymmetri oupling of the dot to the left and right lead are explored. Aoupling to the leads is hosen of VL = V

1.5
and VR = 1.5V where V = 0.3162. The hopping everywhere elsein the hain is t = 1 and a value for ∆ = 0.1 is alulated using V . The results for the urrent, variationalparameters and density of states are shown in �g. 4.19 for U/∆ = 4, in �g. 4.20 for U/∆ = 8, in �g. 4.21for U/∆ = 12 and in �g. 4.22 for U/∆ = 20. As predited in ref. [169℄ under bias the Kondo resonanesplits into two omponents with di�erent weight. The one with higher weight loated at the hemialpotential of the lead whih ouples stronger. A pinning of the resonanes at the respetive hemialpotentials of the leads annot be observed here. However the e�et of more weight in the peak loserto the hemial potential of the stronger oupling lead is predited. It is interesting to observe in thedensity of states, that there seems to be a rossover to totally di�erent behavior at some bias voltages.These rossovers are not due to problems with degeneray when �nding the luster solution. Sine inthe whole thesis all alulations are done grand anonially and the degeneray of the groundstate istaken are of (see eq. (2.13)). I suspet these rossovers to arise due to luster symmetry, �nite size andboundary onditions. Suh rossovers our more often for larger lusters. The CPT density of statesfor low bias voltages does not look very promising. However the VCA result does. It yields a reasonabledensity of states also in the low bias region. Furthermore it redues the amount of spurious rossovers toa minimum. There is however a narrow region at medium bias voltages where the VCA result undergoessome rossovers. This an also be seen in the behavior of the variational parameters and the urrent.The urrent in this region most probably annot be trusted. It is furthermore interesting that the VCAurrent is in most parameter regions larger than the CPT urrent.This onludes the disussion about non-equilibrium VCA. We now turn to the desription of Graphenewith magneti vaanies.
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Figure 4.14.: Loal density of states in the impurity for sizes of the luster part of the referene systemof L = 3,7 and 11 as a funtion of the applied bias voltage. The results shown are for thesingly-oupied impurity. Note that zero bias voltage amounts to the equilibrium situation.The maximum peak height in the high bias area may be up to three times as high asindiated in the olorbar. The olorbar was hosen to resolve also the �ner strutures atlow bias. The sum rule eq. (2.16) is ful�lled at eah applied bias voltage. From left-olumnto right-olumn the interation strength inreases: U
∆
= 4,8,12, and 20. (First row) CPTresult for L = 3. (Seond row) Non-equilibrium VCA result for L = 3. (Third row) CPTresult for L = 7. (Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPTresult for L = 11. (Sixth row) Non-equilibrium VCA result for L = 11.87



Figure 4.15.: Loal density of states in the impurity for sizes of the luster part of the referene system of
L = 3,7 and 11 as a funtion of the applied bias voltage. The results shown are for the zero-oupied impurity. Note that zero bias voltage amounts to the equilibrium situation. Themaximum peak height in the high bias area may be up to three times as high as indiated inthe olorbar. The olorbar was hosen to resolve also the �ner strutures at low bias. Thesum rule eq. (2.16) is ful�lled at eah applied bias voltage. From left-olumn to right-olumnthe interation strength inreases: U

∆
= 4,8,12, and 20. (First row) CPT result for L = 3.(Seond row) Non-equilibrium VCA result for L = 3. (Third row) CPT result for L = 7.(Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPT result for L = 11.(Sixth row) Non-equilibrium VCA result for L = 11.88



Figure 4.16.: Loal density of states in the impurity for sizes of the luster part of the referene systemof L = 3,7 and 11 as a funtion of the applied bias voltage. The results shown are forthe doubly-oupied impurity. Note that zero bias voltage amounts to the equilibriumsituation. The maximum peak height in the high bias area may be up to three times as highas indiated in the olorbar. The olorbar was hosen to resolve also the �ner strutures atlow bias. The sum rule eq. (2.16) is ful�lled at eah applied bias voltage. From left-olumnto right-olumn the interation strength inreases: U
∆
= 4,8,12, and 20. (First row) CPTresult for L = 3. (Seond row) Non-equilibrium VCA result for L = 3. (Third row) CPTresult for L = 7. (Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPTresult for L = 11. (Sixth row) Non-equilibrium VCA result for L = 11.89
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Figure 4.17.: The urrent under bias is shown as a funtion of on-site energy ǫf at �xed interationstrength U . Thereby the behavior of the urrent in di�erent parameter regimes of theSIAM is probed. The upper group of four images show results for interation strength
U/∆ = 4. The �rst row shows the CPT and the seond row the VCA x = {∆t} result.The lower group of four images show results for interation strength U/∆ = 8. The CPTresult is depited in the third row, while the VCA results are plotted in the fourth row.(Left olumn) The urrent is shown for several seleted values of on-site energy ǫf . (Rightolumn) The urrent is shown in a density plot as a funtion of on-site energy ǫf and biasvoltage. 90
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Figure 4.18.: The urrent under bias is shown as a funtion of on-site energy ǫf at �xed interationstrength U . Thereby the behavior of the urrent in di�erent parameter regimes of theSIAM is probed. The upper group of four images show results for interation strength
U/∆ = 12. The �rst row shows the CPT and the seond row the VCA x = {∆t} result.The lower group of four images show results for interation strength U/∆ = 20. The CPTresult is depited in the third row, while the VCA results are plotted in the fourth row.(Left olumn) The urrent is shown for several seleted values of on-site energy ǫf . (Rightolumn) The urrent is shown in a density plot as a funtion of on-site energy ǫf and biasvoltage. 91
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Figure 4.19.: Results for asymmetri oupling to the leads: VL = V
1.5

, VR = 1.5V for an interation-strengthof U/∆ = 4 in the partile-hole symmetri ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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Figure 4.20.: Results for asymmetri oupling to the leads: VL = V
1.5

, VR = 1.5V for an interation-strengthof U/∆ = 8 in the partile-hole symmetri ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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Figure 4.21.: Results for asymmetri oupling to the leads: VL = V
1.5

, VR = 1.5V for an interation-strengthof U/∆ = 12 in the partile-hole symmetri ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.

94



0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

bias V/2/∆

∆ 
t

U/∆=20, ε
f
/∆=−10

−40 −20 0 20 40

−0.15

−0.1

−0.05

0

0.05

0.1

0.15 U/∆=20, ε
f
/∆=−10

bias V/∆

cu
rr

en
t−

de
ns

ity
 j

 

 

CPT, L=3
VCA, L=3
CPT, L=7
VCA, L=7

Figure 4.22.: Results for asymmetri oupling to the leads: VL = V
1.5

, VR = 1.5V for an interation-strengthof U/∆ = 20 in the partile-hole symmetri ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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5. Magneti vaanies in GrapheneA single layer of Graphite, one allotrope of arbon, is named Graphene. Graphene onsists of a singlelayer of arbon atoms, paked in a honeyomb lattie, with a arbon-arbon distane of a = 0.142nm.This remarkable two-dimensional material, developed into one of the hottest topis in researh duringthe last years. This an be attributed both to the amazing fundamental phenomena and the promisingfuture appliations. The interest in Graphene was furthermore fueled by the Nobel prie in physis 2010,whih was awarded to Geim and Novoselov for the prodution and isolation of this, previously thoughtunstable, material [172, 173℄. Graphene is a playground for fasinating physis like the quantum Halle�et, Dira fermions and Klein tunneling. It has remarkable mehanial and eletrial properties. Beinga transparent ondutor, it is mehanially stronger than steel and strethable. Both the thermal andeletrial ondutivity are very high. It is losely related to nano-strutures, like fullerenes and arbon-nanowires, whih an be thought of as rolled up Graphene. A good review of the eletroni properties ofGraphene an be found in ref. [174℄. A desription in terms of a tight-binding Hamiltonian in ref. [175℄.The motivation for this work stems from a reent study of another remarkable feature of Graphene.Chen et al. found that vaanies, introdued by proton-irradiation, behave like magneti defets [18℄.Therefore a Kondo-like behavior is observed. Suh e�ets have previously been reported in irradiatedGraphene [176, 177℄ and apply as well to magneti ad atoms on the surfae [178, 179, 180℄. The theoretialstudy is however di�ult, beause in addition to an interating many-body problem whih has to besolved, the material is strongly disordered. A study of what to expet from di�erent forms of defetsin Graphene was performed by Ding in ref. [181℄. How disorder may be modeled in this material isdesribed in ref. [182℄. Some studies of defets in Graphene are available. Magneti impurities werestudied by QMC [183℄, DMFT [184℄ and analyti work [185℄. The topi was furthermore related toquantum ritiality [186℄. A mean �eld/QMC study of the Hubbard model on a honeyomb lattie wasperformed reently by Feldner et al. [187℄.In the following we build a model for disordered magneti vaanies in Graphene. This model is looselybased on the SIAM, whih was shown to yield good results within VCA in previous hapters. The newomponent here is a sheme of inorporating the randomness of disorder. This hapter is organized asfollows. First the lattie struture of Graphene will be examined in ontext with CPT/VCA luster tilingsin se. 5.1. The superlattie-wavevetor transforms for this model are given there too. Then a CPT/VCAextension to random vaanies, a speial form of disorder, will be disussed in se. 5.2. To test the methodresults for the homogeneous Hubbard model on the Graphene lattie are presented in se. 5.3. Finallyresults for the in�uene of magneti vaanies in Graphene, on the single-partile spetra, are given inse. 5.4.5.1. Cluster deomposition of GrapheneGraphene is a purely two-dimensional material. In this setion the deomposition of the Graphene lattieinto two-site-, six-site ring- and ten-site double-ring- lusters is presented. These luster deompositionsare needed for CPT as well as the VCA treatment of Graphene. We start out by disussing the lattiestruture of Graphene shown in �g. 5.1.5.1.1. Graphene Lattie γThe two dimensional Graphene lattie is not a Bravais lattie. This means it annot be onstruted by aone atom unit ell. The smallest unit ell possible is one onsisting of two atoms. The Graphene lattieis then built up by plaing this two atom element on a triangular lattie. The lattie vetors Rγ of thiselementary lattie γ are given by
R

