
Graz University of Technology
Institute for Computer Graphics and Vision

Master’s Thesis

Content Creation
for

Augmented Reality
on

Mobile Devices

Stefan Mooslechner

Supervisor:
Dipl.-Ing. Dr. techn. Dieter Schmalstieg

Advisors:
Dipl.-Mediensys.wiss Tobias Langlotz

Dipl.-Mediensys.wiss Stefanie Zollmann

Graz, August 2010

Abstract

Nowadays, AR (Augmented Reality) become more and more attractive
for different areas of application. Especially the increasing number of
smartphones with huge displays, built-in cameras and fast wireless con-
nections extends this area. The most applications in this case deal with
pre-assembled content, and the user is a simple consumer. Indeed it is
possible to create their own content, but in most cases, a special know-
ledge about different software solutions is necessary. So, the user has to
invest time in learning about these applications. The possibility to create
and share AR content in a smart and easy way would widen up the num-
ber of users for this field of application.

In this work, we present a prototype to create AR content directly on mo-
bile devices. The user can create new 3D-objects as well as 2D-drawings.
We provide different possibilities to color and texture the objects. The
building and manipulation of the scenes are done directly at the location
where they will be shown. So, a fast and exact adjustment to the environ-
ment is possible. We deliver an easy way to build virtual models out of
the real environment or to generate totally new objects. Additionally, we
use an existing infrastructure to distribute the content to a huge number
of users.

This could be a further step to reach more acceptance for AR applications
by end users.

Zusammenfassung

AR (Augmented Reality) wird heutzutage immer attraktiver für verschie-
denste Anwendungsgebiete. Vor allem die steigende Verbreitung von
Smartphones mit großem Display, einer eingebauten Kamera und schnel-
len Funknetzwerkverbindungen erweitern dieses Einsatzgebiet. Die mei-
sten Anwendungen verwenden allerdings vorgefertigte Inhalte, womit der
Benutzer zum reinen Konsumenten wird. Natürlich besteht die Möglich-
keit, eigene Inhalte zu erzeugen, aber dazu ist in der Regel ein gewisses
Spezialwissen über die benötigte Software notwendig. Somit muss der
Benutzer erst Zeit investieren, um diese Anwendungen zu erlernen. Eine
einfache Möglichkeit, AR-Inhalte zu erzeugen und mit anderen zu teilen,
würde die Anzahl der Nutzer in diesem Bereich wesentlich erhöhen.

In der vorliegenden Arbeit präsentieren wir einen Prototypen, der es er-
möglicht, AR-Inhalte direkt auf mobilen Geräten zu erzeugen. Es können
sowohl 3D- als auch 2D-Objekte erzeugt werden. Diese können mit un-
terschiedlichen Farben oder Texturen versehen werden. Die Erzeugung
und auch die Manipulation der Objekte werden direkt an dem Ort durch-
geführt, an dem sie in weiterer Folge auch angezeigt werden. Dies ermö-
glicht eine schnelle und genaue Anpassung an die Umgebung. Wir bieten
zum einen eine einfache Möglichkeit, virtuelle Objekte direkt aus der rea-
len Umgebung zu erzeugen, aber auch die Möglichkeit, vollkommen neue
Objekte zu schaffen. Zusätzlich nutzen wir eine vorhandene Infrastruktur,
um die neuen Inhalte mit einer großen Anzahl von Nutzern zu teilen.

Dies könnte ein weiterer Schritt sein, um eine höhere Akzeptanz von AR-
Anwendungen beim Endverbraucher zu erreichen.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als
solche kenntlich gemacht habe.

Stefan Mooslechner

Danksagung

Nachdem eine Arbeit wie diese ohne die Hilfe verschiedenster Menschen
nicht möglich wäre, ist es an der Zeit sich bei einigen zu bedanken die An-
teil am Gelingen dieses Projektes hatten.

Zu allererst geht mein Dank natürlich an meine Betreuer Steffi und Tobias
die auch die Grundidee für diese Arbeit hatten. Sie standen stets mit Rat
und Tat zur Seite, wenn dies notwendig war. Sie haben durch viele Dis-
kussionen sehr viel zur Weiterentwicklung dieser Arbeit beigetragen.

Weiters geht mein Dank auch an Prof. Dieter Schmalstieg und an das ge-
samte Team des ICG. Es war, wie auch bei allen meinen vorangegangenen
Projekten, eine Freude an diesem Institut zu arbeiten. Bei Unklarheiten
oder Problemen fand ich immer eine offene Tür, auch wenn die betreffen-
den Personen in keinem direktem Zusammenhang mit meinem Projekt
standen.

Danke auch an meine Freunde Claus und Ferdinand, mit denen ich einige
aufschlussreiche Diskussionen über meine Arbeit führte. Durch sie konn-
te ich auch einige zähe Stunden überstehen in denen ich mich geistig im
Kreis gedreht habe.

Und zu guter letzt möchte ich mich natürlich auch bei meiner Freundin
Karin bedanken die meine Launen ertragen musste, wenn gewissen Din-
ge nicht auf Anhieb so funktioniert haben, wie ich es mir vorgestellt hatte.

Ein großes Dankeschön an alle.

Contents

1 Introduction 1

2 Related Work 3

3 System Overview 6
3.1 Tracking . 8
3.2 Content Creation . 9
3.3 Content Management and Distribution 10
3.4 Graphical User Interface . 10

4 Tracking Module 13
4.1 Localization . 15
4.2 Tracking . 16
4.3 File Server . 18

5 Content Creation 19
5.1 Freeze Mode . 19

5.1.1 Implementation details 20
5.2 Scene Graph Representation 20
5.3 3D-Content . 21

5.3.1 SG-Representation of 3D-Objects 22
5.3.2 3D-Object generation out of a 2D-Screen 24
5.3.3 Implementation Details 24
5.3.4 Cube . 24
5.3.5 Cylinder . 25
5.3.6 Polygon . 25

5.4 2D-Content . 26
5.4.1 SG-Representation of 2D-Objects 26
5.4.2 2D-Objects . 28

5.5 Texturing . 29
5.5.1 Texture Manager . 29

VI

CONTENTS VII

5.5.2 Predefined Textures 30
5.5.3 User-Defined Textures 30
5.5.4 FasTex . 31
5.5.5 Implementation Details 32

5.6 Object Manipulation . 33
5.6.1 Object Selection . 34
5.6.2 Implementation Details 34
5.6.3 Moving . 35
5.6.4 Rotating and Scaling 36
5.6.5 Color and Texture Selection 36

6 Content Management and Distribution 37
6.1 Object Explorer . 37

6.1.1 Implementation Details 38
6.2 Storage . 40

6.2.1 IO-Manager . 40

7 Graphical User Interface 43
7.1 Structure of the GUI . 43

7.1.1 Color-GUI . 44
7.1.2 Texture-GUI . 44
7.1.3 State Pattern and Implementation Details 46
7.1.4 Status Line . 49

8 Conclusion 51

9 Future Work 53

Bibliography 55

List of Figures

3.1 Overview of the client-server communications 8
3.2 UML-diagram of the system and the main components . . . 12

4.1 Overview of the client-server communication during the pose
estimation . 15

4.2 Overview of the SIFT and Ferns processing pipeline described
by [WRM+08]) . 17

4.3 Identification of NFT-Target-Features 18

5.1 Predefined textures . 30
5.2 Mapping examples of user-defined textures 31
5.3 Mapping of user-defined textures 32
5.4 Cube during rotation manipulation around the Y-axis with

shown CSS . 35

6.1 The Object Explorer and its special GUI 38
6.2 Rotation of an object displayed by the Object Explorer 39

7.1 Design of the GUI and the Status Line 43
7.2 Overview of all possible GUI-states 45
7.3 Displayed Color-GUI with differently colored objects 46
7.4 Design of the Color-GUI and the Texture-GUI 47
7.5 The State Pattern described by [GHJV95] (p. 339) 48
7.6 Available colors for the GUI-Buttons 48
7.7 UML-diagram of all involved classes of the GUI 50

VIII

Chapter 1

Introduction

Today, content creation for AR applications is largely limited to applica-
tions running on a desktop computer, and most of these applications are
used by a small number of professional modelers. All actual known AR
applications (e.g. Wikitude) deliver pre-assembled and unchangeable con-
tent to the user. To reach a wider acceptance and distribution of AR appli-
cations, it will be necessary to provide the possibility to create and share
AR content with a huger number of users. At the change from Web 1.0
to Web 2.0, the role of the user changed from a pure consumer to a cre-
ator of content. In the same way, the user should be enabled to create and
share his own ideas in so-called AR 2.0. Enabling the user an active parti-
cipation will result in more popular and more often usage of different AR
applications.

Not only an easy way of creation of content is necessary to reach user
acceptance, but it is also essential to enable sharing with a huge number of
other users. Analog to Web 2.0, it is also necessary to create and provide a
distribution infrastructure to reach those users.

Nowadays, low-priced mobile devices with high-resolution cameras,
(relative) large displays, and a growing calculation power become avail-
able more frequently. Additionally, they are equipped with different pro-
spects of wireless communication methods like Wi-Fi or mobile high-speed
internet connections. So, we focus the developing on such low-cost de-
vices to take advantage of the fast growing number of them.

In this following work, we present a first prototype to enable AR con-
tent creation and sharing on mobile devices for end users. In the current
version, the user is tracked in a large indoor working volume. We use a
combination of on-line pose estimation and real-time tracking. By analyz-
ing a picture of the current environment, we estimate the actual position

1

CHAPTER 1. INTRODUCTION 2

and viewing direction of the user. Based on these data, we load the dataset
for real-time natural feature tracking. This is the starting point for all fur-
ther processes of our project.

Due to the limitations of input devices on the target equipment, we
provide an interface to do all inputs and activities using the touch-screen.
Therefore we designed a very flat GUI-structure to keep the interface well-
arranged and simple. We enable the user creation of their own 3D-objects
as well as replications of real objects. 3D-objects are created by defining a
base area and extruding it in a next step. Also, annotations or 2D-drawings
can be added to the scene. Furthermore, we deliver methods to manipu-
late the built objects and to color or texture them in a simple way, and
we provide predefined textures as well as the possibility to create and use
textures from the environment.

In addition we show possible methods to store and reuse single objects
or complex scenes directly on the device or on a remote server. The stor-
age on a server is the base to enable the sharing of the content with other
users. The other users can view the scene, but they can also manipulate or
extend it.

