
Nadja Lauritsch

Software Quality

Evaluation and Improving Projects in an Industrial Setting

Master Thesis

Fulfillment of requirements for the degree of

Master of Science

Study

Computer Science

Graz University of Technology

Faculty of Computer Science

Advisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Heinz Veitschegger

Institute for Software Engineering

Research Group for Software Engineering

Graz, 13.10.2013



If you have any questions or problems and need help please contact the author (EMAIL).

mailto:nadja_lauritsch@student.tugraz.at


iii

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende wissenschaftliche Arbeit selbstständig ange-

fertigt und die mit ihr unmittelbar verbundenen Tätigkeiten selbst erbracht habe. Ich erkläre

weiters, dass ich keine anderen als die angegebenen Hilfsmittel benutzt habe. Alle aus gedruck-

ten, ungedruckten oder dem Internet im Wortlaut oder im wesentlichen Inhalt übernommenen

Formulierungen und Konzepte sind gemäß den Regeln für wissenschaftliche Arbeiten zitiert und

durch Fußnoten bzw. durch andere genaue Quellenangaben gekennzeichnet.

Die während des Arbeitsvorganges gewährte Unterstützung einschließlich signifikanter Betreu-

ungshinweise ist vollständig angegeben.

Die wissenschaftliche Arbeit ist noch keiner anderen Prüfungsbehörde vorgelegt worden. Diese

Arbeit wurde in gedruckter und elektronischer Form abgegeben. Ich bestätige, dass der Inhalt

der digitalen Version vollständig mit dem der gedruckten Version übereinstimmt.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Nadja Lauritsch, Graz 13.10.2013



iv

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible, especially Heinz

Veitschegger and Jörg Schuntermann from the Infineon Technologies AG and professor Dr.

Franz Wotawa from TU Graz, for their guidance and support. I also have to thank my parents,

Angelika More, Alexander Maessen and many more, who gave me inspiration and reviewed my

thesis. I am truly grateful for the opportunity to have had such a dynamic and capable thesis

committee.



Abstract

Software quality has become more and more important, but how is this quality measured and

what does software quality mean? In literature it is not defined clearly. There are many

techniques, which have an influence on the quality of a software project. From developing

processes, coding guidelines, different test methods to software metrics, they all play a role

for the resulting quality. This thesis covers these techniques and focuses on calculating static

code metrics. Finally an evaluation for two projects (c# and java) is done with Sotoarc and

Sotograph.

Keywords: Software quality, software metrics, coding guidelines, testing techniques, Sotoarc,

Sonograph



vi



Contents

1 Introduction 1

1.1 Aim of the master thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5

2.1 Software quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Importance of software quality . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Costs to repair defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Product quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Constructive quality assurance . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Analytical quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Process quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Software infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Management process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Maturity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Observer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Structural Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Planning and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Manual test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Unit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Functional test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



viii Contents

2.5.5 Smoke test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.6 System test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.7 Acceptance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.8 Regression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Metrics 37

3.1 Object oriented principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Abstraction, encapsulation and information hiding . . . . . . . . . . . . . 39

3.1.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.5 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Common metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Software quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Evaluation of the questionnaires . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 DND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 ITec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Tools 61

4.1 Sotoarc and Sotograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Sotoarc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Sotograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Choice of metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.4 Metrics prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Visual Studio 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Metrics in VS 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Code coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Comparison of Sotograph and VS 2010 . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Comparison of Analyst4j and VizzMaintenance . . . . . . . . . . . . . . . . . . . 79

4.4.1 Metric results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents ix

4.5.1 Sotoarc and Sotograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Visual Studio 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.3 Analyst4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.4 VizzMaintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusion and future work 83

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

List of Figures 85

Bibliography 87



x Contents



1 Introduction

When facing the task of building a skyscraper the first step contains a lot of planning work. Every

possibility must be carefully examined to avoid any unexpected surprises in the construction

process. In other words, all necessities should be discussed and clearly defined before starting

the construction work. Questions, like the material used, companies involved, time management

and numerous more have to be answered initially, so that everything goes smoothly and the

end result is a high quality skyscraper. The same method should be applied for the software

development process. It must be predictable, understandable and controllable to a high software

quality level. This scenario is optimal, but sometimes reality looks completely different. There is

not enough time to develop all the requirements, especially as far as testing and documentation

is concerned. To ensure high software quality, many books advise taking time and using several

analyzing and testing methods for preventing failures. If you follow that advices, it takes you

more time at the beginning, but at the end of the project you have a real benefit. Experience

has shown that the problem in this case is that developers have too little time to keep the quality

assurance process in mind. Under the pressure of a deadline, the solution must be ready for

the customer and the developer turns a blind eye to the existing failures. Everything that is

not really necessary for this release will be postponed. There must be a solution to meet the

deadline and also develop high quality software.

This master thesis is about evaluating existing applications. Figure 1.1 shows how many factors

play a role in software development for producing software on a high quality level. Software

quality [Hof09] is divided into product and process quality. Many techniques can be used to

improve the quality, such as using unique guidelines, testing and source code analyzing.

1.1 Aim of the master thesis

The challenge of this master thesis was to analyze existing projects from the Infineon IT-

department. By analyzing and evaluating these projects, I proposed some techniques to software

engineers in order to improve their current situation. The focus was on source code analysis and

improving software quality, because they are long-lived projects with a lot of erosion. These two

projects are iTec (Java) and DND (C#). Chronological iTec started in 2000 and DND in 2003.

During my work I defined the following assumptions:

• A1: Coding guidelines have an effect on software quality.

• A2: It is possible to measure software quality with software metrics.



2 1 Introduction

Software quality 

Product quality 

Constructive quality assurance 

Software guidelines 

Documentation 

Analytic quality assurance 

Testing 

Blackbox testing 

Whitebox testing 

Static analyse  

Software metrics  

Manual software evaluation  

Process quality 

Software infrastructure  

Build automation 

Test automation 

Software development  process 

Linear developing model 

Agile developing model  

Maturity model  

Fig. 1.1: Techniques for improving software quality



1.2 Objectives 3

1.2 Objectives

The primary objectives for this master thesis were finding a tool for analyzing projects and

calculating software metrics. In addition to analyzing selected projects, finding a set of metrics

which can be checked regularly, and improving software quality. A condition for this thesis was

to evaluate the tools by their usability and another was to find factors, which influence and

describe the software quality.

1.3 Overview

The thesis is structured in the following way:

Chapter 2 covers the topics product and process quality. Product quality summarizes coding

guidelines, documentation and analytical quality assurance. In contrast, process quality deals

with software infrastructure. Both, product and process quality, have an influence on software

quality in the form of source code readability and how the requirements can be developed

and implemented. It also contains a section about design patterns, as they are measured by

Sotograph and are clarified by an example in order to get a better understanding. Finally,

various test techniques are explained briefly.

Chapter 3 starts with a theoretical background about software metrics and object oriented

principles. At the end of this chapter the questionnaire and evaluation of the selected projects

DND and iTec are listed.

Chapter 4 includes the tools Sotoarc, Sotograph, Visual Studio 2010, Analyst4j and finally

VizzMaintenance. Differences are found by comparing calculated metric results.

Finally, Chapter 5 comprises of the conclusion, summary and future research suggestions.



4 1 Introduction



2 Preliminaries

In this chapter the term software quality is explained and described on the basis of software

criteria. Software quality can be divided into product and process quality, which are explained.

Finally, some basic design patterns and test techniques are described.

2.1 Software quality

The term software quality seems to be a simple expression, however several definitions for it

exist. Ambiguities and misunderstandings are preprogrammed [BLL04]. One software quality

definition is ”meeting the requirements”. Requirements must be measurable and will either be

met or not met. Software quality can also be described as the conformance to functional and

non functional requirements. Another definition is the degree to which a system, component,

or process meets the customer expectations. All of the project‘s necessary software criteria

must be fulfilled for an error-free usage. There is not only one criterion for measuring the

software quality, but also other criteria, such as functionality, reliability, usability, performance,

maintainability, portability and reusability. The customer and developer have different opinions

on software quality or what is important for the quality of their projects. These opinions are

based undoubtedly on their own experiences. An overview [ISO03a], [ISO03b] of the quality

criteria is shown in figure 2.1 [ISO01], which is described in the ISO\IEC 9126.

External and internal quality

functionality reliability usability efficiency maintainability

accuracy
correctness
portability
security

robustness
maturity
fault-tolerant

ease-of-use
legability

stability
testability
extendability
compatibility

performance

Fig. 2.1: Internal and external quality criteria



6 2 Preliminaries

• Functionality describes how the required functionality is really put into practice and

what the software does to fulfill the customer needs. It consists of accuracy, correctness,

portability and security. Accuracy describes the ability to provide the proper results

with the needed degree of precision. Correctness is the degree to which the software

performs the required functions accurately, and so the goal of each program is to operate

correctly. The ability to transfer the software from one environment to another is defined

as portability, e.g. can the application run on 32 and 64 bits machines? Does it run

only on Win 7? Security is the ability of a system to protect the information from

unauthorized persons with respect to confidentiality and integrity.

• The definition for reliability is the capability of the software to run under specific con-

dition for a stated period of time. Reliability contains robustness, maturity and fault-

tolerance. Robustness is the measure of how often the software freezes or crashes. Ma-

turity is the capability to avoid failures caused by software faults. The software product

has to maintain a specific level of performance in cases of software faults. In the event of

a component failing, a backup component can take its place without any loss of service.

These properties determine the fault-tolerant criteria.

• Usability is how easily the customer can handle the software. It contains ease-of-use

and legibility. Ease-of-use mean that the customer can use the software intuitively.

Legibility is characterized by the facility of reading the source code. Guidelines help the

developers implement a uniform style of code.

• For performance, it is important how the application fulfills its purpose without any

waste of resources. Time behavior and the efficiency are relevant for this criterion.

• Maintainability describes the ease in understanding the software and contains testing,

extending, modifying and verifying it. Maintainability is a very important aspect and quite

difficult to quantify. Stability is characterized as the capability of the software product to

avoid unexpected effects from modifications of the software, e.g. how often the developer

needs to fix problems. The definition for testability is the assurance that functions work

correctly and do not occur within unexpected errors. It is a method for evaluating the

source code and finding errors and failures. Extendibility amounts to further growth. It

should be easy to extend the software with new modules. Reusability is the ability to

reuse some modules from an existing software project into other projects and also deals

with compatibility. Compatibility is the ability of using a new version of the application

with an older version‘s data.

There are two groups of software quality criteria [Hof09]. The first one is the external criteria,

which are directly reflected to the customer. These criteria are functionality, performance,

reliability and usability. When it comes to the customer‘s buying behavior, these criteria are

essential. The external criteria are important for management, considering that they can observe

the progress of the project. The second group of software quality criteria is internal criteria like

testability, maintainability and portability. Only customers with a deeper understanding for the

software development can orient themselves on the internal criteria. Both, the internal and the

external criteria are very important. It‘s not possible to meet all these criteria at the same time,

for example portability and performance interfere with each other. Ronald A. Fisher formulated

this already 1958 and Gerald M. Weinberger quoted it like:



2.1 Software quality 7

”The better adapted a system is to a particular environment, the less adaptable it to new

environments.”

Gerald M. Weinberg [Wei98]

Every project has to fulfill certain software quality criteria. Knowing which techniques can be

used to measure these criteria is essential.

2.1.1 Importance of software quality

Before listing the aspects of the software quality importance, the following factors explain why

software quality can be bad and how the developer can handle that [Hof09].

The core problem in software development is the increasing complexity, due to intricacy of

software projects, which tends to be high. Any system with a higher degree of complexity will

have difficulty to reaching a certain level of reliability. The next factor is the average size of

projects, which is continuously growing as well. Therefore, the projects get more inflexible. In

earlier days of computer engineering a single developer could control and understand a project;

nowadays, this can only be managed by a large team. Another problem is in the process of

time many different developer generations are working on one and the same project. If the

project lasts about 10 years, the second or third generation is developing it. Each developer

has his own coding style, which is directly reflected in the source code. As a result, long-living

software is losing clarity and structure. In summary the software developers are fighting against

complexity and growing software size to save clarity and structure while simultaneously simplify

the maintainability. Brian Kernighan described it as follows:

”Controlling complexity is the essence of computer programming.”

Brian Kernighan [KP76]

Some techniques exists, including testing, refactoring and measuring software with metrics,

which helps to control the software problems. Many factors play a role in the quality of a

software product, but software quality is also a team effort. The software quality has an effect

on the costs as well.

2.1.2 Costs to repair defects

Defects should be detected and removed as early as possible in the software life cycle. The later

they are discovered, the harder to solve and the higher the costs to fix them. In [Zel06] there is

an analysis about the costs of detecting defects.

Phase when defect is detected Relative cost to repair

Requirements analysis 1

Design 5

Coding 10

Unit test 20

Acceptance test 50

Maintenance 200

Tab. 2.1: Relative cost to repair defects



8 2 Preliminaries

Figure 2.2 shows if the defect is discovered and corrected during development, it is vastly less

expensive than a defect released to production. The source is from IBM Systems Sciences

Institute.

Fig. 2.2: The cost of a defect in the software lifecycle [Lev11]

2.2 Product quality

Besides process quality, product quality has an influence on software quality. It contains con-

structive quality assurance and analytical quality assurance [Hof09]. This includes everything

that has an effect on software, especially on source code such as coding guidelines, documentation

and testing.

2.2.1 Constructive quality assurance

For constructive quality assurance it is essential to fulfill the criteria for a software product.

This involves using the same software guidelines for a programming language within the team

in addition to documenting the source code.

Software guidelines
Software guidelines are important for programming within a team. If every team member is

using the same coding style, the programmer feels more comfortable with the code written by

others. If there is a new member joining the team, then it is easier to read and understand the

source code.

The most important rules for programming are extracted from the Clean Code Developer book,

which are listed below [Mar08]:

Meaningful names

• Choosing good names

The name of a variable, function, or class should answer all big questions. The goal is to

clarify why the variable exists, what it does and how it is used.

• Avoid leaving false clues, that confound the meaning of the code, e.g. the variable ac-

countList should be a List.

• The names should be pronounceable, so that the team is able to discuss it.

• Single letter variable names are only okay for loops, e.g. i or j, hence mental mapping

should be avoided.



2.2 Product quality 9

• Class and object names should have noun or noun phrase names like Customer and Prod-

uct.

• Methods should have verb or verb phrase names for instance showProducts() or print().

• Avoid using the same verb for two purposes e.g do not use add for both, a method that

adds two values and returns a result and another method that puts a parameter into a

collection.

• Avoid drawing every name from the problem domain. Use computer science terms, algo-

rithm names, pattern names or math terms.

• Place names in context by enclosing them in well-named classes, functions or namespaces.

Functions

• Keep your functions small. Each function should hardly ever be 20 lines and longer.

• Functions should only do one thing. Switch statements always do n-things. They can be

tolerated, if they appear only once. They are used to create polymorphic objects and are

hidden behind an interface relationship, so that the rest of the system cannot see them.

• Do not mix levels of abstraction within one function, e.g. abstract concepts and string

manipulation.

• The code should be read from top to bottom, so that every function is followed by those

at the next level of abstraction.

• Using more then two arguments for a function should be avoided. Instead of a long list of

parameters, use instance variables.

• Avoid flag arguments; a boolean argument is an indicator that the function does more

than one thing.

• When a function seems to need more than two arguments, it is likely that some of those

arguments ought to be wrapped into a class of their own.

• Functions should either do something or answer something and not both! Separate the

command from the query.

• Separate the bodies of the try and catch blocks out into functions of their own, otherwise

error processing and normal processing would be mixed into one function.

• Do not repeat yourself! Concentrate code into base classes that would otherwise be re-

dundant.

• Every function, and every block within a function should have one entry and one exit. This

means that there should only be one return statement in a function, no break or continue

statements in a loop and never any goto statements. This is valid for large functions.

If you keep your functions small, then the occasional multiple return, break or continue

statement does no harm.

Comments

• Comments are necessarily bad and should be avoided. The older a comment is, the farther

away it is from the code it describes. Code tends to be refactored, although comments do

not.



10 2 Preliminaries

• Comments do not make up for bad code. It is better to spend time in writing comments,

that explain the code, so make sure code is clean!

• Examples for good comments:

– Legal comments, such as copyright and authorship statements.

– Informative comments like those explaining a regular expression, which is intended

to match.

– Explanation of why something was implemented in a certain way

– Warn other developers about consequences, e.g. by using a design pattern. It is a

proofed solution, but it also has consequences.

– TODO comments, but do not clutter your code with them.

– Javadocs in public APIs, but beware that they can be just as misleading as any other

comment, if they are not up to date.

• Examples for bad comments:

– Redundant comments like String customerName; //Name of the customer.

