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Kurzfassung

Das Verhalten von Kristallober�ächen unterscheidet sich signi�kant von denen des Bulk.
Die Kristallsymmetrie is plötzlich gebrochen und da die Ober�ächenatome keine Bindungspart-
ner mehr haben, werden die Kraftverhältnisse und die elektronischen Eigenschaften der
Ober�äche völlig verändert. Materialober�ächen sind von gröÿter technischer Bedeu-
tung. Alle chemischen Reaktionen und Interaktionen mit der Auÿenwelt �nden an der
Ober�äche statt. Deshalb ist das Verständnis ihrer Eigenschaften von gröÿter Priorität.

Heliumatomstreuung ist ein einzigartiges Werkzeug um Materialober�ächen zu unter-
suchen. Es ist nicht nur völlig ober�ächensensitiv, sondern es erreicht auch die niedrigen
Streuenergien die benötigt werden um die Vibrationsmoden von schweren Metallatomen
zu untersuchen. Das elastische Streuspektrum enthält viel Information über das Inter-
aktionspotential zwischen dem Heliumatom und der Ober�äche.

In dieser Arbeit werden elastische Heliumstreuspektren der Bi(111) Ober�äche präsen-
tiert. Unter Verwendung dieser wird ein vollständiges Bild des He-Bi(111) Interak-
tionspotentials erstellt. Die elastischen Streupeaks und deren Höhen werden benutzt
um die Korrugation der Ober�äche zu berechnen. Hierfür wird eine iterative Prozedur
angewendet, die im Laufe dieser Arbeit entwickelt wurde. Weiters wurden die winzigen
Ausprägungen der elastischen Resonanzen identi�ziert und benutzt, um den weltweit
ersten Ausdruck des vertikalen Interaktionspotentials zwischen Helium und Bismuth zu
berechnen.

Während die Korrugationsfunktion, welche in dieser Arbeit bestätigt wird, für ein
Material mit leitender Ober�äche extrem ungewöhnlich ist, ist der Potentialtopf des
vertikalen Interaktionspotentials von vergleichbarer Tiefe wie bei anderen Metallen.
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Abstract

Crystal surfaces show completely di�erent behavior than the bulk. The crystal sym-
metry is suddenly broken and since for surface atoms there is no bonding partner any
more, the force constants and electronic states at the surface can change signi�cantly.
The surfaces of materials are of high technical importance. All of the chemical reactions
and the interactions with the outside occur at the surface. So the understanding of its
properties is of outstanding importance.

Helium atom scattering is a unique tool to investigate material surfaces. It isn't just
completely surface sensitive, but it also reaches the low incident energy to investigate
the vibrational modes of heavy metal atoms. The elastic scattering spectrum contains
a lot of information about the interaction potential between the helium atom and the
surface.

In this work elastic helium scattering spectra of the Bi(111) surface are presented.
Using only these a complete picture of the He-Bi(111) interaction potential is obtained.
The elastic scattering peaks and their height are used to calculate the electronic surface
corrugation applying a new iterative procedure that was developed during the course of
this work. Furthermore the diminutive features caused by elastic resonances are identi-
�ed and used to calculate the very �rst expression for the vertical interaction potential
between helium and bismuth.

Whilst the high corrugation con�rmed in this work is extremely unusual regarding an
electrically conducting surface, the vertical interaction potential-well is of comparable
depth to other metals.
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1. Introduction

Helium Atom Scattering (HAS) is a powerful tool to investigate materials surfaces, and
has been used during the past decades1,2. Using HAS, one can not only determine the
structural parameters, but also measure a variety of other surface properties as for ex-
ample the surface phonon dispersion or the particle-surface interaction potential3. HAS
has several advantages compared to other methods used for surface investigation such
as electron energy loss spectroscopy (EELS) or X-ray photoelectron spectroscopy (XPS)
since HAS is purely surface sensitive and nondestructive. The high surface sensitivity
results from properties of the probe atoms: The He atom is already repelled by a very
low electron density, consequently from the topmost layer. Elastic HAS spectra thus
do not map the surface atomic corrugation, but the electron density corrugation on the
surface4,5.
During the past decades HAS has been widely used to investigate the surfaces of ionic
crystals, semiconductors and metals. In the �rst case the strongly located electron den-
sities show a high corrugation whereas in the case of metals HAS measurements just
reveal a completely �at electron density. Whereas these materials have been widely
investigated using HAS, there exist hardly any measurements on semimetals with the
exception of graphite6�8.
Unfortunately, even with advanced techniques such as a pseudo-random chopper, the
measurements of inelastic surface properties take a lot of time. Therefore a very impor-
tant question is how much information can be extracted out of the elastic measurements.
The �rst step in the analysis of elastic scattering spectra is the determination of the geo-
metric surface structure by analyzing the positions of the scattering peaks. By a careful
study of the scattering peak heights it is also possible to determine the electron density
surface corrugation. But there is much more information encrypted in tiny bumps of
what is widely considered to be a static background. By studying these features even
inelastic e�ects via kinematical focussing1,3 can be investigated. But of capital impor-
tance is the fact that the little peaks and dips contain information about the vertical
interaction potential of the sample and the probe atom, giving rise to a complete picture
of the interaction potential.
Knowledge of this interaction potential is highly desireable, since the probe atom also
undergoes an acceleration before interacting with the repulsive part of the surface, caus-
ing a change of the kinetic energy of the helium atom and thus a di�erent scattering
angle1. Hence, the more detailed understanding of the static background gives rise to a
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1. Introduction

more accurate analysis of the scattering peaks.

Bismuth is a material that is very well suited for an investigation with HAS. It is
not only a semimetal, but also the electronic properties of the bismuth surfaces di�er
fundamentally from those of the bulk9,10. Even superconductivity was dicovered in Bi
clusters, nanowires and bicrystals11�13. Furthermore the large spin-orbit coupling in
bismuth makes it very interesting for future applications in spintronics14 but hinders
the ab initio simulations of the materials properties15.
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2. Theoretical Background

2.1. The Description of Materials Structures

Many materials such as metals or salts are built in a simple periodic structure, called a
crystal. The major advantage of a simple periodic structure is that the description of
the positions of the atoms can be simpli�ed to the coordinates of one or more atoms in
one of the smallest units of the periodic structure.
Those smallest units, called the unit cells of the crystal, are arranged in a periodic way.
This lattice is de�ned by three fundamental translation vectors a1, a2, a3. Those vectors
are chosen in a way that the crystal is mapped into itself by performing a translational
shift of

r′ = r + u1a1 + u2a2 + u3a3 (2.1)

with u1, u2, u3 being integers. This translational invariance in three dimensions de�nes
a lattice. In three dimensions, there are only 14 di�erent lattice types possible16. Since
the crystal is perfectly periodic with respect to lattice translation vectors, one only has
to describe the atomic positions within the parallelepiped described by the fundamental
translation vectors ai, set upon one lattice point. The resulting cell of the crystal is
called the primitive cell. It is a minimum-volume cell that �lls all space by periodic rep-
etition. Within the primitive or 'unit' cells, the number and the positions of all atoms
are the same. The position of the atoms with respect to the origin of the cell is given by
the so-called basis vectors that can be written as linear combination of the fundamental
translation vectors

r = b1a1 + b2a2 + b3a3 (2.2)

with 0 < bi < 1.

With the knowledge of the positions of the unit cells, given by the lattice translation
vectors, and the positions of the atoms within the unit cells, given by the basis vectors,
one can describe the coordinates of every atom in an in�nite crystal.

3



2. Theoretical Background

2.2. The Description of Materials Surfaces

At the surface of a crystal, things change dramatically. Not only the crystal symmetry
is suddenly broken, but also the chemical equilibrium that was achieved in the bulk is
no longer possible. Thus the investigation of material surfaces is a promising �eld of
research. In order to be able to study material surfaces, one has to be able to distinguish
and label the di�erent possible planes. The Miller-Index system is the dominant kind of
labeling the surfaces of a crystal. In this system, the orientation of the plane is speci�ed
as follows:17

� Visualize the plane in a coordinate system spanned by the translational lattice vec-
tors. Find the interception distances of the origin to the plane along the directions
ai in terms of ai

� Take the reciprocal values of those numbers and reduce those numbers to the
smallest integers with the same ratio.

� If the plane intersects one lattice vector at in�nity, the reciprocal is set to zero.

� The resulting numbers (hkl) are called the Miller indices.