The current application can be a further component to reach more ac-
ceptance and a wider spreading of AR applications especially on the mo-
bile sector. The user is involved in the building of content and enabled to
share his creations with other users. Exactly these achievements were one
of the main bases of the success for Web 2.0, and they could play the same
role in AR 2.0.

Chapter 2

Related Work

In this chapter, we show different developments focusing on or touching
the field of application we address in our work. We can split up the re-
lated work into three main fields: on the one hand, the displaying of AR
on mobile devices and on the other hand, the creation of AR content out
of the current environment. The third point is the distribution of content
to multiple users using a network. In the most cases of the first point, the
creation of the content was done on a desktop computer designed by more
or less complex programs. The creation of content from the environment
is also generally done on desktop computers. So, the usage of a standard
PC or a system with a comparable calculation power is necessary for all
applications presented up to now.

One of the very first projects targeting AR on mobile devices is MARS
(Mobile Augmented Reality System). The first researches on MARS started
in 1996, and the refinement of the project is still in process. In one of the
early versions of MARS (shown in [HFH+01]), the system was used to dis-
play pre-generated content (mainly in an urban environment). The used
hardware consists of a laptop computer placed in a backpack, a GPS re-
ceiver, a see-through HMD (Head Mounted Display) and a wireless input
device. This was one of the first setups to enable mobile AR with the ex-
ception of the Touringmachine, which provides a theoretical approach.

In a further application [WCVH08], the system was extended by a laser
range finder mounted on top of the HMD. This setup was used to annotate
objects in the environment. The annotation could be placed on an object
just by looking at the desired place. It also offered the possibility to place
a label in a correct edge on the surface of an object. The user just had
to look along the surface, and the system stores the different distances to
the surface and calculates and displays the label in a correct edge on the

3

CHAPTER 2. RELATED WORK 4

object. With this setup, it was also possible to cut off objects out of the
environment. The object was segmented by looking along the border of it.
The object built in this way was just a 2D-object, but this was one of the
first steps to generate content on the fly using a mobile system.

The SitePack system [NKG04] consists of a tablet-PC with a stylus as
input device. An additional video camera and a GPS completes the hard-
ware. The system is used to show pre-generated content and targets to
architectural usage. The main field of application is the displaying of mo-
dels of buildings if they are planned or the construction is in progress.
The hardware setup is very close to our setup (touch-screen, camera), but
a tablet-PC will never be a mass product like a smart phone.

The Tinmith project [Pie06] uses a similar hardware equipment like
the MARS project. Amongst other things, it enables the generation of 3D-
wireframe objects from the environment. The user can specify planes by
looking along the faces of a physical object, and the system generates the
object from these informations. So, for example it is possible to build a
’copy’ of a house by walking around it and looking along the walls of it.

The idea of content generation presented in OutlineAR [BMC08] works
similar to Tinmith. The main difference is the equipment and the input de-
vice. OutlineAR uses a special input device. It consists of two buttons and
a wheel (as known from a computer mouse) in combination with a camera.
With this configuration, it is possible to define vertex points, which are the
corners of the new built wireframe model. All calculations are done on a
standard PC where the input device is connected to. The system offers an
easy way to create wireframe boxes from the environment, but it is limited
by the specific input device and the necessary calculation power of the PC.

Of course, most of these applications are running on a mobile device,
but the ’mobile device’ in this case is a laptop computer placed in a back-
pack or a relatively huge and heavy tablet-PC. Additionally, they need a
combination with a HMD, a GPS receiver, a special input device, or other
additional equipment. So from our point of view comparing these compo-
nents with a mobile device is hard to do.

The creation of 3D-models is another gist of our work. There are var-
ious desktop-based systems for content creation of 3D-objects, which are
also usable for creating AR content. The best known are Maya, Blender,
or 3ds Max. DART [MGDB04], for example, is one of the best known tool-
kits addressing especially AR applications. It implemented on top of the
Macromedia Director and is targeted to semiprofessional and professional
users. It delivers a script language to extend the given feature-set and de-

CHAPTER 2. RELATED WORK 5

livers a powerful tool to build AR content. But, aforesaid, the user has to
bring some experience, or he needs some training time to get familiar with
one of these extensive programs.

Another field is the distribution of the content to a huge number of
users. [UTO+04] describes the distribution of AR annotations using a
wireless network and a client-server model. The goal of the application
is to offer an interactive, AR-based, indoor guideline. If the connection to
the server is established, the client sends his position data to server and
receives the AR dataset corresponding to the actual position. In this sys-
tem, the sharing of data is done, but regarding the dataflow, it is a one-way
connection from the server to the client. There is no possibility for the user
to change the information on the server. (Which is absolutely correct for
this field of application.)

There are numerous applications to generated 3D-content for AR appli-
cations and also mobile solutions to use and show these contents on (more
or less) mobile devices. The global storing on a server and the distribution
of some content over a network are also nothing new. But a combination
of all of these things and additionally the extension by a simple way of
generating 3D-content should be the big advantage of our application.

The main motivation for our work is formulated precisely in [WDH09]:

However, being able to create or edit annotations online is also very
powerful. There are many new applications that become possible
with online annotation and editing, and others that become much
easier to build. Such applications would in turn enable many more
people to create content. Locating the content correctly also becomes
a much more easier process, since it is then possible to directly see
the intended location.

Chapter 3

System Overview

In the following chapter, we give an overview of the complete system and
its main components. A more detailed view onto the underlying concepts
is described in the specific chapters.

Our main goal of this application is the development of a prototype for
AR content creation and distribution. The system should be independent
from a working environment restricted by the use of a desktop computer
or by the need of very special knowledge of the user. Another goal is to
enable the creation of AR content at the same place the content will be
shown later. This has the advantage that the content can be optimally fit
into the environment.

So, the methodical approach of the current prototype is as follows. The
user is tracked in an indoor working volume. For the tracking, we use a
combination of two methods. In the first step, we use a remote pose es-
timation calculated on a server. In the second step, the application loads
the tracking data for natural feature tracking (NFT) to the device. So, if the
user would like to generate some new AR content, he takes a picture of the
environment out of his current position. Now, the application communi-
cates with the first server to estimate the pose. The server sends the result
of the calculation back to the application. With this information, the cor-
responding tracking dataset is loaded from the second server. From now
on, the real-time tracking is enable and this is also the initial point for all
further actions.

If there is an existing AR scene at this NFT target, the scene is displayed
now and the user can watch, manipulate, or extend it. If the scene is virgin,
the user can create new content to share it with other users. Because of the
limited number of input methods for mobile devices, we fully support the
usage of a touch-screen. We built a logical graphical user interface (GUI)

6

CHAPTER 3. SYSTEM OVERVIEW 7

providing all necessary functionalities for the usage of the application. The
user can create new 3D-objects and color or texture them. He is able to
create his own textures as well as he can use predefined textures from the
application. He can do annotations or other 2D-drawings, of course using
different colors. Furthermore he can store single objects for his device to
take them with him for a later use at another place.

If the creation and manipulation process is completed, the scene is
stored again on a server, and is available for other users using the applica-
tion at the same location.

To enable all these functionalities in one single system and to keep the
system maintainable and extendable, we split it up into four main compo-
nents:

• Tracking

• Content Creation

• Content Distribution

• Graphical User Interface

The advantage of spreading up the system is the possibility to exchange
single parts of the system without changing the other components. E.g. it
is possible to substitute the currently used tracking module by a module
using GPS-tracking without having any changes at the other components.

As shown above, we use the communication with different servers for
several times and due to several reasons. On the one hand, it dislocates the
cost-intensive calculation for the pose estimation from the mobile device
to a much more powerful server. On the other hand, we use a server to
store the generated scenes. So, we can easily provide the content to a huge
number of multiple users. Figure 3.1 shows the sequences of the commu-
nication between the mobile device and different used servers.

The following sections contain a description of the main components
and shows an overview of their range of application. At the end of the
chapter, the UML-Diagram in Figure 3.2 illustrates the main components
and the according C++ classes.

CHAPTER 3. SYSTEM OVERVIEW 8

Figure 3.1: Overview of the client-server communications

3.1 Tracking

The function of the Tracking Module is the estimation of the actual posi-
tion of the user and the real-time updating of this information. The current
implementation uses a Sparse Feature Model (SFM) for the location of the
current position in the environment and Natural Feature Tracking (NFT)
for tracking. This combination works in a preregistered (mainly indoor)
environment.

For the first step, the application takes a picture of the current envi-
ronment. This picture is converted into a gray scale picture to reduce the
amount of traffic between the application and the server. Now, the picture
is sent to the SFM-server to do the analysis. The calculation of the position
and the viewing direction is done on the server because this part of the
pose estimation needs the most calculation power. After the calculations,
the server transfers the result back to the application. Based on these data,
in the second step, the corresponding NFT tracking data is loaded from a
different server. Now, we are able to do real-time tracking for the current
location. This is also the basement for all further actions of the application.

CHAPTER 3. SYSTEM OVERVIEW 9

If there is an existing scene for that location, it is loaded and displayed, and
the user can extend and manipulate it. Otherwise, the user can build up a
new scene for this location.

If the user changes his working volume by moving out of sight of the
current NFT-target into the sight of another one, the pose has to be esti-
mated again by repeating the steps above.

3.2 Content Creation

Combined with the Content Management and Distribution Module, the
Content Creation Module is the core of our application. The creation of
2D- and 3D-content is provided in a simple but powerful way. Also color-
ing and texturing of the objects can be done in an easy way. Furthermore,
we provide a so-called Freeze Mode to simplify the content generation
since it is really difficult to annotate or draw objects exactly while keep-
ing the position of the device stable in relation to the NFT target. So, if
the Freeze Mode is activated, the current view is frozen and independent
from any motion of the device, but all the other functionalities of the ap-
plication are unharmed. So, every action of the application can be done in
Freeze Mode or in the normal mode.

To create a new 3D-object, the user just has to draw the base area and
extrude it. We offer a circle to create a cylinder, a quad to create a box,
and a polygon to create a polygonal object. To build multiple kinds of
objects, the objects can be colored in different ways. It is also possible to
texture the objects with predefined textures. To widen up the flexibility of
usage, the user can additionally create own textures of his environment.
So, the rebuilding of real objects is possible. To do this in a more easy way,
a newly created 3D-object can be textured directly with the background
corresponding to the place it was created. With this FasTex method, the
replication of objects from the real world can be done quite fast.

