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Abstract
One-dimensional strongly correlated quantum systems have become a popular playground
for theorists in the past, because of their sometimes completely different behavior com-
pared to systems in higher dimensions. For example, superconductivity does not occur in
one dimension according to the Mermin-Wagner theorem. On the other hand, there exist
effects only observable in one-dimensional systems such as spin charge separation.
In this master’s thesis, the dynamical behavior of one-dimensional quantum systems with
open boundary conditions is simulated. Groundstates of the systems are obtained by
the density matrix renormalization group algorithm, nowadays the most precise and effi-
cient method, and time evolution is computed by time-evolving block decimation. Both
methods can be represented as matrix product state approaches.
First, spin charge separation is investigated for a repulsive Hubbard model and compared
to analytically obtained solutions from the famous Bethe ansatz. The results show good
agreement.
Thereafter, simulations of Andreev reflection, an effect occurring for electrons crossing a
normal metal to superconductor boundary. Since there exist no superconductors in one
dimension, the observation of this special kind of reflection in one-dimensional systems
is astonishing. Andreev reflection is simulated and observed for several model systems,
containing spinless fermions, both repulsive and attractive Hubbard model and the s-wave
Bardeen-Cooper-Schrieffer Hamiltonian.
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Kurzfassung
Stark korrelierte Quantensysteme in einer Dimension entwickelten sich in der Vergan-
genheit zu einem beliebten Spielplatz für Theoretiker. Grund dafür ist ihr manchmal
komplett unterschiedliches Verhalten im Vergleich zu Systemen in höheren Dimensionen.
Supraleitung zum Beispiel taucht gemäß dem Mermin Wagner Theorem in einer Dimen-
sion nicht auf. Auf der anderen Seite existieren Effekte, die nur in eindimensionalen
Systemen beobachtbar sind, wie die Spin-Ladungstrennung.
In dieser Masterarbeit wird das dynamische Verhalten von eindimensionalen Quantensys-
temen mit offenen Randbedingungen simuliert. Die Grundzustände der Systeme wurden
mit Hilfe der Dichte-Matrix Renormierungsgruppe, dem heutzutage genauesten und leis-
tungsfähigsten Algorithmus, berechnet. Für die Zeitentwicklung der Zustände wurde der
Time-Evolving-Block-Decimation Algorithmus verwendet. Beide Algorithmen sind durch
Matrix Produkt Zustände darstellbar.
Zuerst wurde die Spin-Ladungstrennung für ein repulsives Hubbardmodell untersucht. Die
Simulationen wurden mit analytisch berechneten Ergebnissen, die aus dem Betheansatz
erhaltenen wurden, verglichen und zeigten gute Übereinstimmung.
Danach folgen Simulationen zur Andreev-Reflexion, ein Effekt der für Elektronen, die eine
Normalleiter-Supraleiter Grenzflächen passieren, auftritt. Überraschenderweise ist diese
Art der Reflexion in einer Dimension beobachtbar, obwohl Supraleiter hier nicht existieren.
Die Andreev-Reflektion wurde für verschiedenste Modellsysteme simuliert. Bei den unter-
suchten Systemen handelt es sich um Fermionen ohne Spin, sowohl das repulsive als auch
das attraktive Hubbardmodell und das Bardeen-Cooper-Schrieffer Supraleitermodell.
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1 Introduction
The rich physics of low dimensional strongly correlated quantum systems has attracted
the attention of many theorists over the last half century. Although low- and especially
one-dimensional systems behave highly different than one expects for normal systems in
higher dimensions, the models are on the one hand simple enough to provide complete
solutions, but on the other hand at least complex enough to contain various physical
effects.
Even though the systems are only of one dimension they are still analytically and numer-
ically hard to study. If one wants to analyze correlation effects, which emerge for example
in spin chains, frustrated magnets or high temperature superconductors, perturbation
theory fails due to the presence of strong interactions. Concerning the different behav-
ior of one-dimensional systems, new theoretical tools have been developed in the 1970’s,
especially the Luttinger liquid theory, which is the one-dimensional counterpart to the
three dimensional theory of Fermi-liquids. For some one-dimensional systems, solutions
based on the Bethe ansatz could be found [1, 2], but regrettably not for all.
Also, numerical algorithms like exact diagonalization, quantum Monte Carlo (QMC),
series expansion or coupled cluster methods were developed to gain deeper insight in
these strongly correlated systems. Unfortunately these algorithms are either of limited
precision, or the computational effort depends strongly on system size.
Suddenly in the year 1992 with Steve R. White’s Density Matrix Renormalization Group
(DMRG)[3, 4] everything changed, at least for one-dimensional systems. DMRG is cur-
rently the most powerful numerical method in the study of one-dimensional quantum
lattices, with significant advantages. First, the computational effort only grows linearly
with system size making simulations of several hundred if not thousand lattice sites pos-
sible. Second, in many DMRG applications the accuracy of the solution can be as high as
ten digits, making it one of the most precise algorithms to date. Sadly, DMRG behaves
totally different in higher dimensions, because of the influence of quantum entanglement.
Its different behavior in one and more dimensions is described by the so called area laws
[5]. Already in two-dimensions only relatively small systems can be simulated at high
precision, since the numerical effort grows exponentially with system size, making large
lattices one more time inaccessible.
First DMRG was used to calculate static properties of low-lying eigenstates, especially
ground states of strongly correlated Hamiltonians like in the Heisenberg, the tJ- or the
Hubbard model, but soon extensions for the study of dynamically properties were devel-
oped. This became possible by an originally unrelated development, the so-called matrix
product states (MPS), usually used for analytic studies as an special class of quantum
states.
Östlund and Rommer [6] were the first who discovered the connection between MPS and
DMRG, as they noticed, that the block-growth step in an infinite size DMRG (iDMRG)
(see section 3.8.1) is expressible by MPS. Immediately afterwards, J. Dukelsky and al.
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[7] showed that finite system DMRG (section 3.8.2) also leads to MPS. The strong rela-
tion between MPS and DMRG opened up the way to impressive extensions invisible in
the complex DMRG language, namely the efficient use of periodic boundary conditions,
infinite-system algorithms, numerical renormalization group (NRG) [8] applications, treat-
ment of continuous systems and also new developments in the analysis of systems with
higher dimensions [9].
But the probably most important extension was made by White, Feiguin [10] and Vidal
[11, 12]. They developed an efficient time evolution scheme for one-dimensional systems
based on DMRG, the time-evolving block decimation (TEBD) respectively the real-time
or time-dependent DMRG (tDMRG). This is substantial progress since the time evolution
of strongly correlated quantum states opens up their full dynamical behavior.
So far, having a theoretical tool to calculate one-dimensional quantum systems at an in-
credible accuracy and being able to simulate the dynamics in these systems is magnificent,
but do one-dimensional systems really bear a meaning in nature?
Initially, one-dimensional quantum systems were indeed just analytic toy systems for
theoretical physicists, but since the late 1970’s more and more experimental realizations
of such systems appeared. The first experimental systems were bulk materials with one-
dimensional structures inside.With advances in nanotechnology, isolated one-dimensional
systems appeared, e.g. quantum wires, Josephson junction arrays, edge states in quantum
Hall systems or nanotubes.
Quite recently [13, 14] some progress has been made in the trapping of ultra-cold quantum
gases in optical lattices. With this technology it is possible to build highly controllable
and tunable Hamiltonians of strongly interacting quantum systems in several dimensions.
This enables the experimental study and investigation of formerly only theoretical known
quantum models. In combination with the ability to simulate such systems by means of
DMRG and its deduced algorithms this will result in a fruitful physical playground and
will become an important field of investigation in the near future.
At our institute of Theoretical and Computational Physics at TU Graz one of the main
areas of research has been DMRG theory and its applications. For example, Peter Pip-
pan engaged in the application of DMRG to periodic boundary conditions [15]. Martin
J. Ganahl concentrated on the spin transport in one-dimensional Heisenberg spin 1/2
systems in real time [16] and Valentin Zauner analyzed the propagation of local signals
on infinite systems in a so-called comoving window [17]. The present master thesis is
based on the master thesis of Elias Rabel [18], who simulated different effects in one-
dimensional systems, mainly the spin-charge separation and the Andreev-reflection in the
spinless fermion and the repulsive Hubbard model.
The thesis is structured in following way.
In chapter 2 the model systems are introduced. One of them is the Heisenberg model,
which one can transform with a Jordan-Wigner transformation to the spinless fermion
Hamiltonian. Also both, the attractive and repulsive Hubbard model, are investigated.
On top of that the Bardeen-Cooper-Schrieffer (BCS) superconductor Hamiltonian is pre-
sented. Besides the plain introduction of the models, some of their symmetries and phys-
ical properties are described. In this chapter also some theoretical tools like the Bethe
ansatz, Luttinger liquid theory and the Bosonization of Hamiltonians are represented.
And of course, the main research targets of this master thesis, the physics of spin-charge
separation and the Andreev-effect are illustrated.
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Chapter 3 starts with a short introduction on MPS. Based on the singular value decom-
position (SVD) the Schmidt decomposition (SD) as a compact representation of bipartite
quantum states is explained. This gives us the possibility to measure the entanglement
entropy in such systems and makes the derivation of MPS achievable. Then its just a
small step to the measurement of observables in the MPS language. Finally the infinite-
and the finite size DMRG algorithms and the TEBD algorithm are explained.
The results for simulations of spin-charge separation and Andreev reflection for several
model systems are presented extensively in chapter 4.
Finally, chapter 5 contains a summary and conclusions.
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2 Model systems and their physics
In this section, the model systems that are later used and some of their physical character-
istics are presented. All of these systems have in common that they are one-dimensional1,
obey open boundary conditions (obc), and have only nearest neighbor interaction between
their particles.
Going from one system to another, the complexity of the models will increase, but more
physical interesting effects will appear.
First we will have a look at one of the easiest one-dimensional model systems, the Heisen-
berg model, analytically solvable for periodic boundary conditions (pbc) by help of the
famous Bethe ansatz.
Application of the Jordan-Wigner transformation, which gives us the possibility to map
spin operators onto fermionic creation and annihilation operators, opens the way to the
second model we are going to analyze, the spinless fermion model. The introduction of
Luttinger liquid theory and the bosonization technique reveals the first appearance of the
effect of metal and superconductor interaction boundaries which this master thesis is all
about, namely the Andreev reflection, although in this context only for spinless fermions.
Since nature does not know fermions without spin at all2, it would not be very satisfying
to stop our investigation at this point. Adding spin to the fermions results in the famous
Hubbard model3. Only small adaptations have to be made to apply the bosonization
technique to this more complicated Hamiltonian, but we will be rewarded with new phys-
ical effects, namely spin charge separation and the Mott transition. Of course, Andreev
reflection will also appear for fermions with spin.
Since Andreev reflection is an effect between metals and superconductors and supercon-
ductivity is an effect caused by the condensation of so-called Cooper pairs allowing two
fermionic electrons to form a bosonic-like particle, the last model we will have a look at
is the BCS model, able to describe s- and p-wave superconductors.
In this chapter, if not mentioned otherwise, especially concerning the physical properties
of one-dimensional quantum systems, I will closely follow the book of Giamarchi [19].

1For reasons later explained in this master thesis (see section 3.6.2).
2Of course, there are systems, which can be treated like "spinless fermions". Just imagine a system
consisting of fermions, which are all of the same spin species.

3Interestingly, the one-dimensional Hubbard model with pbc is also solvable by means of the algebraic
Bethe ansatz, but this is not part of the following investigations. For the interested reader I refer to
[20].
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2.1 Heisenberg model
The first model we are going to discuss is the simplest model possible, a one-dimensional
Heisenberg spin-1/2 chain. It is used for describing critical points and phase transitions
in magnetic systems (ferromagnetic, anti-ferromagnetic). The model consists of L sites
with either a spin up electron or one with spin down sitting on each site (see figure 2.1):

ĤHEI = Jxy
L−1∑
i=1

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
+ Jz

L−1∑
i=1

Ŝzi Ŝ
z
i+1 −B

L∑
i=1

Ŝzi (2.1)

Jα is the coupling constant in α-direction, which describes the exchange of spins, and
Bi is an external field in z-direction. Ŝαi are the standard spin operators which obey the
well-known commutation relations[

Ŝα, Ŝβ
]

= iεαβγŜ
γ . (2.2)

Figure 2.1: Heisenberg spin chain of length L = 10. Each site is occupied either by a spin
up electron (blue circles with ↑) or a spin down electron (circles with ↓).

In this special Hamiltonian only nearest neighbor interaction is taken into account and
it is rotational invariant in the xy-plane, but has a different coupling constant in the
z-direction. This is the famous XXZ model4.
Performing the simple transformation Ŝ± = Sx ± iSy leads to

ĤHEI = Jxy

2

L−1∑
i=1

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
+ Jz

L−1∑
i=1

Ŝzi Ŝ
z
i+1 −B

L∑
i=1

Ŝzi (2.3)

If one chooses the parametrization Jxy = J , Jz = J∆, the system is isotropic in spin for
∆ = 1. We call this the spin isotropic point. Furthermore, the ground state of the system
is always ferromagnetic for negative Jz and anti-ferromagnetic for a positive coupling
constant. Needless to say this is only true if one does not consider any external field.
Performing a transformation by changing the sign of two components of the spin opera-
tors5

Ŝxi → (−1)iŜxi (2.4)
Ŝyi → (−1)iŜyi (2.5)
Ŝzi → Ŝzi (2.6)

leads to Jxy → −Jxy, but Jz → Jz. Thus it is enough to consider Jxy > 0 regardless of
the sign of the couplings.

4The most general Heisenberg model is the XYZ-model with different coupling constants for every
direction in space (Jx 6= Jy 6= Jz), but the XXZ-model is the most common one and therefore we
introduced it straightaway.

5Note that changing the sign of all three components of the spin operator would violate the spin com-
mutation relation in equation 2.2.
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2.1.1 Bethe Ansatz
In 1932, Hans Bethe presented a method for obtaining the exact eigenvalues and eigenvec-
tors of the one-dimensional spin-1/2 Heisenberg model with periodic boundary conditions,
the famous Bethe ansatz. In this section I will follow the papers of Karbach and Müller
on this topic [1, 2].
Let us take the Hamiltonian of equation 2.3 without an external magnetic field, a chain
of length L with periodic boundary conditions (L+ 1 = 1) and set J = −Jxy = −Jz, i.e.
the isotropic ferromagnet:

Ĥ = −J
L∑
i

[1
2
(
Ŝ+
i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1

)
+ Ŝzi Ŝ

z
i+1

]
. (2.7)

The basis vectors of the Heisenberg Hamiltonian in z-direction are a combination of up
(↑) and down (↓) spins:

|ψ〉 = |σ1 . . . σL〉 with σj =↑, ↓ . (2.8)

Two symmetries of the one-dimensional Heisenberg model are essential for the Bethe
ansatz. First the rotational symmetry around the z-axis and second the conservation of
the z-component of the total spin SzT :

[
Ĥ, SzT

]
= 0 with SzT =

L∑
j=1

Ŝzj . (2.9)

Therefore we can sort the basis vectors by their number of down spins r according to their
quantum number SzT = L/2− r and thus block diagonalize the Hamiltonian.
The easiest block is the one with r = 0. Here all spins are aligned in the up direction
and the block only consists of the vector |F 〉 = | ↑ . . . ↑〉 with energy E0 = −JL/4. This
will be the vacuum state for our consideration and excitations from this state will be spin
flips at certain sites j.
For r = 1 we get L basis vectors which we will label by the position of the flipped spin

|j〉 = Ŝ−j |F 〉 j = 1, . . . , L . (2.10)

Due to the translational invariance of the Hamiltonian Ĥ we get plane waves for our
eigenvectors as a superposition of the basis vectors:

|ψ〉 =
L∑
j=1

a(j)|j〉 = 1√
L

L∑
j=1

eikj|j〉 , (2.11)

where k denotes the discrete wave numbers k = 2πm/L with m = 0, . . . , L − 1 because
of the periodic boundary conditions. The eigenvectors |ψ〉 are spin wave excitations with
wavelength λ = 2π/k called magnons with energy

E − E0 = J (1− cos k) . (2.12)
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The case with r = 2 is a superposition of two magnon states. Therefore we take the
ansatz

|ψ〉 =
∑

1≤j1<j2≤L
a(j1, j2)|j1, j2〉 (2.13)

a(j1, j2) = αei(k1j1+k2j2) + βei(k1j2+k2j1) (2.14)
|j1, j2〉 = Ŝ−j1Ŝ

−
j2 |F 〉 , (2.15)

where |j1, j2〉 are basisvectors in the subspace of dimension N(N−1)/2. As a result of the
Ŝzi Ŝ

z
i+1 coupling in the Heisenberg Hamiltonian, the spins feel a potential and thus can

scatter. That is why we have to make a case distinction whether the two electrons of spin
down are on neighboring sites or not. If they are not on neighboring sites (j1 + 1 < j2)
we get the coefficients a(j1, j2) by plugging in the wave function of equation 2.13 into the
Heisenberg Hamiltonian in equation 2.3 :

a(j1, j2) = J

2 (E − E0)

(
4a(j1, j2)− a(j1 − 1, j2)− a(j1 + 1, j2) (2.16)

− a(j1, j2 − 1)− a(j1, j2 + 1)
)

.

On neighbouring sites (j1 + 1 = j2) we get instead

a(j1, j2) = J

2 (E − E0) (2a(j1, j2)− a(j1 − 1, j2)− a(j1, j2 + 1)) . (2.17)

Comparing equations 2.16 and 2.17 one can see, that the terms a(j1 + 1, j2) and
a(j1, j2 − 1) vanish, because the electrons can not hop onto the same site. However to
obtain the same energy

E − E0 = J
∑
j=1,2

(1− cos kj) (2.18)

for both cases, it requires a modification of the amplitude ratio which has to be added as
a phase factor in the ansatz 2.14

α

β
≡ eiφ = −e

i(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2
(2.19)

a(j1, j2) = αei(k1j1+k2j2+ 1
2φ12) + βei(k1j2+k2j1+ 1

2φ21) . (2.20)

For the phase factor, the following rule applies:

φ12 = −φ21 ≡ φ (2.21)

2 cot φ2 = cot k1

2 − cot k2

2 . (2.22)

Because of the translational invariance of the wave function, implying that
a(j1, j2) = a(j2, j1 + L), an additional relationship between k1, k2 and φ occurs for the
coefficients in equation 2.20:

eik1N = eiφ, eik2N = e−iφ , (2.23)



2.1 Heisenberg model 9

or rewritten by taking the logarithm

Nk1 = 2πλ1 + φ, Nk2 = 2πλ2 − φ . (2.24)

The λi are integers called the Bethe quantum numbers.
Finally we get the solution of our problem by finding all the possible pairs (λ1, λ2) con-
forming to the equations 2.22 and 2.24.
We will now discuss only the results of this problem. For a detailed analysis I refer to [1]
and [2].
The solution of the Bethe ansatz splits in two classes, the magnon bound states and the
magnon scattered states and every class consists of two of these states for r = 2 overturned
spins.
We get the first magnon state by setting one of the Bethe quantum numbers to zero,
λ1 = 0, λ2 = 0, 1, . . . , L− 1. These L states are called C1.
The second magnon states C2 occur for nonzero Bethe quantum numbers, which differ by
two or more: λ1 > 0, λ2 > 0 and λ2 − λ1 ≥ 2.
The remaining class C3, the two magnon states, consists of nonzero Bethe quantum num-
bers, which are equal or differ by unity. Most of the Bethe quantum numbers of this class
are complex. In figure 2.2 the energies of all possible wave vectors of the Bethe solution
for two magnon states for a Heisenberg spin-1/2-chain of length L = 32 are depicted.

Figure 2.2: Excitation energy (E − E0) /J versus the wave number k of all L(L − 1)/2
eigenstates in the invariant subspace with r = 2 overturned spins for a system
with L = 32. States of class C1 are denoted by red circles, states of class C2
by open black circles, and states of class C3 by blue squares if λ2 = λ1, or blue
diamonds if λ2 = λ1 + 1 [1].

In general, r spins are flipped from the totally polarized vacuum state |F 〉. We can write
the eigenstates in a similar fashion as before for the case with r = 1 and r = 2 (without
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derivation):

|ψ〉 =
∑

1≤j1<...<jr≤L
a(j1, . . . , jr)|j1, . . . , jr〉 (2.25)

|j1, . . . , jr〉 = Ŝ−j1 . . . Ŝ
−
jr |F 〉 , (2.26)

For the coefficients we get the relation

a(j1, . . . , jr) =
∑
P

exp
(
i

r∑
n=1

kPnjn + i

2
∑
m<n

φPmPn

)
. (2.27)

where P denotes the r! permutations of the labels (1, . . . , r) and φmn are the 2-body
scattering phases satisfying the following equation

2 cot φmn2 = cot km2 − cot kl2 ,with m,n = 1, . . . , r . (2.28)

Translational invariance leads to the relation

Lkn = 2πλn +
∑
m6=n

φmn ,with n = 1, . . . , r , (2.29)

where λn are the Bethe quantum numbers going from 0 to L− 1, which are related to the
momentum of the eigenstates

k = 2π
L

r∑
n=1

λn . (2.30)

The energy of the eigenstates is

E = E0 + J
r∑

n=1
(1− cos(kn)) . (2.31)

2.1.2 Jordan-Wigner transformation
The one-dimensional Heisenberg model is closely related to another Hamiltonian. One
can interpret the two dimensional Fock space with spin up (|+ 1/2〉) and down electrons
(| − 1/2〉) as a chain where a site is either occupied |1〉 or not |0〉. The Ŝ+

i operator can
be seen as the creation operator of a fermion on site i and Ŝ−i as its annihilation operator.
Therefore the operators Ŝ+

i and Ŝ−i should obey fermionic anti-commutation rules. While
the operators fulfill the fermionic commutation relations on the same site, they do not on
different sites. Pascual Jordan and Eugene Wigner discovered in 1928 [21] that adding a
preceding phase factor to the ladder operators can solve this problem

ĉi = e+iΦiŜ−i (2.32)
ĉ†i = e−iΦiŜ+

i (2.33)
Φi = π

∑
j<i

Ŝ+
j Ŝ
−
j . (2.34)
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For every spin up electron preceding the electron on site i a phase factor of -1 is picked
up. One can reformulate the phase factor above in a more simple form and one gets the
Jordan-Wigner transformation:

ĉi =
∏
j<i

(
1− 2Ŝ+

j Ŝ
−
j

)
Ŝ−i =

∏
j<i

(
−2Ŝzj

)
Ŝ−i (2.35)

ĉ†i =
∏
j<i

(
1− 2Ŝ+

j Ŝ
−
j

)
Ŝ+
i =

∏
j<i

(
−2Ŝzj

)
Ŝ+
i . (2.36)

So the transformed operators obey the fermionic anticommutation rules{
ĉi, ĉ

†
j

}
= δij . (2.37)

Performing a Jordan-Wigner transformation on the Hamiltonian in equation 2.3 and con-
sidering Ŝz = Ŝ+Ŝ− − 1/2 gives us

Ĥ = Jxy

2
∑
i

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+ Jz

∑
i

n̂in̂i+1 − Jz
∑
i

n̂i −B
∑
i

n̂i + L

4 + LB

2 .

(2.38)

The first term can be interpreted as kinetic energy with the hopping integral t = Jxy

2 , the
second term is the electron-electron interaction controlled by Vi = Jzi , the third term can
be summarized in a chemical potential µ = −ε = Jz + B and the last two terms are just
an energy offset and can be neglected for that reason. This gives us the Hamiltonian for
spinless fermions.

2.2 Spinless fermions
In the spinless fermion model, fermions can hop between neighboring sites with a hopping
matrix element t. They experience a nearest neighbor interaction V . A local interaction
is precluded of course by the Pauli principle. A magnetic field along the z axis for the
spin chain is simply a chemical potential −B∑i Ŝ

z
i = −ε∑i

(
n̂i − 1

2

)
for spinless fermions

ĤSF = −t
L−1∑
i=1

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+ V

L−1∑
i=1

n̂in̂i+1 + ε
L∑
i=1

n̂i . (2.39)

The operator ĉ†i creates a particle in a Wannier state on site i, whereas the operator ĉi
destroys one. n̂i = ĉ†i ĉi is the number of particles on each site.

