
Institute for Applied Information Processing and Communications

Large

Identification,

Assessor

Graz University of Technology

Institute for Applied Information Processing and Communications

Master’s Thesis

Large Scale Software Vulnerability

dentification, Tracking and Analysis

Social Networking

Matriculation Number: 0631814

Graz, December

Assessor: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Supervisor: Peter Teufl, Dipl.

Graz University of Technology

Institute for Applied Information Processing and Communications

Master’s Thesis

ulnerability

nalysis Using

etworking Services

Bojan Suzic

Matriculation Number: 0631814

December 2011

Dr.techn. Reinhard Posch

Peter Teufl, Dipl.-Ing.

- II -

Abstract

The increasing complexity of software systems and the rate at which the world is being

interconnected raise the significance of a proper and effective software vulnerability

management process. On the other side, the rapidly growing usage of online social networks

lowered the information flow barriers and facilitated the active participation of actors involved

in the process of public information exchange. This work studies the possibilities to employ

potentials of online social networks in the areas of software vulnerability identification, tracking

and analysis. The emphasis is placed on Twitter, a service providing real-time broadcast of short

messages.

The first part of this work presents the software framework prepared for the purpose of

collecting and augmenting Twitter messages. The framework connects to data sources related

to domains of the software vulnerability classification, enumeration and management. The data

from those sources are used to enrich Twitter messages, which are then processed and

analyzed using semantic queries.

The second part of this work presents the potential usage of the software framework. It shows

how the framework can be applied to discover the breakout of an unknown exploit for a

popular software package. Furthermore, the work introduces a new dimension in the process of

software vulnerability assessment. For such purpose, it uses the aggregate user feedback and

activity to measure a relative impact of previously known and enumerated vulnerability. Finally,

the work demonstrates how to perform an aggregate analysis of numerous characteristics and

features of software vulnerabilities and how to use the framework to monitor, visualize and

identify trends and their changes on a large scale.

- III -

Zusammenfassung

Die zunehmende Komplexität von Softwaresystemen und die immer stärker werdende

Vernetzung sind Gründe für eine steigende Anzahl an Sicherheitsschwachstellen. Für den

Umgang mit diesen Gefahren spielt ein korrektes und effizientes Managementverfahren eine

entscheidende Rolle. Parallel dazu reduziert die stark wachsende Nutzung von sozialen Online-

Netzwerken die Informationsflussbarrieren und erleichtert somit den öffentlichen

Informationsaustausch. Der Schwerpunkt dabei wird auf den Dienst Twitter gelegt, der die

Veröffentlichung von Kurznachrichten ermöglicht.

Der erste Teil der Arbeit präsentiert ein neues Software-Framework, das für die Extraktion von

Twitter-Nachrichten, der darin enthaltenen Informationen und deren Erweiterung durch

externe Daten dient. Das Software-Framework verbindet sich mit Datenquellen, die sich in den

Feldern von den Sicherheitsschwachstellenklassifizierung, -Aufzählung und -Management

befinden. Die aus diesen Quellen extrahierten Daten werden weiterhin für die Erweiterung und

Verarbeitung von Twitter-Nachrichten und darin enthaltenen Informationen verwendet.

Der zweite Teil dieser Arbeit präsentiert die potentielle Nutzung des Software-Frameworks für

die Erkennung von Durchbruch eines unbekannten Exploits für ein beliebtes Software-Paket.

Darüber hinaus stellt die Arbeit eine neue Dimension dar, die für die Verfahren von

Sicherheitsschwachstellenbewertung verwendet werden kann. Für diese Zwecke, auf den

aggregierten Feedback und Aktivität der Twitter-Benutzer basierend, misst das Software-

Framework die relative Auswirkung von bisher bekannten und quantifizierten

Sicherheitsschwachstelle. Die Arbeit zeigt weiterhin, wie das Software-Framework für eine

aggregierte Analyse zahlreicher Eigenschaften und Merkmalen der Sicherheitsschwachstellen

verwendet werden kann. Schließlich demonstriert sie die Anwendung des Frameworks für die

Überwachung, Erkennung und Visualisierung von neuen Trends und deren Veränderungen.

- IV -

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources.

…………………………… ……………………………………………

 (date) (signature)

- V -

Acknowledgements

I would like to thank …

My parents and sister, for absolute trust and support.

Peter Teufl, the supervisor of this work, for helping me with the work, providing valuable

suggestions and ideas as well as demonstrating enormous amount of patience.

The IAIK and its head Reinhard Posch, the advisor of this work, for giving me the opportunity to

do this work at this institute.

Karl-Christian Posch, for the support shown during the initial phase of this work.

Bojan Suzic

- VI -

Table of Contents

Abstract ... II

Zusammenfassung .. III

Statutory Declaration ... IV

Acknowledgements ... V

Table of Contents ... VI

List of Figures ... VIII

List of Tables .. X

List of Abbreviations ... XI

1 Introduction... 1

2 Online Social Networking and Twitter .. 4

2.1 Design Patterns Characterizing Web 2.0 ... 5

2.2 Introduction to Twitter .. 7

2.3 Twitter and its Applications ... 11

2.3.1 Usage Patterns and Motivation of Twitter Users .. 11

2.3.2 Safety Critical Issues .. 14

2.3.3 Markets, Products and Investments ... 20

2.3.4 Disinformation on Twitter ... 25

3 Software Vulnerabilities .. 28

3.1 Definition ... 28

3.2 Software Vulnerability Taxonomies .. 32

3.3 Initiatives of Mitre Corporation .. 38

4 Software Framework ... 46

- VII -

4.1 Rationale behind the Idea ... 46

4.2 Framework Description ... 47

4.2.1 TweetCatcher .. 54

4.2.2 FeatureCatcher .. 57

4.2.3 Presenter ... 59

4.3 Processing Steps Done .. 60

5 Results ... 70

5.1 Share Ratio of Prominent Software Vulnerability Sources 72

5.2 Share Ratio of Software Products and Vendors .. 75

5.3 Types of Weaknesses .. 81

5.3.1 CVE List Publication Dynamics ... 83

5.3.2 Twitter Chatter Dynamics.. 87

5.3.3 Dismantling the Numbers ... 95

5.4 Characteristics of Weakness Type ... 97

5.5 CVE Entry Distribution in the Term of Publication Time ... 101

6 Conclusion and Further Directions .. 107

Appendix 1: Example of the CWE List Entry .. 111

Appendix 2: Definition of Types Weakness and Category in CWE 2.0 116

Appendix 3: OSVDB Data Model Overview ... 118

Bibliography .. 119

- VIII -

List of Figures

Figure 1: Information quality comparison – Twitter and mainstream media 16

Figure 2: The propagation of disinformation in Twitter network ... 25

Figure 3: Taxonomy of software vulnerabilities in operating systems [RISOS76] 34

Figure 4: Example exploit [CMSEI05] .. 37

Figure 5: CVE entry schema definition (version 2.0) ... 40

Figure 6: Definitions of elements in CVE schema (version 2.0) .. 42

Figure 7: Expanded element baseMetricsType from the CVSS scheme .. 43

Figure 8: Graphical overview of the software framework .. 48

Figure 9: Jena framework overview .. 50

Figure 10: CPE naming structure and example entries ... 53

Figure 11: Retrieval of information from Twitter Stream ... 54

Figure 12: SPARQL query used for the extraction of security exploits ... 55

Figure 13: Supported features of Presenter component .. 59

Figure 14: Activities executed by the FeatureCatcher component ... 62

Figure 15: Vendor details extracted from CPE: data excerpt .. 63

Figure 16: Product details extracted from CPE, excerpt ... 63

Figure 17: Product details extracted from Freshmeat, excerpt .. 64

Figure 18: Data extracted from CVE list, excerpt .. 66

Figure 19: Example of the augmented tweet .. 67

Figure 20: Example SPARQL query used to get data ... 68

Figure 21: Intermediate repetitive SPARQL query .. 68

Figure 22: Example markup of Twitter message ... 71

Figure 23: Ratio of tweets containing references to vulnerability sources 74

Figure 24: IBM mentions ... 78

Figure 25: WordPress mentions .. 79

Figure 26: TimThumb relative search and news trends by Google ... 80

- IX -

Figure 27: Vulnerabilities published in NVD (total, including ones with CWE reference) 83

Figure 28: Distribution of CWE weaknesses in NVD CVE list ... 84

Figure 29: SQL Injection distribution among the products ... 87

Figure 30: Information exposure weakness among the products .. 87

Figure 31: Classes of software weaknesses (CWE) derived from CVE publication 89

Figure 32: Classes of software weaknesses (CWE) derived from Twitter conversation 89

Figure 33: Cumulative ratio of Twitter based reports compared to CVE publication 91

Figure 34: Line plot and standard deviation ... 92

Figure 35: Line plot and standard deviation, without types 9 and 17 .. 93

Figure 36: Line plot describing the development of Consequence Scope 98

Figure 37: Line plot describing the development of Impact Scope ... 99

Figure 38: Time of introduction .. 101

Figure 39: Comparison between CVE last modified and published time 103

Figure 40: Difference between CVE publication time and timestamp of the Twitter message . 104

- X -

List of Tables

Table 1: Keywords used for Twitter Streaming API ... 56

Table 2: The cumulative number of tweets representing each vulnerability data source 73

Table 3: Aggregate distribution of the vendors .. 76

Table 4: Aggregate distribution of the products ... 77

Table 5: Yearly development of publication of CVE entries .. 82

Table 6: Distribution of CWE weaknesses in NVD CVE list .. 85

Table 7: Trends among the vendors, excerpt.. 85

Table 8: Distribution of the products and weaknesses types in selected June/July weeks 95

- XI -

List of Abbreviations

API Application Interface

CERT/CC Computer Emergency Response Team Coordination Center

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CVSS-SIG CVSS Special Interest Group

CWE Common Weaknesses Enumeration

DoS Denial of Service

FIRST Forum for Incident Response and Security Teams

HTTP Hypertext Transfer Protocol

IATAC Information Assurance Analysis Center

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

JMA Japan Meteorogical Agency

MS Microsoft

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

OSN Online Social Network

OSVDB Open Source Vulnerability Database

OWL Web Ontology Language

PDA Personal digital assistant

POS-tagging Point-of-Speech tagging

RDF Resource Description Framework

RDFS RDF Schema

REST Representational state transfer

S&P Standard & Poor's

SA Situational awareness

SB Security Bulletin

SDB SQL Data Base

SMS Short Message Service

SPARQL SPARQL Protocol and RDF Query Language

TDB Tuple Data Base

URL Uniform Resource Locator

ZDI Zero Day Initiative

- 1 -

1 Introduction

With fast paced growth and development of the software industry lasting for decades, its role in

everyday work and life of persons and organizations became increasingly valuable. Moreover, as

the application of the software systems is infiltrating deeper in the life of persons and

organizations, both vertically and horizontally, dependencies on their functionality and potential

impacts in the case of malfunctions or misuses pose serious threats even more.

The current situation presents an abundance of availability of various software applications.

Their production is based on shorter development cycles and performed under an increasingly

competitive environment. Additionally, the same software is often maintained and deployed to

a lot of platforms and distributed to users through numerous channels, often as a download

option or automated update through Internet.

In this dynamic environment it is becoming more and more complicated to keep track of

software vulnerabilities. This problem can be viewed from several perspectives. For the users, it

is difficult to identify and assess security risks triggered by using the software; for the

application developers, it is necessary to have insights into the current situation of the market

and competitors, as well as to get an external feedback on the software delivered. On the other

side, the software quality should be maintained and improved, while the developer should be

kept familiar with the state-of-the art in the field. For the third-parties, like agencies and

analysts, it may be complex to track the trends and react accordingly.

Online social networking (OSN) services pushed the new paradigm introduced with the Web 2.0

even more. They accommodated the structure, provided the solid and flexible framework,

infrastructure and environment to facilitate and alleviate the information exchange and

contribution among the users.

Through the establishment of the architecture of participation and application of the collective

intelligence, online social networks made the web systems user-centric. They positioned them

into the center of the communication, enabling the entire user base to share and exchange

- 2 -

information publicly. This is, among the other means, done through redistribution, rating,

commenting, recommending or ranking of content, in real-time. The new architecture and

approach resulted with the great amount of information flow in networked systems, with the

large and increasing amount of the participants involved.

Such paradigm shift contributed even more to the information abundance and saturation.

However, that great amount of information, under some circumstances, could be used to derive

further knowledge and insights which were not possible or could not be undertaken easily.

This work investigates the potentials and possible usage scenarios of the software vulnerability

notion and presence in the socially networked online arena. It focuses on semi-structured

information flow provided by the users of Twitter, online service for real-time broadcast of

short messages. The work also shows how that data stream is disseminated and connected with

the other data sources from the fields of the software vulnerability classification, enumeration

and management, and how it is further used to derive additional information and perform

aggregate analyses of the trends.

The second chapter of this thesis deals with the Twitter services. It reveals the design patterns

behind the Web 2.0 paradigm, which enabled such large user participation and growth of the

popular online services. Then, the brief introduction to Twitter is presented, following with the

overview on the current research and usage of Twitter in different domains. This section

demonstrates some of the potentials and use cases related to the monitoring and analysis of

the short messages, which are posted by the vast amount of the users worldwide. The examples

have been shown for the fields of emergency management and financial markets prediction,

which retrieve and derive information from the large amounts of the messages posted.

The third chapter introduces the field of software vulnerabilities. It presents the aspects and

goes through issues relevant for the establishment of the definition of the term. Then, it

provides the overview and development of the software vulnerability classification field,

particularly with the focus on taxonomy and information exchange. It describes the

enumeration and classification systems developed by Mitre Corporation, a US Ministry of

Defense contractor, which are the subject of wide acceptance in the community. In this work,

their databases have been used as an information source in the process of evaluation and

augmentation of Twitter messages.

- 3 -

The next chapter deals with the software framework developed during the implementation

phase of this thesis. The framework connects different sources, like Twitter messages, their

related metadata, Mitre’s databases and other public sources of data to perform the crawling,

dissemination and conversion of the data to semantic triple representation. It further deals with

the storage, grouping, filtering and augmentation of the messages from Twitter, providing the

data for further analysis and visualizations of the trends found in them.

The fifth chapter presents and discusses the results of the analyses performed with the help of

the software framework introduced in this work and other statistical software packages. The

analyses have been done on Twitter messages broadcasted during the period from the May 15th

to the September 17th 2011. The chapter covers five analyses, demonstrating the potential and

variable usage scenarios of the approach.

Finally, the sixth chapter brings this work to the conclusion. It summarizes the results, provides

some notices and comments and suggests further work and directions.

- 4 -

2 Online Social Networking and Twitter

Online social networking gained significant attention during the recent years. In the extremely

short time, the services such as Facebook, LinkedIn, Orkut and Twitter noticed growth at an

exponential pace, positioning themselves in the group of the most popular web sites on

Internet [ALEXA11, DBLCL11].

The paradigm of the online social networking influenced and motivated many other web sites

and services. They started to adopt and integrate that concept in their service offerings. Some

of them even changed their business concept entirely, basing it on the online social networking

idea1.

The first section of this chapter presents the factors which highly contributed to the wide

acceptance and quick growth in popularity of online social networks. It discusses some of

fundamental design patterns and their context in relation to the Web 2.0. Based on the formal

descriptions and practical examples, it shows how the elements such as architecture of

participation, networking effect and collective intelligence contributed to the increased

participation and value added from the given structures.

The next section provides the brief description of Twitter, a popular microblogging service

based on real-time broadcasting of the short messages. Among the other online social

networks, Twitter is specific because it focuses on narrow domain and activity, such as

broadcasting of short messages only. Then, it focuses and specializes in providing the

infrastructure which is able to handle a vast amount of the messages in real-time. Its

infrastructure provides not only the real-time broadcasting of the messages, but it supports

advanced integration of its services into third-party applications, which makes it open and

suitable for various integrations and research.

1
 For instance, YouTube introduced communication and networking services between the members.

Scribd changed from simple document sharing to online social network based around document sharing

concept. Even Google recently introduced their social networking service Google+.

- 5 -

The following sections of this chapter provide the overview on the literature and research

related to Twitter. They present the characteristics and properties of the Twitter users and their

activity on Twitter. Then, several representative use cases are described. Accordingly, the

results of the research of the application of Twitter in the several domains are presented. One

of the domains analyzed covers the range from situational awareness and emergency situations,

with the examples based on the floods, grassfires, earthquakes and the events of relevance for

the national security. The other domains involved in the investigation were the relation of the

market and Twitter activity, particularly in the financial market developments and Forex trading.

Finally, the chapter concludes with the overview of Twitter usage and research in the domain of

disinformation spreading, providing the results about the models of information propagation in

Twitter.

2.1 Design Patterns Characterizing Web 2.0

The Web 2.0 concept, as it maturated over the time, introduced a gradual but compelling

phase-shift in the perception of its usage. There are some noteworthy aspects of this evolution

which are interesting for further study. One of them can be described by the term architecture

of participation, which Tim O’Reilly articulated in 2003 [OREILLY03]. In this context, the author

relates it to the nature of the systems designed for user contribution, affecting their quick and

wide adoption.

There are several examples of the systems or platforms, designed in such way that the wide

user contribution is possible or encouraged, with the entry-barriers set low. For instance, the

success of the open-source software may be partially attributed to that element. The

recognized products, such as the Apache HTTP Server, the Linux Kernel or Perl owe their success

to the numerous users who contributed to their development.

The basis of these tools has been designed so that the code and other interdependence are

possibly avoided or minimized and controlled. The whole complexity of adding of the new

software module is shaped in such way that the developer has to spend as minimally effort as

necessary, trying to figure the entire system or to dig into the tight layers of interdependence.

Based on that, the entry-barrier for the contribution is lowered. Therefore, the users

- 6 -

(developers) are stimulated to extend their customized contributions and will submit them for

inclusion as a module or distinct product.