For annotations or sketch drawings, it is possible to create 2D-objects
using freehand drawings, lines, circles, and boxes. Of course, these draw-
ings can be done in different colors and different line widths to offer a wide
area of usage. While generating a 2D-object, the application switches auto-
matically into the Freeze Mode to enable the user a comfortable handling.

After the creation of any objects (both 2D and 3D), the user can assign
some manipulation methods to them. To change the position and arrange-
ment of objects, they can be manipulated by the well-known moving and
rotating operations. The size of an object can be manipulated by scalings

CHAPTER 3. SYSTEM OVERVIEW 10

along the X-, Y-, or Z-axis.

3.3 Content Management and Distribution

The Content Management and Distribution Module is the other core com-
ponent of our system. On the one hand, it provides an Object Explorer for
the reuse of objects. On the other hand, it enables a global storage of the
scene and all of its components (e.g. textures) on a server.

With the Object Explorer, we allow the user the flexible reuse of for-
merly created objects. It is possible to reuse an object in the same scene
where it was created as well as to use it in a completely different environ-
ment. The Object Explorer shows previews of all stored objects. The user
can add and remove objects to the Object Explorer or add objects from the
explorer to the current scene. Since the objects are stored local to the de-
vice, it is possible to create a collection of objects for one’s usage. In further
versions, it is also imaginable to create a global Object Explorer, placed on
a server, to enable yet another opportunity to share single objects with
other users.

The storage of the scene is done on a public reachable server. So, the
scenes are available for everyone using our application. Additionally to
the scene graph of the scene, the used textures are stored as png-files. To
speed up the loading and saving procedure, the data are packed into a
zip-file before the upload to the server is started. For testing reasons with
our prototype, it is also possible to load and store a scene directly on the
device. Hence, the single modules of the application can be tested without
the SFM pose estimation respectively without having a connection to the
content server.

3.4 Graphical User Interface

The design of the Graphical User Interface (GUI) is a very important point
in terms of the acceptance of a program by the users. The GUI should
allow a simple handling of the functions of the program. So, we tried to
build a intuitive menu to guide the user through all possible features of
the application. We kept the structure of the menu as flat as possible to
avoid a huge number of submenus. Additionally, there is an optical infor-
mation about the current program state by the use of different colors for

CHAPTER 3. SYSTEM OVERVIEW 11

the menu buttons.

We also provide a Status Line to inform the user about the current state
of the program or actual informations according to his operations. This
Status Line is always visible for the user to offer permanent information
about user-driven actions (e.g. ’loading scene - please stand by...’) or ad-
ditional functionalities available at the current program state (e.g. ’change
transparency [of the selected object] by moving the stylus’). It is also useful
to inform the user if some functionality fails (e.g. ’server not reachable’).

CHAPTER 3. SYSTEM OVERVIEW 12

Figure 3.2: UML-diagram of the system and the main components

Chapter 4

Tracking Module

In the following chapters, we describe the tracking method and the used
client-server infrastructure.

The pose estimation is based on two steps. We use a combination of a
localization module using a Sparse Feature Model (SFM) and a real-time
tracking module using Natural Feature Tracking (NFT). In Fig. 4.1 we
show the two steps of the client-server communication.

In the first step, the user takes a picture of his environment from his
current position. This picture is converted into a gray scale picture. This
transformation is done to reduce the amount of traffic between the appli-
cation and the SFM server.

The request for the the server must be a string in the form:

0xCCCC 0xLLLL PPPP[0..n]\0

where:
0xCCCC is the number of the command for the server as hexadeci-

mal number
0xLLLL is the length of the payload as hexadecimal number
PPPP is the payload as a NULL-terminated string

The server can handle different commands like: getNumberOfImages(),

getImage(), setCameraCalibration() and of course getImagePose().

For a request, the gray scale values have to be normalized between 0 and
255. Due to the Studierstube luminescence format delivers the data in the
correct format, and no further conversion has to be done. Additionally to

13

CHAPTER 4. TRACKING MODULE 14

the gray scale values, the request for a pose calculation also has to include
the size of the picture. A typical pose request to the SFM server looks like
this (where the command number 5 stands for getImagePose()):

0x00000005 0x0003C04B 320 240 1 110 132 108 86 ...

... 75 68 211 193\0

Normally, the sending of the request and the waiting for the response
would block our application, and the user cannot determine whether the
application is working and waiting for the response or if it is crashed.
Thus, we start the communication with the server (the sending itself and
the callback waiting for the answer) in a new, separate thread. With the
result that the update of the screen is still done and we can inform the user
via the status line about the actual progress of the communication. The
answer of the server comprises (amongst others) a 3x4 matrix containing
the information about the position where the picture is taken. An example
for the response of the SFM server:

echo calculateImagePosition called

Reading image: 320 240 1

...

VRCamera { intrinsic 3 3 [322.83 0 165.482 0 322.83 125.151

0 0 1] orientation 3 4 [0.969698 0.0277322 -0.242728

1.27363 -0.0065753 0.996139 0.0875427 -0.00546303 0.244219

-0.083294 0.966136 -1.02639] }

...

finished calculateImagePosition

TcpPeer:: handled

Now, the first step is finished, and we know where the user is located in
our environment.

Based on this knowledge, the application starts the download of the
NFT dataset. Therefore we build up a connection to the File Server de-
scribed in section 4.3 at the end of this chapter. The server contains the dif-
ferent available NFT datasets for our registered environment. The know-
ledge which dataset belongs to which region in the environment is cur-
rently stored in the application itself. But it is also imaginable to put these
information either on the SFM server or on the File Server. As shown with
the communication with the SFM server, the communication with the File
Server runs also in a separated thread. If the download to the device is
completed, the dataset is loaded into the application. After a reinitializa-

CHAPTER 4. TRACKING MODULE 15

tion of the tracking part, the application switches into a real-time mode
using natural feature tracking for pose estimation. Now, the initialization
for the work with our application is done, and all further actions are based
on this state.

If the user changes his location by moving out of sight of the actual
NFT target, the pose estimation has to be redone by starting again with
step one.

So, the range of application of the current setup is limited by the prede-
fined SMF-Model and the predefined NFT-targets. Because of the modular
design of the application, however, we are able to extend the range of ap-
plication easily by changing the tracking module (cp. Fig. 3.2).

Figure 4.1: Overview of the client-server communication during the pose
estimation

4.1 Localization

The prime localization of the user is based on a sparse 3D-point recon-
struction. The system calculates a full 6 DOF pose estimation from a single
picture taken by the built-in camera of the device. The calculation is done
by using the texture information of the environment. In principle, we can
see the preregistered environment as a single large 3D-tracking target.

The registration has do be done manually by taking pictures of the en-
vironment. Furthermore the usable features of the pictures are extracted
and obtained with a structure from motion system. These features are re-
lated to each other to build up a single global coordinate system. Therefore
SIFT features are build up from every image and a vocabulary tree is used
for the matching of related pictures.

CHAPTER 4. TRACKING MODULE 16

For the localization process itself, at first, the features of the taken pic-
ture have to be extracted and described. For the feature extraction, a scale
space search is used to find the keypoints and get a size estimation in a
single step. The next step is feature matching and the removal of outliers.
After the first pose estimation, a refinement using a Gauss-Newton itera-
tion is done. The pose is refined until the number of inliers is stable.

The work presented in [AWK+09] is the next evolution step to the sys-
tem we used in this work. As the underlying concept is equal and the
biggest part of the work is the same we have in use, a more detailed know-
ledge can be found there.

4.2 Tracking

The computation of the tracking is done directly on the mobile device. Due
to the limited resources in terms of computation power, memory size and
access speed, a special approach for the tracking algorithm is needed, par-
ticularly since the tracking should be done in real time. The approach we
use in our application is a combination of a modified SIFT (scale invariant
feature tracking) descriptor and a modified Ferns classifier.

The original SIFT is known as a powerful but computationally inten-
sive descriptor for features. In the modified version, we use the FAST
corner detector instead of the original Difference-of-Gaussians (DoG) to
detect the features out of the tracking target. Since FAST is not invariant
to scaling of features, the feature database contains different scales, com-
parable to the well known MIP-Maps. During the tracking process itself,
the algorithm keep ’good’ and ’bad’ features. Since processing time can be
saved by also keeping the knowledge of ’bad’ features from one frame to
the next one.

During the creation process of the descriptor, we also keep the low ca-
pacity of the target platform in mind. So, we use a descriptor with 3x3
subregions and 4 gradient bins. The result is a reduction for the feature
vector from the commonly used 128 dimensions (4x4 regions and 8 bins)
to a 36 dimensional vector. To reduce the influence of noise, a Gaussian
filter is used to blur the source frame. During the descriptor matching, we
also use a different method in comparison to the original implementation.
We use several Spill Trees, combined to a Spill Forest, to reduce the search-
ing time. The removing of the produced outliers is done in three steps. In
the first step disoriented features are removed. The second step is based
on a simple geometric test. Since the most outliers are removed by the first
two tests, the third test is more complex. We calculate expected homogra-

CHAPTER 4. TRACKING MODULE 17

Figure 4.2: Overview of the SIFT and Ferns processing pipeline described
by [WRM+08])

phies and check them for the smallest number of outliers.

The Ferns classifier is also modified for the use on mobile devices.
In contrast to the original algorithm, also the FAST corner detector is in
use instead of the Laplacian operator. The classification is implemented
straightforward as shown by the original authors. Like the SIFT algorithm,
Ferns also uses a Gaussian blur filter to lower the influence of noise in the
frames. The feature classification does not need any information about the
current camera pose. But the knowledge about it can be used to reduce the
calculation period for the next frame. In addition, the number of outliers
is reduced by using this experience.

[WRM+08] shows much more detailed description and additional per-
formance and robustness tests.

CHAPTER 4. TRACKING MODULE 18

Figure 4.3: Identification of NFT-Target-Features

4.3 File Server

The File Server is more or less a by-product of our application. It is in
use for testing purpose to provide the download of different files from a
server. The File Server is a simple socket server application. It provides
the possibility to load files from a server by sending the filename. The
server works for binary files as well as for text files. After connecting to
the server, the client just sends the path and the name of the target file.
The server opens the file and starts the downstream to the client if the file
exists. If the file is not available, the server sends an error message to the
client.

The implementation of the file server is as simple as possible. So, it
does not deliver an extended error handling, e.g. if there are connection
problems. This was done because the file server is not the main goal of
this work, but it was necessary to test the functionality.