Figure 2.3: This figure represents a one-dimensional spinless fermion model with L = 10
sites. A site can either be occupied by a spinless electron (blue solid circle) or
not (white dashed circle). Note that this model is exactly the Jordan-Wigner
transform of the Heisenberg spin-1/2-chain state in figure 2.1, where a spin up
electron corresponds to a fermion on site i, and a down electron corresponds
to an empty site.
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The configuration space is of dimension two with a site either being occupied by a fermion
(|1〉) or unoccupied (|0〉) (see figure 2.3).
In the absence of an electromagnetic field in the Heisenberg Hamiltonian, the average
magnetization is zero (〈Ŝz〉 = 0), which means a half filled band 〈n̂〉 = 1/2 in the spinless
fermions picture. A completely filled band for spinless fermions means a Heisenberg chain
with all spin up, whereas an empty band corresponds to all spin down.
At t = 0, the model is equivalent to the Ising model and describes in the ground state a
"frozen" electron distribution (Wigner crystal) depending on the specific form of Vi. At
Vi = 0 (any t) we have the case of non-interacting electrons, which is the free fermion
Hamiltonian. The ground state is then a filled Fermi sea, where all electrons occupy the
lowest energy states till the Fermi energy and excitations from this ground state have
definitely fermionic character.
If we perform the transformation

ĉi → (−1)ic̃†i (2.40)

we see that the terms of the Hamiltonian in equation 2.57 with t and V remain unchanged,
whereas the chemical potential changes its sign εi = −εi in the new variables c̃i.
This is the particle-hole symmetry, which corresponds to the spin reversal symmetry in
equation 2.3.

2.2.1 Luttinger Liquids and Bosonization
A Luttinger liquid describes interacting fermions (electrons) in a one-dimensional system.
It is very different from Fermi liquid theory, which breaks down in one dimension. The
elementary excitations of a Luttinger liquid are collective excitations of the whole one-
dimensional chain instead of quasi-particle excitations in Fermi liquids, leading to an
interesting effect only observable in one-dimensional systems, the spin charge separation.
This means that spin and charge of an electron behave like independent particles, the
spinon for spin and the holon for charge, and they can travel through the chain with
different velocities.This effect is in some kind preposterous to common sense. Just imagine
a system with low electron density. One can imagine that the charge velocity couples to
the electrons traveling through the chain. But what is then the medium carrying the spin,
if the charge has a different velocity? Should not the spin also be bound to the electrons?
Then why are there different velocities?
To understand this effect in special and one-dimensional systems in general it is necessary
to introduce a standard technique in one dimension, named bosonization.
Starting point for the bosonization technique is the density operator for a one-dimensional
system

n(x) =
N∑
k=1

δ(x− xk) , (2.41)

where xk denotes the position of the k-th particle. We can label these particles by a
monotonically increasing field Φ(x) that consists of a product of multiples of 2π and the
particle positions xk:

Φ(xk) = 2πxk , (2.42)
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which is always possible in one dimension by labeling the particles from the left to the
right starting at x = −∞ (figure 2.4).

x

Φ
(x

)
/

2π

1

2

3

4

x

Φ
(x

)
/

2π

1

2

3

4

Figure 2.4: Two examples of the labeling field Φ(x). If the particles form a perfect lattice
of lattice spacing 1, then Φ(x) is just a straight line (left). If the particles
have different spacings between each other, we get a non linear behavior of
the labeling function Φ(x) (right).

Using the identities for the transformation of delta functions and the before defined la-
beling field

δ(f(x)) =
∑

xk:zeros of f

1
|f ′(xk)|

δ(x− xk) (2.43)

and the Poisson summation formula with the integer p∑
p

eipx = 2π
∑
k

δ(x− 2πk) , (2.44)

we can rewrite the density operator

n(x) = ∇Φ(x)
2π

∑
p

eipΦ(x) . (2.45)

Then we define the particle positions in a more convenient way with respect to their
crystalline rest positions x0

k = n0k with the mean density n0 = N
L
. After introducing a

field 2Φ(x) = 2πn0x−Φ(x) we transformed our starting point for bosonization to obtain
the following form

n(x) =
(
n0 −

∇Φ
π

)∑
p

e2ip(πn0x−Φ(x)) . (2.46)

Let us introduce field operators for the creation ψ†(x), respectively for the annihilation
ψ(x) of a particle at site x. Note that these operators could be of bosonic or fermionic
nature. Then we get for the density operator at site x in the language of this new operators

n(x) = ψ†(x)ψ(x) . (2.47)
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A creation operator can always be transformed with an amplitude phase ansatz in terms
of

ψ†(x) =
√
n(x)e−iθ(x) , (2.48)

where θ(x) is another field. Of course the field operators have to obey (anti-) commutation
rules, e.g. bosonic ones: [

ψ(x), ψ†(x′)
]

= δ (x− x′) . (2.49)

This leads after some mathematics to the commutator rule:

[∇Φ(x)/π, θ(x′)] = −iδ (x− x′) , (2.50)

or after partial integration

[Φ(x),∇θ(x′)/π] = iδ (x− x′) . (2.51)

This can be interpreted as the commutator relation between a field and its canonical
momentum. Therefore we define Π(x) = ∇θ(x)/π as the canonical momentum of the
labeling field Φ(x).
So we can rewrite the bosonic field creation operator for example

ψ†B(x) =
√
n0 −∇Φ(x)/π

∑
p

e2ip(πn0x−Φ(x))e−iθ(x) . (2.52)

For the fermionic field creation operator we have to add a factor of +1
2 to the integers p

to obey fermionic anti-commutation rules

ψ†F (x) =
√
n0 −∇Φ(x)/π

∑
p

e(2p+1)i(πn0x−Φ(x))e−iθ(x) . (2.53)

With equations 2.46, 2.52 and 2.53 we have a dictionary to translate Hamiltonians like the
Hamiltonian for spinless fermions in equation 2.57 in field operators, which obey bosonic
commutation relations independently of their original statistics. That is why it is named
bosonization.
An advantage of this method is that Hamiltonians which are translated with this method,
are usually quadratic in the new fields instead of being typically quartic in the old ones,
because of the interaction terms. That is what makes bosonization extremely attractive.
Let us consider the low-energy limit, in which there is only a small variation in the fields.
Thus only small p terms matter and in the limiting case we can ignore all higher terms,
which leaves us only with the non-oscillating p = 0 term.
The potential energy of the Hamiltonian consisting of density-density interaction trans-
lates with our bosonization dictionary to the derivative squared of our labeling field∫

dx n(x)2 →
∫
dx (∇Φ(x))2 . (2.54)

Similarly the kinetic energy term translates for the low-energy limit as∫
dx∇ψ†∇ψ →

∫
dx n0 (θ(x))2 . (2.55)
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All in all we get for the most general low energy Hamiltonian for spinless fermions

H = u

2π

∫
dx
[
K (πΠ(x))2 + 1

K
(∇Φ(x))2

]
, (2.56)

where Φ is related to the long-wavelength component of the electron density through
ρ = −∇Φ/π, and Π is the canonical momentum conjugate to Φ, [Φ(x),Π(y)] = iπδ(x−y).
In this equation two new coefficients uK and u/K appear, where u is the velocity and
K is the Luttinger liquid parameter, which characterizes the low-energy physics for all
fermionic and bosonic one-dimensional systems. For 0 < K < 1 the Luttinger liquid
parameter describes repulsive interactions, for K = 1 we get the non-interacting case and
for K > 1 attractive interaction occurs.

2.2.2 Andreev Reflection for spinless fermions
The Andreev reflection is named after Alexander F. Andreev, who first predicted it in 1964
[22]. It is an interface effect between a normal metal and a superconductor, describing
the elementary mechanism for converting single electron states to Cooper pairs [23].
An incident electron coming from the metal hits the metal-superconductor interaction
boundary. The electron can be transferred into the superconductor by forming a Cooper
pair, consisting of two electrons, with another electron from the metal of opposite spin
species than itself. Because of charge, conservation a hole then has to be reflected back
into the metal (see figure 2.5).
The spin degree of freedom can be ignored, because an incident electron with spin up
(down) forms a Cooper pair together with another electron with spin down (up) upon
reflection of a hole with spin up (down).
This effect is reversible, so that an incident hole from the metal transfers a single Cooper
pair out of the superconducting condensate upon the reflection of an electron.

t1 :

t2 :

xB

Figure 2.5: Schematic representation of the Andreev reflection. An incoming electron with
spin up (↑) at time t1 hitting the interface at xB between a normal conductor
(left, light red area) and a superconductor (right, light blue area) produces a
Cooper pair with total spin 0 (↑ + ↓= 0) within the superconductor and a
retroreflected hole (white) with spin up (↑) in the normal conductor at time
t2.

Andreev-like6 reflections have been predicted in an inhomogeneous Luttinger liquid [24,
6In one-dimensional spinless fermion systems there exist no Cooper pairs, that is why the effect is named
Andreev-like.
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25]. We get such an inhomogeneous liquid by making the interactions site dependent. Let
us introduce an interaction boundary xB. On the left side of this boundary we have a
different interaction V than on its right side:

ĤSF = −t
L−1∑
i=1

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+

L−1∑
i=1

Vin̂in̂i+1 +
L∑
i=1

εin̂i , (2.57)

with Vi = VL for i < xB

Vi = VR for i ≥ xB

and VL 6= VR. Introducing a site dependence of the interaction parameter V also leads
to a site dependence of the Luttinger liquid parameters K → K(x). For that reason
we have two different interaction parameters KL and KR. When a propagating density
excitation is incident from the left on the boundary xB, the strength of the reflection is
quantified by a reflection coefficient γ which has been calculated in a low excitation and
long wavelength hydrodynamic limit [24] with smooth interaction border to be

γ = KL −KR

KL +KR

. (2.58)

For γ < 0, excitations are transmitted with a larger amplitude 1−γ, which is compensated
by the reflection of a hole-like charge excitation with amplitude |γ|. This is analogous
to Andreev reflection when an electron is incident on a normal metal-superconductor
boundary.
So Andreev reflection has been predicted to occur for the transition from a more repulsive
to a less repulsive region or for the transition from an attractive region to an even more
attractive one.

2.3 Hubbard model
Adding another degree of freedom to the spinless fermion model, namely the spin7, one gets
the probably most famous model of strongly interacting fermions, the Hubbard model. It
is used for describing transitions between conducting and insulating systems. This model
is the simplest generalization to fermions with spin of the spinless model in equation 2.57:

ĤHUB = −t
L−1∑
i=1
σ=↑,↓

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+

L∑
i=1

Uin̂i,↑n̂i,↓ + ε
∑
i=1
σ=↑,↓

n̂i,σ . (2.59)

Here, i labels the lattice sites which run from 1 to L and σ =↑, ↓ labels the spin states.
As usual ĉ†i,σ and ĉi,σ are the creation and annihilation operators for an electron on site
i with spin σ =↑, ↓ and n̂i,σ is the density or number operator on site i for spin σ. The
configuration space is now 4-dimensional with the elements {|0〉, | ↑〉, | ↓〉, | ↑↓〉} (see figure
2.6). As one can see, double occupations of one site with fermions with opposite spin are
now possible.

7What a surprise!
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Figure 2.6: One-dimensional Hubbard model with L = 10 sites. There are four possi-
bilities for the occupation of a site: a site can be occupied by one electron
with either spin up (blue circles with ↑) or spin down (blue circles with ↓),
a site can be empty (white dashed circles) or a double occupation with two
electrons having opposite spin (blue circles with ↑↓) can occur. Due to the
Pauli principle there are no states with more than two electrons, because then
at least two particles would share the same set of quantum numbers.

In this model, electrons hop from site to site with a matrix element t. This is the standard
tight binding kinetic energy. Electrons interact only if they are on the same site. Since
the Pauli principle prevents two electrons of the same spin to be on the same site, it
is enough to consider only the local coupling between electrons of opposite spin (Other
terms would vanish because of the Pauli principle or simply become chemical potential
terms). For this reason we can identify the second term as the on-site repulsion (U > 0)
or on-site attraction (U < 0) term depending on its sign. For U = 0 we get again the free
fermion Hamiltonian.
ε = −µ is again a chemical potential as in equation 2.57. If one also wants to apply a
magnetic field in z-direction, one has to add an additional term

Hh = −h
L∑
i=1

(n̂i,↑ − n̂i,↓) (2.60)

Let us have a look at the symmetries of the Hubbard model [26]. In the absence of a
magnetic field h the system is spin rotational invariant (SU(2)-symmetry). For a generic
filling the only charge symmetry is the U(1) symmetry, which is the multiplication of the
operators by an arbitrary phase.
Obviously the Hubbard Hamiltonian is invariant under spatial reflections (~x→ −~x).
The Hubbard Hamiltonian also obeys particle-hole symmetry just as the spinless fermion
Hamiltonian. Performing

ci,σ → (−1)ic†i,σ (2.61)

leaves the kinetic energy t and the on-site repulsion U invariant and only changes the
chemical potential ε→ −ε and the external magnetic field h→ −h.
Another interesting symmetry is the particle-hole symmetry of just one spin species, called
the asymmetric particle-hole symmetry, e.g.:

ci,↓ → (−1)ic†i,↓ (2.62)

leaving the kinetic energy (t→ t) invariant, but changing the sign of the on-site repulsion
(U → −U) and transposes the chemical potential with the magnetic field and vice versa
(ε→ −h and h→ −ε). This transformation maps the spin sector on the charge sector and
the charge sector on the spin while changing the repulsive system to an attractive one and
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vice versa. At half-filling and in the absence of a magnetic field the transformation has
only an effect on the on-site repulsion (attraction) U . With the spin sector becoming the
charge sector and the other way around one has an additional charge symmetry (SU(2))
at half filling.
A sign change of the hopping matrix element t can be achieved by the following transfor-
mation:

ĉ†i,σ → (−1)i ĉ†i,σ or
ĉi,σ → (−1)i ĉi,σ .

For repulsive interactions (U > 0), one expects the system to be dominated by anti-
ferromagnetic exchange, because of the superexchange between spins. At half-filling (one
particle per site) and for large U the system is equivalent to a Heisenberg chain with an
exchange constant J ≈ 4t2

U
.

For attractive interactions (U < 0), on the other hand, one expects pairs of opposite spin
to form a singlet on a site. These bound states behave like hard core bosons since they
are made of two fermions. One could expect that these bosons condense and the system
becomes superconducting.
In the non-interacting limit U = 0, we only have free independent particles like in a Fermi
gas.
In the atomic limit t = 0 no hopping appears. For a repulsive model with an electron
density below L/2, we only have empty states and single occupied sites at T = 0.
For n ≤ L/2 and U →∞ again no double occupation occurs.
Large U results in the tJ-model

ĤtJ = −t
∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
− J

∑
i

(
~Si~Si+1 −

1
4 n̂in̂i+1

)

with J = 4t2/U .
At half filling (n = L/2) this is the Heisenberg model.

2.3.1 Bosonization of the Hubbard model
The bosonization technique in 2.2.1 can also be used for electrons with spin as well. All
we have to do is to carry out the procedure with each spin species ↑, ↓ separately with
different bosonic fields Φ↑,↓. If we introduce new bosonic fields for the charge part Φρ

respectively for the spin Φσ

Φρ = 1√
2

(Φ↑ + Φ↓) (2.63)

Φσ = 1√
2

(Φ↑ − Φ↓) , (2.64)

the charge and spin degrees of freedom decouple and we get two similar Hamiltonians for
charge and spin of the exactly same form of 2.56

H = uν
2π

∫
dx
[
Kν (πΠν(x))2 + 1

Kν

(∇Φν(x))2
]

, (2.65)
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where ν = ρ stands for the charge and ν = σ is for the spin with four different parameters
uρ, uσ, Kρ and Kσ. The parameters uν are called the velocities whereas Kν are called the
Luttinger liquid parameters.
For half filling an additional term occurs in the Hamiltonian 2.65

Hu = 2U
(2πα)2

∫
dx cos

(√
8Φρ(x)

)
. (2.66)

This term is called the umklapp8 term. For generic filling this term turns out to be
irrelevant in a renormalization group study and can be neglected.
The velocities uν and the Luttinger liquid parameters Kν are all functions of the local
coupling parameter U with

uρ
Kρ

= vF

(
1 + U

πvF

)
uσ
Kσ

= vF

(
1− U

πvF

)
. (2.67)

Introducing a site dependence of the coupling parameter U also leads to a site dependence
of the Luttinger liquid parameters K → K(x). Implementing two regions of U , where
U changes its value on an interaction boundary xB, results in two different interaction
parameters KL and KR, like we have seen in the spinless fermion case.
One can calculate the Luttinger parameters of the Hubbard model based on the Bethe
ansatz, but this is quite a challenging task and would be going beyond the purposes
of this master thesis. Nevertheless graphs which show the dependence of the Luttinger
parameters on the parameters of the Hubbard model can be found in figures 2.7 to 2.10
taken from the work of Thierry Giamarchi and H. J. Schulz ([27, 28, 29]).
In the following figures the band-filling n is given as

n = n↑ + n↓
L

,

where n↑ is the number of particles with spin up, respectively n↓ is the number of particles
with spin down and L is number of sites of the system. Naturally n goes from 0 to 2,
where n = 0 corresponds to an empty Hubbard band, n = 2 stands for a completely filled
band and n = 1 correlates to the Hubbard model at half-filling with interesting physical
properties as seen later.
Looking at figure 2.7 one finds in agreement with the book of Giamarchi [19], where he
theoretically deduces the limits of the Luttinger parameters, that Kρ is always between
Kρ = 1 for U → 0 and Kρ = 1

2 for U →∞ and Kσ is always equal to one.
In figure 2.8 the charge uρ and spin velocities uσ for different U are shown as a function
of the band-filling n. The charge and spin velocity is the same for the non-interacting
(U = 0) Fermi gas. Then both velocities are equal to the Fermi velocity vF :

U → 0 : uρ = uσ = vF with vF = 2t sin
(
πn

2

)
. (2.68)

8This term is not named after the famous physicist Dr. Laurentius Umklapp, therefore it does not start
with a capital letter.
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For strong repulsive interactions the following relationship holds:

U →∞ : uρ = 2t sin (πn)

uσ =
(

2πt2
U

)(
1− sin (2πn)

2πn

)
. (2.69)

The equations 2.68 and 2.69 for both limiting cases for the non-interacting and the strong
repulsive interaction become apparent in figure 2.8 as the charge and the spin velocity
is zero for n = 0. The charge velocity is also zero for half filling at n = 1, because
the Hubbard model becomes insulating at this point for all values of U due to the Mott
transition. The spin velocity on the other hand becomes a constant depending on U given
by the super-exchange of the spins

uσ → J with J = 4t2
U

. (2.70)

For U →∞ the spin velocity also vanishes (uσ(U → 0)→ 0) at half filling.

Another interesting quantity is the Wilson ratio RW , which is defined as the ratio of
the magnetic susceptibility to specific heat divided by temperature. This quantity has a
simple relationship to the spin and the charge velocity (see [28])

RW = χ

cv/T
= 2uρ
uρ + uσ

(2.71)

and is represented in figure 2.10. The value of the ratio indicates interaction effects and
quantifies spin fluctuations. For U = 0 the Wilson ratio is RW = 1 and for U → ∞ it
approaches RW → 2.

Lets have a look on Andreev reflection in the Hubbard model. For a spin rotation invariant
system such like the Hubbard model Kσ is always equal to one. So Andreev reflection can
only occur for the charge part of the system, when the reflection coefficient γ calculated
similar to equation 2.58 is negative [24]

γ = Kρ,L −Kρ,R

Kρ,L +Kρ,R

. (2.72)
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Figure 2.7: The correlation exponent Kρ for the repulsive Hubbard model as a function
of the bandfilling n for different values of U (U/t = 1, 2, 4, 8, 16 for the top to
the bottom curves). Note the rapid variation near n = 1 for small U . [27]

Figure 2.8: The charge and spin velocities uρ (full line) and uσ (dashed line) for the
repulsive Hubbard model, as a function of the band filling for different values
of U/t: for uσ U/t = 1, 2, 4, 8, 16 from top to bottom, for uρ U/t = 16, 8, 4, 2, 1
from top to bottom in the left part of the figure. [28]
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Figure 2.9: Luttinger parameters uρ and Kρ for the attractive Hubbard model as a func-
tion of the interaction |U|. These values were obtained by a numerical inte-
gration of the Bethe ansatz equations on a system of L = 200 sites. Curves
are for densities n = 0.9 (dash-dotted line), n = 0.7 (dashed line), n = 0.5
(full line). This figure is taken from [29].

Figure 2.10: The Wilson ratio RW for the one-dimensional Hubbard model, as a function
of the band-filling for different values of U/t (U/t = 16, 8, 4, 2, 1 from top to
bottom on the left side). Taken from [28].
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2.3.2 Spin Charge Separation
If we take a closer look at the equations for the Luttinger parameters of the Hubbard
model in 2.67, an interesting effect of one-dimensional systems almost hits our eye. By
applying a particular interaction parameter U , we can see that the velocity of charge
uρ differs from the velocity of spin uσ. Therefore a charge excitation should propagate
independently from a spin excitation.
Assuming that in higher dimension charge and spin are normally coupled to certain elec-
trons propagating through the metal, this does obviously not apply to one-dimensional
systems.

t1:

t2:

Holon Spinon

t0:

Figure 2.11: The one-dimensional system is in the Neel state at t0. A single-particle
excitation is created by removing a particle at time t1. It is converted into
two independent excitations, one containing only charge degrees of freedom
(holon) and the other containing only spin degrees of freedom (spinon). These
two excitations propagate with different velocities in the one-dimensional
system, so that they are on different sites at time t2 > t1.

As we saw in equation 2.65 the Hamiltonian separates into two parts, a charge part and a
spin part. As a result, single-particle fermionic excitations do not exist. The excitations
are described by the fields φρ and φσ. Let us represent the ground state by a state in
which φρ and φσ are constant at time t0 (see figure 2.11). If we now remove a fermion at
t1 > t0, it means that at a single site we create a kink both in φρ and φσ. These excitations
are free to propagate completely independently. After some time t2 > t1 one reaches a
state, where at some site a charge is lacking but the spin environment around this hole is
in its anti-ferromagnetic ground-state as before. This corresponds to an excitation that
is a kink in φρ but no disturbance in φσ. This excitation is called holon.
At another part of the system there is a place where no charge is missing but there are two
neighboring sites with the same spin. This is a spin excitation with a spin 1/2 compared
to the ground state. This excitation is known as spinon and corresponds to a kink in φσ.
As we can see, these two excitations are free to move independently from each other in
one dimension leading to the separation of spin and charge.
In higher dimensions the spinon and the holon would not separate because of the presence
of neighboring chains which would lead to a string of frustrated bonds. This would cost
the anti-ferromagnetic exchange energy that would grow linearly with distance.
Safi and Schulz showed in [30] that the spin charge separation also maintains if one
connects a dirty wire, meaning a region with U 6= 0, with non-interacting leads with
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U = 0 as shown schematically in figure 2.12. There a charge and spin excitation arrives
from the left in a region consisting of a non-interacting lead connected at an interaction
boundary to a dirty wire. Although the charge velocity equals the spin velocity at first,
the charge and spin excitations become separated in the dirty wire through their different
velocities. Curiously the separation is conserved when the two peaks enter the region with
non-interacting lead on the very right.

Figure 2.12: Dynamic transmission of an incident electron with spin up. The charge and
spin (hatched) are separated even in the non-interacting leads at the very
right. As an example, we consider here uρ > uσ , Kσ < 1, Kρ > 1 (taken
from [30]). Note that for spin-invariant repulsive interactions (Kσ = 1!), the
spin part is not reflected, while the charge undergoes reflections.

2.3.3 Mott transition in the one-dimensional Hubbard model
Note, that this little chapter is just a short, hand-waving, phenomenological paragraph
on the Mott transition in the one-dimensional Hubbard model, since this effect does not
play a role in the later investigations of this master thesis. It is just mentioned here for
the sake of completeness. For the interested reader I refer to [19].
If we have a repulsion term larger than the kinetic energy (U >> t), then charge waves
propagating through the chain are not energetically favorable any more, because this
states experience an energy cost proportional to U . Minimizing the energy then leads to
states, where the particles are localized on the lattice sites. For half filling (n = L) and
large U one gets a chain with one particle on each site in the ground state. This is the
reason, why no particle can travel through the lattice and the one-dimensional chain is
an insulator. Actually, from the exact Bethe ansatz solution it is known, that large U is
not needed for this effect [31]. At half-filling the one-dimensional Hubbard model is in
the Mott phase at any finite value of U .
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Doping the chain weakly away from half-filling either with holes (n < L) or with additional
electrons (n > L) leads again to charge carriers proportional to the doping, because the
holes/electrons can travel through the chain without feeling a repulsion and the chain is
now a metal again.
The Mott phase transition also appears in figure 2.8. On the very right of this figure
corresponding to half-filling at n = 1, one sees a rapid decrease of the charge velocities uρ
to zero, indicating that the chain becomes insulating.

