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Kurzfassung

Die numerische Lösung von Transportgleichungen ist grundlegend für das physikalische Verständnis von

Fusionsplasmen. Eine makroskopische Beschreibung dieses Transportproblems ist mittels einer Konvektion-

Diffusionsgleichung möglich. Schwierigkeiten in der numerischen Behandlung stammen von der Steifheit

der betrachteten Differentialgleichung, die wiederum durch die Anisotropien innerhalb des Fusionsplas-

mas hervorgerufen wird. Realistische Werte für die Anisotropien - darunter versteht man das Verhält-

nis von parallelem Transport zu normalem Transport bezüglich der Magnetfeldlinen - decken acht bis

zwölf Größenordnungen ab. Während der letzten Dekade wurdendie bekannten und weitverbreiteten nu-

merischen Methoden zur Lösung von partiellen Differentialgleichungen, wie beispielsweise die Finite-

Differenzenmethode oder die Finite-Elemente-Methode, auf verschiedene Transportprobleme angewendet.

In dieser Arbeit wird ein konservatives Finites-Differenzenschema entwickelt, wobei ein unseres Wissens

nach neuer Ansatz für die Rekonstruktion der numerischen Flussfunktionen mit entsprechend hoher Ord-

nung herangezogen wird. Die entwickelte Methode kann direkt auf ein adaptives Gitter übertragen werden.

Zusätzlich werden geeignete Zeitintegrationsmethoden für die Untersuchung von zeitabhängigen Proble-

men vorgestellt und analysiert. Des Weiteren werden drei Programmpakete zur Lösung von schwachbe-

setzten, linearen Gleichungssystemen bezüglich ihrer Effizienz und Genauigkeit getestet. Hierbei ist die

richtige Wahl der Routine entscheidend für insgesamte Effizienz des entwickelten Programms, da die räum-

liche und zeitliche Diskretisierung der partiellen Differentialgleichungen zu linearen Gleichungssystemen

mit großen, schwachbesetzten Koeffizientenmatrizen führt. Um die Funktionsfähigkeit und Stabilität des

konservativen Finiten-Differenzenschemas zu überprüfen, werden einige Testszenarien ausgearbeitet und

die erzielten Ergebnisse ausführlich diskutiert.
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Abstract

The numerical solution of transport equations plays an essential role in the physics of fusion plasmas. In

this context, a macroscopic mathematical description of the transport problem is given by a convection-

diffusion equation. Difficulties in the numerical treatment mainly arise from the stiffness of the considered

differential equation which is caused by the anisotropies within the plasma of fusion research devices. Re-

alistic values for the anisotropies, i.e. the ratio of parallel to perpendicular transport with respect to the

magnetic field lines, cover eight to twelve orders of magnitude, whereby the small parameters may not be

neglected as they lead to essential physics. Since the last decade the well-known and wide-spread numer-

ical techniques for the solution of partial differential equations, such as the finite difference method and

the finite element method, have been applied to the transportproblem. In this thesis, a conservative finite

difference scheme using a high order reconstruction of the numerical flux functions is developed. The

formulated method can readily be extended to an adaptive mesh which is a part of ongoing research. In

addition, a selection of suitable time integration procedures for the investigation of time-dependent prob-

lems is presented and analyzed. Furthermore, three widely used library routines for the solution of sparse

linear systems of equations are benchmarked with respect toperformance and accuracy. The right choice

of the sparse linear systems of equations solver is crucial for the overall performance of the developed code

since the spatial and temporal discretization of the partial differential equations leads to linear systems of

equations with large, sparse coefficient matrices. So as to prove the operability and the stability of the

scheme, several test case scenarios including an application to the heat transport in a Tokamak are worked

out and studied extensively.
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1 Sparse Linear Systems of Equations Solvers

All numerical techniques used to solve partial differential equations (PDE), such as finite-difference method

(FDM), finite-element method (FEM) or finite-volume method (FVM), perform a spatial and temporal

discretization of the PDE. This discretization of the PDE eventually leads to a linear system of equations.

Subject to the size and refinement of the computational grid,the resulting linear systems of equations

exhibit a more or less sparse structure, i.e. most entries are zero. Realistic problems consist of coefficient

matrices of the size of∼ 106×106 with about 0.05% non-zero entries. Hence, one requires about 30GB

of memory including overhead to store the non-zero entries instead of 7400GB for the storage of the full

coefficient matrix. For this reason a sparse storage of the coefficient matrix becomes inevitable and will be

discussed in Section 1.1. Furthermore, one is interested inhaving a fast and numerical accurate sparse linear

system of equations (SLSE) solver, because the solution of the linear systems of equations constitutes one

of the most time-consuming steps. The different strategiesfor the factorization of asymmetric coefficient

matrices are outlined in Section 1.2 and in Section 1.3 the results of the performed benchmarks are shown.

The conclusions of this chapter have an impact on the choice of the right SLSE solver, which is the core

element of the PDE solver developed in Chapter 2 and Chapter 3.

1.1 Sparse Matrix Storage Formats

In this section an overview of different sparse matrix storage formats is given whereby the two most

widespread variants are described in detail. Before furtherdiscussion, the following terms are defined.

Let n denote the number of columns or rows andτ the number of nonzero elements of a square matrixA,

whereτ << n2. Since all considered matrices are nonsingular, n is equal to the rank of the matrix.

The book of Tewarson [1] shows some packed forms of storage like linked lists, an array of unique integers

defining the position of the corresponding value in the matrix or a format where each nonzero element is

compressed into an item of two storage cells, the first cell stores the row index and the second the value of

the element. These storage formats differ in their memory consumption and computational effort for matrix

operations. Linked lists are well suited for matrix calculations in which new nonzero elements are created

or deleted, because there is no need of realignment of the remaining elements. The main disadvantage of

linked lists lies in the fact that the memory requirement, n+ 3τ memory locations to storeA, is higher

than in static schemes. In comparison to the linked lists, static schemes, as the scheme III in [1,p. 8], only

need 2τ memory locations to store the matrix. Most SLSE solvers comprised in known libraries, make

use of two related formats, the compressed sparse column (CSC)format or the compressed sparse row

(CSR) format, in order to process the large coefficient matrices. The CSC format and the CSR format are
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associated with each other via the relationship

CSC
(

A
)

= CSR
(

AT
)

. (1.1)

Equation (1.1) implies that the matrixA stored in the CSC format is equivalent to storing the transposed

matrix AT in the CSR format. For this reason interchanging the storage arrays for the row- and column-

indices leads to a transposition of the matrix in the other format. The scheme II in [1,p. 7] represents the

above-mentioned CSC format. The CSC format consists of three storage arrays for the value of elements

(VE), row indices (RI) and column index pointer (CIP). Any nonzero elementamn can be reconstructed

from these three arrays. The values of the nonzero elements are stored in the array VE and each element

of VE is linked to a corresponding element of RI which yields the row index. Furthermore, one requires

the information about the column index. On that account, theelements of VE are ordered by column and

the CIP array points to the indices of the elements of the VE array that match with the first element of the

respective column. To illustrate this description, consider the subsequent matrix,

A =











0 0 a13 0 0

a21 0 0 a24 0

0 0 a33 0 0

a41 0 0 0 a45

0 a52 0 0 0











, (1.2)

which gives the CSC format representation,

VE = (a21, a41, a52, a13, a33, a24, a45) ,

RI = (2, 4, 5, 1, 3, 2, 4) ,

CIP = (1, 3, 4, 6, 7) . (1.3)

Thereby the three storage arrays (1.3) are filled by going consecutively through the columns of the matrixA

(1.2). For each column one stores the values of the nonzero elements in the VE array and the corresponding

row indices in the RI array. As mentioned, the elements of CIP array point to the first nonzero element of

the respective column. The relation between the CIP array andVE array is established by means of a linear

index that tags the elements of VE. Since the first column is filled with nonzero entries, the first element of

the CIP array has to be one. The further entries of the CIP array are produced by incrementing the previous

entry with the number of nonzero elements of the actual column.
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1.2 Direct Methods for the Solution of Sparse Linear Systems of Equations

The aim of direct methods is the transformation of the coefficient matrix of a linear system of equations,

A · x = b , (1.4)

into an upper triangular matrix,

U =
[
ui j
]

with ui j = 0 for i > j.

Depending on the chosen algorithm, one obtains an equivalent system with a modified righthand side,

U · x = y , (1.5)

which can be solved easily by a backward-substitution [2,p.35],

xn =
yn

unn

xi =
1
uii

[

yi −
n

∑
j=i+1

ui j x j

]

for i = n−1,n−2, . . . ,1.

A variant of the above-described Gaussian elimination is the LU decomposition [3,p. 178], introduced by

the famous English mathematicianAlan M. Touring, that constitutes the foundation of the library routines

discussed in the later subsections. In fact, the algorithmsfor a sparse LU decomposition are much more

complex [1,pp. 15-106] and can be found in the cited literature about the library routines. The following

relations and results are obtained for a full matrix representation ofA; nevertheless, the basic understand-

ing of the SLSE solvers is created within these calculations. One denotes the subsequent factorization of

the coefficient matrixA,

A = L · U , (1.6)

as the LU decomposition ofA whereU is an upper triangular matrix,

U =









u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n
...

...
...

. . .
...

0 0 0 . . . unn









,

andL is an unit lower triangular matrix,
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L =












1 0 0 . . . 0

l21 1 0 . . . 0

l31 l32 1 . . . 0
...

...
...

.. .
...

ln1 ln2 ln3 . . . 1












.

Using the LU decomposition (1.6), one is able to rewrite the linear system of equations (1.4),

A · x =
(

L · U
)

· x

= L ·
(

U · x
)

︸ ︷︷ ︸

≡y

= b ,

from which the yet unknown righthand sidey of Equation (1.5) is apparent. Due to the special form ofL ,

the systemL · y = b can be solved by forward substitution [2,p. 35],

y1 = b1

yi = bi −
i−1

∑
j=1

l i j y j for i = 2,3, . . . ,n.

A procedure for factorizing the coefficient matrixA intoL andU components isCrout’s algorithm[2,p. 36],

ui j = ai j −
i−1

∑
k=1

l ik uk j i = 1, . . . , j −1,

γi j = ai j −
j−1

∑
k=1

l ik uk j i = j, . . . ,n,

u j j = γ j j ,

l i j =
γi j

γ j j
. (1.7)

One substantial feature of the algorithm is that thel ’s and u’s on the righthand side of Equation (1.7)

are known when needed and there is never a lack of information. Another advantage is saving memory,

because every element of the coefficient matrixai j is used only once and its storage location is overwritten

by the correspondingui j or l i j . The typical computational cost of such a Gaussian elimination procedure

is of the orderO(2 n3

3 ) [4,p. 98]. As mentioned, the SLSE solver routines make use ofmore sophisticated

approaches for the factorization of the coefficient matrices. A more detailed discussion is given in the book

of Tewarson [1,pp. 83-91] including a variant of Crout’s algorithm for sparse matrices with a minimization

of fill-in.

So far considerations about numerical stability have been omitted. During the numerical treatment, one
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recognizes a high impact of row interchanges on the solutionof the linear system of equations. A strategy

for the best possible row interchanges is called partial pivoting. In order to illustrate this behavior, think of

subsequent set of linear equations [3,p. 86],

0.400x + 99.6y = 100

75.3x + 45.3y = 30.0 .

Using three significant digits and by pivoting on 0.400, one obtains the solutionx = −1.00 andy = 1.01.

With respect to the actual solutionx = 1.00 andy = 1.00, this yields a huge error of 200% in thex value.

Pivoting on 75.3 gives by contrast the correct result. Thus,partial pivoting has to be implemented in the

Crout’s algorithm. If the absolute values of thel i j are as small as possible, the least roundoff errors are

obtained. This is guaranteed when theγ j j in Equation (1.7) are as large as possible, which can be realized

by interchanging the row with the largestγi j with the j-th row.

The proceeding subsections outline the differences between three wide-spread library routines concerning

the factorization large asymmetric coefficient matrices.

1.2.1 SuperLU 4.0

SuperLU [5, 6] denotes a set of three ANSI C subroutine libraries for solving SLSE, especially for coef-

ficient matrices with very unsymmetric structure. In this thesis, the Sequential SuperLU is only regarded

because the parallel version, Multithreaded SuperLU, has not shown a better performance with respect to

our demands in terms of computational speed and memory consumption. The sparse Gaussian elimination

consists of two steps. In the first step a triangular factorization is computed,

Pr ·Dr ·A ·Dc ·Pc = L ·U,

whereDr andDc are diagonal matrices to equilibrate the system,Pr andPc indicate permutation matrices.