– Misleading comments including statements, that are not precise enough to be true.

– Mandated comments - it is just plain frivolous to have a rule that says every function

must have a javadoc or every variable a comment.

– Journal comments - as nowadays we have source control, there is no need to log

changes of the source file within the respective file anymore.

– Banners like //*******Service executions***** followed by a number of methods

handling various services.

– Closing brace comments, e.g. } // end if (user.isLoggedOn). Shorten your functions

and then these kinds of comments become obsolete.

– Commented out code, if you do not need it anymore, delete it. If you need the source

again after you have deleted it, you can get it from the source control.

– HTML comments - It is not the responsibility of the programmer to adorn the com-

ments with appropriate HTML.

– If you have to write a comment, then make sure it is near the code it describes. Do

not offer system-wide information in the context of a local comment.

– No historical discussions or irrelevant descriptions of details in your comments.

– The connection between a comment and the code it describes should be obvious.

– Function headers - A well-chosen name for a small function, that does one thing is

usually better than a comment header.

– Javadocs in nonpublic code.

Formatting

• Take care that your code is nicely formatted. Have an automated tool, which can apply

formatting rules for you. Style and discipline survives, however code does not.



2.2 Product quality 11

• Using the newspaper metaphor:

– The name of a source file should be simple, but explanatory.

– The upper most part of the source file should provide the high-level concepts and

algorithms.

• Separate concepts with line blanks, e.g functions.

• Lines of code, which are closely related, should appear vertically dense.

• Variables should be declared as close as possible to their usage.

• If one function calls another, they should be vertically close and the caller should be above

of the callee.

• Conceptual affinity can be a group of functions performing a similar operation such as

assertTrue() or assertFalse().

• The line edging is depending on your screen solution, but it never should be more than

100-120 characters.

• Make hierarchy of scopes visible by indenting the lines of source code in proportion to

their position in the hierarchy.

Objects and data structures

• Objects hide their data behind abstractions and expose function to operate on that data.

• Data structure exposes their data and has no meaningful functions.

• Choose the right thing for the right purpose:

– Procedural code makes it hard to add new data structures, as all the functions have

to be changed.

– Object oriented code makes it hard to add new functions, as all of the classes have

to be changed.

• A module should not know about the innards of the object it manipulates. A method f of

a class C should only call the methods of:

– C

– an object created by f

– an object passed as an argument to f

– an object held in an instance variable of C

• Avoid train wrecks like opaHandler.getOpa(”XY”).getValue().equals(”Y”) and split it up.

• Data transfer object is a class with public variables and no functions.

Error handling

• Error handling is important, but if it obscures logic, then it is wrong.

• Use exceptions rather than return code.

• Create informative error messages and pass them along with your exceptions. Log the

error in your catch.



12 2 Preliminaries

• Wrap APIs, especially third party APIs. Make sure that it returns a common exception

type. The information sent with the exception can distinguish the errors. Use different

classes, only if there are times when you want to catch one exception and allow the other

ones to pass through.

• Use the special case pattern. Create a class or configure an object so that it handles a

special case. That way, the client does not have to deal with exceptional behavior.

• Do not return null. Instead it is better to consider throwing an exception or returning a

special case object.

• Do not pass null.

Boundaries

• Use generics.

• When you use a boundary interface like Map, keep it inside the class or close to family

classes, where it is used. Avoid returning it from, or accepting it as an argument to, public

APIs.

• Use learning tests that call the third party API to verify if the third party packages work

the way, they are expected to. When there are new releases of the third party package,

run the learning test to see whether there are behavioral differences.

• Use the Adapter pattern to encapsulate the interaction with an API, whose result has only

a single place to change when the API evolves.

Unit tests

• There are three laws of TDD (Test Driven Development):

– You may not write production code until you have written a failing unit test.

– You may not write more of a unit test than is sufficient to fail and not compiling is

failing

– You may not write more production code than is sufficient to pass the currently failing

test.

• Keep tests clean! Tests have to change as the production code evolves. The dirtier the

tests, the harder they are to change.

• Tests enable change and so if you have tests, do not fear making changes to the code.

• Clean tests have to be simple, succinct and expressive, though test code does not need to

be as efficient as production code.

• Use the Build-Operator-Test pattern:

1. The first part builds up the test data.

2. The second part operates on the test data.

3. The third part checks if the operation yielded the expected results.

• Minimize the number of asserts per test.

• Test a single concept in each test function.



2.2 Product quality 13

• Another five rules of clean tests:

1. Fast - Tests should be fast, in the interest of running them frequently.

2. Independent - Tests should not depend on each other. One test should not be set up

on the conditions of the next test.

3. Repeatable - Tests should be repeatable in any environment.

4. Self-Validating - Test should have a boolean output for pass or fail.

5. Timely - Unit tests should be written just before the production code.

Classes

• Classes should be small.

• Class organization in the following order:

– Public static constants

– Private static variables

– Private instance variables

– Public functions

– Private functions

• Maintain privacy. Only use loose encapsulation as a last resort.

• Use the single responsibility principle; every class should have onley one responsibility.

• Classes should have a small number of instance variables. Each of the methods of the class

should manipulate one or more of those variables. When classes lose cohesion, you have

to split them up.

• Classes should be open for extensions, but closed for modifications. Incorporate new

features by extending the system and not by making modifications to existing code.

• Introduce interfaces and abstract classes.

• Dependency Inversion Principle - classes should depend upon abstraction, instead of con-

crete details.

Systems

• Appropriate levels of abstraction: some people are responsible for the big picture, while

other focus on the details.

• Separate the startup process. When the application objects are constructed and the de-

pendencies are ”wired” together, from the runtime logic that takes over after startup.

Achieve this by:

– Moving all aspects of construction to main() or functions called by main().

– Using factories to make the application responsible for when an object is created.

– Using dependency injection and inversion of control.

• It is a myth that we can get the systems right on the first try. Focus on implementing only

today‘s stories, then refactor and expand the system to implement new stories tomorrow.



14 2 Preliminaries

• Postpone decisions until the last possible moment. This lets you make informed choices

with the best possible information.

• Use Domain-Specific languages to minimize the communication gap between the domain

concept and the code, that implements it.

• When designing a system, use the simplest thing that can possibly work.

Emergence A design is simple when it:

• Runs all the tests

Making the system testable pushes you toward a design where the classes are small and

have only a single purpose. The fact that we have tests eliminates the fear, that cleaning

the code will break it.

• Contains no duplication

Use the Template Method pattern to remove higher-level duplication.

• Expresses the intent of the programmer

The clearer the author can make the code, the less time others will have to spend under-

standing it. Use standard nomenclature and design patterns.

• Minimizes the number of classes and methods

High class and method counts are sometimes the result of pointless dogmatism. Although

it is important to keep class and function count low. It is more important to have tests,

eliminate duplication and express yourself.

Concurrency

• Separate concurrency design from the rest of the code.

• Keep your synchronized sections as small as possible.

• Avoid using more than one method on a shared object.

• Copy objects and treat them as read-only.

• Threads should be as independent as possible, sharing no data with any other thread.

• Use the Java thread-safe collections.

• Write tests that have the potential to expose problems and run them frequently with

different configurations and load. If tests ever fail, track down the failure.

• Do not ignore system failure as one-offs.

• Allow the number of threads to be easily tuned.

• To encourage task swapping, run with more threads than processors or cores.

• Run your threaded code on all target platforms early and often.

• Use jiggling strategies while another implementation generates a random number to choose

between sleeping, yielding or just falling through.

Microsoft also provides guidelines for developers [mic11]. Design guidelines for developing class

libraries are for library development that extends and interacts with the .NET Framework. This

guideline describes rules for the naming conventions and how to name types and members in



2.2 Product quality 15

class libraries. It also includes the information on how to use static and abstract classes, how

to design libraries, that can be extended and how to design exceptions.

2.2.2 Documentation

Documentation [Hof09] is divided into external and internal documentation. For the costumers

external documentation is important, like the specification document, user manuals or online

help. Internal documentation is not visible to the customers; it is more attractive to developers.

Each developer has its own documentation style. In most cases it is seen as irksome and needless.

If only one implements the project, he knows the functionality of the project. But what happens

when he leaves the company? The result is possibly a complex source code, which may be difficult

for new programmers to understand. Solving this problem, documentation is extremely vital.

It is one essential part of the software product and has an effect on quality as well.

2.2.3 Analytical quality assurance

Analytical quality assurance contains testing methods and static analysis performed on an ex-

isting software system. The main goal is to evaluate and analyze the quality properties of the

systems. It contains software testing and statical analysis.

Software testing

For measuring software product, quality criteria are defined. For measuring these criteria, they

are divided into external and internal. Table 2.2 shows the above mentioned criteria and which

testing method could be used to measure each criterion. If there is a check mark next to the

criterion, this means it is visible to the user or developer (dev).

Name Dev User Measuring with

Functionality X X Unit test, acceptance test, integration test, regression test,
system test

Efficiency X X Performance test, load test,stress test

Reliability X X Stress test, integration stress test

Portability X X Compatibility test

Integrity X X Data test

Usability 0 X Acceptance test, prototyping, usability test

Maintainability X 0 Unit test, acceptance test, coding guidelines

Documentation X X Inline documentation, user manual

Legibility X 0 Coding guidelines

Scalability X X Performance test

Tab. 2.2: Measuring quality criteria

The above mentioned testing techniques are explained in chapter 2.5.

Statical analysis

In most cases, statical analysis is performed on source code. It guarantees that the software

meets all the quality requirements. It can be performed manually or automatically. Software

metrics are a key topic. In chapter 3, you can find a detailed description of metrics, which are

a way to analyze your source code automatically. Manual software evaluation [Hof09] works



16 2 Preliminaries

without any computer support. It contains walkthroughs, reviews and inspections, which are

applied to perform statical analyses.

The principle goal of walkthroughs is to evaluate parts of the source code by two or more

developers. A discussion takes place about the existing source code and how to improve it.

Applying the principle of multiple-eye verification, it is possible to find errors, which the author

does not see anymore. Walkthrouhgs can be combined with the search for failures. A review is

an formal variation of the walkthrough. The evaluation is based on check lists, which guarantee

completeness and comparableness. The most formal variation of manual software evaluation is

the inspection. For this different phases are defined: planning phase, overview phase, preparation

phase, inspection, post processing and checking phase.

The following enumeration compares the different ways an analysis can be performed.

• Informal vs. formal

For informal evaluations, the know-how of developers plays a role and there are no strict

rules on how the evaluation should be performed. Whereas the formal evaluation includes

a planned sequence and defined rules. Typically a walkthrough is informal and review and

inspection are formal.

• Spontaneous vs. planned

Spontaneous evaluation is started by developers, when they have the feeling that an eval-

uation is necessary. Planned evaluation is initiated by the management.

• Moderated vs. unmoderated

Walkthrough and reviews are unmoderated and all members are equal to each other. The

inspections are moderated by assigning the members to roles with different tasks. One of

the members is the moderator, who leads the meeting and tries to have a regular meeting

routine.



2.3 Process quality 17

2.3 Process quality

In order to develop software, it is important to define software infrastructure, management

process and maturity model.

2.3.1 Software infrastructure

Software infrastructure contains all processes and tools that enables developers to implement in

a productive way. This contains a version control system and build automation. Most of the

developer teams use SVN or Team Foundation Server (TFS) 2010 as a version control system.

For build automation in Java, ANT is used.

2.3.2 Management process

There are a lot of different definitions for building a high quality software product. The software

development process also has an influence on the quality. In each definition, the company has

to make a standard for the development life cycle. The used development process should be

described in the standard and the developers get their information about the policy there. It is

very important to keep it up to date and not use an outdated version. Increasing the complexity

of modern software systems makes it necessary to carry out the development in the form of best

practices. In this paper the linear an agile models are described. Numerous software processes

exist, such as the waterfall model, the Infineon internal model named SEM-I, CMM, CMMI and

SCRUM.

Waterfall model

The first description of similar development phases was made by Herbert D. Benington [Hof09].

The basic concept was used from Winston W. Royce in 1970, where he developed the waterfall

model. He described this model as implementation steps to develop a large program for delivery

to a customer. Eleven years later, that was further shaped by Barry W. Boehm. The waterfall

model gets its name from the fact it can graphically model as a cascade of six phases. The

development model is a linear model and is document driven and so the result of each phase is

a finished document.

Figure 2.3 shows the following phases in the waterfall model:

Each activity must be finished before going on the next phase. There are predefined starting and

ending points for each phase with clearly defined results. One advantage is that the model is easy

to understand. There is no chaotic development anymore as a result of the development process

being divided into several phases. It also allows you to take a step backward and correct the

errors. One of the disadvantages of this model was the missing flexibility. The execution is very

strict in the single phases. Analyses of the requirements are not completed at the beginning

and hold for the whole project duration without change. The implementation and testing is

separated and the testing is only considered at the end. It is very important to find the errors

as soon as possible, and due to that testing has to be a parallel process in every phase instead

of only at the end of the project.

SEM-I

The basis for the SEM-I is the procedure model of Siemens Austria (PSE) [Inf00]. The SEM-

I contains six different phases, which must fulfill the specific aims. In each phase there are



18 2 Preliminaries

User requirements 

System requirements 

Design 

Coding 

Testing 

Operations 

Fig. 2.3: Waterfall model

requirements, milestones and activity results involved. The phases can be repeated, because

of e.g. change requests or iterative organization of the project life cycle. There are different

options available:

• Waterfall sequence model

• Spiral sequence model

• Prototype sequence model

• Evolution sequence model

• Expansion stages model

The advantage of the spiral model compared to the waterfall model is the division of the lifecycle

into several steps that can be evaluated. Especially in large projects with a long period of

development this can reduce the risk of incorrect development.

SCRUM
Scrum is an agile approach of software development [Sch04]. It is characterized by small sprints,

which last for 30 consecutive days. Everyday the developing team comes together for a 15

minutes inspection and discuss the progress, especially what has changed since the last daily

Scrum.

There are three distinct roles defined:

1. Product Owner,

2. Scrum Master and the

3. Scrum Team

Product Owner represents the business and tries to improve the trust relationship to the cus-

tomers. The Scrum Master mind is on coaching the team and helping the members to use the

Scrum framework. The Scrum Team implements the Sprint Backlog. The team is supported

by the Scrum Master and the Project Owner. It is self organizing, so that each person can



2.3 Process quality 19

contribute in whatever ways they best can in order to complete the work of each sprint. Now

the work flow is described in more detail.

At the beginning the Product Owner has the product idea. He works on the idea as long as he

gets a product vision out of it. In the end the Product Vision contains the basic idea. The next

step is to discuss the product functionality and record it in a list, the so-called Product Backlog.

After collecting all of the items, they get rated on their financial profit. Each Product Backlog

has to be regarded by its size by the Scrum Team. The team consists of all software developers,

who implement the item. They also have to evaluate the size and feasibility and discuss their

solution with the assessment from the Product Owner. If the vision gets an okay from all

necessary instances, the work can start. At the beginning of each Sprint, the team discusses the

functionality from the backlog and associates items to a Sprint on which functionality is going

to be implemented. At the end of each Sprint there has to be software, which is ready to be

delivered to the customer. In the Scrum terminology this is called potential shippable business

functionality or usable software.

Figure 2.4 shows a part of the Scrum workflow. It shows how the functionality is developed

step-by-step. There is always a check on feasibility as well as on on time management.

Product
 Backlog

Increment of 
functionality

Fig. 2.4: Scrum skeleton

At first, a Sprint Plan Meeting 1 takes place, where the Product Owner, the Team, the manage-

ment and the customer come together to talk about the Sprint Goal. All of the requirements to

implement and the functionality are discussed in detail. That way, at the end of the meeting,

everybody has a clear idea about the desired work. The Items for the next Sprint are gathered

together in the Selected Product Backlog. At the Sprint Planning Meeting 2, the team has a

chance to discuss the requirements and the result of this meeting is the Sprint Backlog. Then

the implementation phase from the team can start. Every day, they come together and discuss

what happened yesterday, which problems occurred and which tasks are to be implemented for

today. This conversation should be at least 15 minutes and is moderated by the Scrum Master,

who tries to help the team achieve the aim. To show the progress of the project, a Scrum board

is used. On this board, the actual progress is shown, including which story cards are still in

progress. Furthermore, each developer can pick a task and put their name on it. The story card



20 2 Preliminaries

describes the functionality and contains estimation about the complexity of this task and how

much time and effort is spent on it.

2.3.3 Maturity model

The maturity model is for rating and optimizing the software process. Capability Maturity

Model (CMM) and Capability Maturity Model Integration (CMMI) belong to this categoriza-

tion.