γ
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) , (5.1)where a is the lattie onstant, whih is set to 1 in this work. This lattie is depited in �g. 5.2 (left). Inliterature the lattie vetors of hexagonal type latties are often given with the lattie onstant a saled96



Figure 5.1.: The two dimensional lattie of Graphene. The Bravais lattie is a triangular two dimensionallattie (eq. (5.1)). The blak arrows (r1, r2) indiate the lattie vetors of the lattie γ. A twosite unit ell is attahed at eah lattie point (eq. (5.2)). Shown is a luster deompositioninto six-site ring lusters (green). The green numbers show the labeling of the sites inside theluster (eq. (5.2)). The blue arrows (R1,R2) indiate the lattie vetors of the superlattie Γ.The Bravais lattie here is a jolted triangular lattie given in eq. (5.1). The lattie onstantwas hosen to be a = 1.
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by √3. This often leads to onfusing fators of √3 when one is used to working with the bare a. Here Itried to make a ompromise and pull the fator √3 expliitly out of the expressions whih makes themreadable in both onventions. The two atoms in the unit ell C2 are loated at
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) . (5.3)The reiproal lattie and the Brillouin zone are shown in �g. 5.3 (left). Speial points in the Brillouinzone are given by
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) . (5.4)5.1.2. Six-site ring superlattie Γ6We now onsider one possible luster tiling whih is motivated by the lattie symmetry. The lattievetors of the superlattie Γ6 for six-site ring lusters are given by
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) . (5.5)The six atoms in the luster C6 are loated at
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) . (5.6)This lattie is depited in �g. 5.2 (mid). The reiproal lattie vetors KΓ6 are given by
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) . (5.7)The reiproal lattie and the Brillouin zone are shown in �g. 5.3 (mid). Speial points in the Brillouinzone are given by
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) . (5.8)5.1.3. Ten-site double ring Superlattie Γ10Another possible luster tiling whih is motivated by the lattie symmetry is a ten-site double ring luster.The lattie vetors of the superlattie Γ10 are given by
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Figure 5.4.: (Left) The reiproal lattie points of the lattie γ for a 7× 7 system with periodi boundaryonditions. (Mid) The reiproal lattie points of the lattie Γ6 for a 7 × 7 system withperiodi boundary onditions. (Right) The reiproal lattie points of the lattie Γ10 for a
7 × 7 system with periodi boundary onditions.This lattie is visualized in �g. 5.2 (right). The reiproal lattie vetors KΓ10 are given by
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) . (5.11)The reiproal lattie and the Brillouin zone are shown in �g. 5.3 (right). Speial points in the Brillouinzone are given by
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) . (5.12)After disussing several possible luster tilings, the reiproal spae of these latties is to be examined.5.1.4. Brillouin zones of the Graphene lattiesThe k-points of the �rst Brillouin zone are needed for omputing integrals in reiproal spae by evalu-ating sums over k dependent quantities (k out of the �rst Brillouin zone). For an in�nite system thereexist speial shemes how to hoose speial k-points [188, 189, 190℄ representative for the whole system.Sampling k-points is not a good option in this ase beause one wants to ompare results obtained bydi�erent alulations and one would have to ensure the use of the same sampled k-points. We deal with�nite latties (with periodi boundary onditions). Here the k-points an be obtained exatly by �rstreating a mesh of k-points along the reiproal lattie vetors
kp =

n1

N1

K1 +
n2

N2

K2 ,where Ni is the number of lattie points along reiproal lattie vetor Ki and ni runs from −[Ni

2
] to[Ni

2
]. Here [ ] denotes the Gauss braket. Not all the points kp will lie within the �rst Brillouin zone andsome need to be folded bak to it. This proedure depends on the shape of the Brillouin zone. The �rstBrillouin zones of the 2,6 and 10-site lusters are shown in �g. 5.4. The omputational e�ort of sums in

k-spae may be redued onsiderably by taking Brillouin zone symmetries into aount.For CPT/VCA the inter-luster hopping matrix T is needed in a superlattie wave vetor transformedform, whih will be disussed in the following.
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5.1.5. Superlattie wave vetor transformConsidering a lattie γ of in�nite extent, the superlattie-wave vetor transform of the hopping matrixTrr′ is given byTRR′(k̃) = ∑̃
r∈Γ

eik̃⋅r̃ Trr′ where ⎧⎪⎪⎨⎪⎪⎩r = R

r
′ = r̃ +R′

,Tij(k̃) = ∑
n1,n2∈{−1,0,1}

eik̃⋅(n1R
Γ

1
+n2R

Γ

2
) Ti, j+n1 ation of RΓ

1
(j)+n2 ation of RΓ

2
(j) , (5.13)where r are lattie vetors of the lattie γ, R are loations inside the luster and r̃ are lattie vetors ofthe superlattie Γ. We now turn to the spei� ases of the luster deompositions disussed above.5.1.6. One-site Cluster TilingAlthough the unit ell of Graphene onsists of two atoms, it is possible to onstrut single-site lustersby attributing the intra-unit ell hopping to the hopping matrix T and solving the atomi problem forthe luster Green's funtion. The superlattie is then given by the elementary Graphene lattie γ. Thesuperlattie-wave vetor transformed hopping matrix is given byT(1)ij (k) = ⎛⎝
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⎞⎠ , (5.14)where t is the uniform nearest neighbor hopping matrix element. The quantity ∆ǫ is introdued by theVCA proedure as variational parameter.Note that in the ase of one-site lusters no Green's funtion periodization is neessary.5.1.7. Two-site Cluster TilingThe superlattie here again is given by the elementary Graphene lattie γ. For two-site lusters thesuperlattie-wave vetor transformed hopping matrix is given byT(2)ij (k) = ⎛⎝
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⎞⎠ . (5.15)The quantities ∆ǫ and ∆t are introdued by the VCA proedure as variational parameters. Note that inthe ase of two-site lusters no Green's funtion periodization is neessary.5.1.8. Six-site Ring Cluster TilingFor a six-site ring luster the superlattie is given above by the lattie Γ6. The superlattie-wave vetortransformed hopping matrix is given by
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.(5.16)For six site lusters the general periodization presription for Green's funtionsG(k, ω) = 1
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∑
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may be generalized to Gαβ(k, ω) = 1

NC
∑
i∈α
∑
j∈β

e−ik⋅(ci−cj) Gij(k, ω) , (5.18)where α,β denote the two translationally inequivalent lattie sites of the two-site unit ell C2 and i and
j denote the sites of the luster under onsideration. The spei� appliation to the six-site ring lusteryields Gαβ(k, ω) = 1
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) Gij(k, ω) . (5.19)5.1.9. Ten-site Ring Cluster TilingFor a ten-site ring luster the superlattie is given above by the lattie Γ10. The superlattie-wave vetortransformed hopping matrix is given by
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.(5.20)For ten site lusters the general periodization presription for Green's funtions eq. (5.17) may begeneralized to Gαβ(k, ω) = 1
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j∈{2,4,6,8,10}
e
−ik⋅(cC10
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) Gij(k, ω) . (5.21)This onludes the basis about the Graphene lattie struture and its luster deompositions. In thenext setion a model for randomly positioned magneti vaanies is introdued.5.2. Disorder Model for orrelated sitesIn this setion a model for randomly positioned magneti vaanies in Graphene, within CPT/VCA, isintrodued. Disordered systems have previously been desribed by the SFA [56℄ and also by VCA [57℄.The approah to disorder in this work is based on both these studies and is a diret extension of ref. [57℄.Irradiation indued vaanies in Graphene are reported to exhibit loal magneti moment behavior [18℄.In the VCA framework, Graphene is modeled by a tight binding Hamiltonian on a honeyomb lattie,desribed by the one-band Hubbard model parameters (U = 0, ǫ = 0, t = 1). The magneti impuritiesmay either be added upon introduing a spin-spin term like in a Kondo Hamiltonian [191℄ or in a betterapproximation by related impurity terms like in the SIAM. Here we hoose to model the magnetivaanies as interstitial impurities v, having high interation strength Uv, an on-site energy whih makesthe system partile-hole symmetri: ǫv = −Uv

2
and a hybridization to the surrounding arbon atoms of101



tv << t. Those vaanies are randomly distributed on the Graphene lattie:
Ĥ = −t L−Nv

∑
⟨i, j⟩σ

c
�
iσ cjσ −

U

2

Nv

∑
ασ

v�ασ vασ +Uv

Nv

∑
α

n̂v
α↑ n̂

v
α↓ − tv ∑

⟨α, i⟩σ
(c�iσ vασ + v�ασ ciσ) .Here the c

�
iσ/ciσ reates/annihilates an eletron with spin σ at site i. The operators v�ασ/vασ reate/an-nihilate eletrons at the orrelated vaany sites α. This setup orresponds to loal moment behaviorin the vaanies (impurities) above TK and Kondo sreening below, in aordane with experiment [18℄.Sine Graphene is a two-dimensional material it is to be expeted, that randomly indued vaanies (withloal moment behavior) have a similar e�et as magneti adsorbates on Graphene making this approahsuitable for the treatment of adsorbates as well. We proeed by disussing how this in�nite disorderedlattie may be treated within CPT/VCA.The vaanies are produed by irradiation in a random fashion. This randomness has to be inluded inthe resulting Green's funtion G. Approahing the problem using CPT/VCA, the solution is based on�nite size lusters of length L. The idea is to alulate the luster Green's funtion G′ for di�erent lassesof vaany on�gurations. There will be