A similar pattern of architecture of participation may be noticed in other, possibly non code or

programming related projects. For example, the IETF documents describing Internet standards

are (especially earlier) prepared and created in such way that the participation of everyone

interested is possible, no matter of company affiliation or financial backing. The competition

there is based around ideas, without dependence or relation to the money or representation

level of the participators.

The network effect is the next characteristic exploited by the Web 2.0, describing the additional

value of a service potentially available to the user that arises from the number of other users

consuming the service. The rationale to this statement can be traced to the Metcalfe’s law,

which hypothesizes that, while the cost to build the network grows linearly, its value grows

proportionally to the square of the number of users. Metcalfe’s law has been used to explain

growth of various technologies, ranging from the faxes, mobile phones, to online social

networks. Some authors question Metcalfe’s law [METCAL05], stating that the primary

limitation of Metcalfe’s observation is the fact that it treats all connections in the network as

equally valuable and thus it overestimates the value gained from the network growth. However,

they propose a slightly different rule based on the nlog(n) value scaling, which is still above

linear growth and, therefore, do not neglect the importance of the network effect.

The value in the network effect may be observed in the case of Semantic Web technologies.

While the semantic linking between instances in documents and ontologies or between

ontologies may be considered like a graph space, merging of two ontologies using, say, an OWL

sameAs inference will grow this space and expand more connections between elements

previously unrelated. The additional inferences can produce even more connections. This way,

the value of the network may be raised unproportionally with each addition.

The next key facet leveraged by Web 2.0 evolution is usage of collective intelligence, referred

also as wisdom of crowds. Collective intelligence may be defined as the ability of the group to

solve more problems than its individual members [HEYF99]. The other definition mentions

collective intelligence “as a fully distributed intelligence that is continuously enhanced and

synergized in real-time” [PLEVY98].

- 7 -

In the context of Web 2.0, this phenomenon is used to describe the process where useful

information or conclusions are inferred on the basis of the user contributions or behavior,

usually on a large scale. The example of such process may be found in the collaborative spam

filtering products like CloudMark2. Its system collects, aggregates and analyses the individual

judgments of email users about their email (whether it is spam or not). This way, the messages

are not analyzed separately but on an aggregate level, based on collaborative decision of a large

group of users.

The other example in this direction may be Amazon and its system which invites and stimulates

users to participate actively on various ways. It has a bunch of reviews of products generated by

the users, which are further rated and commented. Amazon carefully and in detail analyses user

input and behavior on the web site. From this collective, collaboratively gathered information it

constructs a base for further ranking, suggestions and search results. This is a continuous,

dynamically driven procedure which repeatedly processes gathered information in order to

derive new information and improve its output.

Finally, as the particularly illustrative example of collective intelligence the phenomenon of the

blogosphere may be mentioned. The blogosphere consists of the dispersed blogs, yet acting as a

connected community with ceaseless activity reflected through numerous publications,

discussions, or (symmetrical) links. In the blogosphere, users constantly rethink the actual topics

and discussthem. Such activity builds a structure which is very interesting for research by the

analysts or companies running the search engines. In this structure, the blogger and the user are

paying special attention to each other. This way, they act as an intelligent filter, making it

possible for the third parties to distinguish and rate an importance or significance of individual

entries, trends or attentions.

2.2 Introduction to Twitter

Twitter was developed in 2006 after years of work by Biz Stone and Evan Williams. It allows

users to post short-text messages called tweets, no longer than 140 characters. At its inception

Twitter was one of applications from the Web 2.0 wave. It was conceptualized as a specific

2
 http://www.cloudmark.com

- 8 -

combination of blogging, instant messaging and short messaging service, later known as a

microblogging.

As of March 2011, there are about 140 million of messages posted daily from roughly 200

million registered accounts3, which represents an increase of 280% compared to the previous

year. The highest record of messages posted per second is 6,939. The number of employees is

400, which is an increase of 15% compared to the previous year [TWITTER11].

The main concepts in Twitter are tweets, followers and followees. The tweet is any message

posted to Twitter by the user, sometimes referred to as a Twitterer. All tweets amount 140

characters or fewer. According to Twitter Help4, the message length of 140 characters is

selected because in many systems a standard text message contains 160 characters. Therefore,

the rest of 20 characters is reserved for the user name. The concept of following represents an

asymmetric relationship between Twitter users, making it possible for a follower to receive

information e.g. regular status updates from followees.

The timeline represents the other concept introduced in Twitter, used to describe a collected

stream of messages listed in real-time order. Although the timeline message stream usually

refers to messages from the accounts followed by user, the timeline may consist of other types

of messages, like search results or aggregated messages from lists.

The retweet is the original message forwarded by follower. Retweeting enables followers to

push received information to their network of followers, making them a bridge between

communities of Twitter users.

Boyd et al. [TWRTW10] identified several goals playing the role in a user’s decision to retweet a

message:

� to amplify or spread tweets to new audiences

� to entertain or inform an audience, or as an act of curation

� to comment to someone’s tweet, often by adding a new content to begin a

conversation

� to make one’s presence as a listener visible

� to publicly agree with someone

3
 Based on information from BBC, http://www.bbc.co.uk/news/business-12889048, Mai 2011

4
 http://support.twitter.com/groups/31-twitter-basics/topics/109-tweets-messages/articles/127856-

about-tweets-twitter-updates

- 9 -

� to validate others’ thoughts

� as an act of friendship, loyalty or homage

� to recognize or refer to less popular people and content

� for self-gain, e.g. by gaining followers or reciprocity

� to save tweets for future access

As it is the primary mechanism of information diffusion in Twitter, retweeting has been further

studied in several works [RTWFACT10, TWNEWS10, WMOUTH09 and TWRTW10].

The hashtag is the other concept present in Twitter, invented among the user population. It is

often used to mark a keyword or topic in a Tweet by putting a hashtag symbol (#) before

relevant keywords in the message. Hashtags are often used to categorize messages, to make

their finding (retrieval) easier as well as to find trending topics by third parties. Later Twitter

introduced other options, like Tweet Location, making it easy to the users to publish their

location in a structured way, or lists, enabling users to categorize other users in the lists and

follow their messages on an irregular basis, independently and outside from the personalized

TimeLine.

Although, in many works, it is considered like a social network [PRIVTW10], some authors

question that to some extent and suggest the term information network [FBTW10] as a more

appropriate explanation of its function. They refer to Twitter's ground design, which focuses on

the ability to deliver the information as quickly and as widely as possible. Some authors argue

that Twitter should be set apart from other OSNs as some of its characteristics are more

oriented toward news media than to social networking [TWNEWS10]. In their research they

found the following relationship is mostly not reciprocated (not so social)5, what may not be a

reflection of social relationships but active subscription of tweets e.g. information.

In their work Mills et al [TWRESP09] compared Twitter to their ideal communications platform

or service. According to them, important aspects of this service should be:

� web based

� low cost

� power efficient and scalable

� easy to use or accessible

� mobile

5
 Only 22.1% of user pairs follow each other. Comparison to others: 68% Flickr, 85% on Yahoo! 360

- 10 -

� reliable

� fast

� one-to-many capable

� GIS capable

� support for analytic and visualization tools

� strongly connected with local TV, radio channels and news outlets

� able to receive, generate, provide and usher useful and critical information from a

variety of sources

In the analysis, they found that Twitter matches exceptionally well with those requirements. As

the advantages, they mention low-power requirements and omnipresence – access to Twitter is

possible also with PDAs, cell phones or similar devices with low-power requirements and high

battery efficiency, which ensures operation even in the case of general power failure. For

instance, radio and TV local information networks usually may be down during emergency

events, especially in remote areas, therefore, not accessible6.

Easy-to-use property is set by authors as a prerequisite in order to achieve the scalability of a

service. In terms of reliability, the authors noticed that Twitter has problems with the uptime7.

However, these do not reflect the architecture of the platform but implementation only. In the

meantime (since the publication date of research), the stability of the service has considerably

improved.

The important advantage of Twitter over voice-based or other similar communication channel is

its level of demand for the traffic. As the Twitter message consists of only 140 characters8, its

operation has low-bandwidth requirements. Therefore, there is a higher probability for the

message to be delivered in congested environments, even if it has to be processed in queue.

The voice communication, for instance, in the congestion mode is not possible to carry out at

all. Also, the length limitation of Twitter messages assures that only the most relevant

information will be sent, making possible to have less distraction in noisy and dynamic

situations.

6
 Depending on the situation, the Internet connection could be still available through the mobile phone

networks, at least for a short time period after the general power loss. Also, the cell towers are usually

backed with the batteries, solar systems or diesel power aggregates for emergency situations.
7
 At that time 1-2% downtime even in normal conditions.

8
 Like SMS message.

- 11 -

Up to today, Twitter has been actively adopted by users and utilized in many areas. The

investigation of its usages and potentials has been conducted by many authors worldwide.

Twitter has been used in emergency situations like water floods or earthquakes [NATHAZ10,

TADOPT09 and SOM10], in investment and stock market area [TWTRADE10]. It is used even to

get or suggest health related information [SFLU09], while its malicious operation can be traced

to spreading and controlling malware and botnets [SOOD11, KOOBFACE10].

Further applications and usage of Twitter are discussed in more detail in Section 3.

2.3 Twitter and its Applications

There is a growing amount of research directed toward the exploration of possible uses of

Twitter in diverse applications. The topics range from the descriptive analysis of Twitter usage

patterns, user behavior, motives and expectations, to the usage in narrow fields, in the term of

harnessing collective intelligence or determination of the collective mood. The following

provides details of relevant and representative research from the field.

2.3.1 Usage Patterns and Motivation of Twitter Users

Microblogging services revolutionized the way information is provided and consumed in an

online world. Compared to blogging in the classic sense, microblogging stimulates less but more

frequent updates from the users. The limitation in message length, which numbers 140

characters in Twitter, has as effect two main consequences.

At the first, it lowers the access barrier for the users. As in the classic blogs it is often required or

expected to write a (comparatively) longer post, the users are not always in the position or

motivated to invest the effort and the time necessary. Writing a blog post may be also related

to the writing style and general structure of the work, which may reflect on the user’s

perception and reputation in the community. However in the microblogging, structure, style

and grammatical/lexical consistency are in the background – due to the post size they are next

to unimportant. Informal nature of microblog moves focuses more on the information provided

and its value.

- 12 -

The next noteworthy aspect of microblogging related to the message length is its omnipresence

– both in terms of production and consumption of microblogging. As the message is short, it can

be sent from a wider range of devices more easily. It is easier to send or read short status

updates or interesting information from the cell phone9, than to write a (lengthier) blog post on

the small keyboard or read it using the small display screen. For the preparation of the blog post

it is sometimes required from the poster to search for references and include them in the

message. This activity requires some effort both on the standard desktop or laptop computers.

However, it requires slightly more effort on smaller devices like PDAs, cell phones or tablets.

The second consequence of the length of Twitter message relates to the frequency of update.

While the most active bloggers could send new posts once in a few days, in the standard

microblog usage average user may post its updates even several times a day.

In order to get more detailed insight into user behavior and habits in social networks, Microsoft

conducted research in early 2011. They published the infographic based on their findings

[MSFT11]. According to it, 50% of Twitter users access the service using the mobile interface.

More than 33% of Facebook users access their service using the mobile device, while for other

social networks, the number of mobile users flows around 30%. This fact emphasizes stronger

and wider user adoption and presence of Twitter compared to other OSNs. The nature of

microblogging based on the paradigm of short messages, frequent updates and pure

information surely contributes to this number.

In regards to user intention, it is interesting to note that, since its beginning, Twitter officially

prompted users to share the answer on the question “What are you doing?”. Since then, many

users have found other creative ways of Twitter’s usage. They shared their personal feelings,

statements, comments. The companies have been experimenting with different methods of

approaching their customers and markets using Twitter. As a result of user adoption and wide

proliferation of Twitter service, a shift from user, personal centric view has been made towards

a pulsing, permanently active and unique information network. As a reflection of this change,

later in 2009 Twitter altered the original question to “What is happening?” [TWEET09].

The study of Java et al. investigated the user intentions on Twitter. Their study found that the

main types of user intentions on Twitter include daily chatter, conversations, sharing

9
 Usually, the SMS (Short Message Service) message length is up to 160 characters. This is one of the

primary functionalities of the cell phone, therefore sending a microblog post may be perceived similar to

sending a SMS message based on the effort required from the user.

- 13 -

information and reporting news [JAVA07]. Furthermore, they found that the most users of

Twitter may be allocated to one of the following categories: information source, friend and

information seeker. Their findings may suggest that, since its early beginning, the users have

identified more possible usages and potentials of Twitter that could exceed original intentions

of its inventors. Similarly, the research based on 100,000 Twitter users conducted in February

2008 [CHIRPS09] identified three broad groups of users based on the connections they had with

others. The authors characterized them as broadcasters, acquaintances, while the third group of

users having significantly more followees than followers has been identified as miscreants or

evangelists.

The other study conducted in 2009 by Heil and Piskorski reveals intriguing patterns of Twitter

users [HEILPISK09]. They found that men have 15% more followers than women. According to

the same research, men also have more reciprocated relationships. Also, there is nearly double

probability that man fill follow man than woman (65% versus 35%).

The other interesting finding sets Twitter somehow different than other social networks. In the

other online social networks, the most of activity centers on women, where men follow women

they do and do not know, and women follow other women they know. However, on Twitter

both men and women find the content produced by men more compelling. Explanations for this

finding may be found in the fact that, in Twitter, there is no additional content provided, as

photographs, detailed biographies etc, like it is in some other online social networks. Also,

Twitter focuses more on the activity of the information sharing, while in some other networks

even the existence of the personal or social relationship matters.

The next characteristic of Twitter usage pattern compared to other online social networks may

be found in level of users’ contributions. A typical Twitter user contributes relatively rarely.

There is evidence showing that 10% of Twitter users contribute to 90% of its traffic. For

comparison, in Wikipedia top 15% of users account for 90% of Wikipedia’s edits. It is already

clear that Wikipedia is not primarily a communications tool. Based on that fact Twitter could be

considered more like one-to-many, mostly one way publishing service than two-way peer-to-

peer network.

There are also other differences, which distinguish Twitter users from other Internet users.

Based on research from Lenhart and Fox published in 2009 [TWSTAT09], Twitter users are more

likely than others to connect to Internet wirelessly. The 40% of the Twitter users utilized their

- 14 -

cell phones to connect to Internet, while only 24% of other Internet users used the same mean

to access the Internet resources.

Moreover, it is more likely that the average Twitter user consumes news on mobile devices.

That implies higher rate of reading newspapers online10 and more than double rate of users

reading a newspaper on smartphones or cell phones11.

Although it may be guessed that among online social networks Twitter covers the segment of

the younger user population, according to this report it is not the case. Concretely, with a

median age of user of 31 years, Twitter is ranked above Facebook (26) and MySpace (27) and

below LinkedIn (40). The authors concluded that Twitter users engage with news and own

technology at the same rates as other Internet users, but the way they are using technology

“reveals their affinity for mobile, untethered and social opportunities for interaction”.

2.3.2 Safety Critical Issues

Because of its ubiquitous nature, Twitter is used not only to report what the person is doing at

the moment, or how it feels, but also to spread information about events. The unexpected

events, like earthquakes, threatening weather conditions, natural catastrophes and disasters

may induce exceptionally strong personal feelings like shock, upset, or fear, stimulating users to

share that information with online community. As part of their postings related to such events,

users may provide additional information too. Analyzed on a large scale, those postings may

provide useful insight, which can contribute to establishing better situational awareness (SA).

SA may be referred as a state of idealized understanding of what is happening in the

environment consisting of many actors. The definition from Sarter and Woods says it is “based

on the integration of knowledge resulting from recurrent situation assessments” [SARWOOD91].

That definition may point out to the challenges which should be overcome in the dynamic and

noisy environments like Twitter. Although most of the literature covers situational awareness in

the context of military and aviation operations, it has been researched in other domains like

weather, emergency response, transportation or civil engineering. [PARAMO96, OLOUFA03].

10

 76% versus 60% are less likely to read printed newspaper (52% versus 65%) than other Internet users
11

 17% of Twitter users read newspapers on smartphones, compared to 7% of other Internet users.

- 15 -

Another research field of relevance in this area in the literature is often described as crisis

informatics. This discipline addresses social and technological concerns in emergency and crisis

response, aiming for socially and behaviorally-informed development of information and

communication technology for such situations. With the newer developments introduced, the

process of disaster research is being enriched with on-line investigation components, including

also crisis communication.

In the study related to command and control in battlefield operations, the work of Sonnenwald

and Pierce [SPDGROUP00] emphasizes that situational awareness addresses individuals who

“must work together to collect, analyze, synthesize and disseminate information”. The source

for this statement can be found in the fact that diversity and complexity in the battlefield

increase on such way, that it is not possible for a single individual to acquire and assess diverse

and rapidly expanding information sources and react in a timely manner.

The similar flow of mixed and diverse flow of information we may find in online social networks.

Therefore, the research in the theory of situation awareness in general or particular fields may

give useful insights or directives in how useful information could be recognized and retrieved in

computer mediated group communication, including individuals, groups or communities.

In order to be able to measure and evaluate information and its usefulness provided in Twitter,

Mills et al [TWRESP09] investigated Twitter usage in various emergency situations. Based on

their observations, they analyzed information gain and tradeoffs related with Twitter usage in

emergency communications field. This specific measure they name information reliability and

quality.

The general finding shows that Twitter is essential as a medium for information retrieval,

especially during the first hour. Within 24 hours, mainstream media arrives to the average level

of information quality on the Twitter network. Furthermore, authors inferred that after one

week mainstream media and specialized information outlets provide higher chance to find

critical information. Their finding is graphically approximated in Figure 1.

Although authors refer to this relation as a rough estimate, additionally they noticed that with

Twitter there is potentially more information than with any other information network, but the

variability in quality and sheer quantity may make it difficult to recognize, retrieve and manage.

