
Graz University of Technology
Institute for Computer Graphics and Vision

Master’s Thesis

Efficient Hough Forests for
Multi-Camera, Multi-Instance Object

Detection and Tracking

Georg Poier
Graz, Austria, December 2013

Thesis supervisor
Prof. Dr. Horst Bischof

Advisors
DI Samuel Schulter

Dr. Peter Michael Roth

To Mama and Papa

Irrend lernt man
Johann Wolfgang von Goethe

v

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Visual object tracking represents a crucial task for many computer vision applications.
Moreover, continued research interest in recent years shows that there are still open issues
for tracking algorithms. Especially, when tracking multiple instances of the same class,
occlusions are likely and can often only be resolved by observing the scene from several
viewpoints. The multiplied amount of data coming from the different viewpoints demands
methods of low computational complexity. Hence, simple approaches, e.g., based on back-
ground subtraction, are regularly applied to locate the objects of interest. Nevertheless,
due to their simplicity, these methods often suffer from severe problems like mistaken in-
stances or ghost detections. To overcome these problems, stronger, classifier-based models
can be used. However, transferring complex models straightforwardly to multi-camera
systems is not applicable due to the runtime requirements.

This obvious discrepancy between the need for stronger models and short response
times is addressed in this work. Our goal is the utilization of a more complex model. This
is permitted by a preliminary investigation of the efficiency of such a model, revealing that
the computational cost can be drastically reduced without sacrificing detection accuracy.
To this end, we focus on Random Forests as an object model classifier in a tracking-by-
detection setup. Random Forests received strong interest recently, which is mainly based
on the fact that they allow fast predictions – regardless of the dimensionality of the feature
space. A powerful and versatile extension for object detection are the recently proposed
Hough Forests. However, their application is hampered in cases where a huge amount
of data has to be processed, since for their original formulation runtime is correlated to
the number of training samples. In line with this, we thoroughly analyze the efficiency of
Hough Forest based object detection in order to obtain a fast detector applicable to on-
line learning during tracking. Runtime critical parts are identified and investigated, which
reveals several insights yielding a drastic improvement of the overall runtime. Moreover,
scalability is induced by removing the correlation between the runtime and the amount
of training data. Most importantly, the achieved runtime reduction does not imply a

ix

x

significant loss in accuracy. In fact, the proposed method scores within a few percent of
the baseline, while being one to two orders of magnitude faster.

The gathered insights can be straightforwardly applied to tracking in a tracking-by-
detection manner. To this end, we perform tracking from single as well as multiple cameras
and test our method on several standard evaluation datasets. The qualitative and quan-
titative results show that the system is able to perform comparable or even better than
state-of-the-art methods in terms of accuracy. Despite that, the runtime of our method is
reduced significantly compared to the related work.

Keywords. object detection, object tracking, Hough forests, efficient methods, multiple
cameras.

Kurzfassung

Die visuelle Objektverfolgung bildet die Grundlage für eine Vielzahl von Anwendungen in
der Bildverarbeitung. Darüberhinaus zeigt das andauernde Forschungsinteresse der let-
zten Jahre, dass es dabei noch immer ungelöste Aspekte gibt. Speziell bei der Verfolgung
von mehreren Objekten der selben Klasse von nur einem Betrachtungspunkt kommt es un-
weigerlich zu Verdeckungen, welche oft nur durch die Betrachtung der Szene von mehreren
Blickwinkeln aufgelöst werden können. Die Verarbeitung der vervielfachten Datenmenge,
die durch die Betrachtung aus mehreren Blickwinkeln entsteht, verlangt jedoch nach Meth-
oden mit geringem Rechenaufwand. Aus diesem Grund werden üblicherweise sehr einfache
Methoden, z.B. basierend auf “background subtraction” angewandt, um die gesuchten Ob-
jekte zu lokalisieren. Bei diesen Methoden kann es jedoch – bedingt durch ihre Einfachheit
– zu Verwechslungen der einzelnen Objektinstanzen oder auch zur Detektion nicht vorhan-
dener Objekte kommen. Um derartige Probleme zu bewältigen, können stärkere Modelle
basierend auf Klassifikatoren herangezogen werden. Jedoch ist eine direkte Übertragung
solcher Modelle auf Systeme mit mehreren Kameras – aufgrund der Laufzeitanforderungen
– nicht möglich.

Diese offensichtliche Diskrepanz zwischen der Notwendigkeit für stärkere Modelle und
kurzer Reaktionszeiten wird in der vorliegenden Arbeit adressiert. Das gesetzte Ziel ist ein
stärkeres Modell anwenden zu können. Ermöglicht wird das durch eine vorangehende Un-
tersuchung der Effizienz eines solchen Modells, welche aufzeigt, dass der Rechenaufwand
– ohne Genauigkeitsverlust – drastisch reduziert werden kann. Zu diesem Zweck wird
ein Random Forest als Klassifikator im Rahmen einer sogenannten “Verfolgung durch
Detektion” Vorgehensweise herangezogen. Random Forests waren in den letzten Jahren
von großem Interesse im Bereich der Bildverarbeitung, da sie – unabhängig von der Di-
mensionalität des Feature-Raums – in der Lage sind, äußerst schnell Aussagen aus den
Daten abzuleiten. Eine leistungsstarke und gleichzeitig vielseitige Erweiterung der Ran-
dom Forests stellen die unlängst vorgestellten Hough Forests dar. In Situationen, in

xi

xii

welchen große Datenmengen verarbeitet werden müssen, ist ihre Verwendung aufgrund
der Korrelation zwischen Laufzeit und Anzahl der Daten jedoch nur bedingt möglich.
In diesem Zusammenhang wird die Laufzeit der Objektdetektion mittels Hough Forests
analysiert, um schließlich einen schnellen Objektdetektor zu erhalten, welcher sich eignet,
um ihn “on-line” – während der Objektverfolgung – weiter zu trainieren. Dabei wer-
den Laufzeit-kritische Teile des Prozesses identifiziert und untersucht, um eine drastische
Verbesserung der Gesamtlaufzeit herbeizuführen. Unter anderem wird der Zusammenhang
zwischen Laufzeit und Anzahl der Trainingsdaten beseitigt. Entscheidend dabei ist vor
allem, dass die Laufzeitverbesserung keine signifikante Verschlechterung der Genauigkeit
mit sich bringt. Die Ergebnisse zeigen, dass die Genauigkeit der vorgeschlagenen Methode
im Bereich der Ausgangsmethode liegt, jedoch um ein bis zwei Größenordnungen schneller
ist.

Die gewonnenen Erkenntnisse können anschließend direkt auf die Objektverfolgung
angewandt werden. In diesem Zusammenhang führen wir Experimente auf Basis einer als
auch mehrerer Kameras durch und evaluieren unsere Methode anhand einer Anzahl von
Standard-Datensätzen. Die qualitativen sowie quantitativen Ergebnisse zeigen, dass die
Genauigkeit des Systems mit dem Stand der Technik vergleichbar oder sogar besser ist.
Die Laufzeit jedoch konnte deutlich reduziert werden.

Schlüsselwörter. Objektdetektion, Objektverfolgung, Hough forests, effiziente Metho-
den, mehrere Kameras.

Acknowledgments

This work would not have been possible without my supervisors. Thank you for patiently
answering my questions and being open for an inspiring discussion at any time. For the
same reasons, I want to thank Horst, Tom, Martin and especially Paul. Thank you for
giving me an impression what it means to “actually do science”.

Furthermore, I want to thank my colleagues at Siemens for helping me develop in
many different ways and – even though some people might not believe – for making up a
“funny” place to work.

This work also manifests at least one sad event: The end of my studies. My studies
were a good time mostly because of Viky, my friends, my colleagues and the support from
my family, in particular from my parents. Thank you for giving me the chance to do my
studies. As always, we better know to cherish things we had after we lost them.

I am sorry for all the people I forgot to thank now, and who will come into my mind
tomorrow, only. Lastly, I have to thank you, my dear reader, for actually reading (parts
of) this thesis.

You won’t regret.

xiii

Contents

1 Introduction 1
1.1 Efficiency . 2
1.2 Tracking . 4
1.3 Outline . 5

2 Preliminaries 7
2.1 Random Forests . 8

2.1.1 Training . 9
2.1.2 Evaluation . 11

2.2 Hough Forests . 12
2.2.1 Training . 14
2.2.2 Detection . 15
2.2.3 Implementation Details . 16
2.2.4 Further Extensions and Related Work 17

3 Efficient Hough Forests 21
3.1 Theoretical Analysis . 22
3.2 Outline . 23
3.3 Classifier Complexity . 23
3.4 Sampling Distance . 24
3.5 Data Complexity . 25
3.6 Features . 26

3.6.1 Feature Channels . 27
3.6.2 Test Types . 29

3.7 Vote Compression . 30
3.7.1 Mean Shift . 31
3.7.2 Vote Grid . 33

3.8 Sub-sampling Revisited . 34
3.9 Summary & Conclusion . 37

xv

xvi CONTENTS

4 Tracking By Detection 39
4.1 Single Camera Tracking . 40

4.1.1 Method . 40
4.1.2 Experiments . 42

4.2 Multiple Camera Tracking . 44
4.2.1 Method . 47
4.2.2 Experiments . 53

5 Conclusion & Outlook 61
5.1 Conclusion . 61
5.2 Outlook . 62

Bibliography 64

List of Figures

2.1 Illustration of a decision tree . 9
2.2 Illustration of a Hough Forest . 13
2.3 Example Hough voting output . 16

3.1 Relative accuracy and runtime as a function of the number of trees 24
3.2 Illustration of a training sample at various resolutions 26
3.3 Histogram over the 32 feature channels, showing how often specific channels

are selected for a split test . 27
3.4 Amount of nodes in which a specific test type is selected as a function of

the depth level . 30
3.5 Relative accuracy and runtime for vote compression methods 32
3.6 Illustration of example vote grids . 34
3.7 Hough maps obtained by using vote grids 35
3.8 Precision-Recall curves for the original, and our sped-up approach 38

4.1 The single-cam tracking loop . 41
4.2 Partition of runtime for different settings 43
4.3 Qualitative single-cam tracking results . 45
4.4 Tracking error vs. confidence . 46
4.5 Example images for strongly overlapping object instances 46
4.6 Illustration of common approaches to multi-camera tracking 49
4.7 Illustration of a problem case for a one shot tracker 50
4.8 Selected feature channels for model extension during tracking 51
4.9 The multi-cam tracking loop . 53
4.10 Pixel error on ground plane for Set 1 by setting F = 16 and δ = 2 54
4.11 Pixel error on ground plane for Set 1 by setting F = 5 and δ = 3 56
4.12 Illustrative tracking results on Set 1 (i) . 57
4.13 Illustrative tracking results on Set 1 (ii) . 58
4.14 Illustrative tracking results on Set 1 (iii) . 59
4.15 Problem case where the multi-cam tracker cannot follow one of the instances 60

xvii

List of Tables

3.1 Accuracy and test time for different sampling distances 25
3.2 Accuracy and test time for varying the data complexity 26
3.3 Relative test time and accuracy for different combinations of feature channels 28
3.4 Error rate on training data, and accuracy on test set for different split types 29
3.5 Relative accuracy for different mean shift kernels and mode weighting methods 32
3.6 Accuracy for different sub-sampling, as well as the re-weighting strategy . . 36
3.7 Overall runtime gain . 37

4.1 Quantitative tracking results compared to state-of-the-art methods 42
4.2 Quantitative tracking results for reduced tracker complexity 44
4.3 Mean pixel-error on ground plane . 54

xix

Chapter 1

Introduction

Contents
1.1 Efficiency . 2

1.2 Tracking . 4

1.3 Outline . 5

Visual object tracking builds the basis for many computer vision systems. Examples
range from surveillance [50, 60] over sports [55, 90] to industrial domains [74]. In line with
this, various successful approaches have been developed [38, 42, 46, 84, 92]. Nevertheless,
in situations where multiple interacting object instances are present in the scene, occlusions
are likely and generally raise problems.

Several approaches have been proposed in order to resolve occlusions from single im-
ages. While surprisingly good results were achieved by conducting well elaborated rea-
soning relying on part based approaches (see e.g., [6, 88]), situations arise where these
methods fail. For example, if instances are fully occluding each other, it is virtually im-
possible to distinguish between them from a single image, only. To overcome this, recent
approaches analyze the tracks of individual instances over time [12, 22]. This can help,
e.g., if object instances are passing by each other with approximately constant velocity.
However, cases where the occlusion appears while people are stopping and interacting
still introduce problems. These cases can neither be resolved in the sequel, since instance
separation is solely based on the tracks, whereas visual appearance is neglected.

A natural solution to the aforementioned problems is to exploit the additional infor-
mation provided by multiple cameras [24, 55, 72]. Such a solution became feasible due to
the increasing amount of cameras mounted, e.g., for security reasons or sport broadcasts.
A drawback of this solution, however, is the multiplied amount of data which needs to be

1

2 Chapter 1. Introduction

processed. Visual object tracking, being a primal task for many computer vision applica-
tions, requires a significant amount of data to be processed already in the monocular case.
Moreover, this has to be conducted as fast as possible. Typically: The faster, the better,
because the less time spent on this primal task, the more sophisticated the subsequent
processing might be. Hence, efficiency is an essential requirement for tracking systems, but
the increased amount of data coming from multiple cameras makes it imperative to use
efficient algorithms in multi-camera tracking systems. Thus, the employed methods are
typically quite simple. They often base on background subtraction or simple color models
in order to locate foreground objects [24, 47, 67]. However, due to the simplicity of the
models, problems like mistaken instances or ghost detections are common. To overcome
these problems, more complex object models have to be applied. Learned classifiers are
able to provide such accurate models [72, 81]. Nevertheless, they are usually too complex
to fulfill the runtime requirements.

The described discrepancy between the need for accurate models and the runtime re-
quirements indeed hampers applications. In the present work, this discrepancy is addressed
by focusing on the computational complexity of object tracking-by-detection. Specifically,
an object detection model based on Random Forests is investigated in order to apply it to
single- as well as multi-camera tracking. To this end, Random Forests are employed not
least because of their efficiency.

1.1 Efficiency

Object tracking is by far not the only task within the field of computer vision requiring
short response times. For example, applications which demand real-time processing are
ranging from gaming [78] over navigation for autonomous cars [85] to surveillance systems
[60]. Moreover, since many computer vision applications also have to cope with a huge
amount of data, delivering results in acceptable time requires large computational power
as well as highly efficient methods [49, 80]. Hence, efficient algorithms have always been
of major interest in computer vision research.

Considering classifiers, recently, Random Forests [10] received strong interest in the
field. While there are several reasons for their popularity, one of their major advantages
is the ability of predictions with low computational complexity. Furthermore, they are
inherently multi-class, robust against label noise and have been demonstrated to give
competitive results to other state-of-the-art approaches [10, 14, 53]. A powerful and ver-
satile extension are Hough forests [32, 63], which are successfully applied to various tasks

1.1. Efficiency 3

including object detection [32, 63], tracking [35, 75], and pose estimation [26, 37, 83].
Hough Forests are Random Forests integrating part based classification and regression
into a single model. That is, given a small image patch, their goal is to classify if it
originates from an object as well as to predict the possible object location and scale.