Pc andPr are chosen in such a way that the ordering of the columns and rows of A increases the sparsity

of the computed LU factors, numerical stability and parallelism. This factorization is also possible for

non-square matrices. The second step consists of solvingA · x = b by evaluation of

x = A−1 ·b

=

(

Dr
−1 ·Pr

−1 ·L ·U ·Pc
−1 ·Dc

−1
)−1

·b

=

(

Dc ·
(

Pc ·
(

U−1 ·
(

L−1 ·
(

Pr ·
(

Dr ·b
))))))

.

At the beginning the rows ofb are scaled byDr ; and furthermore, the rows ofDr ·b are permuted byPr .

The multiplications withL−1 andU−1, respectively, indicate solving triangular systems of equations.
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The pivoting strategy of Sequential SuperLU to determine the row permutationPr is called threshold piv-

oting [6]. Starting from a coefficient matrixA where the firsti-1 columns are factorized, one looks for

the pivot for columni. The elementami denotes the largest entry on or below the diagonal of the partially

factoredA, ami = maxj≥i
∣
∣a ji
∣
∣. The threshold 0< u ≤ 1 determines the pivot in columni according to

the condition|aii | ≥ u · |ami|. If this condition is fulfilled, the diagonal entryaii is chosen as the pivot;

otherwiseami is used. The classical partial pivoting strategy is equivalent tou = 1. In this caseami or an

equally large value will be selected as the pivot. Smaller values ofu are preferable if a pre-ordered matrix

exists so that choosing diagonal pivots is good for sparsityor parallelism. Naturally, this bears the risk of

less numerical stability. Settingu = 0 means that the pivots on the diagonal will be chosen unless they are

zero.

1.2.2 SuiteSparse 3.6.0

SuiteSparse is a collection of libraries for numerical problems concerning sparse matrices. UMFPACK,

a part of SuiteSparse, offers solver routines for unsymmetric and symmetric SLSEs [7, 8, 9, 10], which

is based on the Unsymmetric-pattern MulitFrontal method. The main step consists of the factorization of

(P·A ·Q), (P·R ·A ·Q) or (P·R−1 ·A ·Q) into the productL ·U, whereP andQ are permutation matrices,

andR is a diagonal matrix of row scaling factors.P andQ aim at reduction of fill-in.P, additionally, is

designed to enhance the numerical accuracy. After the column pre-ordering that reduces fill-in, UMFPACK

scales and analyzes the matrix in order to determine the strategy, symmetric or unsymmetric, for pre-

ordering of rows and columns. Pivots with zero Markowitz cost are eliminated and placed in the LU factors

[11,p. 73]. Then the remaining submatrixS is analyzed. In the unsymmetric case COLAMD [12, 13, 14, 15]

is used to calculate the column pre-ordering ofSwhich yields, in a first step, the symmetric permutation of

the matrix(S·ST) without evaluating this product. The Cholesky factors of(S·Q)T(S·Q) define an upper

bound regarding the number of non-zero pattern of the factorU for the unsymmetric LU factorization -

P ·S·Q = L ·U - without knowingP which ensures a good choice forQ. COLAMD is also responsible

for the computation of the column elimination tree, the post-ordering of this tree, determination of an upper

bound of non-zeros in the LU factors and has a different threshold for identifying dense rows and columns.

In order to reduce fill-in, the column pre-ordering might be modified by reshuffling of columns within a

single super-column node. The algorithm uses threshold partial pivoting with no preference given to the

diagonal entry. If the condition|ai j | = 0.1 ·max|a∗ j | is fulfilled, an entryai j within a given pivot column

j is chosen and the sparsest row of these is the pivot row. Following the strategy, the factorization ofA

breaks down into the factorization of a sequence of dense rectangular frontal matrices, whereby each frontal

matrix is stored as node in the supernodal column elimination tree. Analogue to the factorization of the

whole matrix by a unifrontal method, each chain of frontal matrices is factorized in a single working array.

A frontal matrix can be understood as a Gaussian eliminationof one or more columns. The frontal matrix

for the elimination of a specific column ofA is selected within the pre-analysis phase.
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1.2.3 PARDISO 4.1

The third library of investigated SLSE solvers is called PARDISO [16, 17, 18], a pre-compiled, high-

performance, robust and memory-efficient software. It is applicable for SLSE with large symmetric or

non-symmetric coefficient matrices. To achieve better sequential and parallel performance, the solver re-

lies on Level-3 BLAS update, and pipelining parallelism is exploited within left- and right-looking Level-3

BLAS supernode techniques. The supernode pivoting allows one to balance numerical stability and scala-

bility during the factorization process.

In case of non-symmetric coefficient matrices the solver determines a permutationPMPS and scaling matri-

cesDr andDc in order to place large entries on the diagonal [18]. Before the calculation of the numerical

factorization, a fill-in reducing permutationP, based on the matrixPMPS ·A +(PMPS ·A)T , is computed.

The parallel numerical factorization is made up of the above-defined permutation and scaling matrices,

Q ·L ·U ·R = A2,

A2 = P·PMPS ·Dr ·A ·Dc ·P,

whereQ andR are supernode pivoting matrices. A pivoting pertubation strategy is applied in the case that

the supernodes cannot be factorized with that strategy. Themagnitude of the potential pivot is compared

to a constant thresholdα = ε · ||A2|| with the machine precisionε and the∞-norm of the scaled and

permuted matrixA. To guarantee numerical stability the pivots are kept from getting too small by setting

any tiny pivotsl ii to sign(l ii ) · ε||A2||. In practice diagonal elements are rarely modified for a large class of

matrices. This pivoting approach generally yields not exact factorizations and an iterative refinement might

be considered.

1.3 Benchmarks for the Library Routines

This section presents the results of the benchmarks of the three implemented library routines - SuperLU 4.0,

PARDISO 4.1 and SuiteSparse 3.6.0 (see Section 1.2). A lot of effort has been put into the implementation

of a handy and easy to use Fortran interface for the library routines. To validate the factorization time of

the SLSE solvers, test cases with real and complex asymmetric coefficient matrices, which have different

condition numbersκ = (
∥
∥
∥A
∥
∥
∥

1

∥
∥
∥A−1

∥
∥
∥

1
)−1, number of non-zeros and matrix sizes, are performed. For

the generation of the test matrices the sprand function of MATLAB [19] and Octave[20], respectively, is

exploited. To be able to perform such an extensive investigation, an automatization of the tests becomes

inevitable. The speed of Gaussian elimination is determined by test cases which show the CPU time for

solving a SLSE with different number of righthand sides (NRHS). Two independent runs of each test case

scenario have have been performed so as to avoid systematical errors in the measurement of the CPU time.

The statistical error, defined as the standard deviation of the mean [21,p. 815], is indicated by the error bars

in the subsequent figures. Furthermore, the accuracy of a SLSE solver, defined as the relative precision

7



max
(∥
∥
∥A·x − b

∥
∥
∥

)

max(‖b‖) , is determined for the same set of coefficient matrices as in the case of factorization time.

The benchmarks have been conducted on a Linux workstation with four CPUs (2593MHz) and a total

memory of 33087116KB.

1.3.1 Test Cases for Real Asymmetric Coefficient Matrices

In this subsection the three library routines are tested against real asymmetric coefficient matrices with

varying condition number, number of non-zeros and matrix size. The subsequent figures highlight the

differences with regard to performance and accuracy. The lines between the measured data points are

guiding lines for the eye and possess no further meaning.

The CPU times, required to solve SLSEs with coefficient matrices of size of 104 × 104, depending on

number of non-zeros and condition numbers are shown in Figure 1.1. The highest influence on the CPU

time is due to the factorization time. Thus, the factorization times of Sequential SuperLU, SuiteSparse

with or without iterative refinement and PARDISO with four threads are compared. Furthermore, the upper

axis indicating the condition number has no influence on the scaling of the horizontal axis. Comparing the

performance of PARDISO with different number of threads, thebest results are obtained with four threads

under the constraints of the used test system. A more detailed view on the performance of PARDISO

with different number of threads is given in Figure 1.2. The SuiteSparse solver routines with and without

iterative refinement share the same factorization procedure. For this reason, the curves of SuiteSparse with

and without iterative refinement fully overlap and cannot bedistinguished. In the regime of number of non-

zeros below 39502 the factorization times of all solver routines lie within an order of magnitude, whereby

PARDISO reaches slightly worse results. The coefficient matrix with 39502 has the best condition number

of this set of test cases. In this instance the three solver routines produce nearly the same result. For

coefficient matrices with a larger number of nonzeros SuperLU reaches factorization times of an order of

magnitude worse than PARDISO and SuiteSparse, whereby SuiteSparse yields slightly better results than

PARDISO.
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Figure 1.1: Performance of SLSE solvers for different coefficient matrices of size 104×104 with different

number of non-zeros and condition number.

In Figure 1.2 one can observe that the performance of PARDISO increases with the number of threads,

which is in good agreement with the supposed behaviour. The scaling factor between the different curves

is approximately two to three. A number of four threads constitutes the limit of performance of the used

testing system which possesses four CPUs.
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Figure 1.2: Performance of PARDISO solver routine with varying number ofthreads for different coeffi-

cient matrices of size 104×104 with different number of non-zeros and condition number.

Figure 1.3 illustrates the speed of SLSE solvers for a given coefficient matrix, the largest of the above-

described factorization test case, and different NRHS. The resulting CPU time in the limit of a NRHS of

one is equal to the factorization time. A remarkable fact is that the SuperLU shows the flattest slope in

comparison to the other solver routines. Although the PARDISO solver routine has a factorization time of

an order of magnitude better than SuperLU, it intersects thered SuperLU curve at a NRHS of 1000. The

SuiteSparse without iterative refinement has a flatter slopethan the version with iterative refinement and

reaches the best absolute CPU times for different NRHS up to a value of 1000.
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Figure 1.3: Performance of SLSE solvers for SLSEs with different numberof righthand sides and a coef-

ficient matrix of size 104×104 with 379848 non-zero entries and a condition number of 7.90e-4.

The accuracies of the solver routines for the same set of coefficient matrices as in the test case for the

factorization time are shown in Figure 1.4. The curves and data points of SuperLU, PARDISO, SuiteSparse

with and without iterative refinement partially overlap. PARDISO and SuiteSparse with iterative refinement

display similar accuracy, wherby PARDISO has a bit better results. SuperLU and SuiteSparse without

iterative refinement yield a slightly worse accuracy than the other two solver routines, but the produced

values are still within one order of magnitude.
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Figure 1.4: Accuracy of SLSE solvers for different coefficient matricesof size 104×104 with different

number of non-zeros and condition number.

The factorization time for coefficient matrices with slightly increasing number of non-zeros and very vary-

ing condition number is apparent in Figure 1.5. In case of SuperLU the last data point is missing, because

the corresponding test cases have been aborted after two hours. Contrary to SuperLU, PARDISO manages

all test cases, but the factorization times differ by more than one order of magnitude. The curves and data

points of SuiteSparse with and without iterative refinementfully overlap. The outstanding performance of

SuiteSparse is evident from this figure.
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Figure 1.5: Performance of SLSE solvers for different coefficient matrices of size 105×105 with different

number of non-zeros and bad condition number.

In Figure 1.6 the accuracies corresponding to the Figure 1.5are shown. An image detail of Figure 1.6

showing the relative precision on a shorter length scale is illustrated in Figure 1.7. Neglecting SuperLU

due to the missing data point, one notices the similar accuracy obtained by PARDISO and SuiteSparse with

iterative refinement. The accuracy of the SuiteSparse version without iterative refinement is three orders of

magnitude worse.
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Figure 1.6: Accuracy of SLSE solvers for different coefficient matricesof size 105×105 with different

number of non-zeros and bad condition number.
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Figure 1.7: Image detail showing the accuracy of SLSE solvers for different coefficient matrices of size

105×105 with different number of non-zeros and bad condition number.

14



1.3.2 Test Cases for Complex Asymmetric Coefficient Matrice s

In this subsection the performance and the accuracy of the three library routines are tested with respect to

complex asymmetric coefficient matrices with varying condition number, number of non-zeros and matrix

size. These differences with regard to performance and accuracy are presented in the subsequent figures.

The lines between the measured data points are guiding linesto the eye.