The File Server is in use to provide the download of the NFT dataset
for the mobile device.

Chapter 5

Content Creation

In this chapter, we show the functionality of the Freeze Mode, details of
2D- and 3D-content creation and give an insight into the internals of the
several objects. We also describe the details of the different texturing meth-
ods and the possibilities of manipulations of the generated objects.

5.1 Freeze Mode

With the Freeze Mode, we handle one of the main problems we found
during the first testing sessions on the mobile device. It is really difficult
to write a text or do accurate drawings in 2D with the stylus on the small
display. In fact it is much easier to create 3D-objects in that way but it
is a real challenge to do one of these things and keep the device stable
in relation to the NFT target because it is nearly impossible to keep the
device still and focused on the target and simultaneously generate some
useful content with the stylus on the device. So, we decided to give the
user the possibility to take a snapshot of the environment and use this
snapshot as base for any creations.

While the Freeze Mode is active, the background of the display is not
updated. So, if the user is in his desired position, he activates the Freeze
Mode by clicking on the corresponding button on the screen. Now, it is
possible to move around the mobile device without losing the focus of in-
terest. And so, the user can hold the device in a comfortable position to
make his inputs. Of course, it is also possible to create objects without us-
ing the Freeze Mode, but it is much more comfortable if the mode is used.
If the user starts to create a 2D-object, the Freeze Mode is automatically
activated for a better usability.

19

CHAPTER 5. CONTENT CREATION 20

5.1.1 Implementation details

The Freeze Mode is available at any time by clicking the corresponding
button on the display. It is one of the two ’static’ functions of the GUI
and can be set at any time or rather any program state. To give the user
a feedback if the Freeze Mode is active, a colored margin is shown on the
display.

If the Freeze Mode is activated, there were some internal changes to be
to keep the scene correct and editable. At first, of course, the update of the
display has to be stopped. Normally, the VideoFrame is directly copied to
the BackBuffer by a memcopy operation. In case of an active Freeze Mode,
this operation will not be done.

Furthermore the scene graph has to be adapted. The camera still deliv-
ers the tracking data of the NFT target, and of course, the scene is geared
to the real tracking target and not to the one shown on the frozen display.
To keep the scene stable to the displayed view, the SgTransfromSeparator,
which is responsible to handle the tracking data, is replaced by a new one.
The values of the new separator are just the values of the original separa-
tor at the activation time. No update will be done to these values even if
the tracker delivers new position data.

Additionally the projection matrix of the NFT target is stored. This ma-
trix is used to calculate all transfers between the 2D-display space and the
3D-scene space. These calculations are done by projecting and unproject-
ing a specific point of the display onto the XY-plane of the target.

5.2 Scene Graph Representation

In this section, we specify the structure of the scene graph for the whole
scene. The scene graph fragments for single 3D- and 2D-objects are de-
scribed in the chapters 5.3.1 and 5.4.1.

The scene graph contains the entry point for the NFT tracking information
and the ObjectExplorer, a light positioned ’in the camera’ and a root node
for the user-generated content.

An example of a virgin scene without any objects:

1 <Scene>

2 <MatrixCamera projMatrix="REF StbTrackerNFT2.projMatrix"

name="MatrixCamera"/>

3 <DirectionalLight direction="0 0 -1" />

CHAPTER 5. CONTENT CREATION 21

4 <TransformSeparator name="ObjectExplorerRoot" />

5 <TransformSeparator name="ProjectItPoster"

active="REF Poster.visible">

6 <MatrixTransform matrix="REF Poster.matrix"

name="MatrixTransform"/>

7 <TransformSeparator name="ProjectItObjects" active="true" />

8 </TransformSeparator>

9 </Scene>

In line three, the directional light is placed in the position of the camera
(as shown in line two). The direction of the light is the same as the camera
viewing direction to reach a light effect independent from camera motions.

Line four is the root node for the Object Explorer. If the Object Explorer is
active, it is mounted here and the following node is set inactive.

Line five is the separator for the tracking data of the current target.

Line six delivers the tracking data to the scene graph.

Line seven is the root node for any user-generated content. Any object of
the scene is a child node of this node. If a scene is saved, only the chil-
dren of this node are stored. If a scene is loaded, the loaded scene graph is
placed as a child of this node.

5.3 3D-Content

The creation of any 3D-object is based on the generation of a 2D-base area.
By extruding this base area, the flat 2D-object becomes a 3D-object. In the
current version, we are able to generate three different 3D-objects:

• Cube

• Cylinder

• Polygon

The base area of any of these objects is aligned to the XY-plane of the NFT-
target and the extrusion is done along the Z-axis. So, after the creation,
any 3D-object is axially aligned to the coordinate axis of the corresponding
NFT target. Of course, the alignment can be changed using the rotation
function from the Manipulation menu.

CHAPTER 5. CONTENT CREATION 22

During the creation process of any object, a dummy object is created
and displayed. These dummy objects enable an easier creation because
there a some unknown parameters during the creation process. For in-
stance, we do not know if the user draws the polygon clockwise (CW) or
counterclockwise (CCW). A similar problem arises while drawing a quad.
The quad is built from the user by drawing the diagonal. There is a differ-
ence if the diagonal is drawn from top left to bottom right or from bottom
left to top right. Because of this, the first approach to take a simple, one-
sided polygon as dummy object was just partly successful. Of course, the
specific character of the dummy object depends on the final object type,
but generally, it is a double-sided, filled polygon. Another difference be-
tween the dummy object and the real object is that the origin of the real
object is in the geometrical center of the object, and the vertices are ar-
ranged symmetrically around it. The translation relating to the NFT target
is done by the SgTransform node. While the positions of the vertices of
the dummy object is just relating to the NFT target. Calculations for such
adjustments can only be done if all the entire knowledge from the dummy
object is available.

A more detailed description about the differences and the building pro-
cess can be found in the specific sections.

5.3.1 SG-Representation of 3D-Objects

The scene graph representation of all different 3D-objects is very similar.
It does not make a difference whatever we take a cylinder, a box or a poly-
gon. At the end of the day, every object can be seen as a polygon with
a varying number of coat elements. The sample code shows the scene
graph representation of a polygon, but it is representative for any of our
3D-objects. An example of a 3D-object including the position, rotation and
scaling information is as follows:

1 <SgTransformSeparator>

2 <SgTransform translation="X Y Z" name="Translate" />

3 <SgTransform rotation="W X Y Z" name="Rotate" />

4 <SgTransform scaleFactor="X Y Z" name="Scale" />

5 <SgDrawingStyle blending="true"

blendFuncSrc="BLEND_FUNC_ONE_MINUS_SRC_ALPHA" />

6 <SgMaterial diffuse="1 1 1 0" />

7 <Node name="ProjectItObjectPOLYGON">

8 <SgTextureSeparator>

9 <SgTexture file="" name="1" />

CHAPTER 5. CONTENT CREATION 23

10 <SgGeometryVertices>

11 <Vec3Array type="coordinates" size="5">

12 X Y Z; X Y Z; X Y Z; X Y Z; X Y Z;

13 </Vec3Array>

14 </SgGeometryVertices>

15 <SgGeometryTexCoords>

16 <Vec2Array type="tex-coords" size="5">

17 S T; S T; S T; S T; S T;

18 </Vec2Array>

19 </SgGeometryTexCoords>

20 <SgGeometryNormals>

21 <Vec3Array type="normals" size="5">

22 X Y Z; X Y Z; X Y Z; X Y Z; X Y Z;

23 </Vec3Array>

24 </SgGeometryNormals>

25 <SgGeometry hasNormals="true"

hasTexCoords="true" hasColors="true">

26 <IntArray type="indices" size="9">

27 0 1 2 0 2 3 0 3 4

28 </IntArray>

29 </SgGeometry>

30 :

31 :

32 :

33 :

34 </SgTextureSeparator>

35 </Node>

36 </SgTransformSeparator>

The lines two to four keep the transformation information about the ob-
ject.

Line six contains the color information about the object.

Line seven is the root node for all geometrical information about the ob-
ject.

Line nine contains the information about the texture. If a ’name’ is spec-
ified, the texture is stored under this name. Since the Studierstube scene
graph cannot deal with stored textures just represented by the file name in
the SG node, any texture is loaded by our Texture Manager.

The lines 10 to 29 contain the vertex coordinates, the texture coordinates,

CHAPTER 5. CONTENT CREATION 24

the normal vectors, and the indices of the vertices for the top surface.

Starting at line 30, the same information like in the lines 10 to 29 for the
bottom surface and for all coat surfaces follows.

The lines 34 to 36 are just the closing tags of the object.

5.3.2 3D-Object generation out of a 2D-Screen

To create 3D-objects, we first generate 2D-objects in the XY-plane of the
NFT target. To draw and build the objects on the correct place, we need
to know where the ray defined by the touching point of stylus and the
screen meet this plane. Therefore we had to invert the projection from the
3D-scene to the 2D-screen to get the coordinate of the origin of the ray.
Thus, the calculation depends on the camera parameters we use a build
in Studierstube method to calculate the intersection. For this calculation
we just need to specify the X and Y coordinate of the desired point on the
screen, and the result is a 3D-coordinate in the scene or more precisely, on
the XY-plane of the target.

5.3.3 Implementation Details

After generating any ground surface, the new object is selected automati-
cally. This has the advantage for the user that he can perform the extrusion
directly in connection with the creation. The extrusion itself is done by
adapting the Z values of all vertices of the top surface and of every second
vertex of the coat surfaces. Due to the equal structure of the scene graph
of all 3D objects (one top surface followed by one bottom surface followed
by 2 to n coat surfaces), there is no further knowledge about the object
needed. During the extrusion, the Z values of the following vertices are
adapted: all of the top surface and every second of the coat surfaces. This
ensures a regular growing of the 3D-object. Since the origin of the objects
is in the geometrical center of the objects (as described above), the Z value
of the translation node has to be adjusted by half the value the extrusion
has been done.

5.3.4 Cube

The first step to generate a cube is the creation of a quad. The quad is
built up by the user by drawing a diagonal. By clicking on the display, he

CHAPTER 5. CONTENT CREATION 25

specifies the first corner. The quad is created while moving the stylus. If
the user releases the stylus, the dummy object is converted into the real
3D-object. In this case, the dummy object is needed because during the
drawing process, there is a difference whether the diagonal is drawn from
top left to bottom right or from bottom left to top right.

