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ABSTRACT

The present thesis deals with the numerical modelling and analysis - through parametric
studies - of the out-of-plane buckling behaviour of steel members (columns, beams and
beam-columns) under realistic, non-hinged support conditions. The studied members

are loaded under compression (N) or compression and bending (N + My).

The main objective is the discussion of the out-of-plane flexural and lateral-torsional
buckling resistance of steel members with I sections and additional rotational and/or
warping restraints at the member ends. The most important design formulae that
concern these failure modes in the structural steel design code Eurocode 3 (EC3) are
derived for the case of “pin-ended” members, in which the rotation and the warping of
the two ends is not restrained. In practical design, there are several situations in which
the support conditions are quite different from this “standard case”. The applicability of
the standard design rules - with modifications to these “realistic” boundary conditions -
therefore had to be checked.

The aim of this work is therefore the study and analysis of the “realistic” buckling
behaviour of members with rotation and/or warping fixations at the member ends by

means of numerical (FEM) modelling by using the software ABAQUS.

The most important parts of the thesis are the presented comparisons between the
GMNIA- (geometrically and materially non-linear analyses with imperfections) and
LBA- (linear buckling analyses) results and the calculations according to the current EC3
design code. The comparison between the numerical results and the EC3 - rules for these
cases shows new perspectives of code development (since in many cases the code is
conservative), or shows limits of application of the code (in the cases where the code is

“unconservative”).

In the comparisons with the EC3 - rules, the main focus is put on the “interaction
formulae” of EN 1993-1-1 for members loaded under N + My. However, also the so-called
“Overall” or “General Method”, which is an alternative approach in EC 3, is taken into

account.

Additionally, the topic of the determination of the critical bifurcation bending moment
M, and the corresponding slenderness ALt by means of simple hand formulae detected

in the literature (with the “C1“ or “k.” factors) is also treated extensively in this thesis.

The last two chapters contain small studies about the new design proposal for LT-
buckling developed at Graz University of Technology and about the additional warping

stresses at the restrained end sections, which are relevant for joint design.




KURZFASSUNG

Diese Masterarbeit behandelt die numerische Modellierung und Analyse des
Stabilitatsverhaltens von Bauteilen aus Stahl (Stiitzen, Trager) aus der Ebene unter
realen, nicht gelenkigen Auflagerbedingungen, mittels umfangreicher Parameterstudien.
Die Bauteilbelastung umfasst dabei reine Normalkrafts- sowie Normalkrafts- und
Biegebeanspruchung (N+ My).

Das Hauptziel ist die Analyse der Traglast bei Biegeknickversagen aus der Ebene sowie
bei Biegedrillknickversagen der Bauteile mit [-Querschnitt und zusatzlichen Rotations-
und/oder Verwolbungsbehinderungen an deren Endquerschnitten. Die wichtigsten
Bemessungsformeln im Eurocode 3 (EC3), die diese Stabilitatsfdlle abdecken, wurden
fir den Fall mit beidseitiger gelenkiger Gabellagerung hergeleitet. Dabei sind die
Rotation und die Verwdélbung bei den Endquerschnitten nicht behinder. In der Praxis
gibt es viele Fille, in denen die Randbedingungen von diesem ,Standardfall“ abweichen.

Die Anwendbarkeit der EC3 Formeln fiir diese Fille sollte daher tiberpriift werden.

Das Ziel dieser Arbeit ist demnach die Analyse des ,realen“ Stabilitatsverhaltens von
Bauteilen = mit Rotations- und/oder Verwdlbungsbehinderungen an den

Endquerschnitten durch numerische (FEM) Modellierung mit dem Programm ABAQUS.

Die wichtigsten Teile der Masterarbeit sind die Vergleiche zwischen den GMNIA-
(geometrisch und materiell nichtlineare Analyse mit Imperfektionen) und LBA- (lineare
Beul- bzw. Knickanalyse) Ergebnissen und den Berechnungen nach der giltigen
Bemessungsnorm EC3 fiir den Stahlbau. Die Vergleiche zwischen numerischen
Ergebnissen und EC3-Regeln fiir diese Fille zeigen neue Perspektiven der
Normenweiterentwicklung auf (wenn die Norm konservativ ist), bzw. weisen auf die

Grenzen der Anwendung der Norm hin (wenn die Norm ,unkonservativ® ist).

Bei den Vergleichen mit den EC3 - Regeln liegt der Schwerpunkt bei der
JInteraktionsformel“ fiir Beanspruchungen aus Normalkraft N und Biegemoment My.
Zusatzlich wird auch die sogenannte ,Overall -“ oder ,General Method“, welche im EC 3

als alternatives Nachweisformat enthalten ist, mit untersucht.

Das Thema der Berechnung des kritischen idealen Biegedrillknickmomentes M- und der
zugehorigen Schlankheit Aur durch einfache Handformeln aus der Literatur (mit ,Cq“

oder ,k:“ Faktoren) wird auch umfassend behandelt.

Die zwei letzten Kapitel enthalten Kkleinere Studien tUber den neuen
Bemessungsvorschlag fiir Abminderungskurven fiir das Biegedrillknicken, der an der TU
Graz entwickelt wurde, sowie iiber die zusatzlich auftretenden Woélbnormalspannungen
an den Bauteilenden mit Endeinspannungen, die fiir die Bemessung der Verbindungen

von Bedeutung sind.
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1. Introduction

1.1. Motivation and objective

The main topic of this thesis is the out-of-plane flexural and lateral- torsional buckling
resistance of steel members with [ sections and rotational and/or warping restraints at
the member ends. The most important design formulae that concern this failure mode in
the structural design code Eurocode 3 are derived for the case of “pin-ended” members,
in which the rotation and the warping of the two end are not restrained. In the practical
design, there are several situations in which the support conditions are quite different

from this “standard case”.

In recent times - thanks to the improvement of computational science -numerical
modelling techniques have provided a valid alternative to the classical experimental
procedures used in the structural engineering science; thereby, the most common
analysis method is the Finite Element Method (FEM).

The aim of this work is the study and analysis -by means of the FEM- of the “realistic”
buckling behaviour of members with rotation and/or warping fixations at the member

ends through numerical modelling (Fig. 1).

The comparison between the numerical results and the EC3 rules for these cases can
show new perspectives of code developments (if the code is conservative), or it can

show limits of application of the code . (if the code is “unconservative”).

"real behaviour"=? (GMNIA)
EC3 conservative =?
"General Method" =?

Connection Forces =7

»end fork" fixity »one-sided" fixity

Fig. 1: Motivation of the thesis work
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In the comparisons with the Eurocode rules, the main focus was put on the “interaction
formulae” of section 6.3.3. of EN 1993-1-1. However, also the so-called “Overall” or
“General Method”, which is included in one possible form of presentation in EN 1993-1-

1, section 6.3.4, is taken into account.

Additionally, the topic of the determination of the critical bifurcation bending moment
M. and the corresponding slenderness At by means of simple hand formulae (with the

“C1“ or “k” factors) is also treated extensively in this thesis.

For the identification of the studied case of end fixity, the following naming convention

was used, in accordance with most literature on the topic [1][2]

- A rotational fixity about the z-z axis is denoted by the letter “k” and by a
number that indicates the out-of-plane flexural buckling length for this case: e.g.
k=0.7 indicates a rotational fixity about the z-axis at one end of the member,

while k=0.5 would indicate a fixity at both member ends.

- A warping impediment is similarly represented by the letters “kw”. Thus, kw=0.7

would mean that warping is prevented at one end of the member.

- Note that the degree of fixation about the strong axis is practically irrelevant for

the studied problem, as failure occurs about the weak axis in all studied cases.

Both factors vary from 0,5 for full fixity (restrained deformations) to 1,0 for no fixity

(free deformations), and are equal to 0,7 in the case of one end fixed and one end free.

The following figure (Fig. 2) schematically shows three detail examples of a column
which are used to visualize possible criteria for the selection of the factors k and k. The

top end of the column is free (rotation as well as warping) in all cases.




DETAIL I.
k=0,7
kw=0,7

DETAIL II.
k=1,0
kw=0,7

J =

DETAIL IIl.
k=1,0
kw=1,0

I —

Fig. 2: Construction details of column bottoms under different support conditions

In detail I, the rotation about the weak (z-z) axis of the bottom section is restrained by
the stiffeners and the anchor bolts, and the warping is also restrained by the relatively
thick end plate. (k=0,7 and kw=0,7)

In detail II. the rotation of the bottom section is only partially restrained due to the
positioning of the anchor bolts and the deformability of the concrete layer underneath
the end plate; conservatively, a factor of k=1,0 can be used for these conditions.
However, warping of the end section is restrained by the thick end plate again. In this
case the end section is able to rotate about the weak axis z, but it stays in plane. (k=1,0
and kw =0,7)

In detail III. the rotation and the warping is also not restrained, because in addition to
being able to rotate, the section will also feature some warping at the bottom section due

to the the relatively thin end plate.
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Finally, the consideration of end fixations in design against out-of-plane buckling, - while

clearly advantageous for member design-, also raises the question of how to design the

end connections/joints; due to the fixation, new stresses are caused in the joints (welds,

bolts, etc.) which should then coherently be considered in design. The developing

stresses are therefore also studied in this thesis.

Not all effects of member end fixations are explicitly omitted in the Eurocode design

rules. Tab. 1 summarizes the main relationships of out-of-plane buckling design with the

support conditions, stating whether or not out-of-plane fixations can be included or not

in the determination of certain quantities. These points will be discussed more precisely

in the following chapters.

Tab. 1: Influence of support conditions on the calculations

Taking into account the support conditions

(rotation and warping) in...

NCI‘ - )TZ /
Mcr - 7\LT v
7_\LT — XLT ?
N+M interaction x

In summary, providing some answers to the following questions and problems

constituted the main objective of this thesis work (Fig. 3.):

What kinds of influences do the boundary conditions have on the elastic critical
moment? s it possible to use classical “hand formulae” to calculate the critical
LT buckling moment e.g. for end fixations k=0,7 kw=0,7? If it is possible, how

accurate is it?

How does the flexural buckling strength change under support condition k=0,7
kw=0,77 Are the “original” European flexural buckling curves compatible with
other support conditions? Does the warping fixation have any effect on the

flexural buckling behaviour?

[s there any beneficial effect from the restrain of rotation and warping for cases
of lateral-torsional buckling under bending alone? Is the use of the so-called “f-
factor” in section 6.3.2.3 of EN 1993-1-1, which accounts for the effects of the
bending moment diagram on the buckling reduction factor still accurate under
different support conditions? Are the original LT-buckling curves compatible

with other loading and support conditions?

Are the interaction formulae for beam-columns (N+My) according to EC3

conservative for other boundary conditions of beam-columns (k=0,7 kw=0,7 or
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k=1,0 kw=0,7)? Is the interaction factor kit correct for different boundary

conditions?

e What are the main differences between the overall concept (“general method”,
using an “overall” buckling reduction factor y.p for out-of-plane failure ) and the
classical interaction concept? Do the values of buckling strength according to the
overall concept fit better to the modelling results than in the case of the

interaction concept?

e How high are the strains/stresses in the end connections of the members if
end fixations are considered in design, and which support conditions generate

them? Can the stresses be calculated “correctly” or safely approximated?

Mcr/cl =?
Xz =7
Xur =7

f — factor =?
kLT =7

Xop =?

Fig. 3: Objectives of the thesis work

1.2.0Organization

The following paragraphs explain how this thesis was organized.

Following this introductory chapter, Chapter 2 summarizes the basics of FEM, describes

the types of the calculations and introduces the methodology of the modelling process.

The object of the first studies performed for this thesis was the calculation of the elastic
critical moment M. according to several formulae in the literature under different
loading and support conditions. The calculations using the formulae were compared to
modelling results from the softwares ABAQUS and LTBeam, which are given in Chapter
3.

Chapter 4 focuses on the flexural buckling strength under different boundary
conditions. In this part, the first GMNIA results are analysed and compared to the

buckling curves of EC3.
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One of the most important parts of this thesis is Chapter 5, which deals with lateral-
torsional buckling under M alone. First of all, the main rules and factors according to EC3
are introduced. Afterwards, several parametric studies were carried out for two
different sections, for three different support conditions and for five bending moment
diagrams. In many comparison diagrams, the GMNIA results and buckling curves for LTB
are discussed, and special attention is given to the influence of the support and loading

conditions on the buckling strength.

Chapter 6 is concerned with the interaction concept, which is used for the design of
beam-columns. After the summary of the EC3 formulation for beam-columns, the
interaction curves obtained from numerical modelling results are discussed with regard
to the topic of non-hinged support conditions. Two different sections were studied for
three slendernesses, for three different support conditions and for three different

loading conditions.

Chapter 7 focuses on the overall concept (“general method”), which is the other method
given in Eurocode 3 for the out-of-plane buckling design of beam-columns. The chapter
contains the main formulation and rules according to EC3, and some comparison were
carried out with the GMNIA results of Chapter 6. Additionally, it discusses the

differences between the results of the two design concept of beam-columns.

In Chapter 8 a new design proposal for x;t, recently developed at Graz University of

Technology, is introduced and compared to modelling results for some loading cases.

Chapter 9 contains a brief study about the additional stresses caused in the end
connections by the rotation and warping fixations, in which a simple formula for the
estimation of the additional “flange moments” M, is compared to the moment obtained

in the FEM calculations.

Finally, in Chapter 10 the summary and conclusions of the thesis work are given.

-13-



2. Methodology

2.1.Basics of Finite Element Method

This part is a brief overview in the Finite Element Method (FEM) and in the most

important terms.

In FEM, the structure is divided into small (finite) elements. For all of these elements
there is a locally defined shape function, which determines the modes of deformation
(and the degrees of freedom) in the element. The parameters that determines the
correct combination of these shape functions are the node displacements of the
elements. These (unknown) parameters (node displacements) are determined by the
configuration of the sum of the system’s internal and external potential energy, which is
zero [3] [4] [5]-

=T+, =0 (0.1)
After the calculation of the node displacements, the strains and stresses can be
determined by the appropriate constitutive relationships between deformations and

strains, and strains and stresses [4].

In every FEM model, the geometry of the structure is defined by nodes. After the node
definition the following step is the selection of elements.

There are several types of elements [3]. The following types were used in the structural

models created for this thesis:

e beam elements: elements in which one dimension, the length, is significantly

larger than the other dimensions.

e shell elements: elements in which one dimension, the thickness is significantly
smaller than the other dimensions and stresses exist only in plane (plane stress
state).

e couplings (special elements): elements which constraint the deformations of

specific nodes to a rigid body deformation of another reference node.
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2.2. Types of calculations

The following types of analyses were employed in this thesis.