The CPU time, required to solve SLSEs with a complex coefficient matrices of size of 104×104, depen-

dent on number of non-zeros and condition number is shown in Figure 1.8. the factorization time has

again the highest influence on the CPU time. Thus, the factorization time of SuperLU, PARDISO with four

threads and SuiteSparse with iterative refinement can be compared. Furthermore, the upper axis indicating

the condition number has no influence on the scaling of the horizontal axis. Comparing the performance

of PARDISO with different number of threads, the best resultsare obtained with four threads under the

constraints of the used test system. A more detailed view on the performance of PARDISO with different

number of threads is given in Figure 1.9. The curves of the SuiteSparse solver routines with and without

iterative refinement overlap in the figure, because they share the same factorization procedure. It is appar-

ent from the figure that the plotted curves exhibit a similar shape which allows a ranking of solver routines.

The SuiteSparse indicates the best performance for this setof test cases. PARDISO claims the second rank

with a slightly worse performance than SuiteSparse and SuperLU yields a factorization speed which is a

factor 10 slower.
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Figure 1.8: Performance of SLSE solvers for different coefficient matrices of size 104×104 with different

number of non-zeros and condition number.

In Figure 1.9 one can observe the supposed dependence of CPU time on the used number of threads, namely

that the performance of PARDISO increases with the number of threads. The scaling factor between the

different curves is again approximately two to three. A number of four threads constitutes again the limit

of performance of the used testing system which possesses four CPUs.

16



76000 94933 189976 284924 379848
10

0

10
1

10
2

10
3

Number of Non−Zeros

T
im

e
 /

 S
e
c

PARDISO 1 Thread

PARDISO 2 Threads

PARDISO 3 Threads

PARDISO 4 Threads

3.68e−4 1.30e−4 1.41e−3 1.97e−3 1.26e−3

10
0

10
1

10
2

10
3

Condition Number

Figure 1.9: Performance of PARDISO solver routine with varying number ofthreads for different coeffi-

cient matrices of size 104×104 with different number of non-zeros and condition number.

Figure 1.10 illustrates the speed of SLSE solvers for a givencomplex coefficient matrix, the largest of

the above-described factorization test case, and different NRHS. The resulting CPU time in the limit of a

NRHS of one reflects the factorization time. SuperLU shows again the flattest slope in comparison to the

other solver routines. Although the PARDISO solver routine has factorization time of an order of magni-

tude better than SuperLU, it nearly intersects the red SuperLU curve at a NRHS of 1000. The SuiteSparse

without iterative refinement has once more a flatter slope than the version with iterative refinement and

reaches the best absolute CPU times for different NRHS up to a value of 1000.
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Figure 1.10: Performance of SLSE solvers for SLSEs with different numberof righthand sides and a

coefficient matrix of size 104×104 with 379848 non-zero entries and a condition number of 1.26e-3.

The accuracies of the solver routines for the same set of coefficient matrices as in the test case for the

factorization time are shown in Figure 1.11. An image detailof Figure 1.11 showing the relative precision

on a shorter length scale is illustrated in Figure 1.12. PARDISO and SuiteSparse with iterative refinement

display again similar accuracy, wherby PARDISO has a bit better results. SuperLU and SuiteSparse with-

out iterative refinement yield an accuracy which is three orders of magnitude worse than the accuracy of

the other two solver routines.
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Figure 1.11: Accuracy of SLSE solvers for different coefficient matricesof size 104×104 with different

number of non-zeros and condition number.
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Figure 1.12: Image detail showing the accuracy of SLSE solvers for different coefficient matrices of size

104×104 with different number of non-zeros and condition number.

19



1.3.3 Conclusion

Surprisingly, the parallelized solver routines of SuperLUand PARDISO do not yield the best performance

results for the studied asymmetric coefficient matrices. The results for the multi-threaded version of Su-

perLU have been omitted, since a notable number of test casescould not be performed due to unsettled

issues. In addition, no further releases of the multi-threaded SuperLU are available - the latest version is

from 2007 - and one might give preference to the distributed version of SuperLU which is much more

complex to implement. Investigations on large sparse, symmetric linear systems of equations, as discussed

in the article of Gould et al. [22], exhibit a different behaviour. In this case the PARDISO solver rou-

tine demonstrates an overwhelming performance. Concerningasymmetric coefficient matrices, it seems

that the results from earlier performed benchmarks [16] areoutdated because the comparison involves a

SuiteSparse version with UMFPACK 3. In this thesis, the for the moment latest versions - UMFPACK

5.5.0, SuperLU 4.0 and Pardiso 4.1 - are compared with each other. Recapitulating, the best factorization

time is obtained using SuiteSparse which becomes importantwhen calculating steady-state solutions, see

Section 2.3.3. Furthermore, the SuiteSparse without iterative refinement yields the best performance for

processing multiple righthand sides up to a NRHS of 1000; despite, one has to mention that the best scal-

ability is reached by SuperLU. Although turning off the iterative refinement worsens the accuracy by up

to three orders of magnitude, the SuiteSparse without iterative refinement is used in all further computa-

tions since a relative precision of 10−12 is more than sufficient for each of our prospective applications.

Depending on the individual demands, one might come to otherconclusions.
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2 A Conservative Finite Difference Scheme for General

Diffusion Equations in one Dimension

Many interesting physical problems in the field of fluid dynamics can be formulated as conservation laws.

This thesis investigates transport processes in fusion plasmas which are mathematically described by a

general diffusion equation. In order to be able to apply a numerical scheme, one has to rewrite the one

dimensional (1D) general diffusion equation in a conservative form, as done in Section 2.1. A good in-

troduction into this topic is provided in the books of Versteeg and Malalasekera [23] and Ferziger and

Peric [24]. The fundamental concepts behind the conservative finite difference scheme (CFDS) developed

within this chapter are analogue to the well-known and wide-spread FVM in computational fluid dynam-

ics. Discrepancies between classical FVM and the describedscheme arise from the new approach for

the interpolation of the numerical fluxes at the cell boundaries, see Section 2.2, which is a crucial part

dominating the performance of the code. Solving the time-dependent general diffusion equation requires,

besides a suitable time integration procedure, the knowledge of consistency, stability and convergence of a

numerical scheme. The concepts and derived relations are presented in Section 2.3. Before the developed

scheme can be applied to test cases, Section 2.4 outlines theimplementation of boundary conditions in

the CFDS. Section 2.5 finally shows results about the stability of the CFDS that is used to solve a general

diffusion equation which generates a Gaussian profile as a solution. In Chapter 3, the presented concepts

are extended to 2D meshes which can be refined adaptively.

2.1 Conservative Formulation of a one dimensional General Diffusion

Equation

A general form of a diffusion equation in 1D is given by

∂ f (η , t)
∂ t

=
∂

∂η

(

D(η)
∂ f (η , t)

∂η
−v(η) f (η , t)

)

+q(η), (2.1)

whereD(η) describes the diffusivity and accordinglyv(η) the velocity of convection or advection. The

last termq(η) stands for sources or drains in the system. As described in LeVeque [25,pp. 15-46], for

a further numerical treatment the domain of solution is subdivided into N cells. Then Equation (2.1) is

integrated over thei-th cell,η ∈ [ηi−1,ηi]. With the cell-volume,Fi(t) =
∫ ηi

ηi−1
dη f (η , t), and interchange
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of differentiation and integration Equation (2.1) becomes

∂Fi(t)
∂ t

= Γ(ηi−1, t)−Γ(ηi , t)+Qi (2.2)

with

Γ(η , t) = −D(η)
∂ f (η , t)

∂η
+v(η) f (η , t) (2.3)

and

Qi =

ηi∫

ηi−1

dη q(η).

Thus, the value of cell-volumeFi(t) can only change by numerical fluxesΓ(η , t) at the boundariesηi−1

andηi or by a source or drainQi . Integrating Equation (2.1) over the total domain of solution leads to a

conservation law,

∂F(t)
∂ t

= Γ(η0, t)−Γ(ηN, t)
︸ ︷︷ ︸

→0

+ Q
︸︷︷︸

→0

= 0 (2.4)

with

F(t) =

ηN∫

η0

dη f (η , t)

and

Q(t) =

ηN∫

η0

dη q(η , t).

The relation (2.4) is valid if all sources balance the drainsand the numerical fluxes vanish at the boundaries

of the domain of solution, i.e. a closed system.

2.2 Polynomial Reconstruction of the Numerical Fluxes at the Cell

Boundaries in one Dimension

In order to evaluate the numerical fluxes at the cell boundaries, the functionf (η , t) and its derivative

must be known at the boundaries. In the conservative formulation, described in Section 2.1, instead of the

function f the cell volumesFi(t) are calculated. To reconstruct the functionf from the cell volumesFi(t)
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[26], we expandf at boundaryηi into a Taylor series up to the ordern,

i f (η , t) = f (0)(ηi , t)+ f (1)(ηi , t)(η −ηi)+
f (2)(ηi , t)

2
(η −ηi)

2+
f (3)(ηi , t)

6
(η −ηi)

3+ · · ·

= ia0(t)+ ia1(t)(η −ηi)+ ia2(t)(η −ηi)
2+ ia3(t)(η −ηi)

3+ · · ·

=
n

∑
j=0

ia j(t) (η −ηi)
j . (2.5)

The left subscripts, as in Equation (2.5), are used to highlight the expansion at a certain boundary and the

elementsia j(t) abbreviate the corresponding polynomial coefficients of the Taylor series. Integration of

Equation (2.5) over thek-th cell,η ∈ [ηk−1,ηk], and subsequent interchange of integration und summation

yields an expansion for the cell volumeFk(t) at boundaryηi ,

iFk(t) =

ηk∫

ηk−1

dη
n

∑
j=0

ia j(t) (η −ηi)
j

=
n

∑
j=0

ia j(t) iAk j (2.6)

with

iAk j =
(ηk−ηi)

j+1− (ηk−1−ηi)
j+1

j +1
,

whereby the matrixiAk j weights the polynomial coefficients and is only dependent onthe generated com-

putational grid. Based on Equation (2.6), one demands that the cell volumesiFk(t) within a defined stencil

are approximated by a polynomial of ordern that is expanded at boundaryηi. In this context a stencil is a

subset of points of the computational grid which is used to reconstruct the function at a particular boundary.

This allows us to set up a system of linear equations which is used to determine the unknown polynomial

coefficients at a certain boundary. The number of equations,required to obtain a well-defined set of equa-

tions, complies with the selected ordern of the Taylor expansion. One has to choose between a variety of

stencils which strongly differ in the condition number of the created linear system of equations. A severe

restriction, ensuring a good condition number, is the demand for a symmetric stencil around the boundary.

Recapitulating, the value of functionf (η , t) and its derivatives can be reconstructed at the boundaries in-

cluding a particular truncation error. In the developed numerical scheme the polynomial coefficentsia j(t)

are never calculated explicitly; instead of them, one computes the inverse ofiAi j , iB jk, which is independent

of time and can be used to determine theia j(t) from the cell volumes,

ia j(t) = ∑
k ∈ symmetric stencil

of boundaryηi

iB jk iFk(t) (2.7)

with

δik =
n

∑
j=0

iAi j i B jk, (2.8)
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wherebyδik denotes theKronecker delta. Since the inverseiB jk links the polynomial coefficents with the

cell volumesiFk(t), it is possible to formulate a scheme solving Equation (2.1)which only makes use of

the iFk̃(t) within the stencil. For instance an appropriate third orderapproximation of functionf (η , t) at

boundaryηi, which requires a four-cell stencil, is depicted in Figure 2.1.

Figure 2.1: Four-cell stencil for third order approximation of function f (η , t) at boundaryηi .

Before proceeding with the derivation of the numerical flux functionΓ(η , t)with polynomial reconstruction

of function values, one has to discuss the need for a labelingof the cell volumesiFk(t) with a left subscript.