Originally, Random Forests are formulated in an off-line manner, requiring access to
the entire training data at once. Thus, they cannot cope with situations where the data
arrives sequentially during test time, as it is the case in tracking applications. To overcome
this limitation, on-line variants have been proposed for both, the original Random Forests
[73], as well as Hough Forests [75]. These approaches provide the ability of building a
forest model on-line, without having access to any training sample in advance.

By building the model on-line, one is able to exploit the possibly huge amount of
data arriving during runtime, e.g., from a video stream. Random Forests are capable of
efficiently handling such a huge number of data samples [34]. This is based on the fact
that the test time is independent from the number of training samples. However, this
major advantage is lost for the original formulation of Hough Forests [32]. Their test time
is strictly correlated with the number of training samples, which is a severe flaw, since
the amount of training data is a crucial parameter for detection accuracy [34]. Hence,
applying Hough Forests straightforward to on-line learning – where the data is constantly
increasing over time – would be impractical. Fortunately, methods to circumvent this dead
end exist.

In this work, we build on the ideas of a recently proposed approach [37] used to
avoid data dependency of the runtime. The method was proposed for off-line trained
forests, however, on-line updates appear to be problematic. To this end, we introduce a
new method which promises better flexibility during on-line learning. To investigate the
differences between the approaches in terms of accuracy and efficiency, we first compare
both for the task of object detection before employing the winning approach in a tracking-
by-detection system. The results demonstrate that our novel method does not only provide
constant runtime∗, but shows even an increase in accuracy compared to the aforementioned
approach.

As there are other aspects of the Hough Forest model hampering efficiency, by-passing
the data dependency of the runtime doesn’t directly imply short response times. Moreover,
the primal nature of the tracking task and, above all, the increased amount of data to
be processed in a multi-camera system motivates an in-depth study of all runtime critical

∗With constant runtime we refer to the independence of the amount of input data.

4 Chapter 1. Introduction

parts of Hough Forest based tracking-by-detection. To this end, we provide a theoretical
as well as empirical analysis of the overall runtime. This reveals the critical parts of
the process, starting from the classifier complexity, over the underlying data complexity,
through to the prediction task. Subsequently, we analyze each part, which brings up
several interesting insights. Based on those we are able to build a significantly faster
detector for only a slight loss in accuracy. In fact, the obtained results are within a few
percent of the baseline [35] while the runtime is reduced by one to two orders of magnitude.

1.2 Tracking

The gathered insights can be straightforwardly applied to tracking in a tracking-by-
detection manner. First, we conduct several experiments for tracking single objects from
a single camera. For this task we show that our method outperforms the state-of-the-art
on several standard evaluation sequences. Moreover – in conjunction with the previously
discussed performance improvements – our method is flexible in a way that it is easily
adjustable to fulfill the task in real time, while the accuracy is kept within the range of
the state-of-the-art methods [4, 38, 73].

Second, we apply our insights to multi-camera tracking. Recently, several approaches
have been proposed in this field. Nevertheless, many use simple models hampering their
applicability [24, 47]. Some are also limited to specific settings and requirements [24,
41, 67]. Others use individual classifiers for each view [72, 81], and thus, neglect to
comprehensively exploit the information given by the different views of the same objects.
Consequently, it is hard to learn a strong model for each instance, and related works
restrain from doing so. In contrast, we propose to adapt a generic pre-trained object
detector on-line to the specific instances, instead of the views. Hence, we employ a single
comprehensive classifier, which is able to discriminate between the instances, without
requiring costly post-processing steps.

Overall, the approach is able to robustly track multiple instances without confusing
them. This is confirmed by experimental results, showing that the accuracy of our system
is on par with related approaches, despite the reduced complexity of the detector, and
thus, significantly faster processing.

1.3. Outline 5

1.3 Outline

The work is structured as follows: In Chapter 2 we motivate and review the basic learning
algorithms used throughout this work, i.e., Random Forests, as well as Hough Forests.
Chapter 3 starts with a theoretical analysis of the Hough Forests detection process and
subsequently discusses how to reduce the runtime cost of each critical part, without sig-
nificantly affecting accuracy. In Chapter 4 the gathered insights are applied to tracking.
Moreover, we will first prove the concepts for single camera tracking, and then move on
to tracking multiple instances in multiple camera views. Finally, Chapter 5 concludes the
work by summarizing the main insights, as well as pointing out open issues.

Chapter 2

Preliminaries

Contents
2.1 Random Forests . 8

2.2 Hough Forests . 12

Several studies have been conducted to compare the performance of different learning
methods on a wide range of problems. Prominent studies [48, 51] performed comprehensive
evaluations but could not include newer methods, since they date back more than 15
years. In fact, most successful methods for object detection [8, 23, 35] tend to employ
methods, like Support Vector Machines (SVMs) [17, 86], AdaBoost [30, 31] or Random
Forests [1, 10], which have been proposed after completion of these studies. A newer study
[14] included these methods and found that ensembles of trees usually outperform other
prominent supervised learning methods, like SVMs, neural nets [58] or k-nearest neighbors
(k-NN) [28]. Overall, the best performance was obtained using boosted decision trees, and
Random Forests. However, it has also been shown that the performance of boosting is
less robust across different problems and deteriorates in special cases. This confirms what
has already been shown earlier by other authors, where the problem cases for AdaBoost
were attributed to its sensitivity to outliers and noise, as well as to over-fitting [7, 69].
Furthermore, in a more recent study, Caruana et al. [13] found that the performance
of boosting decreases with increasing dimensionality, whereas Random Forests robustly
provide exceptional results across problems of varying dimensionality. Consequently, in
this study [13], best overall results were obtained using Random Forests.

Object detection and tracking are commonly formulated as tasks of high dimensionality
[23, 33, 38]. Furthermore, in the on-line case, i.e., during tracking, a significant amount of
noise must be handled and for the task of multi-instance tracking the instances represent

7

8 Chapter 2. Preliminaries

individual classes (multi-class problem). Although, extensions to boosting handling these
cases were proposed [31, 40], recently, tracking approaches based on Random Forests have
shown to outperform the approaches based on boosting [39, 73]. This may be attributed to
the fact that Random Forests scale efficiently to high dimensions [13], are less susceptible
to noise [7, 53] and that they are inherently multi-class [10, 71]. Furthermore, Random
Forests are easy to parallelize on modern hardware and able to efficiently handle the huge
amount of data arriving sequentially from a video stream [13, 34, 77]. These are another
two important advantages for the task at hand, i.e., object detection and tracking. Thus,
we decide to base this work on Random Forests.

In this chapter we will now introduce some preliminaries for the chosen learning frame-
work. To start with, in Sec. 2.1 we will shortly review the concept of Random Forests
[1, 10, 18] as it is necessary for our task. This is followed by their Hough Forest [32]
extension for object detection in Sec. 2.2.

2.1 Random Forests

A Random Forest is an ensemble of T decision trees, which are hierarchically organized
graphs. A graph itself is made up from a collection of nodes and edges, and does not
contain any loops. More specifically, the nodes of a decision tree are divided into internal
(or split) nodes and terminal (or leaf) nodes [11, 18] (see Fig. 2.1).

Provided with a data sample x ∈ X = RD a decision tree consecutively applies a
number of tests. More specifically, starting with the root node, at each internal node
a decision is made to which of its child-nodes the sample is sent. The decision itself is
based on any property of the input data sample. Thus, the decision of a node is based on
its individual subset of properties and the property on which the next decision is based
depends on the previous decision. This process is repeated until a leaf node, i.e., a node
without any child nodes, is reached. A leaf contains a predictor model, which associates
an output y ∈ Y to the given data sample. This could be a discrete value representing a
class-label, i.e., Y = {1, . . . , C}∗, a distribution representing probabilities, i.e., p(y|x), or
a continuous value, i.e., Y = R. The output of the whole forest is subsequently combined
from the outputs of the individual trees. As described here, a Random Forest solves either
a classification or a regression problem [10, 11]. However, for the sake of simplicity, in this
section we will review the concept of Random Forests only for classification.

∗C would be the number of classes in this case.

2.1. Random Forests 9

(a) (b)

Figure 2.1: Illustration of a decision tree: (a) A tree is a graph without loops, containing edges
and nodes. Circles denote internal nodes, whereas squares represent leaf nodes. (b) A decision
tree is a tree where each internal node applies a split to the incoming data. Each leaf stores a
prediction. The example tree illustrates how such a decision tree may be used to decide whether
an image shows an indoor or outdoor scene. The sketches were taken from [18].

2.1.1 Training

During training, one aims at separating the labeled training set
L =

{
(x1, y1), . . . , (x|L|, y|L|)

}
⊆ X × Y into sufficiently small partitions,

representing clusters in the D-dimensional input space†. For example, in computer
vision, this may correspond to the goal of finding a separation into subsets of images of

†Throughout this work |S| denotes the number of elements in any set S.

10 Chapter 2. Preliminaries

the same class, exhibiting a similar appearance. Hence, the main task of the training
phase is to find the parameters for the splitting tests at the internal nodes of each tree so
that the resulting clustering is useful for inference.

A splitting test evaluates one or more features and decides to which of the child nodes
a data sample is sent. In the sequel, we will consider two commonly used test types.
The first uses a single (single-value-test), the second, two randomly selected features (two-
value-test) in order to make its decision. Note that more complex splitting tests exist (see
e.g., [18, 76]). Nevertheless, for the reason of efficiency – as will be discussed in more
detail in Sec. 3.6.2 – we use only these two.

Furthermore, in this work we will only consider binary decision trees, i.e., a split node
has always two child nodes. As a consequence our test functions return either zero or one.
Note, while also n-ary trees were successfully applied to computer vision tasks (see e.g.,
[45, 54]), a recent thorough evaluation did not report significant accuracy differences [18].

A single-value-test function φ(1) compares a single feature value x(d), where d ∈
{1, . . . , D} indicates the feature dimension, against some threshold τ :

φ(1)(x,Θ(1)) =

0 if x(d) < τ

1 otherwise,
(2.1)

where Θ(1) = (d, τ) specifies the parameters for a single-value-split. Hence, the sample is
sent to the left child node if φ(1)(x,Θ(1)) returns zero, and to the right child node otherwise.
A two-value-test denotes a comparison between two features d1, d2 ∈ {1, . . . , D}:

φ(2)(x,Θ(2)) =

0 if x(d1) < x(d2) + τ

1 otherwise,
(2.2)

where Θ(2) = (d1, d2, τ) again denotes the corresponding parameters.

During training, a splitting test, yielding a good separation of the data, shall be found.
Thus, the quality of the separation needs to be measured based on an objective function.
For classification tasks we aim at minimization of class uncertainty at each split node.
Therefore, usually the entropy or the Gini index is employed as an objective [10]. In our
case, we build on the entropy:

H(L) = −
C∑
y=1

p(y|L) ln p(y|L), (2.3)

2.1. Random Forests 11

where C is the number of classes, and p(y|L) specifies the empirical class probability for
class y, estimated from the dataset L.

At each node P a pool of K possible splitting tests, with randomly sampled parameters
Θk, k = {1, . . . ,K}, is generated and the best test φ(x,Θ∗), minimizing the objective
function, is selected

argmin
k

UY
(
LP , φ(x,Θk)

)
, (2.4)

where
UY(L, φ) = |LL|

|LL|+ |LR|
H(LL) + |LR|

|LL|+ |LR|
H(LR). (2.5)

Here, LL and LR are the sets of data samples which are sent to the left and the right child
node, when applying a test function φ to each of the samples x ∈ L, i.e., LL =

(
x|φ = 0

)
,

and LR =
(
x|φ = 1

)
.

Construction of a tree starts at the root node by splitting all available training samples
according to the test function. This process is repeated at each child node by using only
the data samples sent to it. The process stops if either the maximum depth is reached,
there are less than a minimum number of samples remaining, or if all remaining samples
belong to the same class. Finally, the label statistics, which are needed for prediction, are
collected at the leafs.

Each individual tree in the forest is constructed in this way. Since, the splitting tests
are randomly selected, each tree represents a different partition of the same training data.
This means that throughout the whole forest each training sample is assigned to a diverse
set of clusters, i.e., leaf nodes.

2.1.2 Evaluation

When classifying a previously unseen data sample, it is passed down through each tree in
the forest by evaluating the learned splitting tests. Arriving at the leafs, the label statistics
gathered after training are used for prediction. Thereby, the posterior distribution pt(y|x)
of tree t, t ∈ {1, . . . , T}, is estimated by the proportion of training samples per class label
reaching the leaf during training. Alternatively, we may obtain a single class label by
employing a Maximum A-Posteriori (MAP) estimate [18]. However, usually, we want to
keep the distribution, since it provides a measure of confidence on the level of the whole
forest, for successive steps. Subsequently, the prediction of the whole forest is computed

12 Chapter 2. Preliminaries

by simply averaging the posteriors of the individual trees:

p(y|x) = 1
T

T∑
t=1

pt(y|x). (2.6)

Again, a prediction for a class label y∗ label may be retrieved by a MAP estimate:

y∗ = argmax
y

p(y|x). (2.7)

2.2 Hough Forests

Hough Forests combine the ideas of Implicit Shape Models (ISMs) and Random Forests.
The ISM introduced by Leibe et al. [52] is a method for object detection based on the
Generalized Hough Transform [5]. Thereby, votes for specific object configurations are cast
based on the local appearance of an image. Each of those votes is cast for a hypothesis
within the space of all possible object configurations, termed Hough space. Hence, the
Hough space may be a multi-dimensional space, where the individual dimensions represent
parameters of the object configuration like position, scale, or pose. During training of an
ISMs the patches around detected interest points in the training images are clustered by
using an agglomerative clustering method. Thus, an ISM may be seen as a generative
codebook of local image appearances, where the individual clusters are often referred to
as codebook entries. Together with each codebook entry the spatial distribution specifying
where the respective image appearance may be found on the object (i.e., the parameters
of the object configuration), as well as corresponding foreground masks are stored. At
the detection stage the features at interest points are matched to the codebook entries,
casting votes into the Hough space. Subsequently, rough segmentations of the found
hypotheses are obtained using the foreground masks associated to the features supporting
the hypotheses. Based on these segmentations the hypotheses are finally verified in order
to decrease the number of false positives, while still keeping the correct detections.

Gall and Lempitsky [32] combined the flexibility of the ISM with the ability of Random
Forests to efficiently match samples to the corresponding leafs, i.e., codebook entries.
Hence, a Random Forest is utilized to build up the codebook. Additionally, Hough Forests
allow optimizing the spatial distribution and learning a discriminative codebook. At test
time, the efficiency of the forest framework permits dense sampling of local image patches,
yielding an additional gain in accuracy. In the following, we will review the method
introduced in [32, 35].

2.2. Hough Forests 13

(a) (b) (c)

Figure 2.2: Illustration of the characteristics of a Hough Forest for object detection: (a) Image
patches together with offset vectors specifying the relation to the object center are extracted from
each training image. (b) The patches and offsets are used to construct the trees of the forest. (c)
The statistics at the leafs of the trees are finally estimated from the proportion of samples per
class and the corresponding offset vectors arrived at the leaf.