The choice of brackets is extremely important in this case. Parentheses () indicate an
arbitrary plane just described by the Miller indices, if curly brackets { } are used one
usually wants to label the resulting plane as a plane with a very high symmetry as
for example the 100 plane in a cubic crystal. Square brackets label directions and not
planes. The [102] direction for example labels the a1 + 2a3 direction.

As pointed out above, the conditions for the positions of the atoms at the surface are
not quite as easy as in the bulk, in addition to a very severe break of symmetry, also
the chemical bonds at the surface are broken, giving rise to dangling bonds and a lot of
potential problems or unexpected changes. The two primary alterations of the surface
structure to the bulk structure are called reconstruction and relaxation.
Relaxation is an e�ect mainly due to the additional freedom gained for an atom at the
surface and means the change of the interlayer spacing in between the �rst and the
second layer of the material in comparison to the bulk values. Reconstruction, on the
other hand, is more complicated. A surface can be reconstructed or unreconstructed.
If the surface is unreconstruted, the positions of the atoms at the surface are the same
as in the bulk. However, especially the broken covalent or ionic bonds at the surface
cause a reconstruction of the surface. In this process, the di�erent atoms bind to each
other and thus change the interatomic force constants within the �rst layer. A possible

4



2.3. Scattering Experiments and the Reciprocal Lattice

consequence are di�erent atomic positions and also very often the appearence of super-
structures. In many experiments hydrogen is adsorbed at the surface in order to surpress
the e�ects of dangling covalent bonds.18,19

Atomic positions at surfaces, being two-dimensional, can again be described by the
superposition of a lattice grid and the basis vectors. Since the surface planes don't
have to be parallel to the planes de�ned by a pair of translational bulk lattice vectors,
the surface lattice can have a di�erent structure than the bulk lattice. Again, the two
dimensional periodic structure is described by a lattice:

r′ = r + c1A1 + c2A2 (2.3)

As in many other aspects of surface description, the nomenclature of Cabrera et al. is
adapted here. Using this nomenclature, surface speci�c vectors are written in capital
letters whereas small letters are used for the bulk vectors.

2.3. Scattering Experiments and the Reciprocal

Lattice

Since the crystal structure and the structure of the surface a�ect the properties of the
material, it is highly preferable to know the structure before thinking about using the
material for any application. Especially the surface structure is very important to most
applications, since all of the chemical reactions take place at the surface. For this reason,
methods to measure those properties are very important and also very common around
materials scientists. Since both the crystal and its surface are periodic structures in three
and two dimensions respectively, the interference pattern of a scattered wave provides
all the necessary information to determine the structure. Waves are re�ected from a
periodic structure according to Bragg's law:

2d sin θ = nλ (2.4)

The condition for the existence of re�ection is that the incoming wave should have a
wavelength smaller than 2d with d being the periodicity constant of the crystal. For
typical crystal lattice constants d is in the range of a few Å, so we can not scatter visible
light from it. The photon energies needed in scattering experiments are usually in the
X-ray range and can cause secondary e�ects when depositing this large amount of energy
in the crystal. Using De Broglies equation, one can relate the momentum of a particle
with a certain wavelength

λ =
√

2mE (2.5)

5
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Figure 2.1.: Wavelength dependence of the energy for photons, electrons, neutrons and
helium atoms

Since the mass is indirectly proportional to the wavelength, one needs less energy using
heavier particles in order to reach the same wavelength. This is shown in �gure 2.1.
However, scattering particles can be more complicated since there is no way to guar-
antee a monochromatic and equidirectional beam of particles, especially in the case of
electrons, where the particles carry a charge this can be rather bothersome.
Since the particles are scattered from a de�ned lattice structure, the position of the
scattering peaks should be related to this structure and one should be able to calculate
the parameters using an elastic scattering spectrum. This can actually be done using
a straightforward approach with the Fourier analysis. This kind of analysis is perfectly
suited to deal with the periodic conditions we approach in a crystal. Performing such
an analysis using not only Fourier transform but also the symmetries of the crystal is
easily done and can be read in Kittel16. The well known solution is that a scattering
peak appears when the momentum of the incoming wave/particle and the momentum
of the outcoming one only di�er by a reciprocal lattice vector g:

∆k = g (2.6)

g = v1b1 + v2b2 + v3b3

Where b1, b2 and b3 are the reciprocal lattice vectors

b1 = 2π
a2 × a3

a1 · a2 × a3

, b2 = 2π
a3 × a1

a1 · a2 × a3

, b3 = 2π
a1 × a2

a1 · a2 × a3

(2.7)
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2.3. Scattering Experiments and the Reciprocal Lattice

Figure 2.2.: Visualisation of the Bragg condition using the Ewald construction

and the vi are integers.
One is usually interested in elastic scattering processes which means that the magnitude
of the in- and the outgoing momentum stays constant, thus there should be no energy
transition involved. Hence,

(k + g)2 = k′ or (2.8)

2k · g = g2

This relation can be shown to be another representation of the Bragg condition 2.5.
Also, this representation allows a simple visualisation of the condition in k-space: A
scattering peak occurs, when the circle de�ned by the incoming momentum hits two
reciprocal lattice points at once. This is shown as a projection onto two dimensions
in �gure 2.2. The iso-energy sphere (or circle in the �gure) is called the Ewald-sphere.
Using these facts, one can calculate the corresponding g-vector for an experimentally
determined scattering angle and obtain the reciprocal lattice vectors. Knowing those,
one can not only calculate the crystal structure in real space, but also determine the
atomic spacing of this lattice.

7



2. Theoretical Background

Figure 2.3.: One dimensional chain of atoms connected by Hookean springs

2.4. Lattice Vibrations

To understand the properties of vibrations in crystals, one �rst has to think about the
forces in between the atoms. Since an unperturbed crystal can be assumed to have all
atoms in equilibrium positions, there should not be any force acting on the single atoms.
If one moves a single atom, the force acting on it can be approximated as being linear,
as long as the deformation is small. Since the forces can be assumed as linear, one can
think of the crystal as a lattice of atoms of massesM with an equilibrium lattice spacing
of a connected by Hookean springs with the force constants C.
The force Fs acting on the displaced atom s (displacement us) is:

Fs = C(us+1 − us) + C(us − us−1) (2.9)

Thus the equation of motion reads:

M
d2us
dt2

= C(us+1 + us−1 − 2us) (2.10)

The only relevant solutions are equivalent to plane waves, so the time dependence is
exp(iωt). Putting this in the equation of motion, it now reads:

−Mω2 = C(us+1 + us−1 − 2us) (2.11)

This is a di�erence equation and its solutions are travelling waves of the form:

us±1 = u · exp(isKa) exp(±Ka) (2.12)

with K being the wavevector and a being the spacing in between the atoms. With this
solution one easily obtains the dispersion relation for the angular frequency ω:

ω2 =
2C

M
(1 − cos(Ka)) or

ω =

√
4C

M

∣∣∣∣sin(Ka2
)∣∣∣∣ (2.13)

The main features of this solution are that it starts linear from zero and thus vanishes
at the origin (the so-called Γ-point) and reaches its maximum at K = π

a
, the Brillouin

zone boundary. After the boundary the function is just a mirrored version of itself and

8



2.4. Lattice Vibrations

Figure 2.4.: One dimensional diatomic chain of atoms connected by Hookean springs

then just repeats periodically.
This approximation surely is pretty far from reality, since it assumes not only linear
forces, but also a one dimensional chain of identical atoms as shown in �gure 2.3. Any-
how, the major properties as for example the periodicity apply to all crystals and all
directions. To generalize the model a bit, one considers a one dimensional crystal struc-
ture with two di�erent atoms per unit cell.

Having two di�erent atoms in each unit cell, as shown in �gure 2.4, results in a system
of two coupled di�erential equations by the very same procedure as the case of one atom
gave rise to the di�erential equation before. The system now reads:

M1
d2us
dt2

= C(vs+1 + vs−1 − 2us) (2.14)

M2
d2vs
dt2

= C(us+1 + us−1 − 2vs)

(2.15)

Applying the same restrictions to the solution as before, one eventually reaches the
condition for allowed vibrational modes:

M1M2ω
4 − 2C(M1 + M2)ω

2 + 2C2(1 − cos(Ka)) = 0 (2.16)

Figure 2.5 displays the dispersion relation obtained from this condition. The main
di�erence now is that besides the phonon branch that vanishes at the Γ-Point, there is
also a second one that doesn't vanish. The vanishing branch is called the acoustic, the
other one the optical phonon branch.
This approximation is still just valid for the one dimensional chain of atoms, a situation
that is barely achievable. However, in a majority of cases there are high symmetry
directions in a crystal where the movement of a crystal plane reduces to a one dimensional
problem. In this case the approximation holds. In all the other directions, more complex
forces have to be calculated, involving a higher number of contributing crystal atoms.
Additionally, the number of possible phonon branches depends on the dimension of the
problem. In a three dimensional crystal, each atom has three degrees of freedom, one
for each displacement in the x, y and z directions. If there are p atoms in the primitive
cell, the phonon dispersion shows 3 acoustical branches and 3p − 3 optical ones. Due
to symmetry operations in the crystal, the branches can be degenerate, �gure 2.6 shows
this case for germanium in the [111] direction.