Independent of the expansion at a certain boundary, Equation (2.6) shall always yield the same value of

cell volume up to a known truncation error. This is an intuitive demand for the polynomial reconstruction

because it makes no sense that a specific cell volume is approximated by an expansion at two or more

different boundaries with unequal values. Therefore, we are able to omit the left subscript distinguishing

the cell volumes. Bearing this in mind, the polynomial coefficients for the above-depicted stencil (see

Figure 2.1) can be calculated with the subsequent formula,

ia j(t) =
i+2

∑
k=i−1

iB jk Fk(t). (2.9)

Using expressions (2.7) and (2.8), one is able to evaluate the numerical flux functionΓ(η , t) (2.3) at bound-

ary ηi,

Γ(ηi , t) = −D(ηi)
∂ f (η , t)

∂η

∣
∣
∣
∣
ηi

+v(ηi) f (ηi , t),

and to express the upcomming values of the functionf (η , t) and its first derivative in terms of cell volumes
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Fk̃(t) which belong to a chosen stencil,

f (ηi , t) = ia0(t)

= ∑
k ∈ symmetric stencil

of boundaryηi

iB0k Fk(t)

and
∂ f (η , t)

∂η
=

n

∑
j=1

ia j(t) j (η −ηi)
j−1

with
∂ f (η , t)

∂η

∣
∣
∣
∣
ηi

= ia1(t)

= ∑
k ∈ symmetric stencil

of boundaryηi

iB1k Fk(t).

For the computational treatment it is advantageous to subsume all contributions from the numerical flux

differences in a matrixM which allows us to rewirte Equation (2.2) in the form of a vector F(t) containing

the elementsFi(t) and a vectorQ containing the elementsQi ,

∂F(t)
∂ t

= M · F(t) + Q. (2.10)

The i-th row of the matrixM can be reconstructed from the numerical flux differencesIi(t) of the i-th

cell,

Ii(t) = Γ(ηi−1, t)−Γ(ηi , t)

= ∑
k ∈ symmetric stencil

of boundaryηi−1

(−D(ηi−1) i−1B1k+v(ηi−1) i−1B0k) Fk(t) −

− ∑
k′ ∈ symmetric stencil

of boundaryηi

(−D(ηi) iB1k′ +v(ηi) iB0k′) Fk′(t),

whereby indicesk andk′ of the corresponding stencil determine the column indices of the entries ofM . In

order to illustrate the proposed procedure for the generation of M , one considers once again the stencil in

Figure 2.1. The needed values of functionf (η , t),

f (ηi , t) =
i+2

∑
k=i−1

iB0k iFk(t),
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and the values of its derivative,

∂ f (η , t)
∂η

∣
∣
∣
∣
ηi

=
i+2

∑
k=i−1

iB1k iFk(t),

are computed according to Equation (2.9). Hence, one can assemble the numerical flux differencesIi(t) of

the i-th cell,

Ii(t) =
i+1

∑
k=i−2

(−D(ηi−1) i−1B1k+v(ηi−1) i−1B0k) Fk(t)−

−
i+2

∑
k=i−1

(−D(ηi) iB1k+v(ηi) iB0k) Fk(t). (2.11)

Looking at the column indices which are determined by the indices of summation in Equation (2.11), it

is apparent that the matrixM will be sparse and exhibit a band structure. The band structure of M only

exists if the computational grid is regular. Especially in 2D, adaptive computational grids, considered in the

developed code, are in general irregular and produce a very asymmetric matrixM without band structure.

The sparsity of the matrix is maintained. Thus, the computational solution of the generated linear systems

of equations relies on the SLSE solvers which have been tested in Chapter 1.

2.3 Time Integration of the one dimensional General Diffusion Equation

After the spatial discretization by means of the developed CFDS, confer Section 2.1 and Section 2.2, the

general diffusion equation transforms into a time-dependent ordinary differential equation (2.10). This the-

sis treats only time-independent computational grids, diffusivities and velocities of advection or convection.

Therefore, the matrixM in Equation (2.10) is also time-independent which simplifies the subsequent cal-

culations. A further simplification is the assumption that the sources or drains do not depend on time. Since

the relevant and interesting informations of the investigated systems are determined by a state of equilib-

rium, implicit time integration schemes become more appropriate because they enable larger time steps∆t.

The book of Hairer et al. [27,pp. 27-50] presents a number of time integration schemes and describes the

respective advantages and disadvantages.

The simplest implicit time-integration scheme is a backward Euler method [27,pp. 28-30]. Applied to

Equation (2.10), one obtains a time-discretized equation

Fn+1 = Fn +∆t ·
(

M ·Fn+1+Q
)

, (2.12)

where the superscripts refer to the respective time level. Grouping terms of the same time level leads to

(

1−∆t ·M
)

Fn+1 = Fn +∆t ·Q
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which can be solved forFn+1,

Fn+1 =
(

1−∆t ·M
)−1

·
(
Fn +∆t ·Q

)
.

Another widely used technique for numerical time integration is the implicit trapezoidal rule which is

also calledCrank-Nicolsonmethod. This method is based on an approximation of the time integration by

means of a trapezoidal rule as implied by the name. Analogue to Equation (2.12), one obtains again a

time-discretized equation

Fn+1 = Fn +
∆t
2
·
(

M ·Fn+1
)

+
∆t
2
·
(

M ·Fn
)

+∆t ·Q,

which can be solved for a consecutive time stepFn+1,

Fn+1 =

(

1− ∆t
2
·M
)−1

·
((

1+
∆t
2
·M
)

Fn +∆t ·Q
)

.

The proceeding subsections cover the definitions of consistency, stability and convergence of numerical

schemes, see Section 2.3.1, and provide a method for the determination of stability conditions, see Sec-

tion 2.3.2. In order to illustrate the terms and conditions an exemplary analysis of a primitive finite dif-

ference scheme is performed. The derived results can be transferred to the original problem. Finally, Sec-

tion 2.3.3 shows the computation of a steady-state solutionwithout a time-integration, which is applicable

in many instances.

2.3.1 Considerations about Consistency, Stability and Conv ergence of the Numerical

Scheme

Further investigations of numerical schemes require definitions of terms like consistency, stability and

convergence [28,pp. 270-281]. This allows one to formulateconditions for acceptable approximations

to the differential problem and to predict stability limitsand different behavior of numerical schemes.

Knowing the stability enables us to determine quantitatively the accuracy of the numerical result.

The consistency condition associates the discretized equation with the differential equation and restricts

the structure of numerical schemes. In particular, consistency implies that a numerical scheme approaches

the differential equation in the limit of a spatial discretization and temporal discretization that both tend

to zero,∆x → 0 and∆t → 0. Consistency analysis also yields practical information about the accuracy

and the truncation error of a numerical scheme. An exemplaryconsistency analysis on the linear advection

equation is reviewed in Hirsch [28,p. 276]. The first step consists in developing the solution function of the
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discretized schemeum
j in a Taylor series around the valueun

i ,

un+1
i = un

i +∆t (ut)
n
i +

∆t2

2
(utt)

n
i

un
i+1 = un

i +∆x(ux)
n
i +

∆x2

2
(uxx)

n
i +

∆x3

6
(uxxx)

n
i

un
i−1 = un

i −∆x(ux)
n
i +

∆x2

2
(uxx)

n
i −

∆x3

6
(uxxx)

n
i , (2.13)

and substituting this back in the numerical scheme. In eq. (2.13)x andt subscripts denote partial derivatives

and i or j subscripts andn or m superscripts, respectively, of the solution functionu specify the position

in space or time level. In the case of a linear advection equation which is solved by means of a central,

second-order in space and forward, first-order in time finitedifference scheme, one obtains the relation,

un+1
i −un

i

∆t
+a

un
i+1−un

i−1

2∆x
− (ut +aux)

n
i =+

∆t
2
(utt)

n
i +

∆x2

6
a(uxxx)

n
i +O

(
∆t2,∆x4) . (2.14)

From the consistency equation (2.14) it is obvious that the right-hand side is zero if∆t and∆x tend to zero;

in turn, that means consistency of the considered finite difference scheme. Furthermore, the accuracy of

the scheme is confirmed as first order in time and second order in space. Based on the Equation (2.14),

the truncation error and its implications can be derived whereby one has to choose between two similar

approaches. The first assumes thatun
i represents the exact solution of the discretized equation.If the exact

solution of the discretized equation is available, it is plugged in the consistency equation,

(ūt +aūx)
n
i = −∆t

2
(utt)

n
i −

∆x2

6
a(uxxx)

n
i +O

(
∆t2,∆x4) . (2.15)

The bar in Equation (2.15) indicates the exact numerical solution which fulfills an equivalent differential

equation for finite values of∆t and∆x. In the computational treatment the limit of∆t and∆x to zero is

never realized and one always gets to an Equation (2.15). Theright-hand side of this equivalent differential

equation is defined as the truncation errorεT . It is more convenient to have an expression for the truncation

error without partial time derivatives. This can be realized using Equation (2.15) andYoung’s theorem,

whereby the left-hand side of (2.15) is neglected as a correction of an order of∆t and∆x2. The modified

formula for the truncation error,

εT = −∆t
2

a2(uxx)
n
i −

∆x2

6
a(uxxx)

n
i +O

(
∆t2,∆x2) ,

yields a physical explanation for the instability of the scheme. Consider the right-hand side of the modified

equivalent differential equation,

ut +aux = −∆t
2

a2(uxx)
n
i +O

(
∆t2,∆x2) .
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It corresponds to a negative viscosity term which amplifies oscillations and strong gradients. For this reason

the scheme is instable. In summary, the determination of thetruncation error is a starting point for stability

analysis and yields the accuracy of the scheme. A vanishing truncation error provides also another criterion

for the consistency of a numerical scheme. The second approach for the determination of the truncation

error starts with the exact solution of the differential equation and produces analogue results.

The stability criterion relates the numerical solution to the exact solution of the discretized equation. A

stable numerical scheme should not allow errorsε to grow indefinitely, that is, to be amplified without

bounds, as we progress from one time step to another [28,p. 278]. This is mathematically expressed by

lim
n→∞

|εn
i | ≤ K at fixed∆t,

whereK is a number independent ofn andεn
i is defined as the difference between the computed solution

un
i and the exact solution ¯un

i ,

εn
i ≡ un

i − ūn
i . (2.16)

The above-defined criterion makes no point about the error atan intermediate time step which could be

arbitrarily large; hence, a more general definition has to beintroduced. According toRichtmyer and Lax

[28,p. 278], any component of the initial solution should not be amplified without bound in a stable nu-

merical scheme. This general treatment requires to formulate the numerical scheme in a matrix or operator

form,

Un+1 = C · Un, (2.17)

whereby the matrixC depends on the time step∆t and mesh size∆x andU denotes a vector containing

the ui at a given time level. Considering the above-defined matrixC, an amplification without bound is

prevented by the condition

∥
∥
∥

(

C
)n∥∥
∥ = K for

0< ∆t < τ
0≤ n∆t ≤ T

(2.18)

and for alln, wherebyτ andT are fixed numbers and the norm is unspecified for the moment.

Knowing consistency and stability signifies that the investigated scheme is convergent. This context is

described by the fundamentalEquivalence Theorem of Lax[28,p. 281] which states that for a well-posed

initial value problem and a consistent discretization scheme, stability is the necessary and sufficient con-

dition for convergence. In this sense, convergence means that the numerical solution approaches the exact

solution of the differential equation at any point and time for ∆x → 0 and∆t → 0. A mathematical de-

scription of convergence based on a matrix or form of the numerical scheme (2.17) is given byRichtmyer
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and Morton[28,p. 296],

lim
∆t→0
n→∞

∥
∥
∥

[

C(∆t)
]n

U0− Ū(t)
∥
∥
∥ ,

whereby the bar indicates the exact solution of the numerical scheme.

2.3.2 Von Neumann Method for Stability Analysis and Courant- Friedrichs-Lewy Condition

The investigation of the stability of a numerical scheme, confer Section 2.3.1, is widely studied in literature

[28, 29, 25, 30], but it is still a demanding topic and mostly limited to linear problems. Although this

limitation is used, initial and boundary conditions complicate the investigations.