From the Random Forest point of view, the main extension is that the predictor model
in the leafs includes a number of offset vectors o ∈ O representing the relation of the
observed image patch to a specified position on the object, e.g., the object center. Hence,
the prediction of a leaf node l is based on the class probability p(y|Ll), estimated from the
ratio of samples per class y arrived at the leaf during training, and the set of offset vectors
O(y)
l corresponding to each class. These offsets are incorporated in the training process

by a specifically designed objective function. In this way, the variance of the offsets at
the leafs is enforced to be rather small. For detection, the offsets are used to cast votes
in a Hough space, which – in our case – encodes the hypotheses for object positions in
scale-space and class, respectively. Hence, Hough Forests are combining classification and
regression. They do not only determine a class label, but also the position of the possible
object center. See Fig. 2.2 for an illustration of the specifics of a Hough Forest.

In terms of object detection with Hough Forests, a data sample x represents the ap-
pearance of a small image patch. In [32] 16×16 pixel sized patches were utilized, where the
objects were scaled to a unit size su, such that the longest spatial dimension is about 100
pixel. This was shown to provide a good balance between discriminability of the patch ap-

14 Chapter 2. Preliminaries

pearance, allowing inference of the relative location with low ambiguity, and repeatability,
allowing good generalization during learning.

2.2.1 Training

For training, a data sample x, representing the local image features, is packed with the
corresponding class label y ∈ Y and an offset vector o ∈ O. Hence, the training set looks
as follows: L =

{
(x1, y1,o1), . . . , (x|L|, y|L|,o|L|)

}
⊆ X ×Y×O‡. Thereby, an offset vector

o represents the displacement from the center of the image patch to the object center§.

For Hough Forests, both, classification as well as regression objective functions are used
for split selection. Gall and Lempitsky [32] proposed to randomly select the objective at
each node. In contrast, in [63] the objective for split selection is adaptively combined from
regression and classification objectives. Thereby, the weighting depends on the ratio of
positive samples arrived in a node. Hence, they start with growing the trees as decision
trees and gradually shift the strategy for node-splitting to building regression trees. For a
more recent evaluation it has been shown that this strategy might improve the results for
some datasets, using an optimal setting of the weighting parameter – but not in general
[35]. Based on these findings, for our task, we will randomly select whether to use a
classification or regression objective function.

For classification nodes the uncertainty measure from Eq. (2.5) is used. The regression
objective on the other hand aims at minimization of the uncertainty of the offset vectors,
and is thus based on their deviation from the mean [35]¶:

V (L) =
∑

y∈Y\{0}

∑
o∈O(y)

P

‖o− ō‖22, (2.8)

where ō is the mean of the offset vectors corresponding to the training samples of class y
reaching node P :

ō = 1∣∣∣O(y)
P

∣∣∣
∑

o∈O(y)
P

o. (2.9)

‡For the sake of readability the training set is again denoted L. Throughout the remainder of the
document L is used as specified here.
§Note that negative samples, i.e., samples from the background are not assigned with an offset vector.
¶Note that y = 0 for the background class.

2.2. Hough Forests 15

The uncertainty within the samples sent to the left (LL) and the right child node (LR)
are simply added up to obtain an uncertainty measure for the given split function φ:

UO(L, φ) = V (LL) + V (LR). (2.10)

Subsequently, the best test is selected based on the chosen objective function, i.e., either
the regression (Eq. (2.10)) or the classification (Eq. (2.5)) objective:

argmin
k

U?
(
LP , φ(x,Θk)

)
, (2.11)

where ? indicates the chosen uncertainty measure, i.e., UY , or UO.

2.2.2 Detection

When searching for an object in an image, image locations are densely sampled and asso-
ciated to a leaf of each tree of the Hough Forest. Subsequently, the predictor models at
the leafs cast votes for object positions in the Hough space. Specifically, from the local
image appearance around each sampled position v, a data sample xv, representing the
image features, is extracted. The sample is passed down each tree, and associated to a
leaf lt. The class probability pt(y|xv) and the offset vectors o ∈ O(y)

lt
of class y stored at

the leaf are then used to cast votes for an object at position u and scale s. To this end,
we are interested in p

(
h(y,u, s)|x

)
, where h(y,u, s) denotes the hypothesis for an object

of class y centered at u, with scale s. For a single data sample xv and a single tree t this
can be decomposed as follows:

pt
(
h(y,u, s)|xv

)
= pt

(
d(u,v, s)|y,xv

)
pt(y|xv), (2.12)

where
d(u,v, s) = su(u− v)

s
(2.13)

specifies the offset from the patch center v to the object center u with respect to the
unit size su. As mentioned before, the class probability pt(y|xv) = p(y|Llt) is estimated
from the ratio of samples from class y arrived at leaf lt during training. The distribution
pt
(
d(u,v, s)|y,xv

)
is modeled by the set of offset vectors O(y)

lt
corresponding to class y.

16 Chapter 2. Preliminaries

Figure 2.3: Example input image (left), and output of our Hough Forest, i.e., resulting slices of
the Hough space corresponding to different scales. Note, light areas represent low, dark areas high
probability for an object center location.

As a result Eq. (2.12) becomes

pt
(
h(y,u, s)|xv

)
= 1∣∣∣O(y)

lt

∣∣∣
(∑

o∈O(y)
lt

1o

(
su(u− v)

s

))
pt(y|xv), (2.14)

where 1 specifies the indicator function‖.
To obtain a prediction for the whole forest, the predictions from the individual trees

are averaged:

p
(
h(y,u, s)|xv

)
= 1
T

T∑
t=1

pt
(
h(y,u, s)|xv

)
. (2.15)

Furthermore, the votes from all sampled image patches of the input domain Ω ⊆ RD,
i.e., from all data samples x ∈ {x1, . . . ,xn} = Ω, extracted from the test image, are
accumulated:

p
(
h(y,u, s)|Ω

)
= 1
n

n∑
i=1

p
(
h(y,u, s)|xi

)
. (2.16)

It should be noted that the resulting values p
(
h(y,u, s)|Ω

)
are not true probabilities∗∗.

Nevertheless, since we are only interested in an ordinal measurement, this can be ignored
and the result still serves as a confidence measure. In fact, we only aim at finding the
modes of p

(
h(y,u, s)|Ω

)
, which are extracted by applying mean shift [15]. See Fig. 2.3 for

an example input image and slices of the resulting Hough space corresponding to different
scales.

2.2.3 Implementation Details

For detection the patches are sampled densely, i.e., at each pixel [32]. This was shown to
outperform the strategy when sampling the patches at interest points, as it was proposed
‖In this case, simply returns 1 if the parameter equals offset o, and 0 otherwise.
∗∗See [6] for a discussion on this issue.

2.2. Hough Forests 17

for ISMs [52]. Nevertheless, later it was shown that a grid-like sampling strategy can be
used to reduce the run time, while the loss in accuracy can be kept in an acceptable range
[34].

In the original formulation, 32 feature channels were employed [32]: The three color
channels of the Lab color space, the absolute values of the first and second order derivatives
in x-, and y-direction, and nine HOG [20] channels. A HOG channel was obtained as the
soft bin count (i.e., the weighted sum) of gradient orientations in a 5 × 5 neighborhood.
The resulting 16 channels were each min-, and max-filtered, again using a 5× 5 filter size,
to finally obtain 32 channels. Thus, given 16 × 16 image patches, for the data samples
xi ∈ RD this results in a feature dimensionality D = 8192. Gall and Lempitsky [32]
solely used two-value-tests (c.f ., Eq. (2.2)), i.e. two features were randomly sampled for
each test. Additionally, these two features were restricted to be sampled from the same
channel.

2.2.4 Further Extensions and Related Work

In several works efforts were made to learn discriminative weights for voting [57, 70, 89].
While [57] builds upon the original ISM formulation by learning weights for the codebook
entries using a max-margin framework, [89] employs the Hough Forest framework and
learns discriminative weights for each training patch, and thus, for each individual vote.
Another way to measure and incorporate the discriminative power of local image patches
throughout training and testing of a Hough Forest was shown in [70]. To this end, a
measure of self-similarity of an image patch, based on the already trained forest, is utilized,
incorporating it as a sparsity potential for object detection.

Many applications – including multiple instance tracking – require discrimination be-
tween multiple objects, or object classes, respectively. The inherent ability of Random
Forests to handle multiple classes is also utilized with Hough Forests [35, 71]. For instance,
in [71] the amount of features shared among different classes is explicitly exploited. To
this, a taxonomy of the classes is generated based on the sharing distributions of features
among them. Subsequently, the taxonomy is employed to reduce the number of votes to
be cast.

Hough Forests have also been applied to tracking. In [33] a Hough Forest based
general person detector is trained off-line and adapted on-line, by updating the instance
specific statistics, only. Hence, the foreground probability, as well as the offsets are kept
unchanged. For tracking, the detector is coupled with a particle filter. Nevertheless,

18 Chapter 2. Preliminaries

the tracker may be confused with other instances, which are similar according to the
pre-trained codebook, since no features for explicit instance discrimination are learned.
Refusing to add instance offsets may keep the runtime stable but inhibits the trackers
ability to adapt to the specific instances, or localize them accurately.

Godec et al. [38] propose a more adaptive model based on Hough Forests, where they
also utilize back-projection to locate the support of a detection. This, in turn, guides a
rough GrabCut segmentation used to reduce the amount of noisy updates. These ideas
are re-used in [68], where the GrabCut algorithm is exchanged for an alpha matting based
segmentation. Furthermore, their model is built upon three sub-forests: A non-adaptive,
a moderately adaptive, and a highly adaptive sub-forest [68]. The non-adaptive sub-forest
is solely offline trained at the first frame, the moderately adaptive (on-line) sub-forest is
updated at each frame, and the highly adaptive sub-forest is completely re-trained at each
frame.

Random Forests are also extensively applied to tasks of the medical image processing
domain (see, e.g., [18, 19, 61]). In [19] Criminisi et al. aim at regressing the position and
size of objects similar to Hough Forests. In their work they detect organs like the lung, the
kidney or the gall bladder in CT scans. However, in contrast to the approach described
above, the positions of the 6 walls of the objects 3D bounding box are estimated instead
of the object center and scale.

For a more comprehensive review on Hough Forests for object detection and tracking
please be referred to [34]. However, it should be noted that the idea of Hough Forests have
not only been employed to object detection and tracking. In fact, it was very successfully
transferred to other tasks like pose estimation.

In [37] human poses are estimated based on a Hough voting scheme. Relying on the
input of a depth sensor, a Hough Forest is trained for regression of the joint locations.
Instead of casting votes in a discrete voting space, in this approach the votes are cast
into a continuous 3-dimensional space. The follow-up work of [82] is motivated by the
fact that locations of different joints are not independent. In contrast, the joint locations
are sometimes even strongly dependent on global variables like human height or torso
orientation. They show that accuracy can be significantly improved by incorporating
such a global variable in the inference process. To this end, prior knowledge as well as
assumptions about temporal consistency are exploited for initial estimates about the state
of the global variable.

2.2. Hough Forests 19

A similar idea is employed for detection of facial features [16, 21]. In [21] the forest is
again partitioned into several sub-forests, each trained on its individual subset of the data
in order to solve a specific part of the task. During test-time, the head pose is initially
estimated and, subsequently, a subset of trees trained on the corresponding subset of the
training data is selected to predict the facial feature points. Cootes et al. [16] provide an
evaluation of Random Forest based regression of facial features and hand joint locations
as the basis of a shape model fitting. In their work they show that the Random Forest
based regression outperforms other methods like boosted regression or Random Forest
based classification in terms of accuracy and speed.

Recently, the Hough Forest voting scheme was also applied to regression of hand poses
[83]. Thereby, labeled and unlabeled real-, as well as synthetic training data is exploited
jointly. The discrepancies between realistic and synthetic data are particularly consid-
ered by integrating a transductive term into the split objectives. Whereas, another semi-
supervised term aims at proper incorporation of labeled and unlabeled data. In this way,
associated realistic and synthetic data, as well as labeled and unlabeled data of similar
appearance are enforced to be clustered together by the proposed semi-supervised trans-
ductive regression forest.

Chapter 3

Efficient Hough Forests

Contents
3.1 Theoretical Analysis . 22

3.2 Outline . 23

3.3 Classifier Complexity . 23

3.4 Sampling Distance . 24

3.5 Data Complexity . 25

3.6 Features . 26

3.7 Vote Compression . 30

3.8 Sub-sampling Revisited . 34

3.9 Summary & Conclusion . 37

Computer vision applications typically require efficient methods. This comes from the
fact that they either have to deal with a huge amount of data or require short response
times. The latter is usually the case for object tracking, as it builds the basis for many
computer vision applications. However, for numerous tracking tasks multiple cameras have
to be used, which implies a multiplied amount of data to be processed, and thus, requires
even faster methods. In this section we will outline several enhancements towards efficient
object detection using Hough Forests. In this regard, the first step is to theoretically
analyze which of the individual processing parts are critical in terms of runtime.

21

22 Chapter 3. Efficient Hough Forests

3.1 Theoretical Analysis

The detection process with Implicit Shape Model based approaches usually consists of
three main parts: Feature computation, matching local image patches to the codebook,
and casting votes in the Hough space. In the following, we will identify the parameters
which determine the runtime of these parts.

To start with, we consider the computational cost of feature extraction. This is related
to the number of data samples n, i.e., the number of sampled patches used for detection.
Given dense, or nearly dense sampling, the features for neighboring, i.e., overlapping,
patches are partly the same and don’t need to be recomputed. Hence, as long as the
sampling distance is sufficiently small, which has shown to be crucial for accurate detection
[35], the time for feature computation is independent from n. Furthermore, assuming that
the cost of extracting a single feature is constant, the runtime for feature computation for
a single scale, only depends on the number of feature channels F , and image pixels in the
search area I:

CF = O(FI). (3.1)

While the cost of matching a single data sample to the codebook for the original ISM [52]
scales linearly with the size of the codebook, for codebooks based on a Random Forest,
this cost reduces to logarithmic dependency on codebook size. In fact, it is the sum of the
cost of matching a sample to a leaf of each tree within the forest:

CM =
T∑
t=1

O
(
κ log(|lt|)

)
, (3.2)

where |lt| specifies the number of leafs of tree t ∈ {1, . . . , T}, and κ denotes the complexity
of a single splitting test. Ignoring that |lt| may slightly differ from tree to tree, the cost of
matching becomes:

CM = O
(
Tκ log(|l|)

)
. (3.3)

Furthermore, let |OL| be the number of all offsets in the training data, assuming balanced
trees, i.e., the training samples were evenly distributed among the leafs of a tree, we can
finally derive the cost of detection:

C = CF + n
(
CM + |OL|

|l|

)
= O

(
FI + nTκ log(|l|) + n

|OL|
|l|

)
.

(3.4)

3.2. Outline 23

3.2 Outline

In the following, we take a look at every single parameter of Eq. (3.4). To start with, in
Section 3.3 we will discuss the influence of standard parameters of a Random Forest, i.e.,
the number of trees and their depth, on the forests efficiency (parameters: T , and |l|).
Subsequently, we will outline possible speed-ups through non-dense sampling (Sec. 3.4;
parameter n), reduction of data complexity (Sec. 3.5; parameter: I), reducing the feature
dimensionality (Sec. 3.6; parameters: F , κ), and compression of the offset distributions at
the leafs (Sec. 3.7; parameter: |OL|/|l|). Additionally, for speeding up the training time, we
consider sub-sampling the training data at the split nodes in Sec. 3.8. Finally, in Sec. 3.9
we will summarize the results, conclude a final system, and show the overall performance
gain.