9



2. Theoretical Background

Figure 2.5.: Dispersion relation of the one dimensional diatomic chain of atoms obtained
by solving equation 2.16. In a diatomic chain not only the acoustical branch
but also the optical branch appear

Figure 2.6.: Bulk phonon dispersion relation of germanium in the [111] direction. De-
pending on the displacement directions the phonon modes are labeled
transversal (T) or longitudinal (L) for each of the acousitc (A) and opti-
cal (O) modes. From Kittel 199616

10



2.5. Surface Phonons

The di�erent branches can be labeled by the direction of oscillation. For every possible
mode in three dimension there are two transversal branches (labeled TA for Transversal
acoustic and TO for transversal optical) and one longitudinal branch (labeled LA and
LO). In the case of germanium, shown in �gure 2.6 the transversal modes are degenerate
due to the crystal symmetry.

Elastic waves in a crystal are described by a Hamiltonian equivalent to the one of a
harmonic oscillator (for more detailed information read appendix C of Kittel16). Thus,
the energy of a lattice vibration is quantized and can only be added or reduced in �nite
values. The energy quantum of a lattice vibration is called a phonon. The energy of a
vibrational mode with angular frequency ω can be written as

ε =

(
n +

1

2

)
~ω (2.17)

with n being the total number of phonons in this state. A lot of important properties
of materials depend on the number and the energy of occupied phonon states, such as
the heat capacity or the thermal conductivity, since the movement of the crystal atoms
due to thermal energies can be described as thermally excited phonons. For further
information on this topic the author recommends chapter 5 of Kittel16.

2.5. Surface Phonons

The conditions for phonons dramatically change if a surface is introduced. The pres-
ence of a surface of the crystal destroys the symmetry in one direction and requires a
much more complicated analysis, that is neglected in this work. The basics of surface
vibrational research and the analysis of localized surface modes were �rst published by
Lord Rayleigh. His work is generally accepted as the starting point of surface vibra-
tional research. The surface, being basically a two dimensional object, at �rst seems
very easy to describe. The calculations of the phonons on an in�nite two dimensional
lattice of atoms is also easier than the equivalent calculation in the bulk, but it gives
rise to completely wrong solutions. The very important point a newcomer to the �eld
misses at �rst, is that the surface, though being a two dimensional object, is produced
by cutting a three dimensional object in half. So it is insu�cent to study the surface
alone, ignoring the underlying layers. In fact, one has to study a semi-in�nite crystal in
order to understand all the properties of the surface.
As mentioned before, in this work the nomenclature of Cabrera et al is used where cap-
ital letters denote surface speci�c values and z is de�ned as the direction perpendicular
to the surface.
The break of symmetry severely changes the view of phonon branches at the surface.

11



2. Theoretical Background

Figure 2.7.: Schematic representation of the origin of bulk bands. By projection of bulk
phonon momenta q to the surface, its surface component Qbulk contributes
to the surface phonon dispersion. From Scoles, chapter by Doak 199220

The di�erent phonons from the bulk branches can also reach the surface and get re�ected
at it, contributing to the surface phonon dispersion. All of those bulk phonons have to
be described in surface coordinates to calculate the dispersion relation.
Since a surface phonon momentum Q can be reached by di�erent bulk momenta q pro-
jected to the surface, the phonon branches in the bulk add up to a phonon band at the
surface, as shown in �gure 2.7. If only a �nite number of underlying layers is consid-
ered, as usual in slab calculation methods to simulate the surface phonon dispersion,
one can calculate the single phonon branches that are projected to the surface instead
of the band. This is shown in �gure 2.8 for lithium �ouride (LiF). As the number of
layers rises, those branches get increasingly closer to each other and �nally form the
bulk bands. Besides the bulk bands one can observe localized phonon branches as in
the bulk case. Those branches correspond to phonon states with a purely imaginary
perpendicular momentum component qz. The phonons corresponding to those branches
show an exponentially decreasing amplitude within the crystal and are thus localized at
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2.6. Helium Atom Scattering from Surfaces

Figure 2.8.: Slab calculations of surface phonon dispersion relations for LiF(001). The
bands originate from projected bulk bands. The surface speci�c phonon
modes are labeled Sx From Scoles, chapter by Doak 199220

the surface. Those purely surface speci�c modes are called Rayleigh modes, since Lord
Rayleigh �rst calculated them for an elastic isotropic medium.

2.6. Helium Atom Scattering from Surfaces

The �rst particle scattering experiments were performed in order to prove the de Broglie
relation, which predicts an energy-dependent wavelength for a particle. These �rst ex-
periments were carried out using H2 and He scattering from lithium �ouride or NaCl21.
Since vacuum and surface preparation technologies were not that advanced at that time,
the experiments were rather complicated and expensive and received very little attention.
As in the 1960's those techniques advanced, and scientists hoped for further enhance-
ment of surface technologies, the particle surface experiments received a lot of attention.
Atomic or molecular scattering from surfaces has many advantages compared to other
surface-investigation methods, which are:

� Atomic scattering is strictly surface sensitive. Other technologies such as EELS
(Electron Energy Loss Spectroscopy) have a more or less large penetration depth
of 2-3 surface layers, whereas in atomic scattering only the top layer contributes
to the scattering events.

� Due to the very low energies of thermal atoms in the region of 5-300 meV, the
scattering is purely non-destructive.

� The usage of noble gases like He, Ne or Ar not only eases the detection of the
scattered atoms (due to their low natural background), but also takes advantage
of their chemical inertness.

13



2. Theoretical Background

� Probe atoms like He are furthermore spherical, thus carrying no angular or mag-
netic momentum. They have also very little mass, so that multiple phonon pro-
cesses are suppressed.

On the other hand, the scattering of atomic beams also yields some disadvantages, that
should not be left out. The most signi�cant disadvantage is that atoms are comparatively
big and slow. While other probe materials like electrons, light or even neutrons produce
an impulsive, local deformation, atoms produce a more extensive deformation. Those
deformations can be described as a sum of normal modes. In the classical description
this is done with a sum of Fourier coe�cients, each one bound to a special frequency.
While for the more localized deformation one needs a lot of high frequency coe�cients,
extended deformations only need coe�cients of lower frequencies. This results in an
e�ective frequency cut-o�. Using atoms it is increasingly di�cult to interact with higher
frequencies.22

Unlike other experimental methods, atomic scattering from surfaces does not yield the
position of the atom cores. Due to the low energies, the atoms are repelled from the elec-
tron density a few Angstrom above the �rst surface layer due to the Pauli repulsion23�25.
In ionic crystals like the �rst investigated LiF or NaCl, the electronic density is strongly
localized at the core positions, hence in this case there is hardly any di�erence. In metals
on the other hand, the surface electronic density is smooth, resulting in the absence of
elastic scattering peaks. Therefore, on low-index metal surfaces elastic scattering peaks
only appear in rare cases26, so there the measurement of surface phonons using inelastic
scattering is dominant.

Elastic scattering as described in 2.3 only occurs at certain angles, that are related to
the surface structure. But in between those scattering peaks there also exists a signal.
The helium atoms can reach those angles by scattering inelastically from the surface via
interaction with a surface phonon. The former scattering conditions in equation 2.8 are
altered to:

Kf = Ki + G + Q and (2.18)

kf
2 = ki

2 ± ~ω(Q) (2.19)

with ω(q) being the energy of the surface phonon according to its dispersion and the
capital letters indicating the surface speci�c variables. The main problem in measuring
the surface phonon dispersion out of the signal in between the elastic scattering peaks is
that the energy of the phonon does not a�ect the angular distribution of the scattered he-
lium atoms, but their velocities. So the method to measure phonon dispersion relations
using helium atom scattering is to choose a certain angular position which determines
the phononic Q-Vector that can be measured. The speed of the helium atoms changes
according to the phonon energy. This speed can be measured using a time of �ight
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2.6. Helium Atom Scattering from Surfaces

measurement. For a more detailed view of the subject the author recommends22,27,28.