The conversion from the dummy object to the real object is done in
a simple way. At first, we check whether the quad was drawn CW or
CCW. Depending on this information, we set the order of the vertices.
Now, we read the vertex positions out of the dummy object and calculate
the size of the quad. With this information, we can create the vertices
for the real object. The texture coordinates and the normals for the cube
are independent of these information, as they are equal for each cube. At
last, the dummy object is removed from the scene graph, and the newly
generated object is added to it. Hence the object is ready to extrude to
become a real 3D-object.

Since the projection from the display onto the 3D-scene space is done
by projecting into the XY-plane of the NFT target, the newly created object
is also built aligned to this plane.

5.3.5 Cylinder

The cylinder is crated by generating and extruding a circle. Since there is
no real circle available, we built the dummy object of a polygon consisting
of 36 triangles. (The number of triangles is changeable within the C++
code.) To draw the ground surface, the user has to click on the display at
the center of the new cylinder. By moving the stylus in any direction, the
ground circle is created. If the size of the ground surface is in the desired
size, the stylus can be released and the real object can be built. In contrast
to the creation of the real cube, the CW versus CCW check is not necessary
for the cylinder. Instead, the calculation of the texture coordinates and the
vertex normals has to be done.

Equal to the cube, the real object takes place in the scene graph instead
of the dummy object. Also equally to the cube, the ground surface is built
in the XY-plane of the target, and the extrusion is done along the Z axis.

5.3.6 Polygon

By clicking on the display, the user specifies the first corner. By moving
and releasing the stylus, the second corner is defined. From now on mov-
ing and releasing the stylus generates a new corner. During the movement

CHAPTER 5. CONTENT CREATION 26

of the stylus, a preview of the current surface is displayed. To finish the
creation process the user either performs a double click at the last edge
or presses the Finis button of the GUI. In the actual version of our appli-
cation, only the creation of convex polygons is allowed. Since there is no
test if this specification is met, the behavior of polygon with overlapping
edges during the extrusion is undefined.

For the building of the real object, we start again with the CW versus
CCW check. After the registration of the vertex coordinates, the texture
coordinates and the vertex normals are calculated and stored in the scene
graph of the object.

Analog to the other 3D-objects the dummy object, is removed from the
scene graph, and the new object is included.

5.4 2D-Content

The creation process of 2D-objects can be split up into two different steps.
Similar to the dummy objects during the creation of 3D-objects, we now
use a frame buffer until the drawing phase. Any created pixel is stored in
this buffer until the user finishes the creation process.

If the user finishes the creation either by leaving the 2D-mode or by
clicking the Finish button of the GUI, the real object is created. Therefore
we calculate the used space of the drawing and start the generation of the
texture analog to the method described in section 5.5. The single differ-
ence of the new produced texture is the different color mode. Since the
2D-objects have to deal with transparencies, we use the RGBA444 format
instead of the common RGB565. After the creation of the texture, all neces-
sary parts for the scene graph representation are generated and assigned
to the global scene graph.

5.4.1 SG-Representation of 2D-Objects

As shown above, any 2D-object is in principle a planar rectangle tagged
with a texture.
There is an example of a 2D-object including the position, rotation, and
scaling informations:

1 <SgTransformSeparator>

2 <SgTransform translation="X Y Z" name="Translate" />

3 <SgTransform rotation="W X Y Z" name="Rotate" />

4 <SgTransform scaleFactor="X Y Z" name="Scale" />

CHAPTER 5. CONTENT CREATION 27

5 <SgDrawingStyle blending="true"

blendFuncSrc="BLEND_FUNC_ONE_MINUS_SRC_ALPHA"

blendFuncDst="BLEND_FUNC_SRC_ALPHA" />

6 <SgMaterial diffuse="1 1 1 1" />

7 <Node name="ProjectItObjectSKETCH">

8 <SgTextureSeparator>

9 <SgTexture file="" name="alpha1" />

10 <SgGeometryVertices>

11 <Vec3Array type="coordinates" size="4">

12 X Y Z; X Y Z; X Y Z; X Y Z;

13 </Vec3Array>

14 </SgGeometryVertices>

15 <SgGeometryTexCoords>

16 <Vec2Array type="tex-coords" size="4">

17 0 0; 0 1; 1 0; 1 1;

18 </Vec2Array>

19 </SgGeometryTexCoords>

20 <SgGeometryNormals>

21 <Vec3Array type="normals" size="4">

22 0 0 1; 0 0 1; 0 0 1; 0 0 1;

23 </Vec3Array>

24 </SgGeometryNormals>

25 <SgGeometry hasNormals="true"

hasTexCoords="true">

26 <IntArray type="indices" size="6">

27 0 1 2 2 1 3

28 </IntArray>

29 </SgGeometry>

30 </SgTextureSeparator>

31 </Node>

32 </SgTransformSeparator>

The lines two to four keep the transformation information about the ob-
ject.

Line six contains the color information about the object.

Line seven is the root node for the geometrical information about the ob-
ject.

Line nine contains the information about the texture. The prefix ’alpha’ at
the filename is an advice for a texture with transparencies.

CHAPTER 5. CONTENT CREATION 28

The lines 10 to 29 contains the vertex coordinates, the texture coordinates,
the normal vectors, and the indices of the vertices for the rectangle.

The lines 30 to 32 are just the closing tags of the object.

5.4.2 2D-Objects

In the current version of our application, we provide four different 2D-
objects respectively drawing states.

• Freehand

• Line

• Box

• Circle

In the Freehand mode, sketch drawing can be done. Every movement of
the stylus has a direct effect at the display. If the Line mode is selected, the
line starts where the display is clicked by the stylus. During the movement
of the stylus, a preview of the line is displayed. If the stylus is released,
the line in the specified color is drawn. The behavior while drawing a box
or a circle is comparable to the drawing of a line. Here, also a preview is
displayed until the stylus is released. Now the drawing is displayed un-
changeable and in the correct color.

Additionally to the different drawing modes, we enable further scope
for design:

• Coloring

• Changing the line width

During the creation process of 2D-objects, the additional color GUI is also
shown. The current drawing color can be selected from the user by click-
ing on the corresponding color button. Of course it is possible to use differ-
ent colors within a single 2D-object. The line width of the Freehand and of
the Line mode are variable and can be changed by using the LineWith++
or LineWith– buttons of the GUI.

CHAPTER 5. CONTENT CREATION 29

5.5 Texturing

Texturing is the main functionality to allow the user the rebuilding of re-
alistic models of the real environment. It should be easy to create a texture
for the user as it should be easy to assign the textures to any kind of object.

There are three different methods to texture a 3D-object in our appli-
cation. On the one hand, we provide ten different predefined textures, on
the other hand, the possibility to generate and store user-defined textures
and additionally the so-called FasTex function. Using FasTex allows the
user to texture an object during the creation and enables a very fast and
easy tool for texture generation. The administration and the handling of
the textures is done by the Texture Manager.

5.5.1 Texture Manager

The Texture Manager performs three main functions:

• Load and save user-defined textures

• Handle multi-used textures

• Handle predefined textures

In the Studierstube frame work, it is not possible to store a texture in a
graphic file in a direct way. Of course it is possible to load a picture from
a file (e.g. jpg or png) and assign it as texture to an object. But there is
no possibility to save a texture. Moreover, it is impossible to get a handle
to an actually used texture from the scene graph nor from the object the
texture is assigned to. So, the Texture Manager administrates the handles
of all textures of the current scene.

Since the double usage and double storage of one and the same texture
is useless, the Texture Manager also keeps the overview of multi-used tex-
tures. If a texture is assigned to a further object, the Texture Manager just
passes a handle to the texture to avoid a multiple memory consumption.

The Texture Manager also knows about the details of the predefined
textures. So, it loads the textures from the database in case of the first
use and provides a handle to them on every further usage. Since the pre-
defined textures are stored locally anyway, the texture itself is not stored
anymore if the scene is stored.

CHAPTER 5. CONTENT CREATION 30

5.5.2 Predefined Textures

As shown in Fig. 5.1, there are ten different predefined textures available.
We selected ten commonly used surface designs. Since these textures are
part of the application, they are not saved as picture if the scene is stored.
For these textures, there only exists a reference in the scenegraph, and the
Texture Manager handles the loading and displaying if they are in use.

To assign one of these textures to a 3D-object, first the object has to be
activated. By selecting the menu MANIPULATE ⇒ TEXTURE, the GUI is
extended by the preview of the different textures (as shown in Fig. 7.3 and
7.4). Now the desired texture can be assigned by pressing the correspond-
ing button.

Figure 5.1: Predefined textures

5.5.3 User-Defined Textures

To increase the flexibility of the application, we provide the possibility to
create textures from the environment. To create one’s own texture, the
user hast to select MANIPULATE ⇒ TEXTURE from the menu. Now, the
GUI is extended by the special texture menu as described in section 7.1.2.
As shown in Fig. 7.4, this extension contains four user-defined buttons
additionally to the predefined texture buttons. After pressing the CREATE
button, the user has to specify four corners on the touch-screen. During
the creation process, the so far selected area is highlighted by a line on the
display. The selected area does not have to be rectangular since it would be
impossible to create textures from an incline angle. To finish the creation
process, either the user has to double-click on the last set corner point or he
has to press the FINISH button of the menu. The finish button was added
to the GUI because during our tests we found out that a double-click on

CHAPTER 5. CONTENT CREATION 31

the mobile device with the stylus is not as easy as a double-click with the
mouse on a desktop computer.

If the user selects more or less than four corners, the application shows
an error message in the Status Line and the creation process is stopped.
Now the selected area is mapped onto a 128 x 128 pixel sized texture and
assigned to one of the four user-defined buttons. (Details about the map-
ping algorithm follow in the next section.) A message in the Status Line
informs the user which button the currently built texture was assigned to.
If the user creates more than four textures, the ’oldest’ texture is discarded
and the new texture is assigned to this button.

In Fig. 5.2, we show two different cut-off areas and the resulting tex-
tures.

Figure 5.2: Mapping examples of user-defined textures

5.5.4 FasTex

FasTex is a special form of a user-defined texture. It generates a texture
from the displayed background and assigns it to the currently active object
in one single step. Therefore the user just had to press the FASTEX button
which is available in any 3D-object menu. In contrast to the ’normal’ user-
defined texture, a FasTex-generated texture is not assigned to one of the
user-defined buttons. So, a reuse of the same texture with another object is
not possible. The FasTex functionality is only available during the creation
process of an object. If the object has been manipulated in any way, FasTex
cannot be used any more.