NC = L + 1lasses Cα orresponding to α = 0 up to α = L vaanies inside the luster. These lasses make up the set
C = {Cα}, α ∈ [0, L] .Eah of these lasses has a multipliity of

mα = (L
α
) ,orresponding to the di�erent possibilities to spread the α vaanies inside the luster.For example the vaany lass C0 denotes lusters with no vaanies present (multipliity mα = 1),another one may be to have one vaany in the luster C1 (multipliity mα = L).Note that this lassi�ation of lusters into groups having the same number of impurities, does not meanthat lusters within one group have the same properties. Consider as an example a larger luster withtwo vaanies. Then the orrelations will be strongly dependent on the distane between the two vaanysites. However this lassi�ation makes sense beause the probability of �nding a luster will in a �rstapproximation depend only on the number of vaanies in it.To emulate a disordered lattie with a given onentration of vaanies the lasses Cα have to be mixedin an appropriate fashion. It is to be expeted, that more vaanies inside the same luster are less likely.How this is done in pratie will be outlined in se. 5.2.1.There are two ideas for averaging the solution for the Green's funtion over the vaany realizations:1. Averaging of the luster Green's funtion. The ideas presented in ref. [192℄ have to be extended intwo points. Here we onsider a weighed average of the luster Green's funtion orresponding todi�erent vaany lasses. The seond more ruial point has to do with the modeling of the vaaniesand the lattie geometry. Sine the hopping on the lattie t is uniform, exept for hopping intothe vaany tv << t, one has to deal with a di�erent inter-luster hopping matrix for eah disorderon�guration! This may only be treated on this level by averaging not only G' but also T . Detailsof this approah will be desribed in detail in se. 5.2.2.2. Averaging of the total Green's funtion after CPT/VCA oupling. This is ad-ho and it will beshown below that this approah does not yield an aeptable result. This approah will be outlinedin se. 5.2.3.The probability to �nd a ertain amount of vaanies inside one luster will be disussed in the nextparagraph.
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5.2.1. Weighing disorder on�gurationsEah luster on�guration η belongs to a vaany lass Cα. Depending on the multipliity mα thenormalized reweighing fators are de�ned as
pα =

wα

mα

NC∑
α=1

wα

.Any average may then be alulated by multiplying eah omponent by the appropriate pα and summingover all of them An averaged quantity A is alulated as
A =

1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Aη . (5.22)The onentration of vaanies is given by the ratio of the number of vaanies Nv and the number oftotal sites available L
Pv =

Nv

L
=

NC∑
α=1

αwα

L
NC∑
α=1

wα

.Speifying a desired vaany onentration Pv a probability distribution funtion for the weights wα hasto be found ful�lling additional onstraints:� All weights have to be positive:
wα > 0 ∀ α .� For zero vaany onentration only on�gurations involving no vaanies may ontribute:

wα = 0 ∀ α > 0 ∧ w0 > 0 if Pv = 0 .� For a vaany onentration of one only on�gurations ∈ CL may ontribute:
wα = 0 ∀ α < L ∧ wL > 0 if Pv = 1 .It is to be expeted that for a given vaany onentration Pv the weight of a luster of size L having αvaanies present is given by the binomial distribution [193℄

wα(L,Pv) = Pα
v (1 −Pv)(L−α) (L

α
) , (5.23)whih ful�lls the above onstraints. The distribution of luster weights is shown in �g. 5.5 for various valuesof the desired vaany onentration and luster sizes. This in priniple would still leave some freedomin weighing di�erent on�gurations having the same number of vaanies, whih is not investigated here.Note that this is an approximation beause the sattering o� nearest-neighbor vaanies is ertainlydi�erent from the sattering of two separated vaanies. Next, two examples for weighing lusters willbe presented to illustrate the above notation.Example I: weighing for two-site lustersConsider a system of two-site lusters L = 2. There may exist α = 0,1 or 2 vaanies inside a single luster.This gives NC = L+1 = 3 vaany lasses. The multipliity of the lasses is given by mα = [1,2,1] beausethere exist two ways to arrange one vaany in a two-site luster. The overall number of di�erent lusteron�gurations is 4 (not taking symmetry into aount). One may hoose three weights wα aording to
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Figure 5.5.: Distribution of luster weights aording to the binomial distribution eq. (5.23) for lustersizes L = 1,2,6,10,14 and 16 and vaany onentrations of Pv = 1% (six pitures in top leftorner), Pv = 5% (six pitures in top right orner), Pv = 10% (six pitures in bottom leftorner), Pv = 25% (six pitures in bottom right orner). Note that for higher values of Pvthe distribution does not derease monotonially with the number of vaanies per luster.
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eq. (5.23) to obtain the desired impurity onentration Pv

Pv =
(w1 + 2w2)

2 (w0 +w1 +w2) .An average quantity is expliitly alulated
A =

1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Aη

=
1
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(w0

1
A0 +

w1

2
(A1

1 +A
2
1) + w2

1
A2) .Example II: weighing for six-site lustersConsider a system of six-site lusters L = 6. There may exist α = 0,1,2,3,4,5 or 6 vaanies inside asingle luster. This gives NC = L + 1 = 7 vaany lasses. The multipliity of the lasses is given by

mα = [1,6,15,20,15,6,1] orresponding to the number of possibilities to arrange the vaanies insidea six-site luster. The overall number of di�erent luster on�gurations is 64 (not taking symmetryinto aount). One may hoose six weights wα aording to eq. (5.23) to obtain the desired impurityonentration Pv

Pv =
(w1 + 2w2 + 3w3 + 4w4 + 5w5 + 6w6)
6 (w0 +w1 +w2 +w3 +w4 +w5 +w6) .We will now proeed by introduing the averaging of Green's funtions for di�erent vaany on�gurationswithin CPT/VCA.5.2.2. Approah to disorder (I): Averaging on luster levelHere I will present details for what will be referred to as disorder approah I: averaging on the lusterlevel. This is the oneptually orret way for averaging as outlined in ref. [56, 57℄. The luster Green'sfuntion of a single vaany on�guration is given byG′η = Qη g′η Q�

η, η ∈ Cα . (5.24)The averaged luster Green's funtion will then be given by eq. (5.22)G′ = 1
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Q̃η g′η Q̃�
η ,where one an read o� the de�nitions of the tilded quantities. This may be rewritten in matrix notationde�ning Q̃ = (Q̃η=1, Q̃2, ...)Q̃�
= (Q̃�

1; Q̃�
2; ...)g̃′ = diag(g′1,g′2, ...) ,in the usual form G′ = Q̃ g̃′ ˜Q� .
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The CPT/VCA Green's funtion is then given byG = Q̃ 1

ω − (Λ̃ − Q̃�TQ̃) Q̃�
= (11 −G′T)−1 G′ ,where
Λ̃ = diag (Λ̃1, Λ̃2, ...) .Note that here Q may also stand for Qper as de�ned in h. 2.1.4. An issue with the problem at hand isthat T, even in CPT, is di�erent for every vaany on�guration η (not lass α). This arises due to thedi�erent hoppings into the vaanies tv, whih sit on di�erent sites in eah on�guration. One way todeal with this would be to average T in the same way as the luster Green's funtion is averaged:T = 1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Tη .The full averaged Green's funtion within this approximation is given byGI = (11 −G′T)−1 G′ .Please note again that in this approah all quantities are averaged on luster level. These averagedquantities G′ and T go into one CPT equation eq. (2.2) to yield the total Green's funtion G.Next averaging at another level of the alulation is desribed.5.2.3. Approah to disorder (II): Averaging of the full Green's funtionThis approah is not ontrolled and just for reasons of omparison. Averaging on luster level, leavesthe problem of separately averaging the matrix T. It is interesting to see what happens if eah vaanyon�guration η is treated with the orresponding Tη at the level of the "CPT-Dyson" equation. Howeverthen the averaging has to be done at the level of the CPT/VCA-Green's funtion G. The luster Green'sfuntion of a single vaany on�guration G′η is again given by eq. (5.24). A on�guration spei� matrixTη is used to alulate a CPT/VCA-Green's funtion Gη for eah on�gurationG−1η = G′−1η −Tη .The averaged CPT/VCA-Green's G is then simply given byGII =
1
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α=1
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∑
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Gη . (5.25)So here the CPT equation is applied to eah on�guration η and the total Green's funtions Gη are thenaveraged over. The biggest issue, besides it's general unontrolledness, with this approah is straightforward to see. At least some of the alulated Green's funtions Gη will be of the lass η ∈ C0. Thismeans that no vaanies are present within the luster and the spetrum may in general be gapless (whilespetra for η ∈ Cα α > 0 are expeted to be gapped). It an now be seen from eq. (5.25) that no matterhow many vaany on�gurations will be mixed with this Gη=0 the spetrum will stay gapless. I onsiderthis unphysial. Therefore in the following we will pursue disorder approah (I).In the next setion, results for the homogeneous Hubbard model on a honeyomb lattie are presentedand ompared to other methods.
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Figure 5.6.: (Left) Density of states of Graphene plotted along a ommon path in the Brillouin-zone:
Γ −M −K −Γ. The result for U = 0 (tight binding model) is shown whih was alulated forall luster sizes within CPT and VCA as a hek. The blak line shows the analytial resultfor the nearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26). (Right)The gap as a funtion of interation strength U obtained by CPT using 1,2,6, and 10 sitelusters as well as with VCAΩ using 2 and 6 site lusters. The variational parameter used isthe hopping t sine the model is partile-hole symmetri. As a referene the mean �eld andQMC results by Feldner et al. [187℄ are plotted.5.3. Calulations for homogeneous GrapheneIn this setion the CPT/VCA method shall be tested on the two-dimensional honeyomb lattie. There-fore results for the tight-binding model and the Hubbard model will be presented. First the density ofstates is disussed. Then the band gap as a funtion of interation-strength U will be ompared to othermethods.5.3.1. Density of statesIn this setion results obtained by CPT/VCA are disussed for L = 1,2,6 and 10 -site lusters. Results forthe density of states in the non-interating ase (tight-binding model) reprodue the analyti solution [175℄

ǫ(k) = ǫ − t ∗√1 + 4 cos(√3kx a
2
) cos(ky a

2
) + cos(ky a

2
)2 , (5.26)as expeted for all luster sizes (see �g. 5.6 (left)). Data for a (homogeneous) Hubbard model is shownin �g. 5.7 for U = 1 and ǫ = −0.5, in �g. 5.8 for U = 2 and ǫ = −1, in �g. 5.9 for U = 3 and ǫ = −1.5 and in�g. 5.10 for U = 4 and ǫ = −2. The data was obtained by CPT as well as by VCAΩ with one variationalparameter x = {t}. The model is partile-hole symmetri, so a variation of on-site energies would alwaysyield a zero deviation from the physial parameter. An expeted band gap opens for all studied lustersizes. The result for two-site lusters exhibits a muh wider band gap as the six-site result. Also thenarrowing of the bands, observed for six-site lusters is absent in the two-site result. The six and tensite results look qualitatively similar, while the two site results deviate. It is interesting to note thatVCA always tends to predit a smaller gap than CPT. The gap at the K point also beomes less wide forlarger luster sizes. This indiates an overestimation of the gap in CPT/VCA, whih is gradually uredby onsidering larger lusters.Next the band gap as a funtion of interation-strength U as obtained by CPT/VCA will be omparedto other methods.5.3.2. CPT/VCA band gapThe single partile gap is obtained by adding the lowest (in magnitude) positive exitation energy of thetotal system λU

k at k = K and the lowest in magnitude negative exitation energy of the total system
λL
k (λk is de�ned in se. 2.1.4). The gap as a funtion of interation strength U , obtained by CPT using107



Figure 5.7.: Density of states of Graphene plotted along a ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 1 (Hubbard model) is shown from left to right for L = 2,6 and 10 sitelusters. The blak line indiates the analytial result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.