- 16 -

Figure 1: Information quality comparison – Twitter and mainstream media

Practical application of Twitter in real emergency scenarios has been studied in this context in

many occasions. Vieweg et al in their work [NATHAZ10] investigated two disaster events in the

US: the Red River floods and the Oklahoma Grassfires, both of which occurred in the spring of

2009.

Red River Floods occurred in spring 2009, in the Winnipeg community, in North Dakota.

Previously, National Emergency Center issued warnings and flood predictions for Fargo

community, located upstream. The floods in the upper stream have been prevented due to

previously built dikes and massive sandbagging. However, in the downstream near the

Winnipeg the ice jams blocked the regular flow of Red River and prevented the opening of the

Winnipeg Floodway12, which caused several flood threats for Winnipeg residents culminating on

April 8, where the floods in some areas stayed for weeks afterwards.

Oklahoma Grassfires occurred also in spring 2009. High winds and dry conditions contributed

the fueling of numerous grass fires in central and southern Oklahoma and parts of northern

Texas. During April 9th and through mid-morning of April 10th there has been immediate fire

threat in this region. As a consequence, many roads were closed and residents evacuated as

firefighters tried to control rapid spread of fire.

In their work, Vieweg et al used Twitter API interface to get the tweets from a 51-day window

for Red River floods and six-day data window for the Oklahoma grassfires – in both cases for the

12

 A man made channel to divert excess waters around the city

Journalism – mainstream media

Twitter

Information

Quality

 1h 24h week

- 17 -

period for which the threat has been identifiable and active. Based on selected keywords, data

collecting resulted with 13,153 and 6,674 tweets, generated by 4,983 and 3,852 unique authors,

respectively. On those sets later the filtering technique has been applied, in order to keep only

relevant tweet data and remove unrelated posts. The filtering has been done in two stages –

first keeping only the user data streams that contained more than three tweets containing the

search terms. Then, those tweets have been classified in two groups, on-topic and off-topic,

based on the level they mention emergency case. Finally, the resulting on-topic tweets were

further investigated and locations of their authors have been manually extracted and reviewed.

The next step included feature-labeling in resulting dataset. The features related to geo-

location13, location referencing14 and situational updates15 have been referenced using

automated and manual extraction. In the analysis of these features authors identified High Yield

Twitterers. This term has been assigned to users who cautiously constructed their tweets to

report as much relevant information as possible within allocated space. The authors suggested

that this category of users is somehow aware of their public role, or their perception of the

public role, and design content-rich, deeply informative tweets to be read by a larger audience

intentionally.

The next interesting finding of this study is related to re-tweeted information. Retweeting is a

form of the convention among Twitter users, a passing of previously broadcasted tweet. The

tweets in question are considered especially noteworthy and interesting by the users

forwarding them. According to the results gathered, the tweets containing geo-locations and

situational updates are more likely to be retweeted, indicating a preference of other Twitterers.

Markedness is the next phenomenon noticed in the set, which in this case refers to

generalization of some terms like places, landmarks or items16. Those entities are not referred

by their name but according to the category they belong or using other way, which is supposed

to be taken for granted by other users. This trend may be of importance in information

13

 Clearly identifiable information that includes street addresses, intersections, city names, county names,

highways and place names like schools, landmarks etc.
14

 Information that uses one place as a reference for another; or mention of a location using a landmark
15

 Identified and organized into several categories, like warning, preparatory activity, flood level, weather,

damage reports, road conditions etc.
16

 For example we may use following sentence: “The water level of the river is increased rapidly”. Here,

the author is referring to one particular river in its neighborough. Although it may be self-evident for

human reader, computer processing of such sentence requires additional activity in the term of

reasoning.

- 18 -

extraction techniques as it affects the ability of the system to examine and understand analyzed

data correctly.

As a result of this research, authors proposed an outlined set of relevant microblog-enhanced

situational features which may be of importance in further emergency data mining. These

features are categorized into the groups, including subcategories for particular cases.

In other work from Sakaki et al [SOM10], the authors focused on real-time detection of

earthquakes in Japan. Their solution is considered as an innovative social based approach in

early earthquake detection. The basis assumption of this work is centered on the Twitter user

which represents social sensor, while each tweet posted is sensory information. However, these

sensors are of a vast variety and pose many different characteristics. They may be inoperable,

malfunctioning; some of them may be unusually active or very noisy. The basic object of

research is an event, which represents arbitrary classification of a space-time region. An event

may be in relation with actively participating agents, products, passive factors or a location in a

space-time. The properties outlining the earthquake events are their large scale nature, their

ability to influence people’s daily life and their both spatial and temporal features. There are

also other events, like typhoons, traffic jams, storms, hurricanes etc, which may pose the

features outlined. The proper rules and techniques to distinguish these event types are crucial

in the analysis.

In work from Sakaki et al three main groups of features of each tweet were identified:

� Statistical features: including number of words in each tweet, position of the query

word inside a tweet

� Keyword features: the words present in a tweet

� Word context features: the words within the tweet related to the query word, like

previous or the following word

These features are used to determine which tweets are referring actual events (positive) and

which are referring other events (negative), as ones happened in the past. Based on the

research results, keyword and word context features did not contribute significantly to the

classification results. This fact may correlate with the finding that users usually tend to send

shorter tweets when they are surprised. On the other side, just position of the words in relation

to the query word may not be enough for the system to bring decision. The authors identified

- 19 -

the cases where it was difficult even for the human to judge whether a tweet is reporting an

actual earthquake or not.

The performances of the proposed system have been evaluated on 49,314 tweets retrieved

during one month. After classification, 6,291 positive tweets by 4,218 users were identified. The

rate of identifying the earthquakes classified as 3 or more at JMA seismic intensity scale was

96%. The value of this system in the sense of the loss prevention is its speed, e.g. ability to

deliver information timely. Compared to the system already used by JMA to deliver

announcements of the expected seismic activities and expected arrival times, the proposed

solution is able to deliver information using e-mail in the time less than a minute. JMA’s actual

system using TV and radio broadcasts usually takes 6 minutes to deliver information report. In

many cases, this presents unacceptable delay, as the earthquake waves propagate with the

speed of 3-7 km/s.

Interesting research has been conducted by Hughes et al [TADOPT09]. They investigated Twitter

usage during mass convergence events, namely two emergency17 and two national security

related18. The four events happened in time range from 21st Aug to 14th September 2008.

Similarly as for other described works, the authors used Twitter Search API and periodically

extracted messages containing highly narrowed search terms (containing only names of

hurricanes or conferences, respectively).

After sampling of the search results and initial analysis, authors noticed a correlation between

the number of messages related to the event and its impact. For instance, Hurricane Ike has

caused damage financially estimated at $27 billion, while Hurricane Gustav caused damage in

the range of $4-14 billion. Total number of tweets sampled follows this pattern in relation to the

event. Similar case is also for both conventions organized.

The next characteristics related to usage of Twitter in such occasions can be found in

comparison of the number of tweet replies in standard Twitter traffic and tweet replies in such

events. Authors found a strong difference in this sense. While during mentioned events the

number of reply tweets counted between 5-7%, in general sample of Twitter traffic reply tweets

accounted for more than 20%. The authors hypothesized that one of reasons for such difference

may be a decision of users not to direct the traffic toward one particular user but rather to the

whole group. Additionally, the authors have found that tweets tend to contain URLs more often

17

 Hurricane Gustav Hurricane Ike
18

 Democratic National Convention and Republican National Convention

- 20 -

in case of mass events than in normal traffic. In the case of mass events, some 36-52% of tweets

contained URLs, while in the sample of standard Twitter traffic URLs have been contained in

around 25% of cases.

Another compelling finding of this research is related to user adoption of Twitter. The authors

compared Twitter adoption19 level of new users during mass events investigated, and new

Twitter users based on a random sample. The results suggest that user adoption rate is higher

for users who began using Twitter as a part of important situation related to direct experience

and usefulness of the service.

2.3.3 Markets, Products and Investments

Considered from the point of regular fluctuations and their volatility, financial markets and

investment products are surely one of areas where analysis of microblogging messages may be

applied. Psychology of consumers and traders with its unquantifiable and hard to understand or

explain characteristics is often overlooked when it comes to general trading forecasting. In this

sense, Arthur et al [ASSET96] identified two main views of understanding, represented from

academic theorists and market traders.

The first group tends to estimate the future value of assets rationally, based on all market

information available. From the point of efficient-market hypothesis, it is believed that there are

no opportunities left for speculative consistent profit, following that temporary price shocks are

reflecting rational changes in assets’ valuations rather than sudden shifts in investor sentiment.

From the other side, market traders believe that technical trading20 may be profitable and that

behavior of traders can be affected and driven by herd effects, unrelated to market news. This

can be often identified as an effect or representation of “market psychology”, supported by

areas like behavioral economics [ASSET96].

Therefore, as microblogging messages may be a result of user’s sentiment and rational or

irrational expectations, their content may be considered as a valuable source in the analysis of

market trading and forecasting. In some past research, message boards on Internet have been

analyzed for valuable financial information. There have been reported correlations between

19

 In the term of continuous service usage for over of 17 weeks.
20

 Prediction of future asset valuation based on past data, like trading price and volume.

- 21 -

message volume and trade activity and volatility. Antweiler and Frank [MSGBRD04] have shown

that talk in internet message boards is not just noise, but can be a source of financially relevant

information and furthermore could be used as a valuable resource in studies of events and

insider trading. Other research suggests that message boards as a communication instrument

introduced changes in pricing behavior. Empirical evidence found by Jones [JONES06] shows a

significant increase in daily trading volumes, lower returns and higher volatility after a

company’s message boards was established. This may be a result both in cases when the new

investors were drawn to the market, or existing investors were stimulated to trade more

frequently.

However, in comparison with Internet message boards, microblogging has several additional

features which may be considered worthy for distinct consideration. First, Twitter broadcasts

messages in real time. That means the information can be retrieved instantly. In order to

retrieve actual information from the message boards, they should be crawled frequently, which

may introduce problems on a large scale.

Second, Twitter aggregates information, there is only one place to search and retrieve

information from. Unlike Twitter, there are many message boards, in different locations, based

on different software etc which makes retrieval process more challenging. Additionally, it

affects posting behavior of users as they need to enter different message boards periodically,

send new posts or take a part in discussions.

The third difference may be found in rating of users and their influence. In the case of message

boards, it may be hard to identify the same user posting on multiple message boards under

different nick names. On Twitter, the average user will usually post from one account. In

Twitter, the value of the author and the posted information may be particularly estimated

through the number of retweets, followers or followees – the dimensions which do not have a

counterpart in the case of message boards. Furthermore, availability of such features makes it

possible to introduce measure and research on information diffusion. Based on these

arguments, we may conclude that, compared to message boards, analysis of microblogs like

Twitter may introduce some additional advantages.

One of the very first works investigating microblogs for an impact on financial markets is

prepared by Sprenger and Welpe in December 2010. Their research concentrated around two

basic questions:

- 22 -

1) Whether and to what extent the information content of stock microblogs reflects

financial market developments, and

2) Whether microblogging forums provide an efficient mechanism to weigh and aggregate

information.

The first question implied a research on the possibility to predict returns based on tweet

sentiment, whether message volume is related to returns, trading volume or volatility, and

third, what is the correlation between the level of disagreement among messages and volatility

or trading volume of assets. The second question directs the research toward investigating

whether the quality of investment advice is in relation with level of mentions, the rate of

retweets or author’s followership.

In this work, authors collected 249,533 stock related microblogging messages containing the

dollar-tagged ticker symbol of an S&P 100 company, in the period from January 1st to June 30th

2010. Based on the sentiment (bullishness) presented, the tweets have been classified as buy,

hold or sell signals, based on Naïve Bayesian text classification.

The authors noticed significant spikes of message volume just before the opening of the

markets. Additionally, the fact that the majority of tweets were posted during the trading hours

provides the evidence that microblogging in this case is used for real time communication.

Furthermore, authors observed strong correlation between sentiment21 and returns, and from

other side, slightly weaker correlations between sentiment and abnormal returns.

The next relation found in this research is concerning the relationship between message volume

and trading volume. Interpreted as elastic measure, they found that 1% in an increase of

message volume produces 10% increase in trading volume; however, their finding suggests also

that returns cannot be explained with message volume. Finally, in this work authors observed

the increase of volatility as the message volume rises.

The further research in this work from Sprenger and Welpe is related to information diffusion.

They tried to examine whether individual messages with high quality information are weighted

more heavily and spread through retweets. As an addition to that, authors wanted to

investigate whether advisors with higher potential can be identified and whether these users

receive greater attention in the community.

21

 Sometimes referred as a bullishness, referring to trading recommendation identified in message

- 23 -

Although it could be concluded intuitively that retweeted message may contain information of

more value, the empirical findings of authors did not prove that. Actually, the difference of

quality of information between retweets and non-retweets is statistically insignificant. However,

there may be reasons why significance is marginal: the retweets are often modified original

messages with additional comment of retweeter, which can alter the original tweet sentiment

and thus the quality of the information. Additionally, the messages can be retweeted after

longer delay, becoming irrelevant for the day of the investigation. Anyways, the authors

dropped the initial hypothesis and focused further on the identification of more than average

users. There, the evidence has been found that users who provide higher quality investment

advices are retweeted more frequently; they also have larger followership.

Other research, conducted by Vincent and Armstrong in the area of finance and automated

trading [BPOINT10] analyzed Twitter buzz with regards to Forex22 trading. Namely, timely

identification of points of change in financial time series in the trading of foreign exchanges is

especially significant for successful trade. As the currency exchange rates fluctuate very often,

the prediction of the amount and direction of change should be done frequently and in a timely

manner.

In this work, authors analyzed a time span of 5-months, from the October 2009 to March 2010.

During that time, they made around 100,000 observations using the service Twitscoop23. In the

observations, new word instances for a particular period have been identified. In the case of

two words or more, Twitter Alert has been triggered and that represented a possible breakpoint

in the series. These alerts have been used on previously developed genetic algorithm for

automated currency trade between USD and EUR. Using this approach authors have been able

to determine a correlation between buzz found on Twitter and USD/EUR exchange rate. The

correlation is expressed as a relationship between the time to react to each alert and the

performance of algorithmic traders. As the relationship found takes a form of wave24, authors

named it “Twitter Wave”. It suggests that correlation is most marked in the period of 4 and 6

minutes before the break-point in the trading occurred.

Another interesting finding with regard to Twitter usage is related to brand mentioning in

microblogs. Jansen et al. [WMOUTH09] analyzed microblog entries in Twitter posted in the

22

 To be explained
23

 Description follows
24

 Profit margin in function of time, where the reference point in time is issuing of Twitter Alert

- 24 -

period of 13 weeks. These entries have been extracted based on mentioning of 50 previously

selected brands, resulting with more than 150,000 tweets. Authors have found that 19% of the

entries contained brand mentions. Of those, about 20% of posts contained some expression of

sentiment related to the brand. In their dataset, more than 50% of sentiment expressions were

positive, while 33% were critical to the company or product. Their finding suggests that a

significant amount of the Twitter communication relates to the products or brands, which

further indicates that the microblogging medium poses a competitive place for organizations,

especially in the fields of marketing, customer relationship management or business intelligence

mining.

As the microblogging world in constantly rising and expanding its presence, counting now with

hundreds of millions of users worldwide, it has potential and should become an integrated part

of overall marketing strategies of the companies. Using microblogs and their ubiquitous

characteristics25 organizations are able to shorten the emotional distance to customers and

engage in more direct, two-way communication. This way, it could spare them many inefficient

advertising activities and give an opportunity to get more direct, and what is important, real-

time feedback from customers. However, that real-time component makes a microblogging

world very dynamic, pulsing and fluctuating medium, requiring constant activity and attention

invested from the organizational side.

Also, in the previously mentioned research it has been discovered that in 80% of the tweets

containing brand mention, no sentiment expression has been found. It suggests that users were

seeking for the information, asking questions or answering questions of the other users. That

place may be a excellent source of business intelligence for companies. For instance, instead of

(or additionally to) organizing the costly, complicated and relatively inefficient customer surveys

or analysis, the companies may additionally engage in microblog arena. There they can try to

find new product opportunities or ways to improve their products and satisfy customer needs

better. Using microblogs, companies may push information to customers and get real-time

feedback. They can also control and estimate how pushed information is further valued and

perceived.

25

 The microblogs are updated frequently from the wide range of devices and the communication

(update) is real-time based

- 25 -

2.3.4 Disinformation on Twitter

Due to its architecture and properties, Twitter is especially suitable for use in disinformation

operations.

The limited length of the messages tends to affect inclusion of the source or reference which

may prove information posted is correct. Also, the message size limitation may induce the

poster to produce a simplification of information.

This simplification may influence and distort its perception and understanding, thus

transforming it to disinformation. Therefore, in the Twitter, disinformation may be posted and

forwarded both intentionally and unintentionally.

Figure 2: The propagation of disinformation in Twitter network

The information in Twitter is propagating through retweets. The rate of message propagation is

proportional to the product of probability of each user retweeting the message and the number

of users receiving the message. There are several factors playing the role in user decision to

retweet the message. Among the factors influencing user decision to retweet identified by Boyd

et al. [TWRTW10], particularly interesting may be the intention to amplify or spread tweets to a

new audience, to inform audiences and validate others’ thoughts. This way the particular

attention to a message and its content is drawn.

Figure 2 represents a model of information propagation in the Twitter network. Being

broadcasted from the source node, the information is further propagated to followers of each

node by voluntary retweeting it. The shaded nodes represent the disbelieving users, e.g. ones

who distrust information obtained and, therefore, ignore it. The figure assumes that retweeting

rate is 100% among believers, and 33% rate of disbelief.

- 26 -

From the figure, the property characteristic for Twitter is observable: the users in the network

are generally not aware of the disbelieving ratio among other users, especially ones which are

not in their network (followers-followees).