Capability Maturity Model (CMM)
The Capability Maturity Model (CMM) [Hof09] [BLL04] was developed by the Software Engi-

neering Institute (SEI). The first version was published in 1991. The CMM is a model for judging

the maturity of a software process in an organization. The main goal is to identify the key prac-

tices and increase the maturity of these processes. In the year 2000 CMM was replaced by the

Capability Maturity Model Integration (CMMI). A maturity level indicates process capability

and contains key process areas (KPA).

Each maturity level depends on capabilities organizations can reach with the usage of a software

process. The key process areas are expected to achieve goals and are organized by common

features. The goals of the KPAs are reached by following the key practices. In the same way,

a maturity level is approached by meeting all of the goals of all of the KPAs at that level. The

common features of key practices indicate whether the implementation of a KPA is effective,

repeatable or lasting. For this model, there are five maturity levels. The first level is the default

level, which is set initially for the organization. Each level is based on previous levels. Reaching

the third level indicates the fulfilling of the prerequisite first, second and third level.

• Initial

The initial phase is the starting point of the process and it is characterized as ad hoc. The

organization typically does not provide a stable environment for developing and maintain-

ing software. In this level few processes are defined.

• Repeatable

Basic project management processes are established to track costs, schedule, and function-

ality. The necessary process discipline is in place to repeat earlier successes on projects

with similar applications. The key activities in level 2 are the software configuration man-

agement, quality assurance, project tracking, oversight, project planning and requirements

management. Common understanding between customers and developers and establish re-

view processes are important for the management of requirements. The project planning

consists of creating and following a reasonable plan for realizing and managing projects.

It also contains sourcing of objects. The artifacts for the configuration management have

to be managed and the changes must be documented.

• Defined

At this level the documentation plays a key role. The software process is documented,

standardized and integrated into a standard software process for the organization. Met-

rics and measures will be reviewed to take account of how much time will be spend on test

activities. Testing efficiency, inspection rate for deliverables and variance between actual

and planned management effort are measured. The KPAs are training units for the em-

ployees. Furthermore, the integrated software management should suit every project need.



2.3 Process quality 21

There is an organizational acceptance of standard processes. Inspections and walkthroughs

are performed to detect errors at an early stage.

• Managed

Detailed measures of the process and product quality are collected and analyzed. It is

possible to measure the qualities with metrics. Therefore they play a key role at this level.

• Optimizing

It consists of improving the process continuously by the feedback. This includes defect

prevention and identifying useful techniques, tools and methodologies. It is also essen-

tial to improve the organization‘s process to increase the quality. The KPA‘s are defect

prevention, improving the process to have a positive impact on quality, productivity and

development time.

Capability Maturity Model Integration (CMMI)

The CMM was successfully adopted in the software field, but it was not an optimal process for

development, due to missing flexibility. The successor of the CMM is the Capability Maturity

Model Integration. The CMMI is now used to have an eye on the process improvement through-

out an organization. The difference between the CMM and the CMMI is that the CMMI is not

only developed for the software area. The main core is the CMMI-SE/SW, which covers the

software engineering partition. The maturity model extends the software engineering field with

the integrated product and process development (IPD) and supplier sourcing (SS). It uses the

most successful elements from CMM. The following information is included in the CMMI:

• Capability maturity model for software (CMM-SW)

• Integrated product development capability maturity model (IPD-CMM)

• Capability maturity model for system engineering (CMM-SE)

• Capability maturity model for supplier sourcing (CMM-SS)

The disadvantage of the CMM was that in this process, the phases were strict and fixed. The

CMMI provides a continuous representation, which eliminates the problem with the overly strict

and fixed phases. Both models cover the same content.



22 2 Preliminaries



2.4 Design Patterns 23

2.4 Design Patterns

Design patterns make it easier to reuse successful designs and architectures. For new developers

it is easier to understand the new software by using the patterns. The used pattern vocabulary

gives the new developer a good idea of how the project works, even by hearing the pattern’s name.

In [GHJ+05] Christopher Alexander explained that each pattern has a problem description,

which occurs over and over again in the environment. Then, he describes the core of the solution

to that problem, in such a way that you can use this solution a million times over, without ever

doing it the same way twice.

A pattern has four essential elements:

• Pattern name

The name expresses the problem, its solution and consequences in a few words.

• Problem

The problem describes when to apply the pattern. It explains the problem and its context.

• Solution

The solution is characterized by the elements that make up the design, their relationships,

responsibilities and collaborations. It does not describe a particular concrete design or

implementation, because the pattern is a template and it can be applied in many different

situations.

• Consequences

The consequences are the results and trade-offs of applying the pattern. They are impor-

tant for evaluating design alternatives and for understanding the benefits of applying the

pattern. That includes its impact on a system‘s flexibility, extensibility and portability.

Design patterns are typically grouped in creational, structural and behavioral patterns. As

an example and demonstration for using patterns two examples are picked out. As a creational

pattern, Singleton is described and as a behavioral pattern, the Observer pattern is demonstrated

[GHJ+05].

2.4.1 Singleton

The Singleton pattern is a way to create only one instance of an object with a global point of

access to it [GHJ+05].

Singleton 

Static Instance() 

SingletonOperation() 

getSingletonData() 

static uniqueInstance 

singletonData 

 

Return   

uniqueInstance 

Fig. 2.5: Singleton Pattern

The consequences of using this pattern:



24 2 Preliminaries

• Controlled access to sole instance. Because the Singelton class encapsulates its sole in-

stance, it can have strict control over how and when clients request it.

• Reduced name space. It is an improvement over global variables.

• Permits refinement of operations and representations. The Singleton class may be sub-

classed, and it is simple to configure an application with an instance of this extended class

at run-time.

• Permits a variable number of instances. It is easy to change your mind and allow more

than one instance of the Singelton class.

• More flexible than class operations.

The implementation looks as follows:� �
public class Singleton {

private static Singleton uniqueInstance;

private static Singleton getInstance () {

if (uniqueInstance == null) {

synchornized (Singleton.class) {

if (uniqueInstance == null) {

uniqueInstance = new Singleton();

}

}

}

return uniqueInstance;

}

}� �
Src. 2.1: Implementation of the Singleton pattern

2.4.2 Observer Pattern

The Observer pattern is also known as Publish-Subscribe Pattern [GHJ+05] and it belongs to

the behavioral patterns. It defines a one-to-many dependency among objects, so that when one

object changes its state, all of its dependents are notified and updated automatically. If the

data is visualized by two or more windows and you do not want to care of changing the data at

different places. To keep the objects consistency, the Observer pattern should be used. Another

argument is if you do not want to keep the objects coupled tightly.

The participants of the pattern are:

• Subject

The Subject knows its observers. Any number of Observer objects may observe a Subject.

It provides an interface for attaching and detaching Observer objects.

• Observer

The Observer defines an updating interface for objects, that should be notified if a subject

changes.

• ConcreteSubject

The ConcreteSubject is the ”real” subject, which stores the states and sends a notification

to its observers, when its state changes.



2.4 Design Patterns 25

• ConcreteObserver

The ConcreteObserver is referenced as a ConcreteSubject object. It stores the state,

which should stay consistent with the subjects state. It implements the Observer updating

interface.

Figure 2.6 shows the interaction between the participants.

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObserver()

<<interface>>
Observer

update()

concreteSubject

registerObserver()
removeObserver()
notifyObserver()
getState()
setState()

observes

concreteObserver

update()

subjects

Fig. 2.6: Observer Pattern

The consequences of using the Observer patterns are:

• Abstract coupling between Subject and Observer. The Subject only knows that it has a

list of Observers, but it does not know the concrete class of any Observer.

• Support for m:n communication models. The notification is broadcast automatically to all

interested objects subscribed. The subject it not interested in how many objects exit, it

is only responsible for notifying the Observer. At any time, new Observers can be added

or removed. The Observer has to handle or ignore the notifications.

• Unexpected updates work in a way that allows Observers to be blind to the ultimate cost

of changing the subject. This can lead to spurious updates, which can be hard to track

down.

Implementation of the Observer pattern in Java and the following exercise to build a weather

station [FFB+04].



26 2 Preliminaries

Subject interface and its concreteSubject implementation:� �
package Observer;

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers();

}

package Observer;

import java.util.ArrayList;

public class WeatherData implements Subject {

private ArrayList observers;

private float temperature;

private float humidity;

private float pressure;

public WeatherData() {

observers = new ArrayList();

}

public void registerObserver(Observer o) {

observers.add(o);

}

public void removeObserver(Observer o) {

int i = observers.indexOf(o);

if (i >=0) {

observers.remove(i);

}

}

public void notifyObservers() {

for (int i=0; i < observers.size(); i++){

Observer observer = (Observer)observers.get(i);

observer.update(temperature, humidity, pressure);

}

}

public void measurementsChanged() {

notifyObservers();

}

public void setMeasurements(float temp, float hum, float pres){

this.temperature=temp;

this.humidity=hum;

this.pressure=pres;

measurementsChanged();

}

}� �
Src. 2.2: Implementation of the Subject and concreteSubject

The following source code shows the implementation of the Observer and its concrete Observer

named CurrentConditions.� �
package Observer;

public interface Observer {

public void update(float temp, float humidity, float pressure);

}

public interface DisplayElement {



2.4 Design Patterns 27

public void display();

}

public class CurrentConditionsDisplay implements Observer, DisplayElement{

private float temperatures;

private float humidity;

private Subject weatherData;

public CurrentConditionsDisplay(Subject weatherData){

this.weatherData = weatherData;

weatherData.registerObserver(this);

}

public void display() {

System.out.println("Current conditions: " + temperatures + "F degrees and " + humidity + "\%

humidity");

}

public void update(float temp, float humidity, float pressure) {

this.temperatures=temp;

this.humidity=humidity;

display();

}

}� �
Src. 2.3: Implementation of the Observer and its ConcreteObserver

The WeatherStation implements the Main and the interaction between the Observer and the

Subject.� �
package Observer;

public class WeatherStation {

public static void main (String[] args) {

WeatherData weatherData = new WeatherData();

CurrentConditionsDisplay currentDisplay = new CurrentConditionsDisplay(weatherData);

weatherData.setMeasurements(80, 60, 30.4f);

weatherData.setMeasurements(82, 70, 29.2f);

weatherData.setMeasurements(78, 90, 29.3f);

}

}� �
Src. 2.4: Implementation of the WeatherStation

Java provides an implemented Observer pattern. The most general are the Observer interface

and the Observable class in the java.util.package. The implementation is quite similar to the

implemented Observer pattern above.

2.4.3 Structural Violations

Using the layer architecture is a way to structure applications in groups of subtasks in which each

group of subtasks is at a particular level of abstraction [BMRS96]. The most important principle

is that layers are strictly separated from each other, in the sense that no component may spread

over more than one layer. If layers are not separated, this leads to structural violations.

Figure 2.7 shows an example of a layered architecture from the DND project.

The following rules are a way to structure your application, but not every step is mandatory:



28 2 Preliminaries

Fig. 2.7: DND layer architecture

1. Define the abstraction criterion for grouping tasks into layers.

2. Determine the number of abstraction levels according to your abstraction criterion.

3. Name layers and assign tasks to each of them.

4. Specify the services.

5. Refine the layering and iterate steps 1 to 4.

6. Specify an interface for each layer. If a layer L should be a black box for layer L+1, there

has to be an interface that offers all of L’s services.

7. Structure individual layers, because there is a kind of chaos inside. If it is possible, it

should be broken into separate components.

8. Decouple adjacent layers so that there is only a one-way coupling.

The architectural layer pattern has the following benefits:

• It is possible to reuse layers.

• Clearly-defined levels of abstraction enable the development of standardized tasks and

interfaces.

• Dependencies are kept local.

Each pattern has not only benefits, but also some liabilities as in the following:

• Lower efficiency. High-level services in the upper layers rely heavily on the lowest layer

and all relevant data must be transferred through a number of intermediate layers.

• Unnecessary work. The lower layer performs excessive or duplicated work, which is not

actually required by the higher layer. This has an impact on performance.

• The challenge is to find correct granularity of layers.



2.5 Testing 29

2.5 Testing

Testing is the process of exercising a software component using a selected set of test cases with

the intent of revealing defects and evaluating quality [Bur03]. Defects occur and have a negative

effect on the software quality, which is why it is so important to start testing as soon as possible

in the software process. Tests are executed when the corresponding code is available, but testing

activities start earlier, as soon as the specifications are available. Figure 2.8 shows the error

discovery rates for different stages of tests [Bur03]. Although each application system is different,

most errors are found during integration and system testing [DWR08].

N
u

m
b

e
r 

o
f 
E

rr
o
rs

 D
e

te
c
te

d
 

         Unit Test  Integration Test  System Test     Acceptance Test    Acceptance Test 
        Testing Stage     (Alpha)      (Beta) 

Fig. 2.8: Error discovery rates [DWR08]

In the next sections the following test methods are explained: Manual test, unit test, functional

test, database unit test, smoke test, load test, system test, acceptance and regression test.

2.5.1 Planning and Monitoring

Testing is not an intuitive process; it has to be planned. Process visibility plays a key role in

the development [PY07]. It is primarily for team members and management, so that they can

see the actual process state. This includes how many tests pass or fail and also reviewing and

evaluating the metrics result. The architects are able to check the design and can decide if code

refactoring is necessary. For the team members it is beneficial to get feedback. Figure 2.9 shows

what the plan of a project can look like and which techniques are used.

A combination of several testing techniques is always a good choice, due to the fact that a single

test does not cover everything. A good way to design test cases is, when the implementation has

not started e.g test driven development. You have to think about input and output parameters,

how the method should act and what the result is. Tests are independent from source code. They

can highlight inconsistencies and incompleteness in the corresponding software specification.



30 2 Preliminaries

Fig. 2.9: Testing techniques through software life cycle



2.5 Testing 31

A test plan should answer the following questions:

• What quality activities will be carried out?

• What resources are needed and how will they be allocated?

• How will the process be monitored to maintain an adequate assessment of quality and

early warning of quality and schedule problems?

2.5.2 Manual test

The oldest and the simplest type of testing is the manual test [KS10]. The tester writes test

cases to validate the requirements without using any automation tool. It plays a role in the

following scenarios:

• There is not enough budget for automation

• The tests are more complicated to convert into automated tests

• Not enough time to automate the tests

• Automated test would be time consuming to create and run

2.5.3 Unit test

The goal of the unit test is to examine the smallest piece of source code [KS10]. It isolates the

source from the remainder of code and checks if the behavior is exactly the same as expected.

Unit tests are written and run by developers as they write code. They are typically automated

as a suite to be run on code check-in (continuous integration) and used by testers as part of

integration tests and regression tests. It is crucial to run these tests and catch the defects in an

early stage of the software development cycle.

A unit test is a functional class method test, which calls a method with the parameters and

finally compares the actual results with the expected results.

In Visual Studio 2010 it is possible to generate unit test methods and classes during the imple-

mentation of the class.� �
namespace TestLibrary {

public class Class1 {

public double CalculateTotalPrice (double quantity) {

double totalPrice;

double unitPrice;

unitPrice = 16.0; //Todo get unit price. For test it is hard coded.

totalPrice = unitPrice * quantity;

return totalPrice;

}

public void GetTotalPrice() {

int qty = 5;

double totalPrice = CalculateTotalPrice(qty);

Console.WriteLine("Total Price: " + totalPrice);

}

}

}� �
Src. 2.5: Example source



32 2 Preliminaries

In Visual Studio you can generate a unit test and modify the source code, shown in source 2.6

[KS10]� �
namespace TestProject1 {

[TestClass]

public class Class1Test {

private TestContext testContextInstance;

public TestContext TestContext {

get {

return testContextInstance;

}

set {

testContextInstance = value;

}

}

[TestMethod]

public void TestMethod1() {

Class1 target = new Class1();

double quantity = 0F;

double expected = 0F;

double actual;

actual = target.CalculateTotalPrice(quantity);

Assert.Inconclusive("Verify the correctness of this test method.");

}

[TestMethod]

public void GetTotalPriceTest() {

Class1 target = new Class1();

target.GetTotalPrice();

Assert.Inconclusive("A method that does not return a value cannot be verified.");

}

}

}� �
Src. 2.6: Unit test example

For java projects, if you need a lot of database connections for unit tests, it is very time con-

suming. First, you have to set up test data, then perform the test and finally a rollback. To

get rid of that, it is possible to use Mockito [Fab13] or PowerMockito [HK13] open-source test

framework. It is possible to simulate the behavior of certain objects. For example you have a

Product interface. Behind the interface, there are several implementations, which contain a lot

of logic, dependencies to other classes and connections to the database. For your test, it is only

important to get a Product object. In source 2.7 a Product object is mocked. For simulating

the behavior when().thenReturn() is used.� �
@RunWith(MockitoJUnitRunner.class)

public class MockTest {

import static org.mockito.Mockito.*;

import static org.junit.Assert.*;

@Test

public void testExampleTest() {

//mock a concrete Object



2.5 Testing 33

Product testProduct = mock(Product.class);

//stubbing

when(testProduct.getPrice()).thenReturn(42);

when(testProduct.buyProduct(anyInt())).thenReturn(true);

//***** perform your test ******

RealClassToTest realClass = new RealClassToTest();

realClass.byProduct(1);

//***** returns a list of products *****

List<Product> productList = realClass.getAllBoughtProducts();

Product resultingProduct = productList.get(0);

//***** verify results *****

assertEquals(resultingProduct.getPrice(), 42);

}� �
Src. 2.7: mock objects

2.5.4 Functional test

Functional testing is a type of black box testing. It [PY07] derives test cases from the program

specification. It is based on program specifications and not on the internals of source code.