There are basically two di�erent kinds of helium scattering machines, the ones with
�xed source-detector angle and the ones where source arm and detector arm can be
moved independently. In the second case an elastic scattering spectrum can be mea-
sured by either moving the detector- or the source arm, or by using both. In this case
also the out-of plane scattering events can be measured. The machines with a �xed
geometry usually measure the angular distribution by rotating the sample and scanning
through all the possible angles.

2.6.1. Interaction Potential between the Probe Atom and the

Sample

Quite naturally in scattering processes, the potential between the probe atom and the
sample is essential. It determines not only the elastic scattering peaks via the included
corrugation function, but also the height of the peaks and the appearence of additional
features in the elastic spectrum. In general, the interaction potential V (r) can be written
as

V (r) =
∑
G

VG(z)exp(iG ·R) (2.20)

with R a vector parallel to the surface and z being the distance from the surface4. The
exponential term in 2.20 guarantees periodicity and the functions VG(z) de�ne the �real�
interaction. All the functions with G 6= 0 are assumed to be a simple exponential

VG(z) = VGe
−βGz (2.21)

with βG being some coe�cient, and the single remaining function of interest is V0, the
lateral average interaction potential. Qualitatively the interaction of a helium atom
approaching at a surface is easy. The potential exhibits a strong, short-ranged repulsive
part to account for the re�ection and the scattering. But as in all the other particle-
particle interaction potentials, an attractive part has to be included to consider the van
der Waals interaction.
The short ranged repulsive part originates from the Pauli repulsion in between the
closed helium shells and the electrons of the surface. It can usually be described with
an exponential term29

Vrepul = C exp(−βCz) (2.22)

with C and βC being material speci�c constants.
The long ranged attractive part is more complicated. At large distances, the attractive

15



2. Theoretical Background

part in the nonrelativistic limit reduces to23

Vattr = −C3/z
3. (2.23)

While C3 is given by the Lifshitz formula4

C3 =
~
4π

∫ ∞
0

du
ε(iu) − 1

ε(iu) + 1
αHe(iu) (2.24)

with ε being the dielectric function of the material and αHe the polarizability of the
helium atom.
The overall potential was most of the time approximated by a simple Morse potential

V0(z) = D
(
e−2βz − 2e−βz

)
. (2.25)

While this function yields analytical bound state energies very easily, which will be of
interest later, it does not describe the long range attractive potential correctly. A better
description of both the attractive part and the bound states is given by the 3-9 potential
of Cole and Tsong30

V (z) =

(
33/2D

2

)[(σ
z

)9
−
(σ
z

)3]
. (2.26)

Here, D denotes the well depth, σ is the distance where the potential vanishes and
z = 31/6σ is the equilibrium position of a bound atom. The potential is plotted in
�gure 2.9.

This potential does not only describe the long range attractive potential in a better
way than the Morse potential, it also has a very simple eigenvalue spectrum.

En = −D
[
1 − π~

3.07

n + 1
2

σ
√

2mD

]6
(2.27)

Here, En denotes the bound state energy of the probe atoms with mass m in the bound
state with quantum number n.

The Beeby Correction

The attractive part in the interaction potential described by 2.26 has numerous conse-
quences. Since the atomic displacement due to thermal phonons is very fast and the
helium atoms are very big and slow, the details of the interaction potential are not
important and the atom travels through an averaged potential. Within this potential
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Figure 2.9.: Shape of the 3-9 Potential given in equation 2.26.

the atoms are accelerated by the long range attractive part which gives rise to a higher
e�ective particle energy Eiz eff and a reduced e�ective angle of incidence θi.

Eiz eff = Eiz + D (2.28)

sin θ′i =
sin θi√
1 + D

Ei

.1

The R-dependence of V(z)

In all these approximations the atom-surface potential is assumed to be constant for
every R at the same distance z from the surface. In general, the e�ective turning point
and thus the overall potential changes with the lateral position of the impact within
the surface unit cell. Figure 2.10 displays this e�ect for the positions A and B, one
being at an atom position and one being in between atomic positions. In helium atom
scattering experiments this has practically no e�ect since the helium atoms are too
large and too slow compared to the atomic vibrations. The periodic change of the local
potential eigenvalues on the other hand has an e�ect on the width of resonance features
as explained in section 2.6.3.

2.6.2. Elastic Peaks and Surface Corrugation

By using Braggs law and the knowledge about the wave-particle dualism the angles of
the elastic scattering peaks can be easily calculated. But the measured elastic peaks
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Figure 2.10.: Interaction potential equipotential lines for an ordered surface in terms of
the potential depth D. Dependence of the e�ective potential on the relative
position A or B. From Farias & Rieder 19981

also exhibit additional information, mainly due to their height and their broadness. The
latter mainly depends on the energy distribution of the incoming helium beam and is
thus given by the experimental parameters. The height of the peaks on the other hand
depends on the roughness, or corrugation of the sample. As explained before, in helium
atom scattering, the probe atoms are not re�ected by the nuclei, but from the electron
density a few Angstrom above the surface. This is the reason why in ionic crystals,
where the charges are �rmly bound to the nuclei, the corrugation and thus the elastic
scattering peaks are high. On metallic surfaces on the other hand, the electron density
corrugation is completely �at, since a corrugation would lead to high electrostatic �elds
and a resulting current. Here one can not observe any elastic scattering peaks.31

Since there is a clear correlation between those two variables, there has been great e�ort
in trying to link them in order to be able to calculate the surface corrugation from the
measured elastic peak intensities. This section of this work brie�y describes the two
mainly used approximative methods1 and introduces a third one used in this work.

The Hard Corrugated Wall Model

Almost every approximative method to solve the corrugation-scattering problem uses the
hard corrugated wall model. The general interaction potential V (R, z) with R being
a position vector parallel to the surface and z being the distance from the surface is
at �rst assumed as a product ξ(R)V (z) with ξ(R) being the surface corrugation and
V (z) the probe-surface interaction potential. In this approach, the attractive part of
the probe-sample interaction potential is neglected and the repulsive part is in�nite and
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introduced instantaneuos at the surface, thus, introducing a hard wall.

V (z) =

{
0 for z > 0

∞ for z ≤ 0
(2.29)

All of the presented approximative methods also depend on the Rayleigh assumption. It
declares that both the incoming and the outgoing particles can be considered as plane
waves up to the surface of the sample.

Ψ(R, z) = exp[i(K ·R + kizz)] +
∑
G

AGexp{i[(K + G) ·R + kGzz]} (2.30)

with the incoming wavevectors ki = (K, kiz), the outgoing ones kG = (KG, kGz) and
the scattering amplitudes AG. Applying the hard wall approximation, the wavefunction
must vanish at the surface due to the in�nite potential Ψ[R, z = ξ(R)] = 0, hence one
obtains: ∑

G

AGexp{i[G ·R + kGzξ(R)]} = −exp[ikizξ(R)] (2.31)

The GR-Method

By multiplying each side of equation 2.31 with exp[−ikizξ(R)], one obtains the matrix
equation ∑

G

AGMGR = −1 (2.32)

with

MGR = exp{i[(kGz − kiz)ξ(R) + G ·R] (2.33)

Equation 2.32 has to be ful�lled for everyG andR considered. Therefore one chooses the
R and G vectors in a way that they are uniformly distributed over the unit cells in real
and reciprocal space respectively and calculates a quadratic matrixMGR. This gives rise
to a simple system of linear equations that can be e�ciently solved by matrix inversion,
as long as |MGR| 6= 0. This last condition is ful�lled as long as only R vectors within
the �rst unit cell are chosen32. The calculated AG's relate to the scattered intensities
with:

PG =
|kGz|
|kiz|

AGA
∗
G →

∑
G

PG = 1 (2.34)

The calculated PG's are the expected elastic scattering intensities for the assumed cor-
rugation ξ(R). The GR-Method delivers convergent solutions as long as the relative
corrugation, β0 = ξmax

a
is smaller than 18%1.
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The Eikonal Approximation

If one multiplies equation 2.31 with exp{−i[G′ ·R + kG′zξ(R)]} and integrates over
the unit cell, one obtains the matrix equation∑

G

MG′GAG = A0
G′ (2.35)

whereas

MG′G =
1

S

∫
u.c.

exp{i[(G − G′) ·R + (kGz − kG′z)ξ(R)]}dR (2.36)

and

A0
G′ = − 1

S

∫
u.c.

exp{−i[G′ ·R + (kG′z − kiz)ξ(R)]}dR (2.37)

where S denotes the unit cell area1. In cases where β0 ≤ 10%, the matrixMG′G reduces
approximately to unity and thus

AG = A0
G′ (2.38)

One just has to integrate equation 2.37 to calculate the expected intensities33. The
eikonal approximation additionally produces problems in unit cells with mirror symme-
try. Here it can not be distinguished if the calculated ξ(R) or −ξ(R) corresponds to the
correct solution and it has to be checked with some other method1.