LBA: Linear Buckling Analysis (or Linear Bifurcation Analysis) is a linear elastic and
geometrically linear eigenvalue analysis, in which the critical bifurcation loads (e.g. Ncr,
M) are determined. Theoretically there are infinite numbers of eigenvalues, but the

main value of interest was always the first eigenvalue in this thesis work.

First of all the results of LBA analyses were used as basis for the non linear (GMNIA)
analyses, in which the shape of the first buckling eigenmode represented the form of the
geometrical imperfections. In addition, the correct value of the critical elastic bifurcation
load was retrieved as well - especially for beams and beam-columns- in order to

calculate the correct member slenderness with the use of LBA analyses.

MNA: Materially Non-linear Analysis is a type of analysis, in which the non-linear
material behaviour of steel is considered (“plastic analysis”), but not the geometric non-
linearities. In this thesis, the material was always considered to have an elastic-perfectly
plastic bilinear stress-strain curve with a specific yield stress and -after reaching the

yield stress- a perfectly plastic behaviour.

In MNA analyses, the member is geometrically perfect and no residual stresses are taken
into account, therefore MNA can be used for the calculation of the plastic cross sectional

resistance.

GMNIA: Geometrically and Materially Non-linear Analysis with Imperfections were
used for modelling the elasto-plastic buckling behaviour. In geometrical non-linearity,
the connection is not linear between applied loading and deformation, and equilibrium
is determined for the deformed structure. In GMNIA models, the geometrical (shape
deviations) and the structural (residual stresses) imperfections have to be represented
as well. [6] [7]

Based on the results of GMNIA analyses, the ultimate buckling strength can be obtained,
and the values represent the realistic behaviour of the member under the studied,

specific boundary (support and loading) conditions.
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2.3.Influences of structural parameters

Imperfections:

Depending on the fabrication technology, there are some imperfections (out-of
straightness) in all structural members, hence the geometrical imperfections of the
structure have to be considered. The amplitude of these imperfections was assumed to
be equal to L/1000 at the compression flange (Fig. 4). This value of imperfection was
chosen following the recommendations of ECCS [8], note that the same values formed

the basis for the development of the European buckling curves.

I
)

Fig. 4: Magnitude of geometrical imperfections in GMNIA models

e0=L/1000

Because of the influence of welding or hot-rolling procedures there are some material
imperfections, i.e. residual stresses, in all structural members. The residual stresses
cause an initial stress state in the sections, but the member is in equilibrium, of course.

The magnitude of the residual stresses is smaller for hot-rolled sections and higher for
welded sections. In cases of | and H sections the residual stresses are positive (tension)
in the connections of web and flanges and negative (compression) in the edges of the

flanges and in the middle of the web.

The residual stresses were assumed to reach values of 0,3*f; or 0,5*f; depending on the

depth to width ratio of the sections, following the provision given by ECCS (Fig. 5) [8].
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IPE 500 HEB 300
h/b>1,2 h/b<1,2
+0,3-235 MPa +0,5-235 MPa

7

300

500

300 |

— l
200

Fig. 5: Magnitude and distribution of residual stresses in GMNIA-models

Yield stress and strain hardening:

All calculations were carried out with the steel material S235, which has a yield stress

of f,=235 N/mm?.

Theoretically, the strain hardening (higher stresses than the yield stress) of the
material could be used under large strains, see Fig. 6. Previous experience has shown
that there would be no beneficial effect based on the assumption of strain hardening,
because the deformation of the structure is not so high at the ultimate limit state in

buckling problems that the strains could reach the limit for strain-hardening.

Based on this the stain hardening of the material were neglected in all calculations.

o 0,02°'E

fy +

€t = 10¢,

Fig. 6: Stress-stain curve of steel with stain-hardening effect
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2.4.ABAQUS models

Sections:

The parametric studies in the thesis work were carried out for two different sections.
The first section was the European IPE 500 beam section and the second was the
European wide flange HEB 300 beam section, the shape and the dimensions of the

sections are shown in Fig. 7.

IPE 500 HEB 300
— ] I
e <, 2 EN
gl g n
™ N
§ § 10,2 o
N \
| 300 |
1 1
©
- rggg//\gggj
| 200 |
1 1

Fig. 7: Applied sections in ABAQUS-models

Elements:

In Fig. 8. the structure of the ABAQUS-model is illustrated. The two flanges and the web
were defined as type S4 shell elements, which is a fully integrated, general-purpose,

finite-membrane-strain shell element with 4 nodes [4].

The flange-web connection was modelled with rigid tie couplings along the whole

member.

The fillet radius was substituted by a type B31 beam element with quadratic hollow
section. Type B31 is a Timoshenko beam - which allows transverse shear deformation-
in space with linear formulations [4]. The dimensions of the quadratic hollow section
were so calculated that the area (A) and the torsional constant (I;) of the section is equal
to the area and torsional constant of two fillet radiuses of the detail (two beam sections

per model).
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B31 beam elements with QHS section
to compensate the fillet radius

16 S4 shell elements per flange

tie couplings
(rigid connections)

16 S4 shell elements in web

Fig. 8: Structure of the numeric model

One of the most important parts of the model was the definition of the support

conditions at the two ends of the member.

The rotation conditions were defined directly in the boundary conditions (for
example for the case k=0,5, the rotation about the weak axis was defined to be zero at
both ends)

The warping conditions were defined with the use of kinematic couplings. For the
case without warping all the elements of the section have to coupled to the
displacements and rotations of the middle point in the section. In order to have an end
section with warping, the displacements of the flanges have not to be coupled to the

rotations about the z-z- axis of the web. [4]

In Fig. 9 the kinematic couplings are represented in the end sections in case of kw=0,7.

Kinematic coupling of rotation
about the weak axis (no warping)

No kinematic coupling of rotation
about the weak axis (warping)

Fig. 9: Kinematic coupling in the end sections (k=0,7 k,=0,7)
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Input of geometrical imperfections:

The following procedure was used to include the geometrical imperfections in all

calculations:

e Running of an LBA analysis in all cases in order to get the shape of the first

eigenmode under specific boundary conditions

e Defining the imperfections by using the deformations of the member in the first
eigenmode with a scaling factor of ep= L/1000 in the input file for the GMNIA

analysis

Input of residual stresses:

In order to approach the linear distribution of residual stresses, an average value of
initial stresses was define in every element. The stress distribution in 16 elements of the

parts (flanges and web) can be considered as a good approximation (Fig. 10).

-+
+0,875'RS
+0,625'RS
+0,375'-RS
+0,125'RS

- RS=0,3 0r0,5-235 MPa

-0,875'RS

+

+0,875'RS

+0,625'-RS
+0,375'RS
+0,125'-RS

-0,125'-RS
-0,375'RS
-0,625-RS
-0,875'-RS

S A A A O
]

1
§A%A%A%A$A%A\A\A$A§

|

+

Fig. 10: Input of the residual stresses in ABAQUS-model
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3. Elastic critical moment M cr (LBA)

The linear elastic lateral torsional buckling (LTB) phenomenon appears under the
critical moment M about the strong axis. For beams with uniform doubly symmetric
cross-section subjected to end moments or transversal loads applied in the centre of
gravity of the section, the elastic critical moment can be estimated using the following

expression [2]:

MCI‘ - Cl ' (kL)Z

n? El, [( k )2 L (kL)ZGIt]O'S G51)

ko/ 1, m2EL

where,

o C1 is a coefficient depending on the loading and support conditions, the shape of

the bending moment diagram and support conditions. [1]

o k and k. are effective length factors for out-of-plane flexural buckling of the entire

section and of the compression flange (“w” for “warping”).
o [, is the second moment area about the weak axis z.

. lw is the warping constant.

Itis the torsion constant.

The elementary variable that defines the susceptibility to instability of unrestrained
beams is the normalized slenderness for LTB, which is defined as [1]:

pl (3.2)

The slenderness for lateral-torsional buckling is governed by the plastic cross-sectional
capacity Mp and -more importantly here- the elastic critical moment M. Thus, the

calculation of the correct value of M is crucial in LTB-problems.
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3.1.Factors k and kw

As in the Introduction was described more detailed, k and k. factors are effective length

factors that depend on the support conditions at the end sections.
The factor Kk refers to end rotation at the end sections about the weak axis z.
The factor kw refers to end warping in the same cross sections.

3.2.Factor Cy

The factor Ci s a coefficient that depends on the shape of the bending moment diagram
and support conditions (k and ky). Different values of the factor C; reported in the
literature are given in Tab. 2, which summarizes the values given in two codes [2][9]
(ENV 1993-1-1:1992, ONORM B 1993-1-1) and the values given in the ECCS Design
Manual [1], as well as one simple formulation that can be derived from the value of k.

given in the TU Graz lecture notes.[10]

The latter formulation comes from the equation:

7\LT,non uniform = kc ' }\LT,uniform (3-3)
where

1
K.o=—
¢ 1,33-0,33y

for end moments with ratio y=M;/M1, with M; the end moment with the largest

(3.4)

absolute value. [10]

When the definition of A in Eq. (3.2) is considered in combination with the definition of

Mcr in Eq. (3.1), the following relationship becomes evident:
1
ke

Thus, a formula for C; for end-moment diagrams can be expressed as

" Mcr uniform (3.5)

MCr,non uniform = Cq MCr,uniform =

1 1
k> ( 1 )2 (3.6)
1,33 -0,330

C1=
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Tab. 2: Values of factor C from the literature

Cs
Bending moment K -
diagram NORM B E
’ k" | ENV (k=0.(7) ir:erpolated) (k=0.7 in(t::'solated)
v=1.0 1.0 | 1.000 | 1.000 1.000 1.000
0.7 |1.000 | 1.000 1.076 1.030
0.5 |1.000 | 1.000 1.127 1.050
v=0.5 1.0 |1.357 | 1.32 1.320 1.310
[ | o7 |1357] 1473 1.417 1.346
05 |1.357 | 1.514 1.482 1.370
y=0 1.0 [1.769 | 1.879 1.847 1.770
0.7 |1.769 | 2.092 1.955 1.824
05 |1.769 | 2.150 2.027 1.860
v=-0.5 1.0 |2.235| 2.704 2.591 2.350
0.7 |2235| 3.009 2.584 2.392
T 0.5 |2235| 3.093 2.579 2.420
v=-1.0 1.0 |2.756 | 2.752 2.733 2.600
0.7 |2.756 | 3.063 2.527 2.510
05 |2.756 | 3.149 2.390 2.450

Tab. 2 - as stated above - summarizes the values of C; found in the literature. It can be

seen that the value of the factor C: can be different depending on the support condition,

and that the difference is quite large (especially for Psi=-1,0).

In this chapter, the results of several Linear Bifurcation Analyses (LBA) were carried out

with the program ABAQUS are presented and compared with the values found in the

literature. These were made in order to calculate the correct value of M. As a result, one

obtains buckling eigenvalues, which are the ratio between the critical moment M. and

the load Mkq.
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In addition to a comparison with the values of the literature, the obtained C: values are
compared to the results of calculations made with the freeware software LTBeam,
developed by CTICM (Centre Technique Industriel de la Construction Métallique).
LTBeam is a beam element modelling program based on the Finite Element Method, in
which the user is able to define the degrees of freedom for the warping deformation and

lateral flexural rotation [11]. The values of M- was obtained directly as a result.

From the “correct” values of M (obtained from ABAQUS or LTBeam) the correct values

of factor Cy can be calculated using the formula:

Mcr,correct
,5
Bl [k L, ()2G ’ (37)
&2 |\ky/ "1, T m2EL

C1,c0rrect =

of course with the correct values of k and kw (1,0 or 0,5 or 0,7) in all cases.
In the models for the calculation the variables were the following:

e member length

e member profile (IPE 500 or HEB 300)

e shape of the bending moment diagram (y=1,0;0,5;0;-0,5;-1,0)

e position of the bending moment (for example in case of y=0, k=0,7 kw=0,7, there
are two different cases: in the first case, the bending moment is 0 at the free end

of the member and in the second it is 0 at the fix end)

The summary of the results are shown in Tab. 3 to Tab. 14 for the IPE 500 section and in
Tab. 15 to Tab. 26 for the HEB 300 section. In every table, the modelling results are

compared with the literature values.

It has be noted that correct value of the elastic critical moment for different bending

moment diagrams and support conditions was already discussed in the literature [12].
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Tab. 3: Comparison of values of factor C; according to literature values and modelling results

] y=1.0 BOUNDARY CONDITIONS

F———o IPE 500 k=0.7 kw=0.7
(mLm) }‘ZS(';;'O) ABAQUS  |LTBEAM | 1/k; | ENV (i;)t':ropzz't;) (int:rggasted)
2888  0.71 1.002 1.003 | 1.000 | 1.000 1.076 1.030
4324 1.07 0.987 1.005 | 1.000 | 1.000 1.076 1.030
5765|  1.43 0.994 1.001 | 1.000 | 1.000 1.076 1.030
7221|179 1.001 1.003 | 1.000 | 1.000 1.076 1.030
8665|  2.14 1.003 1.001 | 1.000 | 1.000 1.076 1.030
10089  2.50 1.003 1.001 | 1.000 | 1.000 1.076 1.030
11530 285 1.005 1.001 | 1.000 | 1.000 1.076 1.030

Tab. 4: Comparison of values of factor C; according to literature values and modelling results

I> v=0.5 BOUNDARY CONDITIONS

" IPE 500 k=0.7 kw=0.7
(m"m) )‘ZS(;';;'O) ABAQUS  |LTBEAM| 1/ | ENV (inotzrongt;) (int:rsgzed)
2888 0.71 1.393 1.479 | 1.357 | 1.473 1.417 1.346
4324 1.07 1.442 1.478 | 1.357 | 1.473 1.417 1.346
5765 1.43 1.457 1472 | 1.357 | 1.473 1.417 1.346
7221 1.78 1.464 1.472 | 1.357 | 1.473 1.417 1.346
8665 2.14 1.468 1.471 | 1.357 | 1.473 1.417 1.346
10089 2.50 1.471 1471 | 1.357 | 1.473 1.417 1.346
11530 2.85 1.474 1.470 | 1.357 | 1.473 1.417 1.346

Tab. 4 demonstrates the generally good agreement of the results of the models in the

two programs (ABAQUS and LTBeam).For members of very small length in relation to

the cross-sectional depth (i.e. members with lower slenderness), larger differences can

be noted because of the different type of the elements in the two models. LTBeam treats

the member as a beam element with rigid cross sections, while the model in ABAQUS

was built up from three shell elements, so in ABAQUS the stability of small members is

influenced by global and local - in this case: shear - buckling effects as well; for shorter
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beams and non-uniform bending moment diagrams, shear becomes quite relevant for

short beams loaded up to their bending capacity at one member end.