Figure 5.8.: Density of states of Graphene plotted along a ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 2 (Hubbard model) is shown from left to right for L = 2,6 and 10 sitelusters. The blak line indiates the analytial result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.
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Figure 5.9.: Density of states of Graphene plotted along a ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 3 (Hubbard model) is shown from left to right for L = 2,6 and 10 sitelusters. The blak line indiates the analytial result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.

Figure 5.10.: Density of states of Graphene plotted along a ommon path in the Brillouin-zone: Γ −M −
K −Γ. The result for U = 4 (Hubbard model) is shown from left to right for L = 2,6 and 10site lusters. The blak line indiates the analytial result for the nearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT.(Bottom row) Data obtained by VCA with variational parameter x = {t}.
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1,2,6, and 10 site lusters as well as with VCAΩ using 2 and 6 site lusters, is shown in �g. 5.6 (right).The variational parameter used is the hopping t sine the model is partile-hole symmetri. The resultsshow onvergene to the QMC data. The mean �eld and QMC data was obtained by Feldner et al. inref. [187℄. It is interesting to observe that the VCA result for a ertain luster size almost reahes thequality of the CPT result for the next higher luster size. After testing CPT/VCA on the homogeneousHubbard model we proeed by investigating Graphene with random magneti vaanies.5.4. Results for Graphene with randomly positioned magnetivaaniesGraphene with randomly positioned magneti vaanies, in a given onentration, is studied within thetwo disorder approahes presented above. The magneti vaanies are modeled by the system parameters:
t = 1, Uv/t = 2, ǫv = −Uv/2, tv/t = 0.3162. Those numbers where hosen beause it is to be expeted, thata magneti vaany behaves like having a strong Coulomb repulsion with a low hopping parameter.Otherwise they are hosen arbitrarily, more realisti values are part of future work.The data obtained by CPT for the averaged single partile spetral funtion, within disorder approahI (i.e. averaging on luster level), is shown in �g. 5.11. Results are shown for vaany onentrations of
Pv = 1%,5%,10% and 25%. The mixing of the disorder on�gurations was done aording to a Binomialdistribution as outlined in se. 5.2.1. The alulations were done for luster sizes of L = 1,2,6 and 10. Theun-natural hoie of one-site lusters auses spurious spetra without a vaany-indued band gap. Onemay observe two gaps opening in the spetrum away from ω = 0 with inreasing vaany onentration.The ase of one-site lusters will be exluded from further disussions here. All other system sizes behavein priniple similar. A gap opens at the K point, at the Fermi energy ǫF = 0, with inreasing vaanyonentration. The gap opens already at low vaany onentrations of about 1%. In the extreme limitof 25% vaanies the lattie starts to seperate into smaller piees ausing �at disonneted parts inthe spetra, like in a dimerized lattie. This basially is a loalization phenomenon. It is interestingto observe, that in the L = 2-site ase the spetrum at the K point starts out almost linearly. The
L = 6- and 10-site alulations agree on an almost quadrati spetrum at K. This is in aordane withthe results for homogeneous Graphene (see se. 5.3). Furthermore two symmetri, non-dispersing bandsof low weight evolve in the viinty of the Fermi energy, at a vaany onentration of ≈ 10% in the ase of
L = 2−,6- and 10-site lusters. The larger the lusters, the more gaps away from the Fermi-energy open.This may be an issue of the Green's funtion periodization. One an also observe, that the larger thelusters get, the smaller the gap at the Fermi-energy will be predited. This is in aordane with theresult for a homogenous Hubbard model (see �g. 5.6 (right)). There it was shown, that smaller lustersalways overestimate the size of the gap in omparison to QMC. The general form of the tight-bindingdispersion relation on a honeyomb lattie eq. (5.26) is preserved in the L = 1− and 2-site ase. The resultsobtained by L = 6 − and 10-site lusters distort the original dispersion muh more. It is interesting toobserve that the one-site result and the six-site result agree reasonably well on the position of the induedopenings in the band away from ω = 0. Another interesting result however is, that all luster sizes yieldalmost the same spetrum at the Γ point. A Kondo-resonane at ω = 0 is not observed.It may be interesting to ompare the results obtained for magneti vaanies with randomly positionednon-magneti impurities. These are modeled by the system parameters: t = 1, Uv/t = 0, ǫv/t = −1, tv/t =
0.3162, to be able to ompare to the ase examined before. The spetra obtained for this setup for thesame onentration of impurities and luster sizes as before are plotted in �g. 5.12. The spetra look quitesimilar to those obtained before. Therefore we may onlude that the general features of the spetra arisedue to the e�ets of disorder and not a �nite interation strength U at the impurity loations. There arehowever some details, like in the additionally introdued �at bands in the viinity of the Fermi-energy.In this ase only one of those develops, as opposed to two in the previous ase of magneti vaanies.As expeted results obtained by averaging the total Green's funtion (disorder approah II) do not yielda physial result (see �g. 5.13). Note that the general features of the spetra obtained for various lustersizes agree very well qualitatively.
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Figure 5.11.: Density of states of Graphene with randomly distributed magneti vaanies plotted alonga ommon path in the Brillouin-zone: Γ −M −K −Γ. The averaged single partile spetralfuntion obtained by CPT for a vaany onentration of Pv = 1% (top row), Pv = 5%(seond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown for lustersizes of L = 1 (�rst olumn), L = 2 (seond olumn), L = 6 (third olumn) and L = 10(fourth olumn). The spetra were alulated by the disorder approah I where the Green'sfuntion and single partile hopping matrix is averaged on luster level. The blak line showsthe analytial result for the nearest-neighbor tight-binding dispersion relation of Grapheneeq. (5.26).
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Figure 5.12.: Density of states of Graphene with randomly distributed non-magneti defets plotted alonga ommon path in the Brillouin-zone: Γ −M −K −Γ. The averaged single partile spetralfuntion obtained by CPT for a vaany onentration of Pv = 1% (top row), Pv = 5%(seond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown for lustersizes of L = 1 (�rst olumn), L = 2 (seond olumn), L = 6 (third olumn) and L = 10(fourth olumn). The spetra were alulated by the disorder approah I where the Green'sfuntion and single partile hopping matrix is averaged on luster level. The blak line showsthe analytial result for the nearest-neighbor tight-binding dispersion relation of Grapheneeq. (5.26).
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Figure 5.13.: Density of states of Graphene with random randomly distributed magneti vaanies plottedalong a ommon path in the Brillouin-zone: Γ −M −K − Γ. The averaged single partilespetral funtion obtained by CPT for a vaany onentration of Pv = 1% (top row),
Pv = 5% (seond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown forluster sizes of L = 1 (�rst olumn), L = 2 (seond olumn), L = 6 (third olumn) and
L = 10 (fourth olumn). The spetra were alulated by the disorder approah II where thefull Green's funtion is averaged over. The blak line shows the analytial result for thenearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26).
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6. ConlusionsIn this thesis luster perturbation theory and the variational luster approah have been extended andapplied to quantum impurity models. Calulations done for the single impurity Anderson model, thebuilding blok of the majority of quantum impurity models, yield good results. An expression for thehange of the grand potential originating from the oupling of the impurity to the in�nite bath wasderived. A self onsistent formulation of the variational luster approah, previously introdued in theontext of non-equilibrium problems [25℄, was explored. Results obtained by the self onsistent approahshow good qualitative agreement with results obtained by VCA based on the grand potential. It waspossible to show that the essential physis of the single impurity Anderson model is aptured by CPTand VCA. Using VCA, the results onverge at moderate luster sizes while the CPT results require pro-hibitively large lusters to onverge. Comparison to results obtained from Bethe Ansatz, renormalizationgroup approahes and data obtained from X-Operator based alulations shows good agreement for allquantities investigated. VCAΩ yields qualitatively orret spetral properties for the single impurityAnderson model. It reprodues the Kondo resonane and an exponential sale in interation strength U .Furthermore the position and width of the Hubbard satellites omes out orret. For the asymmetrimodel the Friedel sum rule is ful�lled in all parameter regions implying that the Kondo resonane ispinned at the hemial potential in the Kondo region. A lose look at the Kondo resonane showed thatthe variational luster approah is able to reprodue the resonane and the funtional behavior of theKondo temperature remarkably well. The Kondo temperature is expeted to show exponential behaviorin interation strength in the Kondo regime. VCA tends to underestimate the exponent. Comparison ofdynami quantities to ontinuous time Quantum Monte Carlo shows good agreement. In onlusion VCAis a �exible and versatile method whih provides reasonably aurate results with modest omputationalresoures.Based on the suess of VCA in an equilibrium simulation, a non-equilibrium extension of VCA was ap-plied to a strongly-orrelated quantum dot. A value for the linear response urrent in the Kondo regimewas determined as well as an expression for the e�etive distribution funtion. In the non-equilibriumappliation again the extension from CPT to VCA proofed to be ruial. We investigated the urrent andnon-equilibrium density of states in all parameter regions. A linear splitting of the Kondo resonane wasobserved in VCA, as well as an interesting behavior of the steady-state urrent: A two peak strutureevolves for higher interation-strength in the Kondo regime. Furthermore the urrent in the Kondo regimeis very stable against variations of the model parameters. The highest peak-to-peak urrent however isobserved exatly at the rossover point from the Kondo plateau to the zero- or doubly oupied impurity.In the third part of this work randomly positioned magneti vaanies in Graphene were studied usingCPT/VCA. This made an extension to a strongly disordered, interating problem neessary. A shemefor treating vaanies/impurities in a lattie within CPT/VCA was developed and applied. The resultsfor the single-partile spetra and the behavior of the band gap looks promising for future appliations.The good behavior of VCA for the SIAM makes an eventual use as a luster-solver for DMFT appealing.
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A. AbbreviationsList of abbreviations (in alphabetial order)� ARPES ... angle resolved photo emission spetrosopy� BZ ... Brillouin zone� CDMFT ... luster/ellular dynamial mean �eld theory� CPT ... luster perturbation theory� CT-QMC ... ontinuous time quantum Monte Carlo� CT-HYB ... ontinuous time hybridization expansion quantum Monte Carlo� DCA ... dynamial luster approximation� DMFT ... dynamial mean �eld theory� DMRG ... density matrix renormalization group� DOS ... density of states� ED ... exat diagonalization� FRG ... funtional renormalization group� FSR ... Friedel sum rule� FWHM ... full width at half maximum� IPES ... inverse photo emission spetrosopy� LDOS ... loal density of states� MF ... mean �eld theory� MPS ... matrix produt states� NRG ... numerial renormalization group� PES ... photo emission spetrosopy� PT ... perturbation theory� QD ... quantum dot� QMC ... quantum Monte Carlo� SFA ... self-energy funtional approah� STM ... sanning tunneling mirosope� SIAM ... single impurity Anderson Model� VCA ... variational luster approah� VCAΩ ... variational luster approah based on the grand potential� VCASC ... variational luster approah based on self-onsisteny
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B. Units, Libraries and InfrastrutureIn this doument units of
h̵ = e = kB = 1 ,are used. The redues Plank's onstant is denoted h̵, the (positive) eletroni harge e and Boltzmann'sonstant kB . The hopping integral for free eletrons on a lattie, t is set to one unless otherwise noted.The numerial alulations done in this work were performed using a self-written program in C++. Theprogram was developed in Elipse Helios using a GNU C ompiler v4.4. Use was made of several librariesfor C++: Boost, Lapak, Arpak, Blas and GSL v1.15. A wrapper library for some numerial routinesdeveloped by Ralf Gamilsheg and Mihael Knap, BoostTools was used. Some parts of the work, espe-ially data evaluation, were done using Matlab v7.11.0. For the CT-QMC alulations I used the TRIQStoolkit. All alulations were done on an Intel quad-ore I7, with 16 gigabytes of RAM, operated by aDebian 6.0 Linux system. For this doument LATEX was used.
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C. Detailed analysis of the grand potentialfor in�nite referene systemsIn the following it will be shown that for a formally in�nite system onsisting of one or more lusters andan environment a regular expression for the grand potential Ω an be obtained. The part of the systemwhih may be troublesome is hidden in the noninterating environment of in�nite extent whih will blowup the trae. We �rst examine the third part of eq. (2.23)Tr ln (−G) = ln (det(−G)) . (C.1)To �nd a pratiable notation we write the matrix Green's funtions in terms of its elements in blokindies, where the index c stands for luster and the index e for environment. These indies denote blokswhih are of in�nite extent. To ease the notation the spin index is depressed as it is just a parameter. Allin�nite terms are those ontaining trG′ee. The idea is to �rst rewrite the interating Green's funtionsGαβ (α,β ∈ [c, e]) in terms of the noninterating Green's funtions G′αβ and the oupling matrix Tαβ .Note that for the problem under onsideration here Gαβ is a full matrix. The Green's funtion of thereferene system G′αβ is of ourse diagonal in blok indies. Finally the oupling matrix Tαβ has in CPTonly o� diagonal elements, but in VCA a further ontribution Tcc enters, arising from the variationalparameters. We are now going to identify and separate the problemati terms. To see how these termsin the end drop out onsider the right hand part of eq. (C.1) in the form
X ∶= ln(det(−( Gcc GceGec Gee