CHAPTER 5. CONTENT CREATION 32

Of course, any texture built with FasTex is handled by the Texture Man-
ager in the same way as another user-generated texture.

5.5.5 Implementation Details

The Texture Manager is implemented as Singleton. (Singleton is a com-
mon and often used Design Pattern, so we give a detailed description
here. Detailed information is available in [GHJV95] (Page 144ff).) It con-
tains a vector to handle the predefined textures and a vector to handle the
user-defined textures. Furthermore it provides the functionality to load
and save textures from and to the default file system or from and to zip
files. Since it is impossible to store a texture simultaneously when saving
a Studierstube scene graph, the Texture Manager is involved if a scene is
loaded or stored by the IO-Manager. The filename of the corresponding
texture is stored in the ’name’ field of the SgTexture node, and if necessary,
the IO-Manager calls the Texture Manager during the reading and writing
operations.

By reason that any 2D-drawings are displayed and stored as textures
and these textures need an alpha channel, the Texture Manager also en-
ables the translations between RGB565 and RGBA4444 color formates. And
of course it handles the different 2D-textures.

The calculation of the result color for the user-defined textures is done
straight forward as shown in Fig. 5.3 and the formulas 5.1 to 5.4. The
vectors A to D point to the four corners of the selected quad.

Figure 5.3: Mapping of user-defined textures

CHAPTER 5. CONTENT CREATION 33

The vectors a and b are calculated as follows:

a = D + v ∗ (A−D) (5.1)

b = C + v ∗ (B−C) (5.2)

The vector x is calculated by using the two vectors a and b:

x = a + u ∗ (b− a) (5.3)

Now, x is the base for the bilinear interpolation of the color values of the
four neighbor pixels where u and v are the normalized texture coordinates
in the range 0..1:

Texture(u, v) = (1− u)(1− v) · x(buc, bvc)
+ u(1− v) · x(buc+ 1, bvc)
+ (1− u)v · x(buc, bvc+ 1)
+ (1− u)(1− v) · x(buc+ 1, bvc+ 1)

(5.4)

In Fig. 5.2, we show two example results of this kind of calculation.

The Texture Manager also keeps an overview of the used storage names
for the single textures. The textures are stored as png files where the file
names are sequential numbers. If a scene is loaded, the Texture Manager
keeps the highest number in use and starts the sequence for new file names
one number above.

The Texture Manager also differentiates between a texture for a 3D-
object and a texture for a 2D-object. Textures for 2D-objects are stored with
the prefix alpha followed by the sequential number (e.g. alpha7). The
main difference to a texture for a 3D-object is the differing color format.
For 2D-objects we use not only red, green, and blue as color channel but
also an alpha channel to get the transparency.

5.6 Object Manipulation

Object manipulation provides the essential functions to build up interest-
ing and complex scenes out of a small number of simple objects. There-
fore it is necessary to arrange the single objects in the scene and to edit
the surface of them. We offer three main methods to arrange respectively
rearrange single objects in the scene:

CHAPTER 5. CONTENT CREATION 34

• Moving

• Rotating

• Scaling

Additionally to the transformation functions, the look of a scene is influ-
enced by:

• Coloring

• Texturing

With these operations, it is possible to create complex scenes out of simple
objects.

5.6.1 Object Selection

To select the different objects of the scene, we provide a very simple method
for the user. By clicking on the ’Step’ button of the GUI, the user can choose
one object after the other. Starting with the last created object, the selec-
tion is done object by object backwards until the first object is reached.
Of course, this is not the most elegant method to select an object from a
3D-scene, but it fullfills our purpose. In one of the next Studierstube iter-
ation there should be a ray-picking function to select single objects from
a scene graph. As soon as this functionality is available, it will take just a
few changes in the code to implement it. Additionally, the ’Step’ button is
needless and the GUI would be a bit more cleaner.

5.6.2 Implementation Details

The selection and manipulation of the objects is done by manipulations of
the scene graph. Therefore the application contains a vector which holds
a pointer to the root node of each object. Furthermore it contains a special
manipulation separator node where all changes were performed to. If the
user presses the ’Step’ button, the application steps backward through this
vector. It takes the root node from the scene graph and replaces it with our
special manipulation separator node. Additionally, the color of the object
is changed to a light green to mark the object as active. Thus, all manipu-
lations (e.g. translations, changing colors or textures) are addressed to the
manipulation node reaches the current active object without any accurate
knowledge about the object itself. As shown in 5.3.1 and 5.4.1, the general
structure of the scene graph of any object is identical. Thus, there is no

CHAPTER 5. CONTENT CREATION 35

difference by either moving a cube, a cylinder, or a 2D-object. If the user
selects another object, the current active object is, after resetting the color,
placed back again in the scene graph where it had been before.

5.6.3 Moving

To move an object the object, first has to be selected. If the user chooses
MANIPULATE ⇒MOVE from the menu, an additional object is inserted
into the scene. A colored coordinate system symbol (CSS) is added to the
currently selected object. The colors of the CSS for X, Y, and Z are analog to
Red, Green and Blue, and the same colors are in use for the GUI buttons
to select the axis where the transformation belongs to. For the moving
operation, the CSS is aligned by the axis of the corresponding NFT target.

Now the user has to choose the axis to perform his manipulation. If an
axis is selected, the label of the button changes from ’- X -’ to ’–>> X <<–’
to highlight the selection. Any movement of the stylus is translated into a
movement of the object. Therefore the origin point is stored and compared
to the actual stylus position. Moving of the stylus to the right or to the top
performs a moving of the object in a positive way along the axis and vice
versa. The translation is transmitted directly to the corresponding scene
graph node of the object (cf. 5.3.1, line two of the scene graph).

Figure 5.4: Cube during rotation manipulation around the Y-axis with
shown CSS

CHAPTER 5. CONTENT CREATION 36

5.6.4 Rotating and Scaling

The usage of rotating and scaling manipulations are as far as possible the
same as described in the section above. The only real difference is that the
CSS for rotating and scaling is not aligned to the axis of the NFT target,
but it is aligned at the axis of the object. In Fig. 5.4, we show an object dur-
ing the rotation with the object-aligned CSS. The operation is performed
around the Y-axis as can be seen at the changed label of the button (’–>>
Y <<–’ instead of ’- Y -’).

5.6.5 Color and Texture Selection

To change the color of a 3D-object, the object has to be selected first. After
choosing MANIPULATE ⇒ COLOR from the menu, the GUI is extended
by the color menu as shown in Fig. 7.3. Now the user can select one
of the 16 defined colors to assign them to the object. Additionally it is
possible to change the transparency of the object by moving the stylus on
the touch-screen. Any changes done here are also written directly in the
corresponding scene graph node.

The creation and assigning of different textures was described in detail
in section 5.5, so we give further explanations there.

Chapter 6

Content Management and
Distribution

In the following chapter, we describe details about the possibility of the
reuse of objects using the Object Explorer. Furthermore we talk about the
storage as well as the distribution of the scenes.

6.1 Object Explorer

With the Object Explorer, we enable the user a simple way to reuse single
objects. The objects can be inserted into the scene where they were created
as well as in a completely different environment. So, the user can use the
Object Explorer taking single AR objects with him. Relating to the distri-
bution of AR models of real existing objects, the Object Explorer offers a
great benefit.

The main functionality of the Object Explorer provides:

• Browse through the Object Explorer

• Add an object to the Object Explorer

• Remove an object from the Object Explorer

• Insert an object into the scene

To show the Object Explorer, the user has to choose Explorer ⇒ Show
from the GUI. If the Object Explorer starts, an additional, special GUI is
displayed. In Fig. 6.1, we show the Object Explorer including the GUI
and the preview of an object. By clicking on one of the two arrow buttons,

37

CHAPTER 6. CONTENT MANAGEMENT AND DISTRIBUTION 38

Figure 6.1: The Object Explorer and its special GUI

the Object Explorer shows the next or rather the previously stored object.
Since we deal with 3D-objects, the preview of the single object is not dis-
played statically. In fact, the object is rotating to allow to regard it from
different angles and from different views. Fig. 6.2 shows the preview of
an object during the rotation.

To add an object to the Object Explorer, the user just has to select the
object and press the Add 2 Expl. button from the GUI. The new object is
added at the end of the Object Explorer.

An object can be removed from the Object Explorer by pressing the
Delete Object button. If the button is pressed, the current shown object is
deleted from the Object Explorer and the next object is previewed.

To insert an object from the Object Explorer into the current scene, the
user just has to press the Add 2 Scene button. The object is inserted into
the scene graph as if it was a newly created object. It is placed in the origin
of the actual NFT target and of course can be manipulated as well as any
other 3D-object. Needless to say that our Texture Manager takes care of
the texture of the object and manages a possible reuse.

6.1.1 Implementation Details

The Object Explorer is more or less a self-contained module. The only
point of contact with the application is the node in the scene graph. As
shown in chapter 5.2 (line four of the scene graph), there is an extra root
node for the Object Explorer. During the time the Object Explorer is active,

CHAPTER 6. CONTENT MANAGEMENT AND DISTRIBUTION 39

Figure 6.2: Rotation of an object displayed by the Object Explorer

the regular scene is not shown so as to avoid confusions of the user. All
other operations like loading, saving, and displaying of the objects are ad-
ministrated by themselves. On the file system, there is an own folder only
to store files belonging to the Object Explorer. In addition to the stored
objects and textures, this folder includes a text file (index.txt) containing
structural informations. The structure of the file is as follows:
N F:file1.xml T:texture1.png F:fileN.xml T:textureN.png

where:
N is the number of objects
F:xxx is the filename of the object
T:xxx is the texture name of the object

A concrete example looks like this:
3 F:0.xml T:DEFAULT_TRAFFICSIGN1 F:1.xml T:1.png F:2.xml T:NONE

In this case, the Object Explorer contains three objects. The first is textured
with a default texture, the second one with a user-defined texture, and the
third has no texture.

During the initialization process, the index file is parsed, and an ad-
equate data structure with the file names is built. Additionally, some
needed scene graph nodes are built, for instance the SgPoseAnimator for

CHAPTER 6. CONTENT MANAGEMENT AND DISTRIBUTION 40

the rotation of the previewed object. After the initialization, the first object
is displayed, and the Object Explorer is working.