2.4 BCS model

2.4.1 History

As already mentioned before, Cooper pairs are responsible for superconductivity, where
two fermions with half-integer, opposite spin characterized by the Fermi-Dirac statistics
are bound together to form a boson, a particle with integer spin which obeys Bose-Einstein
statistics and therefore admits superconductivity.
Since for the Andreev effect a metal-superconductor boundary is necessary, the last Hamil-
tonian presented in this master thesis is a Hamiltonian, which is capable of creating and
annihilating such Cooper pairs, the Bardeen-Cooper-Schrieffer (BCS) Hamiltonian.
Although the phenomenon of superconductivity had been discovered in 1911 as Heike
Kamerlingh Onnes9 witnessed a sudden drop in the resistivity of mercury at low temper-
atures10, a theoretical description of this effect had been a long time in coming. Another
effect of superconductors, namely that they are perfect diamagnets, was discovered by
Meissner and Ochsenfeld in 1933 [32]. In 1950 Maxwell and Reynolds found out, that the
temperature Tc for the metal becoming a superconductor changes with its isotopic mass.
An increase in the mass leads to a decrease in Tc [33, 34]. The finding of this isotope effect
encouraged the assumption, that superconductivity depends on some interaction between
electrons and phonons.
The BCS theory was introduced by J. Bardeen, L.N. Cooper and J.R. Schrieffer in 1957
[35] and has been the first consistent microscopic theory describing why superconductivity
appears. The theory points out that binding of Cooper pairs will occur in the presence of
an attractive potential, which is raised by lattice deformations, caused by phonon-electron
interactions and therefore produced by the electrons themselves. Naturally this attractive
force has to be greater than the repulsive Coulomb force, which two electrons experience
under normal conditions.

2.4.2 Mathematical description

For the mathematical description of the BCS theory [35] we use second quantization. Since
Cooper pairs consist of two electrons, which are fermionic particles, the creation/annihilation
ĉ†kσ/ĉkσ operators of an electron with momentum k and spin σ obey fermionic anticom-

9Despite the uncommon first name Heike, H. K. Onnes is male.
10The transition temperature Tc of solid mercury is 4.2 K
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mutation rules {
ĉkσ, ĉ

†
k′σ′

}
= ĉkσ ĉ

†
k′σ′ + ĉ†k′σ′ ĉkσ = δk,k′ δσ,σ′ (2.73)

{ĉkσ, ĉk′σ′} =
{
ĉ†kσ, ĉ

†
k′σ′

}
= 0 . (2.74)

The particle number operator n̂k,σ counts electrons with momentum k and spin σ is again

n̂k,σ = ĉ†kσ ĉkσ . (2.75)

We define a Pairing Hamiltonian

Ĥ =
∑
kσ

εkn̂k,σ +
∑
kl

Vklĉ
†
k↑ĉ
†
−k↓ĉ−l↓ĉl↑ (2.76)

and identify the first term as the kinetic energy of the electrons and the second term as a
phonon mediated electron-electron interaction. Despite the terms concerning not paired
electrons are omitted, it should contain all the terms important for superconductivity.
Including a factor −µN , where µ is the chemical potential and N is the particle number,
to shift the zero kinetic energy to µ (the Fermi energy EF ), leads to

Ĥ − µN =
∑
kσ

ξkn̂k,σ +
∑
kl

Vklĉ
†
k↑ĉ
†
−k↓ĉ−l↓ĉl↑ . (2.77)

We perform a mean field approximation to simplify the matrix elements Vkl. For that
reason we define

bk ≡ 〈ĉ−k↓ĉk↑〉 . (2.78)

Due to the fact that there is large number of particles involved, fluctuations around this
expectation value should be small. Now we express the product of the operators as

ĉ−k↓ĉk↑ = bk + (ĉ−k↓ĉk↑ − bk) (2.79)

and neglect quantities which are bilinear in the presumably small fluctuation term in the
parentheses above.
Plugging the equation above into equation 2.77 leads to the Hamiltonian

Ĥ − µN =
∑
kσ

ξkn̂k,σ +
∑
kl

Vkl
(
ĉ†k↑ĉ

†
−k↓bl + b∗kĉ−l↓ĉl↑ − b∗kbl

)
. (2.80)

Additionally inserting the gap energy ∆k

∆k = −
∑
l

Vklbl = −
∑
l

Vkl〈ĉ−k↓ĉk↑〉 , (2.81)

one is left with the following equation

Ĥ − µN =
∑
kσ

ξkn̂k,σ −
∑
k

(
∆kĉ

†
k↑ĉ
†
−k↓ + ∆∗kĉ−l↓ĉl↑ −∆kb

∗
k

)
. (2.82)

Diagonalization of the Hamiltonian can be performed by the so-called Bogoliubov trans-
formation [36]:

ĉk↑ = u∗kγk↑ + vkγ
†
−k↓ (2.83)

ĉ†−k↓ = −v∗kγk↑ + ukγ
†
−k↓ (2.84)



2.4 BCS model 27

with |uk|2 + |vk|2 = 1.
Inserting the new operators in equation 2.82 gives:

Ĥ − µN =
∑
k

ξk

( (
|uk|2 − |vk|2

) (
γ†k↑γk↑ + γ†−k↓γ−k↓

)
+ 2|vk|2 + 2u∗kv∗kγ−k↓γk↑ + 2ukvkγ†k↑γ

†
−k↓

)
+
∑
k

(
(∆kukv

∗
k + ∆∗ku∗kvk)

(
γ†k↑γk↑ + γ†−k↓γ−k↓ − 1

)
(2.85)

+
(
∆kv

∗2
k −∆∗ku∗2k

)
γ−k↓γk↑

+
(
∆∗kv∗2k −∆ku

2
k

)
γ†k↑γ

†
−k↓ + ∆kb

∗
k

)
.

If we choose uk and vk to eliminate terms with opposite spin (γ−k↓γk↑ and γ†k↑γ
†
−k↓), we

will find a formula for the new operators γ. This can be achieved, if the following term
equals zero11

2ξkukvk + ∆∗kv2
k −∆ku

2
k = 0

⇒ ∆∗kvk
uk

=
√
ξ2
k − |∆k|2 − ξk = Ek − ξk ,

resulting in the coefficients

|vk|2 = 1− |uk|2 = 1
2

(
1− ξk

Ek

)
. (2.86)

As ground state, Bardeen, Cooper and Schrieffer chose

|ΨG〉 =
∏
k

(
uk + vkĉ

†
k↑ĉ
†
−k↓

)
|0〉 . (2.87)

In this equation one can identify |vk|2 as the occupation probability of a Cooper pair and
|uk|2 = 1 − |vk|2 as its complementary probability, in other words, the probability of an
unoccupied Cooper pair.
Taking a closer look at equation 2.87, one notices an explicit violation of the particle
number conservation which is due to mean field approximation.

2.4.3 Model system
For later calculations we distinguish between the Hamiltonian of a s-wave and a p-wave
BCS superconductor:

1. s-wave superconductor

ĤBCS = ĤHUB +
L∑
i=1

γi
(
ĉ†i,↑ĉ

†
i,↓ + ĉi,↑ĉi,↓

)
(2.88)

11If this term is zero, it holds also for its complex conjugated 2ξku∗kv∗k + ∆kv
∗2
k −∆∗ku∗2k . Therefore all

terms with opposite spin vanish in equation 2.85.
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2. p-wave superconductor

ĤBCS = ĤHUB +
L−1∑
i=1

∆i

(
ĉ†i,↑ĉ

†
i+1,↓ + ĉi+1,↓ĉi,↑

)
(2.89)

As we can see, the s-wave Hamiltonian is capable of producing a Cooper pair on site
i (ĉ†i,↑ĉ

†
i,↓) or destroying one (ĉi,↑ĉi,↓) with energy γi, whereas the p-wave Hamiltonian

creates/annihilates (ĉ†i,↑ĉ
†
i+1,↓/ĉi+1,↑ĉi,↓) Cooper pairs on two sites in juxtaposition i and

i+ 1 with energy ∆i.
The configuration space is still the same as for the Hubbard model due to the Pauli
principle, For every site it consists of an empty state, one state with spin up, one with spin
down and a double occupied state consisting of two electrons with opposite spin({|0〉, | ↑
〉, | ↓〉, | ↑↓〉}). Analogous to the magnetic field term in the Hubbard Hamiltonian in 2.60
one can regard the parameters γi respectively ∆i in equation 2.88 and 2.89 as some kind
of a magnetic field for pair production.



3 Matrix Product States
This section starts at first with an introduction on MPS as a more local representation
of general quantum states. Such MPS consist of a product of local matrices instead of a
delocalized coefficient matrix.
Then a special matrix factorization, the singular value decomposition (SVD), is presented,
followed by the Schmidt decomposition (SD) as a compact representation of bipartite
quantum systems. The SD enables on the one hand a possibility for the calculation of
the entanglement entropy of such bipartite systems and on the other hand a procedure,
which makes the translation of the common representation of quantum states into the
MPS representation possible.
Afterwards an other procedure to generate MPS by simply adding sites to a specific
quantum state is showed, followed by the graphical representation of MPS, which makes
the understanding of calculations in MPS language quite easier than just handling the
plain and complex algebraic equations. This goes in hand with different normalization
conditions fulfilled by diverse representations of MPS as right- and left-normalized MPS.
Another representation is the canonical normal form, which reveals the Schmidt coef-
ficients of all possible bipartitionings at once. It leads to a truncation procedure which
keeps the computational cost linear with system size while still guaranteeing high accuracy
at the same time.
After a short trip over the scaling of the entanglement with the dimension of the simulated
system, showing that the computational effort is only bearable in one dimension, we see
how to calculate norms, expectation values, the reduced density operator and how to
apply operators on MPS. Then time is ready to present both DMRG algorithms, the one
for infinite- and the one for finite-system sizes, and to perform time evolution with TEBD.
Finally, two methods are outlined how to generate excitations to bring some dynamic for
time evolution in the models.
To not reinvent the wheel the main part of this section is based on the more than helpful
review on DMRG and MPS by Ulrich Schollwöck [9] and the former mentioned excellent
master theses of my predecessors [16, 17, 18].
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3.1 Short introduction to Matrix Product States
Consider an one-dimensional system with L-sites described by e.g. the Heisenberg (eq.
2.3) or the Hubbard (eq. 2.59) Hamiltonian with local Hilbert spaces {σi} of dimension1
d.
The most general pure quantum state will look like

|ψ〉 =
∑

σ1,...,σL

cσ1,...,σL|σ1, . . . , σL〉 , (3.1)

where cσ1,...,σL consists of exponentially many delocalized coefficients dL.
The idea of matrix product states (MPS) is to find a more local representation of the
state without destroying its quantum non-locality. This is possible by decomposing the
dL non-local coefficients cσ1,...,σL into a product of d · L local matrices A of dimension M :

|ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 · · ·AσL−1AσL|σ1, . . . , σL〉 . (3.2)

Here, Aσ1 and AσL are just vectors, so that the complete product is a number. The
benefit of this new representation of quantum states is that on the one hand it is possible
to visualize complex calculations in graphical form. On the other hand it gives us the
opportunity to a truncation procedure, which will keep the dimension of the d ·L matrices
fixed as we head to bigger and bigger system sizes. And last but not least it makes time
evolution possible with so called quantum gates [12].
So how do we get the MPS-representation of the quantum state?
For that purpose we have to make an excursion to the field of linear algebra to get a
mathematical tool, the Singular Value Decomposition (SVD), which opens the way for
the conversion from equation 3.1 to equation 3.2.

3.2 Singular value and Schmidt decomposition
In linear algebra, SVD is a way to factorize a matrix. This matrix can be real or complex.
Formally, the factorization of matrix M of size (m× n) is of the form

M = UλV † , (3.3)

where U is a matrix of dimension (m×min(m,n)), V † is a matrix of dimension (min(m,n)×
n) and λ is a diagonal square matrix of dimension (min(m,n)×min(m,n)) with positive
elements λii ∈ R+

0 , which are called the singular values of the matrixM . The number r of
non-zero singular values is called the rank of M (see Figure 3.1). Furthermore U consists
of orthogonal columns (U †U = 11), called left singular vectors, and V † of orthonormal
rows (V †V = 11), the so called right singular vectors.

1Remember that the local Hilbert space of the Heisenberg model has dimension d = 2 ({| ↑〉, | ↓〉}),
whereas the Hubbard model is of local Hilbert space dimension d = 4 ({|0〉, | ↑〉, | ↓〉| ↑↓〉}).
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m > n:

M U λ V †

m < n:

Figure 3.1: Resulting matrix shapes from a singular value decomposition (SVD), corre-
sponding to the two rectangular shapes that can occur. The singular value
diagonal serves as a reminder that in M = UλV † the matrix λ has a purely
non-negative diagonal.

The SVD builds the basis for a compact representation of bipartite quantum states, the
Schmidt decomposition (SD). Actually SD is only an SVD in a different context. Let us
consider a many particle system consisting of two subsystems A and B. We can represent
an arbitrary many body state ψ like in equation 3.1 in following way

|ψ〉 =
∑

σ1,...,σL

cσ1,...,σL|σ1, . . . , σL〉 =
∑
αβ

cαβ|α〉|β〉 , (3.4)

where {|α〉} and {|β〉} are the orthonormal basis vectors of the subsystems A and B.
This is always possible for a many body state as this is only an arbitrary virtual cut
of the composite system AB ⇒ A|B at a random site l and a relabeling of the indices
α = (σ1, . . . , σl) and β = (σl+1, . . . , σL).
The next step is an SVD of the coefficient matrix cαβ followed by a rearranging of the
sums:

|ψ〉 =
∑
αβ

cαβ|α〉|β〉
SVD=

∑
αβ

∑
γ

UαγλγγV
†
γβ|α〉|β〉 =

=
∑
γ

(∑
α

Uαγ|α〉
)

︸ ︷︷ ︸
|ΦAγ 〉

λγγ

∑
β

V †γβ|β〉


︸ ︷︷ ︸

|ΦBγ 〉

=
∑
γ

λγγ|ΦA
γ 〉|ΦB

γ 〉 . (3.5)

The sum over γ in equation 3.5 goes from γ = 1 to the minimum of the dimensions of the
two subsystems γ = min(dimA, dimB). The basis |ΦA

γ 〉 and |ΦB
γ 〉 are orthonormal basis

sets of A and B through the orthonormality of U respectively V †. Running the sum only
over the r non-zero values of γ gives us the Schmidt decomposition of a quantum state

|ψ〉 =
r∑

γ=1
λγγ|ΦA

γ 〉|ΦB
γ 〉 , (3.6)

where r = 1 gives us a product state and r ≥ 1 leads to an entangled quantum state.
Furthermore, one can show that the Schmidt coefficients retain following normalization
condition

r∑
γ=1

(λγγ)2 = 1 . (3.7)
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First we have to show the orthonormality of the basis |ΦA
γ 〉 for subsystem A:

〈ΦA
γ′ |ΦA

γ 〉 =
∑
αα′

U †γ′α′Uαγ 〈α′|α〉︸ ︷︷ ︸
δα,α′

=
∑
α

U †γ′αUαγ = δγ,γ′ . (3.8)

〈α′|α〉 = δα,α′ holds because of the orthonormality of the states |α〉 and |β〉, whereas the
last conversion holds due to the unity properties of the SVD. The basis of subsystem B
is orthonormal too:

〈ΦB
γ′ |ΦB

γ 〉 =
∑
ββ′

Vβ′γ′V
†
γβ 〈β′|β〉︸ ︷︷ ︸

δβ,β′

=
∑
β

V †γβVβγ′ = δγ,γ′ . (3.9)

Now we are able to deduce equation 3.7:

〈ψ|ψ〉 =
∑
γγ′

λγ′γ′λγγ
(
〈ΦB

γ′ |〈ΦA
γ′ |
) (
|ΦA

γ 〉|ΦB
γ 〉
)

︸ ︷︷ ︸
δγ,γ′

=
∑
γ

λ2
γγ = 1 . (3.10)

3.3 Entanglement measurements in bipartite systems
As a measure for the uncertainty of the quantum state one can take the so called von
Neumann or entanglement entropy SN

SN = −Tr ρ log ρ , (3.11)

with ρ the density matrix of the system and Tr the trace of the matrix. The von Neumann
entropy is the extension of classical entropy concepts like the Shannon entropy to the field
of quantum mechanics. For the logarithm we will use the logarithm of base 2.2
Our composite system consisting of the two subsystems A and B is described by the
density matrix ρAB. It is possible to just describe parts of the quantum system if we take
the partial trace over one subsystem. For example we get the state of subsystem A if
we take the partial trace of the density matrix of the composite system ρAB only over
subsystem B, and vice versa

ρA = TrB ρAB , ρB = TrA ρAB . (3.12)

Note that if we get the state of one subsystem, we don’t have any information about the
other.
By help of the Schmidt Decomposition of state |ψ〉 it is easy to read off the reduced
density operators of the subsystems by only carrying out the partial traces

ρA =
r∑

γ=1
λ2
γγ|ΦA

γ 〉〈ΦA
γ | , ρB =

r∑
γ=1

λ2
γγ|ΦB

γ 〉〈ΦB
γ | . (3.13)

One can see that ρA and ρB share the same eigenvalues, which are the squares of the
singular values, but don’t have the same eigenstates.

2Note that in literature there is no standard convention on which logarithm one should use. So attention
has to be paid, if one compares results involving entanglement entropy of different sources.
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This gives us the possibility to calculate the von Neumann entropy for the subsystems A
or B by performing a Schmidt decomposition

SN = −Tr ρA log ρA = −
r∑

γ=1
λ2
γγ log λ2

γγ . (3.14)

The entanglement entropy becomes maximal with equal eigenvalues. When the eigen-
values are all equal with equation 3.7 one obtains an upper bound for the entanglement
entropy SN depending on the rank r of the Schmidt decomposition

SN = log(r) . (3.15)

This gives us the possibility to measure the entanglement entropy with the help of the
singular values obtained by a Schmidt decomposition.

3.4 Construction of Matrix Product States
There are two possible ways to construct a matrix product state. First, one can decompose
an arbitrary quantum state of an L-site one-dimensional quantum system by the Schmidt
decomposition of its coefficient matrix (see 3.4.1).
And second, the construction of a matrix product state of a L site system is also possible
by adding additional sites to a system with smaller system size l < L (3.4.2) which has
been decomposed before.

3.4.1 Schmidt decomposition of a quantum state
The starting point for the first way to construct an MPS is the quantum state in equation
3.1.
The first step is to rearrange the dL-coefficients in a (d× dL−1)-matrix and subsequently
performing a singular value decomposition

cσ1,...,σL = cσ1,(σ2,...,σL)
SVD=

r1∑
a1

Uσ1,a1 λa1,a1V
†
a1,(σ2,...,σL)︸ ︷︷ ︸

ca1,...,σL

≡
r1∑
a1

Uσ1,a1ca1,σ2,...,σL . (3.16)

In the last step λa1,a1 and V †a1,(σ2,...,σL) were multiplied and reshaped back into the vector
ca1,σ2,...,σL . The rank is now r1 ≤ d
For a more common representation of an MPS we just rename the matrix Uσ1,a1 into a
row vector Aσ1

a1

cσ1,...,σL =
r1∑
a1

Aσ1
a1ca1,σ2,...,σL . (3.17)

Now we can apply the same steps as before on the new coefficient matrix ca1,σ2,...,σL by
reshaping it into the (r1d× dL−2)-matrix and performing again an SVD

ca1,σ2,...,σL = c(a1σ2),(σ3,...,σL) =
r2∑
a2

Aσ2
a1,a2ca2,σ3,...,σL . (3.18)
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Connecting equation 3.17 and 3.18 yields

cσ1,...,σL =
r1∑
a1

r2∑
a2

Aσ1
a1A

σ2
a1,a2 ca2,σ3,...,σL . (3.19)

Upon further SVDs we get the result

cσ1,...,σL =
r1∑
a1

r2∑
a2

. . .
rL−2∑
aL−2

rL−1∑
aL−1

Aσ1
a1A

σ2
a1,a2 . . . A

σL−1
aL−2,aL−1

AσLaL−1
(3.20)

≡ Aσ1Aσ2 . . . AσL−1AσL . (3.21)

In the last line we identified the sums over a1 to aL as simple matrix multiplications.
The general non-local quantum state is now represented exactly as a product of L local
matrices

|ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 . . . AσL−1AσL|σ1, . . . , σL〉 , (3.22)

as we desired before. This is the matrix product state (MPS) representation of the
arbitrary quantum state.
The dimension of the matrices for even L from the left to the right will maximally be

(1× d)︸ ︷︷ ︸
Aσ1

, (d× d2)︸ ︷︷ ︸
Aσ2

, . . . , (dL2−1 × d
L
2 )︸ ︷︷ ︸

A
σL/2

, (dL2 × dL2−1)︸ ︷︷ ︸
A
σL/2+1

, . . . , (d2 × d)︸ ︷︷ ︸
AσL−1

, (d× 1)︸ ︷︷ ︸
AσL

and for odd L:

(1× d)︸ ︷︷ ︸
Aσ1

, (d× d2)︸ ︷︷ ︸
Aσ2

, . . . , (dL2 × dL2 )︸ ︷︷ ︸
A
σL/2

, . . . , (d2 × d)︸ ︷︷ ︸
AσL−1

, (d× 1)︸ ︷︷ ︸
AσL

.

Because of the properties of the U -matrices due to the Schmidt decomposition

U †U = 11

following relationship holds for the A-matrices

δal,a′l =
∑

al−1,σl

U †al,(al−1σl)U(al−1σl),a′l =
∑

al−1,σl

Aσl†al,al−1
Aσlal−1,al

=
∑
σl

(
Aσl†Aσl

)
al,a
′
l

, (3.23)

or more succinct ∑
σl

Aσl†Aσl = 11 . (3.24)

Due to the equation above and the fact that we have used only the left singular vectors U
of the SVD, we will call the A-matrices left-normalized and an MPS, which only consist
of left-normalized matrices, a left-canonical MPS.
We can also construct a matrix product state instead of decomposing the coefficients from
left to right by decomposition from right to left. To this end, we have to start on the
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right site of the coefficient matrix cσ1,...,σL by rearranging it to a (dL−1 × d)-matrix and
performing an SVD and repeating these steps L times

cσ1,...,σL = c(σ1,...,σL−1),σL
SVD=

rL−1∑
aL−1

U(σ1,...,σL−1),aL−1λaL−1,aL−1V
†
aL−1,σL

=
rL−1∑
aL−1

c(σ1,...,σL−2),(σL−1,aL−1)B
σL
aL−1

=
rL−2∑
aL−2

rL−1∑
aL−1

U(σ1,...,σL−2),aL−2λaL−2,aL−2V
†
aL−2,(σL−1aL−1)B

σL
aL−1

=
rL−2∑
aL−2

rL−1∑
aL−1

c(σ1,...,σL−3),(σL−2,aL−2)B
σL−1
aL−2,aL−1

BσL
aL−1

= . . . =
∑

a1,...,aL−1

Bσ1
a1B

σ2
a1,a2 . . . B

σL−1
aL−2,aL−1

BσL−1
aL−1

At each step, U and λ are multiplied before the product is reshaped into c, V †aL−1,σL
is

reshaped into d column vectors BσL
aL−1

and V †aL−i,(aL−j ,σj) into d matrices BσL−j
aL−i,aL−j .

Therefore we get for the overall quantum state the representation

|ψ〉 =
∑

σ1,...,σL

Bσ1Bσ2 . . . BσL−1BσL|σ1, . . . , σL〉 . (3.25)

Referring to equation 3.24, and since V †V = 11, we get following equation for the B-
matrices ∑

σl

BσlBσl† = 11 . (3.26)

Accordingly we will call the B-matrices right-normalized and an MPS consisting only of
right-normalized matrices a right-canonical MPS.
Furthermore, construction of an MPS from the left with A- matrices until site l and
subsequently construction from the right with B-matrices from site L to site l + 1 leads
to a mixed-canonical MPS:

|ψ〉 =
∑
al

( ∑
σ1,...,σl

Aσ1Aσ2 . . . Aσl
)

1,al

λal,al

 ∑
σl+1,...,σL

Bσl+1Bσl+2 . . . BσL


al,1

|σ1, . . . , σL〉 .

(3.27)

Due to rearranging and applying

|ΦA
al
〉 =

∑
σ1,...,σl

Aσ1Aσ2 . . . Aσl |σ1, . . . , σl〉

|ΦB
al
〉 =

∑
σl+1,...,σL

Bσl+1Bσl+2 . . . BσL|σl+1, . . . , σL〉

it is obvious that this is the Schmidt-decomposition of the Bipartite quantum system
resulting from a cut at site l

|ψ〉 =
∑
al

λal,al |ΦA
al
〉|ΦB

al
〉 . (3.28)
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Note that MPS are not unique. This can be shown by inserting an identity 11 = M−1M :

AσlAσl+1 = Aσl11Aσl+1 = Aσl
(
M−1M

)
Aσl+1 =

(
Aσl M−1

)
︸ ︷︷ ︸

Ãσl

(M Aσl+1)︸ ︷︷ ︸
Ãσl+1

= ÃσlÃσl+1 .