The analysis in this section is based on a standard dataset: The TUD-Pedestrian
dataset [2]∗. It contains 400 training images, and 250 test images with 311 annotated
persons. For the training data a detailed segmentation is available. However, for our
experiments we did not experience a significant change in accuracy, when utilizing the
provided foreground masks. Thus, in the following, we make only use of the bounding box
annotations. For performance evaluation we employ the PASCAL overlap criterion with
a threshold of 0.5 [25]. For the results, we are solely interested in the change of accuracy
and runtime, and also want to disregard the performance of the test machine. Therefore,
we always compute the accuracy and runtime measurement relative to a reference, which
is explicitly stated for each experiment. Furthermore, to account for the randomization,
we conducted several runs for each experiment and report only the averaged result.

3.3 Classifier Complexity

Since each of the individual trees in a Random Forest has to be evaluated for every single
data sample, an increase in the number of trees T inevitably yields an increase in processing
time. In fact, the runtime scales linearly with the number of trees in the forest, while the
accuracy only shows a slight increase for T > 4. This is illustrated in Figure 3.1 and was
also indicated by other authors [64].

In contrast, the relation between tree depth and runtime cost is inverse. An increase
in depth of a tree results in an increase of the number of leafs |l|, and thus, a decrease
in the number of votes per leaf. In fact, from Eq. (3.4) it can be seen that increasing
∗Training and test data is publicly available at http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08.

http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08

24 Chapter 3. Efficient Hough Forests

Figure 3.1: Relative accuracy (in terms of Area under the Curve (AuC)) and relative runtime
measurements as a function of the number of trees in the forest; values are relative to using 15
trees.

|l| will decrease the overall cost for typical values, where |OL| is huge, while T and κ

are comparably small. Nevertheless, this is only true for perfectly balanced trees, since
Eq. (3.4) is based on this assumption.

In practice, we did not experience a significant change in runtime when increasing the
maximum tree depth from 15 up to 18. This indicates an imbalance at deeper levels of
the trees. Furthermore, we have to note that increasing the depth of the trees also bears
the risk of overfitting to the training data (see, e.g., [18]). For our experiments, we found
only a small change in accuracy for increasing the tree depth, but the deeper we trained
our trees, the more frequently we were facing high scoring false positives. This could be
recognized starting from a maximum depth of 18 in our case. Nevertheless, we have to
note this strongly depends on the amount of training data and variance in it.

3.4 Sampling Distance

The number of data samples n, extracted from a test image is obviously a decisive factor
for the runtime. It may be reduced by different sampling strategies. For example, in the
original ISM formulation [52] the patches were sampled at interest points, only. With
Hough Forests [32], on the other hand, dense sampling were applied, which was shown
to improve results significantly. Nevertheless, it was also shown that the accuracy only
gracefully degrades for nearly dense sampling strategies [32, 34].

3.5. Data Complexity 25

Sampling distance dense (1) 2 3

Relative AuC 1 0.999 0.973
Relative test time 1 0.590 0.513

Table 3.1: Mean accuracy and test time for different sampling distances during detection; values
are relative to those for dense sampling

To this end, we evaluated sampling from a larger grid, i.e., run the detection, e.g.,
at every second or third pixel. Fixing the sampling distance, δ, in x- and y-direction
reduces the number of samples by a factor of 1/δ2. Hence, this provides the possibility to
significantly reduce the computational burden for small sampling distances, already. We
found that setting δ = 2 didn’t influence detection accuracy, while yielding a speed up
of about 40%. Increasing δ further gave – despite the much smaller number of samples
which need to be evaluated – a slight additional speed-up, only. This indicates that
the computational bottleneck moved to other parts of the pipeline. See Tab. 3.1 for the
detailed results.

3.5 Data Complexity

To detect objects of different sizes with Hough Forests, the common procedure of modern
object detectors is used: Thereby, a model is trained on a single unit scale (su), and
at detection time a test image is scaled so that possible objects fit to the unit scale.
Subsequently, all features are solely computed from this scaled image. Hence, the smaller
su, the less pixels have to be considered for feature computation. This arises the question if
we are able to discriminate the object from background at a smaller resolution as originally
suggested in [32], where su were set to 100 pixel.

We evaluated for three different scales su ∈ {100, 75, 50}, and adapted the patch size
accordingly. See Fig. 3.2 for an object shown at each utilized resolution. Our experiments
reveal that setting su = 75 does not yield any loss in accuracy, while achieving a runtime
gain of more than 50%. By setting su = 50 one has to sacrifice some accuracy, but in turn
the runtime even drops to one fifth. The detailed accuracy and runtime changes are given
in Tab. 3.2. Note, for the presented evaluation we didn’t use min-, and max-filtration of
the feature channels, since noise suppression is implicitly done by down-scaling, and we
found that an additional filter step decreases discriminability at smaller scales.

26 Chapter 3. Efficient Hough Forests

Figure 3.2: Illustration of a training sample at various resolutions. Top row: images at original
size with a height of 100, 75, and 50 pixels; Bottom row: the same images re-scaled to equal size
in order to illustrate the differences in captured information at different resolutions

3.6 Features

In this section we will first evaluate the impact of using different subsets of feature channels
on accuracy and runtime. Hence, we will investigate whether and how the number of
feature channels F can be reduced. This is followed by a discussion on the influence of
the splitting test complexity κ.

Object height 100 75 50

Relative AuC 0.987 1.001 0.903
Relative test time 0.870 0.480 0.190

Table 3.2: Relative accuracy and test time for models trained on different object resolutions (i.e.,
su ∈ {100, 75, 50}); no min-, and max-filtration were used for these runs, i.e., 16 feature channels;
values are relative to the result obtained using the standard setting, i.e., su = 100, patch size:
16× 16, and using all 32 channels (including min- and max-filtration).

3.6. Features 27

Figure 3.3: Histogram over the 32 feature channels, showing how often specific channels are
selected for a split test.

3.6.1 Feature Channels

Differences in the importance of feature channels have been exploited recently. For exam-
ple, in [61] the features are not selected from a uniform distribution, as usually. Instead,
the utility of the individual features is learned from an initial forest, and re-used at the
construction of the final classifier. Similarly, we want to measure the contribution of the
32 individual feature channels (First- and Second-Order gradients, HOG, and Lab). To
get an idea about their importance, we start by counting the number of nodes at which a
splitting test based on a specific channel is selected. Hence, by doing this for each channel,
we can obtain a histogram over the channels. These histograms have been analyzed for
several Random Forests, finding that they usually have a couple of properties in common.
For instance, the color channels usually represent modes in the histogram, for the min-,
as well as the max-filtered channels, and at least some of the HOG channels often make
up another peak. An example for such a histogram is shown in Fig. 3.3.

Since we also found that each of the 32 feature channels is selected in a significant
number of nodes (c.f ., Fig. 3.3), this analysis would indicate that only very few channels

28 Chapter 3. Efficient Hough Forests

Setting # channels rel. runtime rel. AuC

Baseline [35] 32 1.00 1.00

Without min/max filtering 16 0.78 0.98
Without min/max and 1st deriv. 14 0.77 0.97
Without min/max and 2nd deriv. 14 0.76 0.97
Without HoG 14 0.71 0.95
Without Lab 26 0.96 0.90

Table 3.3: Relative test time and accuracy (in terms of Area under the Curve (AuC)) for different
combinations of feature channels.

may be discarded without implying a significant drop in accuracy. Nevertheless, different
features may be highly correlated, and carry similar information, respectively. Discarding
one of these wouldn’t affect accuracy detrimentally, despite its frequent selection. Thus,
the raw information about how often a feature channel is selected is not enough when
judging about which of them may be discarded. This fact was already shown by Breiman
in some initial experiments [10]. Hence, aiming at a reduction of the feature channels
with minimal loss in accuracy, we have to evaluate the impact directly, by training forests
using different subsets of feature channels. Doing so, we found that more than half of
the feature channels may be simply omitted, while the loss in accuracy can still be kept
at an acceptable level. Especially, omitting the min- and max-filtration – reducing the
number of feature channels by half – results in only a slight decrease in accuracy, while
the runtime drops at about 20%. Note that, even though the number of feature channels
is halved, still the same features have to be computed and only the additional filtration is
omitted. Tab. 3.3 gives the detailed results on how accuracy and runtime are affected by
using different combinations of feature channels.

It should be noted, that the results shown in Tab. 3.3 were generated using vote
compression. Thus, the relative runtime gain noted in Tab. 3.2 for omitting min-, and
max-filtration (produced without vote compression) differs from the results stated here.
Theoretically, this difference can simply be derived from the fact that the number of offsets,
|OL|/|l|, and the number of feature channels, F , are contained in different additive terms
of Eq. (3.4). Please also note, that in order to keep the “randomness” at the same level,
the number of randomly generated splitting tests has to be reduced when reducing the
dimensionality of the feature space, as it is done here.

3.6. Features 29

Type Training error rel. AuC

Single-value splits 0.01 0.817
Two-value splits 0.06 1.000
Selection w.r.t. objective 0.01 0.840

Table 3.4: Error rate on training data, and relative accuracy (in terms of Area under the curve)
for different split types; Values are relative to the accuracy for using two-value splits, which is the
standard approach [32]

3.6.2 Test Types

Another, not negligible issue is the complexity of the actual test type. To this end, in
Sec. 2.1 we introduced two commonly used types, namely single-value- and two-value-tests.
Single-value-tests compare a single pixel value against a threshold, while two-value-test
compare the difference of two values against a threshold. Hence, by using two-value-tests,
the retrieval of twice as much values, plus an additional arithmetic operation per split is
necessary. Processing an image, each of the – probably densely – sampled patches has to
be matched to a leaf of each tree. Thus, n×T × log(|l|) splits need to be computed, which
is usually in the range of 107 to 108 for a 640× 480 image.

We found the possible speed up, when moving from two-value-splits to single-value-
splits, to be up to 35%. Hence, we will restrain from using even more complex features
(see e.g., [18, 34, 76]), and employ only these two.

In search for a setup, which keeps the loss in accuracy as small as possible, we compare
three settings: Restricting the system to use (i) single-value splits, (ii) two-value splits, or
(iii) let it randomly choose tests from both types and select the best using the objective
function (Eq. (2.11)). To this end, we expect the latter to give the best results. Nev-
ertheless, best performance is reached by restricting the system to two-value splits, only
(see Tab. 3.4). This indicates that the system is more likely to over-fit to, e.g., noise, or
intensity variations if single-value splits are used. Which, furthermore, causes the system
to tend to selecting single-value-tests rather than two-value-tests if it is left over with the
decision (see Fig. 3.4). The aforementioned suspicion is also confirmed by the error rates
on the training set – shown in Tab. 3.4.

From our experiments we can conclude that the entropy and the variance of offset vec-
tors, respectively, lack in their ability to assess the quality of a split under noisy conditions.
To improve towards this end, better information gain estimates have recently be shown to
slightly improve the overall accuracy of Random Forests [62], whereas, more appropriate
uncertainty measures are able to capture the multi-modality in the distributions of the

30 Chapter 3. Efficient Hough Forests

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

Depth

N
u
m

b
e
r

o
f
n
o
d
e
s

single−value−splits
two−value−splits

Figure 3.4: Amount of nodes in which a specific test type (i.e., a single-, or two-value-test) is
selected as a function of the depth level. For this experiment the system selected the test type at
each node based on the objective function.

offset vectors [87]. Nevertheless, one can still not expect them to be robust against noise
or other misleading input. Instead, the space of possible splitting tests has to be carefully
set up during system design, already.

3.7 Vote Compression

Random Forests are extremely efficient. They allow for fast predictions, even in cases were
a huge amount of data has to be processed. Since, they do not generalize well from a small
number of training samples, it is vital to provide them with a sufficiently large training
set [34]. With Hough Forests the runtime is dependent on the number votes to be cast,
and thus, on the amount of training data. An increased amount of training data results
in an increased number of votes to be cast, and hence, increased runtime. This inhibits
one of the most important advantages of Random Forests – its efficiency.

Girshick et al. [37] address this drawback by summarizing voting information at the
leaf nodes. To this end, only a fixed number of votes are cast per leaf, making the voting
process independent of the number of training samples again. This is especially important
for our application of on-line learning during tracking, where the amount of training data
is constantly increasing over time. Additionally, – for the application of pose estimation
– Girshick et al. showed that this process not only speeds up the voting process but even
increases the overall accuracy.

3.7. Vote Compression 31

The offset distribution at the leafs is often still multi-modal and contains outliers.
Hence, uniformly sub-sampling the offsets, or fitting a single Gaussian to them is a bad
choice. In [37] this problem is overcome by applying mean shift [15] for vote compression.
Their approach is discussed and evaluated for object detection in Sec. 3.7.1. For the
task of object tracking the offset distribution has to be updated on-line. This is not
straightforwardly implemented for a distribution represented by mean shift modes. More
specifically, adding, merging, or discarding modes is virtually impossible without collecting
and storing all arriving offsets. And, even if we would ignore that collecting all offsets
forever is infeasible for many applications, efficient updates would still be a problematic
issue. A possibility to overcome these drawbacks is to employ a grid-like quantization of
the offset distribution [39] for vote compression. This approach is not only scalable, but
also allows simple application of a forgetting factor, and above all, for straightforward
on-line updating, which is imperative for the task of tracking. We introduce and compare
to this approach in Sec. 3.7.2.

3.7.1 Mean Shift

For vote compression using mean shift, the offset vectors at a leaf are clustered, and
the found modes define the new vote vectors. Hence, the whole distribution is solely
represented by these modes. In [37] the number of offsets that reached a mode is used
as the vote weight. Nevertheless, since the offset vectors supporting a mode can still
be strongly distributed in some cases, this approach for weight computation may poorly
represent the actual distribution. For this reason, we compare three different methods for
vote weighting, where we base the weight on: (i) All points ended up in the mode, (ii) the
number of points inside the kernel of the final mode, and (iii) the density within the kernel
of the final mode. Furthermore, the weighting approaches are evaluated using each of the
following three mean shift kernels: Uniform, normal, and Epanechnikov kernel. Even
though, vote weighting method (iii) performs best over all three kernel, the differences
in the results are insignificant and thus indicate that neither the vote weighting method,
nor the kernel type is a critical factor in terms of accuracy. See Tab. 3.5 for the detailed
results.

Furthermore, we evaluated the influence of varying the maximum number of mean shift
modes, i.e., the number of votes cast per leaf. While, increasing the number of votes from
one to two resulted in an accuracy gain, increasing it further didn’t show any significant
differences. Regarding the test time, we experienced an approximate linear increase for

32 Chapter 3. Efficient Hough Forests

Vote weighting # points # points kernel density
method ended in mode in kernel at mode

Uniform kernel 0.944 0.951 0.951
Normal kernel 0.946 0.942 0.951
Epanechnikov kernel 0.933 0.934 0.942

Table 3.5: Relative accuracy (in terms of Area under the Curve) for different combinations of
kernel type and vote weighting method. Each row gives the result for a specific mean shift kernel;
column header specifies the measurement the vote weighting is based upon; given accuracies are
relative to the accuracy when no vote compression is used; result for the best vote weighting
method printed in bold letters for each kernel.

one to about eight modes per leaf, whereas for a higher number of modes the test time
didn’t change, anymore. This indicates that – aiming at a speed-up by vote compression –
a maximum of five to eight modes can be extracted from the the entire offset distribution
at a leaf. Fig. 3.5(a) compares the relative decrease in runtime and accuracy.