Functional test case design should begin as part of the specification requirements process, and

continue through each level of design and interface specification. It is the only test design

technique with such a wide and early applicability. Moreover, functional testing is effective in

finding some classes of fault that typically elude so-called white-box or glass-box techniques of

structural or fault-based testing.

2.5.5 Smoke test

Smoke test [Lev11] is a kind of acceptance testing. It is made as a first test after modifications

to ensure that it will not fail catastrophically.

Load test

Load testing [Lev11] is the process that subjects the system under testing to a work level ap-

proaching the limits of its design specification. Load testing is usually performed in a controlled

lab environment where accurate measurements can be taken under repeatable conditions. You

can also perform load testing in the field to obtain a qualitative assessment of system perfor-

mance in the ”real world”.

2.5.6 System test

System test examines the entire system to ensure that the requirements have been met. This test

includes the functional and also the non functional requirements. The test should be performed

n an environment that closely reflects the physical environment that the production system runs

in [Lev11].

In Visual Studio 2010 this can be done with the Lab Management and by executing automated

test causes.



34 2 Preliminaries

2.5.7 Acceptance test

Acceptance testing [Lev11] is a functional trial performed on a completed increment of functional

software before it is accepted and deemed ready for release to the market or delivery to the end

user. The acceptance testing process is designed to replicate the anticipated real-life use of the

product to ensure that what the consumers or end users receive is fully functional and meets

their needs and expectations. In traditional predictive processes, this is usually at the end of

the product development cycle, whereas with agile development, process acceptance testing is

done at the conclusion of each development iteration. Figure 2.10 shows you that acceptance

testing is the pinnacle of building quality [Lev11].

Unit Testing

Integrational Testing & 
Functional Testing

Acceptance 
Testing

Fig. 2.10: Testing pyramid

2.5.8 Regression test

After changes in the project a Regression test should be made, where all the test cases, designed

for previous versions, are executed. Even simple modifications of the data structures can have an

impact of the execution and so test cases may not be executable without corresponding changes.

In Visual Studio 2010 Test Impact Analysis was built for performing regression tests.



2.6 Chapter summary 35

2.6 Chapter summary

After a closer look, the simple expression ”software quality” seems very complex. Software

quality is considered good, if all the requirements are met. Furthermore, it also includes when

software is quite error-free. For error-free software testing is necessary. For testing, source code

has to be understandable. It has to be kept in mind, that code reading is a big part of the

developers daily job. It is necessary to use some coding guidelines and style templates to save

time in understanding the source code. There is a description in the ISO\IEC 9126 for the

criteria of software quality. These criteria are divided into functionality, reliability, usability,

efficiency and maintainability. Then a definition for software quality for the project has to be

defined.

Now, the following parts for software quality are found:

• Software quality criteria

• Testing

• Clean code development

• Coding guidelines

Obviously, the software developer has a substantial influence on implementation of the require-

ments, if they are well-defined. Also, the software development process has an influence on the

resulting quality.



36 2 Preliminaries



3 Metrics

In the domain of software development, quality assurance takes considerable effort. It is im-

portant to identify those pieces of software which are most likely to fail and therefore requires

most of the developer‘s attention. Metrics are widely used in software evaluation tools, because

using them is a way to reflect software quality. By definition a metric is a function whose input

is software data and whose output is a single numerical value. The result can be interpreted for

a given attribute how it affects quality [KMB04].

If the quality of a system suffers and needs to be re-engineered, they can be used for detecting

problems. Quality criteria are evaluated, but the interpretation seems to be though in practice.

Nowadays there are many metric suits available, which include several, different kinds of metrics.

The main challenge is to find a suitable set of metrics as well as the correct interpretation of

calculated results. The developer uses metric suites in order to gain the insight required for

understanding and evaluating the structure and quality of a system.

”You can‘t manage, what you can‘t control and you can‘t control what you can‘t measure.”

Tom DeMarco [DeM86]

Metrics only have a few requirements; they have to be simple and easy to understand for

developers. Nobody wants to use metrics, which are really difficult to interpret. The following

three statements are examples of how metrics can be interpreted or misunderstood [Wil11],

[Pei11]:

1. Statement 1: The higher the error density, the worse the source code is.

To rate a project only on the fact of error density is not decisive. There is a difference if

you evaluate a project A with 500 lines of code and 25 errors, compared to a project B

with 5000 lines of code and 30 errors. The density of project A is higher than in project B,

but it does not say anything about the quality of the source code.

2. Statement 2: The higher the test automation, the more effective the test process is.

For this statement the cost-benefit ratio has to be considered. You have to check which

test cases paid off for test automation.

3. Statement 3: The higher the value of the measured cyclomatic complexity metric is, the

worse the maintenance is.

Maintenance becomes a challenge if too many cycles are in the project. In a worst case

scenario, one change in source code could lead to several problems on other different

positions, which are included in the cycle.

Figure 3.1 shows several states of development essentials for an software evaluation [Pei11].

The states of development should be declared by the company. The stakeholder and the goals



38 3 Metrics

Stakeholder

Goals

Metrics

Standards

Measuring Method

Target value

Reporting

ToolsEmployees,
Management

Includes

Ongoing
improvement

Fig. 3.1: States of development

have to be identified. The next aspect is to declare a metric suite, which fits the requirements.

For developing software it is necessary to define standards, guidelines and measuring methods.

Furthermore, it is important to specify target values where the limits are given for good or bad

metric results. All the measures should be reported and included in milestones. Before starting

the metric calculation, there are some questions for software architects and developers to answer.

These questions are for a self-evaluation if everything is clear in the development. The following

questions arose while the interviews about software quality took place at the Infineon.

Questions for software architect:

• Is the actual project state the status-quo or the desired state?

• Do architectural violations appear in the project and which are they?

• Can the project be extended easily?

• Are there some quality standards given for the project and are these standards monitored?

Questions for software developer:

• Does each software developer know about the system structure?

• What will happen if something in the source code is changed, because of dependencies?

• Are there some coding guidelines or quality standards used?

With metrics you can measure your software and you are able to calculate a trend by comparing

results. When trying to improve a process, the company must start with a desire to make a

change. If a company does not want to change, gathering metrics is not useful and it adds a



3.1 Object oriented principles 39

further waste of time to the already wasted time [Lev11]. There are some pros and cons of using

metrics. It is very useful to check yourself and have an eye on the source code. Metrics are

an indicator of some vulnerability in source code and also a sign to improve the development

process. The greatest challenge is to interpret these metrics, which is quite difficult. At the end

of this chapter the ranges of different metric suites are specified.

The best way is to find a minimal set of metrics, which covers problems of the software project

and measures internal properties of an object oriented product. Several studies found that there

is a correlation between software metrics and quality [BWDP00]. For the evaluation of the

IT-projects (Java, C# and C++) the object oriented metrics are relevant.

The design characteristics for measuring are [CS09]:

1. Abstraction

2. Encapsulation

3. Information hiding

4. Coupling

5. Cohesion

6. Inheritance

7. Polymorphism

In the following sections these object-oriented principles are explained. Finally common metrics

like Halstead, Maintainability Index, McCabe and the Chidamber and Kemerer (CK) metrics

are described.

3.1 Object oriented principles

3.1.1 Abstraction, encapsulation and information hiding

Abstraction is a way to simplify the complexity of a program [Doo11]. The basic principle is to

hide complex details and keep things simple. By using this principle you can say what a program

does, without saying how it works in detail. It is a process of generalization where the details

and all the inessential information are eliminated. Encapsulation means to bundle a group

of services defined by their data and behaviors together as a module and keep them together.

This group should be coherent and all elements should clearly belong together. An interface is

provided to access the services and data in this module. As a result you have high cohesion.

Information hiding is the concept of isolating information. The class only gets to know what

it needs to know in order to interact with other classes. It provides selective information access

to classes.

For better understanding the differences between encapsulation and information hiding, the

following source code is an example of representing data of a point on the Cartesian plane

[Mar08]:� �
public class Point

{

//encapsulation

public double x;



40 3 Metrics

public double y;

}

public interface Point

{

//information hiding

double GetX();

double GetY();

void SetCartesian (double x, double y);

double GetR();

double GetTheta();

void SetPolar (double r, double theta);

}� �
Src. 3.1: Encapsulation and information hiding

3.1.2 Coupling

The definition for coupling [YK10] is to measure the degree of interaction between two software

components. A good software system should have a low coupling value. If there are too many

dependencies between components, the software is hard to understand, maintain and reuse.

Coupling is one of the important design principals in object-oriented software development,

because it provides the sharing property. On the other hand, it makes the software more error-

prone and unreliable. Reliability is a crucial quality criterion and contains fault prevention,

fault detection, fault removal and reliability maximization. Coupling itself is also closely related

to complexity.

There are the following types of coupling:

• Single coupling

Single coupling provides access of data from one class to another class. Sharing is only

between two classes.

• Multiple coupling

In multiple coupling one class has access to the data of two or more classes.

• Hierarchical coupling

A single class is shared by more than one class.

• Multilevel coupling

In this kind of coupling the output from one class becomes the input of the next class.

• Hybrid coupling

In hybrid coupling different kinds of coupling are combined.

• Cyclic coupling

The sharing of data and methods form cycles among classes.

To reduce the coupling value metrics like cyclomatic complexity or Weighted Methods per Class

(WMC) are used. But WMC does not measure the object oriented aspect. Some problems

with cycles are sharing data and methods several times. This increases complexity and contains

functional dependencies, which cause retesting and rework. One way to improve coupling is

refactoring. Code refactoring is the way of restructuring an existing body of code without

changing the behavior of the software. Refactoring also leads to a higher level of complexity,

because re-engineering for only one part of the software is applied. A class that is highly sensitive



3.1 Object oriented principles 41

Name graphical representation

Single coupling

A B

Multiple coupling

A1

AA2

A3

Hierarchical coupling

B2B

B1

B3

Multilevel coupling

B

A

C

Hybrid coupling

B

A

C

D

Tab. 3.1: Different kinds of coupling



42 3 Metrics

means having more chances for errors, which need to be re-engineered. The method used very

often should be kept in a separate class, e.g. utility program.

3.1.3 Cohesion

Cohesion is the expressed when a method shares at least one single attribute [PR10]. If a large

sized class only has a low level of cohesion, it is a symptom off bad software design. The choice

of the right cohesion metric is always critical. There are five categories of cohesion metrics.

• Disjoint component-based metrics (LCOM1, LCOM3, LCOM4)

Disjoint component-based metrics count the number of disjointed sets of methods or at-

tributes in a given class.

• Pairwise connection-based metrics (LCOM2, RLCOM, CR, TCC, LCC)

Pairwise connection-based metrics count the number of connected or disjointed method

pairs.

• Connection magnitude-based metrics (LCOM, SCOM, LCOM*)

Connection magnitude-based metrics count the accessing methods per attribute and indi-

rectly find a sharing index in terms of the count.

• Decomposition-based metrics (CBMC)

Recursive decomposition is used for counting the decomposition-based metrics. They are

generated by removal of pivotal elements that keep classes connected.

• Interface-based metrics (CAMC, CM)

Interface-based metrics are based on information gathered from method signatures.

The lack of Cohesion (LCOM), especially the LCOM1 is the number of disjoint sets formed

by the intersection of n access sets of instance variables, corresponding to n methods. LCOM2

is a highly controversial cohesion metric. If there are not any shared instances, the computed

value is zero, instead of negative. The Cohesion Ratio (CR) is the number of method pairs

sharing instance variables in ratio to the total number of method pairs. LCOM, TCC and LCC

include the constructor, destructor and accessors in cohesion computation. This should not

influence the cohesion value of a class. The new metric, which excludes these factors, is Cohesion

Based on Member Connectivity (CBMC). Metrics from connection magnitude-based category

capture cohesion more accurately compared to metrics from the other categories. Disconnected

component-based metrics capture variations in class cohesion and they detect disparate classes

and also count the number of disconnected components.

3.1.4 Inheritance

Inheritance [SS07] [Bre07] is the most powerful feature of object-oriented design. Inheritance

means that one class inherits the characteristics like behavior or attributes of another class.

The inheritance metrics influence the complexity and maintenance time. Through structuring,

you get a classification hierarchy and classes are organized in a tree structure. The tree depth

is calculated from the root to the class node and measures ancestor classes. The deeper the

tree hierarchy is, the more the complexity increases and therefore, testing gets more difficult.

It is recommended that the maximum length of the tree does not exceed 7. There are two

complementary roles of inheritance in an object-oriented application:



3.2 Common metrics 43

• Specialization: Extending the functionality of an existing class.

• Generalization: Sharing commonality between two or more classes

Some classes only act as a holder, because they do not represent a concrete type. Those classes

are abstract classes. Instead of creating instances, an abstract class is a superclass for other

classes and contains abstract methods. It is suggested to have at least 15% of abstract classes

within the project. In an object-oriented system, there is a one to many relationship between a

method and its implementation. There are three ways in which a derived class can implement

polymorphic methods:

• A derived class can implement a polymorphic method by inheriting it unchanged.

• Replacing it with different implementation (overriding).

• By extending it, adding to the existing implementation.

3.1.5 Polymorphism

Polymorphism [CW85] allows programs to process objects that share the same superclass in the

hierarchy as if they are all objects of the superclass. It is the ability to create an object that has

more than one form. Because a single name can represent different code, that name can express

many different behaviors. It allows the developer to extend the system easily. There are four

types of polymorphism:

• Inclusion Polymorphism

• Parametric Polymorphism

• Overriding

• Overloading

Inclusion polymorphism is a way to redefine a method in classes that are inherited from a base

class. You can therefore call on an object’s method without having to know its intrinsic type.

Parametric polymorphism is the ability to define several functions using the same name, although

using different parameters and the correct method is automatically selected. An override is a

type of function which occurs in classes that inherit from another class. It replaces a function

inherited from the base class. The method does different things depending on which class was

used to instantiate an object. With overloading, you can declare the same method multiple

times. This only differs in the number of parameters.

3.2 Common metrics

In this section metrics [CS09], [KB11] are described. Popular metric suites are Halstead‘s

Complexity Measure, Maintainability Index, McCabe‘s Cyclomatic Complexity and Chidamber

& Kemerer (CK).

Halstead [SSB10] was the first one interested in code complexity. He took over the term com-

plexity of the communication theory from Shannon, who defined the complexity from messages

as the ratio from many different signs to the length of the message. To use this definition for

developing software, the source code is complex, if there are many different operands and opera-

tion in ratio to the sum of commands. Operators and operands are defined by their relationship



44 3 Metrics

to each other. An operator carries out an action and an operand participates in such an ac-

tion. An example is an operator that carries out an operation using zero or more operands. An

operand may participate in an interaction with zero or more operands. The metrics can operate

on method, class and package level. The Halstead Effort is used in the Maintainability index

calculation.

Maintainability Index (MI) [SSB10] was designed at the university of Idaho in 1991 by Oman

and Hagemeister. The aim of the MI was to determine how easy it would be to maintain the

source code. It combines the Halstead Effort (E) per module, McCabe cyclomatic complexity

(VG) and Lines of Code (LOC and the commented lines of code CMT). The formula is 171 −
3, 42 ∗ ln(E)− 0, 23 ∗ V G− 16, 2 ∗ ln(LOC) + 0, 99 ∗ CMT .

McCabe metrics also called cyclomatic complexity [BD08], were developed by Thomas J. Mc-

Cabe in 1976. He saw his source code as a directed graph with nodes and edges. McCabe metrics

are used to indicate the complexity of a program. The cyclomatic complexity is computed using

the control flow graph where every independent path is counted. McCabe metrics are calculated

by counting the number of edges minus knots plus not connected components two times. The

complexity increases with the number of branches through a program. From practical experience

those modules with a cyclomatic complexity higher than 10 tend to be prone to higher defect

rates. The formula for the cyclomatic complexity is V (s) = e− n + 2p.