3.4.2 Adding sites to Hilbert space of dimension M
Suppose we have a set of basis vectors {|al−1〉} on a (l−1)-site Hilbert space of dimension
M . Now we want to add an orthonormal basis vector of a one-site subsystem of dimension
d of the local Hilbert space to this set of basis vectors (see figure 3.2). This can be achieved
by a general basis transformation:

|al〉 =
∑

(al−1,σl)
Ual,(al−1,σl)|al−1〉 ⊗ |σl〉 ,

where the resulting basis vectors |al〉 are of dimension dM .
If |al−1〉 and |σl〉 are orthonormal, the unitary condition U †U = 11 holds. We can rewrite
the previous equation to get the familiar representation of a A-matrix in the language of
MPS:

|al〉 =
d∑
σl

M∑
al−1

Aσlal−1,al
|al−1〉 ⊗ |σl〉 .

1 l − 1 l

|σl〉|al−1〉 |al〉

1 l

Figure 3.2: A block of length l − 1 is grown towards the right to a block of length l by
adding a site l.

If we start with a single site system and add site by site with this procedure we get the
same MPS representation as in equation 3.22.

3.5 Graphical representation of an MPS
A tremendous advantage of MPS is the graphical representation of such states, which
helps to understand calculations much easier than just looking at the plain formulas.
As seen before, an MPS consists of A- or B-matrices with several indices. We will call
the indices written in Greek letters the physical indices, whereas the indices with Latin
letters are called virtual indices. In figure 3.3 you can see the graphical representation of
such A-matrices with physical and virtual indices at different positions of an MPS and
also the complex conjugated Aσi∗, which one gets by just flipping the normal MPS upside
down.
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In figure 3.4 one can see the graphical representation of a tensor contraction (i.e., a matrix
multiplication), which is only the sum over a virtual index to connect two A-matrices3.
Performing diverse tensor contractions leads to the MPS-representation in figure 3.5.
The graphical representation of equation 3.23 and the corresponding relation for B-
matrices is presented in figure 3.7.
The iterative construction of an exact MPS representation from an arbitrary quantum
state, as explained in section 3.4.1, is represented in figure 3.8.

Aσi Aσ1 AσL

Aσi∗

a1

σ1

ai

σi

ai−1 aL−1

σL

ai

σi

ai−1

Figure 3.3: Graphical representation of MPS matrices on different sites of the MPS. Aσi
is a matrix somewhere in the middle with one physical index (σi) and two
virtual ones (ai−1, ai). Aσ1 and AσL are the matrices on the boundaries with
only one physical and virtual index and Aσi∗ is the graphical representation
of the complex conjugated of Aσi .

Aσ1
a1

σ1

Aσ2
a1,a2

a2

σ2

∑
a1 A

σ1
a1
Aσ2
a1,a2

σ1

a2

σ2

a1 a1

Figure 3.4: Graphical representation of a tensor contraction of matrices Aσ1 and Aσ2 over
the virtual index a1.

σ1 σ2 σ3 σ4 σ5 σ6 σL−2 σL−1 σL. . .

Aσ1 Aσ2 Aσ3 Aσ4 Aσ5 Aσ6 AσL−2 AσL−1 AσL. . .

Figure 3.5: Graphical representation of an open boundary condition left-canonical MPS.

3Please note: Connecting two matrices over one index is always achieved by taking the sum over this
index.
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σ1 σ2 σl−1 σl σl+1 σl+2 σL−1 σL
λal,al

Aσ1 Aσ2 Aσl−1 Aσl Bσl+1 Bσl+2 BσL−1 BσL

Figure 3.6: This figure shows a mixed-canonical state for open boundary conditions con-
sisting of l left-normalized A-matrices, L− l right-normalized B-matrices and
the Schmidt-coefficient matrix λ in the middle (red cross).

Aσi

ai

Aσi∗

a′i

δai,a′i δai−1,a′i−1

Bσi

Bσi∗

ai−1

a′i−1

Figure 3.7: If two left-normalized A-matrices are contracted over their left index and the
physical indices, a Kronecker delta δai,a′i results. The same happens for the
contraction of two right-normalized B-matrices over their right index.

σ1 σ2 σ3 σ4 σ5 σ6 σL−2 σL−1 σL. . .

σ1 σ2 σ3 σ4 σ5 σ6 σL−2 σL−1 σL. . .

σ1 σ2 σ3 σ4 σ5 σ6 σL−2 σL−1 σL. . .

σ1 σ2 σ3 σ4 σ5 σ6 σL−2 σL−1 σL. . .

aL−2 aL−1a1 a2 a3 a4 a5 . . .

a1 a2

a1

...

Figure 3.8: Graphical representation of an iterative construction of an exact MPS rep-
resentation of an arbitrary quantum state by a sequence of singular value
decompositions of the coefficient matrix cσ1...σL . The first row represents the
coefficient matrix cσ1...σL and in every line a A-matrix is projected out until
one gets the MPS representation in the last line.
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3.6 From MPS to the canonical normal form
In section 3.3 we saw that the entanglement entropy of a bipartite system SN is related
to the λ-values of the Schmidt decomposition (see equation 3.14). So a representation of
a one-dimensional quantum system of length L, where one has the possibility to simply
read off all (L− 1) bipartitionings of the system, would be highly convenient.
Such a representation was first introduced by Guifré Vidal in 2003 [11], the canonical
normal form:

|ψ〉 =
∑

σ1,...,σL

Γσ1λ[1]Γσ2λ[2]Γσ3λ[3] . . . λ[L−1]ΓσL|σ1 . . . σL〉 . (3.29)

Γσl are a set of d matrices and λ[l] is a diagonal matrix containing the Schmidt coefficients
on site l.
To derive this equation we start with a Schmidt decomposition at bond 1

|ψ〉 =
χ1∑
a1

λ[1]
a1,a1|Φ

[1]
a1〉 ⊗ |Φ

[2...L]
a1 〉 ,

where
{
|Φ[1]

a1〉
}
is the basis vector set of the first site on the left and

{
|Φ[2...L]

a1 〉
}
is the basis

vector set of the (L− 1) sites on the right. Now we rewrite the basis vectors on the left

|Φ[1]
a1〉 =

d1∑
σ1

Γσ1
a1 |σ1〉 .

This gives us

|ψ〉 =
d1∑
σ1

χ1∑
a1

Γσ1
a1λ

[1]
a1,a1|σ1〉 ⊗ |Φ[2...L]

a1 〉 . (3.30)

On the other hand rewriting of the basis sets on the right site leads to

|Φ[2...L]
a1 〉 =

d2∑
σ2

|σ2〉 ⊗ |Φ̃[3...L]
a1,σ1 〉 ,

where the basis vector set
{
|Φ̃[3...L]

a1,σ1 〉
}
corresponds to some unnormalized vectors.

The next step is the Schmidt decomposition at the second bond

|Φ̃[3...L]
a1,σ1 〉 =

χ2∑
a2

Γσ2
a1,a2λ

[2]
a2,a2|Φ

[3...L]
a2 〉 .

Plugging this intermediate result into equation 3.30 gets us to

|ψ〉 =
d1∑
σ1

d2∑
σ2

χ1∑
a1

χ2∑
a2

Γσ1
a1λ

[1]
a1,a1Γσ2

a1,a2λ
[2]
a2,a2|σ1〉 ⊗ |σ2〉 ⊗ |Φ[3...L]

a2 〉 .

In general we get for this procedure on bond l

|Φ[l...L]
al−1
〉 =

dl∑
σl

|σl〉 ⊗ |Φ̃[l...L]
al−1,σl

〉

|Φ̃[l+1...L]
al−1,σl

〉 =
χl∑
al

Γσlal−1,al
λ[l]
al,al
|Φ[l+1...L]

al
〉 .
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After iteration over all (L− 1) bonds we obtain as result the canonical normal form:

|ψ〉 =
∑

σ1...σL

 χ1∑
a1

χ2∑
a2

. . .
χL−1∑
aL−1

Γσ1
a1λ

[1]
a1,a1Γσ2

a1,a2λ
[2]
a2,a2 . . . λ

[L−1]
aL−1,aL−1

ΓσLaL−1

 |σ1σ2 . . . σL〉 .

Performing the simple matrix multiplications represented as the inner sums of the equa-
tion above gives us exactly equation 3.29. �

Comparison with equation 3.2 or 3.25 and with λ[0] = λ[L] = 1 leads to the following
equation

Aσl = λ[l−1]Γσl resp. Bσl = Γσlλ[l] . (3.31)

With the orthonormal basis sets |ΦA
al
〉 and |ΦB

al
〉 of the subsystems A and B resulting from

a cut at bond l

|ΦA
al
〉 =

∑
σ1,...,σl

(
Γσ1λ[1]Γσ2 . . . λ[l−1]Γσl

)
|σ1, σ2, . . . , σl〉

|ΦB
al
〉 =

∑
σl+1,...,σL

(
Γσl+1λ[l+1]Γσl+2 . . . λ[L−1]ΓσL

)
|σl+1, σl+2, . . . , σL〉

one can see that the λ[l]-matrices are indeed the diagonal Schmidt-matrices

|ψ〉 =
χl∑
al

λ[l]
al,al
|ΦA

al
〉|ΦB

al
〉 ,

the squares of which are directly connected to the entanglement entropy SN (equation
3.14). This is also the representation of a mixed-canonical MPS as represented in equation
3.28. In figure 3.9 one can find the graphical representation of a canonical MPS.

σ3 σ4 σ5 σL−1 σLσ2σ1

Γσ3
a2,a3 Γσ4

a3,a4 Γσ5
a4,a5 ΓσL−1

aL−2,aL−1
ΓσLaL−1

Γσ2
a1,a2Γσ1

a1

λ[L−2]
aL−2,aL−2

λ[3]
a3,a3 λ[4]

a4,a4 λ[5]
a5,a5 λ[L−1]

aL−1,aL−1
λ[2]
a2,a2λ[1]

a1,a1

Figure 3.9: Graphical representation of the canonical normal form of an MPS. This rep-
resentation contains on every bond l directly the Schmidt singular values λ[l]

(red crosses) of a Schmidt decomposition and the Γ-matrices (blue squares).

Normalization conditions
With the left- and right normalization conditions in equation 3.24 and 3.26 and the
connections between the A-, B-, Γ- and λ-matrices in equation 3.31, the normalization
conditions simply translate to:

11 =
∑
σl

Aσl†Aσl =
∑
σl

(
Γσl†λ[l−1]†

) (
λ[l−1]Γσl

)
=
∑
σl

Γσl†
(
λ[l−1]

)2
Γσl (3.32)

11 =
∑
σl

BσlBσl† =
∑
σl

(
Γσlλ[l]

) (
λ[l]†Γσl†

)
=
∑
σl

Γσl
(
λ[l]
)2

Γσl† . (3.33)
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A graphical representation similar to figure 3.7 can be found in 3.10.

Γσl

Γσl†λ[l−1]†

λ[l−1]

al−1 σl

a′l

al

δa′
l
,al

a′l−1

al−1

δa′
l−1,al−1

λ[l]†

λ[l]Γσl

Γσl†

σl al

Figure 3.10: Normalization conditions of a canonical MPS similar to figure 3.7 for the A-
and B-matrices. The left part of this figure is the representation of equation
3.32, the right part of 3.33.

3.6.1 Truncation process - truncated weight
Up to now every calculation was exact in the sense that there was no information loss
when we transformed a quantum state like in equation 3.1 into an MPS, whether it is of
left-, right-, mixed-canonical or canonical-normal form.
This was achieved with one big drawback, namely that the transformed basis sets |ΦA

al
〉

and |ΦB
al
〉 grow exponentially with system size L, to orderO(dL/2) where d is the dimension

of the single particle Hilbert space. As shown before in section 3.4.1 the matrices of an
MPS grow from the boundary to the middle, so that the l−th matrix is of size (dl−1×dl).
In general there are 2 · L ·∑L/2

i=1 d
2i−1 single numbers to be saved for an exact MPS.

This means that to store an MPS, we need to store at least O(L · dL) numbers, which is
in fact greater than the O(dL) coefficients of equation 3.1. So what is the way out of this
dilemma?
The idea is to limit the matrix dimension of the single matrices in an MPS by some upper
bound χ , trimming all matrices of greater dimension to matrices of that desired maximum
dimension. This can be achieved while performing an SVD, taking only the first χ left
and right singular vectors corresponding to the χ largest Schmidt values and the first χ
columns of U , respectively the first χ rows of V †. This means that the maximum size of
a matrix in the MPS is χ, which means that the numerical effort drops from O(L · dL)
to O(L ·min(dL, χ2)) growing only linearly with system size contrary to exponentially as
before (see figure 3.11).
Due to the fact that we have dumped the smallest Schmidt coefficients in the step before,
one has to renormalize the surviving Schmidt coefficients:

λ̃[l]
al,al

= 1
Z
λ[l]
al,al

, (3.34)

with Z the euclidian norm over all remaining Schmidt coefficients

Z =

√√√√ χ∑
i=1

(
λ

[l]
i,i

)2
.

Since Z is a measure for the deviation of the truncation from the norm 1 it gives us also an
useful quantity to estimate the size of the error induced by the truncation, the truncated
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weight w:

w = 1− Z . (3.35)

The normalization conditions 3.24 and 3.26 respectively 3.32 and 3.33 still hold, because
the matrices were retained by an SVD with orthonormal vectors as their columns and the
orthonormality conditions displays only the orthonormality of the surviving states.

Figure 3.11: In this half-logarithmic plot one can see the amount of storage needed for
one-dimensional system of size L and single site Hilbert dimension d = 2.
The red line corresponds to the coefficients which have to be stored following
equation 3.1. The blue line shows the storage amount for an exact MPS
representation and the black line is the approximate representation with a
truncated MPS with maximum matrix dimension χ of 100. As one can see,
whereas the storage amount scales exponetially with system size L for the
exact representations, it scales only linearly for the truncated MPS.

3.6.2 Area laws
Referring to the section above, one question arises: Is an MPS with a fixed matrix di-
mension χ capable of describing a quantum state?
Consider a bipartitioning of a system into two subsystems A|B, where the system AB
is in the thermodynamic limit. The subsystem A is of the size LD, where D is the
spatial dimension. According to the area laws (see [5], [37]) the entanglement entropy for
ground states of short range Hamiltonians with gap is proportional to the surface of the
bipartition

SN(A|B) ∝ LD−1 . (3.36)
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That means for one-dimensional systems the entanglement entropy is proportional to just
a constant, whereas it scales directly proportional to L for two-dimensional systems (figure
3.12).
At criticality a more complex behavior appears, but for one-dimensional critical systems
it is still only

SN(A|B) ∝ logL . (3.37)
With the upper limit SN of the entanglement entropy in equation 3.15 the connection of
the entanglement entropy SN and the Schmidt rank r follows

r ∝ exp(SN) . (3.38)
That is why at for spatial dimensions larger than one the Schmidt rank has to grow
exponentially with the system size. But the good news is that for one-dimensional non-
critical systems a constant matrix dimension r ≈ χ is capable of representing a quantum
state in an efficient way.

D = 1⇒ SN = const.

D = 2⇒ SN ∝ LD−1

Figure 3.12: Graphical representation of the entropy scaling of a one- (top) and a two-
dimensional (bottom) system for ground-states of non-critical local Hamil-
tonians. The entanglement entropy scales like LD−1, where D is the spatial
dimension.

3.7 Calculation of observables for MPS
Until now the whole chapter was just about a new representation of quantum states and
certainly only transforming quantum states to other representations is a not satisfying
activity and of no physical interest at all. That is why this section is about calculating
overlaps, norms, expectation values and the effect of operators on MPS to put some
physics in this by now just mathematical apparatus. So let us get straight down to the
nitty-gritty.
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3.7.1 Overlaps and Norms
For calculating the overlap of two MPS we first have to introduce an MPS representation
independent of whether the single matrices are left- or right-normalized, called the general
MPS. Starting point for this representation is the mixed-canonical MPS in equation 3.28:

|ψ〉 =
∑

σ1,...,σL

Aσ1 . . . Aσlλal,alB
σl+1 . . . BσL|σ1, . . . σL〉 (3.39)

Multiplying the matrix λal,al either on the matrix Aσl to the left or on the matrix Bσl+1

on the right leads to a representation called general MPS

|ψ〉 =
∑

σ1,...,σL

Mσ1 . . .MσL|σ1, . . . , σL〉 , (3.40)

with general matrices Mσl on each site without any implicit normalization conditions.
Note, that we can always transform a general MPS to a left-canonical one:

|ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL

Mσ1
1,a1M

σ2
a1,a2M

σ3
a2,a3 . . . |σ1, . . . , σL〉

=
∑

σ1,...,σL

∑
a1,...,aL

M(1,σ1),a1M
σ2
a1,a2M

σ3
a2,a3 . . . |σ1, . . . , σL〉

SVD=
∑

σ1,...,σL

∑
a1,...,aL

∑
γ1

A(1,σ1),γ1λγ1,γ1V
†
γ1,a1M

σ2
a1,a2M

σ3
a2,a3 . . . |σ1, . . . , σL〉

=
∑

σ1,...,σL

∑
a2,...,aL

∑
γ1

A(1,σ1),γ1

(∑
a1

λγ1,γ1V
†
γ1,a1M

σ2
a1,a2

)
︸ ︷︷ ︸

M̃
σ2
a1,a2

Mσ3
a2,a3 . . . |σ1, . . . , σL〉

=
∑

σ1,...,σL

∑
a2,...,aL

∑
γ1

Aσ1
a1M̃

σ2
γ1,a2M

σ3
a2,a3 . . . |σ1, . . . , σL〉

= . . . =
∑

σ1,...,σL

∑
γ1,...,γL−1

Aσ1
a1 . . . A

σL
aL−1
|σ1, . . . , σL〉 .

The same procedure starting from the right could also be applied to construct a right-
canonical MPS out of a general one.
The calculation of the overlap of two general MPS |φ〉 and |ψ〉 can be obtained by simply
taking the adjunct of one MPS, e.g. 〈φ|, and calculate the scalar product:

〈φ|ψ〉 =
∑

σ1,...,σL

(M̃σL† . . . M̃σ1†) (Mσ1 . . .MσL) . (3.41)

Efficient evaluation of the contraction of equation 3.41 can be achieved by rearranging
the L sums over the physical indices σi

〈φ|ψ〉 =
∑
σL

M̃σL†
(
. . .

(∑
σ2

M̃σ2†
(∑
σ1

M̃σ1†Mσ1

)
Mσ2

)
. . .

)
MσL , (3.42)

so that the columns and the row vectors of M̃σ1† andMσ1 are multiplied and then followed
by the summation over the first physical index σ1 and so forth. This reduces the necessary
operation count from exponentially to weak polynomial. A graphical representation of
this procedure can be found in figure 3.13.
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〈φ|

|ψ〉
1 4

2

3 6

5

7 10

8

9
Figure 3.13: Overlap between two MPS states |ψ〉 and |φ〉. The red arrows with the

indices represent the most efficient way for the contraction of the MPS.

The norm is obtained by calculating the overlap of an MPS with itself (〈ψ|ψ〉). Obviously
the calculation of the norm of a left- or right-canonical MPS results in 1, because of the
normalization condition 3.24 respectively 3.26 of the single matrices:

〈ψ|ψ〉 =
∑
σL

AσL†

 . . .
∑

σ2

Aσ2†
(∑
σ1

Aσ1†Aσ1

)
︸ ︷︷ ︸

11

Aσ2

 . . .
AσL (3.43)

=
∑
σL

AσL†

 . . .(∑
σ2

Aσ2†Aσ2

)
︸ ︷︷ ︸

11

. . .

AσL = . . . =
∑
σL

AσL†AσL︸ ︷︷ ︸
11

= 1 . (3.44)

Finally one interesting circumstance should be outlined here. If we consider a mixed-
canonical MPS and sequentially calculate the norm in the above mentioned manner, we
straightforward get the normalization condition for the Schmidt eigenvalues in equation
3.7

〈ψ|ψ〉 =
∑

σ1,...,σL

(
BσL† . . . Bσl+1†λ[l]Aσl† . . . Aσ1†

) (
Aσ1 . . . Aσlλ[l]Bσl+1 . . . BσL

)
(3.45)

⇒ 〈ψ|ψ〉 =
∑
al

λ2
al,al

. (3.46)

Reduced densitity operator

As we saw for the entanglement entropy SN in equation 3.14, it is connected to the
reduced density matrix. To calculate ρ in the context of MPS, we first have to calculate
the projector |ψ〉〈ψ|, apply a bipartitioning by a virtual cut on site l and then trace out
one of the two subsystem resulting from this cut.
The projection in MPS language of, for example, a left-normalized MPS is given by

|ψ〉〈ψ| =
∑

σ1,...,σL

∑
σ′1,...,σ

′
L

(
Aσ1 . . . AσL

)(
Aσ
′
L† . . . Aσ

′
1†
)
|σ1, . . . , σL〉〈σ′1, . . . , σ′L| . (3.47)

Bipartition of system A|B at site l, where A is the subsystem containing sites i = 1
to i = l and B is the contrary subsystem, and tracing out the degrees of freedom for
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subsystem B results in

ρ̂
[l]
A = TrB |ψ〉〈ψ| =

∑
σ1,...,σl

∑
σ′1,...,σ

′
l

(
Aσ1 . . . AσL

)
ρ

[l]
A

(
Aσ
′
L† . . . Aσ

′
1†
)
|σ1, . . . , σL〉〈σ′1, . . . , σ′L| ,

(3.48)

with

ρ
[l]
A =

∑
σl+1,...,σL

(
Aσl+1 . . . AσL

)(
AσL† . . . Aσl+1†

)
. (3.49)

Iteratively applying this procedure on every site from right to left leads to the recursion
relation

ρ
[l−1]
A =

∑
σl

Aσlρ
[l]
AA

σl† . (3.50)

The same can be done for right-canonical MPS starting from the left

ρ
[l]
B =

∑
σl

Bσl†ρ
[l−1]
B Bσl . (3.51)

Calculating the reduced density operator for mixed-canonical MPS

|ψ〉 =
∑

σ1,...,σL

Aσ1 . . . AσlΨBσl+1 . . . BσL|σ1, . . . , σL〉 (3.52)

results in

ρ
[l]
A = ΨΨ† resp. ρ

[l]
B = Ψ†Ψ , (3.53)

as can be seen in [9].

3.7.2 Expectation values
Now that we know how to calculate the norm of an MPS, we can go one step further and
try to calculate the expectation value of one- and two-site operators applied to MPS.

One-site operator

One site operators in quantum mechanics are of the form

Ô[l] =
∑
σl,σ

′
l

Oσl,σ
′
l |σl〉〈σ′l| , (3.54)

where Oσl,σ
′
l are the matrix elements 〈σl|Ô[l]|σ′l〉. If we extend the operator on every site4

and are looking at the operator matrix elements Oσ1σ′1Oσ2σ′2 . . . OσLσ
′
L , we realize that the

main difference to the overlaps of two MPS is, that we have now to deal with double sums
over local states.

4In practice an operator will not be applied on every site. This could be circumvented by applying the
identity operator 11 on sites, where no operator should have an effect (e.g. local expectation values,
two-site correlators).
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Calculating the general matrix elements 〈φ|Ô[1]Ô[2] . . . Ô[L]|φ〉 leads to

〈φ|Ô[1]Ô[2] . . . Ô[L]|φ〉 =
=

∑
σ1,...,σL

∑
σ′1,...,σ

′
L

(
M̃σL† . . . M̃σ1†

) (
Oσ1σ′1Oσ2σ′2 . . . OσLσ

′
L

) (
Mσ′1 . . .Mσ′L

)
(3.55)

=
∑
σL,σ

′
L

OσLσ
′
LM̃σL†

. . .
∑
σ2,σ′2

Oσ2σ′2M̃σ2†

∑
σ1,σ′1

Oσ1σ′1M̃σ1†Mσ′1

Mσ′2

 . . .
Mσ′L .

The rearranging in the third line of the above equation makes the calculation again more
efficient.
If we have to deal with expectation values of operators Ô[l] operating just on one single site
l the expectation value 〈ψ|Ô[l]|ψ〉 simplifies drastically. Imagine all matrices to the left
are left-normalized, all to the right are right-normalized5. The normalization condition
of site l does not play any role for the calculation. Now contracting the tensor network
due to left- and right-normalization leads to an equation, where just two-matrices, the
matrices on site l are left-over. This site can be simply calculated by

〈ψ|Ô[l]|ψ〉 =
∑
σl,σ

′
l

Oσl,σ
′
l Tr

(
M̃σl†Mσl

)
. (3.56)

The graphical representation of this procedure is found in figure 3.14.
To get the above formulas in canonical-normal form, one only has to insert

Mσl
al−1,al

:= λ[l−1]Γσlal−1,al
λ[l] . (3.57)

Lets have again a look in a different point of view at applying an operator Ô[l] to an MPS.
The operator changes the value at the physical index σl of the MPS. So applying it on a
canonical MPS |ψ〉 leads to a new MPS |ψ′〉, which is only canonical, if the operator is
also unitary: ∑

σl

AσσlAσσl† = 11

⇒
∑

σl,σ
′
l
,σ′′
l

(
Oσl,σ

′
lAσ

′
l

) (
Oσl,σ

′′
l Aσ

′′
l

)†
=

∑
σl,σ

′
l
,σ′′
l

Aσ
′
lAσ

′′
l †〈σl|O|σ′l〉〈σ′′l |O†|σl〉

=
∑
σ′
l
,σ′′
l

Aσ
′
lAσ

′′
l †〈σ′′l |O†O|σ′l〉

!= 11 .