Similar results are represented in the following tables.

Tab. 5: Comparison of values of factor C; according to literature values and modelling results

] v=0.5 BOUNDARY CONDITIONS

F———o IPE 500 k=0.7 kw=0.7
(m"m) )‘ZS(';;;'O) ABAQUS LTBEAM| 1/kZ | ENV (inotzrongt;) (int:rsgzed)
2888 0.71 1.140 1.208 | 1.357 | 1.473 1.417 1.346
4324 1.07 1.180 1.207 | 1.357 | 1.473 1.417 1.346
5765 1.43 1.191 1.203 | 1.357 | 1.473 1.417 1.346
7221 1.78 1.197 1.203 | 1.357 | 1.473 1.417 1.346
8665 2.14 1.201 1.202 | 1.357 | 1.473 1.417 1.346
10089  2.50 1.234 1.202 | 1.357 | 1.473 1.417 1.346
11530  2.85 1.206 1.202 | 1.357 | 1.473 1.417 1.346

In Tab. 6 to Tab. 8 it is clearly highlighted that the fixity of warping and end rotation
about the weak axis has a considerable effect on the critical bending moment Mc. If the
warping fixation at one (or both) ends of the member is taken into account, the critical
bending moment M is higher. The higher the critical bending moment M. (and the

factor of C1), the lower the slenderness of the member (which is a beneficial effect).

In the values of C1 given in the literature, the warping effects are not taken into account.
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The following Tab. 6 to Tab. 9 contain the results for a bending moment diagram with
y=0.

Tab. 6: Comparison of values of factor C; according to literature values and modelling results

— y=0 BOUNDARY CONDITIONS

| © IPE 500 k=0.7 kw=0.7
(mLm) )‘ZS(;;'O) ABAQUS  |LTBEAM| 1/kZ2 | ENV (inot':ropz:'t;) (int:rggasted)
2888|  0.71 1.864 2528 | 1.769 | 2.092 1.955 1.824
4324  1.07 2.302 2519 | 1.769 | 2.092 1.955 1.824
5765|  1.43 2.417 2504 | 1.769 | 2.092 1.955 1.824
7221 1.79 2.454 2496 | 1.769 | 2.092 1.955 1.824
8665 2.14 2.466 2482 |1.769 | 2.092 1.955 1.824
10089  2.50 2.468 2472 | 1.769 | 2.092 1.955 1.824
11530 2.86 2.466 2.462 | 1.769 | 2.092 1.955 1.824
14442 357 2.458 2.440 |1.769 | 2.092 1.955 1.824
17330,  4.29 2.450 2422 | 1.769 | 2.092 1.955 1.824

Tab. 7: Comparison of values of factor C; according to literature values and modelling results

[ y=0 BOUNDARY CONDITIONS
© © IPE 500 k=1.0 kw=0.7

L | A (=10) ABAQUS  |LTBEAM| 1/kZ | ENV | ONORMB ECCS
(mm) S235
2888 |  0.71 2.008 2.312 | 1.769 | 1.879 1.847 1.770
4324 1.07 2.199 2.294 | 1.769 | 1.879 1.847 1.770
5765 | 1.43 2.234 2.268 | 1.769 | 1.879 1.847 1.770
7221 1.79 2.232 2.253 | 1.769 | 1.879 1.847 1.770
8665 | 2.14 2.219 2.220 | 1.769 | 1.879 1.847 1.770
10089 250 2.201 2.197 | 1.769 | 1.879 1.847 1.770
11530| 2.86 2.183 2.174 | 1.769 | 1.879 1.847 1.770
14442 | 357 2.146 2.129 | 1.769 | 1.879 1.847 1.770
17330  4.29 2.115 2.089 | 1.769 | 1.879 1.847 1.770
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Tab. 8: Comparison of values of factor C; according to literature values and modelling results

[ y=0 BOUNDARY CONDITIONS
° © IPE 500 k=1.0 kw=0.5
L | Az (k=1.0) ABAQUS  |LTBEAM| 1/kZ | ENV | ONORMB ECCS

(mm) S235
2888|  0.71 1.798 2.131 | 1.769 | 1.879 1.847 1.770
4324 1.07 2.024 2125 | 1.769 | 1.879 1.847 1.770
5765 1.43 2.074 2.114 | 1.769 | 1.879 1.847 1.770
7221 1.79 2.089 2.109 | 1.769 | 1.879 1.847 1.770
8665|  2.14 2.092 2.098 | 1.769 | 1.879 1.847 1.770
10089  2.50 2.090 2.090 | 1.769 | 1.879 1.847 1.770
11530  2.86 2.086 2.081 | 1.769 | 1.879 1.847 1.770
14442 357 2.076 2.061 | 1.769 | 1.879 1.847 1.770
17330  4.29 2.064 2.041 | 1.769 | 1.879 1.847 1.770

Tab. 9: Comparison of values of factor C; according to literature values and modelling results

P y=0 BOUNDARY CONDITIONS

I ° IPE 500 k=0.7 kw=0.7

(mLm) )‘Zé;;'o) ABAQUS LTBEAM| 1/k | ENV (inot,:ropzzlt:j) (int:rggasted)
2888 0.71 1.286 1.473 | 1.769 | 2.092 1.955 1.824
4324 1.07 1.411 1.476 | 1.769 | 2.092 1.955 1.824
5765 1.43 1.444 1.469 |1.769 | 2.092 1.955 1.824
7221 1.78 1.456 1468 |1.769 | 2.092 1.955 1.824
8665 2.14 1.462 1.467 |1.769 | 2.092 1.955 1.824
10089  2.50 1.466 1.465 |1.769 | 2.092 1.955 1.824
11530  2.85 1.468 1.463 |1.769 | 2.092 1.955 1.824
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Particularly large differences are found between the results given in Tab. 6 (maximum
bending moment at a fixed end about the weak axis) and Tab. 9 (maximum bending
moment at the opposite end, where warping and rotation are free). In order to better
explain the reasons for the obtained differences between the critical bending moments
M- (and hence the values of C1) between the numerical calculations and the literature

values, it is useful to show the shape of the relevant buckling eigenmode.

In Fig. 11, the buckling form of the member with the length of L=5765 mm and the

boundary conditions applicable to Tab. 6 is presented.

Fix end (about the weak axis) Free end (about the weak axis)

IFES00, Lambda_z=1,psi= 0, LBA, M l\

ODB: M_IPESQ0_psi0_LBA_3.0db  Abaqus/Standard 6.10-1  Fri Mar 16 09:45:29 GMT+01:00 2012

Step: Step-1 I ©

X Mode 1: Eigenv/alue = -1.8538 |
Frimary \ar: U, Magnitude
Deformed var: U Deformation Scale Factor: +5.775e+02

Fig. 11: Buckling form under boundary conditions k=0,7 k,=0,7 w=0 (Eigenvalue=1,85)

In Fig. 12, again the buckling form of the member with the length of L=5765 mm is
presented, however for the boundary conditions valid for Tab. 9. If we compare this
form with the one in Fig. 11, we can see that the support conditions are the same,
however the shape is different because of the inverse position of the moment diagram.
In the second case, the location of maximum deformation of the eigenmode shape is
much closer to the location of the maximum bending moment in the beam; this indicates

that higher deviational forces are present in this case.

Fix end (about the weak axis) Free end (about the weak axis)

IFES00, Lambda_z=1,psi= 0, LBA, M2
QDB M2_IFES00_psi0_LBA_3.odb  Abaqus/Standard 6.10-1  Fri Mar 16 10:22:40 GMT+01:00 2012

Step: Step-1 /l

X Mode 1: Eigenv/alue = -1.1113
Frimary “War: U, Magnitude | o
¥ Deformed war: U Deformation Scale Factor: +5.775e+02 |

Fig. 12: Buckling form under boundary conditions k=0,7 k.=0,7 y=0 with inverse position of the moment
diagram (Eigenvalue=1,11)
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More results, valid for bending moment diagrams with end moments of different sign,
are shown in the following tables (Tab. 10 to Tab. 11)

Tab. 10: Comparison of values of factor C; according to literature values and modelling results

— y=-0.5 BOUNDARY CONDITIONS
~

F———o IPE 500 k=0.7 kw=0.7
(m"m) )‘Zé';;'o) ABAQUS  |LTBEAM| 1/k2 | ENV (i;)t:ropzz't:j) (inteErSjaSted)
2888 |  0.71 1.689 3.675 | 2.235| 3.009 2.584 2.392
4324 1.07 2.720 3.654 | 2.235| 3.009 2.584 2.392
5765 1.43 3.190 3.616 | 2.235 | 3.009 2.584 2.392
7221 1.78 3.380 3.588 | 2.235 | 3.009 2.584 2.392
8665| 2.14 3.450 3.557 | 2.235| 3.009 2.584 2.392
10089  2.50 3.470 3.524 | 2.235| 3.009 2.584 2.392
11530  2.85 3.467 3.492 | 2235 | 3.009 2.584 2.392
14442 357 3.446 3.429 | 2235 | 3.009 2.584 2.392
17330  4.29 3.409 3.373 | 2.235 | 3.009 2.584 2.392
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Tab. 11: Comparison of values of factor C; according to literature values and modelling results

—] y=-0.5 BOUNDARY CONDITIONS
I ° IPE 500 k=0.7 kw=0.7
(m"m) )‘ZS(';;:S'O) ABAQUS LTBEAM| 1/kZ | ENV (inot:ropz':;) (im:gj:ted)
2888 0.71 1.310 1.813 | 2.235 | 3.009 2.584 2.392
4324 1.07 1.637 1.809 |2.235 | 3.009 2.584 2.392
5765 1.43 1.731 1.799 | 2.235 | 3.009 2.584 2.392
7221 1.78 1.764 1.795 | 2.235 | 3.009 2.584 2.392
8665 2.14 1.777 1.791 | 2.235 | 3.009 2.584 2.392
10089 | 250 1.782 1.786 | 2.235 | 3.009 2.584 2.392
11530 | 2.85 1.784 1.781 | 2.235 | 3.009 2.584 2.392

Tab. 12 shows an interesting result, because in this case the modelling results are lower
than the values according to the literature, which means a lower value of M- and higher
slenderness. It should be noted that both for ONORM B 1993-1-1 and the ECCS value, no

values for k / kw=0.7 are given; the results were thus interpolated for these cases.

Tab. 12: Comparison of values of factor C; according to literature values and modelling results

[~ y=-1.0 BOUNDARY CONDITIONS

——o IPE 500 k=0.7 kw=0.7
(m"m) )‘ZS(';;:S'O) ABAQUS LTBEAM| 1/k | ENV (inot:ropz':;) (im:gj:ted)
2888 0.71 1.202 2123 | 2.756 | 3.036 2.527 2.510
4324 1.07 1.750 2122 | 2.756 | 3.036 2.527 2.510
5765 1.43 1.955 2.110 | 2.756 | 3.036 2.527 2.510
7221 1.81 2.085 2.102 | 2.756 | 3.036 2.527 2.510
8665 2.14 2.058 2.094 |2.756 | 3.036 2.527 2.510
10089 | 250 2.070 2.086 |2.756 | 3.036 2.527 2.510
11553 | 2.86 2.079 2.077 | 2.756 | 3.036 2.527 2.510
12997 | 3.21 2.079 2.067 |2.756 | 3.036 2.527 2.510
14442 | 3.57 2.076 2.058 |2.756 | 3.036 2.527 2.510

-31-



Tab. 13: Comparison of values of factor C; according to literature values and modelling results

™~ y=-1.0 BOUNDARY CONDITIONS
e—\le IPE 500 k=1.0 kw=0.7

L 1A ®=10) agaqus  |LTBEAM| 1k | ENV | ONORMB ECCS
(mm) | S235
2888 | 0.71 1716 3.024 | 2756 | 2752 | 2.733 2.600
4324 | 1.07 2.496 3.022 2756 | 2752 | 2733 2.600
5765 | 143 2.786 3.005 | 2756 | 2752 | 2733 2.600
7221 | 1.81 2.901 2092 | 2756 | 2752 | 2.733 2.600
8665 | 2.14 2.938 2981 | 2756 | 2.752 | 2.733 2.600
10089|  2.50 2.954 2068 | 2756 | 2.752 | 2.733 2.600
11530 | 2.86 2.958 2955 | 2756 | 2.752 | 2.733 2.600
12007 321 2.955 2938 | 2756 | 2.752 | 2.733 2.600
14442| 357 2.950 2025 | 2756 | 2.752 | 2.733 2.600

Tab. 14: Comparison of values of factor C; according to literature values and modelling results

I\ v=-1.0 BOUNDARY CONDITIONS
e—\le IPE 500 k=1.0 kw=0.5

L | Az (k=1.0) ABAQUS LTBEAM| 1/k; | ENV | ONORM B ECCS
(mm) S235
2888 0.71 1.582 3.716 | 2.756 | 2.752 2.733 2.600
4324 1.07 2.762 3.706 |2.756 | 2.752 2.733 2.600
5765 1.43 3.262 3.674 | 2.756 | 2.752 2.733 2.600
7221 1.81 3.463 3.644 |2.756 | 2.752 2.733 2.600
8665 2.14 3.522 3.616 |2.756 | 2.752 2.733 2.600
10089 | 2.50 3.538 3.581 |2.756 | 2.752 2.733 2.600
11530 2.86 3.531 3.546 |2.756 | 2.752 2.733 2.600
12997 |  3.21 3.512 3.506 |2.756 | 2.752 2.733 2.600
14442 357 3.488 3.470 |2.756 | 2.752 2.733 2.600
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The following tables (Tab. 15 to Tab. 26) show the results of the ABAQUS and LTBeam
LBA calculations for an HEB 300 section. Again, a comparison with the values reported

in the literature is carried out.