The Mood (Metrics for Object-Oriented Design) [Bre07][Nag04] suite contains metrics

for measuring object oriented aspects such as method and attribute inheritance, polymorphism,

coupling, hiding factor and attribute hiding factor. These metrics operate on system level and

consist of the following metrics:

• MHF - Method Hiding Factor - the number of visible methods

• AHF - Attribute Hiding Factor - the number of visible attributes

• MIF - Method Inheritance Factor - the ratio of the sum of inherited methods to the

total of number of methods

• AIF - Attribute Inheritance Factor - the ratio of the sum of inherited attributes to

the total number of attributes

• PF - Polymorphism Factor - the degree of method overriding in the class inheritance

tree

• Coupling Factor - the actual number of couplings among classes in relation to the

maximum number of possible couplings

The Chidamber & Kemerer (CK) metric suite [CK94] originally contains the six following

metrics: WMC, DIT, NOC, RFC, CBO, RFC and LCOM. They are the ”de-facto” standard

for measuring properties of classes and objects. These metrics measure different properties and

should be independent. WMC, DIT and NOC are for identification of classes. WMC, RFC,

LCOM are for the semantics of classes and RFC and CBO is for the relationships between

classes.

• LOC - Lines Of Code - Counts the number of lines in a software program.

• RLOC - Relevant Lines Of Code - Only the relevant lines of codes are counted while

comments are excluded.



3.2 Common metrics 45

• WMC - Weighted Methods per Class - WMC is the sum of methods in a class. The

complexity of each class is its sum of the methods. The larger the number of methods in

a class, the greater the impact of their children is. Children will inherit all the methods

defined in class. The reuse of classes with too many methods is difficult.

• DIT - Depth of Inheritance Tree - DIT defines the longest path from the class to

the root hierarchy. If the path is too large, it gets more and more complex to predict its

behavior and there is a higher probability of errors in the source code. If it is too low,

that implies less complexity but also less code reuse through inheritance.

• NOC - Number of Children - NOC is the number of direct descendants of a class. This

metric measures the scope of the influence of a class on its subclasses due to inheritance.

A class with a large number of children requires more testing effort.

• RFC - Response For a Class - This metric counts all the number of different methods

that can be executed when an object of that class receives a message. Both, the direct

and indirect calls are counted. The larger the RFC value, the greater the complexity of

the class is.

• CBO - Coupling Between Objects - This metric counts the number of other classes

which are coupled to the current class. This coupling can occur through method calls,

field accesses, inheritance, arguments, return types and exceptions. If the classes depend

on a lot of other classes, the maintenance becomes a challenge. The more independent a

class, the easier to reuse and maintain it is.

• LCOM - Lack of Cohesion of Methods - This metric shows how closely the local

methods of a class are related to each other. High cohesion implies simplicity and high

reusability.

• LCC - Loose class Cohesion - It measures the percentage of pairs of public methods

to the class that uses common attributes. A high value of LCC is desirable.

Some considerations and ranges of CK metrics [Mac13] [GGM11]:

1. DIT range(5 +/-1) - find the right balance. If the DIT has a high value it means that

the design complexity increases, while if it is too low you cannot reuse the code and use

the inheritance principle. In the case of e.g. Java, how should the interfaces be handled?

2. NOC range (9 +/-3). The greater the NOC, the greater the reuse is. That means,

inheritance is also a form of reuse. By increasing the NOC you could make a lot of mess

in the design, so testing also has to increase. Therefore reduce the number of children.

3. CBO range(38+/-12) - low values are good. If the CBO is high, it means that your

source code becomes more difficult to maintain. The more links between the classes, the

more complex it is and as a result, testing becomes more difficult. The calculation is only

in one direction, because if A references B and B references A, it is only counted once.

The CBO should be as low as possible.

4. LCOM value should be low, because it indicates cohesiveness. A lack of cohesion

implies that you should split up the classes into more subclasses. For calculating LCOM

you have to know when the LCOM is high or low. This depends on the amount of method

pairs. With three methods, you can have three pairs, with four methods, you can still



46 3 Metrics

have six pairs. You have to know the number of method pairs to decide if the LCOM is

high or low.

5. WMC range(224+/-111)- a little confusing. The larger the number of methods,

the more they have a potential impact on their children because they inherit all methods

defined in the class. It is a predictor of how much time and effort is required for testing.

6. RFC range(88+/-31) - low value. If the value of RFC is high, it is a very useful

indicator of potential problems. If you have a large number of methods which are invoked

in response to a message, the testing becomes complicated and challenging. It also increases

the complexity of the class.

Figure 3.2 from [LMD10] shows an Overview Pyramid, which covers e thmain aspects of an

object-oriented system by quantifying complexity, coupling and usage of inheritance. The three

aspects are closely related and mutually influence each other. While size, complexity and cou-

pling characterize every software system, inheritance is specific to object-oriented software and

combines coupling, size and complexity.

Inheritance 

Size & Complexity Coupling 

Fig. 3.2: Overview pyramid

The basic idea behind the overview pyramid is having the most significant measurements to-

gether. Every engineer can see, interpret and get an impression of the system.

The following metrics are the most important metrics and should be checked regularly:

• DIT

• NOC

• RFC

• CBO

Combine these metrics with LOC per method or class, cyclomatic complexity, testing and code

coverage. This should improve your software quality and assure that you meet the quality

standard.

3.3 Software quality evaluation

One aspect of this thesis was the creation of a questionnaire and an interview with the developers

of the Infineon IT-department. The goal of this evaluation was to find out which problems

the employees have during software development and which aspects could improve the actual

situation.



3.3 Software quality evaluation 47

3.3.1 Evaluation of the questionnaires

The following answers are results of the questionnaire from 14 respondents of the Infineon IT-

department. The respondents include developers, project leaders and managers. The question-

naire consists of 20 questions, which are structured into common questions, questions about the

developer team, team size, code quality, about testing and which quality assurance mechanism

are used. Finally it contains questions about which project should be evaluated and where the

main problems of software development within the IT-department were.

Common questions

1. Which programming languages are used in the projects?

The major popular programming languages in use are: C#, C++, VB6, JavaScript and

Java. The main focus is to improve the software quality on C#, C++ and Java.

2. How many years of programming experience do you have? How many programming lan-

guages do you know?

In the IT-department the average programming experience is about 13 years. The lan-

guage knowledges is comprised of all kinds of object-oriented languages like Java and C#

and other programming languages like Cobol, Fortran, Assembler and so on.

3. What does software quality mean to you?

The respondents define software quality with understandability, testability, simplicity of

the source code and documentation.

4. The respondents had to find a ranking for the software quality criteria. On the first rank

is the most important criterion, and on the 6th rank is the most dispensable criterion.

a) functionality

b) reliability

c) performance

d) maintainability

e) usability

f) reusability

5. How often do you analyze the software quality and the system?

Only 5 out of 14 people analysis their software system approximately 2 times a year.

Questions about the team

6. How many people are in the development team?

The average number of people working in a team is about five.

7. Are there any qualifications concerning the team, e.g. education, workshops, certificates?

Half of the respondents, also including their team members, who do not take part of

the interview, have graduated from a university or Fachhochschule (university of applied

sciences).

8. Are there many changes within the team (fluctuations)?

Most of the team members are stable and work for 4.5 years in the company.



48 3 Metrics

9. How many experiences, concerning projects, does each team member have?

85% indicate, that they have proper team work experiences.

Questions about code quality

10. How is quality assurance being applied?

Quality assurance is mainly done with testing and code reviewing. Half of the respondents

use coding guidelines from Microsoft, the internal guidelines from the IT-department or

CCD and UNT. The IT-guideline are not completely up-to-date.

11. Which tools are used for quality assurance?

Two of 14 people are evaluating the code quality via code reviews. The other part makes

an evaluation of the source code based on their feelings. The assessment of the code quality

is between middle and excellent.

12. Do you use code metrics, like LOC, complexity, Methods per class and so on?

No metrics or cyclic detection mechanisms are used. Only naming conventions are used

by 57 percent.

13. Do you avoid cycle buildings and the occurrence of cycle inheritance structures between

directories, namespaces and architecture modules?

43% take care of the architecture and possible architecture violations. 29% pay attention

to the design.

14. How often do you perform redesigns and refactoring?

Refactoring and redesigns are done by 71% percent of the respondents, but they are

practiced regularly.

15. Do you review your code regularly?

85% are using code reviews for quality assurance. From this 85%, only 39% are doing

these reviews efficiently.

Questions about testing

16. Do you create a test plan?

A test plan is created by 85% of the interviewees. As an administration tool, Hp Quality

Center, Excel and a Wiki is used.

17. How are the test cases being created?

In most cases, the developers create the test cases on their own. This could be problematic,

because the developer gets blinkered in his work. The test sequence creates its own test

plan and finds the right requirements for the test cases. Brainstorming is used to find the

testing requirements.

18. Which test methods do you use?

Unit tests, system tests, integration tests, regression tests and UAT are applied by all of

the respondents. In some teams, a simulation is used to test the result before and after a

change and also to simulate the productive load.

19. Which testing tools do you use in which environment?

The following tools are used for testing purposes:

• Excel



3.3 Software quality evaluation 49

• Simulator for the productive load

• Hp Quality Center

• Test Director

• Visual Studio 2010 testing tools

20. Which quality assurance mechanisms are practiced as well?

Everybody uses a version control tool and inline documentation. If a bug occurs, a bug

tracking system like Remedy, Trips or TFS is used.

3.3.2 DND

Table 3.2 shows the system overview metrics.

Metric Value

SysFiles 546

SysLOC 104.261

SysMetadata 1791

SysMethods 4442

SysNestedClasses 460

SysPackages 98

SysPackagesNotUsed 12

SysPckgInCycles 36

SysProperties 1080

SysReferences 82909

SysRelevantLines 48458

SysSubsystems 18

SysAttributes 3768

SysCalls 16370

SysClasses 1153

SysClassInCycles 525

SysCommentblocks 5749

SysCommentedOutCodelines 2970

SysConstantAttributes 213

SysCSharpDocComments 3130

SysDelegates 33

SysDistributedNamespaces 15

SysDuplicatedCodeBlocks 90

SysEvents 62

SysIndexers 15

SysInheritances 554

Tab. 3.2: System Overview in Sotograph

The developer has an idea about the project’s dimension. It has 104.261 LOC with 546 files and

so it has quite an average project size.



50 3 Metrics

SysMetadata: A simple description for the SysMetadata is data that describes data. In this

context it is a collection of programmatic items that constitute the EXE, such as the types

declared and the methods implemented. The reason for using metadata is that it allows the

.NET runtime to know at run time what types will be allocated and what methods will be

called. This enables the runtime to properly set up its environment to more efficiently run the

application. The means by which this metadata is queried is called reflection. In fact, the .NET

framework class libraries provide an entire set of reflection methods that enable any application

to query another application‘s metadata.

The following metrics are more detailed and discussed in the following section:

Rules

The notation of the following metrics is read as metric name, followed by metric‘s value and the

calculated value.

Attribute metrics

AttrExternalUsageRule (0) 88

88 methods from external classes read or write to the current attribute.

Example: Data.cs, attribute: Repository

Solution: A solution could be the usage of static constructors.

Package metrics

PckgAttributeOverrideRule (0) 2

The number of attributes which are hidden in derived classes. It is not common to override an

attribute from the super class. In most of these cases, it is a mistake because you cannot say

which attribute you use anymore. It causes more errors than it helps. Example:� �
class A { public String s = "Test";} // not static

class B extends A {

public String s = "Test23"; // not static

public void doSomething

{

s = "23";

}

public void doSomething2

{

...

deleteFrom(s); // Test? Test 23? -> Test 23

//Which attribute did you want to delete, from class A or B? What will happen if you rename B manually

or delete it?

}� �
Src. 3.2: Attribute override

PckgClassKnowingDerivedRule (0) 2

Identifies all classes of the current package that have any knowledge about directly or indirectly

derived classes. This is considered bad style because changes to derived classes should never

affect a base class.

Example: Package function

Solution: There is no general rule for what to do in this case. As a standard solution you can

introduce abstract classes or use interfaces.



3.3 Software quality evaluation 51

Measures

MethChars (1000) 15.512

These metrics shows the number of characters in the method body.

Example: OperatorGuideRuleTest.cs, GetProfileEntitiyList()

Solution: Split the method in several small methods.

MethLOC (100) 283

The number of lines of code in the method body.

Example: OperatorGuideRuleTest.cs, GetProfileEntitiyList()

Solution: Split the method in several small methods.

MethCyclomaticComplexity (10) 59

It calculates the complexity of the current method. The decision points have a big influence on

the complexity. Example: OperatorGuideRuleTest.cs, GetProfileEntitiyList()

Solution: Increase the number of unit tests or refactor the source code into smaller pieces to

reduce the complexity. If you have smaller pieces, it is easier to test.

MethParameters (5) 18

It counts the number of parameters within the current method. For this metric it is not the

sum of the parameters that is important, but the different types. Example: Exclusion.cs,

IsExclusion()� �
public bool isExlusion(Lot lot, string LotName, string Product, string Route, string Facility, string

Wafersize, string Type, string BasicType, string ProcessClass, string BusinessSegment, string

ProcessGroup, string epa, string setup, string layer, string operation, ExclusionData ed, bool

exception, string Owner)� �
Src. 3.3: Too many parameters in the method

Solution: In this class there are a lot of parameters with the same type. This can cause errors,

because you can not distinguish between string Product or string Route. A solution for this

problem could be using objects instead of 20 string parameters.

Class metrics

ClassAttributes (20) 137

It counts the number of attributes independent of its visibility.

Example: WS Lot.cs

ClassExcessiveMethodOverloading (3) 21

For a class, this metric counts the maximum number of times a method is overloaded.

Example: Example source code� �
class A {}

class B extends A {}

class C

{

public void doSomething (A a) {...};

public void doSomething (B b) {...};

}

class D

{

public void doSomething () {new C().doSomething(new A());} //still simple

public void doSomething () {new C().doSomething(new B());} // still simple

public void doSomething () {A a = new B(); new C().doSomething(a);} //which is now chosen?



52 3 Metrics

}� �
Src. 3.4: Method overloading

Solution: A solution for this violation is using inheritance and interfaces methods.

ClassOutboundRefClass (50) 114

For a single class, it counts the number of distinct classes from which at least one symbol is

directly referenced. Example: Package Dispatcher, Service.cs

ClassPrivateMethodNotUsed (0) 35

This metric counts the unused private methods, which can be deleted. Example: Package:

PushPull, Calculator.cs

ClassPublicAttributes (0) 137

The number of public attributes in a class is counted. Example: WS lot.cs

ClassPublicMethodNoGetSet (20) 58

The public methods without getters and setters are counted. Example: Package LinqRuleData,

LinqData.cs

File metrics

FileLOC (1.000) 3.114

The metric counts the lines of code of a file.

Example: Batch.cs

FileTodo (0) 7

It counts the number of strings containing the phrase ”todo” or ”to do”. Example: RXENT.cs

3.3.3 ITec

Table 3.3 shows an overview of the system metrics from iTec.

In the iTec project, it is significant that it has 1.056 classes, and 679 of these classes are in a

cycle. More than 50% are in a cycle, which means if you change one class, it has an influence

on the other files in a cycle.

The following metrics offer a more detailed view of the iTec project. The results are described

as such: the first part is the name of the calculated metric in Sotoarc and Sotograph and the

value within the brackets is the maximum value of the metric. The second part is the actual

value of this metric. The order of evaluating the metrics is first the rules, then the measures,

the cyclomatic dependencies and finally the bad smells.

Rules

First the rules are viewed and evaluated. The most significant violations are in the attribute

and file metrics. You should always avoid having violations in the rules. The rules are divided

into attribute, file and package rules.

Attribute metrics

AttrExternalUsageRule(0) 798

798 methods from external classes read or write to the current attribute.

Solution: A solution could be the using of static constructors.



3.3 Software quality evaluation 53

Metric Value

SysFiles 838

SysLOC 155.880

SysMetadata 34

SysMethods 6652

SysNestedClasses 217

SysPackages 38

SysPackagesNotUsed 0

SysPckgInCycles 19

SysReferences 78.957

SysRelevantLines 66025

SysSubsystems 8

SysAttributes 2910

SysCalls 21.832

SysClasses 1.056

SysClassInCycles 679

SysCommentblocks 12.717

SysCommentedOutCodelines 1.476

SysConstantAttributes 1.096

SysDeprecAttributes 0

SysDeprecClasses 0

SysDeprecMethods 0

SysViol 13.726

SysDuplicatedCodeBlocks 217

SysInheritances 26

SysJavaDocComments 6.504

SysInheritance 680

SysAnonymousClasses 145

Tab. 3.3: iTec - System Overview in Sotograph



54 3 Metrics

File metrics

FileAssignmentInOperandRuleViolation(0) 7

In operands assignments are made. This can make the source code more complicated and harder

to read. This is a PMD-rule.