A wide-spread technique is theVon Neumann methodfor stability analysis [28,pp. 283-338], which was

introduced by Von Neumann during World War II. This method isbased on a Fourier decomposition of the

solutionun
i and of the errorsεn

i defined by Equation (2.16),respectively,

εn
i =

N

∑
j=−N

En
j eI ·k j ·i·∆x

=
N

∑
j=−N

En
j eI ·i· j· π

N

with

k j = j
π
L

= j
π

N∆x
, (2.19)

where N is the number of subdivisions∆x of the domain of solution with length L,k j is the wavenumber

andEn
j is the amplitude of thej-th harmonic andI denotes the imaginary unit. As a discretization scheme

for the solution exists, this scheme must also hold for the errors. From the resulting equation, one can

determine the absolute value of the ratio|G| of temporally sequential amplitude factors. If|G| is less than

or equal one for any harmonic,

|G| ≡
∣
∣
∣
∣

En+1

En

∣
∣
∣
∣

≤ 1, (2.20)

the considered discretization scheme fulfills the stability conditon (2.18). By definition, the above-applied

Fourier decomposition is only possible in the case of an infinite domain or periodic boundary conditions

on a finite domain. In fact, most of the studied physical problems involve boundary conditions and non-

linearities; despite the made restrictions, it yet can be useful to perform a Von Neumann analysis. In the case

of a non-linear differential equation with eventually non-constant coefficients a local Von Neumann analysis

of the linearized problem yields at least a necessary, though not sufficient, condition for stability. To
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illustrate the procedure, one can consider again the example of a linear advection equation which is solved

by means of a central, second-order in space and forward, first-order in time finite difference scheme, confer

Section 2.3.1. Plugging Equation (2.16) in the discretization scheme for theun
i results in an equation,

ūn+1
i − ūn

i

∆t
+

εn+1
i − εn

i

∆t
= − a

2∆x

(
ūn

i+1− ūn
i−1

)
− a

2∆x

(
εn

i+1− εn
i−1

)
, (2.21)

where the ¯un
i eventually cancel out because they satisfy exactly the scheme as demanded. Finally Equa-

tion (2.21) reduces to

εn+1
i − εn

i

∆t
= − a

2∆x

(
εn

i+1− εn
i−1

)
.

The difference scheme for the errors above is the starting point for the Von Neumann stability analysis.

Plugging Equation (2.19) in (2.21) and some algebraic manipulations allow us to determine an expression

for the quantity|G|,

|G|2 = 1+

(
a∆t
∆x

)2

sin2φ

with

φ ≡ k j ·∆x,

which apparently does not satisfy Equation (2.20) for none of the phase anglesφ . In such a case the applied

numerical scheme is called unconditonally unstable. If Equation (2.20) is fulfilled for a defined ratio of∆t

and∆x the scheme is called conditionally stable and the conditionis referred to asCourant-Friedrichs-

Lewy(CFL) condition [28,p. 287]. In the case that Equation (2.20)is always fulfilled, one denotes these

schemes as unconditonally stable.

As mentioned, a detailed analysis of stability can be very demanding. The investigated general diffusion

equation (2.1), used to model transport in fusion plasmas, can have complicated, non-constant diffusivities

and velocities of advection or convection and naturally boundary conditions are involved. Furthermore,

the developed discretization scheme, confer Section 2.1 and Section 2.2, generally uses an adaptive com-

putational mesh which makes the anaylsis difficult. Even in the instance of an equidistant mesh, it is hard

to perform a full Von Neumann stability analysis. During thecomputational implementation some practi-

cal approximations for CFL conditions have proven successful. In the book of Hirsch [28,pp. 331-335] a

CFL condition for multidimensional space-centered, convection-diffusion equations, applicable to a wider

range of problems, can be found and the book of Cockburn et al. [30,pp. 384-423] shows further appropriate

conditions.
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2.3.3 Determination of the Steady-State Solution

Considering again the transport problem in fusion plasmas, one has to figure the interesting quantities which

should be determined. In most of the cases an exact time-development of these quantities is not important,

instead the steady-state solution contains mainly the relevant information. If the basic differential equation

is explicitly time-dependent such as in Equation (2.10), the determination of the steady-state becomes easy.

Since a steady-state solution does not change in time, partial time derivatives can be neglected. In the case

of the regarded differential equation (2.10) one obtains subsequent linear system of equations,

M · F = −Q. (2.22)

For a simultaneously vanishing source term Equation (2.22)yields the trivial solutionF=0.

2.4 Implementation of Boundary Conditions in the Conservative Finite

Difference Scheme for General Diffusion Equations in one Dimension

So far boundary conditions are not incorporated in the CFDS which is developed in Section 2.1 and Sec-

tion 2.2. In general, one has to distinguish betweenDirichlet boundary conditions, Neumann bound-

ary conditionsand mixed types [21,p. 691]. This thesis discusses only the implementation of Dirichlet

boundary conditions that are used to describe walls of finitetemperature as in the case of the investigated

model for the transport in fusion plasmas. For the computational implementation two different approaches

mainly exist which have respective pros and cons. A wide-spread technique uses ghost cells, confer Blazek

[29,pp. 267-297] or Versteeg and Malalasekera [23,pp. 192-209], outside the domain of solution to model

the chosen boundary condition. Another possibility is the modification of the stencil or of the interpola-

tion function at boundary of the domain. This approach can befound in the books of Ferziger and Peric

[24,pp. 81-89] or Versteeg and Malalasekera [23,pp. 86-98].

The ghost cell method extends the domain of solution by adding additional cellsFĩ with specific values

which describe the boundary condition. For instance a temperature sink can be modeled by ghost cells

with zero temperature. In Figure 2.2F0 denotes the ghost cell that is associated with boundaryη0.

Figure 2.2: Evaluation of functionf (η , t) at boundaryη0 according to the specified boundary condition.
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A major advantage of this technique is a simple implementation without modification of the stencil or

interpolation function; on the other hand, ghost cells cannot exactly set the value of a function or of its

derivative at the boundaries.

The second method makes use of a modification of the interpolation function at the edges of the domain,

e.g. boundaryη0 in Figure 2.2. To illustrate this procedure we consider a Dirichlet boundary condition

where the functionf (η , t) vanishes at edges of the domain. Following Equation (2.5), the function f can

be expanded into a Taylor series at boundaryη0,

0 f (η , t) = 0a0(t)+ 0a1(t)(η −η0)+ 0a2(t)(η −η0)
2+ 0a3(t)(η −η0)

3+ · · · ,

whereby the polynomial coefficient0a0(t) has to vanish due to boundary condition,

0 f (η0, t) = 0.

For the determination of numerical flux functionΓ(η , t) at boundaryη0 (2.3),

Γ(η0, t) = −D(η0)
∂ f (η , t)

∂η

∣
∣
∣
∣
η0

+v(η0) f (η0, t)

= −D(η0) 0a1(t)+v(η0) 0a0(t)

one also has to compute the derivative of the functionf at boundaryη0. An approximation of first order to

the derivative is given by subsequent finite difference,

∂ f (η , t)
∂η

∣
∣
∣
∣
η0

=

→0
︷ ︸︸ ︷

0 f (η0, t)−1 f (η1, t)
∆η

. (2.23)

From Equation (2.23) one eventually obtains a relation for the sought polynomial coefficient0a1(t),

0a1(t) = −1a0(t)
∆η

.

Better approximations to the derivative are often required and can be realized using finite differences with

a truncation error of higher order. In the conducted tests inChapter 4 the primitive approximation is always

used and no disturbing influences on the solution are noticed.
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2.5 Test Cases for the one dimensional Conservative Finite Difference

Scheme

The subsequent test cases study a general diffusion equation (2.1) with a constant diffusion coefficient

D(η)=1 and velocity of advectionv(η)=−2η ,

∂ f (η , t)
∂ t

=
∂

∂η

(
∂ f (η , t)

∂η
+2η f (η , t)

)

,

which is solved by a Gaussian curve with a full width half maximum (FWHM) of
√

1
2,

f (η , t) = e−η2
.

Since there are no sources in the considered system, the steady-state solution will be in all test cases

f (η , t → ∞)=0 because particles get lost due to round-off errors and numerical instabilities. As an ini-

tial profile we choose a rectangular whereby the included area must be equal to the area of the Gaussian

AGaussian=
√

π. This demand results from the conservativity of the appliednumerical scheme. In the subse-

quent test cases the length of the rectangular is 2 and consequently the height has to be
√

π
4 . Furthermore,

the chosen polynomial reconstruction is of fourth order andan estimate for the CFL condition is calculated

by following expression [30,p. 415],

∆t ≤ cCFL ·
(

max
i

(‖v(ηi)‖
∆η

)

+2
D

(∆η)2

)−1

,

whereby a spatial discretization of∆η =0.08 is chosen. Figure 2.3 shows the time evolution of the Gaus-

sian curve and the relative precision using a Crank-Nicolsontime integrator. Under the considered CFL

conditioncCFL=5 the relative error grows only linearily and the CFDS proves to be conservative.
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Figure 2.3: Time evolution of the Gaussian curve and the relative precision using a Crank-Nicolson time

integrator and acCFL = 5 from 0s to 5.71s.

The time evolution of the Gaussian curve and the corresponding relative precision for another CFL con-

dition is depicted in Figure 2.4 whereby the same time integration procedure is used. In this case an

insufficient CFL conditioncCFL = 25 is tested. As the relative error grows exponentially, theCFDS is not
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conservative.

Figure 2.4: Time evolution of the Gaussian curve and the relative precision using a Crank-Nicolson time

integrator and acCFL = 25 from 0s to 14.29s.

As shown in Figure 2.5 an optimal CFL conditioncCFL=10 leads to a fully stable Crank-Nicolson time

integration and the relative error oscillates around a constant value for times larger than 8s. The total cell
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volume is conserved for all times. This behavior for an optimal cCFL is common for both considered time

integrators.

Figure 2.5: Time evolution of the Gaussian curve and the relative precision using a Crank-Nicolson time

integrator and acCFL = 10 from 0s to 11.43s.

In Figure 2.6 a backward Euler time integration of the same test case is performed and the CFL condition
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is againcCFL = 5. The time evolution of the Gaussian curve is analogue and the relative precision grows

also linearily, but not so fast as in the test case for a Crank-Nicolson time integrator.

Figure 2.6: Time evolution of the Gaussian curve and the relative precision using a backward Euler time

integrator and acCFL = 5 from 0s to 5.71s.

Figure 2.7 shows the time evolution of the Gaussian curve by means of a backward Euler and the corre-
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sponding relative precision for an insufficient CFL condition cCFL. In comparison to the insufficient CFL

condition for the Crank-Nicolson time integrator, the valueof cCFL is by far smaller and instabilites occur

much earlier. As the relative error grows also exponentially, the CFDS is not conservative.

Figure 2.7: Time evolution of the Gaussian curve and the relative precision using a backward Euler time

integrator and acCFL = 15 from 0s to 8.57s.
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As mentioned an optimal CFL conditioncCFL=10 leads to a fully stable backward Euler time integration

which is illustrated in Figure 2.8. The only difference between both time integration procedures is that the

relative error does not oscillate and is constant for times larger than 8s. The total cell volume is conserved

as well for all times.

Figure 2.8: Time evolution of the Gaussian curve and the relative precision using a backward Euler time

integrator and acCFL = 10 from 0s to 11.43s
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3 Extension of the Conservative Finite Difference Scheme to

two dimensional General Diffusion Equations

The basic concepts behind the developed CFDS are derived within Chapter 2 and can be easily extended

to 2D, see Section 3.1. Difficulties in context with a multi-dimensional treatment of the general diffusion

equation especially rise from the limited computational ressources. One simply realizes that the number of

cells N for certain level of mesh refinement grows with the power of the dimension D. As a further con-

sequence, the resulting linear systems of equations are of the order ND ×ND which implies high memory

requirements. Another interesting quantity that allows usto make predictions about the computational fea-

sibility of the problem is the number of non-zeros of the coefficient matrix. Beside the dependence on the

level of mesh refinement and dimensionality of the problem, the number of non-zeros is mainly determined

by the order of polynomial interpolation of numerical flux functions at the boundaries, see Section 3.2.

Thus, one has to make a compromise between the desired mesh refinement for the problem and a sufficient

order of polynomial interpolation of the numerical flux functions. In Section 3.3 the relations for boundary

conditions in 2D are outlined. Section 3.4 eventually presents the results of a test case that is analogue to

Section 2.5. Once again the stability of the CFDS, used to solve a 2D general diffusion equation which

generates a Gaussian profile as a solution, is studied. In Chapter 4 the 2D CFDS is applied to heat transport

problems in magnetized fusion plasmas.

3.1 Conservative Formulation of a two dimensional General Diffusion

Equation

A general form of a diffusion equation in 2D is given by the subsequent expression,

∂ f (x,y, t)
∂ t

= ∇∇∇ · (D(x,y) ∇∇∇ f (x,y, t)−v(x,y) f (x,y, t))+q(x,y), (3.1)

wherebyD(x,y) describes the diffusivity and accordinglyv(x,y) the velocity of convection or advection.