))) ,and insert an identity matrix to the left and to the right of G
X =ln⎧⎪⎪⎨⎪⎪⎩det⎡⎢⎢⎢⎢⎣( 1 0

0 −G′ee ) ( 1 0
0 −G′ee )−1 × (−1)

( Gcc GceGec Gee
) ( 1 0

0 −G′ee )−1 ( 1 0

0 −G′ee )⎤⎥⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭ ,whih an be written as
X = ln⎧⎪⎪⎨⎪⎪⎩det (−G′ee) det( −Gcc GceG′−1eeG′−1ee Gec −G′−1ee GeeG′−1ee

)
× det (−G′ee)⎫⎪⎪⎬⎪⎪⎭ . (C.2)The interating Green's funtion Gαβ is determined in terms of the noninterating Green's funtions gαβand the oupling matrix Tαβ straightforwardly by Dyson's equationGcc = rccG′cc (C.3a)Gee = G′ee +G′eeTecGccTceG′ee (C.3b)Gec = G′eeTecGcc (C.3)Gce = GccTce ree , (C.3d)where the abbreviation rcc has been de�ned as

rcc = (1 −G′ccTcc −G′ccTceG′eeTec)−1 . (C.4)It is important to note that all ourring terms inluding rcc (whih depends just on the projetion ofG′ee on the �nite luster spae) are well behaved under the trae, exept for gee whih has in�nite trae.3



Inserting eqs. (C.3) into eq. (C.2) we obtain
X =2Tr ln (−G′ee) (C.5)
+ ln(det( −Gcc GccTceTecGcc −G′−1ee −TecGccTce

)) .To get rid of the last troublesome term G′−1ee we rewrite the above expression using Sylvester's theoremdet (X +AB) = det (X) det (1 +BX−1A) , (C.6)whih is valid for non singular X . A suitable form of eq. (C.5) is
X =2Tr ln (−G′ee) + ln⎧⎪⎪⎨⎪⎪⎩det⎡⎢⎢⎢⎢⎣( −Gcc 0

0 −G′−1ee

)
+ ( 0 GccTecGcc −TecGcc

) ( 1 0

0 Tce
)⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .Applying theorem eq. (C.6) we may write

X =2Tr ln (−G′ee) + ln⎧⎪⎪⎨⎪⎪⎩det (−Gcc) det (−G′−1ee )det⎡⎢⎢⎢⎢⎣11 + ⎛⎝ 0 −1
−TceG′eeTec´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pcc

Gcc +TceG′eeTec´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pcc

Gcc
⎞⎠
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .Here we have identi�ed pcc as another well behaved quantity whih just depends on the projetion of thein�nite environment onto the �nite luster. Finally we end up with

X =Tr ln (−G′ee) +Tr ln (−Gcc)+Tr ln⎧⎪⎪⎨⎪⎪⎩11 + ( 0 −1
−pccGcc +pccGcc

)⎫⎪⎪⎬⎪⎪⎭ .The last term vanishes as we see as follows. With the abbreviation a = pccGcc it readsTr ln⎧⎪⎪⎨⎪⎪⎩11 + ( 0 −11
−a a

)⎫⎪⎪⎬⎪⎪⎭ = lndet(
11 −11
−a 11 + a)We use a Shur omplement type of deomposition by seeking an upper tridiagonal matrix whih appliedfrom the right eliminates the upper right blok of the original matrix and only hanges the lower rightblok. In the present ase it reads

( 11 −11
−a 11 + a) × (11 11

0 11
) = ( 11 0

−a 11
) .The inverse of a matrix

(11 F

0 11
)−1 = (11 −F

0 11
) ,and we get

ln det( 11 −11
−a 11 + a) = lndet( 11 0

−a 11
) + ln det(11 −11

0 11
)

= 2 ln(1) = 0.
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Adding now the �rst two terms of equation eq. (2.23) the grand potential Ω is given by
Ω = Ω′ −Tr ln (−G′ee) −Tr ln (−G′cc)
+Tr ln (−G′ee) +Tr ln (−Gcc) + 0
= Ω′ −Tr ln (−G′cc) +Tr ln (−Gcc) + 0
= Ω′ +Tr ln (rcc)
= Ω′ −Tr ln (11 −G′ccΣ̃cc) , (C.7)
Σcc ∶= Tcc +TceG′eeTec .This shows that the in�nite environment ontributions drop out and we may use eq. (D.18) to obtain a�nite value for the grand potential Ω.
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D. Evaluation of the grand potentialThe goal of this appendix is to �nd an expression for the grand potential Ω in terms of the Green'sfuntions available in a CPT/VCA approah. The system we have in mind here is a fermioni lusteroupled to a formally in�nite environment. The alulation done here in full detail follows [26℄ losely.Similar alulation for bosoni systems may be found in [52, 29℄. The new aspet of this result is that itmay be used for formally in�nite systems.The grand potential Ω for fermions an be ast into the form of eq. (2.23) [194, 68, 85℄. Where G and G′ arethe CPT/VCA Green's funtion and the Green's funtion of the referene system respetively. Note thatfor Bosons the minus sign in front of G′ and the plus sign in front of G are exhanged. The minus signsinside the logarithms are neessary to meet the onvention for the branh ut of the omplex logarithmifuntion in standard numerial methods. The trae Tr denotes a sum over Matsubara frequenies and asum over lattie sites and spin whih is denoted tr
Tr ≡