Unlike in IRC, internet forums or email mailing lists, there is no mechanism in Twitter for sibling

nodes to communicate, unless they already have established direct relationship. If a user in

Twitter tweets something false and one of users in its network refutes this information, other

followers of tweeting user are usually unaware of that act. This way, disbelieving ratio (globally)

expressed to particular information (message) do not affect its valuation and retweeting among

users – it produces only local effects. These characteristics may stimulate malicious users to

optimize particular message rather for maximum chance to be retweeted than to be universally

believable.

In a Twitter study from Haewoon et al [TWNEWS10] researchers found that any retweeted

tweet on average is to reach 1,000 users, no matter what the number of followers is of the

original tweet. This is an interesting finding, as it gives each individual user the power to spread

information (or disinformation) broadly.

Interesting example of disinformation spreading in Twitter may be found in Swine Flu (H1N1)

outbreak in 2009. In the period from April 20th to April 24th the percentage of tweets referring

H1N1 rose from nothing to 0.2% of all messages in circulation. On April 25th rough 2% of all

tweets were related to Swine Flu. A significant part of this traffic consisted of misinformation

related to H1N1 transmission vectors, about the actual spread of the outbreak and the

speculation of its source [SFLU09].

While there is no evidence to support the claim that some or all of that misinformation have

been seeded purposely, based on previous analysis it can be understood that, for the external

parties, it would not be hard to affect the information flow.

How it may be easy to communicate disinformation on Twitter based on false identity may be

observed from the example of Janet, a Twitter user pretending to be Exxon employee

[JANET08]. In August 2008 “Janet” took part in Twitter conversations pretending to be an

Exxon’s member of staff. She has been answering questions and giving explanations, like

explaining the direction of the company or where philanthropy resources are being spent.

- 27 -

It took three days since the first tweet in the name of Exxon Mobil Corp. appeared to draw the

attention of mainstream internet media and analysts. At that time, it was intriguing for general

public to meet a company engaging with its customers via Twitter channel.

From this issue, it can be observed that lack of identity confirmation and deficiency or

unreliability of the options for the community to confirm identity may present one of the

obstacles in establishing communication based on trust. Also, unaware users are at higher risk

from being misled by information which originates from unconfirmed or untrusty source or

which reference is missing.

- 28 -

3 Software Vulnerabilities

Errors are an inevitable companion of the software development process, or generally of any

development process which is complex, layered, distributed, domain-crossing and which

involves a number of subjects with different backgrounds, goals and interests.

As the software gets increasingly complex and deeper integrated into business processes and

everyday life, the significance and possible dangers of the impacts resulting from the errors in

the complete process of the software development become more and more accented.

This chapter introduces the reader with the software vulnerability model, related terms and

problems. It presents some of the obstacles in the process of defining and distinguishing the

concept. The taxonomy of the software vulnerabilities is the particular topic of importance for

this work, therefore, the brief overview, the history and developments of this field are provided.

Lastly, the reader is introduced with the initiatives from Mitre Corporation defining the systems

for Common Vulnerabilities and Exposures (CVE) and Common Weaknesses Enumeration (CWE),

the products of which are further applied in this work.

3.1 Definition

ISO/IEC 27005:2008 defines the vulnerability as a weakness in an asset or group of assets. An

asset’s weakness could allow it to be exploited and harmed by one or more treats. The same

standard treats asset as any tangible or intangible thing that has value to an organization.

Threat is further considered as a potential event which may turn into an actual event, causing

an unwanted incident with additional potential to harm an organization or system [ISO27005].

- 29 -

This standard identifies vulnerabilities in one of the following areas:

� Organization

� Processes and procedures

� Management routines

� Personnel

� Physical environment

� Information system configuration

� Hardware, software or communications equipment

� Dependence on external parties

ISO’s definition is broad in the scope, considering the existence of flaws in the environment,

working systems or procedures extrinsic to the software system. However, the scope of

investigation of software vulnerabilities requires more refined and precise definition.

The National Institute of Standards and Technology (NIST) gives the following general definition

which may be easier applied on the software system. The publication from NIST named SP 800-

30 as a vulnerability identifies a flaw or weakness in system security procedures, design,

implementation or internal controls that could be exercised (accidentally or intentionally) and

result in security breach or a violation of the system’s security policy [NISTSP02]. The significance

of this definition in the scope of software systems is in the fact that it identifies the potential of

vulnerabilities to be a result of a flaw in different software development processes or cycles, like

design or implementation.

Although they have been extensively covered in the literature, there is no widely accepted

definition of software vulnerabilities. One of the contributions towards a better understanding

of the field has been introduced in the dissertation of Ivan V. Krsul. In his work Krsul analyzed

the emergence of software vulnerabilities and identified two fundamental underlying concepts.

The importance of his work is in the fact that he, similarly to NIST’s definition, derives different

areas of software development in which software vulnerability may originate: specification,

development or configuration [KRSUL98].

- 30 -

The first concept identified by Krsul relates to terms error, fault and failure [KRSUL98]. They

reflect software vulnerability from its origin, or cause, to its manifestation and induced

consequences.

IEEE Standard Glossary of Software Engineering Terminology gives a more refined definition of

the term error and connects it to the term mistake. One of possible distinctions between them

considers mistake as an event of human action that produces incorrect results. That could be,

for example, an incorrect action of a computer programmer or operator. Furthermore, the same

source considers the error as the difference between a computed, observed or measured value

or condition and the true, specified or theoretically correct value or condition [IEEE90]. In this

sense, the fault is further identified as a manifestation of an initial mistake, whereas the failure

corresponds to the result of the fault and symbolizes system's inability to perform its functions.

The second concept identified in the work of Ivan V. Krsul is computer policy. Software

vulnerabilities violate or provide the mechanism for disobeying the rules and practices defined

under computer policy. Krsul used the work from Garfinkel and Spafford [PRACUNIX96] as a

starting point in the process of defining a computer policy. They state that the policy is used to

define what is considered valuable and specifies what steps should be taken to safeguard those

assets.

The additional term, security policy, is often related to the computer policy either as the same

concept or its refinement. Landwehr mentions the security policy as a set of rules defined to

meet particular goals [LANDWEHR01]. These goals may be classified under different categories,

where the most prominent of them include confidentiality, integrity, availability, accountability,

authentication and non-repudiation [LANDWEHR01, LAMPSON04].

For further considerations it should be noted that the term vulnerability has a wider scope than

software vulnerability, as shown in the previous definitions [ISO27005, NISTSP02]. However, as

this work focuses on the software vulnerabilities alone, the terms vulnerability and software

vulnerability are equated here for the practical purposes. The same applies to the flaw, which in

the scope of this work corresponds to the software flaw only.

Now that the basic underlying concepts are presented, the term software vulnerability may be

further elaborated. The Organization of Internet Safety (OIS) formulated the common definition

of this term:

- 31 -

Security vulnerability is a flaw within a software product that can cause it to work

contrary to its documented design and can be exploited to cause the system to violate

its documented security policy. [OIS04]

Information Assurance Analysis Center (IATAC) provides more comprehensive definition:

A vulnerability is an attribute or characteristic of a component that can be exploited by

either an external or internal agent (hacker or malicious insider) to violate a security

policy of (narrow definition) or cause a deleterious result in (broad definition) either the

component itself, and/or the system or infrastructure of which it is a part [IATAC11].

OIS’s definition expects that software flaw is a necessary condition for software vulnerability to

exist.

The important difference between flaw and vulnerability is determined by the level of

exploitability of the flaw. Flaw stands for a potential vulnerability which may not be manifested

for a number of reasons. Consequently, the software vulnerabilities form a subset of software

flaws conforming to conditions or expectations in the real-world exploitability. For instance,

software flaw may be available in the section of the program which is not easily reachable by a

potential attacker. Additionally, it may require certain privileges or settings related to its

environment, users or other connected systems to become exploitable.

Culp from Microsoft formulates the prerequisite for the flaw to be considered as vulnerability. It

is in essence infeasible to prevent violation of the security policy even when the product

containing vulnerability is properly used [CULP00]. For instance, web application may contain

software flaw which is exposed to visitors with administrative privileges. As in normal operation

administrative privileges are given to the trusted users only and standard users possess

restricted privileges, that flaw should not be considered as vulnerability.

One captivating view on software vulnerabilities is presented by Engle et al [TREE06]. They

consider vulnerability as a set of state transitions which take the system from the set of allowed

states to disallowed state. Disallowed state is known as a vulnerable state. It has a set of

attributes purposely identified as characteristics. The task of security policy is, therefore, to

separate system states into allowed and disallowed ones. This proposal has been further

extended and examined in [VCMOD08].

- 32 -

The definitions and views shown above indicate ambiguity and potential obstacles in the

process of gaining a common understanding and definition of the term software vulnerability.

However, in the scope of this work, these ambiguities are of a less relevance. Therefore, they

will not be discussed in detail. Rather, their presence will later show how, depending on the

view, the different classifications schemes can be developed and how the view on software

vulnerability may influence further process of its investigation and analysis.

3.2 Software Vulnerability Taxonomies

Many subjects take part in the collection, analysis and dissemination of Information about

software vulnerabilities, including the following:

� Various government agencies and public bodies

� Privately-owned or independent research and academic institutions

� Commercial software vendors

� Commercial agencies and other entities specialized in software vulnerabilities

� Independent individuals, including black and white hats26

Each of these subjects has its own motivation and purpose for working on security

vulnerabilities. They also have different views on vulnerabilities, their origin, description,

classification, fixes, potential impacts etc. Their classifications may differ or overlap not only in

the descriptions and related perception of vulnerability and its consequences, but also in the

metadata structure or in the procedures used for the information retrieval, processing and

exchange.

In order to make the organization, exchange and analysis of security related information

feasible and comparable between those subjects, and further to facilitate the public utility of

the retrieved information, some common mechanisms and technologies with unified and

harmonized structure should be used. They could include classification systems for

26

 White hat is used as a description of experts or hackers who identify a security weakness, but do not

take malicious advantages of its discovery. Contrary, black hats are individuals using vulnerability for

malicious purposes.

- 33 -

vulnerabilities, but also the procedures and guidelines for the vulnerability assessment, as well

as appropriate formats for storage and exchange of information.

In the last decades many authors approached the topic of software vulnerability classification.

Many of their proposals are in the form of taxonomies. The taxonomy corresponds to a subject-

based classification that arranges the terms in the controlled vocabulary into a hierarchy. It

allows related terms to be coupled together and categorized in ways that make it easier to

select the appropriate term to use, whether for the searching or to describe an object [ONT04].

In the software security domain, a taxonomy-like organization allows vulnerabilities to be

uniquely identified. One of the first relevant works related to software vulnerability taxonomies

appeared in 1970s. At that time, Abbott et al focused on operating systems, developing

taxonomy based on seven root classes [RISOS76]. These classes are depicted in Figure 3.

Later, Landwehr et al proposed a taxonomy which classifies each flaw according to its genesis,

time of introduction and location in the vulnerable system [NRL93]. The rationale for such effort

has been found in the observation that the history of computer failures is relatively

undocumented.

Their intention was to help system designers and security analysts in the process of increasing

level of the understanding and overview of security flaws. They argued that such classification

could provide a detailed insight into the life cycle of software failures. That way, the user could

benefit from the information like which parts of the system, what time points and which phases

in the software development process introduced what kind of flaws.

Three levels of the taxonomy by Landwehr et al can be summarized as follows:

First level: the genesis. The flaws can be produced intentionally or unintentionally. Intentional

ones can be a result of malicious or non-malicious motivation. The group of malicious flaws

includes Trojan horses, trapdoors and time bombs, while non-malicious group consists of covert

channels and others.

From the other side, the inadvertent group of the flaws has six categories:

� Validation errors

� Domain errors

� Serialization and aliasing errors

- 34 -

� Errors due to inadequate identification/authentication

� Violation of boundary conditions

� Other logic errors

Figure 3: Taxonomy of software vulnerabilities in operating systems [RISOS76]

The second level in this taxonomy is determined by the time of introduction of flaws in the

software life cycle. These include software development phases such as development

(requirements - specifications - design, source or object code), maintenance or operation.

In the last, the third level of the taxonomy, the location of the software flaws determines the

classification of the software flaws. As the possible source of the flaw, this classification includes

not only the software, but also the hardware. Branch devoted to the software as the source

place of the flaw contains subcategories related to the flaws occurring in the operating system

components and support software.

Landwehr et al identified the following components of the operating system as potential flaw

locations:

� System initialization

� Memory management

� Process management/scheduling

- 35 -

� Device management, including I/O and networking

� File management

� Identification/Authentication

The support software flaws branch further in the privileged and unprivileged utilities.

The taxonomy presented by Landwehr et al. is not only theoretical construct – in appendix

authors provided 50 example vulnerabilities which have been used during the construction of

the taxonomy.

Howard and Longstaff pointed out that this taxonomy do not address some of the issues

previous taxonomies had, like the ambiguity of classification procedures or the presence of

several “other” categories, which implies the incompleteness of the taxonomy [HL98]. Aslam

noticed that Landwehr’s taxonomy can be difficult to implement in reality, because it requires

access to the source code of the software and additional information related to the

programming environment.

In addition, the decision about a time of flaw introduction in the software system requires

additional knowledge like the project documentation or progress reports. These are difficult to

obtain publicly and require an additional effort to be examined [ASLAM95].

In his thesis [ASLAM95], Aslam proposed a domain-specific taxonomy for vulnerabilities in UNIX

operating systems, with the primary motivation to develop a system which supports the

unambiguous classification of the flaws into distinct categories.

Aslam collected security flaws from different sources, including CERT advisories, flaws published

on mailing lists and literature survey. His approach was a bit different, as he focused on analysis

of software faults. In order to address issues found in other proposals, like ambiguity resulting in

the categorization of flaws in more than one category, he specified selection criteria for each

fault in category.

The main categories proposed in his work [ASLAM95] are based around the following faults:

� coding faults

� operation faults

� environment faults

- 36 -

However, some authors27 deemed that approach as still incomplete, failing to define

the classification schema that could discover unique categories of vulnerabilities.

Instead, they proposed the solution based on a different viewpoint. Instead of the hierarchical

taxonomy, their proposal uses attribute-value pairs to provide a multidimensional view of

vulnerabilities. Those pairs are present in the form where an object has an attribute with a

value. Once object has an attribute with a defined value, it becomes a property of the object. In

this system, as an addition to vulnerabilities and exploits, they identify mitigations
28, which also

stand in relationships with vulnerabilities through the attributes [CMSEI05].

In the domain of the software vulnerabilities, possible object-attribute combinations should be

limited only to the relevant ones. The object’s attributes correspond to the security flaws that

may or may not lead to the vulnerability of a system. The Figure 4: Example exploit [CMSEI05]

shows Unified Modeling Language (UML) activity diagram of the exemplar exploit. The program

from this example illustrates contains several software flaws. Each activity described is tagged

with an attribute-value pair (dashed boxes) that represents required preconditions for the

exploit to succeed. Additional descriptive attribute of the program is its usage of a memory

manager that uses boundary tags, such as dlmalloc29 [CMSEI05].

The significance of this approach is in the fact that it offers the universal framework, which

usage can be based on different aspects. It can enable users of different roles to take the

advantage of the common description and classification system, each in their own domain.

Attributed code segments can be automatically analyzed against available classifications and

descriptions. This could lead to the discovery of the information about their vulnerability to the

known exploit classes. It enables and eases the process of automatic assessment of threats

posed by vulnerabilities and mitigations techniques or strategies available for them.

Furthermore, the solution proposed forms the base for a better understanding of characteristics

of the vulnerabilities and their correlation with the incidents, exploits and artifacts. This could

lead to the development of the predictive model that can anticipate threats with a high level of

significance automatically.

27

 Including Seacord and Householder
28

 Mitigation is referred as a set of methods, techniques, processes, tools or runtime libraries that are able

to prevent or limit exploits against vulnerabilities. Alternatively, they are referred as countermeasures or

avoidance strategies. [CMSEI05]
29

 Doug Lea’s implementation of standard C routine malloc

- 37 -

Based on the previous research presented in this section, it can be noticed that different

approaches have been applied to the problem of creation of the taxonomy of software

vulnerabilities. In his overview, Krsul discussed 17 approaches to the taxonomy and

classification. In his thesis, he disputed some of the taxonomies known in the literature,

including ones mentioned in this work [NRL93, ASLAM95]. He argued that they even do not

satisfy necessary conditions to be considered as taxonomies [KRSUL98].

Figure 4: Example exploit [CMSEI05]

In order to develop the guidelines for their proposal for the software vulnerability taxonomy,

Howard and Longstaff compiled a list of characteristics of satisfactory taxonomies. According to

them, the classification categories should follow the following guidelines [HL98]:

� Mutually exclusive: the categories should not overlap

� Exhaustive: the categories should include all possibilities

� Unambiguous: clear and precise, classification should be certain and unambiguous

� Repeatable: repeated applications lead to the same classification, regardless of the

classifying person

� Accepted: categories should be logical and intuitive in order to facilitate a general

approval

� Useful: could be used to gain the insight in the field of inquiry

Malicious string passed

as an argument

Boundary tags corrupted

Control passed

to the shell code

Shell code installed

in the heap
Heap buffer overflow

Flaw=”insufficient input validation”

Argument=”string”

Flaw=”insufficient input validation”

Flaw=”unbounded copy”

Malloc=”uses boundary tags”

Malloc-implementation=”dlmalloc”

- 38 -

With this proposal they tried to summarize the results and describe the insight gained from the

previous work in the field. Although some authors noticed and further adopted their suggestion

(e.g. [SVCONS05, SITANAL05, THONO10]), others have criticized their work as not particularly

useful in the practice [OZMENT07].

In his thesis, Ozment ranges taxonomies from the most comprehensive to less formal ones,

noticing that most of the existing taxonomies tend to be on the less formal, weaker side of the

scale, being useful in the practice mostly for a narrow analysis or a task [OZMENT07].