Tab. 15: Comparison of values of factor C; according to literature values and modelling results

[ ] y=1.0 BOUNDARY CONDITIONS

F———o HEB 300 k=0.7 kw=0.7

(m"m) )‘ZS(';;'O) ABAQUS  |LTBEAM| 1/k’ | ENV (izzropzzlt;) (intjsgzed)
5084 |  0.71 0.969 1.004 | 1.000 | 1.000 1.076 1.030
7626 | 1.07 0.991 1.002 | 1.000 | 1.000 1.076 1.030
10168 | 1.43 0.998 1.003 | 1.000 | 1.000 1.076 1.030
12710  1.79 1.001 1.003 | 1.000 | 1.000 1.076 1.030
15252 | 214 1.004 1.003 | 1.000 | 1.000 1.076 1.030
17793 | 250 1.006 1.004 | 1.000 | 1.000 1.076 1.030
20336 | 2.86 1.007 1.003 | 1.000 | 1.000 1.076 1.030

Tab. 16: Comparison of values of factor C; according to literature values and modelling results

I> \|J=0.5 BOUNDARY CONDITIONS

F———o HEB 300 k=0.7 kw=0.7

(m"m) )‘ZS(';:_)'O) ABAQUS  |LTBEAM| 1/kZ | ENV (inotzrongt;) (int:sg:ted)
5084 1.79 1.419 1.476 1.357 1.473 1.417 1.346
7626 214 1.452 1.472 1.357 1.473 1.417 1.346
10168 2.50 1.462 1.472 1.357 1.473 1.417 1.346
12710 2.86 1.467 1.471 1.357 | 1.473 1.417 1.346
15252 3.57 1.469 1.471 1.357 1.473 1.417 1.346
17793 4.29 1.471 1.470 1.357 1.473 1.417 1.346
20336 4.64 1473 1.468 1.357 1.473 1.417 1.346
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Tab. 17: Comparison of values of factor C; according to literature values and modelling results

7 y=0.5 BOUNDARY CONDITIONS
{ ° HEB 300 k=0.7 kw=0.7

5084 | 0.71 1.164 1.206 | 1.357 | 1.473 1.417 1.346
7626 | 1.07 1.190 1.203 | 1.357 | 1.473 1.417 1.346
10168 |  1.43 1.198 1.203 | 1.357 | 1.473 1.417 1.346
12710  1.79 1.202 1.203 | 1.357 | 1.473 1.417 1.346
15252 |  2.14 1.204 1.203 | 1.357 | 1.473 1.417 1.346
17793|  2.50 1.206 1.203 | 1.357 | 1.473 1.417 1.346
20336 2.86 1.207 1.202 | 1.357 | 1.473 1.417 1.346

Tab. 18: Comparison of values of factor C; according to literature values and modelling results

— y=0 BOUNDARY CONDITIONS

F——— HEB 300 k=0.7 kw=0.7

(mLm) )‘Zé;;'o) ABAQUS  [LTBEAM| 1kZ2 | ENV (i;)tzropz';"t;) (in;gg:ted)
5084 | 071 1.818 2507 | 1769 |2092 |  1.955 1.824
7626 | 1.07 2.422 2479 | 1769 |2002 |  1.955 1.824
10168|  1.43 2.427 2457 | 1.769 [2092 | 1955 1,824
12710 1.79 2.419 2437 | 1.769 [2092 | 1955 1.824
15252 2.14 2.410 2420 | 1.769 [2092 | 1955 1.824
17793|  2.50 2.401 2406 | 1769 [2092 |  1.955 1.824
20336 2.86 2.394 2393 | 1769 |2092 |  1.955 1.824

-34-




Tab. 19; Comparison of values of factor C; according to literature values and modelling results

[ y=0 BOUNDARY CONDITIONS

© © HEB 300 k=1.0 kw=0.7

(m"m) )‘ZS(;;O) ABAQUS  |LTBEAM| 1k | ENV (i;)tzropz';"t;) (int:_;;(j:ted)
5084 | 0.71 2.180 2266 | 1.769 |1.879 |  1.847 1.770
7626 | 1.07 2.176 2210 | 1.769 |1.879 |  1.847 1.770
10168 | 1.43 2.139 2159 | 1.769 |1.879 |  1.847 1.770
12710 1.79 2.102 2415 | 1.769 |1.879 |  1.847 1.770
15252  2.14 2.068 2076 | 1.769 |1.879 |  1.847 1.770
17793 | 250 2.040 2044 | 1769 |1.879 |  1.847 1.770
20336 | 2.86 2.017 2016 | 1.769 |1.879 |  1.847 1.770

Tab. 20: Comparison of values of factor C; according to literature values and modelling results

I y=0 BOUNDARY CONDITIONS

© ° HEB 300 k=1.0 kw=0.5

(mLm) )‘ZS(;;O) ABAQUS  [LTBEAM| 1/’ |ENV (iz':gzz't;) (intfrg;:ted)
5084 | 0.71 2.005 2116 | 1769 [1.879|  1.847 1.770
7626 | 1.07 2.049 2004 | 1769 [1.879|  1.847 1.770
10168|  1.43 2.047 2075 | 1.769 |1.879|  1.847 1.770
12710[  1.79 2.036 2055 | 1.769 |1.879|  1.847 1.770
15252 2.14 2.022 2035 | 1769 |1.879|  1.847 1.770
17793|  2.50 2.008 2017 | 1769 [1.879|  1.847 1.770
20336| 2.86 1.996 1999 | 1.769 |1.879|  1.847 1.770
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Tab. 21: Comparison of values of factor C; according to literature values and modelling results

P y=0 BOUNDARY CONDITIONS

| ° HEB 300 k=0.7 kw=0.7

5084 | 0.71 1416 1473 | 1769 |2002| 1.955 1.824
7626 | 1.07 1.450 1467 | 1769 |2002| 1.955 1.824
10168 1.3 1458 1465 | 1769 |2092| 1955 1824
12710 179 1.461 1462 | 1769 |2092| 1955 1824
15252 214 1.462 1459 | 1769 |2092| 1955 1824
17793 250 1.462 1457 | 1769 |2002| 1.955 1.824
20336 | 2.86 1.462 1454 | 1769 |2002| 1.955 1.824

Tab. 22: Comparison of values of factor C; according to literature values and modelling results

T~ y=-0.5 BOUNDARY CONDITIONS
\I
| © HEB 300 k=0.7 kw=0.7
L A, (k= ONORM B ECCS
A, (k=1.0) ABAQUS LTBEAM|  1/k;2 ENV | . _

(mm) S235 (interpolated)| (interpolated)
5084 0.71 1.922 3.617 | 2235 |3.009| 2.584 2.392
7626 1.07 3.406 3.542 | 2235 |3.009| 2.584 2.392
10168|  1.43 3.411 3473 | 2235 |3.009| 2.584 2.392
12710  1.79 3.375 3410 | 2235 |3.009| 2.584 2.392
15252  2.14 3.335 3.355 | 2235 |3.009| 2.584 2.392
17793| 250 3.299 3.309 | 2235 |3.009| 2.584 2.392
20336 2.86 3.269 3.268 | 2235 |3.009| 2.584 2.392
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Tab. 23: Comparison of values of factor C; according to literature values and modelling results

174 y=-0.5 BOUNDARY CONDITIONS

F——o HEB 300 k=0.7 kw=0.7

(m"m) )‘ZS(;;'O) ABAQUS LTBEAM 17k ENV (iz':r?)zl;ﬂt;) (int:rﬁ(i:ted)
5084 |  0.71 1.712 1.803 2.235 3.009 | 2.584 2.392
7626 1.07 1.763 1.790 2.235 3.009 | 2.584 2.392
10168  1.43 1.771 1.781 2.235 3.009 | 2.584 2.392
12710  1.79 1.770 1.771 2.235 3.009 | 2.584 2.392
15252  2.14 1.766 1.763 2.235 3.009 | 2.584 2.392
17793  2.50 1.762 1.755 2.235 3.009 | 2.584 2.392
20336|  2.86 1.759 1.748 2.235 3.009 | 2584 2.392

Tab. 24: Comparison of values of factor C; according to literature values and modelling results

—~ y=-1.0 BOUNDARY CONDITIONS

" HEB 300 k=0.7 kw=0.7

(mLm) )‘ZS(;;'O) ABAQUS LTBEAM 11k ENV (i;)t:OpzZeE;) (int:rﬁgjted)
5084 0.71 1.945 2113 2.756 3.036 2.527 2.510
7626 1.07 2.049 2.091 2.756 3.036 2.527 2.510
10168 1.43 2.057 2.073 2.756 3.036 2.527 2.510
12710 1.79 2.051 2.055 2.756 3.036 2.527 2.510
15252 2.14 2.041 2.038 2.756 3.036 2.527 2.510
17793 2.50 2.031 2.023 2.756 3.036 2.527 2.510
20336 2.86 2.022 2.009 2.756 3.036 2.527 2.510
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Tab. 25: Comparison of values of factor C; according to literature values and modelling results

| ~~ y=-1.0 BOUNDARY CONDITIONS

o———o HEB 300 k=1.0 kw=0.7
(m"m) )‘ZS(';;;'O) ABAQUS LTBEAM 17k’ ENV (iﬁzropzzlt;) (inteErgjaSted)
5084 0.71 2.773 3.009 2.756 2.752 2.733 2.600
7626 1.07 2.915 2.976 2.756 2.752 2.733 2.600
10168 1.43 2.924 2.948 2.756 2.752 2.733 2.600
12710 1.79 2.912 2.918 2.756 2.752 2.733 2.600
15252 2.14 2.893 2.890 2.756 2.752 2.733 2.600
17793 2.50 2.874 2.865 2.756 2.752 2.733 2.600
20336 2.86 2.856 2.840 2.756 2.752 2.733 2.600

Tab. 26: Comparison of values of factor C; according to literature values and modelling results

S~ y=-1.0 BOUNDARY CONDITIONS

e—\le HEB 300 k=1.0 kw=0.5
(m"m) )‘ZS(';;'O) ABAQUS LTBEAM |  1/k2 ENV (iﬁzrong/'t;) (int:rgj:ted)
5084 0.71 2.264 3.672 2.756 2.752 2.733 2.600
7626 1.07 3.447 3.596 2.756 2.752 2.733 2.600
10168 1.43 3.441 3.520 2.756 2.752 2.733 2.600
12710 1.79 3.392 3.440 2.756 2.752 2.733 2.600
15252 2.14 3.333 3.364 2.756 2.752 2.733 2.600
17793 2.50 3.276 3.295 2.756 2.752 2.733 2.600
20336 2.86 3.223 3.231 2.756 2.752 2.733 2.600
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3.3.Conclusions

The following conclusions can be drawn from the Linear Bifurcation Analyses (LBA)

described in this section of the thesis:

e The elastic critical moment M of the member with the same length and section
depends on the support conditions (rotation and warping fixities) and the load

conditions (shape and position of the bending moment diagram)

e There is a wide range of different values of the factor C; in cases under the same
support and load conditions according to the literature and the numerical modelling

results.

e The use of simple, dedicated numerical programs -such as LTBeam- is highly
recommended because the warping fixation can be taken into account which gives -
in most cases - a beneficial result contrary to the calculation with the factor of Cs

according to the literature.

e The values for C1 found in the literature only cover certain boundary conditions (both
ends equal). Furthermore, while the literature values of C; are mostly lower (i.e.
conservative) in comparison with numerical calculations, this is not always the case

for all boundary conditions; this could lead to unsafe results in some cases.
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4. Flexural Buckling (pure compression, GMNIA)

In this chapter the most important facts about the basic stability phenomenon of

compressed members, i.e. flexural buckling, are summarized.

4.1.Elastic Bifurcation and Eurocode 3 Design Rules

The elastic critical load (Euler’s critical load) of a pinned member under ideal
conditions (no imperfections, member perfectly straight, no plasticity) corresponds to
the point of bifurcation of equilibrium (elastic buckling), which -for weak-axis buckling-

is calculated as follows [1]:

2 - El,
Ler”

where L is the critical length depending on the support conditions (rotation fixity) of

(4.1)

Crz —

the member:

L =k L (4.2)
The normalized slenderness coefficient for the flexural buckling case is defined as

follows [1]:
_IN Af
_ |2l _ [y 43
"= e (N (*43)

Based on the previous expressions, the member slenderness (and the critical load) for

the same length and material depends on:
e the support conditions (only rotation fixity matters)
e [, i.e. the second moment of area about the weak axis z

The buckling resistance of the member according to EC3 (class 1, 2 or 3 cross sections)
is defined by the following term [13]:

Np,ra=X"Np (4.4)
where ¥ is the reducing factor accounting for the risk of flexural buckling (perfect
elastic-plastic behaviour). The EC3 formula for the buckling reduction factor was
derived in [14] on the basis of elastic second-order theory and calibrated to match the
experimental/numerical ECCS column buckling curves, presented in [15]. The

formulation found in the Eurocode is as follows [13]:

1

X= m (4.5)

with
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$=0,5-[1+a(2-0,2)+2?] (4.6)

where a is the imperfection factor.

According to the equations of EC3, the material behaviour of steel is perfect elastic-
plastic and the geometric (lack of linearity and verticality, eccentricity of load) and

material imperfections (residual stresses) are taken into account. [1]

4.2.GMNIA Buckling Curves

In this thesis, the focus is put on the effect of boundary conditions on the out-of-plane
stability of beam-columns. For this reason, the following considerations are concerned
with boundary conditions that differ from the “classic” pinned-pinned conditions, by

adding fixity to at least one of the column ends.

In Fig. 13, the buckling curve valid for an IPE 500 section according to EC3 is compared
with GMNIA analyses for a case with a one-sided rotational fixity about the weak-axis
(k=0.7) . Thereby, the obtained GMNIA results for k=0.7 are plotted over two different
values of slenderness in order to illustrate the large benefit obtained from the

consideration of end fixities:

e When the GMNIA results are plotted over the “correct” value of slenderness, i.e.
the slenderness calculated by considering the fixity at one column end, the
difference between the GMNIA results and the code are quite small. This confirms
that the EC3 flexural buckling curves are quite accurate even for columns that

show some degree of out-of-plane fixity.

e In a second form of presentation, the same GMNIA results (calculated for k=0.7)
are plotted over an “incorrect” slenderness, often used in design by “cautious”
engineers: in this case, the slenderness is calculated for k=1.0, ignoring any fixity.
The large difference between the GMNIA and code results for this type of

representation illustrate the large benefit of the fixation

One example is discussed in more detail: if the “correct” slenderness is A = 0,7 (k=0,7),
x according to EC3 is 0,78; however, the same member designed for k=1,0 would have a
slenderness of A = 1,0 and a buckling reduction factor x of just 0,6. This would mean
that a conservatism of 30% was added to the weak-axis buckling design by omitting the
effects of the end fixity.
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Flexural buckling curves IPE500 for cases k=0,7 S235
GMNIA: e0=L/1000, residual stresses=0,3*fy
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Fig. 14 can be used to explain the reason why the European buckling curves manage to

describe the different out-of-plane boundary conditions so well: it can be seen that the

initial geometric imperfection amplitude of the model in relation to the critical length L

(0,7L) is equal to the imperfection assumption according to the development of the EC3

buckling curves, which is:

& 0,7.1/1000 1

T 07L 1000
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Fig. 14: Magnitude of geometric imperfections under support condition k=0,7

In Fig. 15 the GMNIA results for case with a one-sided rotational fixity about the weak
axis and with HEB 300 section are shown. In this diagram the results are plotted in the
same way as Fig. 13, so the same GMNIA results are in relation to the “correct” and the
“incorrect” flexural slenderness. In addition the buckling curve according to the EC3

valid for HEB 300 section and the Euler-curve are compared to the modelling results.