Finally, we have to note that using mean shift for vote compression we were not able
to improve the results for object detection. This is in contrast to the results obtained by
Girshick et al. [37] for the task of pose estimation.

(a) (b)

Figure 3.5: Relative accuracy (in terms of Area under the Curve (AuC)) and relative runtime
measurements: (a) As a function of the number of votes for vote compression by mean shift, and
(b) as a function of the number of cells for vote compression by vote grids. Values are relative to
voting with all offsets.

3.7. Vote Compression 33

3.7.2 Vote Grid

In order to handle a very diverse set of offset vectors, Godec et al. [39] discretize the
displacement space into small rectangular cells. For their approach, the main reason for
using such small cells was that they didn’t enforce to cluster similar offset vectors together
during training. More specifically, their approach is based on Random Ferns, where the
tests at the split nodes are not optimized, but selected completely at random [36, 65]. In
contrast, we incorporate an regression objective during tree construction (c.f ., Eq. (2.10))
and can thus expect the offset vectors at the leafs to be sufficiently well separated. In this
way, we are able to adapt their idea and utilize it for vote compression by employing grids
with a relatively small number of cells. Thereby, we assign each offset vector o to the cell
exhibiting the closest center c. Subsequently, at detection the centers of the cells form the
relative votes, weighted by the number of assigned offset vectors. Hence, the distribution
pt
(
h(y,u, s)|xv

)
formulated in Eq. (2.14), defining a vote weight becomes

pt
(
h(y,u, s)|xv

)
=
∑

c

(
1c

(
su(u− v)

s

)
wc

)
pt(y|xv), (3.5)

wc = 1∣∣∣O(y)
lt

∣∣∣
∑

o∈O(y)
lt

1c
(
χ(o)

)
, (3.6)

where χ(o) gives the cell center closest to the offset vector o:

χ(o) = argmin
c
‖o− c‖2 . (3.7)

See Figure 3.6 for some example grids with different resolutions. Using grids with
high resolution, i.e., a large number of cells, results in high accuracy, but low speed. By
reducing the grid resolution one may easily reduce the runtime – for the cost of decreased
detection performance. Nevertheless, our investigation reveals that using a grid voting
scheme, the runtime scales nearly linearly with the grid resolution, whereas the accuracy
suffers only for a very small number of cells. Thus, the accuracy level of voting with all
offsets is reached with grid resolutions where the runtime is significantly lower.

In our experiments the runtime reaches the same level when using about 135 cells,
while the accuracy reaches the same range with resolutions far below that. Hence, a
significant speed-up can be achieved for a small decrease in accuracy (see Fig. 3.5(b)). For
a fair comparison we used the same codebooks for voting with all offsets, and grid-voting.
Only the representation of the offset distribution is changed accordingly. For example

34 Chapter 3. Efficient Hough Forests

(a) (b) (c)

Figure 3.6: Illustration of example vote grids and offset vectors, with (a) 21 × 13, i.e., 273 cells,
(b) 9× 5, i.e., 45 cells, and (c) 5× 3, i.e., 15 cells. For the rightmost grid, the assignment to cell
centers is visualized.

slices of the resulting Hough space see Fig. 3.7. Please note that the exact runtime for
the grid voting scheme certainly depends upon implementation. For this evaluation we
were disregarding a possible performance gain through the use of efficient data structures,
exploiting, e.g., the sparsity of the grids. Hence, while the conclusion remains valid, the
grid voting scheme is expected to bear potential for further improvements in efficiency.

3.8 Sub-sampling Revisited

While training time efficiency may be disregarded for fully off-line trained tree-models,
it is a crucial issue for adaptive models, and on-line growing of trees, respectively. To
this end, sub-sampling the training data for split optimization at the nodes was proposed
by Schulter et al. [75]. This simple, but effective strategy keeps training time constant,
i.e., independent of the amount of training data. Additionally, it has been shown that
the accuracy may even be increased significantly. While in [75] it was hypothesized that
the reason for the gain in accuracy is the increased decorrelation between the individual
trees of the forest, we experimentally identify the balance of the sub-samples to be another
essential ingredient for the success of this strategy. Later, in Sec. 4 this insight is exploited
for our task of on-line learning during tracking.

For the approach introduced in [75] the training data is sub-sampled at each split node,
a split is found by optimizing on the sub-sample (c.f ., Eq. (2.11)), and finally, all available

3.8. Sub-sampling Revisited 35

(a) (b)

(c) (d)

Figure 3.7: Comparison of the Hough maps obtained for the input image (a) when voting with
all offsets ended up in the leaf (b), using a vote-grid with a resolution of 9 × 5, i.e., 45 cells (c),
and 5 × 3, i.e., 15 cells (d). It can be observed that the Hough maps are becoming sparser, and
the peaks less discriminative when decreasing grid resolution.

samples are sent to the newly created child nodes. When training a tree down to a depth
of 17 using about 60,000 data samples, this simple procedure yields a training time speed
up by a factor of six, while increasing accuracy (see Tab. 3.6).

In [75], the drawn sub-sample used for split optimization is balanced, i.e., if possible,
the same number of samples are drawn for each class, disregarding the true distribution
at the node. To measure the effect of this approach, we compare it to sub-sampling with

36 Chapter 3. Efficient Hough Forests

Strategy rel. AuC

No sub-sampling [35] 1.000

Sub-sampling [75] 1.040
Sub-sampling w.r.t. distr. 1.018

Local “un-bias“ 1.035

Table 3.6: Relative accuracy (in terms of Area under the Curve (AuC)) for different sub-sampling,
as well as the re-weighting strategy (Local “un-bias”), compared to the standard approach with
optimization over all samples.

respect to the class distribution. In the latter case, at each node, we draw a sub-sample
which represents the distribution of the available samples at the node. The results in
Tab. 3.6 show that more than half of the gain in accuracy is lost by doing so. Hence, the
balance of the sub-sample can be regarded to be crucial for the success of sub-sampling
as proposed by Schulter et al.

The aforementioned approach of balanced sub-sampling already represents a step away
from the commonly used procedure, where the split at a node N is optimized under
the “current” posterior p(y|LN) [1, 18]. Thus, it seems interesting if the balance of the
available training data at a node as such, i.e., without sub-sampling, does influence the
overall accuracy.

For classification problems, where not equally many samples are available from the
different classes, a common approach, is to re-weight the individual data samples so that
the sample weights sum up to the same value for each class. Nevertheless, this is usually
done globally, at the level of the whole data set, and subsequently the fixed global weights
are used locally, i.e., in our case, at each node, when searching for the best split. To
further investigate this issue, we set up an experiment, where all available training data
at a node is re-weighted so that the sums of the weights per class are balanced. The split
at each node is then optimized on this virtually balanced data set. This simple procedure
results in a gain in accuracy slightly below that of sub-sampling. For the detailed results
see Tab. 3.6, where this strategy is referred to as Local “un-bias”.

This confirms our expectation, that local balancing of the training data is a critical
factor for generalization performance. Although, this insight can not provide a gain in
runtime, in the sequel we will show how to exploit it for robust tracking (see Sec. 4).

3.9. Summary & Conclusion 37

Training time Test time per image

Rel. runtime (Speed-up factor) 0.054 (∼20) 0.024 (∼40)

Table 3.7: Relative runtime gain; Runtimes of our approach relative to originally proposed ap-
proach [35].

3.9 Summary & Conclusion

Throughout this section we, individually, analyzed each critical part of the detection pro-
cess. In a final experiment we will now integrate all the findings, and evaluate for the
overall accuracy and runtime difference to the original approach [32]. This, at the same
time, represents the starting point for our multi-camera tracking system.

From the analysis in this section, we know that – without significant loss of accuracy
– we can increase the maximum depth of a tree from 15 to 17, and the sampling distance
up to two pixels, in x-, and y-direction. Additionally, we set the unit scale of an object to
75 pixel. By concurrently discarding the min-, and max-filtration of the feature channels,
accuracy still doesn’t suffer. Furthermore, – in this case, accepting a slight loss in accuracy
– we reduce the number of trees from 15 to 5, and summarize offset distributions by
utilizing grids of 77 cells. To this end, compared to vote compression by mean shift, the
reached speed up was slightly smaller when keeping the accuracy in an acceptable range.
On the other hand, vote compression using grids have shown to provide comparable or
even better results in terms of accuracy. In the end, the possibility for straightforward
on-line updates, which would be problematic for mean shift modes, makes us preferring
grids over mean shift with respect to the task of tracking. For the choice of a test type,
we saw that using single-value-splits affects accuracy detrimentally. Thus, despite their
efficiency, we prefer two-value-splits here. In this regard, we want to note that global
illumination normalization has been shown to significantly improve results [8] and also
bears potential to enable the use of single value splits for our case. Nevertheless, this
requires costly pre-processing of training and test data, respectively.

Integrating all these findings brings up a detector which gives comparable results in
terms of accuracy, while yielding a speed up of one to two orders of magnitude. Thanks to
sub-sampling [75], as well as the reduction of the number of trees a comparable speed-up
is also reached for the training procedure (see Tab. 3.7, and Fig. 3.8, resp.).

38 Chapter 3. Efficient Hough Forests

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Original approach (AP=81.0, AuC=85.7)

Our sped−up approach (AP=79.7, AuC=83.6)

Figure 3.8: Precision-Recall curves for the original [35], and our sped-up approach; It can be seen
that the loss in accuracy is small, while Tab. 3.7 shows that this is reached for a speed-up factor
of 40.

Chapter 4

Tracking By Detection

Contents
4.1 Single Camera Tracking . 40

4.2 Multiple Camera Tracking . 44

In the previous section, we pointed out several enhancements towards the efficiency of
Hough Forest based object detection. A task where efficient methods are essential is visual
object tracking. The demand for efficiency is caused by runtime requirements as well as
the significant amount of data to be processed. To this end, all adaptions introduced in
the previous section are designed to be straightforwardly applied to object tracking in a
tracking-by-detection manner. In this section, we empirically show that the previously
introduced concepts can be used to build a multi-camera tracking system. Despite the
multiplied amount of input data, this system is able to achieve acceptable runtime without
sacrificing robustness.

To start with, the system is employed to track single instances from single cameras
(see Sec. 4.1). In this way we can prove our concepts in a less complex setup, where less
parameters influence and, thus, disturb the performance. Hence, we can draw more reliable
conclusions focusing on the tracking-by-detection task, and subsequently find an efficient
but still robust setup. Based on the gathered insights, in Sec. 4.2, the built system is finally
extended for dealing with multiple instances and exploiting the information provided by
multiple cameras.

39

40 Chapter 4. Tracking By Detection

4.1 Single Camera Tracking

A considerable amount of approaches for tracking using Random Forests has been de-
veloped (see e.g., [33, 38, 45, 53, 73, 90]). Nearly a decade ago Random Forests were
successfully applied to real time key point recognition [54], which is closely related to the
subsequent tracking approaches. Thereby, a model is built up from a single, initial image
of an object, by generating a number of randomly deformed and noised up variants of
it. This process is well known, and has been termed one-shot learning. The mentioned
approach [54], however, is not able for on-line updates, or handling significant changes in
object appearance, since it is designed for key point recognition.

To overcome this, Saffari et al. [73] brought Random Forests to the on-line domain
and applied them to tracking. In their tree growing scheme, incoming training samples are
buffered in a node until a minimum number of samples arrived, and the information gain
for a split exceeds a certain value. Decorrelation of the individual trees is, furthermore,
enforced by bagging. Later, in [75], the authors show that it is unnecessary to keep track
of the information gain for each newly arrived sample. Instead it is just enough to wait
for a fixed number of samples to arrive. This can be regarded as a sub-sample of all data
arriving in a node. They show that using sub-sampling, an additional amplification of the
decorrelation between the trees by means of bagging becomes obsolete. In this regard, from
the findings in Sec. 3.8 we know that the balance of a sub-sample used for optimization
is crucial for the accuracy of the constructed trees. Nevertheless, during tracking, the
distribution of the first samples arrived can neither be guaranteed to represent the true
distribution, nor to be balanced. Hence, to overcome this issue, in our approach, we
impose the sub-sample to be balanced, and optimize the split on this balanced sample.
As experimental evaluations prove, this yields a robust on-line model, in spite of reduced
complexity.

In the following we describe our approach to single camera tracking, and, subsequently,
analyze its performance on standard tracking sequences. Thereby, we find a parameter set-
ting using which stable tracking can be performed at the smallest possible computational
cost.

4.1.1 Method

In our single camera tracking approach we follow the on-line formulation of Hough Forests,
as introduced in [75]. Thus, we build an initial forest by one-shot learning, based on the
first frame annotation. In the subsequent frames, the forest is evaluated within a search

4.1. Single Camera Tracking 41

Figure 4.1: The single-camera tracking loop; illustrates the overall workflow of our approach to
single-camera tracking.

region around the object location in the last frame. Thereby, we sample only two nearby
scales, since the object scale change between two consecutive frames can be assumed to be
small. The maximum of the resulting Hough space is found and the object location and
scale is updated. See Fig. 4.1 for a general overview of the workflow.

The size of the peak in the Hough space gives an intuitive measurement for the confi-
dence of the tracked position. As long as this confidence measure is above some predefined
threshold – relative to the mean confidence of the first frames – the model is updated using
randomly sampled patches. Positive patches are sampled from within the found object
bounding box, whereas negatives are sampled from the neighboring region. Thereby,
negatives are either randomly sampled, or bootstrapped by extracting them from the re-
spective bounding box given by the highest peak in the neighboring region. We alternate
from frame to frame between these two strategies for extraction of negatives.

In order to split a node Schulter et al. [75] propose to wait for a fixed number of
samples n′ to arrive, and optimize the split on those. To this end, we already learned
that the balance of a sub-sample used for optimization is crucial for the accuracy of the
constructed trees (see Sec. 3.8). Nevertheless, the first n′ arrived samples can not be
guaranteed to be balanced over the classes. Moreover, for small n′ – which is the usual
case – the optimization may even be strongly disturbed, since the class distribution over
these samples can represent virtually any distribution. Hence, it may not only be a bad
estimate for the true distribution, but even be completely degenerated. To overcome this
issue, we adapt the sub-sampling strategy for on-line use by simply drawing a balanced

42 Chapter 4. Tracking By Detection

david faceocc2 girl tiger1 mean

Proposed (δ = 1;F = 32) 9 14 20 6 12.3
HT [38] 9 20 38 35 25.5
MIL [4] 23 20 32 15 22.5
ORF [73] 16 29 16 48 27.3

Table 4.1: Mean center distance on several standard tracking sequences for our method, compared
to state-of-the-art tracking-by-detection approaches; best scoring method bold-faced, second best
in italics.

sub-sample from the arrived samples. Thus, we specify a number of samples m : mC < n′,
which defines the size of the sub-sample for each class. In other words, we wait for m
samples to arrive for each class, unless an overall number of n′ samples arrived from all
classes. Subsequently, the splitting test is optimized on the drawn mC samples.