1

β
∑
ωn

tr .Here β = 1
kBT

is the inverse temperature. The fermioni Matsubara frequenies wn =
(2n+1)π

β
are de�nedas the poles of the Fermi-Dira distribution funtion [30℄

pFD(z) = 1

eβz + 1
. (D.1)The Green's funtion G is given by G = (11 −G′T)−1G′ , (D.2)within the CPT/VCA approximation. As shown in app.C the expression for Ω in eq. (2.23) is onvergentalso for the formally in�nite referene system onsidered here. This means that the formally in�nitematries G′ and T may be folded bak to dimensions L + c, where L is the size of the luster part ofthe referene system and c is the number of environment sites oupled to the luster. Therefore wemay rewrite the expression for the grand potential (eq. (2.23)) using the CPT/VCA approximation for G(eq. (D.2)) and obtain

Ω = Ω′ +Tr ln ((11 −G′T)−1) +Tr ln (−G′) −Tr ln (−G′)
= Ω′ −Tr ln (11 −G′T) . (D.3)Our goal is to show that this trae is integrable and to ast it into a form whih may be alulatede�iently numerially.We start out by analyzing the asymptoti behavior of the seond term in eq. (D.3) whih we will refer toas I. Examining the trae

I = Tr ln (11 −G′T) = 1

β
∑
ωn

tr ln (11 −G′T) , (D.4)and knowing that G′(ω) ω→∞Ð→ 1

ω
,we �nd that tr ln (11 −G′T) ω→∞Ð→ tr ln(1 − T

ω
)

= tr − T
ω
−
1

2
(T
ω
)2 −O (T

ω
)3

≈ −
1

ω
trT∝ 1

ω
.Where we Taylor expanded the logarithm and we used that the matrix T is ω independent. Sine theintegral of 1

ω
diverges, one introdues a onvergene fator eiωn0

+ .6



Figure D.1.: Deformation of the integration ontour CFD (left) to CFD′ (middle). Note that in the proessthe ontour is ut one at in�nity and reonneted the other way round to end up with CAB(right).We are going to replae the sum over Matsubara frequenies by an integral using the residue theorem [195℄
∮
C
f(z)dz = 2πi∑

p

Res (f(z, zp)) . (D.5)whih is valid for any funtion f(z) whih is meromorphi inside the region C. It was mentioned beforethat the poles of the Fermi-Dira distribution eq. (D.1) are the fermioni Matsubara frequenies ωn. Wewill now use a ommon trik from many body theory for sums like this [35, 196℄. We onstrut a funtion
f(z) whih has as residuals exatly the integrand we are looking for

1

2πi

1

β
tr ln (11 −G′(z)T) ez0+ , (D.6)where the integration ontour used enloses all poles of the Fermi-Dira distribution CFD (see �gureD.1 (left)). Note that in this ontext the Fermi-Dira distribution pFD is sometimes alled Matsubaraweighing funtion [197℄. Making an eduated guess the funtion f(z) we are looking for is

f(z) = − 1

2πi
pFD(z)tr ln (11 −G′(z)T) ez0+ . (D.7)To show this we will alulate the residuals of eq. (D.7) with respet to the poles of the Fermi-Diradistribution funtion and end up with eq. (D.6). The residuals are given byRes (f(z,ωn)) = − 1

2πi
lim
z→ωn

z − ωn

eβz + 1
tr ln (11 −G′(z)T) ez0+ .The numerator as well as the denominator go to zero in the limit z → ωn. By using the theorem ofDel'Hospital and di�erentiating the numerator and the denominator separately with respet to z weobtainRes (f(z,ωn)) = − 1

2πiβ
lim
z→ωn

1

eβz
ez0

+tr ln (11 −G′(z)T) + 1

eβz
(z − ωn)( ∂

∂z
ez0

+tr ln (11 −G′(z)T))
= −

1

2πiβ
tr ln (11 −G′(ωn)T) 1

eβωn
eωn0

+

=
1

2πi

1

β
tr ln (11 −G′(ωn)T)eωn0

+

.To end up at the last line we used that eβωn = −1. So far we replaed the sum over Matsubara frequeniesby a omplex ontour integral and rendered the integral onvergent by a onvergene fator
I = −

1

2πi
∮
CFD

dz
1

eβz + 1
tr ln (11 −G′(z)T) ez0+ . (D.8)Note that the integrand has also poles along the real axis arising from G′(z).To evaluate the integral we try to deform the integration ontour into something more usable. Some7



Figure D.2.: Three possible integration ontours for the T=0 ase. We use ontour CA whih is depitedto the far right and an be split into two integrals CA′ along an in�nite semiirle and CIalong the imaginary axis from +i∞ to −i∞.possibilities are shown in �gure D.1. In some of the proposed ontours the limits where ut at in�nityand losed the other way round. Having in mind an integration ontour CAB like the one in �gureD.1 (right), we are interested in the zero temperature result (β → ∞). In this limit the Fermi-Diradistribution goes to zero in the region B (Re(z) > 0) aslim
β→∞

1

eβz + 1
= lim

β→∞
1

eβRe(z)eβIm(z) + 1
=

1

e∞ξ2e∞χ + 1
→ 0 .It goes to one in the region A (Re(z) < 0)lim

β→∞
1

eβz + 1
= lim

β→∞
1

eβRe(z)eβIm(z) + 1
=

1

e−∞ξ2e∞χ + 1
→ 1 .For zero temperature we are therefore left with only the integration in the negative real half plane. Somepossible integration ontours are drawn in �gure D.2. Choosing the ontour CA and splitting it into twoontributions CA′ and CI (see �gure D.2 (right)) we evaluate the integral along the in�nite semiirle

CA′ �rst
I ′ = − 1

2πi
∮
CA′

dz
1

eβz + 1
tr ln (11 −G′(z)T) ez0+

= lim
R→∞ −

1

2πi
∫

1

2
π

3

2
π

dφ iReiφtr ln (11 −G′(Reiφ)T)eiReiφ0+ .Where in the integral the substitution z = lim
R→∞Reiφ was done. For large arguments we know that theGreen's funtion G′ behaves like 1

ω
so we an proeed with

I ′ = − 1

2π
lim
R→∞R∫

π
2

3

2
π
dφeiφtr ln(11 − T

Reiφ
) eiReiφ0+

= −
1

2π
lim
R→∞R∫

π
2

3

2
π
dφeiφtr − T

Reiφ
eiReiφ0+

= −
trT
2π

lim
R→∞∫

3

2
π

π
2

dφeiRe
iφ

0
+

.
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From the �rst to the seond line the logarithm was expanded. Next we try to �nd an estimate for theupper bound of the absolute value of this integral
∣∫ 3

2
π

π
2

dφeiReiφ0+ ∣ = ∣∫ 3

2
π

π
2

dφeiR(cosφ+i sinφ)0+ ∣
≤ ∫

3

2
π

π
2

dφ ∣e−R sinφ0
+ ∣

≈ ∫
π
2

0
dφ ∣e− 2

π
Rφ0+ ∣

= ∣− π

2R0+
e−

2

π
Rφ0

+ ∣π20 ∣
= ∣ π

2R0+
(1 − e−R0+)∣ . (D.9)As one an see eq. (D.9) goes to zero for R → ∞ and therefore the integral I′ vanishes. Note that thelimit R to in�nity has to be exeuted before the limit 0+ to zero. The only part of the integral whihontributes to I is

I = −
1

2πi
∮
CI

dz tr ln (11 −G′(z)T) ez0+ , (D.10)where the ontour CI runs along the imaginary axis from +i∞ to −i∞.At evaluating the integral numerially the onvergene fator ez0+ is very unpleasant. The next step isto get rid of it. We will add to the integrand a funtion r(z) whih has only poles on the outside of theintegration ontour. These are hosen to lie on the positive real axis in our approah. Furthermore r(z)should behave like 1
ω
in the limit ω → ∞ to anel the − 1

ω
behavior of the integrand. Suh a funtionr(z) may be hosen to be

r(z) = trT
z − ρ

, (D.11)where ρ is a large positive real number. The expression for I takes the form
I = −

1

2πi
∮
CI

dz tr ln (11 −G'(z)T) + T
z − ρ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∝ 1

ω2

. (D.12)The added term r(z) will not ontribute to the integral as the poles lie outside the region of integrationbut it will render the integral onvergent beause the expression within the trae now goes like 1
ω2 asompared to the 1

ω
before. Therefore the onvergene fator may be dropped.It is possible to further rewrite the integral using the property of retarded Green's funtionsG(−iω) = G∗(iω) ,whih also holds true for the funtion r(z). The resulting integral

I = −
1

2πi
∫
−i∞
+i∞

dω tr ln (11 −G′(ω)T) + T
ω − ρ

=
1

2πi
∫
+∞
−∞

idω tr ln (11 −G′(iω)T) + T
iω − ρ

=
1

2π
(∫ 0

−∞
dω tr ln (11 −G′(iω)T) + T

iω − ρ

+∫
+∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
)

=
1

2π
(∫ ∞

0
dω tr ln (11 −G′(−iω)T) + T

−iω − ρ

+∫
+∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
)

=
1

2π
∫
∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
+  . (D.13)
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The integration variable ω was one impliitly negated in this proess.The integral over r(ω) +  may be evaluated having in mind the form of T (see �gure D.3)
1

2π
∫
∞

0
dω tr T

iω − ρ
+

T
−iω − ρ

=
1

2π
trT∫ ∞

0
dω

1

iω − ρ
−

1

iω + ρ

=
1

2π
trT (−2ρ)∫ ∞

0
dω

1

ω2 + ρ2

= −
1

π
trTρ1

ρ
artan(ω

ρ
) ∣∞0

= −
1

π
trT(π

2
− 0)

= −
trT
2

= −L∆µ , (D.14)where ∆µ is the on-site part of T. The trae of T is given by trT = 2L∆µ for homogeneous systems,where the fator 2 is due to spin. Here L is the size of the referene system. The value ∆µ is the di�ereneof the hemial potential of the referene system to the variational hemial potential in VCA.Putting everything together we obtain
I = −L∆µ +