So we see, that the operator has to be right unitary to accomplish the left-normalization
condition. For the right-normalization condition we get:∑

σl

Bσσl†Bσσl = 11⇒
∑
σ′
l
,σ′′
l

Bσ′′†
l Bσ′l〈σ′′l |OO†|σ′l〉

!= 11 .

5This can be easily achieved. Remember section 3.7.1, where we have pointed out that it is always
possible to cast a general MPS into a left- or right normalized one.
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The operator has to be left unitary, which means the operator has to be unitary to
guarantee, that the new MPS |ψ′〉 is canonical again. �

〈ψ|

|ψ〉

Ô[l] Ô[l]

Figure 3.14: Calculating the expectation 〈ψ|Ô[l]|ψ〉 value of a single-site operator Ô[l], one
can easily see that sequentially applying the normalization condition for the
A- and B-matrices results in a calculation of the form represented on the
right side of this figure.

Two-site operator

For the present thesis, we will only need unitary two-site operators (for time evolution),
thus we restrict the discussion to such operators. As we saw for one-site operators before,
applying such an operator to a canonical MPS yields again a canonical MPS. A two-site
operator looks like

Ô[l,l+1] =
∑

σ
l
,σ
l+1,σ

′
l
,σ′
l+1

O
σ′l,σ

′
l+1

σlσl+1 |σl, σl+1〉〈σ′l, σ′l+1|

with Oσ′l,σ
′
l+1

σlσl+1 matrix elements 〈σl, σl+1|Ô[l,l+1]|σ′l, σ′l+1〉. Because two-site operators act on
two neighboring sites, at first we have to find out which matrices in an MPS this sort of
operator changes. Therefore we consider an MPS in canonical normal form and bracket
out the part where the two-site operator acts:

|ψ〉 =
∑

σ1,...,σL

(
Γσ1λ[1] . . .Γσl−1

) (
λ[l−1]Γσlλ[l]Γσl+1λ[l+1]

) (
Γσl+2λ[l+2] . . . λ[L−1]ΓσL

)
|σ1 . . . σL〉 .

(3.58)

If one also brings out the matrix multiplication over the virtual index al, one can identify
the sphere of action of the operator

Ψσl,σl+1
al−1,al+1

:=
∑
al

λ[l−1]Γσlal−1,al
λ[l]Γσl+1

al,al+1
λ[l+1] . (3.59)

Renaming the untouched part on the left

|Φ[1,...,l−1]
al−1

〉 =
∑

σ1,...,σl−1

(
Γσ1λ[1] . . . λ[l−2]Γσl−1

)
al−1
|σ1, . . . , σl−1〉 (3.60)

and the untouched part to the right of the MPS

|Φ[l+2,...,L]
al+2

〉 =
∑

σl+2,...,σL

(
Γσl+2λ[l+2] . . . λ[L−1]ΓσL

)
al+1
|σl+2, . . . , σL〉 (3.61)
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one gets

|ψ〉 =
∑

σl,σl+1

∑
al−1,al+1

Ψσl,σl+1
al−1,al+1

|Φ[1,...,l−1]
al−1

〉 ⊗ |σl〉 ⊗ |σl+1〉 ⊗ |Φ[l+2,...,L]
al+2

〉 .

Applying operator O concerns only the part around site l and l + 1

|ψ′〉 =
∑

σl,σl+1

∑
al−1,al+1

Θσl,σl+1
al−1,al+1

|Φ[1,...,l−1]
al−1

〉 ⊗ |σl〉 ⊗ |σl+1〉 ⊗ |Φ[l+2,...,L]
al+2

〉 ,

where Θσl,σl+1
al−1,al+1

stands for

Θσl,σl+1
al−1,al+1

:=
∑
al

O
σ′l,σ

′
l+1

σlσl+1 λ
[l−1]Γσlal−1,al

λ[l]Γσl+1
al,al+1

λ[l+1] .

To apply two site operator, all we have to do is to update the Γ- and λ-matrices in Θ to
obtain new ones. To achieve this, there are two possibilities, either one makes an SVD of
Θ, or one diagonalizes the reduced density operator ρ on the sites from l + 1 to L.

〈ψ|

|ψ〉
Ô[l,l+1] Ô[l,l+1]

Figure 3.15: To calculate the expectation value 〈ψ|Ô[l,l+1]|ψ〉 of a two-site operator acting
on site l and l+1, just sequantially apply the normalization condition for the
A- and B-matrices, which will result in a calculation of the form represented
on the right side. This operator then acts on the λ[l−1]-, Γσl-,λ[l]-, Γσl+1-
and λ[l+1]-matrices of an MPS in canonical normal form, where an updating
procedure can be achieved by an SVD of the product of these few matrices
or by diagonalizing the reduced density operator ρ.

a.) Diagonalization of ρ:
The first technique to update the Γ- and λ-matrices starts with the reduced density
matrix of a many particle system consisting of two subsystems A and B

ρB = TrA (|ψ′〉〈ψ′|) . (3.62)

The plan is to compute ρ and after the diagonalization of the reduced density oper-
ator one obtains the eigenvalues, which are equal to the new Schmidt eigenvalues,
and an unitary matrix U , which basically contains the new Γ-matrix for site l + 1

ρB =
∑

σl+1σ
′
l+1

al+1a
′
l+1

 ∑
σnal−1

Θσl,σl+1
al−1,al+1

(
Θσl,σ

′
l+1

al−1,a
′
l+1

)∗
︸ ︷︷ ︸

M(σl+1al+1),(σ′
l+1a

′
l+1)

|σl+1,Φ[l+2,...,L]
al+2

〉〈σl+1,Φ[l+2,...,L]
al+2

| .

(3.63)
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Afterwards, diagonalization of M results in the new λ̃[l] values

M(σl+1al+1),(σ′
l+1a

′
l+1) =

∑
γ

U(σl+1al+1),alDal,alU
†
al,(σl+1′a

′
l+1) , (3.64)

where the matrix D contains the absolute squares of the Schmidt eigenvalues
Dal,al = |λ̃[l]

al
|2 of site l. Plugging equation 3.64 into equation 3.63 leads to

ρB =
∑

σl+1σ
′
l+1

al+1a
′
l+1

∑
al

U(σl+1al+1),alDal,alU
†
al,(σl+1′a

′
l+1)|σl+1,Φ[l+2,...,L]

al+2
〉〈σl+1,Φ[l+2,...,L]

al+2
| .

(3.65)

Comparing the equation above simply with the trace over subsystem B

TrA (|ψ′〉〈ψ′|) = (3.66)∑
al

|λ̃[l]
al
|2

∑
σl+1σ

′
l+1

al+1a
′
l+1

Γ̃σl+1
al,al+1

λ[l+1]
al+1

(
Γσ
′
l+1
al,a
′
l+1
λ

[l+1]
a′
l+1

)∗
|σl+1,Φ[l+2,...,L]

al+2
〉〈σl+1,Φ[l+2,...,L]

al+2
|

one can see that the new Γ̃ on site l + 1 are equal to

Γ̃σl+1
al,al+1

=
U(σl+1al+1),al

λ
[l+1]
al+1

. (3.67)

The new Γ̃-matrices on site l are then obtained from the scalar product resulting
from |ψ′〉 = λal |ΦA

al
〉|ΦB

al
〉:

λal |ΦA
al
〉 = 〈ΦB

al
|ψ′〉 (3.68)

=
∑
al−1σl

 ∑
σl+1al+1

Θσlσl+1
al−1,al+1

(
Γ̃σl+1
al,al+1

λ[l+1]
al+1

)∗ |ΦA
al
〉 ⊗ |σl〉 (3.69)

= λ̃[l]
al

∑
al−1σl

λ[l−1]
al−1

Γ̃σlal−1al
|ΦA

al
〉 ⊗ |σl〉 . (3.70)

Finally one gets the missing matrix Γ̃ by transforming the equation above

Γ̃σlal−1al
= 1
λ̃

[l]
alλ

[l−1]
al−1

∑
σl+1al+1

(
Γ̃σl+1
al,al+1

λ[l+1]
al+1

)∗
Θσlσl+1
al−1,al+1

. (3.71)

b.) SVD of Θ:
The second method to obtain the new Γ and λ matrices is far easier and favorable
due to the existence of fast SVD algorithms. One drawback of this method is that
implementation of quantities which are conserved during the simulation like for
example the total number of particles N = ∑

l n̂l or the total spin ~S = ∑
i
~Si, is

more complicated than the update procedure with the reduced density operator.
The second method is based on an SVD of the whole Θ matrix. If one reshapes
the matrix and performs an SVD, one gets directly the new Schmidt eigenvalues λ̃.
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From the left singular vectors U and the right singular vectors V † the desired new
Γ̃-matrices can easily be calculated by help of the Schmidt eigenvalues on the left
λ[l−1] and on the right λ[l+1]

Θ(σlal−1),(σl+1al+1)
SVD=

∑
al

U(σlal−1),alλ̃
[l]
al,al

V †al,(σl+1al+1) (3.72)

Γ̃σlal−1al
=
U(σlal−1),al

λ
[l−1]
al,al

(3.73)

Γ̃σl+1
alal+1

=
V †al,(σl+1al+1)

λ
[l+1]
al,al

. (3.74)

The division has to be performed as a so-called pseudoinverse. Elements of λal,al
beneath a certain small value ε (e.g. ε = 10−8) are set to zero. This means, that
one neglects those directions in the space of the indices al, which contribute only a
little to ψ, because of there small values. The necessity of this pseudoinverse is a
disadvantage of this variant.
A graphical representation of this procedure is outlined in figure 3.16.

Γσl−1 Γσl Γσl+1 Γσl+2λ[l−1] λ[l] λ[l+1] λ[l+2]

Γσl−1 Γ̃σl Γ̃σl+1 Γσl+2λ[l−1] λ̃[l] λ[l+1] λ[l+2]

Γσl−1 U V † Γσl+2λ̃[l] λ[l+2]

Figure 3.16: Graphical representation of the update procedure after application of a two-
site operator to obtain the new Γ̃- and λ̃-matrices of an MPS in canoni-
cal normal form by performing an SVD of the Θ matrix. In the first row
the Θ-matrix is depicted by the dashed square consisting of the matrices
λ[l−1],Γσl , λ[l],Γσl+1 , λ[l+1], on which the operator acts. The second row rep-
resents the MPS after an SVD, where one gets the new matrix λ̃[l] containing
the new Schmidt eigenvalues on site l and the left- and right- singular vec-
tors U and V †. Division of U and V † by λ[l−1] and λ[l+1] leads to the new
Γ̃-matrices. All new obtained matrices are represented in this figure with an
extra line underneath.
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3.8 Density Matrix Renormalization Group
In physics, Renormalization Group methods (RG) are an mathematical instrument for
describing dependencies of physical observables on length scales. They first appeared in
1953 in the work of E. C. G. Stueckelberg, Andre Petermann, Francis Low and Murray
Gell-Mann in the treatment of quantum electrodynamically problems. Originally an in-
strument for solving problems in quantum field theory, nowadays they have various fields
of application like solid state physics, continuum mechanics or cosmology.
In 1975 K.G. Wilson, a former PhD student of Gell-Mann, solved the Kondo problem
with a numerical renormalization group method, today known as Wilson’s Numerical
Renormalization Group (NRG) [8]. Since then, NRG has been very successful in solving
many-body problems, in which impurities play a leading part like the Kondo or the
Anderson impurity model. In appreciation of his work Wilson was awarded in 1982 with
the Nobel Prize in Physics, like his PhD supervisor twelve years before.
In 1992, Steven R. White invented today’s most efficient method to find ground and
low energy states in one-dimensional strongly correlated quantum systems, the Density
Matrix Renormalization Group (DMRG) [3]. It is a variational method that minimizes
the energy expectation value

E = 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

and has many applications, where the accuracy of the results can be as large as, e.g., 10
decimal digits.
The key aspect of DMRG is the truncation of the total Hilbert space of a system to a
reduced Hilbert space, but with the property that the approximated state has a very large
overlap with the original not truncated state, as we will see later.
One major advantage is that DMRG does not know the fermionic sign problem and can
therefore be applied to bosonic or fermionic systems equally.
DMRG prefers open boundary conditions (OBC) as we premised in the Hamiltonians
in the chapter before. With periodic boundary conditions, the necessary computational
effort is considerably larger [38].
DMRG can be formulated in MPS terms, as Östlund and Rommer discovered first (see
[39]).
In the following sections we will first start with the infinite size DMRG (iDMRG), because
it is conceptually easier to understand than the finite case and it bears all the important
aspects of the algorithm. Then we will handle the finite case.
For the DMRG algorithms we assume Hamiltonians of the form:

Ĥ =
∑
i

ĥiĥi+1 ,

where i denotes the index of the lattice site. It is obvious that this is the case for the
Heisenberg Hamiltonian ĤHEI in equation 2.3, the spinless fermion Hamiltonian ĤSF in
2.57 , the Hamiltonian of the Hubbard model ĤHUB (equation 2.59) and the s-wave and
p-wave Hamiltonians of the BCS superconductor ĤBCS (equations 2.88 and 2.89).
As before mentioned, DMRG is an iterative process, which enables a system to converge
to its ground state.
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Both, finite and infinite DMRG, share the same structure at each iteration step. The
wave function consists of a block on the left A, called the system block consisting of n
states |ΦA〉, followed by two blocks in the middle consisting of one site |σi〉 and |σi+1〉
with Hilbert space dimension d and one block on the right with m states |ΦB〉, called the
environmental block B.
The principle of DMRG is that the system block A and/or the environment block B
grow(s) by adding the sites in the middle. Then the groundstate of the extended system
is calculated.
Due to the enlarging of one or both blocks by the adding of sites, the Hilbert space of the
whole system has to grow exponentially. Therefore the keystone of the DMRG algorithm
is not only the growing procedure, but also a truncation step, which keeps the relevant
part of the whole Hilbert space to approximate the enlarged basis by the most relevant
states.

3.8.1 Infinite size DMRG
In the infinite size DMRG (iDMRG) both, the system block A and the environment block
B grow by adding one of the middle sites to each.
The iDMRG algorithm looks as follows:

1. The iteration starts with a state on the system block A consisting of l (Initially just
one site) sites with basis states |ΦA〉. These basis states are usually expressed as an
MPS, with dimension χ far below dl.

2. Construct a similar block B called the environmental block by simply mirroring the
system block A with basis states |ΦB〉.

3. Insert two sites between the system and the environment block |σl+1〉 and |σl+2〉 .

4. Enlarge block A = |ΦA〉 by adding the first single site σl+1 to form a block A′ =
A• = |ΦA′〉 of size l′ = l+1 by growing the Hilbert space dimension from M = dl to
M ′ = d ·M . Further calculate the Hamiltonian ĤA of block A and the Hamiltonian
ĥl,l+1 of the single site |σl+1〉 consisting of the operators ĥl on the surface of block A
and the operators ĥl+1 of the single site to get the Hamiltonian ĤA′ = ĤA + ĥl,l+1
of the enlarged block . Do the same for the environment block B and the second
single site |σl+2〉 to get B′ = •B and ĤB′ = ĥl+2,l+3 + ĤB.

5. Form the so called superblock S by connecting block A and B with the two single
sites in between S = A • •B with overall 2l+ 2 sites. Construct also the superblock
Hamiltonian ĤS = ĤA′ + ĥA′,B′ + ĤB′ by connecting blocks A′ and B′.

6. Use for example the Lanczos algorithm to calculate the groundstate of the su-
perblock S

|Ψ〉 =
∑
i,j

ci,j|ΦA′〉|ΦB′〉
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7. Then calculate the reduced density operator ρA′ = TrB′ |Ψ〉〈Ψ| respectively ρB
′ =

TrA′ |Ψ〉〈Ψ| and diagonalize it. Keep the eigenvectors |α〉 belonging to the χ largest
eigenvalues λα. These vectors are the new basis vectors.

8. Transform all Hamiltonians and basis states |ΦA′〉 and |ΦB′〉 in the new basis and
start the iteration all over again from step 3 with A = A′ and B = B′ until the
system has the desired length L.

Adaptation of the infinite size DMRG to finite system sizes is the topic of the next chapter.
The procedure with different blocks growing by adding single sites stays the same, but
the growing procedure is slightly different. A graphical representation of the iDMRG
algorithm can be found in figure 3.17 on the left.

Figure 3.17: Graphical representation of the iDMRG algorithm (left) and finite-size
DMRG algorithm (right). Both algorithm share the same block structure,
with the system block A on the left site (blue square), two single sites in
the middle (black circles) and the environmental block B on the right (red
square). Only the block growth procedure is different for the two algorithms.
Whereas for the iDMRG the system block A and the environmental block B
are of the same size and growing at each iteration step resulting in a growing
of both blocks and the total system size, in the finite-size DMRG either the
system or the environmental block grows at the expense of the other, de-
pending on wether the sweep of the current iteration goes from left to right
(first two rows on the right) or from right to left (third line on the right).
The algorithm is terminated in the middle, resulting in block A and block B
of the same size, once the calculation is converged in energy.

3.8.2 Finite size DMRG
Starting point for the finite size DMRG is a system of size L obtained by the iDRMG
algorithm. In this algorithm there is also a grow procedure, but now one block, e.g.
system block A, grows on the expenses of environmental block B, which has to shrink
as opposed to this, to keep the system size L constant. After one reaches the end of the
system, the environmental block consist only of one site. Then one has to reverse the
procedure, so that block B grows at the cost of block A until in turn block A is of size
1. Then reverse the growing direction again. This procedure is stopped at the starting
point, after the energy has converged.
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Here is the scheme of the finite size DMRG algorithm:

1. First perform the iDMRG algorithm to obtain a system of size L and then store the
Hamiltonians and the operators for each block.

2. Cut the system in the middle and remove a single site at the contact area of every
resulting block to obtain blocks in the form A••B similar to the iDMRG algorithm.

3. Like in iDMRG, compute and diagonalize the superblock Hamiltonian.

4. Calculate the reduced density matrix of A• and diagonalize it. Keep the eigenvectors
|α〉 belonging to the χ largest eigenvalues λα. These vectors are the new basis
vectors. Project all operators to this basis and store them and the block A•.

5. Shrink block B by taking out the site on the contact area with the single site
remaining in the middle.

6. Repeat steps 3 to 5 until block B is of size 1.

7. Reverse the growing direction, so that block B grows on cost of block A in the same
manner, but just in the other direction as in steps 3 to 5. Repeat until you reach
the state, where block A is of size 1.

8. Reverse the growing direction again and start again from step 3. End the procedure
after the energy has converged.

Graphically, the finite-size DMRG is shown in figure 3.17 on the right side.

3.9 Time Evolving Block Decimation
3.9.1 Time evolution of quantum systems
In quantum mechanics, the starting point for the time evolution of states is usually the
time dependent Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 , (3.75)

where |ψ(t)〉 is a time dependent state of the system and Ĥ is the normally time dependent
system Hamiltonian.
The time evolution operator Û is unitary and describes the evolution of a system from
time t0 to time t:

i
∂

∂t
Û(t, t0) = ĤÛ(t, t0) (3.76)

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 . (3.77)

For the time operator following composition property is satisfied for the evolution of a
system from the initial time t0 to an intermediate time t1 and subsequently to a final time
t2

Û(t2, t0) = Û(t2, t1)Û(t1, t0) with t2 > t1 > t0 . (3.78)
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In the most general form the time evolution operator Û looks like

Û(t, t0) = T̂
[
e
−i
∫ t
t0
Ĥ(τ)dτ

]
, (3.79)

where T̂ is the time ordering operator. This operator, as the name says, just orders
quantum mechanical operators by their occurrence in time from the very right to the left:

T̂
[
Â(t1)B̂(t2)

]
= θ(t1 − t2)Â(t1)B̂(t2) + θ(t2 − t1)B̂(t2)Â(t1) . (3.80)

θ(x) is the step function. If the Hamiltonian of the system commutes for different times,
one can neglect the time ordering operator T̂

[
Ĥ(t1), Ĥ(t2)

]
= 0 ⇒ Û(t, t0) = e

−i
∫ t
t0
Ĥ(τ)dτ

. (3.81)

If the Hamiltonian is not explicitly time dependent (Ĥ(t) = Ĥ ∀t) one can integrate the
exponent in a trivial way and is only left with

Û(t, t0) = e−iĤ(t−t0) . (3.82)

Without loss of generality we can set the starting time t0 to 0 and omit this variable
subsequently. Of course it is possible to split the time evolution in N smaller equally
spaced time steps τ with N = t/τ

Û(t) = Û(τ)Û(τ) . . . Û(τ)Û(τ)︸ ︷︷ ︸
N times

= Û(τ)N =
(
e−iĤτ

)N
. (3.83)

3.9.2 Suzuki-Trotter decomposition
All Hamiltonians we are going to investigate have only nearest neighbor interaction and
are therefore of the form

Ĥ =
∑
i

ĥi,i+1 . (3.84)

It should be noted that these Hamiltonians will in general not commute. So if we think
of equation 3.83, it could be very handy, if we can transform the sum in the exponent
into a product of exponentials, but because of the non-commuting Hamiltonian, this is
not possible.
Instead, we can rearrange the Hamiltonian in even and odd Hamiltonians with respect to
the bonds between the sites

Ĥ = Ĥodd + Ĥeven (3.85)
Ĥodd =

∑
i

ĥ2i−1,2i =
∑
i

ĥoi (3.86)

Ĥeven =
∑
i

ĥ2i,2i+1 =
∑
i

ĥei . (3.87)
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These single even or odd Hamiltonians commute with themselves but unfortunately they
will not commute if even and odd Hamiltonians are mixed together like in the general
Hamiltonian in equation 3.84: [

ĥoi , ĥ
o
j

]
=
[
ĥei , ĥ

e
j

]
= 0 (3.88)[

ĥoi , ĥ
e
j

]
6= 0 . (3.89)

The time evolution operator for even and odd Hamiltonians is of the form:

Û(t) = eiĤt = e−i(Ĥodd+Ĥeven)t =
[
e−i(Ĥodd+Ĥeven)τ

]N
. (3.90)

Although this can not be decomposed in an exact way, it can be approximated by the
so called Suzuki-Trotter decomposition (STD). The STD of first order for usually non-
commuting operators Â and B̂ is

e−i(Â+B̂)τ = e−iÂτe−iB̂τ +O(τ 2) . (3.91)

After applying the STD to term on the left side in the square brackets of equation 3.90
one gets:

e−i(Ĥodd+Ĥeven)τ = e−iĤoddτe−iĤevenτ +O(τ 2) (3.92)
= e−i

∑
i
ĥoi τe−i

∑
i
ĥei τ +O(τ 2) (3.93)

=
∏
i

e−iĥ
o
i τ
∏
i

e−iĥ
e
i τ +O(τ 2) (3.94)

As we see, the right equation consists only of a product of two site operators.
Unfortunately, every timestep adds an error of O(τ 2), called the Trotter error. However
this error can be regulated by the size of the equally spaced timesteps τ and therefore by
the number N of intermediate timesteps between t0 = 0 and t. In the limit τ → 0, results
become exact.
One can also choose a Suzuki-Trotter decomposition of higher order. Then the time step
error O(τ 2) will become smaller at cost of a more complicated structure of the equation.
For example one could use the STD of second order:

e−i(Â+B̂)τ = e−iÂτ/2e−iB̂τe−iÂτ/2 +O(τ 3) , (3.95)

which is very simple and where the error is of one power smaller. An more complicated
Suzuki-Trotter decomposition of order 5 is given by the Forest-Ruth formula [40]

e−i(Â+B̂)τ = e−iÂθτ/2e−iB̂θτe−iÂ(1−θ)τ/2e−iB̂(1−2θ)τe−iÂ(1−θ)τ/2e−iB̂θτe−iÂθτ/2 +O(τ 5) ,
(3.96)

where θ is the Forest-Ruth parameter, which is given by θ ≡ 1/(2− 21/3).
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3.9.3 TEBD algorithm
As we have seen before, time evolution can be achieved by applying the right side of
equation 3.94, which consists only of two-site operators to an MPS, in the best case of
canonical normal form, because then all Schmidt coefficients are easily accessible. How
to apply an two-site operator to a canonical MPS was explained in section 3.7.2.
The TEBD algorithm looks as follows:

1. Compute the exponentials of the Hamiltonians ĥei for all even bonds between sites
2i and 2i+ 1

2. Calculate the new Γ-matrices and Schmidt eigenvalues λ for all even bonds by
applying the former constructed two-site operators to the canonical MPS

3. Repeat the first two steps, but now for the odd bonds

4. After the application of an even and an odd operator to the MPS measurements of
the system can be performed if necessary

This schematic algorithm contains one timestep τ = t/N . To perform a full evolution
over the whole simulation time t the TEBD algorithm has to be applied N times on the
MPS.
Error sources are on the one hand the former mentioned Trotter error, which can be
reduced by smaller timesteps τ or STD of higher order and on the other hand the so called
Schmidt error. This error has its roots in the division through small Schmidt values due
to computer arithmetic, which has to be done in the application of the two-site operators
on the MPS. A schematic representation of the algorithm is in figure 3.18.