4.1.2 Experiments

For our experiments we start with a setting were we use five trees trained to a maximum
depth of eight. Furthermore, the unit scale su for an object is set to 80 pixels. In
order to have a baseline for comparison, we start with an experiment were we use all
32 feature channels, as well as dense sampling during detection as proposed in the original
Hough Forest formulation. We evaluate using several commonly used video sequences.
Each of them is publicly available∗. As evaluation criterion the mean center distance is
employed, since we only have the object center annotations available for these sequences.
Nevertheless, it provides us with an accurate measurement instead of a binary decision as
for evaluations based on the number of correctly tracked frames. We compare to Hough-
Ferns (HT) [38], multiple instance learning (MIL) [4] and on-line Random Forests (ORF)
[73]. The detailed results, shown in Tab. 4.1, prove that our method is on par with
state-of-the-art tracking-by-detection approaches.

Measuring the runtime separately for each individual part of the workflow, we imme-
diately see that there are two main parts demanding nearly the whole computation time:
feature computation and forest evaluation (see the leftmost bar of Fig. 4.2). Hence, the
opportunities for achieving a runtime gain are virtually broken down to two remaining
parameters. Thus, in the following experiments we aim at reducing the computational
effort for these two by reducing the number of feature channels F to be computed, and
increasing the sampling distance δ. As one can readily see from the second bar in Fig. 4.2,
∗http://vision.ucsd.edu/˜bbabenko/project_miltrack.shtml

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

4.1. Single Camera Tracking 43

delta=1;F=32 delta=2;F=32 delta=2;F=16 delta=3;F=5
0

0.05

0.1

0.15

0.2

Setting

R
u
n
ti
m

e
/f
ra

m
e
 (

s
e
c
.)

update
find max
evaluation/voting
compute features
crop search ROI
load image

Figure 4.2: Partition of runtime for different settings of sampling distance δ (delta), and number
of used feature channels F ; δ is fixed to the same value in x-, and y-direction; F = 16: all channels,
but no min-, and max-filtration used; F = 5: only Lab, and first order derivatives used.

solely changing δ gives a significant speed up when increasing it from one to two, but
increasing it further can only provide a slight additional speed-up. This is because feature
computation is now the – by far – dominating part of the overall runtime. When discard-
ing the min- and max-filtration, and thus, reducing F to 16, by concurrently setting δ = 2,
tracking becomes slightly less robust but is still successful in most cases (see Tab. 4.2).
Furthermore, by increasing δ to three, and restricting the model to color and first order
gradient information, only, i.e., to use five channels, the tracker is still able to handle
plenty of the challenges contained in the standard sequences, like partly occlusions, illu-
mination, and scale changes, or moderate appearance changes. Nevertheless, robustness
under hard conditions, e.g., nearly full occlusions, or self occlusions, is lost. See Tab. 4.2,
and Fig. 4.2 for the results in terms of mean center distance, and the runtime partition,
respectively. Fig. 4.3 shows some images from one of the sequences overlaid with the
results, and Fig. 4.4 illustrates the relation between tracking error and confidence of the
tracker.

The results from this section suggest that the runtime may be significantly reduced
by focusing on two parameters: The size of the feature space and the number of sampled
patches. In fact, by carefully selecting the feature channels as well as the number of
sampled patches to be fed into the forest model, we are still able to perform robust

44 Chapter 4. Tracking By Detection

david faceocc2 girl tiger1 msec./frame

δ = 1;F = 32 9 14 20 6 208
δ = 2;F = 16 11 31 21 43 85
δ = 3;F = 5 13 17 28 67 32

Table 4.2: Mean center distance on several standard tracking sequences for our method, when
reducing its complexity, i.e., increasing the sampling distance δ, and reducing the number of feature
channels F , respectively; rightmost column: runtime of our approach on a single dual-core CPU.

tracking. Depending on the difficulty of the task we are now able to select an appropriate
setting, running at up to more than 30 frames per second on single dual-core CPU.

4.2 Multiple Camera Tracking

When dealing with multiple interacting instances, occlusions are likely and commonly raise
problems for visual detection and tracking algorithms. Even though, recently, progress has
been made towards detection of partially occluded objects from a single image (see e.g.,
[6, 88]), situations arise where occlusions can not be resolved anymore. In some situations
it is virtually impossible to detect and discriminate between two or more object instances
from a single view and given point in time. For example, when one person hides others
(see, e.g., Fig. 4.5). One way to resolve those situations is to analyze the possible tracks
for each instance over several frames [3, 22, 92] and find the best track, e.g., by integrating
constraints like track smoothness [12], or spatial separation of individual detections and
tracks [59]. However, long-term occlusions, or occlusions appearing while tracked people
are stopping and interacting still introduce ambiguities. A natural solution to circumvent
those, is to use multiple cameras observing the same scene [24, 47, 67, 72, 91]. While
this bears the potential to resolve the discussed problems, the multiplied amount of data
requires extremely efficient algorithms. Thus, in the following we apply the concepts
and gathered insights, discussed in the previous sections, to the task of tracking multiple
instances from multiple cameras.

For multi-camera tracking many of the previously proposed approaches learn a back-
ground model and identify every deviation as foreground [29, 47, 67]. In this way, they
are unable to distinguish objects of the searched class from other moving objects. Some
also rely on calibrated cameras [9, 24, 67]. Hence, they require special calibration effort
and are not applicable to data from arbitrary scenes. Learned classifiers provide a pos-
sibility to overcome the problem of distinguishing between different foreground objects.

4.2. Multiple Camera Tracking 45

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Tracking results (blue) and ground truth (pink) for frame 11 (a), 87 (b), 129 (c), 162
(d), 181 (e), and 388 (f) of the “david” sequence; ground truth annotations are solely given at a
single scale.

In this regard, either fixed pre-trained [9], or on-line updated classifiers are used [72, 81].
Fixed classifiers, on the one hand, suffer from the inherent inability to discriminate the
individual object instances in the scene. On-line approaches, on the other hand, usually
train a separate classifier on each view, which neglects to comprehensively exploit the

46 Chapter 4. Tracking By Detection

50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Frame

error (in pixel)
confidence

Figure 4.4: Center distance (i.e., error) in pixel (red) and confidence (blue) as a function of time
for the “david” sequence. Error and confidence are inversely correlated to some extend. Note, the
normalization factor for the confidence is not known, and thus, it is just scaled to approx. fit the
range of the error. The tracked face turns away from the camera between frame 150 and 180 (see
also Fig. 4.3).

information given by the different views of the same scene, and objects, respectively. For
example, after turning, a person will appear different in one view, but, its appearance in
another view may be similar to its appearance in the first view before the turn, and vice
versa. This real world constraint can be employed to learn stronger models, but is ignored
by using a separate classifier for each view.

Figure 4.5: Example images for strongly overlapping object instances; Left image: the person in
the white shirt completely hides another one – only small parts of the shoes are visible (taken from
Set 1 of the Medium dataset [72]); Right image: at least three persons are hid behind the person
with the backpack on the left (taken from the TUD-Campus sequence [2]).

4.2. Multiple Camera Tracking 47

The approach which is most related to ours is the one of Sternig et al. [81]. They
propose to use an off-line trained, Hough Forest based person detector for each view,
where, similar to [33], the instance statistics at the leafs are updated on-line. Instead of
voting for the object center, the votes are cast for the location of the foot, and projected
to a common reference plane. Subsequently, a particle filter approach is used for tracking
on the common plane. While, in their approach, the discrimination between instances is
handed over to the particle filter, in contrast, we exploit the redundant information from
all views to build strong models of the instances. To this end, we do not only update
the leaf statistics, but effectively extend the pre-trained model, enforcing discrimination
between the instances within the updated model. Hence, our system is able to distinguish
them based on their appearance instead of solely relying on the predictions of a motion
model.

4.2.1 Method

In general, a multi-camera setup consists of several cameras observing the same scene. For
a fully calibrated setup each image point from each camera view can be related to a ray
in world coordinates, and thus, to a line in each other view [43]. However, for tracking
applications the objects are often exclusively moving on a common ground plane. This
constraint can be exploited in order to get rid of the necessity for calibrated cameras.

Multi-Camera Hough Voting

Given the precondition, that all objects to be tracked are moving on a plane, a planar
homography can be utilized to map an image point to the corresponding point on a com-
mon plane. Formally, given an image point p, and the homography H, the corresponding
point p′ on the common plane can be computed by

p′ = Hp, (4.1)

where p and p′ are homogeneous three-dimensional vectors, and H is a homogeneous
3× 3 matrix, specifying the projective transformation between the two planes. To obtain
2D coordinates, the resulting vector p′ is normalized by its third component, i.e., p̃′ =(

p′
1/p′

3, p′
2/p′

3, p′
3/p′

3

)>. The transformation is defined up to scale, consequently, it has
only eight degrees of freedom [43].

48 Chapter 4. Tracking By Detection

Even though, such a ground plane assumption may be easily invalidated by out-of-plane
motions, i.e., if an object doesn’t move on the ground plane, its advantage is that it can
be applied to arbitrary scenes, requiring no more input than the raw images. Likewise,
it is also employed in order to avoid special calibration effort, which is necessary for a
fully calibrated camera setup. In fact, planar homographies can easily be estimated by
extracting interest points from each view (e.g., SIFT points [56]), and estimating the
homography from one view to each other, e.g., by utilizing RANSAC [27].

A major limitation for approaches which are basing on the ground plane assumption is
that the computed projective transformation is only valid for points lying on the ground
plane. This causes unreliable projections for other points, and may results in ghost projec-
tions which need to be explicitly handled (see Fig. 4.6(a)). In order to overcome these lim-
itations, 3D reconstructions based on calibrated cameras are employed [41, 67]. However,
also these approaches suffer from ghost detections in special situations (see Fig. 4.6(b)).
Even worse – such situations are more likely the higher the number of observed objects
is, since it then becomes increasingly difficult to carve out unoccupied regions. Further-
more, this problem is even aggravated for robust schemes, which do not strictly require
silhouettes to be observed in every view [41]. To overcome the problem of ghost detections
without requiring calibrated cameras, we follow the approach of [81]. It is based on the
previously introduced Hough Forests (see Sec. 2.2). They propose to cast votes for the
foot-points of persons. Subsequently, based on the ground plane assumption, these votes
can be reliably projected to the common plane and fused therein (see Fig. 4.6(c)).

This approach has several advantages. First, only points actually lying on the ground
plane are projected to the common plane and, thus, no unreliable projections need to be
handled in the sequel. Furthermore, by mapping the foreground likelihood directly to the
common ground plane, the information from all views can easily be fused. In this way,
the uncertainty for the foot-point prediction as well as the uncertainty in the projection
is expressed, while still preserving robustness to occlusions [81]. Nevertheless, for various
applications it was shown that the performance of Hough voting schemes decreases with
the length of offsets [16, 21, 79]. Hence, we have to aim at using as short offsets as
possible. Voting for the foot-point, though, would mean to use offsets up to twice as long
as for center-voting. To this end, we slightly adapt their ideas. We follow the original
formulation [32] and train our forest for center voting. However, at detection the cast
votes are offset, so that they actually vote for the foot-point. For that purpose, the offset
from center to foot-point is computed based on the scale of the detected object. Hence,

4.2. Multiple Camera Tracking 49

(a) Background subtrac-
tion based approach: Fore-
ground pixels are projected
to the common plane, caus-
ing ghost detections by pro-
jecting points not actually
lying on the ground plane

(b) 3D reconstruction based
approach: Relying on cal-
ibrated cameras, the fore-
ground regions are used
to reconstruct the visual
hull. Thereby, unoccupied
regions also happen to lie
inside the silhouettes, and
thus, cause ghost detections

(c) Joint Hough voting
based approach: Votes are
cast for the foot-points of
the persons, and only then,
projected to the common
plane. Hence, uncertainties
are implicitly considered by
projecting the actual Hough
votes.

Figure 4.6: Comparison between common approaches to multi-camera tracking (a) based on
background subtraction, (b) 3D reconstruction, and (c) the approach based on Hough voting onto
a common ground plane, which we are following. Images (a), and (c) are taken from [81].

we can now vote for the foot-points of the persons, without increasing the uncertainty in
the voting process due to artificially elongated votes.

Strong Adaptive Models

One-shot trackers usually face problems for strong appearance changes of the target object.
For example, with a simple turn, a persons appearance changes, e.g., from front to side
view. For a one-shot tracker trained on a single view this may already causes severe
problems (see e.g., Fig. 4.7). Nevertheless, for a task where the object class is known
in advance this problem can easily be overcome by employing a pre-trained classifier. In
our case, the goal is to track persons moving on a common ground plane. Thus, we can
pre-train a generic person detector off-line. Nevertheless, we want to integrate instance
discrimination into the model, and therefore, the pre-trained detector needs to be adapted
towards this end. This could be done in advance, however, requiring a massive labeling
effort. Hence, for our case, the model is updated on-line.

An important issue towards separation of the instances are the splitting tests of the
Hough Forest. Obviously, the splitting tests of a generic person detector do not appear
to be very discriminative when aiming at separation of specific instances. For example,

50 Chapter 4. Tracking By Detection

(a) (b)

Figure 4.7: Illustration of a problem case for a one shot tracker: The person remains at the
position of the first frame annotation (a) while working at the table for some time; (b) when
the person finally walks away and thus, its appearance changes, the tracker tends to stick to the
background, which exhibits several distinctive image features, to which the part based model has
been adapted.

color information (i.e., the color channels) is not intensively used by a generic forest
classifier, since it is not well suited for distinguishing between foreground and background.
However, for instance separation this is apparently one of the most important cues. Hence,
a generic person detector is not an appropriate choice for separation of specific instances.
Nevertheless, a Hough Forest – being a part based detector – trained for person detection
is able to segregate the individual parts an object consists of. For example, for person
detection, parts like the feet, the head, or the torso are clustered together. The color of
each part is highly informative when it comes to discrimination between object instances.
Thus, a straightforward way to differentiate between individual instances is to apply a few
additional splitting tests based on the existent clustering of a pre-trained forest. To this
end, we restrict the optimization (c.f ., Eq. (2.11)) solely to the instance samples, when
selecting the best split at a node. Figure 4.8 illustrates the importance of color information
for the splits, which are added to the pre-trained forest.