The Object Explorer manages the loading and saving of the objects by
itself. It also deals with the file names for the objects and the textures. If
the user adds or removes an object, the corresponding files are saved or
deleted, and the index file is adapted.

6.2 Storage

Saving and loading of scenes is, of course, very important for an applica-
tion like ours. Without the possibility of reusing single objects or complex
scenes, the creation of content does not really make sense. With this pro-
totype, we provide two different options to store a scene. It can be stored
locally on the device for testing purposes and globally on a server for mul-
tiple user access.

The loading and saving operations are completely handled by the IO-
Manager, which also takes care of the communication with the pulic server.

6.2.1 IO-Manager

The IO-Manger handles all things related to loading and storing of the
scene except the loading and storing of textures. The textures are handled
by the Texture Manager. The IO-Manger is also in charge of the communi-
cation with the global server. He deals with the IO operations of files from
the file system as well as with IO of single files from a zip-file. The IO-
Manager also takes care of the location where a scene was loaded from. So
there is only a single Save button in the GUI, and the IO-Manager knows
about the correct target of the request.

6.2.1.1 Local Storage

The local storage is more or less just implemented for testing reasons. Oth-
erwise, it would be impossible to work with the application without a con-
nection to the content server. For every NFT-target, the scene is stored in
a single xml-file. The textures of the particular scene are stored in a sepa-
rate folder. In contrast to the global storage, all necessary files are stored
separately on the device and not combined in a single zip-file.

CHAPTER 6. CONTENT MANAGEMENT AND DISTRIBUTION 41

6.2.1.2 Global Storage

The global storage is the core of the distribution module. A usage by a
huge number of users is only possible if the scene and all according data
are stored on a publicly reachable server. In our case, we use the ’imagina-
tion’ server which is also in use for the IP-City project. The server allows
the upload and download of files after a login. All communication with
the server is done with ’http-post’ requests. At the beginning of the com-
munication, a cookie is created to keep the identification of the device. The
server can deal with the following commands:
login requires UserName and Password
UserName user name for login
Password password for login
ObjectID object ID for specific operations
TypeID type ID to differ the object types (e.g. zip, jpg, txt)
queryObjects requires a name and returns a list of ObjectIDs
deleteObject requires ObjectID and deletes an object (is not

working correctly during our testing sessions, so
the objects are left on the server and have to be re-
moved manually)

getObject requires ObjectID and downloads the object from
the server

uploadObject requires typeID, a name, and the data of the object
logout to close the connection

If a scene is downloaded from the server, after the login, the applica-
tion sends a queryObjects request with the according file name. The name
depends on the actual NFT target. The server returns either a single object
ID or, if there are more than one file with the same name, a list of an object
ID. (Due to the reason that the deleteObject command does not work, it is
most likely to get a list of IDs.) If the server returns a list of IDs, the largest
ID is the one to choose because the server assigns the IDs as serial num-
bers. The next sent request is the getObject request to start the download
of the file.

The global scenes are stored in so-called piz-files where piz stands for
ProjectItZip file. (ProjectIt was the working title of the application.) The
usage of a zip-file has two advantages. On the on hand, the traffic to the
server is reduced, and on the other hand, there is only one single file to
handle. Otherwise, the number of files for a scene can vary depending on
the number of used textures.

If the download is completed, the file is mounted into the Studierstube

CHAPTER 6. CONTENT MANAGEMENT AND DISTRIBUTION 42

file system. Studierstube can handle zip files as if they were ’normal’
folders on the file system. So, the loading process is handled by the IO-
Manager using the build-in Studierstube functionality.

If all changes to the scene has been done, the scene has to be uploaded
to the server again. Before the scene is uploaded to the server, all relating
files (scene file and textures) are stored in a piz file again. After the IO-
Manager has connected to the server, he sends the file via the uploadObject
request. Now, the new scene is available for any other user working with
our prototype.

Chapter 7

Graphical User Interface

In the following chapter, we describe the functionality and the structure of
the Graphical User Interface (GUI) and the Status Line. We illustrate the
design and explain the implementation details.
The design and structure of the GUI are important for the user acceptance
of any software. So, the structure of the GUI is clearly and logically ar-
ranged.

Figure 7.1: Design of the GUI and the Status Line

7.1 Structure of the GUI

The GUI is placed at the bottom of the screen and is built up of the Status
Line, six ’dynamic’ and two ’static’ buttons. The ’dynamic’ buttons change
their functionality, text, and color depending on the current program state.
The two ’static’ buttons keep the same functionality all over the applica-
tion. (See Fig. 7.1)

Figure 7.2 shows all menu entries. It also illustrates that there are only

43

CHAPTER 7. GRAPHICAL USER INTERFACE 44

two more layers under the main menu. So, we enable the entire function-
ality of the program with a very flat menu structure.

The two ’static’ buttons are the Freeze-Button and the Step-Through-
Button. The Freeze-Button allows the user to freeze the current view. So,
the movement of the device has no influence on the displayed content.
With the Step-Through-Button, the created objects can be selected one by
one. This is necessary for every manipulation (coloring, texturing, mov-
ing, ...) to any objects.
These two functions are in use very often. So, we decided to take them out
of the ’dynamic’ menu to keep the depth of the menu as flat as described
above.

A detailed description of all of the menu functions is done in the corre-
sponding specific chapters.

7.1.1 Color-GUI

In addition to the standard GUI, we provide an extension to select differ-
ent colors. This GUI is only displayed if it is necessary and useful. The
Color-GUI allows the selection of the surface color of 3D-objects or the
selection of the pencil color for 2D-objects. The user can choose from 16
predefined colors.

To keep the work space as wide as possible, the Color-GUI is shown at
the very right side of the display. Figure 7.4(a) shows the single Color-GUI,
and 7.3 shows the Color-GUI on the display of the mobile device.

7.1.2 Texture-GUI

Analog to the Color-GUI, the Texture-GUI is also an extension of the de-
fault GUI. It provides ten predefined textures and four buttons for user-
defined textures. If the user generates own texture from his environment,
the texture is assigned to one of the four buttons. Additionally the number
of the button is shown in the Status Line to inform the user which button
the texture is assigned to.

Also analog to the Color-GUI, the Texture-GUI is placed on the right
side of the display to keep the work space for the user wide. Figure 7.4(b)
shows the design of the Texture-GUI.

CHAPTER 7. GRAPHICAL USER INTERFACE 45

Figure 7.2: Overview of all possible GUI-states

CHAPTER 7. GRAPHICAL USER INTERFACE 46

Figure 7.3: Displayed Color-GUI with differently colored objects

7.1.3 State Pattern and Implementation Details

According to [GHJV95], the State Pattern ’allows an object to alter its behavior
when its internal state changes’. So, every button of the GUI changes its
behavior according to the current menu state.

The big advantage of this approach is that the button triggers different
actions according to its state. Hence, it is unnecessary to write endless if -

else if (or rather switch - case) statements, which are hard to maintain
if any changes are necessary.

7.1.3.1 State Pattern

The state pattern is a clean way to change the behavior of an object during
runtime. In Fig. 7.5 we show UML-Diagram of the GoF approach.

We expand the functionality of the classical state pattern by a returnTo-
PreviousState() method. So, the actual state not only knows about even-
tual following states but also knows about the primary state. Hence, a step
to the menu a layer above the current state is easy to perform. There are
two advantages of this functionality. On the one hand, it is not necessary
for a child state to know something about its parent state. So, in case of
refactoring or other changes in the state hierarchy, there are no changes
at the called state. On the other hand, it is possible to access one and the
same child state from different calling states, and the method will return
to the correct caller state.

CHAPTER 7. GRAPHICAL USER INTERFACE 47

(a) Color (b) Texture

Figure 7.4: Design of the Color-GUI and the Texture-GUI

7.1.3.2 Implementation Details

In Fig. 7.7, we show the UML-Diagram of the GUI and all belonging
classes.

The GUI -Class is the core component of the implementation. It controls
the buttons and holds an instance of the actual MenuState. It is also re-
sponsible to show and hide the ColorGUI and the TextureGUI.

We decide to implement our own GUIButton-Class instead using the
existing StudierstubeES::Button because its current implementation has
some disadvantages. One of the biggest disadvantages (especially for our
application) is the fact that a mouse click on a button also triggers all other
registered RawInputListeners. So, an application which uses the mouse
input e.g. for drawing has no chance to decide whether the goal of the
mouse event is a click on a button or a click on the work space. There
is no native possibility, like ’EventHandled’ or a similar one, to catch a
mouse click at the StudierstubeES::Button and stop the event passing fur-
ther through the Studierstube event system. For that reason the GUI -Class
provides the boolean variable mouseEventHandled to distinguish between
a click on a button and a click on the work space.

CHAPTER 7. GRAPHICAL USER INTERFACE 48

Figure 7.5: The State Pattern described by [GHJV95] (p. 339)

The GUIButton-Class provides the concrete GUI-Button. It contains
informations about the text of the button, the position where a button is
displayed, and whether the button is pressed or not. It also contains a
pointer to the GUIImages-Class to make the different backgrounds avail-
able.

At last, the GUIImages-Class provides the variably colored background
images for the GUI-Buttons. There are seven different colors available (cf.
Fig. 7.6):

• gray as default color

• dark gray for inactive buttons

• dark green for the currently active state

• orange for the currently pressed button

• red, green and blue for manipulations along the X-, Y-, and Z-axis

(a) Default (b) Inactive (c) Selected (d) Pressed

(e) Red (f) Green (g) Blue

Figure 7.6: Available colors for the GUI-Buttons

The class delivers a pointer to every image. So, every image is represented
only once in the memory to save memory capacity.

CHAPTER 7. GRAPHICAL USER INTERFACE 49

7.1.4 Status Line

The aim of the Status Line is to offer the user information about the current
state of the program and additional information about actions he has set.

It is important to give the user a feedback, especially if the processing
of a user input takes a longer time, or e.g. depends on the response of a
server. Otherwise, it is hard for the user to understand why there is no
directly visible reaction to his action.

7.1.4.1 Implementation Details

The Status Line is a simple class, implemented as Singleton. So, it is reach-
able from all over the program.

It supplies three main methods: addInfo(), addError() and clearLine().

The difference between addInfo() and addError() is the color of the dis-
played text. Using addInfo() displays a black text and addError() dis-
plays a red text. So, addError() is used if an unexpected behavior occurs
to give the user an additional hint.
The result of the clearLine() method is, as expected, an empty Status Line.