The Inversion Problem

One is usually interested in calculating the surface corrugation ξ(R) from the measured
intensities PG. This represents an inversion problem and can not be solved in an easy
way. The usual approach is to approximate the surface corrugation using a sum of two
dimensional cosine functions and optimizing the parameters till the calculated intensities
�t the measured intensities as well as possible.
However, there is another way to reach a su�ciently close approximation to the real
surface corrugation without modeling the surface using cosines. In this approach, one
calculates the corrugation iteratively using the Rayleigh approximation 2.31.
A starting corrugation can be calculated using

ξ0(R) =
1

|ki| cos θi
· arccos

[
− 1√

P0 + 1

∑
G′

√
PG′

cos θi
cos(θSD − θi)

· cos (G′ ·R)

]
(2.39)
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while setting the inde�nite values to an arbitrary value near the real value and iterating
the corrugation using

ξn(R) =
1

|ki| cos θi
· arccos

[
− 1√

P0 + 1

∑
G′

√
PG′

cos θi
cos(θSD − θi)

· · · · (2.40)

· · · cos
(
G′ ·R + |ki| · cos(θSD − θi) · ξn−1(R)

)]
The P0 appearing in these equations is the specular peak intensity. The complete deriva-
tion of this iteration rule can be found in the appendix.

2.6.3. Surface Resonances

In this section a special e�ect of inelastic scattering is viewed in greater detail. As al-
ready explained in section 2.6, inelastic scattering from surfaces occurs when a helium
atom is scattered from the surface while interacting with a surface phonon. In this case
equations 2.18 and 2.19 hold. The inelastically scattered helium atoms contribute to the
inelastic background signal in an elastic scattering measurement and produce a more or
less homogeneous background as can be seen in �gure 2.11.
The momentum Q of the interacting phonon de�nes the angle at which the helium

atom will leave the surface. It is calculated very easily using equations 2.18 and 2.19

|Q| =

√
k2i ±∆E

2m

~2
sin(Θf ) − ki sin(Θi) (2.41)

which requires that the energy of the phonon is known. Since most of the time the
dispersion of the surface phonons is unknown, the energy has to be measured using a
time of �ight measurement beforehand.27

However, in most elastic spectra little features appear in between the elastic scattering
peaks. Sometimes these features are just small and broad variations of the background
intensity, sometimes large and sharp peaks appear. In general, two important processes
cause such features.
The �rst one is a kinematical focussing e�ect, that arises when the so-called scan curve
(here for a �xed-angle geometry with the source-detector angle ΘSD)

∆E(Q) =
~2

2m

(
(ki sin(Θi) +Q)2

sin2(ΘSD −Θi)
− k2i

)
(2.42)

is tangent to a surface phonon dispersion. At this special angle a lot of possible phonon
modes contribute to the inelastic background intensity, which consequently rises. Kine-
matical focussing peaks are easily identi�ed by their special shape. Figure 2.12 illustrates
the origin of the kinematical focussing e�ect. In �gure 2.12a, the scan curve intersects
the phonon dispersion, enabling the participation of many phonons to the signal. Figure
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Figure 2.11.: Elastic HAS spectra of NaCl <100> at di�erent temperatures, showing the
widely homogeneous background signal with various kinematical focussing
features. From Benedek 198334

Figure 2.12.: Illustration of the origin of kinematical focussing e�ects. (a) The scan curve
cuts the dispersion twice. The scattered intensity is slightly enhanced. (b)
The scan curve is tangent to the dispersion. A maximum of phonon modes
contribute to the scattered intensity, yielding a peak. This is known as the
kinematical focussing e�ect. (c) The scan curve cuts the dispersion once,
the scattered intensity suddenly falls back to a normal value.
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2.12b shows the case at the peak of the feature. The scan curve is now tangent to the
dispersion and a maximum of phonons participate to the background signal at that po-
sition. If the angle is increased further, the case shown in �gure 2.12c occurs. The scan
curve then misses the dispersion and the enhancement of the background signal rapidly
vanishes. This gives rise to a slowly arising peak that sharply vanishes, producing a
signi�cant triangular shape.

The other, more interesting e�ect is the so-called elastic surface resonance. Those
resonances arise from a more complex behavior of the scattering process and require a
more realistic treatment of the surface. As explained in section 2.6.2, if the surface is
assumed to be a hard corrugated wall, an incoming helium atom has two possibilities. It
can either scatter elastically by interacting with a surface G-vector, yielding the elastic
scattering peaks, or to scatter inelastically interacting not only with a G-vector but
also with a surface phonon. If an interaction potential like the 3-9 Potential in section
2.6.1 is introduced, conservation of energy suddenly allows additional channels. If the
interaction potential possesses bound states, the incoming atom does not only have the
listed possibilities, but can also interact with every G-vector to reach a bound state at
the surface.

It is very important to understand the occurrence of the elastic resonance features in
the elastic spectrum. The two most important processes for the appearence of elastic
resonance features are (C) and (D) in �gure 2.13. Case (C) illustrates the inelastic
scattering by interacting with a surface phonon and a possible surface lattice vector:

Ki + Q ± G = Kf (2.43)

ki
2 ± E(Q) = kf

2

Case (D) illustrates a somewhat more complicated procedure. In elastic resonant scat-
tering the helium atom enters the bound state elastically. In this case the new scattering
channel opens, if

Ki ± G = Kf (2.44)

ki
2 =

(
Ki + G‖

)2
+ G2

⊥ −
2m

~2
|εn| (2.45)

where εn is the bound state energy and G‖ and G⊥ the parallel and perpendicular
components of the G-vector to the plane of incidence. Or, if in equation 2.45 only
G-vectors parallel to the angle of incidence are considered,

ki
2 = (Ki + G)2 − 2m

~2
|εn| (2.46)

This formula for the conservation of energy does not explain what happens in detail.
The incoming helium atom with Ki and kiz interacts with a surface G-vector in such a

23



2. Theoretical Background

Figure 2.13.: Illustration of the di�erent possibilities of di�raction. The incloming beam
(A) can be scattered elastically (B), inelastically by interacting with a
Phonon (C) or can be temporarily trapped in a bound surface state (D).
From Jardine, 200935

way that the energy of the particle in parallel movement to the surface is increased

Ki
2 → (Ki + G)2 (2.47)

while at the same time the conservation of energy forces the perpendicular energy in kiz

to decrease. If this condition is ful�lled for

kiz
2 → −2m

~2
|εn| (2.48)

with εn being an energy eigenstate of the atom-surface interaction potential, the atom
is thereby bound to this surface state.
The atom can move freely along the surface until another scattering event takes place.
This is illustrated in �gure 2.14. The atom can leave the bound state by interacting
with a G-vector and / or a phonon. If it leaves the surface purely elastically by only
interacting with the reciprocal surface vector G′, the whole condition reads as:

ki
2 = (Ki + G)2 − 2m

~2
|εn| = (Ki + G′)

2 − 2m

~2
|εn| = kf

2 (2.49)

Since the parallel momentum di�erence is just G − G′,

Kf = Ki + G − G′ (2.50)
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Figure 2.14.: Illustration of the helium-surface interaction potential along the path of a
bound atom. An atom can enter a bound state of the interaction potential
and travel along the corrugated surface if equation 2.45 is ful�lled. From
Benedek & Toennies 201136
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Figure 2.15.: Schematic illustration of an inelastic scattering process and a resonant scat-
tering process with identical outcome. From Benedek & Toennies 201136

the angle of the outgoing helium particle must correspond to an elastically scattered
atom. In the case of purely elastic adsorption and desorption, the only measurable
di�erence at the resonance condition is the change of the relative intensities of the
elastic scattering peaks. If on the other hand inelastic interaction with a phonon is taken
into account, the case is by far more interesting. In this case just elastic adsorption is
considered again, while the desorption process is considered to be inelastic. This means
that the conditions for the atom to transit into the bound state remains unchanged,
while the kinematic condition for the parallel momentum is altered to

Kf = Ki + G − G′ + Q (2.51)

Thus, only the angle at which the helium atom leaves the surface is a�ected by the
properties of the phonon. Since there are phonons with every momentum available, the
outgoing helium atom can contribute to the background signal at any angle and it is
indistinguishable from the directly scattered ones.
The careful reader may ask how the resonance process can be of any interest if the
outcome of this process is indistinguishable from the process that also occurs without
the possibility of the bound state. But this is exactly the interesting point. Everywhere
in nature, when two di�erent paths of events give rise to an indistinguishable outcome,
interference occurs. By interacting with the surface and, especially interacting with
the surface phonon, the quantum-mechanical phase of the helium atom is altered and
di�ers from the phase of the directly scattered helium37. As a consequence, those two
wavefunctions interfere either constructively, yielding a peak in the background signal,
or destructively, producing a dip in it. The size and shape of those resonant features are
studied in Celli's paper37 and will not be further discussed here.