It can again be seen that if the “correct” slenderness is A=0,6 (k=0,7),
x according to EC3 is 0,79; however, the same member designed for k=1,0 would have a
slenderness of A = 0,86 and a buckling reduction factor x of just 0,63. This would mean
that a conservatism of 37% was added to the weak-axis buckling design by omitting the
effects of the end fixity.
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4.3. Conclusions

The content of this chapter can be summarized and commented upon as follows:

e The first parametric studies in this thesis were carried out for the cases of
flexural buckling of sections IPE 500 and HEB 300. In the GMNIA models the
support condition were k=0,7 kw=0,7, and these conditions will be treated as the

“basic case” also in the following chapters.

e The results of the two studies have indicated that the modelling results fit very
accurately to the EC3 buckling curves, thus the EC3 buckling curves are
confirmed to be compatible and valid for these support conditions as well. This
could be explained by the fact that the geometrical imperfection amplitude of
L/1000 is proportionally still present -in a calculation that uses the first buckling
eigenmode as imperfection shape- for the “equivalent column- length of 0,7L, see
Fig. 14. The same would also be true for a buckling length factor of k=0,5. It is less
clear -and could be a topic of more studies- that this would also apply for cases

where the buckling length is larger than 1.0

e If the rotation restraint is taken into account (k=0,7), the buckling strength of
members with intermediate slenderness is about 30% higher for section IPE 500
and about 35% higher for section HEB 300 than in the cases of “pin-ended”
members (k=1,0).

e Finally, it can be established that the warping restraint has no influence on the

flexural buckling behaviour, as expected.
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5. Lateral-Torsional Buckling (pure bending, GMNIA)

In standard, open cross sectional shapes, such as I or H profiles, bent about the major

axis y, the typical instability phenomenon is lateral-torsional buckling.

For perfect beams with uniform doubly symmetric cross-sections and linear elastic
material behaviour the elastic critical moment is determined as follows, see also Chapter
3:

2 - EL, . [< k )2 Iy (kL)ZGIt]OJS (31)

M..=C, - —) .
o =G (kL)2 |\k,/ 1,  m2El

And the slenderness for lateral-torsional buckling is:

- (3.2)

Based on the previous expressions, the member slenderness (and the critical moment)

for a certain member length and material depends on the:
¢ shape and position of the bending moment diagram
e support conditions (rotation and warping fixity)
e (plastic) cross-sectional bending capacity.
¢ bending stiffness (I,)
e torsion stiffness (1)
e warping stiffness (I,,)

The lateral-torsional buckling resistance of a prismatic member according to EC3

(class 1 or 2 cross sections) is calculated as follows [13]:

Mp,ra=Xrr'Mpl (5.1)
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According to EC3, two different sets of formulae can be used, the first called “general

case” and the second called “specific case”. The specific case can be used for double-

symmetric hot-rolled or equivalent welded sections.

Tab. 27 represent the formulations for the two cases. [1]

Tab. 27: Comparison of “general” and “specific” cases for LT-buckling formulation

“General case”

“Specific case”

Reduction factor .t

1

’ —2
bt (|>LT2'7\LT

1

—2
¢LT+\/¢LT2'0r75 * Air

Factor ¢yt

0.5 [1+a(Rr-0.2)+2r |

0,5 [1+a(Air-04)+0,75 - Xp”|

Buckling curve | h/b<2 (HEB 300)

a (a=0,21)

b(a=0,34)

for I or H rolled

sections h/b>2 (IPE 500)

b(a=0,34)

c(a=0,49)

Under non uniform bending moment loading, the member resistance to lateral-torsional

buckling is higher compared to uniform bending moment loading, and this beneficial

effect can be considered.

According to EC3 the shape of the bending moment diagram can be taken into

account by using the modified reduction factor x;r,,q [13]:

XLT
XLT,mod = T (52)
where fis a increasing factor:
f=1-051-ko)[1-20@A;r-08)"| butf<1,0 (5.3)

It shall be noted that this expression is only given in section 6.3.2.3 of the code, which

describes the “specific case” LT-buckling curves. However, in this thesis this formula is

applied to both methods (“general” and “specific case”) in order to see the benefits of the

formula when applied also to the general case.
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In summary, in the EC3 formulation of the resistance to lateral-torsional buckling the
following parameters are thus considered:

¢ shape of bending moment diagram - explicitly by the factor f

e geometrical imperfections (initial lateral displacements, initial torsional

rotations, eccentricity of load) - implicitly in the buckling reduction factor
e structural imperfections (residual stresses) - again implicitly in

The formulation does not explicitly take into account the rotation and warping fixity
conditions on the resistance side; it only can account for it by the calculation of the
slenderness to lateral-torsional buckling with the “correct” value of M.
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5.1. GMNIA analyses for different cases of support conditions

In this chapter, GMNIA results for different fixation and warping conditions -but the
same length and load conditions- are compared. The analyses were carried out for both
studied sections (IPE 500 and HEB 300), for three different shape of linear bending
moment diagram (W=1,0; 0 ; -1) and for three different member lengths (L/h=5; 15 ;
25).

Only the result of analyses which indicated a pure type of failure stemming from LTB
have been shown, the other types of failure were local (shear or flange) buckling

appeared to be relevant (this only happened for very short beams) were omitted.

In Fig. 16 to Fig. 18. the failures of a stocky member under uniform bending moment are
illustrated where the red parts (plastic zones) indicate that the behaviour is very near to
a completely plastic failure. It can be seen as well that the member resistance to LTB is
increased by the fixation of the rotation and warping.

Fig. 16: LTB in case of k=0,5 k,=0,5 ¥=1,0 for IPE 500 section L=2,5m

Fig. 17: LTB in case of k=0,7 k,=0,7 ¥=1,0 for IPE 500 section L=2,5m

Xemnia = 0,876

Fig. 18: LTB in case of k=1,0 k.=1,0 ¥=1,0 for IPE 500 section L=2,5 m

Fig. 19 to Fig. 21 represent a member with “intermediate” slenderness. The GMNIA
results show that the resistant to LTB of these members are lower than in case of stocky

members. In these members, there are less plastic zones at the failure load, and the
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plastic zones are in the near of the fixations and generally in the inner side - according to

the direction of the lateral displacement - of the upper flange.

—

Fig. 19: LTB in case of k=0,5 k»=0,5 W=1,0 for IPE 500 section L=7,5 m

Fig. 21: LTB in case of k=1,0 k,=1,0 ¥=1,0 for IPE 500 section L=7,5 m

The next figures (Fig. 22 to Fig. 24) a member with large slenderness are shown. In case
of these members the resistance is much more less than in case of the stocky and
“intermediate” members. It can be seen that there are very few plastic zones, and the

behaviour is almost completely elastic.

ﬁ GMNIA = 0,530

X

Fig. 22: LTB in case of k=0,5 kw=0,5 W=1,0 for IPE 500 section L=12,5 m

* Xemnia = 0,398

Fig. 23: LTB in case of k=0,7 k.=0,7 ¥=1,0 for IPE 500 section L=12,5 m
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— Xemnia = 0,284

Fig. 24: LTB in case of k=1,0 k,=1,0 ¥=1,0 for IPE 500 section L=12,5 m

Fig. 25 to Fig. 30 shows the results for the case of y=1,0. The beneficial effect of the non-
uniform bending moment can be followed in the values of xgmnia, which are higher than
in the case of y=1,0 (for example: 0,742 ;0,608 ;0,462 respectively for L=7,5 m and
y=1,0).

e ——

Fig. 25: LTB in case of k=0,5 k»=0,5 W=0 for IPE 500 section L=7,5m

—_——————

Fig. 26: LTB in case of k=0,7 kw=0,7 W=0 for IPE 500 section L=7,5 m

Xemnia = 0,772

Fig. 27: LTB in case of k=1,0 k,=1,0 ¥=0 for IPE 500 section L=7,5 m

ﬁ Xemnia = 0,832

Fig. 28: LTB in case of k=0,5 kw=0,5 W=0 for IPE 500 section L=12,5 m
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Xemnia = 0,792

Fig. 29: LTB in case of k=0,7 k.=0,7 W=0 for IPE 500 section L=12,5 m

Xemnia = 0,494

Fig. 30: LTB in case of k=1,0 k,=1,0 ¥=0 for IPE 500 section L=12,5 m

In Fig. 31 to Fig. 36 are the result the cases for W=-1. In cases of “intermediate” members
(L=7,5 m) the failure behaviour is almost plastic (xemnia>0,9), because of the beneficial
effect of the shape of the moment diagram. The symmetric load condition combined with
a symmetric support condition (k=0,5/kw=0,5 or k=1,0/kw=1,0) result to a completely
symmetric failure shape (Fig. 31; Fig. 33; Fig. 34; Fig. 36).

% Xomnia = 1,000

Fig. 31: LTB in case of k=0,5 k.=0,5 W=-1 for IPE 500 section L=7,5 m

e e Xoru = 098

Fig. 32: LTB in case of k=0,7 k.=0,7 W=-1 for IPE 500 section L=7,5 m

Xemnia = 0,934

Fig. 33: LTB in case of k=1,0 k,~=1,0 ¥=-1 for IPE 500 section L=7,5 m
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Xcmnia = 0,948

Fig. 34: LTB in case of k=0,5 k,=0,5 ¥=-1 for IPE 500 section L=12,5m

Xemnia = 0,740

Fig. 35: LTB in case of k=0,7 k.=0,7 W=-1 for IPE 500 section L=12,5m

Xemnia = 0,654

Fig. 36: LTB in case of k=1,0 k.~=1,0 ¥=-1 for IPE 500 section L=12,5m
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The following figures (Fig. 37 to Fig. 42) represent the result of the analyses for section
HEB 300, which are similar tendency to the results for section IPE 500. Based on these
results one can see that the section HEB 300 is less sensitive to LTB, because the wider
and thicker flange makes the section more resistant against to LTB. Based on this fact
there are less results with the type of LTB, and the plastic cross section failure is more

likely.

Fig. 37: LTB in case of k=0,5 k.=0,5 W=1 for HEB 300 section L=4,5m

/—-‘ Xemnia = 0,948

Fig. 39: LTB in case of k=1,0 k.=1,0 W=1 for HEB 300 section L=4,5m

= Xemnia = 0,928

Fig. 40: LTB in case of k=0,5 k,=0,5 W=1 for HEB 300 section L=7,5 m
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Xcmnia = 0,886

Fig. 41: LTB in case of k=0,7 k,=0,7 ¥=1 for HEB 300 section L=7,5 m

Xomnia = 0,864

Fig. 42: LTB in case of k=1,0 k,=1,0 ¥=1 for HEB 300 section L=7,5m
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5.2. GMNIA buckling curves for the support condition k=0,7 kw=0,7

Having now shown the general behaviour in LT-buckling for different beams of different
slenderness, the following section is dedicated to the shape of the (GMNIA) buckling
curves obtained for a boundary condition with one end of the beam fixed against
rotation and warping (k=0,7, kw=0,7). In all the following figures, the numerical results
are compared to both the “general” and the “specific case” buckling curves in EC3;
thereby, the f-factor, which accounts for the influence of the bending moment diagram

on the reduction factor yvr, is always applied to both methods.

In Fig. 43 to Fig. 47 the results of GMNIA analyses for the IPE 500 section are compared
to the EC3 LTB curves under several boundary conditions. The shape of the bending

moment is different in all the cases/diagrams.

Fig. 43 indicates that the GMNIA results fit very accurately with the buckling curve of the
“general case” in the case of uniform moment diagram. This means that this buckling
curve correctly reflects the member capacity, provided that the member slenderness for
LTB is “correctly” determined. On the other hand, the “specific case” LT-buckling curve is
up to 15% “unconservative” for this load case and section, indicating that this buckling
curve is not able to accurately describe the behaviour and strength of the slender IPE

500 section under constant bending moment.

It shall be noted that the inaccuracy of the “specific case” curves for slender sections and

certain load cases was already noted in the literature [16][17][18].

LTB IPE 500 S235
GMNIA: e,=L/1000, residual stresses=0,3*fy |
1.1 | o
1.0 !
0.9 S
0.8 \\ \
0.7 DN
0.6 \‘\
XLT 05 \\ @ ALT from Mcr corr k=0,7 kw=0,7
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Fig. 44 illustrates the numerical results for the load case y=0,5, and the comparison with
the European buckling curves shows that the results fit to the “specific case”, in which

the “f-factor” was also applied.

In Fig. 44 the GMNIA results of load case y=0,5 are plotted over two different values of
slenderness for LTB. In the first case, the slenderness is “correctly” calculated (by using
LTBeam) and in the other case the slenderness is calculated by using the formula (2.6)
and by neglecting the benefit obtained from the consideration of end fixities (k=1,0
kw=1,0).
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Fig. 45 shows that the buckling curve of the “specific’ case with f-factor again
approaches the values of buckling resistance in GMNIA analyses very accurately for

loading condition y=0.

The large advantages obtained in terms of the resistance for LTB of a member due to the
presence of end fixations can be discussed by carrying out a comparison of the GMNIA
results obtained for the boundary condition k=0,7, kw=0,7 with the EC3 rules and by
plotting the GMNIA results over different values of slenderness evaluated for three
different support conditions. (Fig. 45)

The three different boundary conditions are:
e k=0,7 kw=0,7 - the “correct” slenderness
e k=1,0 kw=0,7 - an “intermediate” slenderness
e k=1,0kw=1,0 - the “conservative” slenderness most often used in design

It's important to note that the same GMNIA results (k=0,7 kw=0,7) were plotted over
these three different slendernesses.

[t can be noticed that, if any fixity are ignored by the support conditions (k=1,0 kw=1,0),
the member slendernesses are much higher than with the calculation of the “real”
support conditions, thus the design value of the buckling resistance according to EC3

would be thought to be about 50% lower than it actually is.
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Fig. 46 represents the GMNIA results for loading case y=-0,5, for which the buckling
curve of the “specific” case is again inaccurate (and unconservative) for slendernesses

0,8 < A7 if the member slenderness for LTB is calculated “correctly”.

LTB IPE500 S235
GMNIA: e,=L/1000, residual stresses=0,3*fy l\

—
1.1 | )
e ‘J\ \_"
0.9 \ \
% [ |
0.8 ~\\\ -
0.7 a
0.6 \ Euler
Xur 0.5 N N General case, f-factor
N o g
0.4 N Specific Case, f-factor
0.3 ~— ¢ ALT from Mcr corr k=0,7 kw=0,7
0.2 B ALT from Mcr corr k=1,0 kw=1,0
0.1
0.0

00 02 04 06 08 10 12 14 16 18

|

LT
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In Fig. 47 the modelling result are presented for the load case y=-1,0. For this boundary
condition the “specific” case with the f-factor is unconservative compared to every
GMNIA results.
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In Fig. 48 to Fig. 52. the GMNIA results for section HEB 300 are plotted, and these results
are compared to the EC3 buckling curves for LTB. In the case of these analyses the
relation between the curves and the GMNIA values are relatively similar to the cases for
section IPE 500.