The last termq(x,y) stands for sources or drains in the system. A further numerical treatment requires a

discretization of the domain of solution. Figure 3.1 shows an equidistant regular 2D mesh which is split

up into N cells with Nx or Ny subdivisions inx- andy-direction, respectively. The axes in Figure 3.1 are

labeled in relation to a highlighted cellFk. In order to be able to apply the 1D computational treatment to

the 2D case, a linear indexk, going down the columns consecutively in an ascending order, is assigned to

each cell. In the case of a regular mesh one can calculate the indicesi(k) linked with thex-coordinate of

the left boundary and the indicesj(k) linked with they-coordinate of the upper boundary from the linear
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indexk,

i(k) = ⌈ k
Ny

⌉

j(k) = ((k−1) mod Ny)+1,

whereby⌈·⌉ denotes the ceiling function. Naturally, the information about the boundaries must be provided

by adaptive mesh infrastructure in the instance of irregular meshes.

For a conservative treatment one again integrates Equation(3.1) over the area of thek-th cell as in the 1D

case, confer Section 2.1.

Figure 3.1: Computational grid in 2D with labeling of the axes in relationto the highlighted cellFk.

Defining the cell-volumeFk(t) =
∫

Ak
dA f(x,y, t) and applyingGauss’s law[21,p. 687], Equation (3.1)
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becomes an ordinary differential equation,

dFk(t)
dt

=
∫

∂Ak

ds n ·ΓΓΓ(x,y, t)+Qk (3.2)

with

ΓΓΓ(x,y, t) = D(x,y) ∇∇∇ f (x,y, t)−v(x,y) f (x,y, t) (3.3)

and

Qk =
∫

Ak

dA q(x,y).

As a consequence, the value of cell-volumeFk can only change by numerical fluxesΓΓΓ(x,y, t) through the

boundaries or by a source or a drainQk. Considering the quadrilateral grid in Figure 3.1, the outward-

pointing unit normal vector to the boundary∂Ak is

n =
1

√

dx2+dy2

(

dy

−dx

)

and the line element is

ds =
√

dx2+dy2.

Hence, Equation 3.2 can be evaluated in the case of a quadrilateral grid and one obtains

dFk(t)
dt

=
∫

∂Ak

(Γx(x,y, t) dy−Γy(x,y, t) dx)+Qk

= Ik(t)+Qk,

wherebyIk(t) denotes the numerical flux difference for thek-th cell. In order to compute the numerical flux

differenceIk(t), one has to specify the path of integration∂Ak which moves in a counter clockwise manner
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aroundFk,

Ik(t) =
∫

∂Ak

(Γx(x,y, t) dy−Γy(x,y, t) dx)

=

y j(k)∫

y j(k)+1

dy

[

D(xi(k)+1,y)
∂ f (x,y, t)

∂x

∣
∣
∣
∣
xi(k)+1

−vx(xi(k)+1,y) f (xi(k)+1,y, t)−

− D(xi(k),y)
∂ f (x,y, t)

∂x

∣
∣
∣
∣
xi(k)

+vx(xi(k),y) f (xi(k),y, t)

]

−

−
xi(k)+1∫

xi(k)

dx

[

D(x,y j(k)+1)
∂ f (x,y, t)

∂y

∣
∣
∣
∣
y j(k)+1

−vy(x,y j(k)+1) f (x,y j(k)+1, t)−

− D(x,y j(k))
∂ f (x,y, t)

∂x

∣
∣
∣
∣
y j(k)

+vy(x,y j(k)) f (x,y j(k), t)

]

. (3.4)

A mathematically closed formulation requires that the values of f (x,y, t) and its derivatives at the bound-

aries in Equation (3.4) must be reconstructed from the cell volumes. For this reconstruction a polynomial

interpolation of the function at the boundaries is considered again, confer Section 3.2. The integrals appear-

ing in Equation (3.4) can be evaluated either analytically or by means of numerical integration procedures.

In the developed code aGauss-Legendre quadratureroutine [2,pp. 140-155] is exploited for the integration

which allows us to handle complex analytical expressions for the diffusivity or velocity of advection.

If the numerical fluxes vanish at the boundaries of the domainof solution and all sources balance the drains,

the total cell volume is conserved as described in the 1D case, confer Equation (2.4).

3.2 Polynomial Reconstruction of the Numerical Fluxes at the Cell

Boundaries in two Dimensions

Analogue to the 1D case, the polynomial reconstruction of the numerical fluxes in 2D is based on a Taylor

expansion of the functionf at the boundaries. Due to the higher dimensionality one has to treat four

boundaries. In the following calculations the polynomial interpolation of the right and left boundary,

respectively, of a cell is described extensively. The polynomial interpolation of the upper or lower boundary

can be done accordingly by rotating the stencils and corresponding polynomial expansions.
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From the Taylor expansion off (x,y, t) up to orderm in x-direction and ordern in y-direction,

i(k), j(k)+1/2 f (x,y, t) =
m∗n

∑
l=1

i(k), j(k)+1/2al (t) (x−xi(k))
px(l) (y−y j(k)+1/2)

py(l) (3.5)

with

y j(k)+1/2 =
y j(k)+y j(k)+1

2
and

px = (0,1,2, . . . ,m−1
︸ ︷︷ ︸

n×

, . . . . . . ,0,1,2, . . . ,m−1)

py = (0,0,0, . . . ,0
︸ ︷︷ ︸

m×

,1,1,1, . . . ,1
︸ ︷︷ ︸

m×
︸ ︷︷ ︸

n×

, . . . . . . ,n−1,n−1,n−1, . . . ,n−1),

whereby the left subscripts again denote the expansion at a certain boundary and the elementsi(k), j(k)+1/2al (t)

abbreviate the corresponding polynomial coefficients of the Taylor series, one can derive again a relation

for the cell volumesFk̃(t),

Fk̃(t) =

xi(k̃)+1∫

xi(k̃)

dx

y j(k̃)∫

y j(k̃)+1

dy
m∗n

∑
l=1

i(k), j(k)+1/2al (t) (x−xi(k))
px(l) (y−y j(k)+1/2)

py(l)

=
m∗n

∑
l=1

i(k), j(k)+1/2al (t) i(k), j(k)+1/2Ak̃l (3.6)

with

i(k), j(k)+1/2Ak̃l =

(

xi(k̃)+1−xi(k)

)px(l)+1
−
(

xi(k̃)−xi(k)

)px(l)+1

px(l)+1
·

·

(

y j(k̃)−y j(k)+1/2

)py(l)+1
−
(

y j(k̃)+1−y j(k)+1/2

)py(l)+1

py(l)+1
.

In Equation (3.5) a compact notation for the powers in the Taylor expansion is introduced. Along with

the linear indexing of the cell volumes, this allows us to mapthe multi-dimensional problem to a formal

1D problem for which a matrix formalism and computational routines are available. Using the polynomial

approximation (3.6), the cell volumesFk̃(t) within a defined stencil should be approached up to a known

truncation error. This demand results in a system of linear equations for the unknown polynomial coeffi-

cients. A well-posed set of equations is obtained by stencils that are symmetric with respect to the boundary

and that involvem cells inx-direction andn cells in they-direction. As one can imagine, this demand is

hard to realize in the instance of adaptive meshes. For this purpose more sophisticated criteria must be

considered. Since the same computational treatment, the polynomial coefficentsi(k), j(k)+1/2al (t) are again

not calculated explicitly; instead of them, one computes the inverse ofi(k), j(k)+1/2Ai j , i(k), j(k)+1/2B jk, which
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is independent of time and can be used to determine thei(k), j(k)+1/2al (t)) from the cell volumes,

i(k), j(k)+1/2al (t) = ∑
k̃ ∈ symmetric stencil

of boundary(xi(k),y j(k)+1/2)

i(k), j(k)+1/2Bl k̃ Fk̃(t)

with

δkk̃ =
m∗n

∑
l=1

i(k), j(k)+1/2Akl i(k), j(k)+1/2Bl k̃.

The inversei(k), j(k)+1/2B jk links the polynomial coefficents with the cell volumesFk̃(t); thus, it is possible to

formulate a scheme solving Equation (3.1) which only makes use of theFk̃(t) within the stencil as in the 1D

case. For instance an appropriate fourth order inx-direction and third order iny-direction approximation

of function f (x,y, t) at the left boundary(xi(k),y j(k)+1/2), which requires a twelve-cell stencil, is depicted in

Figure 3.2.

Figure 3.2: Twelve-cell stencil for fourth order inx-direction and third order iny-direction approximation

of function f (x,y, t) at the left boundary of cellFk̃(t).

Using the interpolation formula for the polynomial coefficientsi(k), j(k)+1/2al (t), one can evaluate the nu-
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merical flux differenceIk̃ given by Equation (3.4),

Ik(t) =
[
I ′k(t)− I ′′k (t)

]
−
[
I ′′′k (t)− I ′′′′k (t)

]

with

I ′k(t) =

y j(k)∫

y j(k)+1

dy

[

D(xi(k)+1,y)
m∗n

∑
l=1

px(l)
!
=1

(
y−y j(k)+1/2

)py(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1,y j(k)+1/2)

i(k)+1, j(k)+1/2Bl k̃ Fk̃−

−vx(xi(k)+1,y)
m∗n

∑
l=1

px(l)
!
=0

(
y−y j(k)+1/2

)py(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1,y j(k)+1/2)

i(k)+1, j(k)+1/2Bl k̃ Fk̃

]

I ′′k (t) =

y j(k)∫

y j(k)+1

dy

[

D(xi(k),y)
m∗n

∑
l=1

px(l)
!
=1

(
y−y j(k)+1/2

)py(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k),y j(k)+1/2)

i(k), j(k)+1/2Bl k̃ Fk̃−

−vx(xi(k),y)
m∗n

∑
l=1

px(l)
!
=0

(
y−y j(k)+1/2

)py(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k),y j(k)+1/2)

i(k), j(k)+1/2Bl k̃ Fk̃

]

I ′′′k (t) =

xi(k)+1∫

xi(k)

dx

[

D(x,y j(k)+1)
m∗n

∑
l=1

p̂y(l)
!
=1

(
x−xi(k)+1/2

)p̂x(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1/2,y j(k)+1)

i(k)+1/2, j(k)+1Bl k̃ Fk̃−

−vy(x,y j(k)+1)
m∗n

∑
l=1

p̂y(l)
!
=0

(
x−xi(k)+1/2

)p̂x(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1/2,y j(k)+1)

i(k)+1/2, j(k)+1Bl k̃ Fk̃

]

I ′′′′k (t) =

xi(k)+1∫

xi(k)

dx

[

D(x,y j(k))
m∗n

∑
l=1

p̂y(l)
!
=1

(
x−xi(k)+1/2

)p̂x(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1/2,y j(k))

i(k)+1/2, j(k)Bl k̃ Fk̃−

−vy(x,y j(k))
m∗n

∑
l=1

p̂y(l)
!
=0

(
x−xi(k)+1/2

)p̂x(l) ∑
k̃ ∈ symmetric stencil

of boundary(xi(k)+1/2,y j(k))

i(k)+1/2, j(k)Bl k̃ Fk̃

]

,

whereby the hat denotes the powers of the polynomial for the rotated stencil. All contributions arising from
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the numerical flux differencesIk(t) are again subsumed in a matrixM , as described in Section 2.2. The

resulting ordinary differential equaton (2.10), which hassimple dependence on time, can be solved using

suitable time integration procedures, confer Section 2.3.

3.3 Implementation of Boundary Conditions in the Conservative Finite

Difference Scheme for General Diffusion Equations in two Dimensions

The discussion in this section will be restricted to the implementation of Dirichlet boundary conditions that

are used to describe walls of finite temperature as in the caseof the investigated model for the transport

in fusion plasmas. As mentioned in Section 2.4, for the computational implementation two different ap-

proaches exist which have respective pros and cons. Either one makes use of ghost cells or the interpolation

function is modified at boundary of the domain. The ghost cellmethod can be readily extended to 2D and

needs no further discussion. For the modification of the interpolation function at boundary of the domain,

one has to adapt the derived formulas.

To illustrate this adaption of the formulas, we consider thestencil in Figure 3.2 and a Dirichlet boundary

condition where the functionf (x,y, t) vanishes at the left edge of the domain. Following Equation (3.5),

the functionf can be expanded into a Taylor series at the boundary(x1,y j(k)+1/2),

1, j(k)+1/2 f (x,y, t) =
m∗n

∑
l=1

1, j(k)+1/2al (t) (x−xi(k))
px(l) (y−y j(k)+1/2)

py(l),

whereby the polynomial coefficients1, j(k)+1/2al (t) have to vanish forpx(l)
!
=0 due to boundary condition,

1, j(k)+1/2 f (x1,y j(k)+1/2, t) = 0.