Figure 3.18: Schematic representation of the time evolution of an MPS via the TEBD
algorithm. Starting from an MPS (chain with circles), first the two-site
operators for the even bonds are applied (red squares) subsequently followed
by the application of the operators for the odd bonds (blue squares). This
yields a time evolution of time τ = t/N . Repeat this N times to obtain an
evolution of the desired time t. At each horizontal dashed line a measurement
can be performed.
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3.10 Excitations
To bring the theoretical part of this master thesis to a conclusion, the final part is about
how to generate excitations from the ground state to see some dynamics in the time
evolution6. In general two different approaches were realized.
First, an external field could be applied at the initial timestep, to generate a density
fluctuation. When starting the simulation the external field is turned off.
Second, one could insert a particle with momentum k.

a.) Applying an external field at t = 0 :
One can create an initial perturbation of the charge or the spin by applying an ex-
ternal field respectively a chemical potential to the system at time t = 0. This fields
will result in a local increase or decrease in the particle or the spin density. Then
the ground state of the system with the field is calculated with DMRG. Afterwards
one turns the external fields off, leading to a non-equilibrium state interesting for
time evolution. The time evolution will yield a propagation of the excitations.
In the spinless fermion case due the absence of the spin degree of freedom one only
has to deal with an electrically field of the former mentioned (see section 2.2) form

ĤEF =
L∑
i=1

εin̂i , (3.97)

where ĤEF is the external field Hamiltonian, L is the systems size, εl is the electric
field on site i and n̂ is the number operator. For the models also containing spin,
like the Hubbard model or BCS-superconductor, the external field Hamiltonian ĤEF
now looks like

ĤEF =
L∑
i=1

εi (n̂i,↑ + n̂i,↓) +
L∑
i=1

Bi

2 (n̂i,↑ − n̂i,↓) , (3.98)

with now two different number operators n̂i,↑ respectively n̂i,↓ distinguishing between
particles with spin up (↑) and down (↓) and an additional magnetic field Bi operating
on site i, as already outlined in section 2.3. For the simulations in chapter 4 only
Gaussian shaped external fields were used

F (i) = F0 e
− (x0−i)

2

2σ2 with F0 = ε resp. B/2 , (3.99)

generating peaks with the standard deviation of size σ with a maximum at x0 and
an amplitude of size F0 belonging either to the electric ε or the magnetic field B/2.
Gaussian shaped density perturbations were chosen, because after the splitting of
the perturbation in a right and a left moving part the excitations will stay quite
stable.

b.) Inserting a particle with momentum k :
The second method how to generate perturbations can be found in the paper of Ul-
bricht and Schmitteckert[41]. There an additional particle with a specific momen-
tum is added/removed to the ground state by applying the creation/annihilation

6As one can imagine without motion the time evolution would be rather boring, observing just a static
state over time.
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operator g†σ/gσ

g(†)
σ (k0) =

∑
k

e
(k−k0)2

2σ2
0 c

(†)
k,σ =

L∑
j=1

(
e(−2σ2

0π
2(j−x0)2)

)(
e

2πi(j−x0)
L

k0

)
c

(†)
j,σ , (3.100)

where k are the momentum eigenstates k ∈
{
−π + 2π

L
, . . . , π

}
, σ0 is the width of

the excitation in momentum space. The excitation will be normalized and centered
around x0

|Ψ±1〉 = 1√
C
g(†)
σ (k0)|Ψ〉 with C = 〈Ψ|((g(†)

σ (k0))†g(†)
σ (k0)|Ψ〉 . (3.101)

Applying the creation operator will result in a quantum state with an additional
particle |Ψ+1〉, whereas the annihilation operator will result in a quantum state with
one particle less |Ψ−1〉.
Unfortunately, this method was not optimal for investigating Andreev reflection.
Oscillations occurred during time evolution on every site, the inserted particle had
passed. Since Andreev reflection is only visible on these sites, the measurements
were noisy. Thus, the method of creating perturbations by applying external fields
was applied to all simulations in chapter 4.

3.11 Background subtraction
The phrase background subtracted often occurs in chapter 4. This means that additionally
to the calculation of the groundstates with applied gaussian-shaped fields to generate
a charge or spin perturbation, separate calculations without those fields are performed
(E0 = 0.0, B0 = 0.0). Then the charge (n̂0

ρ) respectively the spin density (n̂0
σ) obtained

from these additional calculations are subtracted from the time evolution of the perturbed
groundstates at every timestep t for every site i, to smooth out oscillations [18]:

〈n̂i,ν〉(t)− 〈n̂0
i,ν〉 with ν = ρ, σ . (3.102)

An alternative method is to subtract the initial groundstate at t = 0:

〈n̂i,ν〉(t)− 〈n̂i,ν〉(t = 0) with ν = ρ, σ . (3.103)

However, this results in a large negative peak at the initial position of the perturbation
x0 for all timesteps, making the Andreev reflection peak only observable until it reaches
x0. For that reason, the method of choice was the first one.



4 Results
Now, after all theoretical reflections, we can get started with the practical part of this
master thesis.
In the first part (4.1) different simulations concerning spin charge separation are performed
for the Hubbard model and a closer look on the charge and the spin density for different
on-site repulsions U and band fillings n is taken. Furthermore the charge and the spin
velocities uρ,σ are measured and compared to the theoretically predicted velocities found
in figures 2.8 from [28]. Additionally the Wilson ratio (see equation 2.71) is calculated
from the obtained charge and spin velocities and also compared with figure 2.10.
After this we change to the model of spinless fermions and perform simulations resulting
in normal and Andreev-like reflections. This is achieved by adjusting the screws of the
off-site interaction parameter V on the left and the right side of the interaction boundary
in the right way. Results can be found in section 4.2.
Next comes a section (4.3) with simulations concerning Andreev-reflection in a repulsive
Hubbard model. Simulations with different matrix dimensions χ, different excitation sizes
for the charge and the spin perturbations (section 4.3.2), separate excitations of charge
and spin apart from each other (section 4.3.3) and the effect of a charge perturbation on
the spin channel of the model are calculated, and the dependence of results on the matrix
dimension χ is again investigated (section 4.3.4).
Subsequently, simulations with an attractive Hubbard model are performed in section
4.4. Once more a comparison of normal and Andreev-reflection similar to the simula-
tions for spinless fermions is performed, but now with a model which takes spin into
account (section 4.4.1). Following this, simulations with different sizes of the on-site at-
traction parameter U are accomplished in section 4.4.2. Because of the observation, that
no Andreev-reflection occurs for strong on-site attractions, the interaction boundary con-
sisting of one site is changed to a linearly ascending interaction boundary over several
sites. Simulations with this new linear interaction boundary are found in section 4.4.3.
If the enlarged interaction boundary has the right width, the Andreev effect occurs once
again.
Finally, simulations with the s-wave BCS Hamiltonian from equation 2.88 can be found
in the last section 4.5.
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4.1 Spin charge separation
In section 2.3.2 the phenomenon of different spin uσ and charge velocities uρ due to the
uncoupling of the spin and the charge degree of freedom in one-dimensional systems was
described (see equation 2.65). This interesting phenomenon has recently attracted the
attention of many physicists, since the realization of ultra-cold quantum gases in optical
traps gives experimentalists the possibility to investigate this effect and theorists the
ability to compare their results with the real world.
C. Kollath et al. made real time studies with an adaptive time-dependent density-matrix
renormalization group (adaptive t-DMRG) algorithm, which is an efficient implementation
of Vidal’s TEBD algorithm in the DMRG framework [42, 43]. Additionally they suggested
experimental realizations to make measurements of spin-charge separation possible. They
found out that to obtain measurable effects for relatively small one-dimensional quantum
systems, rather strong and localized perturbations have to be applied. This unfortunately
violates the assumptions of Luttinger liquid theory, leading to a breakdown of spin-charge
separation.
Since C. Kollath et al. still use relatively large excitation sizes, Elias Rabel analyzed in
his master thesis [18] spin-charge separation generated in contrast to Kollath’s work with
smaller ones. Calculations of the groundstate were made in his work by an imaginary
time evolution ("cooling to T = 0"). Afterwards time evolvement was achieved with the
help of TEBD.
In the present master thesis all groundstate calculations are performed by DMRG, sub-
sequently followed by time evolution with TEBD. Simulations with the same parameters
of the simulations as in Elias Rabel’s master thesis are realized, to check if the results are
the same1.
The model system used in the simulations below is the Hubbard model from equation
2.59 containing spin as well as charge degrees of freedom2. Perturbations were generated
by application of an external field as described in section 3.10. In contrast to the work
of C. Kollath, very weak electric and magnetic fields were used similar to Elias Rabel’s
work.
Important parameters for all simulations are the Hubbard on-site repulsion U between
fermions of opposite spin, the maximum matrix dimension χ of the used MPS, the system
size L, the number of particles with spin upN↑ respectively spin downN↓ and consequently
the mean particle density n calculated in following way

n = n↑ + n↓
L

.

The parameters for creating the perturbation are the amplitude of the electric E0 and the
magnetic field B0, the position of the maximum of the fields and hence the perturbation’s
position x0 and the excitation’s width determined by the standard deviation σ of the
Gaussian shaped fields.
The plots in the figures below show the charge expectation value 〈nρ〉 = 〈n↑+n↓〉 respec-
tively spin expectation value 〈nσ〉 = 〈n↑ − n↓〉. The background charge/spin expectation

1Luckily the same results were obtained.
2Naturally due to the absence of spin, spin charge separation can not be found in the spinless fermion
model.
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value 〈nρ,σ〉0 results from a ground state calculation with no external electric E0 = 0 or
magnetic B0 = 0 field applied and is subtracted from the mean charge density in all plots
in this section.
Also oscillations, called Friedel oscillations, occur in the plots reflecting the ground state
with nonvanishing E0 and/or B0. To smooth out these charge and especially spin oscilla-
tions, the charge as well as the spin density are averaged over three sites.
Charge uρ and spin velocities uσ are estimated by measuring the propagation of the
maximum of the excitations over time and subsequent linear fitting. The velocities uρ,σ
are then the slopes of the linear fits

xρ,σ(t) = uρ,σ · t+ x0 (4.1)

Additionally the velocities of the fastest perturbation uρ,σ are also measured by a linear
fitting of the extreme end of the Gaussian-shaped perturbations. We will distinguish
between the maximum peak and the fastest perturbation velocity by applying indices to
the velocities umax resectively uFP .
In the limit of an infinitesimal perturbation much broader than the average inter-particle
spacing, spin and charge velocities are known analytically from the Bethe ansatz (see
section 2.1.1 and figures 2.8 and 2.9) and can be compared with the obtained results for
uρ,σ.
Simulations with different parameter setups are performed for different Hubbard on-site
repulsion with U = 0 and U = 4 and different band fillings varying from n ≈ 0.22 to
n ≈ 0.78.
For the first experiment, the non-interacting case, values for U = 0 and for n ≈ 0.78 are
chosen. Concerning no on-site repulsion, the spin and the charge velocity should be the
same (uρ = uσ) identical to the Fermi velocity vF found in equation 2.68.
The equality of uρ and uσ can be seen in figure 4.1 and 4.2 with a three respectively a
two dimensional plot of the charge on the left and the spin on the right side.
The left side of figure 4.3 shows a linear fit in Matlab of the maximum excitation peak
position over time. On the right side a linear fit of the fastest perturbation is shown.
Since the hopping parameter is one (t = 1) for all simulations, the spin velocity should
deliver the result

uρ = uσ = vF = 2 sin
(0.78π

2

)
= 1.88176 . (4.2)

Unfortunately the linear fit’s result is uρ,max = uσ,max = (1.905 ± 0.003) respectively
uρ,FP = (1.94± 0.03) and uσ,FP = (1.97± 0.04)3. Although the result is equal for charge
and spin at least concerning the margin of error, it differs from the Fermi velocity vF .
One explanation for the different result is, that the excitation peak, even though the
perturbations are small, has a slightly different charge and spin density than n ≈ 0.78.
As one can easily see in figure 4.1, the peak height is about 0.03, resulting in an overall
charge/spin density of n ≈ 0.81. Calculating the Fermi velocity for this density leads to
vF = 1.911. Neither the overall charge density of n ≈ 0.78 nor the maximum density of the
peak n ≈ 0.81 delivers the right solution, but the true value for the density perturbation
feels is lying somewhere in between. So the result can be seen as correct.

3The error of uρ,max and uσ,max respectively uρ,FP and uσ,FP are taken from the linfit routine in Matlab.
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For the second experiment, an interacting Hubbard model was taken with an on-site
repulsion of U = 4 and the same band filling of n ≈ 0.78 as in the experiment before.
Since U 6= 0, spin-charge separation is expected. The different values of uρ and uσ can be
seen in figure 4.4 and 4.5 with a three respectively two dimensional plot of the charge on
the left and the spin on the right side.
Figure 4.7 contains a snapshot for two different time steps again at simulation time t = 0
(left plots) and t = 15 (right plots) with charge density (red lines) and spin density (black
lines). Obviously uρ and uσ are not the same any more as expected for an interacting
Hubbard model. The results for the velocities (see figure 4.6) obtained by a linear fit are
uρ,max = (2.086 ± 0.003) and uσ,max = (1.225 ± 0.003) respectively uρ,FP = (2.14 ± 0.04)
and uσ,FP = (1.26± 0.03).
In the next experiment the particle density in the interacting Hubbard model, U is again
4, is changed to n ≈ 0.44. This will lead again to different velocities in comparison to
the second experiment, because the charge and spin velocities also depend on the particle
density as can be seen in figure 2.8. Again, three and two dimensional plots of the charge
and the spin density can be found in figures 4.8 and 4.9 and the linear fits to get the
velocities are in figure 4.10. Note that lowering the particle density leads to stronger
oscillations especially in the spin density. This affects the measuring of the maximum
peak of the spin density. It can be seen in figure 4.10 that the spin peak stays at a
constant point in space for about five to six timesteps. The velocities obtained from the
slope of the fits are uρ,max = (1.786 ± 0.002) and uσ,max = (0.777 ± 0.002) respectively
uρ,FP = (1.78± 0.04) and uσ,FP = (0.99± 0.02).
Lowering the particle density even more to approximately n ≈ 0.22 for unchanged U = 4
in the interacting Hubbard model results in even stronger oscillations making a velocity
measurement almost impossible. Therefore the measurements of the maximum and the
fastest perturbation peak were performed by hand instead of applying an automated
Matlab script in the experiments above. The results are depicted in the now familiar
way from the previous experiments in the figures 4.11, 4.12 and 4.13. Due to the strong
oscillations fewer peaks are taken into account for the linear fitting, which increases the
fitting error obtained from Matlab. The calculated velocities are uρ,max = (0.97 ± 0.02)
and
uσ,max = (0.23± 0.05) respectively uρ,FP = (1.07± 0.02) and uσ,FP = (0.18± 0.02).
For all experiments, the Wilson ratio (see equation 2.71) was also calculated from the
measured charge uρ and spin uσ velocities. The error for the Wilson ratio was obtained
by the tangent error method, which results in following equation:

∆RW =
∣∣∣∣∣∂RW

∂uρ

∣∣∣∣∣∆uρ +
∣∣∣∣∣∂RW

∂uσ

∣∣∣∣∣∆uσ = 2uρ
(uρ + uσ)2

{[
(uρ + uσ)

uρ
+ 1

]
∆uρ + ∆uσ

}
.

(4.3)

A summary of all results obtained from the four different simulations can be found in
tables 4.1 and 4.2. Additionally, the results for the different charge and spin velocities of
the maximum excitation peak are marked in figure 4.14 on top. The Wilson ratio can be
found at the bottom of this figure. This makes the verification of the results easier.
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(a) Charge density (b) Spin density

Figure 4.1: Charge and spin density averaged over 3 sites for a non-interacting Hubbard
model. The background is subtracted (see section 3.11). U=0;n=0.78;χ =
80;L = 72;N↑ = 28;N↓ = 28;E0 = −0.1;B0 = 0.2;x0 = 35;σ = 3.

(a) Charge density (b) Spin density

Figure 4.2: Same as figure 4.1, in a 2d plot.
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(a) Maximum Peak (b) Fastest Perturbation

Figure 4.3: Linear fit of the maximum excitation peak position for the non-interacting
Hubbard model with U=0 and n=0.78 for charge ρ (red +) and spin σ (blue
x) from figure 4.1 respectively 4.2 on the left side and the fastest perturbation
peak on the right. The slope of the linear fits for the maximum peak (νFit(t) =
uν · t + d, with ν = ρ, σ) is uρ = uσ = (1.905 ± 0.003). The velocities for the
fastest perturbation peaks are uρ,FP = (1.94±0.03) and uσ,FP = (1.97±0.04).

(a) Charge density (b) Spin density

Figure 4.4: Charge and spin density averaged over 3 sites for an interacting Hubbard
model. The background is subtracted (see section 3.11). The vertical scale in
the left subfigure extends to 20 × 10−3. U=4;n=0.78;χ = 80;L = 72;N↑ =
28;N↓ = 28;E0 = −0.1;B0 = 0.2;x0 = 35;σ = 3.
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(a) Charge density (b) Spin density

Figure 4.5: Same as figure 4.4, in a 2d plot.

(a) Maximum Peak (b) Fastest Perturbation

Figure 4.6: Linear fit of the maximum excitation peak position for the interacting Hubbard
model with U=4 and n=0.78 for charge ρ (red +) and spin σ (blue x)
from figure 4.4 respectively 4.5 on the left side and the fastest perturbation
peak on the right. The slope of the linear fits (νFit(t) = uν · t + d, with
ν = ρ, σ) is uρ,max = (2.086± 0.003) and uσ,max = (1.225± 0.003) respectively
uρ,FP = (2.14± 0.04) and uσ,FP = (1.26± 0.03).
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(a) Charge t = 0 (b) Charge t = 15

(c) Spin t = 0 (d) Spin t = 15

Figure 4.7: Snapshots of the charge density (red lines at the top) and spin density (black
lines at the bottom) for the interacting Hubbard model at different simulation
times t with t=0 (left plots) and t=15 (right plots); U=4;n=0.78;χ =
80;L = 72;N↑ = 28;N↓ = 28;E0 = −0.1;B0 = 0.2;x0 = 35;σ = 3. Due to
the on-site repulsion U , therefore the velocities of the charge and the spin are
not the same, therefor spin-charge separation is observed.
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(a) Charge density (b) Spin density

Figure 4.8: Charge and spin density averaged over 3 sites for an interacting Hubbard
model. The background is subtracted (see section 3.11). U=4;n=0.44;χ =
80;L = 72;N↑ = 28;N↓ = 28;E0 = −0.1;B0 = 0.2;x0 = 35;σ = 3.

(a) Charge density (b) Spin density

Figure 4.9: Same as figure 4.8, in a 2d plot.
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(a) Maximum Peak (b) Fastest Perturbation

Figure 4.10: Linear fit of the maximum excitation peak position for the interacting Hub-
bard model with U=4 and n=0.44 for charge ρ (red +) and spin σ (blue x)
from figure 4.8 respectively 4.9 on the left side and the fastest perturbation
peak on the right. The slope of the linear fits (νFit(t) = uν · t + d, with
ν = ρ, σ) is uρ,max = (1.786±0.002) and uσ,max = (0.777±0.002) respectively
uρ,FP = (1.78± 0.04) and uσ,FP = (0.99± 0.02).

(a) Charge density (b) Spin density

Figure 4.11: Charge and spin density averaged over 3 sites for an interacting Hubbard
model. The background is subtracted (see section 3.11). U=4;n=0.22χ =
80;L = 72;N↑ = 28;N↓ = 28;E0 = −0.1;B0 = 0.2;x0 = 35;σ = 3.
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(a) Charge density (b) Spin density

Figure 4.12: Same as figure 4.11, in a 2d plot.

(a) Maximum Peak (b) Fastest Perturbation

Figure 4.13: Linear fit of the maximum excitation peak position for the interacting Hub-
bard model with U=4 and n=0.22 for charge ρ (red +) and spin σ (blue x)
from figure 4.11 respectively 4.12 over time on the left side and the fastest
perturbation peak on the right. The slope of the linear fits is uρ,max =
(0.97 ± 0.02) and uσ,max = (0.23 ± 0.05) respectively uρ,FP = (1.07 ± 0.02)
and uσ,FP = (0.18± 0.02).



72 4 Results

Table 4.1: Velocities and Wilson ratios of the excitation peaks. This table contains a
summary of the results of the four different simulations for different on-site
repulsion U and mean particle densities n found in figures 4.1 to 4.13. The
values for charge uρ,max and spin velocities uσ,max are obtained by linear fitting
of the propagation of the maximum peak, the errors ∆uρ,σ,max are taken from
Matlab’s linfit routine. The Wilson ratios RW,max are calculated from uρ,σ,max
with equation 2.71, the errors are determined by equation 4.3.

U n uρ,max ∆uρ,max uσ,max ∆uσ,max RW ∆RW

Exp. 1 0.0 0.78 1.905 0.003 1.905 0.003 1.000 0.003
Exp. 2 4.0 0.78 2.086 0.003 1.225 0.003 1.260 0.004
Exp. 3 4.0 0.44 1.786 0.002 0.777 0.002 1.394 0.003
Exp. 4 4.0 0.22 0.970 0.020 0.230 0.050 1.600 0.100

Table 4.2: Velocities and Wilson ratios of the fastes perturbation. Otherwise like table
4.1.

U n uρ,FP ∆uρ,FP uσ,max ∆uσ,FP RW,FP ∆RW,FP

Exp. 1 0.0 0.78 1.94 0.03 1.97 0.04 0.99 0.03
Exp. 2 4.0 0.78 2.14 0.04 1.26 0.03 1.260 0.05
Exp. 3 4.0 0.44 1.78 0.04 0.99 0.02 1.29 0.05
Exp. 4 4.0 0.22 1.07 0.10 0.18 0.10 1.70 0.10
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(a) Charge- and Spin velocities

(b) Wilson ratio

Figure 4.14: In this figure the results from experiment 2 to 4 found in table 4.1 are depicted
over figures 2.8 and 2.10 taken from [28]. On the top the simulated values for
the charge uρ (red points) and spin velocities uσ (blue points) are marked.
The solid line in the middle starting from left belong to the charge velocity
of U = 4 and also the dashed line in the middle is for U = 4. One can see
a good agreement of the values. The Wilson ratio is shown in the plot at
the bottom with U = 4 belonging to the middle solid line, the calculated
values are depicted as red points. Again, good agreement is found between
the analytical and simulated values.
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4.2 Normal and Andreev-like reflection for Spinless
Fermions

The first system we are going to investigate, where Andreev-like reflection occurs, is the
spinless fermion model4 (see equation 2.57).
A. J. Daley et al. [25] investigated this model5 and proposed an experimental setup for
the observation of Andreev-like reflection using cold atoms trapped in one-dimensional
optical lattices. Their results were obtained by time-dependent density matrix renormal-
ization group (TDMRG) methods, analyzing the wave packet propagation of a density
propagation across a boundary in the interaction strength. In his master thesis, Elias
Rabel [18] also investigated Andreev-like reflection based on the paper of A. J. Daley
with slightly different numerical methods. He calculated the ground state with imaginary
time evolution and afterwards the real time evolution of the quantum state was simulated
with TEBD. In the following simulations, the ground state is calculated with DMRG and
subsequent real time evolution with TEBD.
Important parameters for the simulation are the off-site interaction parameter VL,R on
the left or the right side of the interaction boundary xB, again the maximum matrix
dimensions χ, the length of the one-dimensional chain L, the number of particles in the
system N and thus the mean particle density n = N/L.
Important parameters for the charge perturbation are the amplitude of the chemical
potential respectively the electric field E0

6, the position of the maximum peak x0 at t = 0
and its Gaussian width σ.
Additionally, a second external field ĤR is introduced:

ĤR = ER · θ(i− xB) , (4.4)

with the step function θ(x) ensuring that the field only works on the right side of the
interaction boundary xB, thus the index R. The parameter ER is adjusted in a way that
the density on each side of the interaction boundary is nearly the same.
With this method, simulations in the range |VL − VR| ≤ t were performed. Outside this
range, large density oscillations occur near the boundary. The hopping parameter is set
to t = 1 for all simulations and we will take a non-interacting spinless fermion model on
the left side with VL = 0. The off-site interaction parameter VR on the right side can
therefore vary between VR = [−1,+1]. For making a comparison of the results possible,
the same parameters as mentioned in the paper of Daley or the master thesis of Rabel
are taken, namely VL = 0, VR = ±t, t = 1, E0 = −2t and σ = 3.
The Luttinger parameter Ki in the limit aVi

vf
≥ 1 with the lattice spacing a and the Fermi

velocity vF can be approximated in the following way [25]

Ki = 1√
1 + aVi

vF

. (4.5)

4Also known as spin-polarized fermions or hard-core bosons in the literature.
5Although Daley and et al. described their model as an extended Hubbard model with off-site interac-
tions for spin-polarized fermions (or hardcore bosons), it is nothing more than an euphemism for the
spinless fermion model.