Again, the “specific case” is shown to be unconservative for the load case with constant
bending moment diagram, see the following Fig. 48. The “general case” is far more

accurate for this section.
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As is indicated in Fig. 49, both of the buckling curves are on the safe side for load

condition y=0,5 and for section HEB 300, and the “specific” case is more accurate, than

the “general” case. The same phenomena have been noticed previously for section IPE
500 (Fig. 44).
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The buckling curve of the “specific” case is on the “unconservative” side for higher

slendernesses (0,8<A;p), as it is indicated in Fig. 50.
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The first case, in which the GMNIA results were lower, than the values of the buckling
curves of the “general” case according to EC3 are plotted in Fig. 51. Theoretically these
result show that the EC3 curves are not on the safe side, but these slendernesses for LTB

refer to extremely long (L>20 m) members, so practically there is no significant risk.
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In Fig. 52 the buckling curve of the “general” case is “unconservative” for slendernesses
O,8<7\LT<0,9. Notice, however, that the slendernesses where LT-buckling becomes

relevant at all refer to very long (L>20 m, L /b>65) members.
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5.3. GMNIA analyses for cases with equal slenderness for LTB

In Tab. 28 two different GMNIA analyses are compared where the member length and
the boundary conditions were different. In Case 2 the member length was “chosen” (by
iteration in LTBeam) so that the value of the critical bending moment became the same
in both cases. In this way the slenderness of the two members is the same under
completely different boundary conditions, which means the same resistance to LTB
according to EC3. The load case in both cases was a constant bending moment with
y=1,0.

Based on the GMNIA results it can be noticed that the resistance values of ygmnia in both
cases are unsignificantaly different. However this is only one specific comparison, but it
can be noted that the resistance is influanced by the boundary conditions and not only

governed by the slenderness for LTB.

Although this analysis showed a slight difference between the two cases, it can be stated
that the (correct) slenderness can be confirmed to be an excellent parameter to describe
the LT buckling strength of a member, at least for cases with the same load case, but

with different boundary conditions.

Tab. 28: Comparison of two cases with the same slendernesses, but different boundary conditions

IPE 500 section Case 1 Case 2
L (mm) 5000 7150
k 1.0 0.7
Kw 1.0 0.7
b 4 1.0 1.0
M cr.rem (KNm) 558.81 558.81
ALt corr 0.96 0.96
XGMNIA 0.632 0.628
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5.4.Conclusions

The following conclusions can be drawn from the Geometrically and Materially

Nonlinear Analyses with Imperfections (GMNIA) described in this section of the thesis:

e In most of the cases the numerical results are on the conservative (safe) side of
the buckling curves according to EC3. Based on this result, the buckling curves for
members with double symmetric I cross-sections - which are valid under “fork
conditions” (k=1,0 kw=1,0) - can be used in practical design even if the member
slenderness for LTB is calculated “correctly” for the case of support condition
k=0,7 kw=0,7. This is particularly true for the “general case” buckling curves,

while for the “specific case” some more “unconservative” cases were noted.

e Under non-uniform bending moment loading the resistance to LTB is higher

compared to the case of uniform bending moment loading for the same member.

e The restraint of rotation and warping at the end of the member increases the
resistance to LTB. The higher the “level” of restraint (k/kw from 1,0 to 0,5 is more

restrained) the higher is the resistance to LTB.

e In practical design, the loading and support conditions can be taken into account
only at the calculation of slenderness A, which result in a less slender member
with a higher resistance and higher value of xi1. According to EC3 there is no
factor which takes into account the different boundary conditions at the
correlation between A;r and yur, which means members with the same
slenderness for LTB have the same resistance even if they are under completely
different boundary conditions. Additional benefits could be achieved if e.g. the
factor f (which accounts for the bending moment diagram on the resistance term

e Under the same boundary conditions and length members with wide-flanged H
sections are less sensitive to LTB than narrow-flange I sections because of the

wider and thicker flanges.
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6. Interaction concept for beam columns
(compression and bending, GMNIA)

Beam-columns are defined as members subjected to combined compression and
bending. In practical design, the members of frame structures are treated as beam-
columns, because the columns are subjected to the combination of both type of these
loads (primary load: compression, secondary load: bending) and the beams (primary
load: bending, secondary load: compression) as well. [1]

The behaviour of beam-columns is similar to the behaviour of columns or beams

depending on the slenderness:

e stocky members: plastic cross sectional failure

e members with intermediate slenderness: elasto-plastic stability failure governed

by the geometrical and material imperfections
e members with high slenderness: elastic behaviour stability failure

For the treatment of the beam-column behaviour the main issue is the consideration and
formulation of the interaction of compression and bending, because these effects
cannot be linearly superposed in most cases. The accurate formulation of the interaction

is crucial because the two effects can reduce or increase the influence of each other. [16]

According to EC3 there are two different concepts in order to calculate the interaction

behaviour of beam-columns:

e The interaction concept, and

» o«

e The overall concept (“overall slenderness”, “general method”)

In this chapter, the main topic is the interaction concept, while the overall concept is the

focus of Chapter 7.

In the interaction concept, the utilizations for compression (flexural buckling) and
bending (LT-buckling) are added together with the use of interaction multiplier k by
the bending term [19]:

Nea o M g (6.1)
Npl'X/YM1 MpiXer/Ymr ~ '

In EC3, two methods are given for the calculation of the interaction factors k [1]:

e Method 1 developed by a group of French and Belgian researchers

e Method 2 developed by a group of Austrian and German researchers
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In the following parts of the chapter only the Method 2 will be introduced.

In EC3 there are four different interaction formulae depending on the buckling mode

and the torsional restraints.
From the aspect of torsional restraints there are [19]:

e torsionally stiff members (for example: circular hollow sections; failure: flexural
buckling)

e torsionally flexible members (for example I and H sections without intermediate

torsional restraints; failure: LTB)

From the aspect of buckling mode there are [19]:

¢ buckling about the strong axis (y-y)
e buckling about the weak axis (z-z)

In this work the IPE 500 and HEB 300 sections were investigated in the case of LTB

without intermediate restraints, which are therefore buckling about the weak axis.

In this case, the verification of the member buckling resistance according to the EC3

(“Eq. 4”) is always given by the following expression [19]:

NEg My Ed

R — . <10 6.2
Xz* Npl,Rd L ( )

XLt * Mpryrd
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6.1.Interaction factor kit

The interaction factor in the buckling case of LTB and buckling about the weak axis is
[19]:
kyp=1- 0,1-2,n, > 1 0,1-n, (63)
Cot — 0,25 Cor — 0,25
and for App < 0,4:kpr = 0,6 + Ap (6.4)
with n,, which is the utilization factor for the weak-axis flexural buckling term:

Ngg

n,=———
Xz~ Npl,Rd

(6.5)

The effect of the shape of the bending moment diagram is implicit in the factor kit
and considered by the factor C,,; 1, which in the case of constant moment diagram can

be calculated as follows [19]:

Con7=0,6+0,4¥>0,4 (6.6)

6.2.Plotting the n-m interaction curves according to EC3

The basic type of plot used to illustrate the interaction behaviour of a beam-column
under N+M is a representation in the n-m coordinate system, where the vertical axis is
n and the horizontal axis is m; these variables are described below. One point of the n-m
coordinate system means a specific combination of compression and bending moment

according to the plastic resistance.

The interaction curve plots the points for the maximum obtainable values for n and m:

NEq
n= 6.7
Npird (67)
M
Mpl,y,Rd

Accordingly, the maximum obtainable value of bending moment can be calculated if the

value of compression is fixed (and vice versa).

In order to plot the interaction curve according to EC3 the unequation (6.2) has to be set
equal to 1.0 (definition of failure) and rewritten as follows:
Ngg My Eq 1 1
— Gk ——— =n-—+mk— = 1,0 6.9
Xz Npira ' Xt Mplyrd Xz U xwr (69)
In Eq. (6.9) there are two variables, which are n and m. If the variable n is chosen
arbitrarily (several values from 0 to x,), the variable m can be calculated using the

following formula:
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ny\ Xrr
m= 1-—) — 6.10
( X2/ Kir ( )

In this way the interaction curves according to EC3 can be plotted in all cases.

6.3.Input and output of GMNIA for beam-columns

When defining load parameters for GMNIA analyses to be plotted in the n-m interaction
diagram, it is important that the results describe the behaviour in the n-m coordinate
system with the same “density” for different ratios of n/m. The unit quarter circle
(radius=1,0) was divided into eight parts in order to have an equal distribution of load

cases. In this way the result was nine different load cases, i.e. combinations of n and m.
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Fig. 53: Distribution of load inputs in parametric studies of interaction curves

In Fig. 53 the defined reference load cases are illustrated, where all points have n;,,4 and
my,.q coordinates, which describe the value of compression and bending moment
applied in the GMNIA calculations:

Ngq

Njpad= N_pl (6.11)
MEgq
My = Mo (6.12)

p!l
Accordingly, every load case is “fully” described by the “direction angle” of the line,

which is:

Mypad
Njoad
In this explanation ifn,,q=0, that means n=1 and m=0 (pure compression) and if

Mioad™= (6.13)

Mioad=20, that means n=0 and m=1 (pure bending). The angle n can thus be interpreted
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as a load eccentricity (Mgq¢/NEq), normalized by the plastic core dimension (Mp/Np) of

the section.

From the definition in Eq. (6.13) comes the value of bending moment, which is:

Mjpad=MNload " Noad (6.14)
nload2+mload2:1 (6.15)
Eq (6.15) can be modified into:
nloadz'{'(nload ’ nload)2=1 (6.16)
and
nloadz'(:l'l'nloadz)=1 (6.17)

From the expression in Eq. (6.17) comes the value of compression, which is:

1
2

Njgad= (m) (6.18)

As a result of the GMNIA analyses, the load proportionality factor (LPF) is obtained for
every case. The LPF is the ratio between the aimed load and the reached level of input

load (the resistance):

n m
LFP=——= (6.19)
Nigad  Mypad

Fig. 54 illustrates the definition of the LPF.
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Fig. 54: Definition of Load Proportionality Factor
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Based on the LPF the maximum obtainable values of compression and bending are:

m=ny,,4-LPF (6.20)
m=m,,,q-LPF (6.21)
In this way the results of GMNIA analyses can be plotted in the n-m coordinate system.

6.4. GMNIA analyses for beam-columns

In this subsection the results of GMNIA analyses of beam-columns for several different
cases are introduced. The results are plotted in the n-m coordinate system and are

compared to the curves according to EC3.
The “variables” in the parametric studies were the following:

e cross section: IPE 500 or HEB 300

e slenderness: A =0,5;2 =1,0 or A, =1,5 (calculated for k=0,7)

e load conditions: ¥=1,0; ¥=0 or ¥=-1,0
e support conditions:

1. k=0,7 kw=0,7

2. k=0,7 kw=0,7

3. k=1,0kw=1,0

The following points were treated in the same manner in all plots:

e the reduction factor y.r for LT-buckling was always calculated with the “specific

case” curves.

e The GMNIA calculations were carried out for a clearly defined boundary
condition and load case. The Eurocode curves (i.e. the evaluation of the
interaction formulae) were plotted for either exactly the boundary condition
considered in the GMNIA calculation, or for “more conservative” boundary
conditions; the latter was done to illustrate the gains that are obtained from
applying the Eurocode “as it is”, but by considering the “true” boundary

conditions.

In Fig 55. the results for the basic studied case (k=0,7 kw=0,7) are compared to the
Eurocode curves for cases k=0,7 kw=0,7 and k=1,0 kw=0,7 under the same member

length.

In the case of k=0,7 kw=0,7 the member slenderness for LTB was calculated correctly by
using the first eigenvalue in the LBA analyses. Based on Fig. 55, the results fit fairly
accurately to the curve according to EC3, with the exception of the point where n=0
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(pure bending), for which it was already discussed that the “specific case” LT buckling

curves may not be conservative in all cases.

If the Eurocode formula is evaluated o f k=1,0 kw=1,0 the beneficial effect gained from
the support conditions (rotational and warping fixation) are neglected, thus the

calculated member resistance is also lower.

The slenderness for LTB was calculated by using Eq. (3.6), and y;r was calculated by using
the “specific case” formulation combined with Eq. (5.2) (f-factor) in all cases.

In Fig. 55 the difference between the resistance in two case is indicated, which is
approximately 10 to 15% .
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In Fig. 56 and Fig. 57 the GMNIA-results for the case of constant bending moment
diagram are represented for more slender members. In the vertical (n-) axis the curves -
and the GMNIA-results as well - are reaching the values of resistance for flexural
buckling (pure compression), in addition in the horizontal (m-) axis the values of

resistance for LTB (pure bending).

Between these two intersections the curves are almost linear, but the distributions of

GMNIA-results are slightly curved from above.

In addition to cases k=0,7 kw=0,7 and k=1,0 kw=1,0 one more case is shown, this is k=1,0
kw=0,7. Under this support condition the rotation is not restrained on both sides, and the
warping is one-sidedly restrained. This “intermediate” case was investigated in order to

illustrate the different influence of the rotational and warping fixation on the resistance.

Fig. 56 and Fig. 57 indicate that the rotational fixation has more influence on the
resistance than the warping fixation. In addition, the warping fixation affects the
resistance only when bending/LT-buckling is clearly dominant (by pure compression
not at all).
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N+M IPE500 W=1,0 A, =1,5 (if k=0,7) L=8,7 m S235
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In Fig. 58 the case of a stocky member loaded by a triangular bending moment diagram
(v=0) is illustrated, where the support conditions have less influence on the resistance
when bending is dominant (in pure bending there is no influence at all), because the
type of the failure is plastic cross section failure (and not elastic-plastic stability failure).
This is due to the fact that the buckling reduction factor yi.1=1.0 regardless of the
considered boundary condition. Nevertheless, the Eurocode curves would approximate
the realistic GMNIA calculation results (obtained for k=0.7 and kw=0.7) far better if the

boundary condition for flexural buckling were considered correctly.
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Fig. 58

In Fig. 59 and Fig. 60 the difference between the three cases are similar to the results in
Fig. 56 and Fig. 57, even though the buckling reduction factor yrr is much higher due to

the far more beneficial bending moment diagram.
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N+M IPE500 y=0 A, =1,5 (if k=0,7) L=8,7 m S235
GMNIA: e,=L/1000, residual stresses: 0,3*fy
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In Fig. 61 It can be seen that the GMNIA analyses indicate a different behaviour of a very

stocky member loaded by a sign-changing bending moment diagram and no axial force;

the failure mode here is a plastic cross sectional shear failure under dominant bending.