In order to measure the resonance e�ects, the resonance condition 2.45 has to be
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Figure 2.16.: Constructive approach to illustrate the resonance condition 2.45. Every
time the energy circle hits a reciprocal lattice point, resonance processes
are possible. From Hoinkes 19803

ful�lled. According to Hoinkes3 this can be done in three di�erent ways (see �gure
2.16):

� Variation of the azimuthal angle γ at �xed Ei and Θi by rotating the sample
around its surface normal. This corresponds to changing the respective size of G⊥
and G‖, while keeping G2 = G2

‖ + G2
⊥ constant, since the surface lattice vectors

will just change their orientation. The resonance condition is ful�lled, when one of
the G vectors hits the ki-circle. This kind of measurement is the most popular for
measuring the bound state resonances, since the peaks produced are very sharp3.

� Variation of the incident angle Θi while keeping γ and Ei constant, as it is done
in standard elastic measurements. This changes the length of the parallel momen-
tum Ki = |ki|sin(Θi) along the surface and therefore shifts the circle in �gure
2.16. This method is very convenient, since the elastic measurements of structural
determination experiments can be analyzed.

� Variation of the incident Energy Ei by changing the nozzle Temperature TN , while
keeping Θi and γ �xed. This corresponds to changing the length of Ki, as in the
previous example, while simultaniously changing the radius of the circle. This kind
of experiment is usually performed at the incident angle of the specular peak, since
this position provides the best signal to noise ratio.
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Figure 2.17.: Cellis diagrams to show the elastic scattering (a) process and the elastic
scattering via the bound state resonance (b). Every point corresponds
to an energy of the helium atoms. The bound states along the surface
show band structure e�ects due to the periodic variation of the ineraction
potential. From Benedek & Toennies 201136

Bound State Dispersion

All of the considerations up to now assumed the atom-surface interaction potential to
be representable as a simple product of the surface corrugation function ξ(R) and the
perpendicular interaction V (z). As explained before and illustrated in �gure 2.10, the
perpendicular interaction potential depends on the lateral impact position of the helium
atom within the surface unit cell. This means in particular, that the potential varies
periodically along the path of a bound atom. Classically speaking, the total energy of
the atom, bound to the surface and moving with the momentum K would be

En(K) =
~2K2

2m
− |εn| (2.52)

thus, just a shifted parabola. But since there is a periodicity in the potential and thus a
corresponding G-vector, this dispersion is also altered by band structure e�ects, mainly
the appearence of gaps and a shift of the energies close to the unit cell boundary37.
These alterations especially a�ect the bound state with the lowest energy, since a small
variation on the potential well depth gives rise to large variation in the energy.
Due to the fact that in a helium beam apparatus there is some variability in the energies
and the angles of the incoming helium atoms, the helium atoms do not hit the surface at
the same spot. Combined with Celli's dispersion37, this yields a high variability in the
case of a resonantly scattered atom. The interaction potential measured by scattering
experiments is thus only an averaged one.
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2.7. Structure and Properties of the Bi(111) surface

Figure 2.18.: Three dimensional structure of bismuth with the hexagonal and the rhom-
bohedral unit cell. From Hofmann 200614

2.7. Structure and Properties of the Bi(111) surface

Bismuth, like most group V semimetals, crystallizes in a rhombohedral symmetry. Ev-
ery atom has three nearest neighbours and three next nearest neighbours that are just
slightly further away. The so-called "arsenic" A7 structure has two atoms per unit cell.
The vectors spanning the unit cell enclose an angle of 57.35°and the distance ratio for
the second atom is d1

d2
= 0.88 with d1 and d2 as labeled in �gure 2.18. The Bi(111)

plane is the most important surface of bismuth for technical applications, since it is
its natural cleavage plane and thus cheap and easily available. It additionally turns
out to be the preferred direction for epitaxial growth. Figure 2.19 displays two di�er-
ent views of the Bi(111) surface. As indicated there, bismuth crystallizes in a bilayer
structure. Within those bilayers, the atoms are thightly bonded by covalent bonds. In
between those bilayers, the bonding is weak and van-der Waals like and can easily be
broken. This is the main reason why the (111) plane is the natural cleavage of bismuth.14

The surfaces of bismuth are particularly well suited for an investigation with helium
atom scattering since their properties di�er subtantially from the bulk. For example,
the bismuth surfaces are far better metals than the bulk, and every method compared
to HAS measures also a lot of bulk values as explained before. There have been a lot of
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2. Theoretical Background

Figure 2.19.: Structure of the Bi(111) surface. (a) Top view of the �rst three atomic
layers. The light blue circles denote the top layer nuclei. (b) Side view
of the surface. Bismuth crystallizes in a bilayer structure perpendicular to
the [111] direction. From Hofmann 200614
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2.7. Structure and Properties of the Bi(111) surface

Figure 2.20.: Structure of the Bi(111) top surface layer with the two distinguishable
directions marked. The dashed red rhombus indicates the unit cell with a
distance a = 4.54 Å.38

measurements to determine the electronic properties of the Bi(111) surface. The most
interesting results a�ect the electron and hole pockets at the surface reported by Ast
and Höchst 20019. Those localized charge densities could account for an electron density
surface corrugation that would otherwise not be expected on a metallic surface.
The only two distinguishable directions on the surface are the <11> and the <10>
direction as sketched in �gure 2.20.
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3. Experimental Setup

All measurements used in this work were performed on the HANS1 helium atom scat-
tering machine. As illustrated in �gure 3.1, the source-detector angle of the machine is
�xed at ΘSD = 91.5°. The elastic scattering spectra can be measured by rotating the
sample, thus changing the angle of incidence at the same time as changing the angle of
the outgoing atoms.
A nearly monoenergetic beam of helium atoms is produced in the supersonic gas ex-
pansion nozzle ((1) in �gure 3.1). The temperature of the nozzle can be varied using a
coldhead between 70 K and room temperature, corresponding to an energy range from
15.1 to 64.6 meV. The higher energies are practically not accessible, since the beam
intensity falls with rising temperature proportional to 1√

T
.27

In the main chamber the helium beam hits the sample and is di�racted. The sample can
be rotated and its temperature varied between 123 and 900 K. Its surface is furthermore
cleaned by sputtering using an argon ion gun ((7) in �gure 3.1) and annealing at 423 K.

1Helium Atom Nondestructive Scattering
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3. Experimental Setup

Figure 3.1.: Illustration of the HANS helium atom scattering apparatus. The source-
detector angle ΘSD is 91.5°. From Tamtögl et al 2010,39.
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4. Measurements and analysis

4.1. Elastic HAS Measurements on Bi(111)

Elastic spectra of the Bi(111) surface were recorded using helium atom scattering at
several incident energies. The two most signi�cant measurements are presented here,
other measurements were mostly used to check the predictions made by the measured
results.
Figures 4.1 and 4.2 display two elastic scattering spectra for measuring two qualitatively
di�erent entities. The intensities of the peaks in those two measurements di�er because
the HAS apparatus was recalibrated. While the measurement displayed in �gure 4.1
shows some higher �uctuation in the background signal, it is perfect for measuring the
bound state energies, while the measurement in �gure 4.2 contains information for the
surface corrugation up to the third order.