6Note that a magnetic field would not affect spinless fermions, therefore this parameter is omitted here.
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The reflection coefficient γ can then be calculated with equation 2.58. If γ < 0, the
transmitted amplitude through the interaction boundary will be larger than the incident
amplitude, resulting in a hole reflected back.
In the following experiments, plots with VL = 0 and VR = ±t with t = 1 are shown.
For the region left of the interaction boundary with no interaction at all, the Luttinger
parameter is KL = 1 according to equation 4.5. For the repulsive off-site interaction
parameter VR = 1 on the right side, the denominator in equation 4.5 is larger, leading
to an decreasing Luttinger parameter compared to the non-interacting case KR < KL.
Then the reflection coefficient will be positive γ > 0 resulting in a normal reflection of
an excitation. The attractive off-site interaction VR = −1 on the other hand leads to an
increase in the Luttinger parameter at the interaction boundary KL < KR, resulting in
a negative reflection coefficient γ < 0, meaning excitations are transmitted with larger
amplitude 1 − γ compensated by a hole traveling in the opposite direction. This is
analogous to the Andreev reflection at normal metal-superconductor boundaries. Plots
of the density varying with time at each site can be found in figure 4.15 for VR = 1
and in figure 4.16 for VR = −1. In both figures it can be seen that the initial density
perturbation splits up into a right- and a left-moving part. The right moving peak is the
important one, since it travels in the direction of the interaction boundary. As expected,
the repulsive off-site interaction VR = 1 leads to normal reflection whereas the attractive
one with VR = −1 results in hole-like reflection. In figure 4.17, the same results are
shown again, now from above. It can also be observed that the two transmitted peaks
propagate at different velocities, as expected for different interaction parameters. Again
a linear fit as in section 4.1 was applied at the maximum peaks of the perturbation after
the interaction boundaries and the velocities for both cases were calculated. For the
normal reflection the charge velocity is vN = (2.90± 0.01) and the charge velocity of the
Andreev-like reflection is vA = (1.27 ± 0.06) (see figure 4.19). In figure 4.18, the normal
and Andreev-like reflection are both shown averaged over sites 70 to 75, as a function of
time.
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Figure 4.15: Charge density averaged over 3 sites for the spinless fermion model. VL =
0;VR = 1;χ = 200;L = 128;N = 56;n = 0.44;xB = 91;ER = 0.6;E0 =
−2.0;x0 = 45;σ = 3; Normal reflection occurs, since the charge density
perturbation hits the interaction boundary coming from a non-interacting
region with VL = 0 into a repulsive region with VR = 1.

Figure 4.16: Charge density averaged over 3 sites for the spinless fermion model. Same
parameters as in figure 4.15, except for VR = −1 and ER = −0.6. Andreev-
like reflection occurs, since the charge density perturbation hits the inter-
action boundary coming from a non-interacting region with VL = 0 into an
attractive region with VR = −1.
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(a) Normal reflection (b) Andreev-like reflection

Figure 4.17: Comparison of figure 4.15 and figure 4.16 viewed from above. The occurence
of a normal reflection (left plot) and an Andreev-like reflection (right
plot) can clearly be seen as the charge density peak hits the interaction
boundary after which repulsive respectively attractive interaction occurs.
Also the different heights and velocities of the perturbation after the in-
teraction boundary are observable.

Figure 4.18: This figure shows the charge density over time averaged over sites 70 to 75
for the normal reflection (VL = 0, VR = 1; blue line) and the Andreev-like
reflection (VL = 0, VR = −1; red line). The occurence of a normal, lower
density reflection (blue line) and a reflected hole excitation corresponding
to a lower particle density at timesteps t = 30 to t = 40 is obvious. The
background, the groundstate calculated with E0 = 0.0, was substracted to
assure a better comparability of the two different simulations.
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Figure 4.19: Linear fit of the maximum excitation peak position before the scattering,
for the cases of normal reflection (red +) and Andreev-like reflection
(blue x) from figure 4.15 respectively 4.16 over time. The slope of the fits is
vN = (2.90± 0.01) respectively vA = (1.27± 0.06).
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4.3 Andreev-reflection in repulsive Hubbard model
In this section, fermions with spin within a Hubbard Hamiltonian 2.59 are treated by
simulating a propagation traveling from a repulsively interacting region on the left with
UL = 8.0 to a non-interacting region with UR = 0.0. In section 4.3.4, we will also
investigate Andreev reflection between two repulsive regions. The interaction boundary
xB is again located between site 90 and 91. The amplitude of the reflections will be quite
small, since from |t/U | � 1 an effective interaction term Vi,eff obtained from perturbation
theory [25] follows with |Vi,eff| � t. Luckily, with numerical simulations provided by MPS
techniques, systems beyond the validity of perturbation theory can be investigated.
Charge and spin perturbations are excited again with a Gaussian shaped electric respec-
tively magnetic field, with amplitudes E0 = −1.0 and B0 = 0.025 at site x0 = 65 and
σ = 3. The magnetic field amplitude to generate a spin wave propagation is chosen much
weaker than the electric field term, according to Rabel’s master thesis [18]. Although the
perturbations in this master thesis are twice as small as in [18], the ratio of the electric
and the magnetic field amplitude is still the same. In sections 4.3.3 and 4.3.4 we will also
investigate separate excitations of spin and charge.
In figure 4.20, one can see that charge and spin degree of freedom are not completely
independent from another: an indentation due to the propagating charge is observed in
the spin. This signal may be due to numerical issues, see section 4.3.4.
Because of the spin rotational invariance of the Hubbard model, the Luttinger liquid
parameter for the spin Kσ is equal to 1 for every possible value of U , leading to a reflection
coefficient of γ = 0. Thus no reflection, neither normal nor Andreev, occurs for the spin
degree of freedom (see figure 4.20). The Luttinger parameters for the charge Kρ,L at
UL = 8.0 and for the mean fermion density n ≈ 0.5 can be obtained from figure 2.7 and
is approximately Kρ,L = 0.62, the parameter for UR = 0.0 is Kρ,R = 1. This results
in a reflection coefficient of γ = −0.23, leading to Andreev reflection as can be seen in
figure 4.21. Figure 4.22 shows the convergence of the charge signal at time. The reflection
coefficient obtained from figure 4.22 results in γ = −0.25.
Next is the study of the time evolution of the entanglement entropy. For a certain point in
time, one can calculate the entanglement entropy between site i and site i+ 1. It is given
by equation 3.14. The base of the logarithm is here 2, the binary logarithm, in contrast
to the work of Elias Rabel who took the natural logarithm. In figure 4.23 one sees the
entanglement entropy for cuts at each bonds, calculated at χ = 1000. The reflection at
the boundary can also be observed in the entanglement entropy.
Figure 4.24 shows the double occupancy per site (| ↑↓〉), where the propagation in the
non-interacting Hubbard model on the right side of the interaction boundary is in contrary
to the repulsive model on the left really more superconducting-like.
Indeed the density of double occupied states increase as the propagation passes the inter-
action boundary, showing a Cooper-pair like behavior. Besides the density of not-occupied
states (|0〉) is shown in figure 4.25, resulting in a higher holon (empty state) density being
reflected at the interaction boundary, corresponding to the Andreev reflection of a hole.
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Figure 4.20: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91: UL = 8.0, UR = 0.0;
L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, E0 = −1.0, B0 = 0.025, σ = 3, x0 =
65, χ = 1000, τ = 0.05; Spin density nσ averaged over 3 sites and the
background is subtracted (see section 3.11). The vertical scale extends to
10× 10−3.

Figure 4.21: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91: UL = 8.0, UR = 0.0;
L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, E0 = −1.0, B0 = 0.025, σ = 3, x0 =
65, χ = 1000, τ = 0.05; Charge density nρ averaged over 3 sites and the
background is subtracted (see section 3.11). See also figure 4.22.
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Figure 4.22: This figure shows the charge density over time for different matrix dimen-
sions varying from χ = 80 to χ = 1000 averaged over sites 80 to 85 for
Andreev reflection as a propagating charge perturbation hits the interac-
tion boundary at site xB = 91 between a repulsive (UL = 8.0) and a non-
interacting (U = 0.0) Hubbard model. The backscattered hole excitations
can be clearly seen between timestep t = 15 and t = 25.

Figure 4.23: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91: UL = 8.0, UR = 0.0;
L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, E0 = −1.0, B0 = 0.025, σ = 3, x0 =
65, χ = 1000, τ = 0.05; Entanglement entropy SN calculated between the
sites i and i+ 1.
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Figure 4.24: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91: UL = 8.0, UR = 0.0; L =
128, N↑ = 32, N↓ = 32, n ≈ 0.5, E0 = −1.0, B0 = 0.025, σ = 3, x0 = 65, χ =
1000, τ = 0.05; Measurement of double occupied states (|ψi〉 = | ↑↓〉).
The background is subtracted (see section 3.11).

Figure 4.25: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91: UL = 8.0, UR = 0.0;
L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, E0 = −1.0, B0 = 0.025, σ = 3, x0 =
65, χ = 1000, τ = 0.05; Measurement of the holon density (non-occupied
states (|ψi〉 = |0〉)). The background is subtracted (see section 3.11).



4.3 Andreev-reflection in repulsive Hubbard model 83

4.3.1 Convergence in matrix dimension χ
For estimating the reliability of the simulations, different maximum matrix dimensions
χ were investigated, varying from χ = 80 to χ = 1000. The absolute difference in
the particle densities from the calculation with χ = 1000 and lower matrix dimension
(χ = 80, 160, 320, 800) were obtained. They are shown in figure 4.26. Note, the parameter
χ is used for both, the DMRG groundstate calculation and the TEBD real-time evolution.
Additionally the maximum difference at each timestep is depicted in a semi-log plot in
figure 4.27. The obtained values for the maximum difference max(dχ) are max(d80) =
0.0361, max(d160) = 0.0100, max(d320) = 0.0032 and max(d800) = 2.0071 · 10−4.
Figure 4.22 shows the convergence of the charge signal at time for the different matrix
dimensions χ averaged over sites 80 to 85. All charge density plots for all different matrix
dimensions χ nearly look the same, except the plot for χ = 80 having a second negative
peak after the first Andreev peak between times t = 28 and t = 35. But for the remaining
matrix dimensions the difference between the curves is hard to estimate by the human
eye.
A comparison of the entanglement entropy for the different matrix dimensions χ at the
interaction boundary measured between site 90 and 91 can be found in 4.28. The en-
tanglement entropy increases as the perturbation hits the boundary. Subsequently, more
entanglement is created between both parts of the system. The higher the matrix dimen-
sion χ the more Schmidt values contribute to the sum in 3.14 and subsequently the more
entanglement an MPS quantum state can carry. The data converges at χ & 800, showing
that the matrix dimension of χ = 1000 used in the main data is sufficient.
Furthermore the maximal truncated weight wmax between two measurement steps at times
t and t + τ is plotted over time in figure 4.29 and compared between χ = 80, χ = 160,
χ = 320, χ = 800 and χ = 1000. The maximum of the truncated weight between site
i and site i + 1 is simply calculated by wmax(t, t + τ) = max

i
(wi(t, t+ τ)). We see that

a higher matrix dimension leads to a reduction of the truncated weight. One can also
notice that the truncated weight increases sharply at the time when the perturbation hits
the boundary. In figure 4.30 one can find the maximum of the truncated weight w over
all sites and all times as a function of the maximum matrix dimension χ. Additionally
an exponential fit is performed with ffit(χ) = a · ebχ, leading to the fit coefficients a =
(1.522 ·10−5) in the 95% confidence bounds [3.429 ·10−6, 2.702 ·10−5] and b = (−0.006693)
in the confidence interval [−0.01324,−0.0001413].
Note that in section 4.3.4, we will see that the trace of the charge signal visible in the
spin sector in figure 4.20 may be due to remaining convergence issues in χ.
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(a) d80 = |n̂χ=80 − n̂χ=1000| (b) d160 = |n̂χ=160 − n̂χ=1000|

(c) d320 = |n̂χ=320 − n̂χ=1000| (d) d800 = |n̂χ=800 − n̂χ=1000|

Figure 4.26: Absolute difference of the charge density between calculations with the
maximum calculated matrix dimension of χ = 1000 and χ = 80 (top-left),
χ = 160 (top-right), χ = 320 (bottom-left), χ = 800 (bottom-right) for
simulations of the Andreev reflection between a repulsive UL = 8.0 and a
non-interacting UR = 0.0 Hubbard model. Note the different vertical scales.
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Figure 4.27: Semi-logarithmic plot of the maximum absolute difference between
calculations with different χ.

Figure 4.28: Andreev-reflection at an interaction boundary dividing a repulsive Hubbard
model from a non-interacting one at site xB = 91. Entanglement entropy
SN measured at the interaction boundary xB for different matrix dimensions
χ varying from 80 to 1000. UL = 8.0, UR = 0.0, L = 128, N↑ = 32, N↓ = 32.
Note that the data converges at χ & 800.
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Figure 4.29: Maximum of the truncated weight tw over all sites as a function of time
shown for different matrix dimensions χ from 80 to 1000. Simulations with
parameters UL = 8.0, UR = 0.0, L = 128, N↑ = 32, N↓ = 32. The vertical
scale extends to 10× 10−6.

Figure 4.30: Semi-logarithmic plot of the maximum values of the truncated weight over
all sites and all timesteps taken from figure 4.29 as a function of the maxi-
mum matrix dimension χ. Additionally an exponential fit is performed with
ffit(χ) = a · ebχ, leading to the fit coefficients a = (1.522 · 10−5) in the 95%
confidence bounds [3.429 · 10−6, 2.702 · 10−5] and b = (−0.006693) in the
confidence interval [−0.01324,−0.0001413].



4.3 Andreev-reflection in repulsive Hubbard model 87

4.3.2 Effect of different excitation sizes
In this section, the transition of charge and spin perturbations from a repulsive Hubbard
model 2.59 (UL = 8.0) to a non-interacting one (UR = 0.0) are investigated, like in the
section before. But instead of estimating the influence of the maximum MPS matrix
dimension χ, we are now observing the influence of the size of the perturbation peaks.
Thus we generate different sizes of excitations by varying the amplitude of the applied
electric (E0) and magnetic (B0) Gaussian-shaped fields. The maximum of the fields is
located at site x0 with a standard deviation of σ. Starting point for the simulations are
amplitudes of E0 = −2.0 and B0 = 0.05. This amplitudes were halved until they reach
the minimum amplitude values of E0 = −0.125 and B0 = 0.003125 and simulations were
performed for every amplitude value resulting from the halving process in between. In
all simulations the background (simulations with E0 = 0.0 and B0 = 0.0) is subtracted.
Therefore one could not see the different band fillings nρ,i = (n̂i,↑ + n̂i,↓) /L on the left
(nL ≈ 0.4) and on the right side (nR ≈ 0.72) of the interaction boundary xB = 91.
In figure 4.33 the background density, where no fields for the excitations are applied,
is depicted, where one can see the different charge densities. In later simulations an
additional electric field EL was applied to guarantee similar band fillings on both sides.
Figure 4.31 shows the charge density for the biggest (left plot with E0 = −2.0 and
B0 = 0.05) and the smallest (right plot with E0 = −0.125 and B0 = 0.003125) applied
external field sizes. In booth cases Andreev-reflection is observed. The scale of the z-axis
of the plots is the same, to better bring out the difference of the perturbation peaks, but
the color range is different, to enhance the visibility of the Andreev-reflection.
The same plotting settings (same scale of the z-axis, different range of the colors) are also
applied to the spin density plots (4.32). The biggest excitation is again located on the left,
the smallest one on the right. One can see that the higher the charge perturbation, the
higher the oscillations in the spin density. The spin density gets more peaky compared
to the background density in case of the large perturbation. What’s more is the effect
of the charge perturbation on the spin channel of the system. Clearly a negative peak
propagating with the same velocity as the charge perturbation can be seen as a footprint
in the spin channel despite the relatively high matrix dimension of χ = 4007. If the
amplitudes of the excitations become smaller, the imprint of the charge perturbation on
the spin density becomes much smaller, resulting in the spin density propagation better
coming to light (right plot).
The charge density averaged over sites 75 to 80 depicted over time for the different ex-
citation sizes is shown in figure 4.34. When the applied fields are stronger, the peaks of
the excitations are higher. This results of course in a greater hole-like response of the
Andreev-reflection. The measured reflection coefficients in figure 4.34 result in γ = −0.186
for E0 = −2.0 and γ = −0.183 for E0 = −0.1258. Due to the fact that a higher charge
perturbation consists of more fermions and the total number of particles in the system is
fixed, the band-filling of the charge background is slightly low at high excitation sizes than
on low ones (see figure 4.34). In figure 4.35 the plots from figure 4.34 are normalized to
the height of the first peak passing the observed sites. The small difference in the charge

7Investigations of the effect of the maximum matrix dimension χ on the spin density fluctuation can be
found in section 4.3.4

8The reflection coefficient in this section is different to the coefficient in section 4.3 (γ ≈ −0.23), due to
the different band fillings on the left and on the right side of the interaction boundary.
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velocities for different excitation strengths (higher charge perturbations, lower background
band-filling) yields different arrival-times of the maximum peaks. Nevertheless, one can
see that Andreev-reflection is observable for all investigated charge propagation sizes and
that the reflected hole is of almost the same size9.

(a) Charge density
E0 = −2.0;B0 = 0.05

(b) Charge density
E0 = −0.125;B0 ≈ 0.003

Figure 4.31: Fermions with spin: Andreev-reflection at an interaction boundary at
site xB = 91: UL = 8.0, UR = 0.0; L = 128, N↑ = 32, N↓ =
32, n ≈ 0.5, σ = 3, x0 = 65, χ = 400, τ = 0.05 for different excitation
sizes E0= -2.0;B0= 0.05 (left) and E0= -0.125;B0= 0.003125 (right);
Charge density nρ averaged over 3 sites, background subtracted (see sec-
tion 3.11).

9Note that the size of the Andreev-reflection is also related to the Luttigner liquid parameter Kρ (see
equation 2.58). Because of the different particle densities of the background due to the excitation, Kρ

also varies, as can be seen in figure 2.7.



4.3 Andreev-reflection in repulsive Hubbard model 89

(a) Spin density
E0 = −2.0;B0 = 0.05

(b) Spin density
E0 = −0.125;B0 ≈ 0.003

Figure 4.32: Fermions with spin: Andreev-reflection at an interaction boundary at
site xB = 91: UL = 8.0, UR = 0.0; L = 128, N↑ = 32, N↓ =
32, n ≈ 0.5, σ = 3, x0 = 65, χ = 400, τ = 0.05 for different excitation
sizes E0 = -2.0;B0 = 0.05 (left) and E0= -0.125;B0= 0.003125 (right);
Spin density nσ averaged over 3 sites, background subtracted (see section
3.11). The vertical scale in the right subfigure extends to 2.2× 10−3.

Figure 4.33: Background for the charge density nρ averaged over 3 sites with an interaction
boundary at xB = 91, which separates the repulsive Fermi-Hubbard model
with UL = 8.0 and the non-interacting region with UR = 0.0. The charge
density on the left site is approximately nL ≈ 0.41 and nR ≈ 0.72 on the
right. L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, χ = 400.
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Figure 4.34: Fermions with spin: Andreev-reflection at an interaction boundary at site
xB = 91: UL = 8.0, UR = 0.0; L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, σ =
3, x0 = 65, χ = 400, τ = 0.05 for different excitation sizes from E0 = −2.0
to E0 = −0.125 ; Charge density nρ over time averaged over sites 75 to 80.
The measured reflection coefficients result in γ = −0.186 for E0 = −2.0 and
γ = −0.183 for E0 = −0.125.

Figure 4.35: Same as figure 4.34, with the height of the peak normalized.
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4.3.3 Separate Excitation of Charge and Spin
In the last section (sec. 4.3.2) we have seen that a large perturbation in the charge
channel of the Hubbard model has an effect on the spin channel and vice versa. This is
investigated more accurate in this section. Until now we have applied excitations on both,
the charge and the spin channel, at the same time. Hence the idea is to apply electric
and magnetic fields apart from each other and look at the effects on the charge and the
spin density. In figure 4.36 the charge density for a large excitation with only an electric
field with amplitude E0 = −2.0 (left plot) and a large excitation with only a magnetic
field with amplitude B0 = 0.05 (right plot) is presented.
In figure 4.37 the spin density is shown with only a charge perturbation generated in the
left plot and a only spin perturbation achieved in the plot to the right.
Logically the charge excitation provides the familiar picture with Andreev-reflection for
the charge density in figure 4.36 on the left, and the spin excitation shows the expected
behavior on the spin density as can be seen in figure 4.37 on the right. But there is also an
effect of the large charge perturbation on the spin channel (see figure 4.36 on the right).
Furthermore there is an effect of the spin perturbation on the charge density (see figure
4.37 on the left). In both cases, the excitations in the "wrong" channel are a most a few
percent of the main channel. Note that χ = 400 for these calculations, and see also figure
4.39.
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(a) Charge density; Charge excitation (b) Charge density; Spin excitation

Figure 4.36: Fermions with spin: Andreev-reflection at an interaction boundary at site
xB = 91: UL = 8.0, UR = 0.0; L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, σ =
3, x0 = 65, χ = 400, τ = 0.05 for different excitation for only the charge
channel E0 = −2.0;B0 = 0.0 (left) and only the spin channel E0 = 0.0;B0 =
0.05 (right); Charge density nρ averaged over 3 sites, background subtracted
(see section 3.11). The vertical scale in the right subfigure extends to
1.2× 10−3.

(a) Spin density; Charge excitation (b) Spin density; Spin excitation

Figure 4.37: Fermions with spin: Andreev-reflection at an interaction boundary at site
xB = 91: UL = 8.0, UR = 0.0; L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, σ =
3, x0 = 65, χ = 400, τ = 0.05 for different excitation for only the charge
channel E0 = −2.0;B0 = 0.0 (left) and only the spin channel E0 = 0.0;B0 =
0.05 (right); Spin density nσ averaged over 3 sites, background subtracted
(see section 3.11).



4.3 Andreev-reflection in repulsive Hubbard model 93

4.3.4 Andreev scattering between two repulsive regions, and
influence of the Charge on the Spin for different χ

In this section the effect of a pure charge excitation on the spin density is investigated
for different MPS matrix dimensions χ. For this, a charge excitation on site x0 = 65
with amplitude E0 = −1.0 and σ = 3.0 is applied on a repulsive Hubbard model with
an interaction boundary on site xB = 91 separating areas with UL = 10.0 and UR = 2.0.
Note that this time different on-site repulsions than in the simulations before are used.
Also an additional external electric field EL is applied to the left side of the interaction
boundary.