The cause of the failure is that the member is relatively short, so the shear forces are

very high and local shear failure occurs under pure bending.
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N+M IPE500 y=-1 A, =0,5 (if k=0,7) L=2,9 m S235
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Fig. 61

The GMNIA result and the failure mode is shown in Fig. 62 for the case n=0 m=1,0
(xamn1a=0,65).

Cross section failure under shear

IPES00,eta=1000, Lambda_z=0.493004571779384,psi= -1, GMNIA, NM0.S
QDB NMO.5_IPES00_psi-1_GMNIA_9.0db  Abaqus/Standard 6.10-1  Fri Mar 23 11:10:10 GMT+01:00 2012

Step: Step-1

Increment  25: Step Time = 0.3264

Primary var: s, Mises

Deformed Var: U Deformation Scale Factor: +2.000e+01

Fig. 62: Cross section failure of a stocky member under shear
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In Fig. 63 and Fig. 64 one can see that the warping fixation has very little influence on
the resistance of members of realistic length, loaded by sign-changing bending moment
diagrams, and when bending is dominant also the rotation does not affect the ultimate

strength, because the failure is fully (or near to) plastic and it is not a stability failure.

More interestingly, one can see that for slender members, particularly when no end
fixations are considered, the sign-changing bending moment diagram is rather poorly
described by the Eurocode interaction curves. These curves, which are dominated by the
factor kir, always have the tendency to (near-) linearly fall from the value ¥, to the value
xL1, with only a very slight upward bend of the curve even in extreme bending moment

cases such as a linear case with y=-1.0.

The GMNIA calculations, however, showed that there is hardly any interaction between
N and M for this load case, slender columns and lower values of M; this is represented by
the near horizontal distribution of the GMNIA results for the cases with k=1,0. This can
be explained by the fact that the failure location for these boundary conditions and low
bending moment is at mid-span, where the moment is zero. With higher m, the failure

location moves farther toward the member ends.

In the case where k=0.7, the failure location for weak-axis flexural buckling is also not at

mid-span, so there is immediately a (small) interaction with even small values of m.

N+M IPE500 y=-1 A, =1,0 (if k=0,7) L=5,8 m S235
GMNIA: e,=L/1000, residual stresses: 0,3*fy
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Fig. 63
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N+M IPE500 y=-1,0 A, =1,5 (if k=0,7) L=8,7 m S235
GMNIA: e,=L/1000, residual stresses: 0,3*fy
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Fig. 64
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In Fig. 65 to Fig. 73 similar GMNIA-results are shown for the studied cases where the
section was an HEB 300. The tendencies are exactly the same as shown for the IPE 500

section.

N+M HEB300 WY=1,0 A, =0,5 (if k=0,7) L=5,1 m S235
GMNIA: e,=L/1000, residual stresses:0,5*fy
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Fig. 65
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N+M HEB300 W=1,0 A, =1,0 (if k=0,7) L=10,2 m S235
GMNIA: e,=L/1000, residual stresses:0,5*fy
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Fig. 66

N+M HEB300 y=1,0 A, =1,5 (if k=0,7) L=15,3 m S235
GMNIA: e,=L/1000, residual stresses:0,5*fy
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Fig. 67
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N+M HEB300 y=0 A, =0,5 (if k=0,7) L=5,1 m S235
GMNIA: e,=L/1000, residual stresses:0,5*fy
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Fig. 68
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It can be seen in Fig. 69 and Fig. 70 that the warping fixation effect much less the
resistance of the section HEB 300 than in the cases of section IPE 500, and larger
differences can be noted between the GMNIA-results and the EC3 interaction curves
under the same conditions. This is due to the strongly reduced tendency of this section
to fail in LT buckling, which is not well reflected by the interaction formulae: they always
predict a near-linear interaction between yz and yLt, whereby the latter is often near or
at 1,0 for this section and an actually curved interaction curve (similar in shape to the

cross-sectional capacity curve) would need to be approximated instead.

N+M HEB300 y=0 A, =1,0 (if k=0,7) L=10,2 m S235
GMNIA: e,=L/1000, residual stresses: 0,5*fy
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Fig. 70
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N+M HEB300 y=-1 A, =0,5 (if k=0,7) L=5,1 m S235
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Fig. 71

Based on the Fig. 72 to Fig. 73 the beneficial effect of the warping fixation disappear if

y=-1.
N+M HEB300 y=-1 A, =1,0 (if k=0,7) L=10,2 m S235
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N+M HEB300 y=-1,0 A, =1,5 (if k=0,7) L=15,3 m S235
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6.5. Conclusions

The following conclusions can be drawn from the GMNIA analyses for beam-columns

described in this chapter of the thesis:

e Under support condition k=0,7 kw=0,7 the interaction curves according to EC3
are on the safe side and could therefore be used for practical design if warping
and rotational fixations are present at the member ends, because the GMNIA
analyses have shown higher values of resistance than the EC3. The “correct”
calculation of the slenderness for LTB by a FEM program (for example LTBeam)

is highly recommended.

e The beneficial effect of the rotational fixation exists in all case with dominant (or
pure) compression, because the resistance for flexural buckling is governed by
the rotation fixities of the member. Under dominant (or pure) bending the
beneficial effect can be gained only in cases, in which the type of failure is an
elasto-plastic stability failure and not plastic cross section failure (which depends
on the boundary conditions). This last remark would only in theory also be true
for the pure compression case, since columns are only very rarely “stockier” than

A2=0,2, the plateau value for flexural buckling.

e The beneficial effect of the warping fixation does not exist in cases with dominant
(or pure) compression, because the resistance for flexural buckling is not
influenced by the warping fixities of the member. Under dominant (or pure)
bending the beneficial effect can be gained only in cases, in which the type of
failure is elasto-plastic stability failure and not plastic cross section failure (which

depends on the boundary conditions).

e Under loading condition y=0 and wy=-1 there are significant (safe-sided)
differences between the curves according to EC3 and the GMNIA results for the
same support conditions, so the refinement of the interaction curves, for example
by a modification of the interaction factor kit or of the format of the formula

itself, are necessary.

e The beneficial effect obtained by rotational and warping fixation is higher in
cases for section IPE 500 than in cases for section HEB 300, because sections HEB

are less sensitive against LTB.
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7. Overall concept (compression and bending, GMNIA)
7.1. Background of the overall concept

The overall concept (known in some representations as “general method”, or
“generalized slenderness concept”) is a second method for designing beam-columns
found in EC3. It is declared there as a “general” method with few limitations to its use; in
fact, section 6.3.4 of EN 1993-1-1, which specifically deals with the “general method”,
appears to be intended for all cases that are “not the standard cases” of doubly-

symmetric sections with end-fork boundary conditions.

The most important feature of the overall concept is that the member slenderness is
calculated for a specific, combined loading and support condition, which means the

overall slenderness is different for every N+M loading case.

There are two alternatives for the calculation of the overall slenderness.

_ LPF
Aoy = abl (7.1)
LPF ga

LPFyna is the load proportionality factor of a N+M load case reached in materially non-

Alternative 1 (MNA based) [20]:

linear analysis (MNA) of the member in which no buckling effect and no imperfections
are taken into account. Practically MNA leads to the plastic cross sectional resistance for

compression and bending in the decisive loaded section of the member. [16]
The MNA load proportionality factor can thus be calculated in two different ways:

1. Simply by the plastic cross sectional resistance according to EC3 (formula)

2. More rigorously by the plastic cross sectional resistance obtained from MNA
analyses (ABAQUS)

In subchapters 6.2 and 6.3 these two methods are compared with each other.

LPF, g, is the load proportionality factor of a N+M load case until bifurcation reached.
[16]
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Alternative 2 (Ry;, based) [20]:

- Rp ip
Aoy = ’— 7.2
ov LPFiga (72)

In the “general method” as it is defined in section 6.3.4 of EN 1993-1-1, LPFyya is
replaced by Ry;,, which means the resistance of the member in terms of a linear
amplification of N+M, including the second-order effects of imperfections and deformation

in the main plane of bending (in-plane) [13].

Practically Ry, means the value of resistance reached in either an in-plane second-
order calculation with equivalent geometric imperfections and cross-sectional
resistance checks or (in the most advanced type of calculation) an in-plane GMNIA
analysis, where only the failure cases in plane are included and cases out of plane are

excluded.

In the following chapters the Alternative 2 is not in focus, because the member slenderness
Ay for in-plane buckling - particularly for the section IPE 500 - is so low in all studied cases
that the resistance Ry, Is very close to the cross sectional resistance (MNA) in the
investigated cases. It is therefore considered to be sufficient to analyse the Alternative 1 in

order to draw conclusions regarding both Alternatives for the chosen examples.
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The “overall” buckling reduction factor for out-of-plane buckling (x.p) can be

calculated in two different ways [16]:

e Taking the minimum of X, and .t (with using A, instead of A, andA):

Xop = min (XZ; XLT) (73)
e Using an interpolation between y, and x;r on the basis of the cross-sectional

utilization of the two components n and m, whereby the factor no=m/n is used.

[18]

14M0) Xz
= (A +M0) "Xz Xur (7.4)
XLt Mo " Xz
In all cases the first method was used.

If Alternative 1 is applied for calculation of the slenderness, the buckling resistance for
out-of-plane buckling (LTB) according to the overall method is defined as (Fig. 74) [2]:

. LPF
Rpop = -2~ MNA 5 19 (7.5)
YMm1
n
m MNA
/

n MNA

Fig. 74: Calculations of the buckling resistance based on the results of MNA-analyses
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7.2.Plastic resistance for N+M according to EC3

If the “Alternativ 1” overall concept based on the pure plastic member/cross-sectional
resistance is used and the MNA resistance is simply calculated with the Eurocode cross-

sectional resistance formulae for N+M, the following formulae can be used.

The N+M interaction formula according to EC3 for plastic cross section resistance:

(1-n)
My,y,Rd=Mpiy,rd" (1-052) (7.6)
with
NEq
n= 7.7
Npird (7.7)
a=(A-2bty)/A<0,5 (7.8)
Eq. (7.6) can be written into the following term:
M
_NyRd . (1-0,52)=1-n (7.9)
Mpl,y,Rd
MN,y,Rd
n+—224.(1-0,52)=1 (7.10)
Mpl,y,Rd
In ULS (at failure):
Mny,rd = Mgg (7.11)
Mgq _
n+——-—+(1-0,5a)=1 (7.12)
plLy,Rd
With — = m andn = =
plLy,Rd n
n+m-(1-0,5a)=1 (7.13)
Eq. (7.13) can be modified by dividing with n into:
m 1
14+—-(1-05a) == (7.14)
n n
1
141 (1-052) =~ (7.15)
Finally, the equation of the n-m interaction line (MNA) can be calculated:
1 =§-n .(1-0,53) and m < 1,0 (7.16)

Based on Eq. (7.16) the values of LPFyy, can be calculated for all loading cases, and

The values of LPF g5 were obtained from earlier analyses for N+M; the overall

slenderness can be calculated by combining these two results.
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With the use of Eq. (7.1) and (7.3) the overall slenderness A,, and the buckling reduction

factor x,, were calculated. In this way the n-m curves according to the EC3 can be

plotted.

In this chapter the goal of calculation according to overall method was the comparison of

the values of resistance according to GMNIA results and the overall concept.

Similarly to what was done in the comparisons for the interaction concept, the variables

in the parametric studies were again the following:

cross section: IPE 500 or HEB 300

slenderness (k=0,7): A, =1,0

load conditions: ¥=1,0; ¥=0 or ¥=-1,0
e support conditions:

1. k=0,7 kw=0,7

2. k=0,7 kw=0,7

3. k=1,0kw=1,0

In Fig. 75 the GMNIA results are compared to the resistance according to the overall
concept for three different cases of support conditions. It can be seen that the values are
the same under pure compression, but the general concept indicate higher values, than
the GMNIA results as the bending becomes dominant in the load combination. The

largest differences are indicated in case of k=0,7 kw=0,7.

This result means that the practical design with the use of overall concept can even be

unsafe under these circumstances.
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N+M IPE500 y=1,0 A, =1,0 (if k=0,7) L=5,8 m S235
GMNIA: e,=L/1000, residual stresses: 0,3*fy
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Fig. 75

It shall be noted that the reduction factor ., was even determined very conservatively
by using the lowest of i, and yLr; the use of the interpolation formula for ., would lead

to even less conservative results for the boundary condition with end fixations.
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The advantages and disadvantages of this approach are clearly visible, in particular
when the figure is compared to the corresponding figure in chapter 6 (interaction
concept). The advantage of the approach is that it manages to reproduce the “upward
bend” of the actual (GMNIA) resistance functions better, because it applies the reduction
factors to the plastic cross-sectional capacity, which is itself “bent upward” when
compared to a straight connection line between Ny and My. However, the reduction
itself appears not to be sufficient in some cases, as the one shown in Fig. 75 for k=0,7
and kw=0,7.

In Fig. 76 to Fig. 77 the comparisons are shown for loading cases ¥=0 and ¥=-1. Based
on these result large differences are noted between the overall concept and the GMNIA
results, because the buckling resistance was governed by ¥, in all cases and thus the
bending moment diagram does not enter the resistance yop function at all. For these load

cases, a clear improvement could be obtained by using the interpolation formula for yop.
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Fig. 76
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N+M IPE500 y=-1,0 A, =1,0 (if k=0,7) L=5,8 m S235
GMNIA: e,=L/1000, residual stresses: 0,3*fy
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In Fig. 78 to Fig. 80 the comparisons are represented for section HEB 300. In these cases
the differences between GMNIA results and the overall concept were similar as for
section [PE 500.
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N+M HEB300 y=0 A, =1,0 (if k=0,7) L=10,2 m S235
GMNIA: e,=L/1000, residual stresses: 0,5*f,
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In this subchapter the values of LPFyys were obtained from MNA analyses in all loading
case. The boundary conditions of the parametric studies were the same as in subchapter

7.2, only the MNA-values were calculated “correctly” by a numerical analysis in ABAQUS.

In Fig. 81 to Fig. 86 very similar results are indicated as in Fig. 75 to Fig. 80, which is due

to the fact that the EC3 formula accurately describes the plastic cross section resistance

7.3. Plastic resistance according to MNA analyses

for N+M load case.
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7.4.Conclusions

In this chapter the following conclusions can be drawn from the FEM results and from

the comparisons with EC3:

The values of resistance calculated according to EC3 were significantly
unconservative (unsafe) compared to GMNIA results in the case k=0,7 kw=0,7
with W=1,0 for section IPE 500, so based on these results the use of the overall
concept cannot be recommended for all boundary conditions.