Using the modified interpolation function, it is possible toevaluate the sought numerical flux inx-direction

Γx(x,y, t) (3.3) at the left edge of the domain,

Γx(x1,y j(k)+1/2, t) = D(x1,y j(k)+1/2)
∂ f (x,y, t)

∂x

∣
∣
∣
∣
(x1,y j(k)+1/2)

+vx(x1,y j(k)+1/2) f (x1,y j(k)+1/2, t)

= D(x1,y j(k)+1/2)
m∗n

∑
l=1

px(l)
!
=1

(
y−y j(k)+1/2

)py(l)
1, j(k)+1/2al (t)−

−vx(x1,y j(k)+1/2)
m∗n

∑
l=1

px(l)
!
=0

(
y−y j(k)+1/2

)py(l)
1, j(k)+1/2al (t)
︸ ︷︷ ︸

→0

.
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As in the 1D case, the partial derivative∂ f (x,y,t)
∂x

∣
∣
∣
(x1,y j(k)+1/2)

can be approximated by a finite difference of

first order accuracy,

∂ f (x,y, t)
∂x

∣
∣
∣
∣
(x1,y j(k)+1/2)

=

→0
︷ ︸︸ ︷

1, j(k)+1/2 f (x1,y j(k)+1/2, t) − 2, j(k)+1/2 f (x2,y j(k)+1/2, t)

∆x
. (3.7)

From Equation (3.7) one eventually obtains a relation for the sought polynomial coefficient1, j(k)+1/2al (t)),

1, j(k)+1/2al (t) = −2, j(k)+1/2al ′(t)

∆x
for

{

px(l)
!
= 1

px(l ′)
!
= 0

.

Better approximations to the derivative use finite differences with truncation errors of higher order.

3.4 Test Cases for the two dimensional Conservative Finite Difference

Scheme

As in Section 2.5, the subsequent test cases study a 2D general diffusion equation (3.1) with a constant

diffusion coefficientD(x,y)=1 and velocity of advectionv(x,y)=

(

−2x

−2y

)

,

∂ f (x,y, t)
∂ t

= ∇∇∇ ·
(

∇∇∇ f (x,y, t)−
(

−2x

−2y

)

f (x,y, t)

)

,

which is solved by a 2D Gaussian curve with a FWHM of
√

1
2 in each direction,

f (x,y, t) = e−(x2+y2).

Since there are no sources in the considered system, the steady-state solution will be in all test cases

f (x,y, t → ∞)=0 because particles get lost due to round-off errors and numerical instabilities. As an ini-

tial profile we choose a cylinder whereby the included area must be equal to the area of the 2D Gaussian

AGaussian2D= π. This demand results from the conservativity of the appliednumerical scheme. In the

subsequent test cases the radius of the cylinder is 1 and consequently the height has to be 1. Further-

more, the chosen polynomial reconstruction is of fourth order in x-direction and third order iny-direction,

respectively. An estimate for the CFL condition is calculated by following expression [30,p. 415],

∆t ≤ cCFL ·
(

max
i, j

(∥
∥vx(xi ,y j)

∥
∥

∆x
+

∥
∥vy(xi ,y j)

∥
∥

∆y

)

+2D

(
1

(∆x)2 +
1

(∆y)2

))−1

,
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whereby a spatial discretization of∆x=0.08 and∆y=0.08 is chosen.

Figure 3.3 shows the time evolution of the 2D Gaussian curve and the relative precision using a Crank-

Nicolson time integrator. Under the considered CFL condition cCFL=10 the relative precision grows only

linearily and the CFDS proves to be conservative.

Figure 3.3: Time evolution of the 2D Gaussian curve and the relative precision using a Crank-Nicolson

time integrator and acCFL = 10. Note that the first four plots have a different scale ony-axis.
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The time evolution of the Gaussian curve and the corresponding relative precision for an insufficient CFL

condition is depicted in Figure 3.4 whereby the same time integration procedure is used. As the relative

error grows exponentially, the CFDS is not conservative.

Figure 3.4: Time evolution of the 2D Gaussian curve and the relative precision using a Crank-Nicolson

time integrator and acCFL = 25. Note that the first two plots have a different scale ony-axis.
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In Figure 3.5 a backward Euler time integration of the same test case is performed and the CFL condition is

againcCFL = 10. The time evolution of the Gaussian curve is analogue and the relative precision decreases

also linearily.

Figure 3.5: Time evolution of the 2D Gaussian curve and the relative precision using a backward Euler

time integrator and acCFL = 10. Note that the first two plots have a different scale ony-axis.
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Figure 3.6 shows the time evolution of the Gaussian curve by means of a backward Euler and the corre-

sponding relative precision for an insufficient CFL condition cCFL. In comparison to the insufficient CFL

condition for the Crank-Nicolson time integrator, the valueof cCFL is by far smaller and instabilites occur

much earlier. As the relative error grows also exponentially, the CFDS is not conservative.

Figure 3.6: Time evolution of the 2D Gaussian curve and the relative precision using a backward Euler

time integrator and acCFL = 20. Note that the first five plots have a different scale ony-axis.
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In contrast to the 1D test case, an optimal value forcCFL could not be found for both time integrators. More

challenging test cases concerning heat transport in magnetized fusion plasmas are performed in Chapter 4.

Especially the occurring high anisotropies, which should be resolved with a high order scheme, are a

benchmark for the chosen mesh refinement and the order of the polynomial reconstruction.
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4 Heat Transport in Magnetized Fusion Plasmas

The so far performed test scenarios for the 2D CFDS (confer Section 3.4) can be used to validate the oper-

ability, but are certainly not suited for a benchmark under realistic conditions. A widely studied problem,

which is often considered as a benchmark for PDE solvers, is the heat transport in magnetized plasmas

[31, 32, 33, 34]. A mathematical description of the heat transport in magnetized plasmas is given in

Section 4.1. In Section 4.2 an analytical solution for an equilibrium configuration in a Tokamak is com-

pared to the numerical results of the CFDS. A disussion of a divertor model for the Tokamak is given in

Section 4.3. Finally, Section 4.4 concludes this chapter with an outlook on future improvements of the

developed CFDS.

4.1 General Diffusion Equation for Modelling Heat Transport in

Magnetized Fusion Plasmas

A macroscopic description of the heat transport in magnetized fusion plasmas is given by a general diffusion

equation [31],

∂ f
∂ t

= ∇∇∇ ·ΓΓΓ + q (4.1)

with

ΓΓΓ =
↔
D ·∇∇∇ f − v f , (4.2)

wherebyq is a heat source andΓΓΓ corresponds to the numerical flux function that in turn depends on the

velocity of advection or convectionv and on the second-order diffusivity tensor
↔
D. This second-order

diffusivity tensor
↔
D models a local anisotropic diffusion with different coefficients for parallel (D‖) and

perpendicular heat transport (D⊥) [35],

↔
D = D⊥

(↔
1 − ĥ ĥ

)

+ D‖ ĥ ĥ. (4.3)

In Equation (4.3)ĥ ĥ denotes the dyadic product of the unit vectors in the magnetic field directionB,

ĥ ≡ B
‖B‖ .

Since the geometries of fusion research devices, e.g. a Tokamak, can be very complicated, one is inter-

ested in having a coordinate-system independent formulation of Equation (4.1). According to the book
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of D’haeseleer et al. [36], a co- and contravariant notationincluding theEinstein summation convention

is introduced. LetR(u1,u2,u3) denote an invertible transform from Cartesian coordinatesx,y,z to any

curvilinear coordinate systemu1,u2,u3,

R(u1,u2,u3) :

x = x(u1,u2,u3)

y = y(u1,u2,u3)

z = z(u1,u2,u3)

. (4.4)

Using this transformation, the divergence occurring in therighthand side of Equation (4.1) becomes

∇∇∇ ·ΓΓΓ =
1√
g

∂
∂ui

(√
g Γi) , (4.5)

whereby
√

g is the determinant of the covariant metric tensorgi j , that in turn is defined as the dot product

of the tangent basis vectorsei andej ,

gi j ≡ ei ·ej

=
∂R
∂ui ·

∂R
∂u j

=
∂x
∂ui

∂x
∂u j +

∂y
∂ui

∂y
∂u j +

∂z
∂ui

∂z
∂u j .

The numerical flux functionΓΓΓ (4.2) in curvilinear coordinates is obtained by the transformation of the

gradient and of the second-order diffusivity tensor
↔
D,

ΓΓΓ = Di j ei ej em

︸ ︷︷ ︸

→ δ m
j

∂ f
∂um − vi ei f

= Γi ei . (4.6)

Using (4.5) and (4.6), one can rewrite the heat transport equation (4.1) into a general form which is valid

for any curvilinear coordinate system,

∂ f
∂ t

=
1√
g

∂
∂ui

√
g

(

Di j ∂ f
∂u j − vi f

)

+ q. (4.7)

Comparing Equation (4.7) to the conservative form of the 2D general diffusion equation (3.1), one recog-

nizes that Gauss’s law cannot be applied directly. A conservative formulation of Equation (4.7) is realized

56



by introducing a new variable,̃f =
√

g f ,

∂ f̃
∂ t

=
∂

∂ui

(

Di j ∂ f̃
∂u j − vi

c f̃

)

+ q̃

with

vi
c = vi +

(

Di j 1√
g

∂
∂ui

√
g

)

and

q̃ =
√

g q. (4.8)

Furthermore, a coordinate transformation of the diffusivity tensorDi j (4.3) is necessary for a generalized

treatment of the heat transport as in Equation (4.7). The dyadic product occurring in the righthand side of

Equation (4.3) needs no further treatment, since it transforms like the components of the vectorĥ. For this

reason one has to consider only the unit tensor
↔
1. In Cartesian coordinates

↔
1 is equivalent to the Kronecker

delta,

↔
1cart ≡ δ i j ei ej . (4.9)

Since a tensor is independent of the choice of a particular coordinate system, the identity,

1
′ i j e′i e′j = 1

lm el em, (4.10)

must be fulfilled. Plugging the expression for the unit tensor in Cartesian coordinates (4.9) into the identity

(4.10) yields the following transformation for the unit tensor,

1
′ i j

= 1
lm
cart

∂u′ i

∂Rl

∂u′ j

∂Rm

= δ lm ∂u′ i

∂Rl

∂u′ j

∂Rm
︸ ︷︷ ︸

!
= gi j

= gi j . (4.11)

The components of the diffusivity tensor occurring in Equation (4.7) are

Di j = D⊥
(
gi j − ĥi ĥ j) + D‖ ĥi ĥ j , (4.12)

if Equation (4.11) is considered. In the next sections the heat transport for two magnetic field configurations

in a Tokamak is studied. The consideredB-fields are based upon an analytical model which makes use of

the cylindrical symmetry of the Tokamak [37]. A model of an equilibrium configuration is presented in

Section 4.2. In this instance an analytical solution for theheat transport is available which is used to
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benchmark the numerical results regarding the resolution of high anisotropies. In the Section 4.3 the heat

transport for a divertor configuration is illustrated.

4.2 Equilibrium Configuration in a Tokamak

Since the magnetized fusion plasma has a temperature of up to108K, a magnetic confinement is absolutely

essential for fusion research devices. The simplest concept for a closed field configuration is a Tokamak

which generates a toroidal confinement [38, 39]. In order to make the discussion of the magnetic field

easier, one introduces cylindrical coordinatesR,φ ,Z due to the rotational symmetry of a Tokamak,

x = R cosφ

y = R sinφ

z = Z. (4.13)

For a Tokamak the total magnetic field can be split in a toroidal and a poloidal part,

B = Btor+Bpol.

The toroidal magnetic fieldBtor,

Btor = Bφ eφ

with

Bφ = const., (4.14)

is achieved by external field coils. A toroidal current, flowing in the plasma, produces according toAm-

pere’s law[40,p. 180] the superimposed poloidal magnetic fieldBpol,

Bpol = ∇∇∇ × Apol

with

Apol = Aφ eφ . (4.15)
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In Equation (4.15)Apol denotes the corresponding vector potential. To obtain a model for a stable heat

transport, one chooses a poloidal vector potential [37],

Aφ = Aφ ,0 w((R−R0)
2+(Z−Z0)

2
︸ ︷︷ ︸

≡ r2

)

with

w(r2) = 1 + r2

and

Aφ ,0 = const., (4.16)

wherebyR0,Z0 denotes the center of the tube. Additionally, the ratio of the absolute values of the poloidal

and toroidal magnetic field must be proportional to

∥
∥Bpol

∥
∥

‖Btor‖
∝

rL

R0 qfactor
, (4.17)

In Equation (4.17)rL is the radius of the tube andqfactor indicates the safety factor [38,p. 53]. The values

for the constants appearing in Equation (4.14) to (4.17) arechosen in such a way that a fusion research

device like ITER [38,pp. 511-515] is modelled,

Z0 = 0

R0 = 5

rL = 2

Bφ = 2

qfactor = 3.