The peers in the field reached the relatively common observation about the fact that existing

taxonomies do not provide scheme which can be widely used in the practice as a general and

universal tool. Instead, they observed that the simple classification and enumeration schemes

are used frequently in the practice.

3.3 Initiatives of Mitre Corporation

A decade ago there has not been a commonly adopted naming convention and classification for

defining and describing security problems in the software. Instead, many subjects used or tried

to promote their schematics and methods for identification and notation of software security

problems. That situation resulted in instable, incompatible and incoherent naming schemes and

approaches.

The implementation of the processes from the domains of information exchange and

cooperation has been embarrassed and complicated for vendors, users, security analysts and

other parties involved in the tracking and analyzing of software vulnerabilities.

In January 1999, at the 2nd Workshop on Research with Security Vulnerability Databases at

Purdue University, MITRE Corporation presented an approach and proposal for a common

enumeration of software vulnerabilities. In beginning conceptualized as a simple mechanism for

linking vulnerability-related databases, through the time CVE (Common Vulnerabilities and

Exposures) progressed toward the most comprehensive list of software security vulnerabilities

available.

Initial motivation of the CVE initiative was to facilitate adoption of the CVE list as a common

mechanism for referring to vulnerabilities and exposures.

- 39 -

This initiative targeted five main areas of activity:

� Unique naming of every publicly known security vulnerability and exposure

� Injection of CVE names into security and vendor advisories

� Establishment of CVE usage as a common practice in computer security area

� Promoting CVE usage through public policy guidelines, methodology requirements,

requirements for new capabilities, training, usage and best practice suggestions

� Motivating commercial suppliers to use CVE names in their update and fixing

mechanisms

Today, CVE is widely adopted, gradually approaching the goal of uniquely naming every publicly

known security relevant software problem. Its names are normally included in many security

relevant bulletins and sources, including CERT/CC, Microsoft, Red Hat and 73 other

organizations. Additionally, there are more than 100 organizations participating worldwide in

the process of making their products, services and offerings CVE compatible30.

CVE is extensively applied in the fields of vulnerability management, patch management,

vulnerability alerting and intrusion detection. It is integrated in the US-CERT (United States

Computer Emergency Readiness Team) bulletins, used by SANS Institute and approved by NVD

(National Vulnerability Database). NVD is the United States government repository of standards

based vulnerability data, which is completely based upon the CVE and represents its refined

superset. NVD provides vulnerability data feeds implemented according to the CVE standard,

augmented with the additional analysis information and search database.

The main concept the CVE list is based upon is represented through the CVE Identifier31. It is

unique, common identifier for publicly known information security vulnerabilities. In order to be

accepted in the CVE list and therefore recognized as a CVE entry, each potential security

vulnerability or exposure is initially assigned a candidate status and appropriate candidate

number. In the further process, the CVE Editorial Board decides whether it should be designated

official CVE entry status. If the candidate is accepted, its status is updated to entry on the CVE

list. CVE list is organized and maintained by the CVE Editorial Board.

30

 As of September 2011, based on report from http://cve.mitre.org/compatible/index.html
31

 Also called CVE name, CVE number, CVE-ID or just CVE

Figure

Its members are, among the others, the security

security tool vendors, members of academia, research institutions, government agencies and

other subjects. The Mitre Corporation moderates and provides guidance in the complete

- 40 -

Figure 5: CVE entry schema definition (version 2.0)

Its members are, among the others, the security-related organizations including commercial

curity tool vendors, members of academia, research institutions, government agencies and

Corporation moderates and provides guidance in the complete

related organizations including commercial

curity tool vendors, members of academia, research institutions, government agencies and

Corporation moderates and provides guidance in the complete

- 41 -

process [CVEED11]. Figure 5 provides the general overview of the CVE data provided by NVD

(top level, part related to vulnerability entry).

From this diagram, it can be noticed that the most of the elements are optional. In practice,

their inclusion depends on the several factors. Usually, as the CVE list includes vulnerabilities

from many different sources, the reports from those sources may vary in extent. In some cases,

the evaluation of some aspects of vulnerability (or exposure) may not be applicable for

particular vulnerability, or, the subject reporting vulnerability may not execute complete set of

evaluations.

There may be other reasons why some entries do not expose all elements available by the

schema definition. However, the academic and commercial community is working on

improvements and extensions of the CVE list and related resources constantly. They are also

working on the further promotion of the standards and training. As the consequence, the

completeness and the scope of the vulnerability information submitted is increasing with the

time.

The elements illustrated in Figure 5 carry in the most cases self-explanatory names. According

to the scope of this work, the most relevant fields from this schema and related standards will

be discussed bellow. Figure 6 describes the elements vulnerable-configuration and vulnerable-

software-list from Figure 5. These elements refer to the values from the CPE list (Common

Platform Enumeration), helping us to identify the name of the product affected.

CPE is another initiative of Mitre Corporation, with the goal to establish a naming scheme for

information technology systems, platforms and packages. In the context of CVE, CPE is used as a

source of information about products affected by the vulnerabilities. The more details about

CPE are provided in Chapter 4.

- 42 -

Figure 6: Definitions of elements in CVE schema (version 2.0)

The element from Figure 7, cvssImpactType, refers to the CVSS (Common Vulnerability Scoring

System), which role is to describe the characteristics and impacts of the vulnerability through

scores. CVSS is developed by the CVSS Special Interest Group (CVSS-SIG) under supervision of

Forum for Incident Response and Security Teams (FIRST). Its actual version is 2.0, published in

2007.

From the diagram presented in the Figure 7 (bottom part), it can be observed that among the

three groups, the base_metrics is the only compulsory element to be provided.

Three metric groups describe the following [CVSS07]:

� Base: describes the intrinsic and base characteristics of a vulnerability that do not

change over the time

� Temporal: describes the characteristics of a vulnerability that change over the time but

not among user environments

� Environmental: describes the vulnerability from the aspect of the relevancy of

particular user’s environment

Figure 7: Expanded element

The base group is further expanded and illustrated in the

The base metrics group builds upon the cumulative severity score

are the subscore sets related to

Authentication, Confidentiality Impact

After the base group metrics are designated, the

from 0 to 10. The scoring process produces the vector in the form of text string th

the values assigned to each metric and that should be always shown together with the score.

The base and other equations for

[CVSS07]. The calculation of temporal and environmental metrics

included if desired.

32

 Calculation is done based on CVSS criteria

- 43 -

: Expanded element baseMetricsType from the CVSS scheme

The base group is further expanded and illustrated in the upper part of the Figure

The base metrics group builds upon the cumulative severity score32. The bases for its calculation

subscore sets related to the following metrics: Access Vector, Access Complexity

Confidentiality Impact, Integrity Impact and Availability Impact

After the base group metrics are designated, the cumulative score is calculated in the range

from 0 to 10. The scoring process produces the vector in the form of text string th

assigned to each metric and that should be always shown together with the score.

The base and other equations for the calculation of the score are defined by CVSS Guide

[CVSS07]. The calculation of temporal and environmental metrics is not required, but may be

Calculation is done based on CVSS criteria

Figure 7.

bases for its calculation

Access Complexity,

Availability Impact.

score is calculated in the range

from 0 to 10. The scoring process produces the vector in the form of text string that contains

assigned to each metric and that should be always shown together with the score.

the score are defined by CVSS Guide

is not required, but may be

- 44 -

The next important information CVE entry provides is the relation to CWE identifier (Common

Weakness Enumeration). This relation points to the particular CWE identifier, which then

provides the information about the classification and type of the software vulnerability.

CWE is a result of community initiative, targeted to communities of software developers and

software security analysts. It is a formal list of common software weaknesses that can occur in

the software architecture, design, code or implementation, which can lead to exploitable

security vulnerabilities. It has been designed with two objectives on the mind. The first is to help

shaping and maturing of the code security industry. The second one is to strengthen software

assurance capabilities of the organizations involved in the reviewing process of the software

systems, both in the cases of software acquisition or development [CWE07].

CWE organizes weaknesses33 in a hierarchical structure, where each weakness is given a unique

identifier (CWE-ID). The hierarchical structure follows the different abstraction levels of classes,

where the higher level represents more abstract, and the deeper level more concrete concept

of weakness. The elements in this system are organized in four main types: Category,

Compound Element, View and Weakness, each designated with a unique id [CWEFAQ11].

In its version 2.0, the CWE list contains 886 entries, defined through 693 weaknesses, 157 views,

27 categories and 9 compound elements. The category in CWE list is defined through a

collection of weaknesses sharing a common attributes. These attributes may be based on a

number of concepts, including environment (like J2EE, .NET), functional area (like authorization,

encryption) or resources (like credentials management or certificate issues) [CWEFAQ11].

The compound elements in the CWE categorization are built from meaningful aggregations of

several weaknesses (composite or chain). Example for such element may be CWE-692, which

describes blacklist based protection mechanism intended to defend against XSS attacks, which

fails due to the incompleteness of the related blacklist.

Views in the CWE list represent predefined perspectives used to look at the CWE weaknesses.

One example for such approach is CWE-700: Seven Pernicious Kingdoms, which organizes

weaknesses using hierarchical structure that is similar to taxonomy presented by Tsipenyuk et

al [SKING05].

33

 A term weakness in this case can be referred to software flaw, as explained in the chapter 3.1.

Therefore, it represents a potential vulnerability.

- 45 -

Finally, the weaknesses may be classified in three sub-classifications: class, base and a variant.

Class is the most abstract type of weakness, like CWE-311, which describes failure to encrypt

sensitive data. Base is a more specific type of weakness that is mostly independent of a specific

resource or technology. The example of it is CWE-364 (signal handler that introduces a race

condition). Variant is a weakness specific to a particular resource, technology or context.

Examples for a variant may be CWE-107 (unused validation form in Struts) or CWE-563 (unused

variable).

The information contained in the CWE entry includes the following [CVEFAQ07]:

� CWE identifier number and name of the weakness type

� Description of the type

� Alternate terms for the weakness

� Description of the behavior of the weakness

� Description of the exploit of the weakness

� Likelihood of exploit of the weakness

� Description of the consequences of the exploit

� Potential mitigations

� Node relationship information

� Source taxonomies

� Code samples for the languages or architectures

� CVE identifier numbers of related vulnerabilities

� References

The other information provided in the CWE entry for the type weakness is illustrated in the

Appendix 2. Due to the space considerations and the relevance, illustrations of other types of

definitions are not included in this document. The Appendix 1 provides the example of CWE

entry. This example contains the subset of information defined by the CWE vocabulary. It is

presented in the format suitable for the paper-based representation, reflecting the information

available and not its complex underlying structure and organization.

- 46 -

4 Software Framework

This chapter deals with the software framework prepared as a part of implementation phase of

this thesis. It describes the framework and provides information about its main components,

features, and related technology. The second part of this chapter describes the external data

sources and explains how they are used in the framework. Finally, the third section presents the

processing flow done with the software framework.

4.1 Rationale behind the Idea

The number of the users of social networks increases rapidly. Although the platforms of some of

the most popular social networks are based on sharing of personal information and general

entertainment, the potential of the networks is increasingly being recognized in the other areas

too. The important fact about online social networks is that they facilitate and simplify the

information sharing process, what surely contributes to their popularity.

It is not only that they encourage the sharing of information, but their approach also includes

other prerequisites for successful knowledge sharing. For instance, the practical inclusion of

three solutions to the knowledge sharing dilemma [CABRERA2002] plays important role in the

willingness of the users to share the information. That readiness builds an important block in

the foundation of the global information space. Today, it eases and facilitates access to the

information which was expensive or unavailable before. This creates new ideas and

opportunities in the research fields.

The idea behind this work is to gather the software vulnerability related data in the Twitter

information stream, and then to analyze it, asses its potential and determine its properties and

trends involved. For such purpose, the practical software framework was implemented.

- 47 -

The first task of the software framework is to gather relevant information from Twitter and

other external data sources, convert it to an appropriate representation and prepare for further

processing.

The processing of that information is the next task of the framework. In this task the

information on Twitter, basically the short messages broadcasted by the users, is processed and

augmented with the information from the other data sources. These data sources are related to

the general software and software vulnerability domain, with the possibility to add information

from the other domains or sources, if necessary.

The third important task of the software framework is to enable the export of the preprocessed

and augmented information both in the form of visual diagrams, or in the other format

appropriate for analysis in the other tools. The general description of the software framework,

data sources and the processing flow is further disseminated and presented in the next sections.

4.2 Framework Description

The greatest part of the software implementation used in this work is based on Java 6

compatible code, developed using SpringSource Tool Suite IDE. Its graphic description is

provided in Figure 8.

The framework itself consists of several loosely coupled components named TweetCatcher,

FeatureCatcher and Presenter. Furthermore, the framework depends on several external tools,

API services and data. On Figure 8 they are represented in three layers. The first layer consists

of the software libraries used to extend or enrich functionality of the core. The most important

of them are Twitter4j, Jena, LingPipe and HighCharts, depicted in the figure in the second layer.

The following layer displays the external sources of data. The first source is related to the

services provided as an application interface and remote endpoint for queries based on

different technologies, like REST or SPARQL. Twitter Streaming API, DBPedia and FreshMeat are

providing this type of access to their data.

The second sources of the data are CVE, OSVDB, CWE and CPE. These are sources providing

their data publicly, but in the form of downloadable file which is periodically refreshed with new

records.

- 48 -

Figure 8: Graphical overview of the software framework

The rest of the current section focuses on the brief descriptions of the most important external

libraries, services or data sources used in this work, as shown in the Figure 8. The following

sections provide detailed descriptions of the components depicted in figure.

Twitter4J is an unofficial Java library for the Twitter API in general. It provides extensive

coverage of Twitter API functionality through pure Java code available on any Java platform

version 1.4.2 or later. Its support for Twitter API is present in the following areas:

� Timeline Resources

� Tweets Resources

� User Resources

� Trends Resources

� Local Trends Resources

� List Resources

� List Members Resources

� List Subscriber Resources

� Friendship Resources

� Friends and Followers Resources

� Account Resources

� Favorite Resources

� Notification Resources

� Block Resources

� Spam Reporting Resources

� Saved Searches Resources

� Geo Resources

� Legal Resources

� Help Resource

� Streamed Tweets Resource

� Search API Resource

Software Framework

TweetCatcher FeatureCatcher Presenter

External l ibraries

Twitter4J Jena LingPipe HighCharts

External API Services

Twitter

Streaming API
DBPedia FreshMeat

External data

CVE CPE OSVDB CWE

- 49 -

Twitter4J provides a thread-safe interface to Twitter Streaming API. In this work, TwitterCatcher

component uses Twitter4J to access Twitter Streaming API and its services.

Jena is a semantic web framework for Java based on Semantic Web Recommendations. It

provides API for working with RDF, RDFS and OWL34. Additionally, it supports SPARQL35 and

includes a rule-based inference engine.

In the context of this thesis, Jena is mostly used as a tool to represent and store resources. An

overview of the Jena architecture is depicted in Figure 9.

Jena’s I/O subsystem supports several stores, including in-memory store, SDB (SQL Data Base)

and TDB (Tuple Data Base). SDB is a SQL-backed storage subsystem, designed specifically to

support SPARQL. Its current version supports at least 8 popular RDBMS36, including Microsoft

SQL Server 2005, Oracle 10gR2, MySQL 5 and PostgreSQL 8. TDB is a native Java store with the

focus on scalability and support for large stores. In a typical usage scenario it also tends to be

faster than SDB.

In Jena, inference over several models can be provided automatically, thus making that process

transparent for the user. Importing and exporting data is possible using RDF/XML, N-triple, N3

and Turtle37 languages.

In the second level depicted on the Figure 9, Jena provides ontology and reasoning capabilities.

Ontologies can be loaded from URI’s and applied to existing models to infer new knowledge

based on rules defined by the ontology model.

ARQ is a query engine for Jena which supports the SPARQL RDF query language. It aims to

SPARQL conformity and provides support for TDB and SDB storage engines in Jena. The ARQ’s

capabilities are further extended by Joseki, which is a Jena’s HTTP engine with integrated

support for SPARQL protocol and HTTP (GET and POST) operations.

34

 RDF is a standard model for data interchange on the Web. RDFS is used to describe structure of the

data (model), while OWL describes semantic relationships. Complete explanations and recommendations

of these technologies can be found on W3C web site.
35

 SPARQL is a query language for RDF designed by the W3C RDF Data Access Working Group.
36

 Relational Database Management System
37

 Non-XML based serialization

- 50 -

Figure 9: Jena framework overview

Twitter Streaming API is a service that allows a high-throughput and near real-time access to

public and protected Twitter data. It represents a successor of the Twitter REST API, addressing

some of its issues related to the latency, complexity and general costly usage.

The development of the Twitter Streaming API has been motivated with the following goals and

improvements [JKALUC10]:

� the delivery of other event types as well as delivery of the messages has to be provided

� the messages (and other events) should be delivered with the lower latency

� the system should distribute full range of data, accurately, without limitations or

improvisations based on rate limiting, parallel fetching of messages and similar

� large scale integrations with other services should be as easy and flexible as possible

� the support for easier integration for the developers should be provided

Ontology API

Inferencing

InfModel

OntModel

Query engine

ARQ

Joseki

RDF API

hasCVE

tweet#1

CVE-2011-1044

RDF/XML

N-triple

N-3

Turtle

Storage

In
memory

SDB

TDB

Virtual graphs

Inference

- 51 -

Twitter Streaming API consists of three main services. They target different usage scenarios and

user segments. The following snippet provides a brief description of these:

� Streaming API

This service provides public statuses from all users. The statuses can be provided based

on filtering criteria only. For instance, the filtering can be applied based on keyword,

specific usernames or locations.

� User Streams

This service provides nearly all data necessary to update user’s display. The service can

be initiated through REST API and then transitioned to Streaming for subsequent reads.