In most of the cases with non-constant bending moment diagram the buckling
resistance was clearly governed by ¥x,, which was then in turn used (as the
minium value) as X, thus the design resistance for out-of-plane buckling
according to the overall concept were more conservative, than according to
interaction concept, using this method for the determination of x,, and

depending on the support and loading conditions of the case.

Tab. 29 summarizes how the interaction and the overall method take into
account the bending moment diagram. It can be seen that even if the overall
diagram is used in combination with an interpolation for x,, (which would make
xpr and thus the f-factor for bending moment diagrams more relevant), the
inclusion of the bending moment diagram would still not be “complete”, as it is

not present as it is in the factor kit in the interaction concept.

Tab. 29: Comparison of the interaction and overall concepts

Taking into account the bending moment diagram in...

Interaction concept Overall concept
Maiagram — Mer — ALt Maiagram — LPFLBA — Aop
Maiagram — X1 (factor f) Maiagram — (X11)
kit — CmLr x

In order to use the overall method an LBA analysis is needed in all cases for the
specific load combination. Based on this fact, the application of overall concept
for the practical design is much more difficult than the use of interaction concept,
in which no numerical analysis is needed if hand formulae for N and especially

Mcr are applied.

The formulation of EC3 for plastic cross section resistance for load case N+M

describes the MNA failure behaviour very accurately.
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8. New Proposal for y.r for Hot-Rolled Sections

In this chapter a new design formula proposal, developed at Graz University of
Technology, is investigated from the aspect of LTB resistance of beams (pure bending).
[16]

According to the new design formula proposal the case-specific buckling reduction
factor xg is calculated as follows: [16]

@ <10

Xs=— F7—=
ot |02 (81)

and

1 - _
CDS:E[1+(p'(ao’s'as'(AeO'O,Z)‘l‘)\g)] (82)

where the variables are the following:

e ) normalized slenderness for the specific buckling case

e A, slenderness used for the definition of the generalized imperfection
e g generalized imperfection amplitude factor of the specific case

® g case-specific second-order stiffness term

e @ load diagram factor to account for variable loads

If the specific buckling mode of the member is lateral-torsional buckling, then the
values and the indexes are the following:

_ _ W, 1+ f
As =Aur = Py (8.3)
MCI‘
R, =%, = [l (8.4)
T Ncr,z .
_ {hot-rolled h/b>1,2: 0,12-BLTS0,34} 8.5
%= lhot-rolled h/b<1,2: 0,16:B;<0,34 (8:5)
where:
W el
Bur= | (86)
L Wz,el
= 2
LT
== 8.7
aO,S < AZ > ( )

And for end-fork conditions and linear bending

3

oment diagrams:
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©=1,25-0,1-s-0,15-ys (8.8)

Finally, in the specific case of lateral torsional buckling the formulation is [16]:

®
Xs = XLt =
_ 8.9
CDLT+,/¢12,T'(P'}‘ET ()
and
1 _ _
CDS= E [1+(p'(ao's'aLT'()\Z'O,Z)‘F)\%T)] (810)

It can be seen that the ¢ load diagram factor is a new item in the formulation compared
to the current EC3. It covers the same effect is similarly covered by the f-factor, which is
however a modification of the y .t factor which is previously determined for a “constant”

bending moment diagram and the correct value of Mc;.

The other new feature in the proposal is that the buckling reduction factor depends on

the slenderness for flexural buckling (A,) as well, and not just on the slenderness for LTB
wr)-
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In the calculation of the buckling curves according to the proposal the M elastic critical
moment was obtained from LTBeam, so the A;; slendernesses can be considered as the

“correct” values.

In Fig. 87 to Fig. 92 the GMNIA results and the proposal curves are plotted for cases of
support condition k=0,7 kyw=0,7.

Based on the comparisons it can be noted that the new proposal fit very accurately to
the GMNIA results in most of the cases, independently of the studied section; it shall be
remembered that this was not the case for the current EC3 curves, where the “general
case” fit better in one case, and the “specific case” in the other. Fig. 88 and Fig. 91
indicate small differences for the case of a triangular bending moment (y=0,0) and
k=kw=0,7, where the proposal is higher than the GMNIA values, which means it is
theoretically unsafe, but these levels of slendernesses refer to very long members (for
example >20 m for section HEB 300). Nevertheless, an adaptation of the ¢ values to the
most common boundary conditions (similarly to what is done for the Ci values, see

chapter ) could be envisaged.
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Fig. 87
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9. Additional bimoment caused by warping fixation

In this chapter the normal stress distribution in the flanges of the section at the
member ends is discussed for different support conditions. The importance of these
stresses for the correct design of the end joints (if warping and rotational fixities are

considered in out-of-plane buckling design) was already discussed in the introduction.

For support condition k=1,0 kw=1,0 the end sections are able to rotate and to warp, but
for k=1,0 kw=0,7 the warping is one-sidedly restrained. In the second case the stresses

are higher in the restrained section, because the section is not free to deform.

If the type of failure is LTB (bending moment about the strong axis, deformation about
the weak axis), this warping restraint effect causes a bimoment (M,) about the weak
axis as an additional load.

This additional bimoment about the weak axis has an influence on the design of the
details end plate welds by a column. In this part of the thesis the stress distribution

and the additional bending moment is investigated for the following cases:
1. IPE 500; y=1,0; pure bending; A, = 1,0 (if k=0,7); k=1,0 kw=0,7
2. HEB 300; y=1,0; pure bending; A, = 1,0 (ifk=0,7); k=1,0 kw=0,7
The normal stresses due to Mgqy at the end section:

G = Mggy  Xur - Mp
Ed — -
Wel,y We

(9.1)
Ly

The correct value of the additional bimoment about the weak axis can be expressed as a
weak-axis bending moment per flange and can thus be calculated based on the shell
element section forces, which can be imported from the output database file of the
model (Fig. 93):

M, flange = Z(Section force (N/mm) - s * bejement) (9.2)
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Fig. 93: Calculation of bimoment based on the section forces obtain from modelling results

The plastic resistance of a single flange for bending about the weak axis is:

b2
M =f -tc-— 9.3
Fl,z,pl y 4 ( )
In order to develop a simple formula for the estimation of the maximum possible end
bimoments (“bi-moments”) in the studied sections and load cases, the following

considerations can be made:

If a linearized plastic cross sectional interaction verification for My+M;7 is assumed to be

valid to the end section, than:

Mgg | Mgpq
— —=1,0 9.4
Mpl MFl,z,pl ( )
Eq. (9.4) can be modified into:
M, n MEgqg Xut " Mp
—=10—-——=10——7—--=10—% 9.5
MFl,z,pl Mpl Mpl LT ( )
With the use of Eq (9.6) the additional flange bending moment can be calculated
directly:
M n
i 2 =10 — Xt (9.6)
Fl,z,pl

Of course, this procedure should always be conservative, as it considers that the failure
location corresponds to the end cross-section of the beam in the cases where and

fixations are considered.
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In Case 1 the following modelling results were studied:

e IPE 500; y=1,0; pure bending; A, = 1,0 (ifk=0,7); k=1,0 kw=0,7

Fig. 94 and Fig. 95 illustrates the normal stress o11 distribution along the upper and the
lower flange (x-axis description: 16 elements, y-axis: element centroid values of 611) of
the end section for support condition k=1,0 kw=0,7. In the figures the stress level (ogq)
due to Myq is also indicated, so the asymmetric part of the stresses can be seen. Based
on the figures the right side of the flanges have reached the yield stress, so these parts
are plastic (0=235).

The results of the calculation in order to get the additional flange bending moment M, g;:
Ogq = 178 N/mm?
M, = 9134249 Nmm

MZ,FI

= 0,243
MFl,z,pl

1,0 — xpr = 1,0 — 0,664 = 0,336
0,243 < 0,336

so the assumption in Eq. (9.6) on the safe side. Note that for an actual design, the above
ratio of M r could still be reduced by a multiplication with the utilization factor (which
must be smaller than 1,0) for the LT buckling check.

It shall be noted that there is also a non-linear component in the stresses, which might
be attributable to a combination of the residual stresses and some load introduction
effect. Nevertheless, it is believed that the essential quantity (the flange bending
moment) can be correctly retrieved as a bending moment resultant from these stress

distributions.
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In Case 2 the following modelling results were studied:
e HEB 300; y=1,0; pure bending; 7_\2 = 1,0 (if k=0,7); k=1,0 kw=0,7

The normal stress distribution of the flanges is shown in Fig. 96 and Fig. 97 for support
condition k=1,0 kw=0,7.

The results of the calculation in order to get the additional flange moment M, g:
Ogq = 208 N/mm?
M,q = 18433909 Nmm

MZ,FI
MFl,z,pl

= 0,183

1,0 — xpr = 1,0 — 0,796 = 0,204
0,183 < 0,204

so the assumption in Eq. (9.6) is again on the safe side.

Welds k=1,0 kw=0,7 HEB 300

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0
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o -150 —#— Upper flange S11 stresses
-200 \ z
250 /

-300 ‘

Fig. 96: S§11 normal stress distribution of the upper flange under warping restraint (section HEB 300)
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Fig. 97: §11 normal stress distribution of the lower flange under warping restraint (section HEB 300)
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10. Summary and conclusions

The present thesis deals with the numerical modelling and analysis -through parametric

studies- of the out-of-plane buckling behaviour of steel members (columns, beams and

beam-columns) under realistic, non-hinged support conditions. The main objectives are

the discussion of the flexural buckling of columns, lateral-torsional buckling of beams

and the buckling failure of beam-columns. In every chapter the comparisons are

presented between the GMNIA - or LBA- modelling results and the calculations

according to the current EC3 design code for steel structures.

The descriptions and the most important conclusions of the chapters are summarized in

the following list:

L.

II.

[IL

IV.

Chapter 1 introduced the motivation of the work and identified the main

objectives.

In Chapter 2 the methodology of the numeric modelling and the used ABAQUS

discretization are explained.

In Chapter 3 many ways of calculation of the elastic critical moment are
demonstrated and discussed. Based on the comparisons the use of simple,
dedicated numerical programs - such as LTBeam - is highly recommended,
because the warping fixation can be taken into account. The correct value of the
critical elastic moment and the slenderness for lateral-torsional buckling gives -
in most cases - a beneficial result contrary to the calculation with the factor of C4

according to the codes.

Chapter 4 contains two parametric studies about the most simple type of
buckling failure, flexural buckling about the weak axis. As result of the studies it
can be stated that the EC3 buckling curves are very accurate also for support
conditions k=0,7, and significant beneficial effect (for example: +30% in case of
IPE 500 section) can be obtained in design if the real support conditions are
taken into account. The numerical results have confirmed that the warping

restraint does not have an influence on the flexural buckling strength.

In the first part of chapter 5 several GMNIA results were compared from the
point of view of effects of support and loading conditions on the lateral-torsional
buckling behaviour. The restraint of rotation and warping at the end of the
member increases the resistance to LTB. The higher the “level” of restraint (k/kw
from 1,0 to 0,5 is more restrained) is the higher the resistance to LTB is. Under
non-uniform bending moment loading the resistance to LTB is higher compared

to the case of uniform bending moment loading for the same member.
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VL

VIL

In the second part the EC3 LT-buckling curves were compared to the modelling
results in many parametric studies. In most of the cases the modelling results are
on the unconservative (safe) side of the buckling curves according to the building
code EC3. Based on this results the buckling curves for members with double
symmetric [ cross-sections - which are valid under “fork conditions” (k=1,0
kw=1,0) - can be used in practical design as long as the member slenderness for

LTB is calculated “correctly” for the case of support condition k=0,7 kw=0,7.

Chapter 6 focuses on the interaction concept, which is one of the methods for the

design of beam-columns.

Under support condition k=0,7 kw=0,7 the interaction curves according to EC3
are on the safe side and adaptable for practical design, because the GMNIA
analyses have shown higher values for resistance than the EC3 rules would

predict.

The magnitude of the beneficial effect of rotational and warping restraints
depends on the loading condition (domination of compression or bending) and
on the type of the failure (elasto-plastic buckling failure or plastic cross section

failure)

The comparisons with EC3 have indicated in many cases that the refinement of
the interaction curves, for example by the interaction factor kir could be

necessary.

The overall concept is treated in Chapter 7, which is the other method for the

design of beam-columns.

The values of resistance calculated according to EC3 were significantly
unconservative (unsafe) compared to GMNIA results in the case k=0,7 kw=0,7
with W=1,0 for a more slender section IPE 500, thus based on these results the
use of the overall concept/general method cannot generally be recommended for

boundary conditions that differ from the end-fork condition.

In most of the cases with non-constant bending moment diagram the buckling
resistance was clearly governed by x,, which was then in turn used (as the
minium value) as X,p thus the design resistance for out-of-plane buckling
according to the overall concept were more conservative, than according to

interaction concept, using the first method for the determination of x,, and

depending on the support and loading conditions of the case.
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VIII.

IX.

Chapter 8 explains a new proposal for LT buckling curves for I-sections,
developed at TU Graz, It was confirmed that the new formulation is more
accurate than the current EC3 curves in describing the behaviour of beams failing
in LT-buckling even for non-end-fork boundary conditions, especially for the
constant bending moment diagram. For non-constant bending moment diagrams,
an adaptation of the factor ¢ to different boundary conditions could be developed
for certain common boundary condition cases, while the factor can always

conservatively be set to 1.0 in other cases.

Finally, in Chapter 9 the additional bimoments in the end cross-sections were
investigated in the case of k=1,0 kw=0,7 (lateral-torsional buckling). The correct
value of bimoment were defined based on the stress distribution of the flanges in
the end section. In addition, a simple formula for calculation of bimoment

depending on x;r have been proposed.

10.1. Outlook

The thesis work could represent a starting point for the following ideas and problems

possible future research:

Modelling of real support conditions (rotation and warping) as springs (not
purely “rigid”, yet not purely “free”) for construction details (for example: column
bases).

The real buckling behaviour of structures as a part of portal frames could be

investigated further, taking into account realistic connection detailing.

The investigation of buckling behaviour of members with intermediate or
continuous lateral restraints on one or both flange and with real support

conditions could be combined.

A refinement of the interaction concept formulae for cases of real support

conditions could be considered.

The development of a simple and/or accurate formulation for the bimoment
depending on the real support conditions and load cases should be carried out in
order to also safely design the connections at the member ends if the beneficial

effects of end fixations is used in out-of-plane buckling design.
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