The data samples extracted from the detected instances are traversed down the trees
reaching the respective leafs. Analogous to the process described for single cam tracking,
we collect the samples together with their instance specific offsets at the leafs until a fixed
number of samples m arrived from each instance. Subsequently, a split is optimized on
m |E| instance samples, where |E| denotes the number of instances. To ensure the samples
to be balanced over the instances, we draw a sub-sample from all instance samples arrived

4.2. Multiple Camera Tracking 51

Ix Iy − − − H o G − − − Ixx Iyy L a b
0

20

40

60

80

100

120

140

160

180

200

Channels

n
u
m

b
e
r

o
f
n
o
d
e
s
/s

p
lit

s

Figure 4.8: Histogram over the feature channels selected for model extension during tracking. The
b-channel is by far most important to separate the instances. For computation of the histogram
we used the Set 1 sequence from the Medium dataset [72]. See Fig. 4.12–4.14 for some example
images.

at the leaf. Considering the issues regarding over-fitting, mentioned in Sec. 3.3, this process
is repeated only for a small number of additional depth levels. Furthermore, in order
to keep the good generalization performance, we keep the samples from the pre-trained
classifier, split them according to the selected splitting tests, and use them to build reliable
statistics at the newly created leafs. Nevertheless, since only very few additional splits are
made, the samples doesn’t have to be kept forever, which would obviously require infinite
memory and hamper runtime. Instead, after the defined number of splits are made, we
keep the tree depth fixed and discard all collected samples. Subsequently, only the class-,
instance-, and offset-statistics are updated.

During detection, we are interested in p
(
h(E, y,u, s)|x

)
, where h(E, y,u, s) denotes

the hypothesis for an object instance E, which is from class y, and centered at u, with
scale s. Similar to Eq. (3.6), for a single data sample xv and tree t we get

pt
(
h(E, y,u, s)|xv

)
=
∑

c

(
1c

(
su(u− v)

s

)
wc

)
pt(E|y,xv) pt(y|xv), (4.2)

where 1 again denotes the indicator function, and pt(E|y,xv) is the instance probability,
which is estimated from the ratio of samples from instance E to all samples from the
corresponding class y arrived at the leaf lt during on-line updating. Furthermore, the
weight for a grid cell center wc is now computed based on all pre-trained class offsets O(y)

lt

52 Chapter 4. Tracking By Detection

and the instance specific offsets O(E)
lt

supporting it:

wc = 1∣∣∣O(y)
lt

∣∣∣+ ∣∣∣O(E)
lt

∣∣∣
∑

o∈O(y)
lt
∪O(E)

lt

1c
(
χ(o)

)
, (4.3)

where χ(o) shall again give the cell center closest to the offset vector o:

χ(o) = argmin
c
‖o− c‖2 . (4.4)

As one can see, the confidence p
(
h(E, y,u, s)|x

)
is separately evaluated for each instance.

Hence, at detection time, a separate Hough space needs to be set up for each instance.
When simultaneously observing an object from multiple viewpoints the appearance of

the object is different in each view. For tracking, the appearance of a target object in
a single view will change over time when it is moving. Similarly, this holds for all other
views. Since it is still the same object, at some point, its appearance in one view may be
very similar to the appearance previously observed in some other view. This real world
constraint can be exploited by employing a single comprehensive classifier, simultaneously
updated from all views, instead of training a separate classifier for each view.

Random Forests are able to handle a huge amount of data and a significant amount
of noise [7, 34, 66], which could be introduced by the large variability in the data from
different views. Hence, together with our efficiency-raising adaptions, Random Forests are
a good choice for the task of multi-camera, multi-instance tracking.

Overall Workflow

We now summarize the whole process: A generic person detector is trained as described
in Section 2.2. At the first frame the detector is updated with samples from each object
instance in the scene. These are extracted in a one-shot manner, either from the first frame
annotations, or alternatively, from the objects detected by the initial model. The model is
subsequently evaluated in each frame, the votes are projected to the foot-point, and further
to the common ground-plane. Therein, the votes from all views are accumulated and the
maximum is found. This is back-projected to the individual views, where the object
position is updated accordingly. The object scale on the other hand is solely estimated
based on the information from the specific camera. From the updated object bounding
boxes new samples are extracted for each instance from all views and feed into the model.
To this end, not only the statistics at the leafs are updated, but the model is extended

4.2. Multiple Camera Tracking 53

Figure 4.9: The multi-camera tracking loop; illustrates the overall workflow of our approach to
multi-camera tracking.

towards instance separation. See Fig. 4.9 for an overview of our approach to multi-camera
tracking.

4.2.2 Experiments

In the following, we describe our experiments on a dataset for multi-camera object tracking.
In order to be able to directly compare our method to the baseline of Sternig et al.
[81], we utilize the same publicly available dataset [72], together with their ground truth
annotations, kindly provided by the authors of [81]. The dataset, denoted Set 1, shows
an indoor scene, with three persons walking around, whereby they are regularly occluding
each other. The scene is captured by three different cameras and the whole sequence
consists of more than 2500 frames. For quantitative evaluation every tenth frame has
been annotated.

For the experiment we pre-trained a Hough Forest on the publicly available INRIA
person dataset†. The forest contains 5 trees, and was trained down to a maximum depth
of 17. We used sub-sampling already during off-line training and restricted the splitting
tests to two-value-splits. For performance reasons, we sampled every second pixel (i.e.,
δ = 2), discarded the min-, and max-filtration (i.e., F = 16), and rescaled the objects to
an unit scale su = 75. Similar to our approach for single camera tracking, we updated
the forest using positive and negative data samples, as long as the confidence exhibited
some minimum value in the given view. During updating we use our on-line sub-sampling
†http://pascal.inrialpes.fr/data/human/

http://pascal.inrialpes.fr/data/human/

54 Chapter 4. Tracking By Detection

Method Error (in pixel)

Sternig et al. [81] 23.9
MultiInstanceHF (δ = 2;F = 16) 18.8
MultiInstanceHF (δ = 3;F = 5) 152.2

Table 4.3: Mean error in pixel on ground plane for different settings of our approach (MultiIn-
stanceHF) and the related work on Set 1.

strategy, introduced in Sec. 4.1, in order to extend the pre-trained trees for a maximum
of three additional depth levels.

For our evaluation, we omit the first part were no person, or not all persons are
visible. For the remaining sequence of about 1500 frames, we computed the pixel errors
on the ground plane. In Tab. 4.3 the averaged error for our approach is compared to
the one given in [81]. It shows that our single comprehensive classifier (MultiInstanceHF
(δ = 2;F = 16)), adapted for instance discrimination, is able to outperform their model,
without relying on the results of an additional particle filter. The corresponding errors for
each frame are shown in Fig. 4.10, whereas illustrative results are given in Fig. 4.12–4.14.

As for the evaluation in Sec. 4.1, we compare to a setting where we use only color and
first order gradient information as well as a higher sampling distance. Specifically, only 5
instead of 16 feature channels, and a sampling distance of three is used (MultiInstanceHF

1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

80

90

Frame

E
rr

o
r

o
n

 g
ro

u
n

d
 p

la
n

e
 (

in
 p

ix
e

l)

(a)

1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

80

90

Frame

E
rr

o
r

o
n

 g
ro

u
n

d
 p

la
n

e
 (

in
 p

ix
e

l)

instance id1
instance id2
instance id3

(b)

Figure 4.10: Error in pixel on the ground plane over time: (a) Mean error over the instances (to
be compared to the plot given in [81]), and (b) broken down for each instance. See Fig. 4.15 for
further details on the problem around frame 1200. The results were generated by setting F = 16
and δ = 2.

4.2. Multiple Camera Tracking 55

(δ = 3;F = 5)). For single cam tracking this resulted in an additional runtime drop by
more than 60 percent (see Sec. 4.1). In contrast, for tracking with multiple cameras, the
additional runtime gain is only about 20 percent. The reason for this relatively small gain
is that the projection of the Hough votes from each camera to the ground plane is the
dominating part, taking more than 70 percent of the overall runtime. In fact, without
the efficiency enhancements introduced in this work (see Sec. 3) the overall runtime is
about 13 seconds per frame on a single dual core machine. Approximately 4 of these 13
seconds (i.e., ∼30%) are spent on the projection of the votes from each camera to the
common plane. For our sped-up approach (MultiInstanceHF (δ = 2;F = 16)) the runtime
is still 5.5 seconds, but, since the projection alone accounts for 4 seconds, the detection
part has been reduced from nearly 70% to less than 30%. For the further reduced setting
(MultiInstanceHF (δ = 3;F = 5)) the runtime is brought down to 4.4 seconds, i.e., the
projection part takes even 90% of the time. This shows that for addressing the detection
speed the maximum possible runtime gain is nearly reached. Hence, for an additional,
significant runtime gain we would have to address the fusion of information from the
individual cameras instead of the detection part.

Nevertheless, we can see that relying on color and first order gradient features may
not be enough to discriminate the instances. The reduced setting (MultiInstanceHF (δ =
3;F = 5)) is not able to correctly distinguish between similarly dressed instances in special
cases. For our evaluation the detector fails to discriminate instance id2 and id3, which
both wear blue jeans, a mostly white shirt, and black shoes (see Tab. 4.3 and Fig. 4.11).

While the more complex tracker (MultiInstanceHF (δ = 2;F = 16)) is usually able
to follow the instances, it suffers in situations where the foot point of a person cannot be
reliably estimated from all three cameras. An example is shown in Fig. 4.15. In this case,
the foot points, which provide relevant information for the tracker are not visible in two
of the three cameras. As a result, the tracker is stuck behind the person, and recovers
only a few frames later. This happens despite the fact that the foot point is visible in
one of the camera views. However, in the specific case, the tracker is most confident for
a view where most of the person is visible except for the foot point. Thus, the tracker
fails to correctly localize the foot point in this view. But, due to the high confidence, the
position proposal from this view still wins against the proposal from the view where the
foot point is indeed visible. While, the reason for the lower confidence in that view is not
completely obvious, we hypothesize that the specific instance appearance isn’t sufficiently
modeled by our forest up to this point.

56 Chapter 4. Tracking By Detection

1200 1400 1600 1800 2000 2200
0

100

200

300

400

500

Frame

(a)

1200 1400 1600 1800 2000 2200
0

100

200

300

400

500

Frame

instance id1

instance id2

instance id3

(b)

Figure 4.11: Error in pixel on the ground plane over time: (a) Mean error over the instances, and
(b) broken down for each instance. The results were generated by setting F = 5 and δ = 3. The
“red tracker” falsely coalesces with the “blue instance” after frame 1200, whereas later the labels
are even switched. Note, the different scale on the y-axis when comparing to Fig. 4.10.

Another problem is robust estimation of the scale‡. The individual trackers are only
enforced to agree on the position estimation. While, this information – gathered from all
views – is fused on the common plane, the scale has to be estimated solely based on a
single view. The left and middle image in the top row of Fig. 4.15 shows examples, where
the scale estimation is imperfect. The position is usually reliably determined despite
occlusions in specific views, but not the object scale. In situations, where an instance
is occluded in a view, a scale still needs to be estimated for that view in order to be
able to resume tracking after the occlusion disappeared. However, the scale estimation in
such cases may be nearly arbitrarily wrong. To this end, one may simply fix the scale to
what it was before the confidence dropped below some predefined threshold. This is sane,
because, in cases where not enough parts of an object are visible – which is indicated by
low confidence – no scale should be estimated. Nevertheless, the scale of an object may
change during occlusion. Without any additional information about the relative positions
of the cameras, we are unable to detect that. However, in our experiments this problem
doesn’t significantly affect the tracking accuracy on the ground plane. This is because in
the employed dataset an object is always visible in at least one of the cameras. Thus,

‡From our experiments it seems that the scale estimation suffers most from the reduced number of trees
in the forest.

4.2. Multiple Camera Tracking 57

(a) (b)

(c) (d)

Figure 4.12: Illustrative Tracking results on Set 1 overlaid on the camera views (a-c), and the
ground plane (d), where the filled circles represent the tracking result and the unfilled the ground
truth annotation; colors correspond to instances.

the ground plane position can be reliably estimated from this view, and the correct scale
could usually be recovered after occlusion.

58 Chapter 4. Tracking By Detection

(a) (b)

(c) (d)

Figure 4.13: Illustrative Tracking results on Set 1 overlaid on the camera views (a-c), and the
ground plane (d), where the filled circles represent the tracking result and the unfilled the ground
truth annotation; colors correspond to instances.

4.2. Multiple Camera Tracking 59

(a) (b)

(c) (d)

Figure 4.14: Illustrative Tracking results on Set 1 overlaid on the camera views (a-c), and the
ground plane (d), where the filled circles represent the tracking result and the unfilled the ground
truth annotation; colors correspond to instances.

60 Chapter 4. Tracking By Detection

Figure 4.15: Problem case where the multi-cam tracker can’t follow one of the instances; top
row shows frame 1201 for each of the views, overlaid with the resulting bounding boxes; colors
correspond to the instances; the “red” tracker is stuck behind its instance (see text for discussion);
bottom row shows illustrations of the ground plane (for orientation reasons, black crosses and the
yellow-black dashed line in the scene are here visualized by black dots and a solid line, respectively);
the ground plane is overlaid with the tracking result (filled circles), and the respective ground truth
locations (unfilled circles); ground plane results are given for frame 1201 (bottom left), and the
next annotated frame 1211 (bottom right), where the tracker has already recovered from failure;
another problem which can be seen in the left and middle camera view is the imperfect scale
estimation for the “green” bounding boxes.

Chapter 5

Conclusion & Outlook

Contents
5.1 Conclusion . 61

5.2 Outlook . 62

In this work we reviewed the Random Forest framework and employed their recently
introduced adaption for visual object detection, namely Hough Forests. We pointed out
several limitations regarding their efficiency, as well as their applicability to the on-line
domain. For object detection we showed that the runtime of Hough Forests can be reduced
by one to two orders of magnitude for only little loss in accuracy. The gathered insights
were subsequently applied to the task of tracking in a tracking-by-detection manner. To
this end, we utilized the system to track single instances from single cameras, as well as
to track multiple instances from multiple cameras. For both cases we showed that our
method is able to perform robust tracking at a significantly increased frame rate.

5.1 Conclusion

Our study of the computational cost is built on a theoretical analysis, where we identified
each runtime critical part of a tracking-by-detection approach based on Hough Forests.
Thus, we analyzed the whole process starting from the required data complexity through
to prediction. For instance, we pointed out that the classifier complexity can be easily
reduced, enabling us to cut the runtime to one third without any loss in accuracy. Fur-
thermore, we found that the underlying data complexity, the number of required feature
channels, as well as the sampled image patches fed into the forest can be reduced without
significantly affecting accuracy. Another issue with Hough Forests is that the time for

61

62 Chapter 5. Conclusion & Outlook

prediction is correlated with the number of training samples. Hence, the Random Forests
ability of handling a large amount of training data, which is crucial for building strong
models, is lost for Hough Forests. In this work, we investigated this issue and brought up
a novel solution, which enabled us to extend Hough Forests on-line during tracking in an
effective but still efficient way. More specifically, we combined incremental offset statistics
and vote compression in order to build efficient and strong models which are still open
for adaption. Overall, we were able to build an object detector, which scores within a few
percent of the baseline, while reducing the detection time by a factor of 40.

The proposed method for object detection is designed to be easily adaptable for the task
of tracking. It enables us to update a pre-trained classifier on-line, so that the classifier can
discriminate between specific object instances. Consequently, we are able to track multiple
instances without the inherent requirement for costly post-processing, on which other
approaches are relying. Together with the aforementioned efficiency enhancements, we
were able to build a tracking system which runs at a fraction of the runtime of the original
approach. For instance, reducing the feature dimensionality and the sampling density
may be expected to negatively affect the accuracy. However, we found that by carefully
adapting the system towards this end, we can reduce the runtime without suffering a
performance loss. Despite this reduction of the detectors complexity, we showed that our
system is still able to match the state-of-the-art in terms of accuracy.