The service is used for a small number of user accounts – typical scenario is a Twitter

client application.

� Site Streams

This service provides multiplexing of multiple User Streams. For this type of service

prerequisite is received authorization by the users. Primary use case may be a web site

providing service integration for many users.

Twitter Streaming API is used in this work to receive the messages from Twitter users. The

messages have been filtered by keyword criteria. The next section provides the details about

the keywords used.

LingPipe is a toolkit for text processing using computational linguistics. It is designed to be

efficient, scalable, reusable and robust. It is thread-safe, character-encoding sensitive and

supports online and customized training. Additionally, LingPipe allows usage of multi-lingual,

multi-domain and multi-genre models [LP11].

The LingPipe framework provides interfaces to many application scenarios, including topic

classification, named entity recognition, part-of-speech tagging, sentence detection, detection

of interesting phrases and new terms as well as word sense disambiguation.

HighCharts is a charting library written in pure JavaScript. It offers an easy way to integrate the

interactive charts in web applications. The wide range of charts is supported, including line,

spline, area, areaspline, column, bar, pie and scatter charts [HC11].

Depending on user needs, the charts can be customized, providing additional functionality such

as multiple axes and axis supporting display of dates and times. The zooming of data is possible,

both on X and Y axis. Additionally, a chart can display a tooltip text on hovering, containing the

- 52 -

information on each data point or series. The text labels can be rotated in any direction. The

users can print or export charts to several popular image formats, as well as PDF and SVG files.

The data can be loaded internally, from the code, or from the external service, using callback

functions [HC11].

In this work HighCharts is used as a tool for visualization of trends on Twitter.

DBPedia is a wide community effort to extract structured information from Wikipedia and make

it available to the public. DBPedia strives to be a knowledge base covering many domains,

making knowledge accessible under the terms of the Creative Commons Attribution-ShareAlike

3.0 Licence and GNU Free Documentation Licence [CCS11, GNUFD11].

As of the time of this writing, DBpedia describes more than 3.64 million things, including

416,000 persons, 526,000 places, 169,000 organizations and many other entities. It

automatically evolves as Wikipedia changes and provides full multilingual access [DBP11].

In the context of this work, DBpedia is used in the process of selecting keywords, which have

been later applied to the Twitter Streaming API as selection criteria for incoming messages.

Some of the resources leveraged are based on National Vulnerability Database (NVD). The first

of them is CVE, which stands for Common Vulnerabilities and Exposures. It is an international,

community based effort supported by the government, industry and academic initiatives with

the goal to facilitate identification, finding and fixing of software vulnerabilities. The details

about CVE have been already provided in Section 3 in Chapter 3.

CPE (Common Platform Enumeration) is another initiative from Mitre used in this work. It is a

naming scheme for information technology systems, platforms and packages. In this work it is

used as a source of data related to software products and vendors.

CPE defines a naming syntax and conventions for constructing CPE names. CPE names are

represented by a URI (Universal Resource Identifier), providing information about the platform,

vendor, product name, version, update, edition and language.

- 53 -

Figure 10: CPE naming structure and example entries

The CPE naming structure is represented in Figure 10. It also shows examples of names for

hardware and software products. The part field as shown in Figure 10 refers to the type of

resource, which is either hardware (h), operating system (o), or application (a). The last five

components of the name are optional.

The next source of relevance is OSVDB (Open Source Vulnerability Database). OSVDB (Open

Source Vulnerability Database) is an independent and open source database founded in 2002.

Later in 2004 Open Security Foundation (OSF) has been established in order to ensure OSVDB’s

long-term viability. The goal of OSVDB is to provide accurate, current and unbiased technical

information on security vulnerabilities.

OSVDB provides up to some extent similar data as CVE. Its data model of is presented in

Appendix 3.

Freshmeat is the next source used in this project. Although not directly related with the

software security, Freshmeat is one of the largest web indexes of Unix and cross-platform

software. It focuses on open-source software and provides comprehensive information about it.

This way the programming environment, license and category (tag based) of the software can

be extracted. Currently, Freshmeat does not provide its database directly to the clients (in

downloadable form), but it must be queried using predefined API methods.

CPE Name structure

cpe:/{part}:{vendor}:{product}:{version}:{update}:{edition}:{language}

. . .

<cpe-item xmlns:ns6="http://scap.nist.gov/schema/scap-
core/0.1" xmlns:ns5="http://scap.nist.gov/schema/scap-
core/0.3"xmlns:ns4="http://scap.nist.gov/schema/configuration/0.1" name="cpe:/h:cisco:catalyst_4510r">
<title xml:lang="en-US">Cisco Catalyst 4510R</title>
<meta:item-metadata modification-date="2007-09-14T13:36:49.090" status="DRAFT" nvd-id="1967" />
</cpe-item>

. . .

<cpe-item xmlns:ns6="http://scap.nist.gov/schema/scap-
core/0.1" xmlns:ns5="http://scap.nist.gov/schema/scap-
core/0.3"xmlns:ns4="http://scap.nist.gov/schema/configuration/0.1" deprecation_date="2008-04-
15T12:35:00.000"deprecated_by="cpe:/o:microsoft:windows_95::osr2.1" deprecated="true" name="cpe:/o:micro
soft:windows-9x:95:osr2.1">
<title xml:lang="en-US">Microsoft Windows 95 OSR2.1</title>
<meta:item-metadata modification-date="2008-04-15T19:57:32.793" status="FINAL" deprecated-by-nvd-
id="61491" nvd-id="74380"/>
</cpe-item>

4.2.1 TweetCatche

TweetCatcher is the first component in the software framework.

messages from the Twitter Stream API. The messages received are selected on the keyword

based criterion, representing the subset of

security.

TweetCatcher has been developed as a separate, background service

Twitter Streaming API38 and receives an active stream of Twitter messages conforming to the

predefined criteria. The application

converted to the RDF/XML represe

Figure 11 contains overview of the processing workflow by the TweetCatcher component. There

are three options for retrieval and storing of the messages from the Twitter Stream.

The first one covers the retrieval based on the keyword filtering. In this case, the system

continuously receives the messages from any Twitter user. The

the list of predefined keywords.

Figure

The second option receives the messages from the predefined set of the users, without other

criteria. The third option can be considered as an extension of the second one. It enables the

crawling of older posts from the use

38

 Using Twitter4J, which is described in the preceding section

TweetCatcher

Keyword
based

filtering

- 54 -

TweetCatcher

tcher is the first component in the software framework. It is used to receive

messages from the Twitter Stream API. The messages received are selected on the keyword

based criterion, representing the subset of all messages related to the domain o

has been developed as a separate, background service, which

and receives an active stream of Twitter messages conforming to the

The application stores the messages in an internal format, which is later

representation, used by other parts of application framework.

contains overview of the processing workflow by the TweetCatcher component. There

are three options for retrieval and storing of the messages from the Twitter Stream.

e retrieval based on the keyword filtering. In this case, the system

continuously receives the messages from any Twitter user. The received messages match with

the list of predefined keywords.

Figure 11: Retrieval of information from Twitter Stream

The second option receives the messages from the predefined set of the users, without other

criteria. The third option can be considered as an extension of the second one. It enables the

crawling of older posts from the user’s Timeline. These posts can be then combined with the

Using Twitter4J, which is described in the preceding section

Feature
Catcher

Presenter

User based
filtering

User
Timeline
retrieval

Conversion
to RDF

It is used to receive and store

messages from the Twitter Stream API. The messages received are selected on the keyword

he domain of software

which connects to the

and receives an active stream of Twitter messages conforming to the

internal format, which is later

ntation, used by other parts of application framework.

contains overview of the processing workflow by the TweetCatcher component. There

are three options for retrieval and storing of the messages from the Twitter Stream.

e retrieval based on the keyword filtering. In this case, the system

messages match with

The second option receives the messages from the predefined set of the users, without other

criteria. The third option can be considered as an extension of the second one. It enables the

. These posts can be then combined with the

Presenter

Conversion
to RDF

- 55 -

real-time based message retrieval, in order to get archive of user’s messages for an extended

period.

In this work only the first option is used, while the other ones were tested. Additional part of

the workflow of TweetCatcher is the conversion to RDF/XML. This step is performed in any case,

as the background service stores the data in an internal format.

Two groups of keywords were selected for connection to the Streaming API, as presented in the

Table 1. The keywords from the first group were semi-automatically selected. Initially, they have

been partially derived from DBPedia by applying the SPARQL query from Figure 12 on its public

endpoint. The result has been cleaned from less relevant terms and merged with manually

compiled list consisting of other terms. The list of other terms included the keywords related to

the public vulnerability databases (such as CVE or OSVDB) and some other terms usually

occurring in software vulnerability related messages.

Based on the experience with the data retrieved from DBpedia, it should be noted that the

quality of information received in this specific case is lower than expected. After detailed look at

the categories in Wikipedia, which serves as a ground for DBpedia knowledge database, it can

be concluded that the organization of information on Wikipedia in this case has not been

optimal in the term of category classification.

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?label WHERE {

 { ?category skos:broader category:Computer_security_exploits .

 ?result dcterms:subject ?category .

 ?result rdfs:label ?label .

 FILTER (lang(?label) = “en”)

 } UNION {

 ?category2 rdf:type yago:ComputerSecurityExploits .

 ?category2 rdfs:label ?label .

 FILTER (lang(?label) = “en”) }

}

Figure 12: SPARQL query used for the extraction of security exploits

For instance, some terms have been given equal category although their concepts are not

related. Therefore, for the criteria of relevance author used its own judgment based on the

domain comparison. For example, the terms Timeline of computer viruses and worms and

Extended Copy Protection are not related to software vulnerability or security exploit domain

concepts such as Riskware or SQL injection.

- 56 -

Group 1 Group 2

cve 2010

cve 2011

cve 2009

buffer overflow

privilege escalation

arbitrary code execution

heap overflow

dangling pointer

zdi-10

zdi-11

zdi-09

relay attack

replay attack

remote file inclusion

zero-day

0day

integer overflow

xss exploit

race condition

code injection

stack overflow

trojan

remote file inclusion

session poisoning

osvdb

nvdb

correlation attack

computer fraud

watermarking attack

passive attack

meet-in-the-middle attack

software attack

software vuln

sw vuln

software vulnerability

sw vln

man-in-the-middle attack

xsl attack

sql injection

exploit bug

bug attack

dll injection

ransomware

malware

adware

scareware

crimeware

bug fix

sql-injection

ssi injection

security fix

security update

vulnerability

vuln

vln

vulnerable

Table 1: Keywords used for Twitter Streaming API

There could be isolated various types of the information domains represented in the first group

of the keywords. The most of the keywords relate to security weaknesses, which often occur in

the software. For instance, these are race condition, integer overflow, xss exploit, stack

overflow, privilege escalation and others. The other keywords are general in software security

domain, such as security update, security fix, software attack, computer fraud, Trojan, sw vuln

and others. Finally, the keywords and their combinations, such as cve, zd and osvdb can be

assigned to the domain of security vulnerability databases, advisories and general vulnerability

markers. The keywords containing label cve refer to the CVE list, which is introduced in Section

3 of Chapter 3 and used extensively in some of the analyses presented in Chapter 5.

The keywords from the second group have been manually selected. They are related to the

common variants or forms of word vulnerability. That word has been used in much wider

context than of software vulnerability; however, its inclusion could provide some additional

messages relating to the particular software product or software vendor. The dataset derived

from the second group of the keywords has been used in analysis presented in the sections 1

and 2.

- 57 -

4.2.2 FeatureCatcher

This component of the application is responsible for the main processing of captured tweets.

It performs three main groups of tasks:

� Feature retrieval

It handles connecting to different data sources, retrieves the information stored there,

converts it and stores in the structured format which is appropriate for the further

processing.

� Scanning of the tweets

It scans the tweet messages and identifies the features or entities present in them. The

structured tweet description is augmented with the features recognized, providing the

reference to the information or the whole extracted entity (optional).

� Processing, manipulation and filtering of tweet data

The tweet messages are further manipulated, e.g. filtered according to the different

criteria groups or merged.

The tasks done by the component are described in activity flow provided in Figure 14.

FeatureCatcher takes the information from several external sources. The term feature used in

this work is referred to the information provided by those sources and identified in the tweet

messages.

The feature in this context represents the property of a message, which is used for its further

characterization and processing. For instance, the message can have properties like the location

of the user posting the message, the software products mentioned in the message, structured

security vulnerability identified in the message and others, as described in the following

sections. Based on the properties characterizing them, the messages can be searched, filtered,

clustered, compared, grouped and arranged on any other way, according to the processing

workflow. On an aggregate level, the distribution, incidence and similarities between the

messages having the properties can be obtained, which is used to gather and recognize the

global trends, similarities or dependencies between the features.

The sources consumed by FeatureCatcher include vulnerability database (CVE), platform

descriptions (CPE) and software weaknesses types (CWE) from National Vulnerability Database

(NVD) and Mitre. Other sources of information include Open source vulnerability database

- 58 -

(OSVDB) and Freshmeat. The method used for information ingestion varies between different

sources. For example, NVD provides information in RDF/XML compatible format, while OSVDB

and Freshmeat as sources require additional effort to be invested in form of active crawling of

its information or conversion from MySQL database.

As previously said, the information is ingested and processed from the respective sources. In

this process it is converted to adequate RDF/XML representation, which is to be elaborated in

more detail later. These representations are stored in separate files and in further processing

and analysis loaded as needed.

The second task, scanning and augmenting of the tweets, is done as the part of the process

workflow. In this step, all the features retrieved from external information sources are loaded

and merged into one model. Then, each of the tweets is being processed and its content

queried against the model.

When the particular feature is found, its reference is included in the tweet message. Optionally,

the complete feature (copy of information found) can be stored in the tweet description. This is

done optionally, in the cases when simple processing has to be performed. Otherwise, for

performance reasons, the usage of standard references is recommended.

This workflow will be described later in this chapter using a practical example. Due to the

performance requirements and memory limitations on available platform, some tasks are

performed separately and independently. This is also a useful option for the scenarios where

only one processing is to be done, such as identification of one class of features in the tweets.

Final output of this task consists of enriched tweet database in RDF/XML form, or as internal in-

memory model. This database is later analyzed and treated by other components or

applications. Depending on the size of the output, it can be loaded into external RDF store

supporting processing of remote queries39, and then used in this or other applications.

The third task of this component is related to the adjustment of amount and structure of the

information contained in the tweet database. According to the preconfigured requirements, the

application filters tweets based on several criteria, including property type, time of original

broadcast, minimal set of properties and others.

39

 Such as Joseki or Virtuoso

This component provides flexible options

filtering. For example, the messages can be sele

property types. It is further possible to select only the messages which satisfy minimal set of

features supported and to include those messages with the other optionally present features in

the further processing.

This component also supports extension and inclusion of the other modules. As the

experimental ones, similarly integrated

technique and retrieval of interesting phrases based on LingPipe.

requirements these are, however,

4.2.3 Presenter

The third component of this application, Presenter,

tweet databases, extracts and presents the

representation of the features of this component.

The presenter at the first queries the data source, receives and presents the information. The

data source can be local or remote. The data in the local data source is stored as a model inside

the application, similarly as it is used by other components.

Figure

40

 Scalable machine learning library supporting

Presenter processing modes

Quering
method

Single Repetitive

- 59 -

This component provides flexible options for message manipulation through different layers of

filtering. For example, the messages can be selected by criteria of inclusion or absence of the

property types. It is further possible to select only the messages which satisfy minimal set of

and to include those messages with the other optionally present features in

This component also supports extension and inclusion of the other modules. As the

similarly integrated were Apache Mahout’s Frequent

and retrieval of interesting phrases based on LingPipe. Due to the sco

these are, however, not used in this work.

The third component of this application, Presenter, queries previously processed

and presents the information retrieved. Figure 13 provides a graphical

representation of the features of this component.

The presenter at the first queries the data source, receives and presents the information. The

can be local or remote. The data in the local data source is stored as a model inside

the application, similarly as it is used by other components.

Figure 13: Supported features of Presenter component

Scalable machine learning library supporting

Presenter processing modes

Repetitive

Database
location

Local Remote

Output format

CSV
diagram

for message manipulation through different layers of

cted by criteria of inclusion or absence of the

property types. It is further possible to select only the messages which satisfy minimal set of

and to include those messages with the other optionally present features in

This component also supports extension and inclusion of the other modules. As the

requent Pattern Mining40

ue to the scope

previously processed and enriched

provides a graphical

The presenter at the first queries the data source, receives and presents the information. The

can be local or remote. The data in the local data source is stored as a model inside

Output format

Visual
diagram

- 60 -

The remote database refers to the remote system which supports SPARQL queries. This is

particularly useful in the cases when the remote system provides the faster and more flexible

computing platform. The other use case for this method could be a scaling of a large database

into the several computing platforms or the cloud.

Finally, the querying can be done as a single or as a series of repetitive queries. The second case

can be useful to get information for some time range, where each time point should be queried

for the same information. In this case all responses are grouped and their representation is

handled accordingly.

As for the presentation formats, supported are CSV41 and visual diagram. Diagram is created

with the help of HighCharts library, described in the previous section. There is one type of the

graphs supported, with the possibility to easily extend the support to the other ones. It is

possible to include one or more values in the graph, which are automatically adjusted and

drawn using different colors. It is possible to alter the graph interactively. For instance, the

display of values can be enabled or disabled in the case where several values are present.

The examples of the graphical output are provided in Figure 24 and Figure 25, explained further

in section 1. The upper right part of the image contains the links, which are used to disable or

enable drawing of the particular value developments in the graph.

4.3 Processing Steps Done

As it has been mentioned in the section 4.2, the software component designed as a part of this

thesis consists from the three parts: TweetCatcher, FeatureCatcher and Presenter. Section 4.2.1

gave a functional overview of the component TweetCatcher.

This component of the system has been executed as a system service from the May 15th to the

September 17th 2011 in order to collect the tweet messages according to the criteria given in

the Table 1.