1

2π
∫
∞

0
dω tr ln (11 −TG′(iω)) + 

= −L∆µ +
1

2π
∫
∞

0
dω tr 2Re(ln (11 −TG′(iω)))

= −L∆µ +
1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ . (D.15)A numerial onvergene analysis for integrals of this kind is undertaken in [26℄. There it is shown thatthe onvergene is in general very good. The method used to evaluate eq. (D.15) is a Gauss-Legendreintegration. The region of integration from zero to in�nity is split into three regions. Region one withabout twenty points on the interval [0,Λ1) where Λ1 is the low energy sale of the problem (i.e. thesmallest eigenvalue of the hamiltonian, up to some minimum). Region two with about twenty points onthe interval [Λ1,Λ2) where Λ2 is the high energy sale of the problem (i.e. the largest eigenvalue of thehamiltonian up to some maximum). Region three on the interval [Λ2,∞) where in the integrand onesubstitutes u = 1

ω
and integrates from 0 to Λ−12 :

1

π
∫

1

Λ2

0
dω ω−2ln ∣det(11 −TG′( i

ω
))∣ . (D.16)The integrand vanishes very fast for large arguments and so the ontributions from the third region aresmall.Finally putting everything together the expression for the grand potential at zero temperature is

Ω = Ω′ − I

= ω′0 + trT − 1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ (D.17)

= ω′0 +L∆µ −
1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ . (D.18)To round this disussion up, some interesting omments follow. Note that det (11 −G′(iω)T) = det (11 −TG′(iω))due to Sylvester's theorem. The trae in expression D.18 still inludes spin. For systems where the dif-ferent spins do not ouple and Gσ is alulated for one spin σ only a fator 2 may replae the sum over

σ. As test for the orret implementation may serve the fat that for non-interating systems the grandpotential has to be a onstant in all variational parameters. This arises from the fat that whatevervalues are hosen for the variational parameters, CPT/VCA yields the exat result. Equation D.18 alsopermits to see very easily why the noninterating in�nite system will not ause this grand potential todiverge. A full proof for this fat is given in app.C. Consider an in�nite noninterating lead oupled to a�nite interating luster. The lead part in the Green's funtion G′ will be diagonal and oupy the blokof G′ from index L + 1 to ∞. Note also the matrix T (whih is now also in�nite) will maintain its form(see �gure D.3). The matrix 11−G′T will be in general a full matrix in the blok [1, L+2] if two leads are10



Figure D.3.: Generi form of the matrix representation of the luster Green's funtion G′ (left) and theinter-luster hopping matrix T (right).oupled to the luster or [1, L + 1] if one lead is oupled to the luster. It will have ones in the diagonalfrom [L + 2,∞] or [L + 1,∞] and no further o� diagonal elements. So taking the log (whih is a matrixlogarithm) and then the trae will be �nite (only zeros will be added up for the in�nite non interatingsystem). This arises of ourse from the fat that just a �nite number of sites of the environment areoupled to the luster.
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E. Obtaining the matrix Green's funtionfrom the Green's funtion of theorrelated siteA general proedure for obtaining all elements of the interating luster Green's funtion G′ij from theGreen's funtion of the interating site G′ff (whih has to be obtained exatly by some method beforehandfor a system of length L) and the matrix Green's funtion of a free hain of length L − 1 G′ss′ , s, s′ ∈[1, ..., L − 1] is outlined here. A similar disussion using T-matrix representation in k-spae is given inref. [198℄. We disuss the speial ase of a single impurity at the far end of a non-interating hain, butthe method is appliable to systems with a �nite number of impurities and the generalization is straightforward. The advantage provided by this method is that in any alulation only the loal impurityGreen's funtion needs to be alulated. From this Green's funtion the loal Green's funtion on everyother site as well as the o�-diagonal terms may be reonstruted.The L ×L luster Green's funtion G′ij is built up suessively by making use of the equation of motionmethod whih results in a Dyson-like equation. We start out by reating the blok diagonal unoupledGreen's funtion G′0ij , where G′011 = G′ff and G′0ij = G′ss′ , i, j ∈ [2, ..., L]. Then one proeeds by obtainingthe luster Green's funtion by G′ij = G′0ij +G′0iαTαβG′βj .Here Tαβ has just an entry −V for the oupling of the impurity to the �rst site of the hain and thehermitian onjugate. Therefore the equation redues toG′ij = G′0ij +G′0i1T12G′2j +G′0i2T21G′1j
= G′0ij − V (G′0i1G′2j +G′0i2G′1j) . (E.1)This looks like an ordinary CPT oupling of an isolated impurity to the �rst site of some other system.However in this ontext there is a major di�erene! The Green's funtion of the impurity G′ff wasalready obtained for the spei� system of length L under onsideration. So we merely reonstrut theother matrix elements, whih is exat! It is important to note that we have to proeed iteratively andnot by a matrix operation:1. One starts out at the impurity setting G′11 = G′011 = G′ff .2. Then one may alulate G′i1, i ∈ [2, ..., L] by eq. (E.1):G′i1 = G′0i1 − V (G′0i1G′21 +G′0i2G′11)
= −VG′0i2G′11 .Note that the index for i starts at 2, so the element 1,1 whih was set in the before, is not touhed!The elements of G of the �rst row and �rst olumn are therefore built up from the impurity Green'sfuntion G′ff and the Green's funtions of a tight-binding hain with open boundary onditionsG′0i2. Sine G′ is symmetri G′1i = G′i1.3. Then one may proeed and alulate the diagonal elements G′ii, i ∈ [2, ..., L] by eq. (E.1):G′ii = G′0ii − VG′0iiG′1i .4. From here on all missing o� diagonal elements are alulated in the same fashion using eq. (E.1).Starting at alulating G′i2, then G′i3 up to G′iL always not touhing previously alulated elements.To illustrate the proedure a short outline of the orresponding algorithm is helpful:12



#Obtain Green's funtions of tight binding hain and impurity site
Gff ← Calulate the loal impurity Green's funtion for a SIAM of length L

Ghain ← Calulate the matrix Green's funtion for a tight binding model of length L − 1#Initialize G0G0
11 ← GffG0
(2∶L,2∶L) = Ghain#Obtain GG11 ← G0

11for j = 1→ L dofor i = j → L doif !((i ==1)&&(j==1)) thenGij ← G0
ij − VG0

i1G2j − VG0
i2G1jGji ← Gijend ifend forend for

13



F. Mapping a one dimensional hain toe�etive higher dimensionsConsider a single orrelated orbital at the far end of a semi-in�nite hain whih is one possible realizationof the single impurity Anderson model
Ĥ = −ǫf∑

σ

f
�
iσfiσ +U

ˆ
n
f
↑
n
f
↓
− V ∑

σ

(f �
σciσ + fiσc

�
σ)

− t ∑
<ij>σ

c
�
iσcjσ − µ∑

iσ

c
�
iσciσThe non-interating semi-in�nite one dimensional hain will generate a semi-irular loal density of statesat the impurity site. For this speial setup it is however possible to renormalize the hopping parametersin the hain and obtain a model for an impurity embedded in higher dimensions. Note that after thisrenormalization the sites of the hain annot be identi�ed with real orbitals any more but at as anauxiliary bath whih produes the desired density of states in the impurity. To obtain the renormalizedhoppings we apply a Lanzos proedure where we onsider hopping from a entral impurity. For theLanzos proedure we identify the starting vetor ∣v0⟩ = ∣1⟩ the impurity site. Normalized vetors willalways be denoted as ∣v⟩ while for unnormalized ones ∣̃v⟩ will be used. The onstrution proedure nowonsists of suessive single partile hopping out of the impurity

∣̃vn+1⟩ = Ĥ ∣vn⟩ − ǫn ∣vn⟩ − βn ∣vn−1⟩
ǫn = ⟨vn∣ Ĥ ∣vn⟩
βn =

√⟨̃vn∣ṽn⟩ = ⟨̃vn∣ vn⟩
∣vn+1⟩ = ∣̃vn+1⟩√⟨̃vn+1∣ ,whih leads to a tridiagonal form of the Hamiltonian
⎛⎜⎜⎜⎜⎜⎝

ǫ0 β1 0 0 ...

β1 ǫ1 β2 0 ...

0 β2 ǫ2 β3 ...

0 0 β3 ǫ3 ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎠
.F.0.1. Mapping a semi-in�nite one dimensional hain to a two dimensionalmodelHere we build up the renormalized hopping parameters onsidering one Manhattan distane after theother. Eah site is labeled by its Manhattan distane and an arbitrary index (see �g. F.1).1. Manhattan distane 0

∣̃v0⟩ = ∣0,1⟩∣v0⟩ = ∣0,1⟩2. Manhattan distane 1We would like to �nd the �rst iteration Krylov vetors
∣̃v1⟩ = Ĥ ∣v0⟩ − ǫ0 ∣v0⟩ − β0 ∣v−1⟩ .
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Figure F.1.: Hopping to a two dimensional bath. The impurity is loated in the enter. Eah site islabeled by its Manhattan distane and an arbitrary index.Therefore we evaluate the ation of the Hamiltonian onto the impurity
Ĥ ∣v0⟩ = −ǫ ∣1⟩ − V (∣1,1⟩ + ∣1,2⟩ + ∣1,3⟩ + ∣1,4⟩)

= −ǫ ∣1⟩ − V {∣1,X⟩} ,
{∣1,X⟩} is short for a weighed sum over all orbitals within Manhattan distane one. Furthermorewe evaluate

ǫ0 = ⟨v0∣ Ĥ ∣v0⟩ = −ǫ
β0 =

√⟨̃v0∣ṽ0⟩ = 1 .Plugging this bak into the equation for ∣̃v1⟩ we get
˜∣v1⟩ = −ǫ ∣1⟩ − V {∣0,X⟩} − (−ǫ) ∣v0⟩ − 1 ∗ 0
= −V {∣1,X⟩} .The norm of ∣̃v1⟩ is given by

⟨̃v1∣ṽ1⟩ = (−V )(1 + 1 + 1 + 1)(−V ) = 4V .So we end up with the normalized vetor
∣v1⟩ = − 1√