Example: AddOnsImpl.java, readStandardOutput()� �
try{

...

while((i=inread(buf, 0, BUFFER)) != -1) {

}

}� �
Src. 3.5: Assignment

Solution:� �
if (i=3) // compiler error

if (i==3) // o.k.

if ((i=3)==3) // do you want to do an assignment or a comparison?

---

i= inread(buf, 0, BUFFER);

while (i != -1)

{

...

i= read(buf, 0 , BUFFER);

}

In this example if the assignment is made outside the while, it’s easier to understand, but if you forget

the second assignment this could lead in an endless loop. In the most cases this violation happens

if you iterate over java.io.*InputStreams.� �
Src. 3.6: Assignment solution

FileAvoidDeeplyNestedIfStmtsRuleViolations (0) 10

The nested if..then statements are hard to read.

Example: WaitForEventTreahType3.java, handleReceivedData()

Solution: Split the if-statements for a clearer structure.

FileCyclomaticComplexityRuleViolations (Scale 1-4 low complexity, 5-7 moderate

complexity, 8-10 high complexity, 10+ very high complexity) 17

It counts all the decision points in a method plus one for the method entry. Decision points are:

if, while, for and case labels.

Example: YMParse.java, checkBracket(int lineNr)

Solution: Split the decision points, so it has low or moderate complexity.

FileEmptyCatchBlockRuleViolation (0) 37

The rule is violated if empty catch blocks are found, where an exception is caught, but nothing

else is done.

Example: Equipment.java, checkDriverRegistration()� �
try {

tuiMgr.infoHandler.logProcessInfo(2, "--------> Port" + Integer.toString(socketHandler.getPort()) + "

: " + call);

}

catch (Exception e) {

}� �
Src. 3.7: Empty catch block



3.3 Software quality evaluation 55

Solution: Insert an exception message, so that it becomes clear why and where the exception is

thrown.� �
try {

}

catch (Exception e) {

System.err.println("logging Error" + e.getMessage());

}� �
Src. 3.8: Exception message in a catch block

FileExceptionTypeCheckingRuleViolations (0) 7

At some places an exception is caught and then a check with instanceof is performed. Each

exception type that is caught, should be handled on its own catch clause.

Example: SocketHandlerSTC.java� �
if (Tui.DEBUG_STCSERVER_IF) {

String excepname;

if (exception instanceof UnkownHostException)

excepname = "UnkonHostException";

else if (exception instanceof IOException)

excepname = "IOException";

}� �
Src. 3.9: Exception with instanceof

Solution:� �
try {

}

catch (IOException e) {

System.err.println("Caught IOException: " + e.getMessage());

}� �
Src. 3.10: Exception handling

FileFinalFieldCouldBeStaticRuleViolations (0) 3

If a final field is assigned to a compile-time constant, it could be made static for saving overhead

in each object. Example: WaitSoakTimeDialog.java� �
private final String FONT_NAME = "Ms Sans Serif";� �

Src. 3.11: Final field

Solution:� �
private final static String FONT_NAME = "Ms Sans Serif";� �

Src. 3.12: Final field with static

FileSignatureDeclareThrowsExceptionRuleViolation (0) 28

It is unclear which exception the method should throw. It might be difficult to understand and

document the vague interfaces.

Example: TestProcessFlow.java, startYodaServer()� �
protected void startYodaServer() throws Exception {}

protected void sendCreateProcessJobCommand() throws Exception {}



56 3 Metrics

protected void sendStartProcessJobCommand() throws Exception {}� �
Src. 3.13: unclear which Exception is thrown

Solution:� �
protected void startYodaServer() throws IOException {}

protected void sendCreateProcessJobCommand() throws ArrayIndexOutOfBoundsException {}

protected void sendStartProcessJobCommand() throws IOException {}� �
Src. 3.14: Exception handling

FileSwitchDensityRuleViolations (0) 1

A switch statement with a higher ratio of statements to labels, implies that this statement has

to do too much work.

Example: YMDialogSelect.java

Solution: Consider moving the statements either into a new method or create subclasses based

on the switch variable.

Package

PckgAttributeOverrideRule (0) 2

The number of attributes that are hidden in derived classes.

Example: Package core

PckgClassKnowingDerivedRulde (0) 2

Identifies all classes of the current package that have any knowledge about directly or indirectly

derived classes. This is considered bad style because changes to derived classes should never

affect a base class.

Example: Package function

PckgClassNestingRule (0) 2

This metric counts all classes in a package, which are nested in more than two levels. Ex-

ample: Package: gui, level 1 class: BinClassMonitoringWindow.java, BinClassMonitoringWin-

dow$MyBarRenderer, BinClassMonitoringWindow$MyBarRenderer$1

PckgCyclomaticComplexityRuleViolations (Scale 1-4 low complexity, 5-7 moderate

complexity, 8-10 high complexity, 10+ very high complexity) 169

The number of decision points in a method plus one for the method entry. Example: Package

core, contactLoopHandler.java, actionPerformed() has a cyclomatic Complexity of 22

Solution: Redesign the code and use the KISS (Keep it short and simple) principle.

PckgMethodNamingRule (0) 3

The number of methods in a package, which start with a lowercase letter first. Example: Package

igxl, Equipment.java. GPIBSendRequest()

Measures

Method metrics

MethChars (1000) 22.952

This metric shows the number of characters in the method body.

Example: MessagePresenter.java, putInformation()

Solution: Split the method in several small methods.



3.3 Software quality evaluation 57

MethLOC (100) 521

The number of lines of code in the method body.

Example: MessagePresenter.java, putInformation()

Solution: Split the method in several small methods

MethCyclomaticComplexity (10) 70

It calculates the complexity of the current method. The decision points have a big influence on

the complexity. Example: ContactLoopWindow.java, viewPassFailChannels()

Solution: Increase the number of unit tests or refactor the source code into smaller pieces to

reduce the complexity. If you have smaller pieces, it is easier to test.

MethParameters (5) 21

It counts the number of parameters of the current method. For this metric, it is not the sum of

the parameters that is important, but the different types.

Example: ContactLoopWindow.java, ContactLoopWindow()� �
ContactLoopWindow(int left, int top, int width, int height, Site [][] siteConfiguration, int maxColCount,

int maxRowCount, String[] colorZeroValues, String[] colorOneValues, Color colorOne, Color colorTwo,

Color backColorZero, Color backColorOne,

Color backColorTwo, ActionListener actionListener, WindowListener windowListener, TreeWillExpandListener

expansionListener, TreeExpansionListenerr treeExpansionListener, TreeSelectionListener

selectionListener, TuiMgr tuiMgr, TreeModelListener modelListener)� �
Src. 3.15: Too many parameters in the method

Solution: Instead of using so many parameters with the same type, you can use objects.

Class metrics

ClassAttributes (20) 188

This metric counts the number of attributes of a class independent of its visibility (private,

protected or public).

Example: SocketHandler.java

Solution: For better understanding you should try to keep your classes simple, which also

includes the amount of attributes.

ClassPublicAttributes (0) 177

The number of public attributes is counted, but attributes inherited from superclasses are not

considered. The object-oriented principle forbids using public attributes, because this violates

the data hiding principle.

Example: SocketHandler.java Solution: A better way is using methods (get-, set-, is-) or in C#

with properties (get-, set-).

ClassPublicMethodNoGetSet (20) 182

The number of public methods without getter or setter, are counted. This is a measure for the

interface size of a class. The point of getters and setters is that they are only meant to be used

to access the private variable, which they are getting or setting. For later modifications, you

only have to modify the getter or setter.

Example: FunctionFactory()

Solution: Use getters and setters.

ClassOutboundRefClass (50) 322

This metric counts the number of distinct classes from which at least one symbol is directly



58 3 Metrics

referenced. Only direct calls are considered.

Example: OpaHandler.java

File metrics

FileInstanceOf (0) 41

The occurrences of ”instanceof” in the source code is counted. Each usage of it violates the

once and only once principle. In such cases the inheritance relationship is not only encoded in

the inheritance graph but also in the clients. The usage of instanceof in equals methods usually

makes sense.

Example: MessagePresenter.java

Solution: Usage of equals instead of instance of usually makes sense.

FileLOC (1.000) 3.721

It counts the number of lines of code of a file. Example: ContactLoopWindow.java with 3.721

LOC, it is clearly too many LOC so it is getting more and more complex to understand.

Solution: Split the file in several sub-files.

Duplicated Code Metrics

FileDuplicatedCodeBlocks (0) 5

This metric counts the number of distinct duplicated code blocks, within one file. Solution: The

duplicated code is redundant, so evaluate the source code and then eliminate the duplication.

Sometimes the GUI elements are also counted as duplicated code blocks, but these duplications

are okay.

FileDuplicatedCodeFile (0) 5

The number of files with a duplicated code relationship is counted.

Architectural Metrics

File metrics FileInboundArchViol (0) 2383

The violation shows the number of architectural violations going into this file. Example: Tu-

iMgr.java



3.4 Chapter summary 59

3.4 Chapter summary

In this chapter, various metric suits like Chidamber & Kemerer, Metrics for Object-Oriented

Design, McCabe and Maintainability Index are explained. The idea of measuring software

quality with metrics is good, but the interpretation is difficult. After spending a lot of time

in literature research, I found some ranges for CK metrics. As a result of my work, metrics

are project dependent. As a proposal for a metrics set, checked regularly, DIT, NOC, RFC

and CBO are chosen. Nowadays, there are a lot of tools available, which provide calculation of

different metrics. For the Infineon IT-department I did an evaluation for Sotoarc and Sotograph.

Before starting the evaluation, I interviewed the employees, to get a better overview of the actual

project situation and how testing is performed. Another topic in the questionnaire was about

software quality, to get an idea about the employee‘s attitude. Two projects (java, c#) were

evaluated by Sotoarc and Sotograph. As a result, the most important metrics are explained and

a solution is provided.



60 3 Metrics



4 Tools

In this chapter Sotoarc, Sotograph, Visual Studio 2010, Analyst4j and VizzMaintenance are

described and evaluated for improving the software quality of projects from the IT-department.

4.1 Sotoarc and Sotograph

Sotoarc and Sotograph are software analysis tools from hello2morrow. They are specialized

in analyzing architectural and structural violations. Therefore, the focus is on metrics which

cover the architecture and structure. For this, tool version P4.1.2 release date 110624 with

the database version 3.017, is used. The following sections about Sotoarc and Sotograph are

referenced from [hel08], [hel10]. The license for the IT-department implies Java, C# and C++

parser. The parser extracts the source code and stores it in a database from where the structural

information is extracted. In the database all occurring artifacts and references between these, are

stored. Rule violations are calculated with external code checkers, integrated via the code checker

plug-in interface. Sotograph for Java comes with a preconfigured PMD integration. PMD is a

code-checker tool for scanning the Java source code and for looking at potential problems like

dead code, overcomplicated expressions, duplicated code, suboptimal code and possible bugs

like empty try/catch/finally/switch statements [PMD11]. PMD is integrated with JDeveloper,

Eclipse, JEdit, JBuilder, BlueJ, CodeGuide, NetBeans/Sun Java Studio Enterprise/Creator,

IntelliJ IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs.

Figure 4.1 shows the Sotoplatform. It is divided into Sotoarc, Sotograph, Sotoreport and So-

toweb. For the purpose of evaluation, only the Sotoarc and Sotograph are relevant. For the

architectural analyses and modeling, Sotoarc is used. There, you can model your architecture

and have a look at the cyclic dependencies, which are shown in a graph. The information about

cyclic dependencies between classes, files, packages and subclasses are calculated at fill time. In

Sotograph the quality analysis is performed. There are metric suites provided to get detailed in-

formation about the system. It is possible to calculate a trend over several versions of a software

system.

Figure 4.2 shows the integration of source code in Sotoarc and Sotograph. A parser extracts the

relevant information into the repository. After filling in the data, code checker tools, like PMD,

are executed. It is also possible to integrate Sotoarc/Sotograph into Eclipse.

4.1.1 Sotoarc

In Sotoarc you can model your system, check the architectural violations and get an overview

of the system metrics. If you want to change your architectural layout and move files from one

layer to another, you can inspect the resulting influences. Changes are only visible in Sotoarc



62 4 Tools

Sotoplatform 

Sotoarc Sotograph 

- Architecture analysis 
- Cycle detection 
- Modelling an architecture 
- Virtual restructuring  
 

- Comparison of different versions  
- Metrics and Rules 
- Detailed analysis 
 

 

- Parse J, C# and C++ Code  
- Fill the repository  
- Data administration 
 
 

Fig. 4.1: Soto platform

Repository 
(RDBMS) 

Repository 
Fill Interface 

Java Byte  
Code Parser 

Java Source  
Code Parser 

C++ Parser 

C# Parser 

IDE  Plugin  
Interface 

Eclipse, Developer Studio, 
Emacs, ... 

IDE  Plugin  
Interface 

PMD DupliScope 

Cehckstyle, PCLint, …  

Fig. 4.2: Soto integration



4.1 Sotoarc and Sotograph 63

and Sotograph, but it does not change anything in source code. First start Sotoarc and load

the project.

If it is a Java project, you have to load the following files:

• Class files

• Directories or directory trees containing class files

• Java archives containing class files (jar, ear, war, zip)

You can generate the packages from the Java packages or from the directories.

If it is a C# project, you have to provide the following files:

• Source Code

• Visual Studio C# solution files or CTP capture tool project files

• Extra directories for the assemblies

You can generate the packages from the C# namespaces or from directories.

From the source code, a lot of information is extracted and saved as artifacts such as classes,

methods, attributes and relations about inheritance, read and write access and call-callee de-

pendencies.

After successfully loading the software project in Sotoarc you can switch to the ”Architecture

menu” and start modeling your system. It is essential map the system in the way it really looks

and not how it should look. You want to improve something and therefore, it is very important

to model the actual state. The modeling itself does not follow the UML syntax.

The next step is to assign the classes into Sotoarc specific modules.

Unrestricted subsystem

Restricted subsystem

Layer

Fig. 4.3: Different modules in Sotoarc

There are three types of modules in Sotoarc, shown in figure 4.3:

• An unrestricted subsystem is a module without restrictions on the dependencies on its

sibling modules.

• An independent subsystem is a module which must not depend on its sibling modules, i.e.

it must not have references to sibling modules (modules which are located in the same

container).

• A layer is a module that forms a layered structure together with its sibling modules. The

first (highest) module represents the first layer of that structure; the last (lowest) module

represents the lowest layer of that structure. This layered structure defines that higher

layers may access lower ones but not vice versa.



64 4 Tools

Within one module you should only define the same kind of modules. This could be a layer with

all unrestricted or independent modules.

After you have modeled your architecture, green and red arcs will arise. If there is a green arc

between the nodes, left-handed, this means that downward references derived from the analyzed

system. There are one or several references going from artifacts represented by the upper node

to artifacts represented by the lower node. If there is a green arc, right-handed, this means that

upward references, are derived from the analyzed system. There are one or several references

going from artifacts represented by the lower node to artifacts represented by the upper node.

Moreover, red arcs indicate architectural violations which should be solved. In chapter 2.4.3

Architectural Violations there are some examples illustrated, where an existing reference in the

code is not allowed by the architectural model.

In figure 4.4 you have to define the following kind of modules:

1. Create subsystems

2. Create layer

3. Define the private area

4. Define the allowed depth a layer may have access to

Defining an architecture in Sotoarc needs a lot of time. If you want to check your system and

assign it into layers, you have to look at each file and decide carefully in which layer you want

to put it. It should be done in several meetings. The first step is to discuss the architecture and

find a rough outline and to do the fine tuning in the coming meetings.

Fig. 4.4: Different modules in your system

Now moving from the theoretical part to a more practical one. In figure 4.5 you can see the

architecture from the iTec project. For this example the red arc shows a architectural violation



4.1 Sotoarc and Sotograph 65

that should be solved. Finally if there are no red arcs anymore, your architectural design can

be continued and analyzed.

Fig. 4.5: Architectural view

At default you see all references from your files. If you want to see only the violations you can

switch the view to: Show Only Violating and Marked Arcs. In figure 4.6 there are only the red

arcs shown.

If you want to see only the references between one class and the others, you can focus on

dependencies with right click and choose Focus ->Focus on Dependencies. Figure 4.7 shows you

the resulting view.

To get details about the architectural violation you can click on the red arc and a tool tip will

appear, which is shown in figure 4.8.

In Sotoarc you can check the cyclic dependencies of your project. At first it is better and easier

to check the file dependencies. In figure 4.9 you can see a cycle with 5 files, involved in two

packages. On the right side there is a table with the current cyclicity. You can show how these

values change if you cut one dependency. One cycle group may split into several cycle groups

by cutting some dependencies.