4.2. Surface Corrugation

Using the measurements presented in �gure 4.2, the surface corrugation can be calcu-
lated, with di�erent approaches such as the GR-method (equation 2.32) or the eikonal
approximation (equation 2.37). In this work the straightforward approach of the iterative
calculation (equations 2.39 and 2.40) was chosen since it was unclear if the approxima-
tions used in previous work38 were valid for bismuth.
The measurements were taken at a nozzle temperature of 130 K, corresponding to a
beam energy of 28 meV. The surface has been cooled down to 118 K to minimize the
inelastic background signal.
In this iterative approach the natural asymmetry of the elastic spectrum was ignored
and the intensities of the same orders on both sides were averaged, as well as the relative
angles with respect to the specular peak. The used data is listed in table 4.1.
The iteration doesn't converge near the core positions and has to be �tted there. Apart
from this drawback, the calculated corrugation height corresponds to the one obtained
by Mayrhofer et. al.38 as listed in table 4.2. Figure 4.4 and 4.3 display the calculated
corrugation functions by Mayrhofer et al and the current work respectively in three di-
mensions.
Since the maximum height of the calculated corrugation in the iterative approach is
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4. Measurements and analysis

Figure 4.1.: Elastic helium atom scattering spectrum from Bi(111) up to �rst order at
a beam energy of 15.1 meV. (a) The measurement in <10> direction yields
high �rst order peaks. (b) Besides the small �rst order peaks, there are
some additional features to be seen in the <11> direction.

36



4.2. Surface Corrugation

Figure 4.2.: Elastic helium atom scattering spectrum of Bi(111). (a) At a beam energy
of 28 meV, third order peaks are measurable in the <10> direction. (b) At
a beam energy of 22.6 meV, only the �rst order peaks in the <11> direction
are in the angular range.

37



4. Measurements and analysis

Table 4.1.: Scattering data used for the iterative calculation of the surface corrugation
taken from the <10> measurement in �gure 4.2

order ... Number of the order of di�raction peak
angle ... Angle of the di�raction peak relative to the specular

in degrees (averaged over both directions)
I ... Intensity of the di�raction peak (averaged over both directions)

in counts per second (cps)
order/# angle/° I/cps

0 0.00 2600.0
1 9.24 687.5
2 18.29 446.0
3 28.36 60.5

Table 4.2.: Corrugation heights from di�erent calculations in comparison to the solution
of the iterative approach. Data from Mayrhofer et. al.38

Method ... Approximation Method
corr. height ... Corrugation height calculated in % of the lattice constant a

Method corr.height / % of a

GR38 12.2
Eikonal38 12.0
Iterative 16.3
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4.3. Surface Resonances

Figure 4.3.: Calculated corrugation function using the iterative approach from equations
2.39 and 2.40

at an interpolated point, the GR-method and the eikonal approximation most certainly
produce more precise results. Besides the existence of a surface corrugation on a con-
ducting surface without steps, the structure of the surface itself is very interesting. In
between the nearest neighbour atoms there seems to be an enhanced electron density.
This could point to covalent-like bonds along the surface and will be subject to further
investigations.

4.3. Surface Resonances

The measurement of surface resonances is signi�cantly more complicated. The <11>
spectrum plotted in �gure 4.1 contains a lot of information that is invisible on a larger
scale. The measurements were taken at a nozzle temperature of 70 K, corresponding
to a beam energy of 15.1 meV, the sample was at room temperature. The enlarged
background signal plotted in �gure 4.5 shows a lot of �uctuation and some clear features
at 51°and 37°. In order to prove that those peaks are resonance features, several peaks
have to correspond to the same bound state energy. Since the features are rather broad,
this task turns out to be more complicated than expected. Since the bound state energies
are unknown, one has to check every angular position at which the resonance is suspected

39



4. Measurements and analysis

Figure 4.4.: Calculated corrugation function using the eikonal approximation. From
Mayrhofer et. al.38

Figure 4.5.: Enlarged part of the <11> measurement in �gure 4.1. The features at
51° and 37° are suspected to be resonance peaks.
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4.3. Surface Resonances

Figure 4.6.: Enlarged part of the <11> measurement in �gure 4.1. The energy lines
calculated using equation 4.1 lead to positive binding energies for the G-
vectors G10 and G11.

considering interactions with every possible G-vector that would indicate a positive
binding energy. As explained in section 2.6.3, the variation of the incident angle Θi

changes only the parallel momentum Ki, so for every G-vector there should be an easy
expression for the possible bound state energies. Rewriting equation 2.45 leads to the
desired expression.

|εn (Θi,ki,G)| =
~2

2m

[
(|ki| · sin(Θi) + |G| · cos(φ))2 + (|G| · sin(φ))2 − ki

2
]
(4.1)

with φ, the angle between the scan direction and the G-vector. Using equation 4.1, all
curves for �xed G-vectors that lead to positive binding energies can be plotted into the
elastic spectrum, as displayed in �gure 4.6.
Fortunately, only two G-vectors, namely G10 and G11 correspond to positive binding
energies in the measured angular range and their angular range does not overlap in
the typical energy range for interaction potentials. Since only three features are large
enough to be clearly considered, the straightforward approach is to �t the clear features
with a gaussian pro�le (1 in �gure 4.7). The angle of the gaussian maximum is mapped
back to the corresponding energy for a resonance with an available G-vector (2 in �gure
4.7). Then the angular positions for resonances with other G-vectors for this energy
are determined (3 in �gure 4.7). Finally, possible resonance features at these positions
are �tted with a gaussian (4 in �gure 4.7). Figure 4.7 displays the result for one of the
features. The other, very similar measurements of two further binding energies can be
found in the appendix.
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4. Measurements and analysis

Figure 4.7.: Mapping of di�erent features in the elastic spectrum to certain binding en-
ergies using equation 4.1. (1) The obvious peak is �tted with a gaussian.
(2) The peak angle is mapped to the corresponding resonance energy with
the available G-vector. (3) The angle of another G-vector interaction cor-
responding to the same energy is elicited. (4) Possible resonance features at
this angle are �tted with a gaussian.

Figure 4.8 displays the identi�ed resonance features in the considered elastic spec-
trum. A short explaination of the nomenclature: (1, 1)2 corresponds to a resonance of
the incoming helium atoms with the G11-vector and the bound state with n = 2. The
quantum number of the bound state is calculated in section 4.3.1, but already written
here. The measured bound state energies were checked by calculating the angular po-
sition of expected resonances in the <10> scan in �gure 4.1 (a). As �gure 4.8 clearly
shows, the expected positions yield a higher �uctuation in the background signal than
the surroundings.
Since the signal to noise ratio of these measurements is very low, the measured energies
were checked with every elastic measurement performed. The corresponding plots can
be found in the Appendix.

The measured binding energies are:

E0 = (6.18 ± 0.55) meV

E1 = (3.49 ± 0.28) meV (4.2)

E2 = (1.42 ± 0.30) meV

The high uncertainty of E0 can be explained with the dispersion of the bound energy
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4.3. Surface Resonances

Figure 4.8.: Map of the measured resonance peaks in the <11> direction (b) and the
calculated position of expected resonances in the <10> direction (a)
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4. Measurements and analysis

Figure 4.9.: Solution of a least-squares �t of equation 2.27 for the measured energy values
4.2. The integer parameter n is treated like a continuous variable to show
the dependence of Eb.

levels and the averaging due to the angular uncertainty (see section 2.6.3).

4.3.1. He-Bi Interaction Potential

With the bound state energies 4.2 available, an estimate of the interaction potential
parameters can be calculated. Figure 4.9 displays the solution of a least-squares �t of
equation 2.27 for the measured bound state energies given in 4.2. The resulting param-
eters of the 3-9 potential given in equation 2.26 are

D = (8.300 ± 0.002) meV (4.3)

σ = (0.2891 ± 0.0002) nm

Figure 4.10 shows the calculated potential and its bound energy states. The calculated
parameter for the potential depthD agrees well with values from previous measurements.
The potential depth for Cu(117) and Ag(110) interaction with helium are 7.41 meV40

and 5.7 meV41 respectively.

4.3.2. Control Measurements in the Specular Intensity

Although the measured energy values correspond to the expected 3-9-potential shape
very well, the measured features in the angular distribution are unsu�ciently weak. To
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4.3. Surface Resonances

Figure 4.10.: Calculated perpendicular atom-surface interaction potential between he-
lium and Bi(111). The red lines indicate the measured bound state energies
and their uncertainties, the blue lines the analytical bound state values for
this potential.

approve the energy values 4.2, the outcome of a di�erent measurement was predicted.
As explained in section 2.6.3, the surface resonance e�ects can be observed in three
di�erent measurements. The most popular one, the variation of the azimuthal angle
γ is inexecutable on our apparatus, so the only remaining option is the temperature
dependence of the specular peak.
The used formula for determinating the positions is the same as 4.1. The main di�erence
is that the angle is now �xed at the specular peak position, and the magnitude of ki
is varied. This equation is plotted in �gure 4.11. The intersection points in �gure 4.11
determine the expected resonance temperatures given in table 4.3.