4
{∣1,X⟩} .3. Manhattan distane 2We proeed by alulating the seond iteration vetor

˜∣v2⟩ = Ĥ ∣v1⟩ − ǫ1 ∣v1⟩ − β1 ∣v0⟩ .
15



The ation of the Hamiltonian onto ∣v1⟩ is given by
Ĥ ∣v1⟩ = − 1√

4

⎛⎝ − µ ∣1,X⟩ − 4V ∣0,1⟩
− t (∣2,1⟩ + ∣2,2⟩ + ∣2,8⟩ + ∣2,2⟩ + ∣2,3⟩ + ∣2,4⟩ + ∣2,4⟩ + ∣2,5⟩ + ∣2,6⟩ + ∣2,6⟩ + ∣2,7⟩ + ∣2,8⟩)⎞⎠
=

1√
4

⎛⎝µ ∣1,X⟩ + 4V ∣0,1⟩ + t ∣2,X⟩⎞⎠ ,where
∣2,X⟩ = (∣2,1⟩ + 2 ∣2,2⟩ + ∣2,3⟩ + 2 ∣2,4⟩ + ∣2,5⟩ + 2 ∣2,6⟩ + ∣2,7⟩ + 2 ∣2,8⟩) .Furthermore we evaluate

ǫ1 = ⟨v1∣ Ĥ ∣v1⟩ = − 1√
4
⟨1,X∣ 1√

4
µ ∣1,X⟩ = µ

4
(12 + 12 + 12 + 12) = −µ

β1 =
√⟨̃v1∣ṽ1⟩ = 2V .Plugging this into the expression for ∣̃v2⟩ we get

˜∣v2⟩ = 1√
4

⎛⎝µ ∣1,X⟩ + 4V ∣0,1⟩ + t ∣2,X⟩ ⎞⎠ − (−µ) − 1√
4
{∣1,X⟩} − 2V ∣0,1⟩

=
t√
4
∣2,X⟩ .The norm of ∣̃v2⟩ is given by
⟨̃v2∣ṽ2⟩ = t√

4
(1 + 22 + 1 + 22 + 1 + 22 + 1 + 22) t√

4
= 5t2 .So we end up with the normalized vetor

∣v2⟩ = 1√
20
∣2,X⟩ ,4. Manhattan distane 3The third Lanzos vetor is given bỹ

∣v3⟩ = Ĥ ∣v2⟩ − ǫ2 ∣v2⟩ − β2 ∣v1⟩ .
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The ation of the Hamiltonian onto ∣v2⟩ is given by
Ĥ ∣v2⟩ = 1√

20

⎛⎝−µ ∣2,X⟩ − t ∑<ij> c�icj ∣2,X⟩⎞⎠
=

1√
20

⎛⎝ − µ ∣2,X⟩ − t⎛⎝ ∣1,1⟩ + 2 ∣1,1⟩ + 2 ∣1,2⟩ + ∣1,2⟩ + 2 ∣1,2⟩ + 2 ∣1,3⟩ + ∣1,3⟩ + 2 ∣1,3⟩
+ 2 ∣1,4⟩ + ∣1,4⟩ + 2 ∣1,4⟩ + 2 ∣1,1⟩ ⎞⎠
− t
⎛⎝ ∣3,1⟩ + ∣3,2⟩ + ∣3,12⟩ + 2 ∣3,2⟩ + 2 ∣3,3⟩ + ∣3,3⟩ + ∣3,4⟩ + ∣3,5⟩ + 2 ∣3,5⟩ + 2 ∣3,6⟩ + ∣3,6⟩

+ ∣3,7⟩ + ∣3,8⟩ + 2 ∣3,8⟩ + 2 ∣3,9⟩ + ∣3,9⟩ + ∣3,10⟩ + ∣3,11⟩ + 2 ∣3,11⟩ + 2 ∣3,12⟩⎞⎠⎞⎠
=

1√
20

⎛⎝ − µ ∣2,X⟩ − 5t ∣1,X⟩ − t ∣3,X⟩ ⎞⎠ ,with
∣3,X⟩ = (∣3,1⟩ + 3 ∣3,2⟩ + 3 ∣3,3⟩ + ∣3,4⟩ + 3 ∣3,5⟩ + 3 ∣3,6⟩ + ∣3,7⟩ + 3 ∣3,8⟩ + 3 ∣3,9⟩ + ∣3,10⟩ + 3 ∣3,11⟩ + 3 ∣3,12⟩) .Furthermore we evaluate

ǫ2 = ⟨v2∣ Ĥ ∣v2⟩ = 1√
20
⟨2,X∣ 1√

20
− µ ∣2,X⟩ = −µ

20
(20) = −µ

β2 =
√⟨̃v2∣ṽ2⟩ =√5t .Plugging this into the expression for ∣̃v3⟩ we get

˜∣v3⟩ = − t√
20
∣3,X⟩ .The norm of ∣̃v3⟩ is given by

⟨̃v3∣ṽ3⟩ = −t√
20
(4 + 72) −t√

20
=

√
76

20
t2 .So we end up with the normalized vetor

∣v2⟩ = − 1√
76
∣3,X⟩ .5. Manhattan distane 4The fourth Lanzos iteration vetor is given by

˜∣v4⟩ = Ĥ ∣v3⟩ − ǫ3 ∣v3⟩ − β3 ∣v2⟩ .The ation of the Hamiltonian onto ∣v3⟩ is given by
Ĥ ∣v3⟩ = − 1√

76

⎛⎝−µ ∣3,X⟩ − t ∑<ij> c�icj ∣3,X⟩⎞⎠
=

1√
76

⎛⎝µ ∣3,X⟩ − t⎛⎝terms involving ∣2, i⟩ and terms involving ∣4, i⟩ ⎞⎠ ,where the hopping terms ∣2, i⟩ and ∣4, i⟩ an not be written as α ∣2,X⟩ + β ∣4,X⟩. Therefore theseterms will not anel with the expressions oming from ǫ3 ∣v3⟩ and β3 ∣v2⟩ like in the previous ases.This makes it hardly possible to ontinue analytially (see �g. 5).17
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Figure F.2.: Evolution of the sites a�eted in a ertain Manhattan distane in the Lanzos proedurefor the mapping of a one dimensional hain to an e�etive two dimensional model. Thered dots indiate the urrent starting vetor superposition. The green dots denote the statesontributing at the appliation of the Hamiltonian. Note that for a Manhattan distane <= 3,a nie 'hopping' outwards takes plae, while for distanes >= 4 hopping inside and outsidetakes plae making the analyti evaluation of the oe�ients not feasible.F.0.2. Mapping a semi-in�nite one dimensional hain to a three dimensionalmodelThe proedure for the mapping to a three-dimensional model is ompletely analogous to the two-dimensional ase and will not be outlined in detail at this point.F.0.3. Numerial results for two and three dimensionsA numerial evaluation of the iteration however is easily feasible. The resaled hopping oe�ients
t(i) = ci t ,are displayed in �g. F.0.3 for the mapping to a two-dimensional model (left) and a three-dimensionalmodel (right) and are listed in tab. F.1. The alulation of the resaled hopping parameters beomesmore and more demanding and time onsuming with inreasing distane from the impurity. For thetwo-dimensional mapping the oe�ients alternate in sign and the two branhes may be extrapolatedseparately with very high auray

c1 = 2

c2l =
1.999999087638(2l)2+ 3.666362617826(2l)− 1.616035541467(2l)2 + 1.799469717153(2l)− 0.988115961204 . . . l = [1,2,3, . . .]

c2l+1 =
2.000306397205(2l)2+ 4.968914151507(2l)+ 4.012272194344(2l)2 + 2.521186264485(2l)+ 2.112147532948 . . . l = [1,2,3, . . .] .For the three-dimensional ase an extrapolation is more di�ult beause of the errati behavior of theoe�ients. It is however su�ient to use the �rst twenty or so oe�ients and set the rest to theasymptoti value c∞ = 3.The resulting loal density of states at the orrelated site ρf(ω) may be evaluated using a ontinued

18
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Figure F.3.: E�etive hopping oe�ients ci for mapping a hain to two dimensions (left) and to threedimensions (right).
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Figure F.4.: E�etive loal density of states at the interating site using the oe�ients ci for mapping ahain to two dimensions (left) and to three dimensions (right). The model parameters usedwere U = 0, t = 1, V = 1.fration representation of the Green's funtion
ρfω = −

1

π

⎛⎝ 1

ω+ − ǫf − (c1V )2
ω+−ǫ− (c2t)2

ω+−ǫ−
(c3t)2

ω+−ǫ−...

⎞⎠ .The loal density of states are displayed in �g. F.0.3 for the mapping to a two-dimensional model (left)and a three-dimensional model (right).Table F.1.: Hopping oe�ients ci for the mapping of a one dimensional hain to a two- and a three-dimensional e�etive model.distane i ... oe�ient at bond i away from orrelated site2D ci ... oe�ient for the mapping to two-dimensions3D ci ...oe�ient for the mapping to three-dimensionsdistane i 2D ci 3D ci distane i 2D ci 3D ci

c1 2.000000 2.449490 c15 1.989657 3.005940
c2 2.236077 3.000000 c16 2.011621 3.001386
c3 1.949377 3.073182 c17 1.990959 2.993073ontinued on next page19



Table F.1 � ontinuationdistane i 2D ci 3D ci distane i 2D ci 3D ci

c4 2.074883 2.924988 c18 2.010051 3.008736
c5 1.967931 3.049102 c19 1.991982 2.993337
c6 2.041942 2.983285 c20 2.008840 3.002119
c7 1.976995 2.990363 c21 1.992806 3.002684
c8 2.028360 3.023338 c22 2.007881 2.994256
c9 1.982234 2.976134 c23 1.993483 3.006018
c10 2.021124 3.014898 c24 2.007103 2.996264
c11 1.985607 2.997686 c25 1.994050 3.000146
c12 2.016693 2.991709 c26 2.006460 3.003107
c13 1.987946 3.013275 c27 1.994530 2.995299
c14 2.013729 2.988102 ...
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