• CYC: the remaining cyclicity of nodes in the graph

• CycNodes: the remaining number of nodes belonging to cycle groups of the graph



66 4 Tools

Fig. 4.6: Show only violated arcs

Fig. 4.7: Focus on dependencies



4.1 Sotoarc and Sotograph 67

Fig. 4.8: Tool tip about layer violation

Fig. 4.9: File dependence visualized in a graph



68 4 Tools

• Grps: the number of cycle groups in the graph

Fig. 4.10: Cyclic dependencies visualized in a graph

For further details check the Sotoarc hands-on. After finishing the modeling activities, you can

print out a report. Select ’Extras ->Generate Overview Report...’ from the menu bar. Then

you have a document where all the changes, which have been made in the architecture, are

presented. The challenge is to change the source code in a way, that it fits the architectural

model.

Loading a new project into Sotoarc for calculating trends and comparing metric results you have

to choose ”Project ->Parse project”. When you have already parsed a version of the current

project you can use the history option to retrieve the entered data again. Next add the byte

code and source files.

If you want to change your database, you can use the migration wizard. First start Sotoarc,

load Project1 1 and open (click on) the menu bar ”Projects ->Admin...”. In the Sotoadmin

window click in the menu bar ”Database ->Migrate ”Project X”. Finally a migration wizard

appears and you can select the target database into which information from the old database

will be migrated.

The most important part is the architectural evaluation. You can check cycle dependencies to

get an overview of all files involved. For more detailed software evaluation, you have to switch

to Sotograph.



4.1 Sotoarc and Sotograph 69

Fig. 4.11: Project migration in Sotoarc

4.1.2 Sotograph

Sotograph is used for fine evaluation of software metrics. The strategy for analyzing the metric

value in Sotograph is first to get an overview of the system metrics. The most important part of

Sotograph is the MetricScope. You can switch between different scopes via the menu bar, like

GraphScope, QueryScope, ResultScope, TrendMetricScope and XrefScope. These scopes are

explained before starting with the MetricScope, which is the most important tool in Sotograph.

GraphScope

In the GraphScope you can generate graphs and visualize parts of your system. First you have

to configure the graph settings. You can select the dependency type ”Call”, ”Inheritance” or

”Package Nesting” as referenced kind. In order to obtain a better overview of the involved

packages in the graph, you can switch from system to subsystem or packages level.

QueryScope

In this scope, you inspect your system and browse between different categories, like ”Bad Smells”,

”Patterns”, ”Trend for 2 last version” and many more. In the category Bad Smells, you can

evaluate the bottlenecks and you get an overview of which files have many in and outs.

ResultScope

The purpose of this tool is to depict analysis results of all varieties in the form of tables.

TrendMetricScope

The TrendMetricScope has a similar manner as the MetricScope. It additionally displays metric

results for different versions of the software system. Therefore, you can observe the values of

various metrics between two versions, shown in figure 4.12

It is also possible to generate a trend chart of two versions, where you can see how metric values

changed between two versions, shown in figure 4.13

XrefScope

The XrefScope is a high level cross-referencer which enables you to analyze relationships between

sets of artifacts. You can choose an artifact (class, file, package or subsystem) as an anchor of



70 4 Tools

Fig. 4.12: Trendmetric in Sotograph

Fig. 4.13: Trend chart



4.1 Sotoarc and Sotograph 71

a xref query. Then you have to specify the ”Search Direction” of the query, i.e anchor refers to

the result to find artifacts that are referencing the anchor.

MetricScope
The MetricScope enables you to analyze a software system by measuring metrics and rules of a

quality model. A quality model defines a set of metrics and rules which is tailored for analyzing

software implemented in a certain programming language or even a single project. For metrics

it is possible to specify the boundaries that separate uncritical and critical value ranges.

First, figure 4.14 shows the Sotograph MetricScope view.

Fig. 4.14: Sotograph explanation

Switch to the MetricScope. At first check the duplicated code metrics, rules and finally the

measures, shown in figure 4.15.

You only have to check the metrics in red, because they indicate a violation shown in figure

4.16.

4.1.3 Choice of metrics

In Sotograph [hel08], software analysis takes place as well as detailed metrics calculations. To

get an overview of the system metrics, they can be checked in the Sotograph MetricScope-Metric

Values -〉 Show System Metrics Overview.

Metrics are divided into:



72 4 Tools

Sotograph  Metrics 
 
Order for checking: 
1. Duplicated Code 
2. Rules 
3. Measures 

Fig. 4.15: Order of metrics in Sotograph

Fig. 4.16: Violated metrics



4.1 Sotoarc and Sotograph 73

• Architectural Metrics

• Cycle Metrics

• Duplicate Code Metrics

• Measure

• Rules

Rules define conditions that have to be fulfilled by structural aspects of a software system. Rules

violations should always be fixed. You can distinguish between architectural and structural

level rules. Measures find artifacts on any abstraction level which point out problems. In

the literature, measures are usually called metrics. In Sotoarc/Sotograph, artifacts are classes,

methods, attributes, functions, variables, source files, directories, Java packages and namespaces.

Before starting a detailed analysis, it makes sense to visualize the cyclic metrics to a graph

for getting a better overview, for e.g. on subsystem or package level. The problem with cyclic

dependencies is that it is hard to maintain the software. There are two options as how to handle

cyclic problems:

• Decide if the graph is still manageable and avoid that further packages are added to the

cycle.

• Start cleaning up. The best way to start is to find semantic information. Defining a

layered architecture model and illegal arcs is a good starting point for cleaning up.

The following rules and violations are a suggestion from hello2morrow, which are the most

important metrics based on their experience. The next step is to check duplicated code metrics.

In this section the SysDuplicatedCodeBlocks is relevant. Therefore, the number of distinct

duplicated code blocks in the system are counted.

The next step is to evaluate the rules. There is a difference between C# and Java source code.

For C# there are default metrics available and for Java you can switch to detailed metrics. In

the drop-down menu ”All metrics” the following metrics are important:

• Attribute Metrics: AttExternalUsageRule

The number of methods from external classes are counted, which read from or write to

the current attribute.

• Class Metrics: ClassCovariantEquals (JAVA)

It counts classes, that define a covariant equals method, i.e., one in which the param-

eter type equals the class in which the method is defined should also override equals

(java.lang.Object). Mistakenly defined a covariant equals() method without overriding

the equals(java.lang.Object) can produce unexpected runtime behavior.

• File Metrics

There are the following rules in file metrics to check:

– FileAvoidDeeplyNestedIfStmtsRuleViolation

This metric counts the deeply nested if..then statements, which are difficult to read.

– FileEmptyCatchBlockRuleViolations

This metric counts the sum of all empty catch blocks for every file, where nothing is

done.



74 4 Tools

– FileExceptionTypeCheckingRuleViolation

This metric counts all the rule violations where at some places exceptions are caught

and then a check with instanceof is performed. It is better to catch all the specific

exceptions instead.

– FileFinalFieldCouldBeStaticRuleViolation

If a final field is assigned to compile-time constant, it could be made static saving

overhead in each object.

– FileSignatureDeclareThrowsExceptionRuleViolation

The problem concerning this violation is that it is unclear which exception can be

thrown from the methods. Use either a class derived from RuntimeException or a

checked exception.

– FileSwitchDensityRuleViolation

For every file, this metric counts the sum of all rule violations for the rule Switch-

Density. This rule is a high ratio of statements to labels in a switch statement, which

implies that the statement is responsible for too many functions. If the statements

are too nested, it is better to move some of the functionalities into new methods or

create subclasses.

From the package metrics the following metrics are of primary importance:

• PckgAttributeOverrideRule

This rule contains the number of attributes, that are hidden in derived classes.

• PckgClassConstructorRule

The number of methods in a package with the same name as their class, that are not a

constructor.

• PckgClassEqualsAndHashCodeRule

Number of classes in the package overriding method hashCode() or equals (), but not both.

• PckgClassIllegalInRule (JAVA)

Number of classes in a package that are direct or indirect subclasses of java.lang.Error,

java.lang.Throwable, java.lang.RunTimeException.

• PckgClassKnowingDerivedRule

Identifies all classes of the current package that have any knowledge about directly or

indirectly derived classes. This is considered bad style because changes to derived classes

should never affect a base class.

• PckgClassNestingRule

Number of classes in the package that are nested more than two levels, because then it

gets more and more complex.

• PckgFinalFieldCouldBeStaticRuleViolation

For every package, this metric counts the sum of all rule violations for FinalField-

CouldBeStatic. This contains the final assigned constants, which could be static to

save overhead in each object.



4.1 Sotoarc and Sotograph 75

• PckgMethodMainRule (JAVA)

The number of methods in a package, which are called main but are not ”public static

void main (java.lang.String[])”.

The same rule violation as for package level will be violated on the file level. For the system

level, these two metrics should be considered:

• SysRefDeprecClassRule

This rule counts all those directly referenced by deprecated classes. Every call, via objects

or static methods, is considered.

• SysRefDeprecMethAttrRule

The metric counts all directly called deprecated methods or directly used deprecated at-

tributes of classes.

The next step is to switch from ”All Metric Kinds” to ”Measures” in the drop-down-box. Method

Metrics:

• MethCyclomaticComplexity

It is determined by the number of decision points in a method plus one for the method

entry.

• MethLOC

The sum of code lines within a method is counted.

• Methparameter

This metric counts the number of current method parameters.

Class Metrics:

• ClassExcessiveMethodOverloading

This metric counts the maximum number of times a method is overloaded in a class.

• ClassOutboundRefClass

It counts the number of distinct classes from which at least one symbol is directly refer-

enced.

• ClassPrivateMethodNotUsed

The private method that is not used, can be deleted.

• ClassPublicAttributes

The number of public attributes is counted.

• ClassPublicMethodNoGetSet

The number of public methods without any getters and setters is counted.

File Metrics:

• FileCommentedOutCodeLines

It counts the number of files where code is commented.

• FileHack

All strings of the source code are checked for containing the word ”hack”.

• FileLOC

It counts the lines of code in a file.



76 4 Tools

• FileNewInstance

It counts the number of occurrences of the string ”newInstance” in the source code.

• FileToDo

This metric counts the number of strings containing the phrase ”todo” or ”to do” in a file.

Package Metrics:

PckgOutboundRefPckg: It counts the number of other packages, it refers to within one package.

System Metrics:

• SysDeprecAttributes

This metric counts all non library deprecated attributes.

• SysDeprecClasses

It counts all non library deprecated classes.

• SysDeprecMethods

It counts all non library deprecated methods.

• SysMetadata

This metric counts the number of all used metadata, which are annotations in Java and

attributes in C#.

4.1.4 Metrics prioritization

For better understanding you can divide the metrics into different categories. For a categoriza-

tion only inheritance, coupling/cohesion, complexity and polymorphism from the object oriented

principles are relevant. In addition, there are two more categories for the structure violations

and duplicated code metrics.

Structure metrics

Structure metrics are violations in the structure of source code, such as coding style errors or

general source code information. The following metrics belong to this category.

• FileEmptyCatchBlockRuleViolation

• FileExceptionTypeCheckingRuleViolation

• FileFinalFieldCouldBeStaticRuleViolation

• FileSignatureDeclareThrowsExceptionRuleViolation

• PckgClassConstructorRule

• PckgClassEqualsAndHashCodeRule

• PckgClassIllegalInRule

• PckgFinalFieldCouldBeStaticRuleViolation

• PckgMethodMainRule

• SysRefDeprecClassRule

• SysRefDeprecMethAttrRule

• MethLOC



4.1 Sotoarc and Sotograph 77

• Methparameter

• ClassPrivateMethodNotUsed

• ClassPublicMethodNoGetSet

• FileCommentedOutCodeLines

• FileHack

• FileLOC

• FileNewInstance

• FileToDo

• SysDeprecAttributes

• SysDeprecClasses

• SysDeprecMethods

• SysMetadata

Duplicated code metrics

SysDuplicatedCodeBlocks

Inheritance

PckgClassKnowingDerivedRule

Coupling/Cohesion

• AttExternalUsageRule

• ClassOutboundRefClass

Complexity

• FileAvoidDeeplyNestedIfStmtsRuleViolation

• FileSwitchDensityRuleViolation

• PckgClassNestingRule

• MethCyclomaticComplecity

• PckgAttributeOverrideRule

• MethCyclomaticComplexity

• ClassExcessiveMethodOverloading

Polymorphism

• Methparameter

• ClassExcessiveMethodOverloading

In 4.1.3 Choice of metrics, metrics are listed from the smallest to the largest unit. The most

important metrics, which should be checked regularly, are listed below. Please mind that the

Sotoarc and Sotograph metrics are focused on architectural and structural violations.

Prioritization of Sotograph metrics:



78 4 Tools

1. AttExternalUsageRule

2. FileAvoidDeeplyNestedIfStmtsRuleViolations

3. MethCyclomaticComplexity

4. MethLOC

5. Methparameter

6. FileEmptyCatchBlockRuleViolations

7. PckgClassKnowingDerivedRule

8. ClassExcessiveMethodOverloading

9. ClassPublicAttributes

10. ClassPublicMethodNoGetSet

The following list is a set of metrics and threshold that have proved to be best practice in many

Java projects [MvZ11].

1. Normalized cumulative component dependency (project) <= 7

2. Number of types (package) <= 50

3. Number of public types (package) <= 30

4. Lines of code (compilation unit) <= 700

5. Number of methods (type) <= 50

6. Cyclomatic complexity (method) <= 20

7. Number of parameters (method) <= 7

4.2 Visual Studio 2010

Visual Studio provides some powerful tools for improving source code such as Test and Lab

Manager. For this evaluation Microsoft Visual Studio 2010 version 10.0.30319.1 is used.

4.2.1 Metrics in VS 2010

In the menu bar ”Analyze” you are able to run code analysis on your project. Per default the

Microsoft Basic Design Guideline Rules are selected, which include the Maintainability Index

(MI), Cyclomatic Complexity (CC), Depth of Inheritance, Class Coupling and Lines of Code.

After compiling you get an overview about the most important metrics. The challenge here is

to interpret the results. Checking whether or not the metrics are within the ranges is explained

in chapter 3.2 Common Metrics.

4.2.2 Code coverage

Code coverage means to figure out the percentage of code that is covered by the last execution

[KS10]. To enable code coverage, you have to open the test settings, go to ”Data and Diagnos-

tics” and enable it. The following figure 4.17 shows you a screen shot with the code coverage

results from the test run.



4.3 Comparison of Sotograph and VS 2010 79

Fig. 4.17: Code Coverage

You can also enable the code coverage setting for unit testing. It shows you the code that has

been covered by unit testing. Therefore, you have to specify the configuration in the Data and

Diagnostics wizard. Select the test and run test again setting.

4.3 Comparison of Sotograph and VS 2010

Table 4.1 shows a comparison of Sotoarc/Sotograph and Visual Studio 2010. This comparison

is concerned with metrics and architectural evaluation.

Name Sotoarc/Sotograph VS 2010

Multi languate C, C++, C#, Java C, C++, Visual Basic

Generates architectural design X X

Generates dependency graph X X

Generates directed graph X X

Calculates metrics X X

Detailed metric evaluation X

Tips for solving violations X

Tab. 4.1: Comparison of Sotoarc/Sotograph an VS 2010

4.4 Comparison of Analyst4j and VizzMaintenance

Figure 4.18 shows a list of metric tools evaluated in [com08]. The ’x’ marks that a metric can

be calculated by the corresponding metric tool.

To analyze software projects there are several metric tools available online. The following two

tools are compared:

1. Analyst4j [Cod13]

2. VizzMaintenance [Ari13]

The installation as such was very easy. Analyst4j is available as a stand-alone version and also

as an Eclipse IDE plug-in. It features search, metrics analyzing quality and report generation

for Java programs. VizzMaintenance is used as an Eclipse plug-in. VizzAnalyzer is not longer

available as a stand-alone and VizzMaintenance is its successor.



80 4 Tools

Fig. 4.18: Tools and metrics in evaluation [com08]

4.4.1 Metric results

For source code evaluation, a small project of my own is used, because more different tools are

tested also from [com08], which are considered. By comparing the results for LOC, there are huge

differences. Analyst4j computed 2.628 LOC, while VizzMaintenance got 3.170 LOC. Obviously,

even LOC is tool-dependent. The other metrics are not so easy to compare. Results provided by

Analyst4j are only average values. In contrast, in VizzMaintenance, there are metrics calculated

for each file. In either case, there are no range values defined to see which metric values are

acceptable and which are not. The interpretation is still the hardest part and for this you have

to know how each metric is calculated and how to interpret the computed results.

4.4.2 Analysis

In [com08] the computation of different metrics also returned different results depending on the

used metric tool. They picked out a small class from the jTcGUI project. For calculation the

scope is important, which means for each metric you have to decide if all classes, methods,

constructors, calls, accesses etc. are taken into account.