ĤL = EL · θ (xB − i) , (4.6)

where xB is the interaction boundary, i denotes the current site, EL is amplitude of the
external electric field and θ is the step function. The size of this field is properly chosen
to get approximately the same size of particle density n on the left nL and on the right
nR side of the system (EL = 0.06).
The charge density of the simulation with the maximum investigated matrix dimension of
χ = 1000 is depicted in figure 4.38. As before, Andreev reflection can clearly be observed,
now as the charge travels from a region with on-site repulsion UL = 10.0 to a region with
weaker on-site repulsion UR = 2.0.
The spin density of simulations with different matrix dimensions going from χ = 80 to
χ = 1000 are represented in figure 4.40. As one can see, increasing the matrix dimension
lowers the effect of the charge perturbation on the spin density. At first a high effect on
the spin density can be seen for low χ = 80 (figure 4.40) plot (a) respectively χ = 160
(figure 4.40 plot (b)). As the matrix dimension rises to χ = 320 (plot (c)), the effect
gets smaller, until for high matrix dimensions (χ = 640 (plot (d)) or χ = 1000 (plot
(e))) only numerical noise is observed. The maximum absolute value of the spin density,
which should be zero because of the absence of an applied magnetic field, as a function
of the matrix dimension χ is shown as a semilogarithmic plot in figure 4.39. Apparently,
the higher the matrix dimension χ is, the smaller the effect in the spin density. Thus,
the excitations with charge velocity observed in the earlier results appear to be (at least
mostly) a numerical issue, and are not just due to a large size of excitation. Note that in
figure 4.40 this affects not only the signal with charge velocity, but also spin oscillations
in the initial state.
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(a) Charge density (b) Charge density

Figure 4.38: Fermions with spin: Andreev-reflection at an interaction boundary at site
xB = 91: UL = 10.0,UR = 2.0; L = 128, N↑ = 32, N↓ = 32, n ≈ 0.5, σ =
3, x0 = 65, χ = 1000, τ = 0.05, E0 = −1.0;B0 = 0.0;EL = 0.06. Charge
density averaged over three sites, background subtracted (see section 3.11).

Figure 4.39: Effect of the charge density on the maximal absolute value of the spin density
(max (|n|)) as a function of the matrix dimension χ depicted as a semiloga-
rithmical plot.
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(a) Spin density
χ = 80

(b) Spin density
χ = 160

(c) Spin density
χ = 320

(d) Spin density
χ = 640

(e) Spin density
χ = 1000

Figure 4.40: Fermions with spin: Andreev-reflection at an interaction boundary at site
xB = 91 for different matrix dimensions χ going from 80 to 1000 with no
magnetic field applied. UL = 10.0, UR = 2.0; L = 128, N↑ = 32, N↓ = 32, n ≈
0.5, σ = 3, x0 = 65, χ = 1000, τ = 0.05, E0 = −1.0;B0 = 0.0;EL = 0.06.
Spin density averaged over three sites, background subtracted (see
section 3.11). Note the different vertical scales.
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4.4 Andreev-reflection in the attractive Hubbard model
4.4.1 Normal and Andreev-reflection
For the following simulations, an attractive Hubbard model with negative on-site inter-
action (U < 0) is taken into account. In this model, fermions form bound states with
energy |U |, so called hard core bosons. If a fermion jumps to a neighboring site, a pair of
fermions has to break, leading to a effective hopping term with teff ∝ t2

U
. Two different

on-site attractions are applied on the model, UL left of the interaction boundary and
UR on the right site. Because of the different on-site attraction terms, different particle
densities appear between the two regions. Therefore an additional external electric field
ER is applied on the right side of the model over the whole simulation time to obtain
approximately the same particle densities.
The side of the model with a more negative on-site attraction is the more superconduct-
ing one. The side with the less negative on-site attraction becomes more metal-like in
comparison with the other one. According to equation 2.72, Andreev-reflection will occur
for a transition from a non-interacting region respectively a region with weak on-site at-
traction to a region with stronger on-site attraction. On the contrary, normal reflection
will occur for transitions from regions with strong attraction to regions with weak or non
attraction.
To show this, simulations similar as for the spinless fermion model in section 4.2 were
made for the attractive Hubbard model. Only charge perturbations were excited, by
applying only a Gaussian-shaped electric field omitting the application of a magnetic field
for the spin density at first.
Normal reflection is shown in figure 4.41 as the charge perturbation crosses the interaction
boundary of an attractive Hubbard model on the left with UL = −2.0 to a region with no
interaction at all on the right (UR = 0.0). Additionally, the charge density in the region
with on-site attraction on the left is more peaky than on the right. This is because of the
fact that in the more attractive region the fermions would tend to build pairs caused by
the energy gain of fermion bound states in the attractive Hubbard model.
Andreev-reflection can be seen in figure 4.42. In this figure the charge perturbation comes
from a non-interacting region to a region with an on-site attraction term of size U = −2.0.
Now the more peaky area is the region on the right side of the interaction boundary.
For a better comparison the results for the normal and the Andreev-reflection for the
attractive Hubbard model are shown from above next to each other in figure 4.43 (normal
reflection on the left, Andreev-reflection on the right).
The charge density over time averaged over sites 76 to 80 is shown in figure 4.44. Be-
cause of the different interaction parameters and therefore the different heights of the
charge peaks, the curves have first been normalized to the peak maximum of the incident
perturbation. The positive normal and the negative Andreev-reflection peaks are clearly
observable. Due to the different attractions the velocities of the peaks are also slightly
different. As predicted from Luttinger liquid theory, the peak for the normal reflection
coming from an attractive region is a little bit slower than the Andreev-reflection peak,
which is located in a region with no interaction. From figure 4.44 the reflection coefficient
results in γA = −0.14 for the Andreev and in γN = 0.20 for the Normal reflection. The
reflection coefficient obtained from figure 2.9 and equation 2.72 yields γN/A = +/− 0.12.
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Figure 4.41: Charge density averaged over 3 sites for an attractive Hubbard model.
UL = −2.0;UR = 0.0;χ = 640;L = 128;N↑ = 32;N↓ = 32;n = 0.5;xB =
91;ER = 0.0.5265;E0 = −0.5;x0 = 65;σ = 3; Normal reflection is ob-
served, as the charge density perturbation hits the interaction boundary
coming from a interacting region with attractive interaction UL = −2.0 into
a non-interacting region with UR = 0.0. Background subtracted (see section
3.11).

Figure 4.42: Charge density averaged over 3 sites for an attractive Hubbard model. UL =
0.0;UR = −2.0;χ = 640;L = 128;N↑ = 32;N↓ = 32;n = 0.5;xB = 91;ER =
−0.55;E0 = −0.5;x0 = 45; σ = 3; Andreev-reflection is observed, as the
charge density perturbation hits the interaction boundary coming from a non-
interacting region with UL = 0 into an attractive region with UR = −2.0.
Background subtracted (see section 3.11).
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(a) Normal reflection
Charge density

(b) Andreev-like reflection
Charge density

Figure 4.43: Comparison of figure 4.41 and figure 4.42 viewed from above. The occurence
of a normal reflection (left plot) and an Andreev-reflection (right plot)
can clearly be seen as the charge density peak hits the interaction boundary.
Also the different heights and velocities of the perturbation before and after
the interaction boundary are observable.

Figure 4.44: This figure shows the charge density over time averaged over sites 76 to 80
for the normal reflection (UL = −2.0, UR = 0.0; blue line) and the Andreev
reflection (UL = 0.0, UR = −2.0; red line). The occurence of a normal, lower
density reflection (blue line) and a reflected hole excitation corresponding to
a lower particle density at timesteps t = 12 to t = 22 is obvious. The two
density perturbations have slightly different velocity based on the different
on-site attractions they experience. The background is substracted and the
curves are normalized to the height of the maximum of the incident peak to
assure a better comparability of the two different simulations.
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Spin excitations

In contrast to generating a charge perturbation, one can also apply a magnetic field to
the model, to generate only a spin perturbation. This is done for simulations depicted in
figures 4.45 and 4.46, where the spin density is shown for this case. The amplitude of the
magnetic fields is B0 = 0.025 for both simulations. Results are shown in figure 4.45 and
figure 4.46. As expected, only normal reflections occur. When the spin perturbation is in
an attractive region, its amplitude becomes smaller over time (especially visible in figure
4.46) since in the present canonical ensemble, with equal total numbers of up and down
spins it is energetically favourable for the spin excitation to spread and form bound pairs
with spin zero. This can be seen in figure 4.45 on the left region and in figure 4.46 on
the right, where the on-site attraction is U = −2.0. A comparison of both simulations in
bird’s-eye perspective could be found in figure 4.47, where the case with UL = −2.0 and
UR = 0.0 is on the left respectively the one with UL = 0.0 and UR = −2.0 is on the right.

Figure 4.45: Spin density averaged over 3 sites for an attractive Hubbard model.
UL=-2.0;UR = 0.0;χ = 640;L = 128;N↑ = 32;N↓ = 32;n = 0.5;xB =
91;ER = 0.0.5265;B0 = 0.025;x0 = 65;σ = 3. The spin density decays in
the attractive region on the left of the interaction boundary due to the form-
ing of fermion pairs with no spin. In the non-interacting region on the left
the spin density stays constant. The background is subtracted (see section
3.11).
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Figure 4.46: Spin density averaged over 3 sites for an attractive Hubbard model.
UL=0.0;UR = -2.0;χ = 640;L = 128;N↑ = 32;N↓ = 32;n = 0.5;xB =
91;ER = −0.55;B0 = 0.025;x0 = 45;σ = 3. In the non-interacting region on
the left of the interaction boundary xB, the spin density stays constant. As
the spin perturbation crosses the interaction boundary, it decays as a con-
sequence of pair building due to the energetically more favourable fermion
pairing. The background is subtracted (see section 3.11).

(a) UL = −2.0;UR = 0.0
Spin density

(b) UL = 0.0;UR = −2.0
Spin density

Figure 4.47: Comparison of figure 4.45 and figure 4.46 viewed from above. Note the
decay of the spin perturbations in the attractive regions due to fermion pair
building. The vertical scale in the left subfigure extends to 9× 10−4 and to
5× 10−3 in the right.
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4.4.2 Different on-site attraction strengths
The appearance of Andreev reflection when a charge perturbation crosses the interaction
boundary between a non-interacting region to a region with on-site attraction was shown
in the section before. But what happens if the on-site attraction gets stronger?
At first, the stronger the on-site attraction gets, the stronger the pairing of fermions with
opposite spin will become. This will result in a peakier charge density on the attractive
side. Second, the charge velocity uρ will also change. A bigger on-site attraction will
result in a slower propagation of the perturbation. But with higher and higher on-site
interaction a third effect also occurs.
This effect becomes visible in simulations with a non-interacting Hubbard Hamiltonian
UL = 0.0 on the left side of the interaction boundary at xB = 91 and different on-site
attraction parameters UR on the right side, which were performed varying from UR = −2.0
to UR = −8.0. The Hubbard model is of system size L = 128 and quarter-filling n = 0.5
with an equal number of fermions with spin up and down (n↑ = n↓ = 32). To get an
equally distributed particle density over the whole system, an additional external field EL
is applied on the left side. The perturbation is only a perturbation in the charge density
generated by a Gaussian-shaped electrical field of size E0 = −0.5 with standard deviation
σ = 3.0, which is turned off as the time evolution starts.
The results of the simulations can be found in figures 4.48 to 4.50. It can clearly be seen
that the higher the attraction becomes the peakier the attractive region is, based on the
pair building of the fermions. Also the different charge velocities uρ emerge as predicted.
The mysterious third effect is, that as the attraction gets higher, the negative Andreev-
reflection peak is overlayed by a positive reflection peak. Therefore no Andreev-reflection
can be seen for on-site attractions greater than UR = −4.0, i.e. greater than the bandwith.
A possible explanation for the positive peak may be that at large attraction, the energy
gain in creating a cooper pair is larger than the combined (kinetic) energies of the incoming
particle and the potential reflected hole, making an immediate local Andreev reflection
unfavorable, and a regular reflection more likely. Also, a bound pair is likely to exist
directly at the boundary in a strongly attractive system, increasing the likelyhood of
reflection. In the next section, a method is presented which makes Andreev-reflection
observable even for strongly attractive Hubbard models.
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(a) UR = −2.0 (b) UR = −4.0

(c) UR = −6.0 (d) UR = −8.0

Figure 4.48: Three dimensional plot of the time evolution of a charge perturbation travel-
ling from a non-interacting region UR = 0.0 of the Hubbard Hamiltonian on
the left of an interaction boundary xB to a region with an attractive on-site
interaction parameter UR < 0, which varies from UR = −2.0 to UR = −8.0
for the single plots from the top left to the bottom right. For simulations
with an on-site attraction greater than UR = −4.0, no Andreev-reflection
occurs. The charge density is averaged over three sites, the background
has been subtracted (see section 3.11). Additional simulation parameters:
χ = 620;N = 128;n↑ = 32;n↓ = 32;xB = 91;E0 = −0.5;B0 = 0.0; ;x0 =
65;σ = 3.0;EL = −0.55; τ = 0.05.
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(a) UR = −2.0 (b) UR = −4.0

(c) UR = −6.0 (d) UR = −8.0

Figure 4.49: Same as figure 4.48, as 2d plots.
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Figure 4.50: This figure shows the charge density averaged over sites 75 to 80 for the
simulations shown in figures 4.48 and 4.49. For small on-site attractions
(UR = −2.0) Andreev-reflection is observed, but with stronger UR the nega-
tive Andreev-reflection peak is overlapped by a positive reflection peak. The
background is subtracted and the perturbations are normalized to the same
initial peak height to assure better comparability of the different simulations.
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4.4.3 Linear Interaction Boundary
In all former simulations the on-site repulsions respectively attractions changed abruptly.
Hence the interaction boundary consisted of one site only. This sudden change of the
on-site terms in the Hubbard Hamiltonian lead to strongly bound fermion pairs directly
behind the interaction boundary in very attractive regions. Thus no Andreev-reflection
was observed due to the reflection of the incoming fermions at these strongly bound
fermion pairs. The idea is now to weaken the abrupt change of the interaction parameters
by changing the on-site interaction parameter not on a single site, but linearly on a region
consisting of several sites MB. The linear change of an interaction boundary can also be
found in [25]. We define a site dependent linear change parameter F (i) in the following
way:

F (i) = 0 for i < xB
F (i) = (i−xB)

MB
for xB ≤ i ≤ xB +MB

F (i) = 1 for i > xB +MB .

With the help of F (i) we can easily generate a linear change in the on-site interaction
parameter Ui

Ui = UL + (UR − UL) · F (i) . (4.7)

Because of the site dependence of the on-site interaction especially at the interaction
boundary, we have also to apply a linear change in the external electric field ER, which
sets up approximately the same particle density on the left and the right site of xB

Ei = ER · F (i) . (4.8)

Simulations concerning the charge peak propagation from a non-interacting Hubbard
model (UL = 0.0) to a model with strong on-site interactions (UR = −6.0) have been
made. These are the same interaction parameters as in figure 4.48 plot (c), where no
Andreev-reflection could be observed. However the beginning of the interaction boundary
was shifted to xB = 85. Furthermore, because we are just interested in the effect of a
linear interaction boundary on the charge density, a smaller matrix dimension of χ = 80
was deployed. Results of simulations for different widths of a linear interaction boundary
starting at xB and varying from MB = 0 to MB = 10.0 can be found in figures 4.51
and 4.52. If the interaction boundary consists only of one site, no Andreev-reflection
appears, as previously stated. But increasing the width of the interaction boundary until
approximately MB = 6.0, we clearly see a hole-like reflection peak as expected by the
Andreev effect. Increasing the width even more, a second Andreev-reflection peak occurs.
This could be ascribed to either Andreev-reflection in different regions of the interaction
boundary or oscillation effects inside the boundary.
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(a) MB = 0.0 (b) MB = 1.0 (c) MB = 2.0

(d) MB = 3.0 (e) MB = 4.0 (f) MB = 5.0

(g) MB = 6.0 (h) MB = 7.0 (i) MB = 8.0

(j) MB = 9.0 (k) MB = 10.0

Figure 4.51: Different lengths of the linear interaction boundary MB for the transition
of a charge perturbation from a non-interacting (UL = 0.0) to a strongly
attractive Hubbard model (UR = −6.0). The charge density is averaged
over three sites, the background is subtracted (see section 3.11). Parameters
for the simulation are χ = 80; τ = 0.05;N = 128;n↑ = 32;n↓ = 32;n =
0.5;UL = 0.0;UR = −6.0;xB = 86;ER = −2.066;x0 = 65;σ = 3.0;E0 =
−0.5;B0 = 0.0.
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(a) MB = 0.0 (b) MB = 1.0 (c) MB = 2.0

(d) MB = 3.0 (e) MB = 4.0 (f) MB = 5.0

(g) MB = 6.0 (h) MB = 7.0 (i) MB = 8.0

(j) MB = 9.0 (k) MB = 10.0

Figure 4.52: Same as figure 4.51, as 2d plots.
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4.5 BCS superconductor
The last simulations are ones with an s-wave BCS superconductor Hamiltonian as found
in equation 2.88. The interaction boundary is at site xB = 91, where the γ-parameter of
the s-wave superconductor changes from γL = 0.0 to γR = 0.05. γL = 0.0 represents a non-
interacting region and γR = 0.05 is the case of a superconducting region. A perturbation
is again generated by applying a Gaussian-shaped electrical field with a amplitude of
E0 = −0.1 and a standard deviation of σ = 3.0 at site x0 = 65 at t = 0. At t > 0 the
additional field is once more turned off. One difficulty arises from the fact that there
is no particle conservation for this specific Hamiltonian due to the Cooper pair creation
terms ĉ†i,↑ĉ

†
i,↓ and their complex conjugate. Although there is a fixed particle density of

approximately n = 0.5 (n↑ = n↓ = 32) at the start of the ground state calculation with
DMRG, particles are lost during the ground state simulation. Therefore an additional
external electrical field Eall is applied over the whole system, to adjust a particle density
of approximately n ≈ 0.25. For the simulations of the BCS superconductor a maximum
matrix dimension of χ = 320 was employed.
The charge density plots averaged over three sites with subtracted background are found
in figure 4.53. A three dimensional plot is on the left side, a two dimensional plot in bird’s-
eye perspective is located on the right. As the charge perturbation hits the interaction
boundary at xB = 91, Andreev-reflection is observed. Additionally, the charge density
averaged over sites 70 to 75 as a function of time is depicted in figure 4.54. The reflected
hole is rather big for the small applied perturbation peak. This also gets to debt because
of the not constant particle density. Approximately around timestep t ≈ 20, where the
perturbation hits the interaction boundary, charge disappears in the system. The loss of
the charge density can also be seen in figure 4.58 on the left side, where the total particle
density is depicted over time.
The spin density is also shown in figure 4.55. Due to the fact that no external magnetic
field is applied to the system, no spin density perturbation is created and therefore it is
not observed in the figure, as was expected. The total spin density of the simulation is
depicted in figure 4.58 on the right. Because of the conservation of the spin density in
the s-wave superconductor, it should be constant over the simulation. The slight increase
of the spin density in the plot showing the total spin density is likely due to numerical
inaccuracies, because the magnitude of the increase is just about ∆Nσ ≈ 10−8.
The entanglement entropy is represented in figures 4.56 as a three dimensional plot. The
maximum of the entanglement entropy is also depicted in figure 4.57. Strangely enough
the entanglement entropy decreases over simulation time. This could be ascribed to the
loss of particles as the perturbation crosses the interaction boundary. The maximum
truncated weight (right side of figure 4.57) also decreases around t ≈ 20 due to this effect.
One can also see an increase of the total particle density around the end of the simulation
(figure 4.58 left side) after the signal at the superconducting side has completely scattered
from the boundary.
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(a) Charge density (b) Charge density

Figure 4.53: Charge density plot of the simulation of Andreev-reflection in a BCS super-
conductor model with an interaction boundary at site xB = 91 separating
areas with γL = 0.0 and γR = 0.05. Additional simulation parameters are
χ = 320; τ = 0.05;N = 128;n↑ = 32;n↓ = 32;UL = 0.0;UR = 0.0;Eall =
1.85;x0 = 65;σ = 3.0;E0 = −0.1;B0 = 0.0. The charge density is averaged
over three sites, background is subtracted (see section 3.11).

Figure 4.54: Charge density averaged over sites 70 to 75 depicted over time. A negative,
hole-like peak is observed caused by Andreev-reflection.
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(a) Spin density (b) Spin density

Figure 4.55: Spin density plot of the simulation of the BCS superconductor model with an
interaction boundary at site xB = 91 separating areas with γL = 0.0 and γR =
0.05. As no spin density perturbation is applied (B0 = 0.0), no spin signal
can be seen. Additional simulation parameters are χ = 320; τ = 0.05;N =
128;n↑ = 32;n↓ = 32;UL = 0.0;UR = 0.0;Eall = 1.85;x0 = 65;σ = 3.0;E0 =
−0.1. The spin density is averaged over three sites, background is subtracted
(see section 3.11). The vertical scale in the subfigures extends to 7× 10−6.

(a) Entanglement entropy (b) Entanglement Entropy

Figure 4.56: Three dimensional plot of the entanglement entropy SN (left side) of the
simulation of the BCS superconductor. On the right side SN is represented
in bird’s-eye view.
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(a) Maximum SN (b) Maximum TW

Figure 4.57: Maximum of the entanglement entropy SN on the left and maximum of the
truncated weight TW on the right of the simulation of the BCS supercon-
ductor. SN and TW decrease around t ≈ 20 due to particle loss as the charge
perturbation hits the interaction boundary. The vertical scale in the right
subfigure extends to 6× 10−9.

(a) Total particle density Nρ (b) Total spin density Nσ

Figure 4.58: Total particle densityNρ = ∑L
i=1 (n̂i,↑ + n̂i,↓) on the left and total spin density

Nσ = ∑L
i=1 (n̂i,↑ − n̂i,↓) on the right depicted over time. As one can see, the

spin density is preserved, except for numeric fluctuations, while the particle
density varies over time as one expects for a s-wave-BCS-superconductor.
The vertical scale in the right subfigure extends to 14× 10−9.





5 Conclusions
In this thesis, Andreev reflection was investigated. This effect occurs at metal to super-
conductor boundaries for transcending electrons due to the building of Cooper pairs in
the superconductor, leading to a backscattered hole into the metal.
All simulations were performed in one-dimensional quantum systems with open boundary
conditions.
Theoretically there are no superconductors in one dimension, but with the help of site
dependent on-site attractive potentials we showed that it is possible to produce model
systems that behave like there is a metal - superconductor boundary. Hence Andreev
reflection emerged.
There is good reason to reduce the dimensionality of the investigated systems to one,
because for one dimension the most precise and efficient methods to calculate ground
states and to simulate their dynamical behavior exist. To this end the formalism of matrix
product states (MPS) was introduced as a special representation of general quantum states
(see chapter 3). This opened up the way for a groundstate calculation method, the density
matrix renormalization group (DMRG), which can be formulated in the MPS language.
For the time evolution of such MPS, the time-evolving block decimation algorithm was
used.
First, before concentrating on the Andreev reflection, we started by investigating another
interesting effect only observable in one dimension, the spin-charge separation (section
4.1). At non-zero on-site repulsion to U = 4 different velocities in the charge and in the
spin channel (figures 4.4 to 4.6) occur, as theoretically predicted. Furthermore changing
the band-filling n of the model from n ≈ 0.78 down to n ≈ 0.22 results in different
velocities for the same interaction parameter U = 4. This is shown in figures 4.8 to
4.13. A summary of the corresponding results can be found in the tables 4.1 and 4.2.
Additionally the resulting velocities were compared to calculated velocities obtained by
the Bethe ansatz from literature [28]. The analytical and the simulated results show good
agreement (see figure 4.14).
Then Andreev reflection was inspected first for the spinless fermion model. We saw that
Andreev reflection occurs for an electron traveling from a non-interacting region to an
attractive one (figure 4.16), whereas entering a repulsive region leads to normal reflection
(figure 4.15).
For the second investigated system the spin degree of freedom was added leading to the
Hubbard model. At first we examined a Hubbard model with on-site repulsion showing
again Andreev reflection as an electron crosses the interaction boundary from a repulsive
to a non-interacting region (figure 4.21). In figures 4.24 and 4.25 one can clearly see
that the transmitted signal consists of electron pairs and the reflected peak is an electron
hole. Simulations with different matrix dimensions χ ranging from χ = 80 to χ = 1000
showed that the higher the dimension, logically the smaller the truncated weight and
the higher the entanglement a quantum state can carry. Results are well converged at
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χ = 800− 1000. Although simulations got more precise with growing matrix dimension,
Andreev reflection could already be qualitatively observed for small matrix dimensions
(figures 4.28 to 4.30).
Similar simulations have been performed for an attractive Hubbard model showing again
normal respectively Andreev reflection (figures 4.41 to 4.47). Simulations with different
on-site attraction strengths can be found in section 4.4.2. When the step in the on-site
attraction is very large and abrupt between the two different regions, the simulations
showed that the Andreev reflection peak is overlayed by a positive peak possibly resulting
from a strongly bounded electron pair sitting at the interaction boundary due to Friedel
oscillations. This additional peak can be avoided by applying a linearly increasing inter-
action boundary, i.e., by varying the on-site attraction linearly over several sites instead
an abrupt change (see section 4.4.3). When the interaction boundary consists of more
than five sites, Andreev reflection was again clearly visible.
Finally, simulations with a more realistic superconductor model, the Bardeen-Cooper-
Schrieffer (BCS) Hamiltonian were performed. Although there is no charge conservation
in an s-wave BCS superconductor model, Andreev reflection also appears in this model
(see section 4.5 respectively figures 4.53 to 4.58).
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