The messages have been collected in two independent streams, based on the two groups of

keywords as shown in the Table 1. The whole set of the messages resulted in 808,395 and

547,595 messages respectively for the given time period.

41

 Comma Separated Variable, used for representation of tabular data

- 61 -

The information the TweetCatcher collects are the following42:

� number of user favorites

� number of user friends

� flag, showing is the tweet message original or retweet

� number of retweets

� message source (web, phone or other)

� user (poster) id

� user name

� message status id, uniquely defined by Twitter

� message, in the form of text

� number of public lists the user is listed on

� timestamp of the tweet

� number of user followers

� number of user statuses

� user location

The collected data is stored in internal format, which is later converted to RDF/XML

representation.

The second component, FeatureCatcher, is more complex in its structure and activities it

performs. Figure 14 shows the workflow performed by FeatureCatcher.

It can be noticed that its workflow consists of four main activities, which are described below.

These activities are a part of normal workflow and executed sequentially. However, due to the

other requirements, each activity can be executed separately and independently.

For instance, the external data processing may be executed periodically in order to update the

internal database of program names, vendor data, software vulnerability database and other

information it provides.

Tweet augmenting can be done separately, selecting only particular data to be included in

augmented (enhanced) tweet messages. Likewise, the model filtering provides the subsets of

data obtained for particular purpose or environment.

42

 For the usage in this work relevant are user id, message status id, message text and timestamp of the

tweet.

Figure 14: Activities executed by the FeatureCatcher component

External data processing is the first step

respective data sources, extracts necessary information, store

based RDF model. The data sources used are the following

� OSVDB: this data source is used to extract

applied in the tweet augmentation step

� CPE: this source is also used for extraction of product and vendor name

� Freshmeat: used to get product name and product

system, programming language, tag based category, product

� CVE: used to gather information about CVE identifiers and related

� CWE: loads definitions

The particular information sources in this step can be omitted if necessary.

conversion of the data differs among the sources.

For the external parties, OSVDB provides SQL database (SQLite and MySQL)

vulnerability data44. This database has to be

43

 Java semantic web framework described in the chapter

considerations the mention of term
44

 Depicted in Appendix 3: OSVDB

TweetCatcher

External data
processing

- 62 -

: Activities executed by the FeatureCatcher component

is the first step in regular FeatureCatcher’s workflow. It connects to

data sources, extracts necessary information, stores it locally and provide

The data sources used are the following (already described in

this data source is used to extract product and vendor names, which are later

in the tweet augmentation step.

CPE: this source is also used for extraction of product and vendor name

Freshmeat: used to get product name and product’s characteristics such as operating

system, programming language, tag based category, product’s license

CVE: used to gather information about CVE identifiers and related data

definitions of supported CWE weaknesses subset

on sources in this step can be omitted if necessary.

conversion of the data differs among the sources.

OSVDB provides SQL database (SQLite and MySQL)

. This database has to be loaded and queried accordingly in order to extract

Java semantic web framework described in the chapter 4.2. For the sake of clarity, in further

considerations the mention of term model refers to Jena RDF based model.

Appendix 3: OSVDB Data Model Overview.

FeatureCatcher Presenter

Tweet
augmenting

Model
filtering

in regular FeatureCatcher’s workflow. It connects to

it locally and provides as a Jena43

(already described in 4.2):

product and vendor names, which are later

CPE: this source is also used for extraction of product and vendor names

characteristics such as operating

data

on sources in this step can be omitted if necessary. The loading and

OSVDB provides SQL database (SQLite and MySQL) containing

in order to extract

. For the sake of clarity, in further

Presenter

Features
processing

- 63 -

the information. CVE and CPE provide the data in XML format, which has to be loaded, parsed

according to the structure and naming conventions45 and then finally converted into RDF.

Lastly, Freshmeat does not provide the data in a raw format. Their data is accessible in the

structured format only using the public RESTful API. Due to the limitations imposed by the

service provider, at the time of the data retrieval it was possible to submit up to 600 API

requests per hour only. Therefore, the data gathering from the Freshmeat has been

implemented as an independent service and run in the background for a couple of days.

<rdf:Description rdf:about="http://softvuln.at/rdf/vendor#google">

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#chrome"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#earth"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#googlebot"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#web_toolkit"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#desktop"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#web_server"/>

<vendor:hasProduct rdf:resource="http://softvuln.at/rdf/product#picasa"/>

<vendor:nameNormalized>google</vendor:nameNormalized>

</rdf:Description>

Figure 15: Vendor details extracted from CPE: data excerpt

<rdf:Description rdf:about="http://softvuln.at/rdf/product#powerpoint">

<product:hasVersion rdf:resource="http://softvuln.at/rdf/version#2007"/>

<product:completeName>Microsoft PowerPoint 2000</product:completeName>

<product:completeName>Microsoft PowerPoint</product:completeName>

<product:hasVersion rdf:resource="http://softvuln.at/rdf/version#97"/>

<product:hasEntityType

 rdf:resource="http://softvuln.at/rdf/entityType#application"/>

<product:hasVersion rdf:resource="http://softvuln.at/rdf/version#2001"/>

<product:hasUpdate rdf:resource="http://softvuln.at/rdf/entityUpdate#sp3"/>

<product:hasVendor rdf:resource="http://softvuln.at/rdf/vendor#microsoft"/>

<product:name>powerpoint</product:name>

<product:completeName>Microsoft PowerPoint 2000 sp2</product:completeName>

<product:hasVersion rdf:resource="http://softvuln.at/rdf/version#2004"/>

<product:completeName>Microsoft PowerPoint 2003 sp2</product:completeName>

<product:completeName>Microsoft PowerPoint 2001</product:completeName>

<product:nameNormalized>powerpoint</product:nameNormalized>

<product:completeName>Microsoft PowerPoint 2002 sp1</product:completeName>

</rdf:Description>

Figure 16: Product details extracted from CPE, excerpt

At the end of the data retrieval from Freshmeat, one combined model is constructed, which is

used in the later stages of the processing. Each model based on the particular source is stored

45 Figure 10 explains naming convention of CPE data. Figure 5 provides the schema of CVE.

- 64 -

locally in RDF/XML compatible format. This model can be loaded in the subsequent executions

of the application, or regenerated if specified by application configuration.

Figure 15 and Figure 16 illustrate the information received from CPE and represented in

RDF/XML format. The former one presents the vendor entry, containing the references to the

products maintained by respective vendor - in this case Google and its products like Picasa,

Earth etc.

Similarly, Figure 16 presents excerpt from data extracted about Microsoft PowerPoint. This data

include several variants of the full product name as well as version and/or update variants. The

data also include short (and lowercase normalized) product name. These variants can be used in

product name matching in tweets, with the different level of precision and correctness. Analog

to the vendor entry, the product entry also includes the references to the vendor and entities

like version or update.

Figure 17 presents the product entry data obtained from Freshmeat source. CPE and Freshmeat

provide different types of information. Freshmeat is not so focused on formal correctness, does

not provide vendor name but provides the category of the software, its license, operating

system and programming language. However, the amount of data details differs among

particular product entries. Additionally, Freshmeat is more concentrated on open source

software. It contains the references to non-production or beta software too.

<rdf:Description rdf:about="http://softvuln.at/rdf/product#dovecot">

<product:hasProgLangAsMatched rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 C</product:hasProgLangAsMatched>

<product:hasTopicAsMatchedrdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 Communications</product:hasTopicAsMatched>

<product:hasTopicAsMatched rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 IMAP</product:hasTopicAsMatched>

<product:hasTopicAsMatched rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 POP3</product:hasTopicAsMatched>

<product:hasLicenseAsMatched rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

OSI Approved :: GNU Lesser GeneralPublic License (LGPL)</product:hasLicenseAsMatched>

<product:hasOSAsMatched rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 POSIX</product:hasOSAsMatched>

<product:nameNormalized>dovecot</product:nameNormalized>

<product:name>dovecot</product:name>

<product:completeName>Dovecot</product:completeName>

</rdf:Description>

Figure 17: Product details extracted from Freshmeat, excerpt

- 65 -

As expected, OSVDB provides similar set of the data compared to the CPE. It is because their

purpose (software vulnerability analysis) is the similar and their data models and organization

are in some extent comparable and compatible.

The fourth source of information, CVE list, is integrated in the model to be able to further

identify tweets referring the particular software vulnerabilities. The example excerpt of this

data represented in RDF/XML is provided in Figure 18. In the process of data extraction, the

NLP46 tool LingPipe is used to isolate message chunks from CVE summary.

The message chunks are generated based on the several steps, as follows:

� Sentence extraction from the CVE entry summary. Each extracted sentence is then

separately processed in the further steps

� Extraction of the tokens from sentences

� Application of POS-tagging on tokens

� Based on the POS-tags produced in the previous step, the LingPipe chunker applies

language model on that data and generate message chunks, which represent the

units (tokens) tightly interrelated

� Only parts of the chunks with specific criteria are kept47

In this context, Point of Speech tagging (POS)48 refers to the activity of determining the role of

the words (tokens) in the sentence (part of speech), which often depends on the context.

Determined are the relationships with the adjacent words or phrases, which correspond to the

grammatical role of the word. Simple forms of POS-taggers identify words such as nouns, verbs,

adverbs or adjectives, depending on the structure and complexity of the language.

These chunks may be used later for the further analysis and grouping of the messages. After

the data from external sources is gathered, processed and converted into suitable model for a

later use, the step of the Tweet augmenting is performed.

In this stage, based on the selected preferences, the tweets from the input file are scanned and

augmented with additional data. Data enrichment process is done by scanning the tweets and

comparing them with the data loaded in the previous step.

46

 Natural Language Processing
47

 Default settings keep only tokens which POS-tag based class begins with tags NN (nouns), JJ (adjectives)

and R (adverbs). Penn TreeBank POS class notation is used as a reference here.
48

 Also referred as grammatical tagging

- 66 -

Thus, the tweets containing particular product, vendor, CVE or other49 mentions are given

additional RDF triple in the form of the references to corresponding resources and/or in the

form of literals50.

<rdf:Description rdf:about="http://softvuln.at/rdf/CVE#cve-2011-1285">

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 regular-expressionfunctionality</CVE:summaryChunk>

<CVE:CVSSAccessVector rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 NETWORK</CVE:CVSSAccessVector>

<CVE:CVSSAvailabilityImpact rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 PARTIAL</CVE:CVSSAvailabilityImpact>

<CVE:CVSSConfidentialityImpactrdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 PARTIAL</CVE:CVSSConfidentialityImpact>

<CVE:id>CVE-2011-1285</CVE:id>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 reentrancy</CVE:summaryChunk>

<CVE:CVSSScore rdf:datatype="http://www.w3.org/2001/XMLSchema#float">7.5</CVE:CVSSScore>

<CVE:CVSSIntegrityImpact rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 PARTIAL</CVE:CVSSIntegrityImpact>

<CVE:lastModifiedTime rdf:datatype="http://www.w3.org/2001/XMLSchema#long">

 1301527863470</CVE:lastModifiedTime>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 unspecified other impact</CVE:summaryChunk>

<CVE:summary rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The regular-

expression functionality in Google Chromebefore 10.0.648.127 does not properly implement

reentrancy, which allows remote attackers to cause a denial of service(memory corruption)

 or possibly have unspecified other impact via unknown vectors.</CVE:summary>

<CVE:CVSSAuthentication rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 NONE</CVE:CVSSAuthentication>

<CVE:refersVulnerableProduct>

 http://softvuln.at/rdf/product#chrome</CVE:refersVulnerableProduct>

<CVE:CVSSSource rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 http://nvd.nist.gov</CVE:CVSSSource>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">denial</CVE:summ

aryChunk>

<CVE:publishedTime rdf:datatype="http://www.w3.org/2001/XMLSchema#long">

 1299808880450</CVE:publishedTime>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 unknown vectors</CVE:summaryChunk>

<CVE:CVSSAccessComplexity rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 LOW</CVE:CVSSAccessComplexity>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 not properly</CVE:summaryChunk>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 Google Chrome</CVE:summaryChunk>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 service memory corruption</CVE:summaryChunk>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 remote attackers</CVE:summaryChunk>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 possibly</CVE:summaryChunk>

</rdf:Description>

Figure 18: Data extracted from CVE list, excerpt

49

 Any other entity extracted in the previous step
50

 Exact literal match, where the relation’s predicate is suffixed with the term asMatched.

- 67 -

The example excerpt of augmented tweet message resource is shown in Figure 19. Depending

on the settings chosen, the additional content can be directly included in the form of references

to resources, as demonstrated in the Figure 19 for predicate hasProduct, or directly as a literals,

as shown for CVSSConfidentialityImpact predicate.

Additionally, some data can be included only in the form of literal resources (e.g. as matched),

due to the design of information source and the scope of this work.

The next step in the flow, model filtering, deals with the large amount of data acquired in the

previous steps. During the initial tweet collection using Twitter Streaming API many messages

are gathered. The process of scanning and enrichment of these messages or the preparation of

large number of messages for analysis and visualization require a lot of computing resources.

The component used in this step ensures that the amount of the data engaged in the processing

is optimal in terms of the scope and completeness. It can filter messages according to different

criteria, ranging from the properties51 of the resources or time period chosen.

<tweet:hasProduct rdf:resource="http://softvuln.at/rdf/product#flash+player"/>

<tweet:hasVendor rdf:resource="http://softvuln.at/rdf/vendor#adobe"/>

<tweet:retweetCount rdf:datatype="http://www.w3.org/2001/XMLSchema#long">0</tweet:retweet

Count>

<tweet:createdAt rdf:datatype="http://www.w3.org/2001/XMLSchema#long">1308367618000</twee

t:createdAt>

<CVE:CVSSConfidentialityImpact rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 COMPLETE</CVE:CVSSConfidentialityImpact>

<tweet:userLocation rdf:datatype="http://www.w3.org/2001/XMLSchema#string"></tweet:userLo

cation>

<tweet:hasCVE rdf:resource="http://softvuln.at/rdf/CVE#cve-2011-2110"/>

<CVE:CVSSSource rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 http://nvd.nist.gov</CVE:CVSSSource>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 Adobe Flash Player</CVE:summaryChunk>

<CVE:summaryChunk rdf:datatype="http://www.w3.org/2001/XMLSchema#string">wild</CVE:summar

yChunk>

<tweet:user rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Mert SARICA</tweet:use

r>

<tweet:userStatuses rdf:datatype="http://www.w3.org/2001/XMLSchema#long">1073</tweet:user

Statuses>

<tweet:message rdf:datatype="http://www.w3.org/2001/XMLSchema#string">CVE-2011-

2110, Adobe Flash Player zafiyeti istismarediliyor -

 http://stpmvt.com/kCvGou</tweet:message>

Figure 19: Example of the augmented tweet

51

 Inclusion, availability, or unavailability of particular properties

- 68 -

The output of this processing is the model, again, which is sent to other components or simply

stored locally for a later processing.

The last step in the flow, features processing, deals with the analysis of the tweet messages and

their features and prepares the results for representation. It is based on several underlying

processes which can be also applied separately and independently.

After the activity flow of FeatureCatcher is done, it is possible to use the component Presenter

to export or visualize the results. Figure 13 and Section 2.3 already described this component.

Figure 20 shows the example query used to get the data from Table 4. This provides shows

aggregate results. However, in some cases it is necessary to perform multiple queries, to cover

the smaller considered periods (like one day resolution) in the data range. For such purpose

used is the similar query, as shown in Figure 21.

SELECT ?vend ?name (COUNT(DISTINCT ?tw) as ?tg) WHERE {

{

 ?tw tweet:createdAt ?createdAt .

 ?tw tweet:hasProduct ?prod .

 ?prod product:hasVendor ?vend .

 ?prod product:hasSourceDB "cpe" .

 ?vend vendor:nameNormalized ?name .

} UNION {

 ?tw tweet:createdAt ?createdAt .

 ?tw tweet:hasVendor ?vend .

 ?vend vendor:nameNormalized ?name .

Figure 20: Example SPARQL query used to get data

This query is automatically produced by application in order to gather the data for a shorter

time range. The application repeatedly changes the values for data range in the query and sends

it to the server or performs internal lookup.

SELECT ?tw WHERE {

?tw tweet:createdAt ?createdAt .

FILTER(?createdAt > 1312156801000 && ?createdAt<1312502401000) .

?tw tweet:hasProduct

<http://softvuln.at/rdf/product#wordpress_wordpress> .

}

Figure 21: Intermediate repetitive SPARQL query

- 69 -

After the querying is finished, all the data retrieved is grouped and available for export as CVE or

as export to visual representation.

The visual representation is based on HighCharts library, which is described in the Section 2. The

software framework produces output in the form of HTML file, which contains the JavaScript

code with selected adjustments and values to graph.

Presenter component supports one graph type from the library. It is possible to display one or

more values and enable or disable their inclusion in the graph interactively, as shown in Figure

24 and Figure 25.

- 70 -

5 Results

This chapter presents the results of the analyses which have been performed using the software

framework introduced in Chapter 4 and external statistical software packages. These analyses

were executed on the datasets gathered by the component TweetCatcher, the part of the same

software framework.

The following sections present a various types of such investigations. They do not cover all

possible usage scenarios of the framework, but serve to illustrate its diverse possibilities and

potential usage of technologies and data sources.

The main object of the analysis is a Twitter message. Figure 22 depicts the example Twitter

message after its retrieval from Twitter Stream and the further processing by the framework

were applied. It depicts some parts of its structure, pointing to the further references in other

datasets.

In the concrete example, after the framework is done with the processing, two objects are

identified in the message: CVE entry reference (green rectangle) and the software product

name (blue rectangle). These references are added to the structure of the message during the

processing phase. Their purpose is to point to the external or internal objects, describing the

related information. In this case, it can be noticed that the identified CVE entry refers to the

specific CWE weakness type, which is further described by the elements from the Impact Scope,

Time of Introduction and Consequence Scope. The coming section describe further details and

usage of these elements.