CHAPTER 7. GRAPHICAL USER INTERFACE 50

Figure 7.7: UML-diagram of all involved classes of the GUI

Chapter 8

Conclusion

In this work, we presented a prototype to enable the creation and sharing
of AR content in a new and easy way. The system runs directly on mobile
devices and is independent from the use of desktop computers. It gives
the user a kind of freedom to create virtual objects from his current envi-
ronment and allows the sharing of these objects with others. We take care
of the limitations of the target platform and we deliver a simple interface
for all kinds of manipulations.

At the initialization phase, the pose estimation of the user has to be
done. The localization of the position is calculated on a remote server us-
ing a picture of the actual environment. The user just has to press one
button if he wants to start working with our program. After a few sec-
onds, when the calculations are done, the NFT dataset is loaded automat-
ically. With this dataset, the online tracking is enabled. If there is already
a AR scene available for the actual location, the scene is also loaded and
displayed to the user.

Now, the generation and manipulation of the content is possible. Any
action to the application can be done using the touch screen (in combina-
tion with the stylus) of the mobile device. Compared to a computer mouse
with at least two or three buttons, the capabilities of the stylus are limited.
But we keep that in mind by building a very flat GUI structure. Any func-
tion can be reached via the clearly arranged GUI with a depth of at most
three layers.

New objects can be added just by drawing the desired base area of the
object and by extruding this area. In this simple way 3D-objects can be
built. It is possible to build boxes, cylinders and polygons. To enable more
attractive scenes, the objects can be colored in different ways or they can
be textured. We provide a number of predefined textures and additionally

51

CHAPTER 8. CONCLUSION 52

the possibility to generate new textures out of the environment. With these
textures the replication of virtual objects from the real world can be done
real simple. The texture can be generated by defining the four corners of
it, or, the object can be textured with the current background by a single
click.

Another type of object we offer is a simple 2D-object. The user can add
some geometrical objects like circles or rectangles to the scene. It is also
possible to use the stylus as a simple pen to do some sketch drawings.
The width of the line is changeable just as well as the drawing color. With
these 2D-objects, simple annotations can be add to the scene.

Manipulations and rearrangements of the different object can be done
by the well-known moving, rotating, and scaling operations. A cross hair
with different colors in the main axis supports these functionalities. The
colors of the cross hare are the same as the corresponding buttons at the
GUI to allow an intuitive usage.

The sharing and distribution of the scenes is automatically done again.
If the user has finished the editing of the scene, the upload to the publicly
reachable server is started by just one click. The system itself knows about
the current location and stores the scene and all the depending informa-
tion. Now, the new scene is available for any other user located in the
same environment.

From my point of view, the presented system could be a first step to
enable the user the generation of AR content. To become a widely accepted
application, some improvements are necessary. It is possible and easy to
create simple objects but it is really hard to generate complex scenes.

We did no user study because it would go beyond the scope of this
work, but I think one of the main results would be the complicated hand-
ling of the single objects and the difficult object selection. It is imaginable
to implement e.g. a view and select method where the user is able to select
an object just by pointing the view at it.

Another problem coming along with complex scenes is the required
loading time on the currently available devices. The improvements of the
mobile processors, however, will lower this problem in the next few years.

After the re-engineering of the interface followed by a figured-out user
study, this project can be the base of further interesting developments in
the direction of mobile AR content generation.

Chapter 9

Future Work

The future work can be split up into two different areas. On the one hand,
some improvements of the prototype are possible, for example improve-
ments to enable a better handling for the user. On the other hand, some
extensions are imaginable, e.g. extensions to widen up the field of appli-
cation of the system. And, of course, a very interesting topic will be a user
study for our application.

As shown in chapter 5.6.1, the selection of the different objects has to
be done by selecting one object after the other until the desired object is
reached. This method is, especially for huge scenes, not very comfortable.
The implementation of a ray picking algorithm would bring a great ben-
efit for the usability. There are considerations to implement ray picking
directly in the Studierstube frame work. If that extension is done, the em-
bedding of this technique in our prototype can be done in a short time and
would have a big impact on the usability.

Another improvement could be the adaption of the size of user-generat-
ed textures. In the actual version, all user-generated textures are mapped
to a 128×128 pixel sized texture. This size was found as a good trade-off
between all available input sizes and was also taken due to storage rea-
sons. If the original cut-off from the user is very small or very huge, the
fixed sized texture may deliver poor results. Here it is imaginable to adapt
the size of the texture according to the size of the user cut-off to reach more
attractive results.

The next possible improvement could be the possibility to group some
objects together since it is really complex and time-consuming to do an
equal manipulation to a multiple number of objects. So, if the user wants
to move e.g. ten related objects about the same amount in the same di-
rection, he has to select every object and perform the operation object by

53

CHAPTER 9. FUTURE WORK 54

object. If the objects could be defined as a group, the manipulation can be
done in a single step. Additionally, the relations between each other will
not change in this case.

Furthermore it is imaginable to allow the user the sharing of single
objects by the use of an additional global Object Explorer. So, it would be
possible to share not only whole scenes according to a specific place, but
also to share single objects with other users. Of course, a one-to-one reuse
of the local Object Explorer will meet its limits shortly because there is no
possibility to get an overview of all stored objects, and it is not practicable
to step through a huge number of objects step by step. Here is room for
further considerations to this topic.

During our test directly on the mobile device, we have seen that writ-
ing some annotations is not very comfortable. Even if the Freeze Mode is
in use, writing a good-looking text nearly seams to be impossible. So, the
possibility of entering a text using a virtual keyboard on the touch screen
would raise the comfort and the usability.

Due to the evolution of the localization technique described in
[AWK+09], a usage of this system would reduce the necessary commu-
nication with different servers since the new method runs directly on the
mobile device. An upgrade to the new technique will result in an acceler-
ation of the initial tracking process.

Also some real extensions are possible. Actually, we generate only
static content. But it is also imaginable to extend the system and allow
the usage of video content in our scenes. There are a lot of web-based
platforms providing a different kind of videos. They could be used as a
source to include moving images in the scenes. So, the application itself
could be even more attractive for different users.

Analog to the usage of video content, the integration of audio content
is also a possible extension for the current scenes. They could be used as
background music to enhance scenes or containing the information itself,
e.g. to add short spoken messages to special objects and to provide these
messages for the other users.

And last but not least, the evaluation of our prototype with real users
is necessary because the acceptance of an application by the user can only
be found out by integrating the user in the evolution process. Needless to
say that we try to build up a user-friendly interface and an intuitive menu.
Whether the user agrees with us, however, has to be decided by the user.

Bibliography

[AWK+09] Clemens Arth, Daniel Wagner, Manfred Klopschitz, Arnold
Irschara, and Dieter Schmalstieg. Wide area localization on
mobile phones. In Proceedings of the 2009 8th IEEE International
Symposium on Mixed and Augmented Reality, pages 73–82, 2009.
16, 54

[BMC08] Pished Bunnun and Walterio W. Mayol-Cuevas. Outlinear:
an assisted interactive model building system with reduced
computational effort. pages 61–64, 2008. Proceedings of the
7th IEEE/ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR’08). 4

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995. VIII, 32, 46, 48

[HFH+01] Tobias Höllerer, Steven Feiner, Drexel Hallaway, Blaine Bell,
Marco Lanzagorta, Dennis Brown, Simon Julier, Yohan Bail-
lot, and Lawrence Rosenblum. User interface management
techniques for collaborative mobile augmented reality. Com-
puters and Graphics, (25):799–810, 2001. 3

[MGDB04] Blair MacIntyre, Maribeth Gandy, Steven Diw, and Jay David
Bolter. Dart: A toolkit for rapid design exploration of aug-
mented reality experiences. In Symposium on User Interface
Software and Technology, 2004. 4

[NKG04] Michael Bang Nielsen, Gunnar Kramp, and Kaj Gronbak. Mo-
bile augmented reality support for architects based on feature
tracking techniques. In Martin Bubak, Geert D. van Albada,
and Peter M. A. Sloot, editors, Computational Science - ICCS
2004, pages 921–928. Springer-Verlag Berlin Heidelberg, 2004.
4

55

BIBLIOGRAPHY 56

[Pie06] Wayne Piekarski. 3d modeling with the tinmith mobile out-
door augmented reality system. IEEE Computer Graphics and
Applications, pages 14–17, January/February 2006. 4

[UTO+04] Kengo Uratani, Daisuke Takada, Takefumi Ogawa, Takashi
Machida, Kiyoshi Kiyokawa, and Haruo Takemura. Wearable
augmented reality system with annotation visualization tech-
niques using networked annotation database, 2004. The 3rd
CREST/ISWC Workshop on Advanced Computing and Com-
municating Techniques for Wearable Information Playing. 5

[WCVH08] Jason Wither, Chris Coffin, Jonathan Ventura, and Tobias
Höllerer. Fast annotation and modeling with a single-point
laser range finder. pages 65–68, 2008. 3

[WDH09] Jason Wither, Stephen DiVerdi, and Tobias Höllerer. Anno-
tation in outdoor augmented reality. Computers and Graphics,
2009. doi:10.1016/j.cag.2009.06.001. 5

[WRM+08] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom
Drummond, and Dieter Schmalstieg. Pose tracking from nat-
ural features on mobile phones. In Proceedings of the 7th
IEEE/ACM International Symposium on Mixed and Augmented
Reality, pages 125–134, 2008. VIII, 17

	Introduction
	Related Work
	System Overview
	Tracking
	Content Creation
	Content Management and Distribution
	Graphical User Interface

	Tracking Module
	Localization
	Tracking
	File Server

	Content Creation
	Freeze Mode
	Implementation details

	Scene Graph Representation
	3D-Content
	SG-Representation of 3D-Objects
	3D-Object generation out of a 2D-Screen
	Implementation Details
	Cube
	Cylinder
	Polygon

	2D-Content
	SG-Representation of 2D-Objects
	2D-Objects

	Texturing
	Texture Manager
	Predefined Textures
	User-Defined Textures
	FasTex
	Implementation Details

	Object Manipulation
	Object Selection
	Implementation Details
	Moving
	Rotating and Scaling
	Color and Texture Selection

	Content Management and Distribution
	Object Explorer
	Implementation Details

	Storage
	IO-Manager

	Graphical User Interface
	Structure of the GUI
	Color-GUI
	Texture-GUI
	State Pattern and Implementation Details
	Status Line

	Conclusion
	Future Work
	Bibliography