Cohesion - CBO and RFC Analyst4j calculates for CBO 4 and RFC 12, because API classes

are considered. For the evaluation in this paper the results are from VizzAnalyzer. For CBO it

is 1 and RFC 6, due to the API not being in scope and in any case, the constructor does not

count as a method either.

Inheritance - DIT Metric tools try to calculate the inheritance hierarchy of classes. There

are also different results. Analyst4j returns DIT 2 while the API is not within the scope for

VizzAnalyzer and therefore DIT is 0.

Size and Complexity - LOC, NOM and WMC For these metrics, source code is essen-

tial and for computation complexity all the entities and relations are considered, like loops and

conditions. VizzAnalyzer calculated LOC 64 by considering the full class declaration plus class



4.5 Usability 81

Fig. 4.19: Differences between metric tools for project jTcGUI [com08]

comments. Analyst4j calculated WMC 17 and NOM 6. The values can be explained by count-

ing all methods excluding constructors. VizzAnalyzer got 13, because it does not include the

constructor.

4.5 Usability

In this section, the installation routine and the usability of each tool is discussed. Finally, the

difficulties in interpreting the software metric results are described.

4.5.1 Sotoarc and Sotograph

Tool version is P4.1.2 release date 110624. Sotoarc and Sotograph can be run on a regular

development machine. A computer with 512 MB RAM and a 1500 MHz processor is adequate to

run the tools for a mid-sized software system (up to 1 million LOC). For larger software systems,

one GB of RAM is recommended. A dedicated database server machine is not required.

The usage of Sotoarc and Sotograph is not self-explanatory. You have to load a java or c#

project into Sotoarc. You also have to specify directories where class- and jar-files are. The first

step in analyzing an unknown software system is to gain an overview of its structure. You see

the packages of the project, but the use of the overview is unclear at this point. After consulting

the Sotoarc‘s hands-on, it was clear to define the architecture and move each class to a specific

layer. In the architecture view, you can see the dependencies and cycles between the files. You

can switch to Sotograph for metric calculation. Hello2morrow also provides a Sotograph hands-

on and then you get a better overview. During my work for the Infineon IT-company, the office

received a Sotoarc and Sotograph training. After that training, it was easier to use it, but it

takes a lot of time to analyze the architecture and evaluate the provided metrics. The conclusion



82 4 Tools

for these two tools is that they are useful, but you have to invest a lot of time to know all of

their functionality.

4.5.2 Visual Studio 2010

The tool for metric calculation was already included in Microsoft Visual Studio 2010, version

10.0.30319.1. There was no extra installation necessary. It calculates only four metrics, by

default. The usage was easy, after clicking in the menu bar ”Analyze”, you get a view of the

calculated metrics. In the results there are no explanations about allowed ranges, or why this

metric is violated. First, it is important to know what these metrics are calculating.

4.5.3 Analyst4j

Analyst4j was tested in version 1.5.0. For testing, I downloaded it in a standalone-version,

otherwise you have to get a license for using full functionality. The installation and usage of

Analyst4j was easy as an user of Eclipse programming environment. Right click on the project,

Analyst4j and analyze; you get the metric calculation results. The results contain only average

values. In this case you have to know what you are measuring and how to interpret these results.

4.5.4 VizzMaintenance

VizzMaintenance was tested in version 2.0.4.201002180142. The installation was uncomplicated.

The plug-in had to be integrated in Eclipse and it was ready to use. A disadvantage is that

there are also no explanations of calculated metrics and the reason metrics are violated are not

explained.

4.6 Chapter summary

As a result of my thesis and [com08], calculation of software metrics is dependent on the tool.

The knowledge and interpretation of these metrics are preconditions for measuring. Nevertheless,

hello2morrow provided a lot of functionality with Sotoarc and Sotograph. Otherwise, VS 2010

includes only a small set of metrics into the framework. Every developer can check metrics

regularly without any additional tool. Analyst4j and VizzMaintenance were simple to install,

but interpretation without any hints is very difficult. It is not recommended for people without

any metric experience.



5 Conclusion and future work

5.1 Conclusion

Software quality is a rather abstract term. Developing projects is not writing code anymore,

it contains a lot of other disciplines to consider. Coding guidelines, testing, code review and

measuring quality with software metrics are some key points. Each company has to define some

golden rules for developing projects and that part is challenging. How can anyone guarantee

high software quality without measuring it? One way is calculating static software metrics. For

this master thesis I evaluated two different projects, DND (c#) and iTec (java) from Infineon.

Before measuring, I interviewed 14 employees, involving team leaders and members for these

two projects. Simple by answering a questionnaire, a major problem appeared: complexity.

Next, I had to calculate a small set about 5 to 8 metrics, which could be useful for every project

and which would be easy to understand and calculable for developers. The main problem with

metrics is that you can not generalize one metric set for all projects. It is very specific for

each project, because software criteria are different. The challenge is to find a set of metrics,

independent from software criteria, yet helpful as an indicator for problems. For this reason,

I picked out the most famous metrics from Chidamber and Kemerer, the CK-metrics. They

cover inheritance, complexity, coupling and cohesion issues. If the inheritance path is too deep,

this leads to confusing the developers and also make testing harder. Coupling and cohesion

lead to worsening the maintainability and reusablity. Complexity, in general, makes it hard to

understand the specific software part. The next task was to find a tool that would measures

these sets of metrics. At the office, Sotoarc and Sotograph from hello2morrow were available

for checking this software criteria. Sotoarc is a tool for checking the software architecture, so

it is necessary to define software layers for each project. If there are already some layers, you

have to check each one to find out if their functionality belongs together or has become chaotic.

Both projects have a high cyclomatic complexity, which is an indicator for bad layer definition,

as you can not change something in one class without side effects. For evaluating architectural

problems, only two hours are scheduled. In these two hours using Sotoarc, you have to define an

architecture and identify architectural violations in your project. If you have found violations, a

solution could be adopting the previously designed architecture in small steps. The main focus

was on finding metrics to improve the actual situation. Sotograph calculates static code metrics.

It is an advantage to list all the metrics, that are violated in the project. It is remarkable that

the allowed metric ranges are shown and the meaning of this particular metric is explained in

the tool. With some help from a consultant of hello2morrow, we have defined a small set of

metrics. Every developer has access to these tools and can regularly check how these metrics

are changed over time.



84 5 Conclusion and future work

5.2 Future work

The evaluation of these two projects has to be done for a longer period of time, in order to see

if it has an effect on software quality of the whole project. It would be also interesting to see

if the found set of metrics can be done by the daily build for C# and Java projects. Another

step could be regularly performing code reviews every three weeks. This could improve the

understanding and structure of a specific software. A focus should be set on testing and code

coverage.



List of Figures

1.1 Techniques for improving software quality . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Internal and external quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The cost of a defect in the software lifecycle [Lev11] . . . . . . . . . . . . . . . . 8

2.3 Waterfall model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Scrum skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Singleton Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Observer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 DND layer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Error discovery rates [DWR08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Testing techniques through software life cycle . . . . . . . . . . . . . . . . . . . . 30

2.10 Testing pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 States of development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Overview pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Soto platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Soto integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Different modules in Sotoarc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Different modules in your system . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Architectural view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Show only violated arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Focus on dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Tool tip about layer violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 File dependence visualized in a graph . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Cyclic dependencies visualized in a graph . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Project migration in Sotoarc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



86 LIST OF FIGURES

4.12 Trendmetric in Sotograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.13 Trend chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 Sotograph explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.15 Order of metrics in Sotograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.16 Violated metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.17 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18 Tools and metrics in evaluation [com08] . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 Differences between metric tools for project jTcGUI [com08] . . . . . . . . . . . . 81



Bibliography

[Ari13] Arisa. Vizzmaintenance 2.0, 2013. http://www.arisa.se.

[BD08] Manfred Bundschuh and Carol Dekkers. The IT Measurement Compendium - Es-

timating and Benchmarking Success with Functional Size Measurement. Springer-

Verlag Berlin Heidelberg, 2008. ISBN 978-3540681878.

[BLL04] W.H.C. Bassetti, William E. Lewis, and Lewis E. Lewis. Software Testing and

Continuous Quality Improvement. Auerbach Publisher Inc., 2004.

[BMRS96] Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. A System

of Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

ISBN 978-0471958697.

[Bre07] Kadhim M. Breesam. Metrics for object-oriented design focusing on class inheritance

metrics. In 2nd International Conference on Dependability of Computer Systems,

pages 231 – 237, 2007.

[Bur03] Ilene Burnstein. Practical Software Testing. Springer, 2003. ISBN 978-0387951317.

[BWDP00] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relationship

between design measures and software quality in object-oriented systems. Journal

of Systems and Software, 2000.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metric suite for object oriented

design. In IEEE Transactions on Software Engineering, pages 476–493, 1994.

[Cod13] CodeSwat. Analyst4j, 2013. http://www.codeswat.com.

[com08] Comparing Software Metrics Tools, ISSTA ’08, New York, NY, USA, 2008. ACM.

[CS09] Kuljit Kaur Chachal and Hardeep Singh. Metrics to study symptoms of bad software

designs. In ACM SIGSOFT Software Engineering Notes, volume 34, pages 1 – 4,

January 2009.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and

polymorphism. ACM Comput. Surv., 17(4):471–523, December 1985.

[DeM86] Tom DeMarco. Controlling Software Projects: Management, Measurement, and

Estimates. Prentice Hall, 1986. 978-0131717114.

[Doo11] John Dooley. Software Development and Professional Practice. Apress, 2011. ISBN

978-1430238010.

[DWR08] Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth. System Analysis and

Design. John Wiley & Sons, 2008.

http://www.arisa.se
http://www.codeswat.com


88 Bibliography

[Fab13] Szczepan Faber. Mockito, 2013. http://code.google.com/p/mockito/.

[FFB+04] E. Freemann, E. Freeman, B. Bates, K. Sierra, and M. Loukides. Head First Design

Patterns. O‘Reilly Media, 2004. ISBN 978-0596007126.

[GGM11] Yossi Gil, Maayan Goldstein, and Dany Moshkovich. How much information do

software metrics contain?, 2011.

[GHJ+05] Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, and Craig Larman.

Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,

2005. ISBN 978-1405837309.

[hel08] hello2morrow. Sotograph tutorial 3.4. 2008.

[hel10] hello2morrow. Sotoarc handson overview. 2010.

[HK13] Johan Haleby and Jan Kronquist. Powermockito, 2013. http://code.google.com/

p/powermock/.

[Hof09] Dirk W. Hoffmann. Software-Qualität. Springer, Berlin 1. Auflage, 2009. ISBN

978-3540763222.

[Inf00] Infineon. Sem-i development manual - internal manual, 2000.

[ISO01] ISO. Software Engineering - Product Quality - Part 1: Quality Model. Internal

Organization for Standardization, 2001. ISO/IEC 9126-1.

[ISO03a] ISO. Software Engineering - Product Quality - Part 2: External Metrics. Internal

Organization for Standardization, 2003. ISO/IEC 9126-2.

[ISO03b] ISO. Software Engineering - Product Quality - Part 3: Internal Metrics. Internal

Organization for Standardization, 2003. ISO/IEC 9126-3.

[KB11] Usha Kamari and Sucheta Bhasin. Application of object-oriented metrics to c++

and java: A comparative study. In ACM SIGSOFT Software Engineering Newsletter

Volume 36, March 2011.

[KMB04] Cem Kaner, Senior Member, and Walter P. Bond. Software engineering metrics:

What do they measure and how do we know? In METRICS 2004, IEEE CS, pages

1 – 12. Press, 2004.

[KP76] B. W. Kernighan and P. J. Plauger. Software tools. SIGSOFT Softw. Eng. Notes,

1(1):15–20, May 1976.

[KS10] N. Satheesh Kumar and S. Subashni. Software Testing Using Visual Studio 2010.

Packt Publishing, 2010. ISBN 978-1849681407.

[Lev11] Jeff Levinson. Software Testing with Visual Studio 2010. Addison-Wesley Profes-

sional, 2011. ISBN 978-0321734488.

[LMD10] Michele Lanza, Radu Marinescu, and S. Ducasse. Object-Oriented Metrics in Prac-

tice: Using Software Metrics to Characterize, Evaluate, and Improve the Design of

Object-Oriented Systems. Springer, 2010. ISBN 978-3642063749.

[Mac13] Virtual Machinery. WMC, CBO, RFC, LCOM, DIT, NOC - ’The Chidamber and

Kemerer Metrics’. URL, 2013. http://www.virtualmachinery.com.

88

http://code.google.com/p/mockito/
http://code.google.com/p/powermock/
http://code.google.com/p/powermock/


Bibliography 89

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-

tice Hall International, 2008. ISBN 978-0132350884.

[mic11] Microsoft coding guidelines, 2011. http://msdn.microsoft.com/.

[MvZ11] Dietmar Menges and Alexander v. Zitzewitz. Architectural quality rules. 2011.

[Nag04] Nachiappan Nagappan. Toward a software testing and reliability early warning

(strew) metric suite. In ICSE’04, pages 60–62, 2004.

[Pei11] Bernhard Peischl, editor. ASQT 2011 - Ausgewählte Beiträge zur Anwenderkon-

ferenz für Softwarequalität und Test 2011. OCG, 2011. ISBN 978-3854032830.

[PMD11] PMD. Java source code scanner, 2011. http://pmd.sourceforge.net.

[PR10] Joshi Padmaja and Joshi K. Rushikesh. Quality analyis of object oriented cohesion

metrics. In Seventh International Conference on the Quality of Information and

Communications Technology, pages 319–324, 2010.

[PY07] Mauro Pezze and Michal Young. Software Testing and Analysis: Process, Principles

and Techniques. Wiley, 2007.

[Sch04] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press, 2004. ISBN

978-0735619937.

[SS07] K. Stroggylos and D. Spinellis. Refactoring – does it improve software quality? In

Fifth International Workshop on Software Quality, 2007.

[SSB10] Harry M. Sneed, Richard Seidl, and Manfred Baumgartner. Software in Zahlen: Die

Vermessung von Applikationen. Carl Hanser Verlag GmbH & CO. KG, 2010. ISBN

978-3446421752.

[Wei98] Gerald M. Weinberg. The Psychology of Computer Programming. Dorset House,

1998. ISBN 978-0932633422.

[Wil11] Hermann Will. Metriken aus der praxis für die praxis. ASQT 2011 - 9. Anwen-

derkonferenz für Softwarequalität und Test, 2011.

[YK10] A. Yadav and R. A. Khan. Does coupling really affect complexity. In International

Conference on Computer and Communication Technology (ICCCT) 2010, pages 583

– 588, 2010. ISBN 978-1424490332.

[Zel06] Marvin V. Zelkowitz. Advances in Computers - Quality Software Development,

volume Volume 66. Academic Pr. Inc, 2006.

89


	1 Introduction
	1.1 Aim of the master thesis
	1.2 Objectives
	1.3 Overview

	2 Preliminaries
	2.1 Software quality
	2.1.1 Importance of software quality
	2.1.2 Costs to repair defects

	2.2 Product quality
	2.2.1 Constructive quality assurance
	2.2.2 Documentation
	2.2.3 Analytical quality assurance

	2.3 Process quality
	2.3.1 Software infrastructure
	2.3.2 Management process
	2.3.3 Maturity model

	2.4 Design Patterns
	2.4.1 Singleton
	2.4.2 Observer Pattern
	2.4.3 Structural Violations

	2.5 Testing
	2.5.1 Planning and Monitoring
	2.5.2 Manual test
	2.5.3 Unit test
	2.5.4 Functional test
	2.5.5 Smoke test
	2.5.6 System test
	2.5.7 Acceptance test
	2.5.8 Regression test

	2.6 Chapter summary

	3 Metrics
	3.1 Object oriented principles
	3.1.1 Abstraction, encapsulation and information hiding
	3.1.2 Coupling
	3.1.3 Cohesion
	3.1.4 Inheritance
	3.1.5 Polymorphism

	3.2 Common metrics
	3.3 Software quality evaluation
	3.3.1 Evaluation of the questionnaires
	3.3.2 DND
	3.3.3 ITec

	3.4 Chapter summary

	4 Tools
	4.1 Sotoarc and Sotograph
	4.1.1 Sotoarc
	4.1.2 Sotograph
	4.1.3 Choice of metrics
	4.1.4 Metrics prioritization

	4.2 Visual Studio 2010
	4.2.1 Metrics in VS 2010
	4.2.2 Code coverage

	4.3 Comparison of Sotograph and VS 2010
	4.4 Comparison of Analyst4j and VizzMaintenance
	4.4.1 Metric results
	4.4.2 Analysis

	4.5 Usability
	4.5.1 Sotoarc and Sotograph
	4.5.2 Visual Studio 2010
	4.5.3 Analyst4j
	4.5.4 VizzMaintenance

	4.6 Chapter summary

	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	List of Figures
	Bibliography