5.2 Outlook

Despite the discussed advantages, some open issues are still remaining: The proposed
method for instance separation is based on visual appearance, which is one of its major
strengths – distinguishing it from related approaches. Nevertheless, relying solely on
appearance will certainly cause failures in some cases. For example, when many similarly
dressed persons are present in the scene visual appearance lacks in its discriminability.
Prior knowledge may be used to overcome this problem for special applications. For
instance, in team sports the behavior of the target objects is strongly correlated to the
current positions of other objects, which has shown to be beneficial for distinguishing
many similarly dressed players [55]. For more general cases, the proposed method can be
adapted, e.g., by adding a particle filter [33, 44], or an additional analysis of individual
trajectories [12, 22, 59]. Such a post-processing could also be used in order to further
reduce the computational complexity of the employed detector.

5.2. Outlook 63

Another possible cause of failures is weak estimation of the object scale. It has been
shown that the estimation of the exact bounding box, defined by the scale of an object,
is easily disturbed with our approach. The foot point positions are found by fusing the
information from all views and are, thus, reliably localized. The scale on the other hand
is solely based on the information from a single view and, hence, less robustly estimated.
While scale estimation can hardly be fused from all views in our case, calibrated cameras
may be used to do so.

64

Bibliography

[1] Amit, Y. and Geman, D. (1994). Randomized inquiries about shape; an application
to handwritten digit recognition. Technical Report 401, Department of Statistics, Uni-
versity of Chicago, IL.

[2] Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and
people-detection-by-tracking. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[3] Andriyenko, A. and Schindler, K. (2011). Multi-target tracking by continuous energy
minimization. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[4] Babenko, B., Yang, M.-H., and Belongie, S. J. (2009). Visual tracking with online
multiple instance learning. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[5] Ballard, D. (1981). Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition, 13(2):111 – 122.

[6] Barinova, O., Lempitsky, V. S., and Kohli, P. (2012). On detection of multiple ob-
ject instances using hough transforms. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 34(9):1773–1784.

[7] Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2):105–139.

[8] Benenson, R., Markus, M., Tuytelaars, T., and Van Gool, L. (2013). Seeking the
strongest rigid detector. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition.

[9] Berclaz, J., Fleuret, F., and Fua, P. (2008). Principled detection-by-classification from
multiple views. In Proc. Int’l Conf. on Computer Vision Theory and Applications.

[10] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[11] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and Regression Trees. Wadsworth.

BIBLIOGRAPHY 65

[12] Butt, A. A. and Collins, R. T. (2013). Multi-target tracking by lagrangian relax-
ation to min-cost network flow. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[13] Caruana, R., Karampatziakis, N., and Yessenalina, A. (2008). An empirical evaluation
of supervised learning in high dimensions. In Proc. Int’l Conf. on Machine Learning.

[14] Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison of supervised
learning algorithms. In Proc. Int’l Conf. on Machine Learning.

[15] Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(5):603–
619.

[16] Cootes, T. F., Ionita, M. C., Lindner, C., and Sauer, P. (2012). Robust and accurate
shape model fitting using random forest regression voting. In Proc. European Conf. on
Computer Vision.

[17] Cortes, C. and Vapnik, V. N. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

[18] Criminisi, A., Shotton, J., and Konukoglu, E. (2012). Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-
supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-
3):81–227.

[19] Criminisi, A., Shotton, J., Robertson, D. P., and Konukoglu, E. (2010). Regres-
sion forests for efficient anatomy detection and localization in CT studies. In Medical
Computer Vision Workshop (MICCAI).

[20] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[21] Dantone, M., Gall, J., Fanelli, G., and Van Gool, L. (2012). Real-time facial feature
detection using conditional regression forests. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition.

[22] Dicle, C., Camps, O., and Sznaier, M. (2013). The way they move: Tracking multiple
targets with similar appearance. In Proc. IEEE Int’l Conf. on Computer Vision. (to be
published).

66

[23] Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An
evaluation of the state of the art. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 34(4):743–761.

[24] Eshel, R. and Moses, Y. (2010). Tracking in a dense crowd using multiple cameras.
Int’l Journal of Computer Vision, 88(1):129–143.

[25] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010).
The pascal visual object classes (voc) challenge. Int’l Journal of Computer Vision,
88(2):303–338.

[26] Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time head pose estimation
with random regression forests. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[27] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395.

[28] Fix, E. and Hodges, J. (1951). Discriminatroy analysis - nonparametric discrimina-
tion: Consistency properties. Technical Report 4, USAF School of Aviation Medicine,
Randolph Field, Texas.

[29] Fleuret, F., Berclaz, J., Lengagne, R., and Fua, P. (2008). Multicamera people track-
ing with a probabilistic occupancy map. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 30(2):267–282.

[30] Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of on-line
learning and an application to boosting. In Proc. European Conf. on Computational
Learning Theory.

[31] Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm.
In Proc. Int’l Conf. on Machine Learning.

[32] Gall, J. and Lempitsky, V. S. (2009). Class-specific hough forests for object detection.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[33] Gall, J., Razavi, N., and Van Gool, L. (2010). On-line adaption of class-specific
codebooks for instance tracking. In Proc. British Machine Vision Conf.

BIBLIOGRAPHY 67

[34] Gall, J., Razavi, N., and Van Gool, L. (2011a). An introduction to random forests
for multi-class object detection. In Theoretical Foundations of Computer Vision.

[35] Gall, J., Yao, A., Razavi, N., Van Gool, L., and Lempitsky, V. S. (2011b). Hough
forests for object detection, tracking, and action recognition. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 33(11):2188–2202.

[36] Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63(1):3–42.

[37] Girshick, R. B., Shotton, J., Kohli, P., Criminisi, A., and Fitzgibbon, A. W. (2011).
Efficient regression of general-activity human poses from depth images. In Proc. IEEE
Int’l Conf. on Computer Vision.

[38] Godec, M., Roth, P. M., and Bischof, H. (2011). Hough-based tracking of non-rigid
objects. In Proc. IEEE Int’l Conf. on Computer Vision.

[39] Godec, M., Roth, P. M., and Bischof, H. (2013). Hough-based tracking of non-rigid
objects. Computer Vision and Image Understanding, 117(10):1245–1256.

[40] Grabner, H., Leistner, C., and Bischof, H. (2008). Semi-supervised on-line boosting
for robust tracking. In Proc. European Conf. on Computer Vision.

[41] Guan, L., Franco, J.-S., and Pollefeys, M. (2008). Multi-object shape estimation and
tracking from silhouette cues. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[42] Hare, S., Saffari, A., and Torr, P. H. S. (2011). Struck: Structured output tracking
with kernels. In Proc. IEEE Int’l Conf. on Computer Vision.

[43] Hartley, A. and Zisserman, A. (2006). Multiple view geometry in computer vision (2.
ed.). Cambridge University Press.

[44] Hess, R. and Fern, A. (2009). Discriminatively trained particle filters for complex
multi-object tracking. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion.

[45] Kalal, Z., Matas, J., and Mikolajczyk, K. (2010). P-N learning: Bootstrapping binary
classifiers by structural constraints. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition.

68

[46] Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-learning-detection. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 34(7):1409–1422.

[47] Khan, S. M. and Shah, M. (2009). Tracking multiple occluding people by localizing
on multiple scene planes. IEEE Trans. on Pattern Analysis and Machine Intelligence,
31(3):505–519.

[48] King, R. D., Feng, C., and Sutherland, A. (1995). StatLog: Comparison of classifica-
tion algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):289–
333.

[49] Kluckner, S., Mauthner, T., Roth, P. M., and Bischof, H. (2009). Semantic classi-
fication in aerial imagery by integrating appearance and height information. In Proc.
Asian Conf. on Computer Vision.

[50] Küttel, D., Breitenstein, M. D., Van Gool, L., and Ferrari, V. (2010). What’s going
on? discovering spatio-temporal dependencies in dynamic scenes. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition.

[51] LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H.,
Guyon, I., Müller, U., Säckinger, E., Simard, P., and Vapnik, V. N. (1995). Comparison
of learning algorithms for handwritten digit recognition. In Proc. Int’l. Conf. on Artificial
Neural Networks.

[52] Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust object detection with inter-
leaved categorization and segmentation. Int’l Journal of Computer Vision, 77(1-3):259–
289.

[53] Leistner, C., Godec, M., Saffari, A., and Bischof, H. (2010). On-line multi-view forests
for tracking. In Proc. DAGM Symposium.

[54] Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized trees for real-time keypoint
recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[55] Liu, J., Carr, P., Collins, R. T., and Liu, Y. (2013). Tracking sports players with
context-conditioned motion models. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition.

[56] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int’l
Journal of Computer Vision, 60(2):91–110.

BIBLIOGRAPHY 69

[57] Maji, S. and Malik, J. (2009). Object detection using a max-margin hough transform.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[58] McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4):127–147.

[59] Milan, A., Schindler, K., and Roth, S. (2013). Detection- and trajectory-level exclu-
sion in multiple object tracking. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition.

[60] Monteiro, G., Ribeiro, M., Marcos, J., and Batista, J. (2007). Wrongway drivers
detection based on optical flow. In Proc. Int’l Conf. on Image Processing.

[61] Montillo, A., Shotton, J., Winn, J. M., Iglesias, J. E., Metaxas, D. N., and Criminisi,
A. (2011). Entangled decision forests and their application for semantic segmentation
of CT images. In Proc. Int’l Conf. on Information Processing in Medical Imaging.

[62] Nowozin, S. (2012). Improved information gain estimates for decision tree induction.
In Proc. Int’l Conf. on Machine Learning.

[63] Okada, R. (2009). Discriminative generalized hough transform for object dectection.
In Proc. IEEE Int’l Conf. on Computer Vision.

[64] Özuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2010). Fast keypoint recogni-
tion using random ferns. IEEE Trans. on Pattern Analysis and Machine Intelligence,
32(3):448–461.

[65] Özuysal, M., Fua, P., and Lepetit, V. (2007). Fast keypoint recognition in ten lines
of code. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[66] Perlich, C., Provost, F. J., and Simonoff, J. S. (2003). Tree induction vs. logistic
regression: A learning-curve analysis. Journal of Machine Learning Research, 4:211–
255.

[67] Possegger, H., Sternig, S., Mauthner, T., Roth, P. M., and Bischof, H. (2013). Robust
real-time tracking of multiple objects by volumetric mass densities. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition.

[68] Qin, T., Zhong, B., Chin, T.-J., and Wang, H. (2012). Matting-driven online learning
of hough forests for object tracking. In Proc. Int’l Conf. on Pattern Recognition.

70

[69] Quinlan, J. R. (1996). Bagging, boosting, and c4.5. In Proc. National Conf. on
Artificial Intelligence.

[70] Razavi, N., Alvar, N. S., Gall, J., and Van Gool, L. (2012). Sparsity potentials for
detecting objects with the hough transform. In Proc. British Machine Vision Conf.

[71] Razavi, N., Gall, J., and Van Gool, L. (2011). Scalable multi-class object detection.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[72] Roth, P. M., Leistner, C., Berger, A., and Bischof, H. (2010). Multiple instance
learning from multiple cameras. In IEEE Workshop on Camera Networks (CVPR).

[73] Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line
random forests. In IEEE Workshop on On-Line learning for Computer Vision (ICCV).

[74] Schreiber, D., Cambrini, L., Biber, J., and Sardy, B. (2008). Online visual quality
inspection for weld seams. Int’l Journal of Advanced Manufacturing Technology, 42(5-
6):497–504.

[75] Schulter, S., Leistner, C., Roth, P. M., Van Gool, L., and Bischof, H. (2011). On-line
hough forests. In Proc. British Machine Vision Conf.

[76] Schulter, S., Roth, P. M., and Bischof, H. (2013). Ordinal random forests for object
detection. In Proc. DAGM Symposium.

[77] Sharp, T. (2008). Implementing decision trees and forests on a GPU. In Proc.
European Conf. on Computer Vision.

[78] Shotton, J., Fitzgibbon, A. W., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from
single depth images. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[79] Shotton, J., Girshick, R. B., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M.,
Moore, R., Kohli, P., Criminisi, A., Kipman, A., and Blake, A. (2012). Efficient human
pose estimation from single depth images. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 99(PrePrints):1.

[80] Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet
photo collections. Int’l Journal of Computer Vision, 80(2):189–210.

BIBLIOGRAPHY 71

[81] Sternig, S., Mauthner, T., Irschara, A., Roth, P. M., and Bischof, H. (2011). Multi-
camera multi-object tracking by robust hough-based homography projections. In IEEE
Workshop on Visual Surveillance (ICCV).

[82] Sun, M., Kohli, P., and Shotton, J. (2012). Conditional regression forests for human
pose estimation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition.

[83] Tang, D., Yu, T., and Kim, T.-K. (2013a). Real-time articulated hand pose estimation
using semi-supervised transductive regression forests. In Proc. IEEE Int’l Conf. on
Computer Vision. (to be published).

[84] Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., and Schiele, B. (2013b).
Learning people detectors for tracking in crowded scenes. In Proc. IEEE Int’l Conf. on
Computer Vision. (to be published).

[85] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., Dolan, J.,
Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard,
T. M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N., Peterson, K.,
Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.-W., Singh, S., Snider, J.,
Stentz, A., Whittaker, W. â., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish,
D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms,
M., and Ferguson, D. (2008). Autonomous driving in urban environments: Boss and
the urban challenge. Journal of Field Robotics, 25(8):425–466.

[86] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer New York,
Inc.

[87] Wohlhart, P. (2013). Object detection based on local evidence. PhD thesis, Graz
University of Technology.

[88] Wohlhart, P., Donoser, M., Roth, P. M., and Bischof, H. (2012a). Detecting partially
occluded objects with an implicit shape model random field. In Proc. Asian Conf. on
Computer Vision.

[89] Wohlhart, P., Schulter, S., Köstinger, M., Roth, P. M., and Bischof, H. (2012b).
Discriminative hough forests for object detection. In Proc. British Machine Vision
Conf.

[90] Yao, A., Uebersax, D., Gall, J., and Van Gool, L. (2010). Tracking people in broadcast
sports. In Proc. DAGM Symposium.

72

[91] Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM
Computing Surveys, 38(4).

[92] Zamir, A. R., Dehghan, A., and Shah, M. (2012). GMCP-Tracker: Global multi-
object tracking using generalized minimum clique graphs. In Proc. European Conf. on
Computer Vision.

	Introduction
	Efficiency
	Tracking
	Outline

	Preliminaries
	Random Forests
	Training
	Evaluation

	Hough Forests
	Training
	Detection
	Implementation Details
	Further Extensions and Related Work

	Efficient Hough Forests
	Theoretical Analysis
	Outline
	Classifier Complexity
	Sampling Distance
	Data Complexity
	Features
	Feature Channels
	Test Types

	Vote Compression
	Mean Shift
	Vote Grid

	Sub-sampling Revisited
	Summary & Conclusion

	Tracking By Detection
	Single Camera Tracking
	Method
	Experiments

	Multiple Camera Tracking
	Method
	Experiments

	Conclusion & Outlook
	Conclusion
	Outlook

	Bibliography