Hence, one can evaluate the components of the diffusivity tensor (4.12) in cylindrical coordinates (4.13),

DRR = D⊥ +
(
D‖−D⊥

) 4 A2
φ ,0 (Z−Z0)

2

B2
φ +4 A2

φ ,0 r2

DRZ = −
(
D‖−D⊥

) 4 A2
φ ,0 (R−R0) (Z−Z0)

B2
φ +4 A2

φ ,0 r2

DZR = DRZ

DZZ = D⊥ +
(
D‖−D⊥

) 4 A2
φ ,0 (R−R0)

2

B2
φ +4 A2

φ ,0 r2
,

whereby theφ -elements vanish due to the rotational symmetry of a Tokamak. Another criterion for a stable

transport is that the heat sourceq in Equation (4.7) [37], that balances the heat transport perpendicular to
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the magnetic field lines, is proportional to an exponential function of the vector potential,

q ∝ e−
Aφ
ψσ

= e−
Aφ ,0 r2

ψσ

with

ψσ ∝ rL.

Since all quantities are determined in cylindrical coordinates, one uses this representation also for the

conservative heat transport equation (4.8),

∂ f̃
∂ t

=
∂

∂R

(

DRR ∂ f̃
∂R

+ DRZ ∂ f̃
∂Z

− DRR

R
f̃

)

+

+
∂

∂Z

(

DZR ∂ f̃
∂R

+ DZZ ∂ f̃
∂Z

− DZR

R
f̃

)

+ q̃, (4.18)

whereby the velocity of advectionv is set to zero and all derivatives inφ -direction vanish because of the

rotational symmetry. For the considered heat transport model one is able to derive an analytical solution of

Equation (4.18) [37],

f (r) = − ψσ
2 D⊥ Aφ ,0

rL∫

r

dr ′
e−

r′ 2 Aφ ,0
ψσ −1
r ′

. (4.19)

In Figure 4.1 the numerical results for the heat transport equation (4.18), that are obtained by a 2D CFDS

using a fourth order reconstruction of the numerical flux function, are compared to the analytical solution

(4.19). To allow a comparison of the numerical results to theanalytical solution, the domain of solution

is cut along theR-axis and the ratio of parallel transport to perpendicular transport is set to 106. As one

recognizes easily, the numerical results for mesh sizes of up to 901×901 do not reproduce the behavior of

the analytical solution at the boundaries; instead, a smearing out is observed. In contrast, the core of the

Tokamak is well approximated for all mesh sizes. The small gap between the amplitudes of the analytical

solution and of the numerical solutions, respectively, arises from a finite mesh size.
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Figure 4.1: Cross section along theR-axis of an analytical solution for an equilibrium configuration in a

Tokamak forD⊥=1 andD‖=106, respectively, and comparison to numerical results using apolynomial

reconstruction of fourth order in each direction and varying mesh sizes.

The surface (left) and contour plot (right) for a mesh size of1101×1101 and for the same set of parameters

as in Figure 4.1 are depicted in Figure 4.2. As predicted by the analytical solution, the computed solution

has a rotational symmetry which results in concentric circles in the contour plot.
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Figure 4.2: Surface (left) and contour plot (right) of an equilibrium configuration in a Tokamak forD⊥=1

andD‖=106, respectively, using a polynomial reconstruction of fourth order in each direction and a mesh

size of 1101×1101.

In Figure 4.3 the growth of absolute error in dependence on the mesh size is shown, whereby a polynomial

reconstruction of fourth order in each direction is used. The other parameters are chosen as in Figure 4.1.

In this context, the absolute error is defined as the absolutevalue of the height difference atR=5,Z=0

between the numerical solution for a mesh size of 1101× 1101 and the numerical solution for all other

tested mesh sizes. From the slope between the last two data points, which is about three, one can estimate

the order of the polynomial reconstruction. This difference indicates that the numerical solutions are not

converged for the considered mesh sizes. Hence, a higher mesh refinement must be used.
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Figure 4.3: Absolute value of the error in dependence on the mesh size, using a polynomial reconstruction

of fourth order in each direction. The transport coefficients of the equilibrium configuration are set to

D⊥=1 andD‖=106, respectively.

The comparison of the analytical solution (4.19) with the numerical results for the heat transport equation

(4.18), that are obtained by a 2D CFDS using a fifth order reconstruction of the numerical flux function,

is shown in Figure 4.4. As in Figure 4.1 the domain of solutionis cut along theR-axis and the ratio of

parallel transport to perpendicular transport is set to 106. In contrast to the numerical solutions obtained by

a fourth order reconstruction of the numerical flux function, the results for mesh sizes of up to 901×901

are able to reproduce the behavior of the analytical solution at the boundaries. Analoque to Figure 4.1, a

small gap between the amplitudes of the analytical solutionand of the numerical solutions, respectively,

appears which arises from a finite mesh size.
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Figure 4.4: Cross section along theR-axis of an analytical solution for an equilibrium configuration in a

Tokamak forD⊥=1 andD‖=106, respectively, and comparison to numerical results using apolynomial

reconstruction of fifth order in each direction and varying mesh sizes.

The surface (left) and contour plot (right) for a mesh size of1101×1101 are illustrated in Figure 4.5, using

the same set of parameters as in Figure 4.4. Again, concentric circles appear in the contour plot which is

due to the rotational symmetry.
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Figure 4.5: Surface (left) and contour plot (right) of an equilibrium configuration in a Tokamak forD⊥=1

andD‖=106, respectively, using a polynomial reconstruction of fifth order in each direction and a mesh

size of 1101×1101.

In Figure 4.6 the absolute error in dependence on the mesh size is shown again, whereby a polynomial

reconstruction of fifth order in each direction is used. The other parameters are chosen as in Figure 4.4.

From the slope between the last three data points, which is about five, it is possible to make an estimate

for the order of the polynomial reconstruction. This value is in good agreement with the order of the

polynomial reconstruction of the numerical fluxes.
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Figure 4.6: Absolute value of the error in dependence on the mesh size using a polynomial reconstruction

of fifth order in each direction in the case of an equilibrium configuration in a Tokamak forD⊥=1 and

D‖=106, respectively.

In Figure 4.7 the numerical results for the heat transport equation (4.18), that are obtained by a 2D CFDS

using a fifth order reconstruction of the numerical flux function, are compared to the analytical solution

(4.19). For the comparison the domain of solution is again cut along theR-axis and the ratio of parallel

transport to perpendicular transport is set to 108. In this case, the numerical results for mesh sizes of up

to 1101×1101 reproduce neither the behavior of the analytical solution at the boundaries nor the core of

the Tokamak. To get a better agreement with the analytical solution, one has to make use of a higher mesh

refinement or of a polynomial reconstruction of higher order. This brute force strategy is limited due to the

vast computational costs; instead, it is better to use meshes with an adaptive refinement corresponding to a

test function, whereby the test function is a guess for the true solution. A computational infrastructure for

the adaptive meshes is under way.
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Figure 4.7: Cross section along theR-axis of an analytical solution for an equilibrium configuration in a

Tokamak forD⊥=1 andD‖=108, respectively, and comparison to numerical results using apolynomial

reconstruction of fifth order in each direction and varying mesh sizes.

The surface (left) and contour plot (right) for a mesh size of1101×1101 and for the same set of parameters

as in Figure 4.7 are shown in Figure 4.8. Although the height of the numerical results does not converge to

the height of the analytical solution, the surface plot has as predicted a rotational symmetry, which in turn

yields the concentric circles in the contour plot.
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Figure 4.8: Surface (left) and contour plot (right) of an equilibrium configuration in a Tokamak forD⊥=1

andD‖=108, respectively, using a polynomial reconstruction of fifth order in each direction and a mesh

size of 1101×1101.

In Figure 4.9 the absolute error in dependence on the mesh size is shown again, whereby a polynomial

reconstruction of fifth order in each direction is used. All other parameters are chosen as in Figure 4.7. The

slope between the last three data points is approximately five. This value is in a good agreement with the

order of the polynomial reconstruction of the numerical fluxes.
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Figure 4.9: Absolute value of the error in dependence on the mesh size using a polynomial reconstruction

of fifth order in each direction in the case of an equilibrium configuration in a Tokamak forD⊥=1 and

D‖=108, respectively.

A divertor model for a Tokamak is studied in the next section.Contrary to the model investigated within

this section no analytical solution exists. For this reasonit is only possible to make a qualitative comparison

between the numerical result and the assumed solution.

4.3 Divertor Model for the Tokamak

A divertor in a Tokamak is a magnetic field configuration whichis produced by additional external coils in

order to divert the outermost magnetic field lines out of the main plasma into a separate chamber where they

intersect a material divertor target [39,pp.331-360]. This divertor configuration is used in fusion devices

to exhaust the burnt fuel. In contrast to the limiter concept, in which the material target is in contact with

main plasma, the recycling of neutrals and the production ofimpurities is spatially separated from the core

plasma. Practically, poloidal divertors are chosen because the poloidal field is easier to divert than the larger

toroidal field. The poloidal divertor configuration uses coils carrying current in the same direction as the

plasma current for the purpose of the formation of null- or X-point, as depicted in Figure 4.10. A X-Point
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marks the spatial position where the net poloidal field, thatis generated by the toroidal plasma current and

divertor coils, vanishes. The last closed flux surface, alsocalled separatrix, is produced by the magnetic

field lines passing through the X-Point. As desired, the separatrix devides the plasma into a core region,

where the particles are confined, and into the scrape-off layer. Particles crossing this scrape-off layer move

along the magnetic fields lines to the divertor region where they are exhausted.

So as to adapt the analytical model described in Section 4.2 to an divertor configuration, a new poloidal

field is introduced [37],

Aφ = Aφ ,0 log

(

1 +
(R−R0)

2+(Z−Z0)
2

r2
0

)

+

+ Aφ ,1 log
(

(R0−R1)
2+(Z−Z1)

2
)

with

Aφ ,1 = 0.7 Aφ ,0 . (4.20)

In the calculations following values of the constants are chosen,

rL = 2

r0 = 0.2· rL

Z0 = 0

Z0 = −3· r0

R0 = 5

Bφ = 2

qfactor = 3. (4.21)

The value for the constantAφ ,0 is calculated according to the relation given by Equation 4.17. Based

on the above-described poloidal magnetic field, one is able to compute the required components for the

diffusivity tensor (4.12) appearing in Equation 4.18. In Figure 4.10 a surface plot of the modelled divertor

configuration using a polynomial reconstruction of fifth order in each direction is shown. For the numerical

result a mesh size of 501×501 is used and the ratio of parallel transport to perpendicular transport is set to

102. On a larger length scale (left) only the behavior of the hot core plasma is observed. As expected, on

shorter length scales (right) one recognizes the typical X-Point including the separatrix.
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Figure 4.10: Surface plots showing a divertor configuration in a Tokamak on a larger length scale (right)

and on a shorter length scale (left). The numerical result isobtained by a polynomial reconstruction of fifth

order in each direction and a mesh size of 501×501, whereby the transport coefficients are set toD⊥=1

andD‖=102, respectively.

4.4 Conclusion and Outlook

We studied the heat transport in magnetized plasma which is abenchmark for the resolution of a numerical

scheme regarding the high anisotropies of the transport coefficients. In realistic models for Tokamaks the

ratio of parallel transport (D‖) to perpendicular transport (D⊥) varies between 108 and 1012 [31, 34]. The

developed CFDS using an equidistant regular mesh is able to resolve ratios ofD‖ to D⊥ of up to 109.

Considering the simple analytical model (Section 4.2), one recognizes the massive influence of anistropy

on the resolution of the numerical scheme. While a fifth order scheme is able to reproduce an anistropy of

106, it fails in the case of an anisotropy of 108. The divertor configuration (Section 4.3) is used to test, if

more complexB-field configurations can be resolved. Using a fifth order scheme, a qualitatively correct

result is obtained In order to exceed this limit an adaptive mesh has been implemented, which is a part of

ongoing research. The so far obtained results using adaptive meshes show very promising prospects.
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