To validate the expected values, a specular intensity measurement was performed be-
tween 60 and 200 K. The specular intensity graph is plotted in �gure 4.12. The overall
temperature dependence of the helium intensity from the nozzle without the resonance
e�ects would be ∼ 1√

T
.27 However, besides the continuous decrease of the overall inten-

sity, some clear and intense features are recognizeable. The most prominent features
in this measurement occur at 70.0 K, 86.8 K and the very broad feature at 108 K.
The latter two seem to correspond to the (1,−1)2 and the (1, 1)0 resonances. The high
broadness of the (1, 1)0 feature can be explained by the variation of the potential depth
by lateral position in the surface unit cell. Since the n = 0 bound state varies strongly
in energy, the helium beam is resonant in a broad range of temperatures. The constant
shift of approximately 8 K between the expected and the measured temperature values
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4. Measurements and analysis

Figure 4.11.: Calculated energy lines for a resonant interaction of the specular peak in
<11> direction with certain G-vectors. The expected resonance positions
are the intersection points between the G-lines and the measured energy
values.

Table 4.3.: Expected temperatures for resonant scattering e�ects on the specular peak
as plotted in �gure 4.11

RL ... Resonance label
T ... Temperature of the expected resonance

RL T / K

(1,−1)1 49.5
(1,−1)2 82.1
(1, 1)0 116.2
(2, 0)0 144.9
(1, 1)1 170.5
(2, 0)1 194.7
(1, 1)2 207.6
(2, 0)2 229.8
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4.3. Surface Resonances

Figure 4.12.: Variation of the specular intensity with the nozzle temperature. The dip
at 86 K and the broad feature at 115 K can be explained with the aid of
the bound state resonance energies 4.2

originated from an intermediate temperature calibration of the apparatus.
The dominant dip at 70.0 K can not be explained using the most probable G-vectors.
However, there could be an explanation for this dip in interactions with high-order G-
vectors pointing in the opposite direction. Another option is that our understanding of
the temperature dependence of the specular peak is incomplete. If additional e�ects are
taken into account, the apparent shift of the resonance features in the specular measure-
ments could be explained. This will be subject for further investigations.
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5. Summary and Discussion

In the course of this work a complete picture of the He-Bi(111) interaction potential was
derived from elastic helium atom scattering spectra. The corrugation function was cal-
culated using an iterative procedure to �t the measured peak heights and was compared
with previously calculated corrugation functions. Additionally, the vertical interaction
potential was determined from elastic bound state resonances and checked by a mea-
surement of the specular peak intensity as a function of the incident beam energy.
The performed measurements, i.e. the elastic angular spectrum and the temperature de-
pendence of the specular peak are not the ideal methods to determine the bound state
energies of the interaction potential, since in these measurements the resonant features
are broadened by additional e�ects37.
The resonance features in the elastic spectra mostly exhibit a very low intensity. The
determination of the corresponding energy values is therefore very di�cult and can give
rise to additional errors. Also some of the more clear features could have appeared due
to kinematical focussing e�ects, which were not considered in this thesis.
The determined energy values were used to �t the parameters of a 3-9 Potential as ex-
plained in section 2.6.1. These are the �rst measurements of the He-Bi(111) vertical
interaction potential performed. The solutions are:

D = (8.300 ± 0.002) meV

σ = (0.2891 ± 0.0002) nm

The iterative procedure to determine the surface corrugation also yields to some er-
ror possibilities. The sign of the used parameters for the heights of the specular peaks
is unde�ned and assumed to be throughout positive. While this yields to a maximum
value for the corrugation, the true shape can not be determined without a bootstrapping
method. This might be subject for further investigations.
The calculated corrugation height relative to the surface lattice parameter is 16.3% which
corresponds well to the 12% determined using common approximations.

The appearence of such a comperatively high surface corrugation on a material with
a conducting surface is rather surprising. A possible origin of this fact could be the elec-
tronic hole pocket near the Γ-Point in the reciprocal space14. This local charge carrier
distribution in k-space could account for a broad variation in real space. In future work
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5. Summary and Discussion

the bismuth surface will be simulated ab initio to determine if the observed corrugation
can be explained or if additional e�ects should be considered.
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A. Appendix

A.1. Iterative Method for Calculating the Surface

Corrugation

Starting at ∑
G

AGexp{i [G ·R + kGzξ(R)]} = −exp{ikizξ(R)} (A.1)

To bypass the main problem, the appearence of ξ(R) in both terms, one �rst extracts
the G = 0 part.

A0exp{ikG0zξ(R)} +
∑
G′

AG′exp{i [G′ ·R + kG′zξ(R)]} = −exp{ikizξ(R)} (A.2)

Whilst kG0z = kiz. This leads to∑
G′

AG′exp{i [G′ ·R + kG′zξ(R)]} = − (A0 + 1) exp{ikizξ(R)} (A.3)

using the normalization of the intensities1∑
G

PG
!

= 1 (A.4)

and

PG =
|kGz|
|kiz|

AGA
∗
G (A.5)

following expression can be derived:

∑
G′

±

√
|kiz|
|kGz|

PG′exp{i [G′ ·R + kG′zξ(R)]} = −
(
±
√
P0 + 1

)
exp{ikizξ(R)}

(A.6)
In order to solve this equation all the roots are assumed to be positive. Further sim-
ulations could determine the right signs by simulating the scattering peaks from the
resultant corrugation functions. For a solution also only the real part is of interest.∑

G′

√
cosθi

cos(θSD − θi)
·
√
PG′ · cos [G′ ·R + |ki| · cos(θSD − θi)ξ(R)] = (A.7)

= −
(√

P0 + 1
)
cos (|ki|cosθiξ(R))
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A. Appendix

To get a starting point of the iteration, the assumption

G′ ·R � |ki| · cos(θSD − θi)ξ(R) (A.8)

is made. This is only valid for R� 0 and small ξ(R). In all cases where this approxi-
mation will not hold, the function will converge. At these points the starting corrugation
is set to the average elevation of the rest of the function. The functions for the iteration
are:

ξ0(R) =
1

|ki| · cos(θi)
·arccos

[
− 1√

P0 + 1

∑
G′

√
PG′

cosθi
cos(θSD − θi)

· cos(G′R)

]
(A.9)

for the starting value and

ξ0(R) =
1

|ki| · cos(θi)
· arccos

[
− 1√

P0 + 1

∑
G′

√
PG′

cosθi
cos(θSD − θi)

· · · (A.10)

· · · cos [G′R + |ki| · cos(θSD − θi)ξn(R)]]
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A.2. Determination of the Bound State Energies for n = 0 and n = 1

A.2. Determination of the Bound State Energies for

n = 0 and n = 1

Figure A.1.: Mapping of di�erent features in the elastic spectrum to certain binding
energies using equation 4.1. Bound state energy with n = 0

Figure A.2.: Mapping of di�erent features in the elastic spectrum to certain binding
energies using equation 4.1. Bound state energy with n = 1
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A. Appendix

A.3. Maps of Bound State Resonances in the Elastic

Scattering Spectra

Figure A.3.: Map of the found resonance features in the <10> direction at a nozzle
temperature of 75 K and a sample temperature of 118 K

Figure A.4.: Map of the found resonance features in the <10> direction at a nozzle
temperature of 130 K and a sample temperature of 118 K
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A.3. Maps of Bound State Resonances in the Elastic Scattering Spectra

Figure A.5.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 75 K and a sample temperature of 300 K

Figure A.6.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 75 K and a sample temperature of 113 K
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A. Appendix

Figure A.7.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 135 K and a sample temperature of 113 K

Figure A.8.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 105 K and a sample temperature of 300 K
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A.3. Maps of Bound State Resonances in the Elastic Scattering Spectra

Figure A.9.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 85 K and a sample temperature of 300 K

Figure A.10.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 95 K and a sample temperature of 300 K
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A. Appendix

Figure A.11.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 105 K and a sample temperature of 300 K

Figure A.12.: Map of the found resonance features in the <11> direction at a nozzle
temperature of 75 K and a sample temperature of 300 K
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