The demonstration of the framework usage begins with comparison of share ratio of prominent

software vulnerability sources in the Twitter dataset obtained. The sources and dataset are

already described in Chapter 4. The next section analyzes the share ratio of products and

vendors in messages. For visualization in this chapter used is the Presenter component of the

software framework, which is already introduced in Section 2.3 in Chapter 4.

- 71 -

The next section is dedicated to the analysis of types of the weaknesses referred in the

messages having proper CVE entry reference. The section provides the description of obtained

dataset, based on several perspectives. Then, its static part – CVE list, is analyzed from the

aspect of several properties and trends. The next part of that section focuses on the analysis of

Twitter stream dynamic in the light of software weaknesses types.

Figure 22: Example markup of Twitter message

Twitter message

RT @plone: Security vulnerability announcement: CVE-2011-1948 A reflected cross site

scripting in Plone http://goo.gl/fb/Slt0T

CVE

identifier

…

Product

…

CWE

Weakness Type

CWE-79

Impact

Scope

Bypass protection mechanism

Execute unauthorized code or commands

Read application data

Time of

Introduction

Implementation

Architecture and Design

Consequence

Scope

Integrity

Availability

Access Control

- 72 -

The graphic overview on the weekly level is provided, which is further used to extract data and

trends for periods and properties notably visible on the trends plot. Furthermore, the third

section is concluded with the general overview of data and trends obtained.

The next part of this chapter deals with some of the inherent characteristics of the CWE

weakness type (represented on Figure 22), trying to discover the preferences of Twitter users in

the light of these properties on an aggregate basis.

Finally, the last analysis closes this chapter. It deals with the publication and modification time

of a CVE entry. These properties are considered from the perspective of Twitter stream and CVE

entries distribution in the messages. In other words, examined is the effect of CVE

announcement to the user activity on Twitter.

5.1 Share Ratio of Prominent Software Vulnerability

Sources

Many sources report the software vulnerabilities. They may include the companies,

organizations, government establishments, or even vendors and private persons. The credibility,

popularity and acceptance of those sources may differ significantly among the target

population.

Figure 23 contains the share of the messages including the reference to one of the four

prominent software vulnerability sources. They are:

� CVE - Common Vulnerability Enumeration

� MS - Microsoft

� ZDI - Zero Day Initiative

� SB – Security Bulletin (US CERT)

These are industry-standard subjects with different backgrounds. CVE has been mentioned

earlier in this work. This is initiative from Mitre, recognized by National Vulnerability Database

and supported by 73 organizations and their advisories worldwide.

Microsoft, as one of the largest software vendors maintains its own security platform and

advisory. Founded by TippingPoint, ZDI stands for a program for rewarding security researchers

- 73 -

in their discovery and analysis of software vulnerabilities. Lastly, US CERT maintains cyber

security bulletin in the form of weekly summary of new vulnerabilities.

These organizations and their publications are closely monitored worldwide by many users and

organizations. The vulnerabilities published by them cannot be considered as unique and

mutually exclusive in the computer security world - the organizations taking part in this process

usually refer to each other. Hence, a newly discovered vulnerability may be published in diverse

sources.

In the recent time, the organizations invest more resources in order to improve the consistency

of their reports and to include references to the reports or lists maintained by other

organizations. Mitre with its CVE Adoption process and relation to 73 security advisories is a

typical example of that.

The relative significance and popularity of the vulnerability sources among the users may be

partially described through the share ratio in corresponding Twitter messages.

Source Num. of messages

CVE 2222

ZDI 1120

MS 687

SB 431

Table 2: The cumulative number of tweets representing each vulnerability data source

In this case, during the same date range52, Twitter Stream was monitored for the four words

only: vulnerability, vuln, vln, vulnerable, as described in Table 1 from Section 2.1 in Chapter 4.

The word vulnerability and its variations have been selected as a most common denominator

for the topic of vulnerability. As this word alone may have ambiguous meaning among diverse

contexts, the reference to the common security advisories and their entries has been extracted

based on the formal format specific to the advisory.

Figure 23 displays the relation between those four advisory sources, through the weeks in the

data range. The relation is expressed with the cumulative number of the tweets containing

references to the security advisory entries. The figure shows that CVE is the most common

source discussed, followed by ZDI and MS, which have varying distribution through the time.

52

 From the May 15
th

 to the September 17
th

 2011

- 74 -

In the each week reported the CVE related messages hold the significant portion. That fact

confirms the trust and acceptance of CVE as a vulnerability source.

The varying distribution of ZDI and MS messages can be attributed to the lower and instable

publication frequencies in their advisories. Microsoft maintains software products, which are

quite widespread worldwide. That fact makes it an essential source worth of public attention.

As many of its products are based on the similar development practices and share the common

platform and code, it may happen that the discovery of one vulnerability type in some product

initiates the research and possible discovery of the vulnerabilities in other similar products of

the same vendor. This could partially explain the occasional periods of high reporting level,

which may be the result of the same or similar software weakness found in several different

products and covered by separate vulnerability disclosures.

Figure 23: Ratio of tweets containing references to vulnerability sources

ZDI on the other side focuses and specializes on publishing of new vulnerabilities in a wide range

of software. The backed business model is based on paying the incentives to the security

- 75 -

professionals for finding and describing of new vulnerabilities. They work hard with the strong

vendors in the software industry to coordinate the discovery, analysis and disclosure of the

software vulnerabilities. The focus on the new vulnerabilities makes it attractive an hub and

source of information for computer security experts and wide user base.

US CERT’s Security Bulletin is the least represented source. The security bulletins are published

on a weekly basis and in many cases include references to the other sources, like CVE entries.

The frequency of publication and its high level of dependences on external parties make it

probably less appealing source of information.

Based on the data from Table 2 and Figure 23, it can be concluded that CVE mentions hold

roughly one half of all references on an aggregate level. Also, in the sense of the weekly

iterations it holds significant and stable amount of the reports. Based on that, this database is

recognized and popular among the users. The second source, ZDI, holds approximately 25% of

all mentions in the aggregate data. As an organization, they target new, zero day vulnerabilities

and invest resources to find vulnerabilities with higher impact and significance in the industry.

Those facts could support high variation in the frequency of ZDI mentions in the data.

Finally, it should be mentioned that CVE is the only of the four sources providing the

vulnerability data in a structured format to external parties. This makes further research,

analysis and integration in other tools much more accessible for other subjects. The absence of

such structural model in the second case is also the reason why ZDI data could not be further

investigated.

5.2 Share Ratio of Software Products and Vendors

Similarly as in the previous section, the aggregate data from the second stream based on the

keywords such as vulnerability, vuln, vln, vulnerable
53 has been used to review the mentions of

popular products and vendors in the period from the May 15th to the September 17th 2011.

Consequently, the tweet messages have been scanned for the product or vendor names found

in the local database. Previously, the local database has been populated with entries from the

databases such as CPE, OSVDB and Freshmeat.

53

 The process is described in Section 2 of Chapter 44.2.1, while the keywords were introduced in Table 1

- 76 -

Vendor Count Vendor Count

Google 27626 (9272) PayPal 1568

Apple 10405 Linux 1345

Microsoft 7864 Gentoo 1119

Cisco 7243 Corel 1072

WordPress 3405 SuSe 1071

Debian 3136 Conectiva 1067

Apache 2983 Joomla 997

Facebook 2939 Sony 875

Adobe 2730 Mozilla 740

Sun 2408 Symantec 718

Skype 2347 AOL 685

PHP 2085 HP 606

Oracle 1905 IBM 497

Macromedia 1846 ISC 495

RedHat 1815 Siemens 450
Table 3: Aggregate distribution of the vendors

Table 3 lists the most commented software vendors for the considered period. Both the direct

vendor mentions and products owned by the vendors were counted. For the identification of

names used was the CPE database.

After initial testing, the databases from OSVDB and Freshmeat were excluded from the product

and vendor recognition process. The reason for that is based on the empirical fact that OSVDB

contains to a great extent the same products and vendors as CPE. In some cases the naming

convention is different from the one used in CPE, producing confusion in the results.

The second and more critical reason for the exclusion is the low quality54 of Freshmeat

database. It consists of many products less popular or in immature development stage, some of

them having the names based on the common English words. Therefore, its usage without

additional complex processing55 does not bring any noteworthy advantage and may produce

significant noise.

Table 4 shows the most commented products for the same period as considered in the Table 3,

based again on CPE product database.

54

 In the term of names of software product and this particular usage scenario
55

 Word sense disambiguation, used to recognize the context of the word and differentiate its status. E.g.

is the function of the word to describe the product or vendor name, or it serves other function in the

sentence. Example: act may represent vendor name or the verb in the sentence

- 77 -

Product Count Product Count

Cisco IOS 6258 AOL Explorer 496

Google Android 5748 Mozilla 453

Apple iPhone 3965 MS Internet Explorer 423

Wordpress 3405 Oracle Applications 419

Apple iPad 2988 ISC Bind 365

Apache56 2890 Sybase Central 363

Skype 2347 Microsoft Outlook 318

Microsoft Windows 2210 Microsoft WINS 307

PHP 2076 Macromedia Shockwave 299

Microsoft Word 1634 Rim Blackberry 286

Macromedia Flash 1496 Microsoft Activex 256

Linux 1067 Microsoft Hotmail 240

Google Chrome 803 Apple Quicktime 237

Linux Kernel 661 PhpMyAdmin 237

Mozilla Firefox 646 Adobe Acrobat 232
Table 4: Aggregate distribution of the products

In the Table 3 it can be noticed that Google had an unusually high relative level of notions,

however, from Table 4 it can be read that its direct products were mentioned on the average

level. The difference between these numbers can be attributed to several factors in the general

case, but the most prominent and significantly impacting one in this particular case is the noise.

Concretely, the noise has been caused by the bot system posting the message related to the

exploit database built around Google search57. This bot caused 18,354 Google mentions for the

same period. If that number gets excluded from the total counting, the number of Google’s

mentions in the dataset falls down to 9,272, as shown in the table. This way, the disproportion

in data is removed to a great extent.

Before the further analysis is continued, some facts related to the data from Table 3 should be

first commented.

Debian and Apache from the Table 3 in the most occasions refer the same product, Apache

HTTP Server. The inclusion of both is the result of a discrepancy in the CPE database, which

identifies Apache as a product of Debian. Debian is, however, the name of a Linux distribution

and the organization behind it. The distribution includes binary and source packages of the

applications shipped with the system, the part of which is also Apache HTTP Server. Therefore,

56

 This product refers to Apache HTTP Server. The vendor for this product identified in CPE database is

Debian, however, that is not completely correct.
57

 Example message:

honey4 : There are 522 non-recurring vulnerable paths (google dorks) in the database.

although highly positioned in the table

corresponding extent for the vulnerability related to the prod

The next essential detail worth

distributions in general. When the term such as

system relates it with the several known Linux distributions

that Gentoo, Corel, SuSe and Conectiva have

of that flaw. As the CPE database

propagates consequently to the

vendor Corel, which long time ago closed the development of its Linux distribution.

The third case is the relation of Sun and Oracle.

its products are referred under two different

correlated to the CPE database: the users

numbers presented in the

representative examples. Figure

vendor, and all its products. IBM maintains a complete and complex portfolio of the s

products.

58

 Both in the cases of Figure 24 and Figure 25, horizontal axis represent date, while the vertical one

represents the number of occurrences in Twitter Stream related to the subject being monitored

- 78 -

itioned in the table, Debian as a packager is not “responsible” in

extent for the vulnerability related to the product of the other vendor.

detail worth notion is the ambiguity problem in the CPE list related to Linux

When the term such as linux is included in the tweet message, the

several known Linux distributions concurrently. The

Gentoo, Corel, SuSe and Conectiva have a similar number of mentions, which

CPE database connects the term linux with the several vendors

the results in table. This is also obvious from the example of

Corel, which long time ago closed the development of its Linux distribution.

The third case is the relation of Sun and Oracle. Oracle acquired Sun recently. The result is that

its products are referred under two different brand names. This discrepancy is not

correlated to the CPE database: the users also mention the different company names.

he Table 3 and Table 4 will be visualized in the light of two

Figure 2458 displays the traffic on Twitter stream related to IBM as a

vendor, and all its products. IBM maintains a complete and complex portfolio of the s

Figure 24: IBM mentions

Both in the cases of Figure 24 and Figure 25, horizontal axis represent date, while the vertical one

represents the number of occurrences in Twitter Stream related to the subject being monitored

is not “responsible” in the

vendor.

problem in the CPE list related to Linux

is included in the tweet message, the

The Table 3 shows

, which is the result

vendors, so this error

This is also obvious from the example of the

Corel, which long time ago closed the development of its Linux distribution.

Oracle acquired Sun recently. The result is that

names. This discrepancy is not entirely

company names. Now, the

will be visualized in the light of two

displays the traffic on Twitter stream related to IBM as a

vendor, and all its products. IBM maintains a complete and complex portfolio of the software

Both in the cases of Figure 24 and Figure 25, horizontal axis represent date, while the vertical one

represents the number of occurrences in Twitter Stream related to the subject being monitored

The red arrow on Figure 24 points to the spike representing the burst in the mentions of IBM as

a vendor. The spike started at May 23

period has been caused by disc

Initially, the vulnerability has been disclosed by the vendor

advisory released by Secunia

interesting to note that the same vulnerability has been covered

published May 26th, three days after initial activity spike.

Figure 25 shows the development of WordPress mentions in the Twitter stream. The

marked with the red circle refers to the period from August 1

and rapid variation happened, relative to the average number of

Twitter stream.

59

 http://www-01.ibm.com/support/docview.wss?uid=swg24029452
60

 http://secunia.com/advisories/44700

- 79 -

points to the spike representing the burst in the mentions of IBM as

The spike started at May 23th and ended before the May 27th. The activity in that

period has been caused by discovery of new XSS vulnerability in IBM’s WebSphere Portal.

Initially, the vulnerability has been disclosed by the vendor59 on May 23

advisory released by Secunia60, company specialized in the vulnerability management.

interesting to note that the same vulnerability has been covered also by CVE

three days after initial activity spike.

hows the development of WordPress mentions in the Twitter stream. The

with the red circle refers to the period from August 1st to August 6th. In this period great

and rapid variation happened, relative to the average number of product

Figure 25: WordPress mentions

01.ibm.com/support/docview.wss?uid=swg24029452

http://secunia.com/advisories/44700

points to the spike representing the burst in the mentions of IBM as

The activity in that

WebSphere Portal.

on May 23th, followed with

, company specialized in the vulnerability management. It is

by CVE-2011-2172,

hows the development of WordPress mentions in the Twitter stream. The region

In this period great

product mentions in the

- 80 -

The high level of activity among Twitter users has been caused by zero-day vulnerability in the

WordPress image utility61, which impacted many WordPress themes62. The vulnerability allowed

remote attackers to upload and execute arbitrary PHP code in the application’s cache directory.

Although this vulnerability has been fixed in the short time, it has been widely exploited on

Internet63. It was not directly reported in the CVE database, at least in the time of this writing.

Figure 26 illustrates the relative trends in the usage of the search service by Google (upper part)

and the relative reference volume across the news providers covered by Google News (bottom

part). Although the Google Trends provides approximate information only, the significant spike

in the beginning of August is easily to be spotted, confirming the rise in the activity.

 These examples illustrated the relevance of the Twitter stream activity to the analysis and

discovery of the trends in software vulnerability discovery and disclosure.

Figure 26: TimThumb relative search and news trends by Google

In the first example, the spike in Twitter conversation in topics related to the vendor unveiled

the release of software vulnerability in its product. It happened the same day of its release by

61

 TimThumb, image resizer for WordPress
62

 http://markmaunder.com/2011/08/01/zero-day-vulnerability-in-many-wordpress-themes/

 http://www.networkworld.com/news/2011/080211-zero-day-vulnerability-found-in-a.html
63

 In the November 2011 Google search for the term “timthumb vulnerability” returned nearly as 2.5

million of hits, while the term “timthumb exploit” returned more than 1.2 million of hits. These numbers

confirm the wide impact of that vulnerability.

- 81 -

the vendor and well before other relevant sources approved and distributed information64

[IBMXSS11, CVE2011-2172].

In the second example, the communication burst has been exceedingly strong, indicating the

enormous importance, underlying risk and possible impact of the vulnerability. The widespread

use of WordPress on Internet and already mentioned amount of the search results in Google

are in correlation and support this statement further.

The second example further shows that the following of the public security advisories may not

be enough to protect some systems. In some cases the exploits may be available well before the

relevant security body approves, evaluates and confirms the vulnerability release. In the current

case, unlike the example of IBM WebSphere Portal, the vulnerability has not been officially

published in the CVE list at all.

The case of WordPress and its vulnerable utility describes the software product which is

published by the individual person, on the FLOSS basis. In some cases where the vendors are

not commercial companies and do not own the processes or practices related to the

vulnerability discovery, management and release process, the complete integration with the

security professional related bodies and advisories may be omitted.

Therefore, the users of such products may be exposed to a greater level of risk. The usage of

social networking systems, their crowdsourcing properties, automated analysis of their data and

integration with the security systems and databases may be one of the ways to prevent or

reduce such risk.

5.3 Types of Weaknesses

In the process of the software vulnerability discovery and analysis, new vulnerabilities are

appended to the NVD list and thus promoted to the NVD list entries. Each entry, as described in

previous chapters, consists of structured description of software vulnerability.

In many cases, the reference to the corresponding software weakness type in the CWE list is

assigned to the new NVD list entry. This relation maps the NVD list entry, e.g. the software

64

 For instance, three days before it got published in CVE repository

- 82 -

vulnerability, with the corresponding entry from CWE classification representing the category or

type of related software weakness.

However, not all NVD list entries receive a CWE reference, nor are they classified into the full

range supported by the CWE list. CWE entries used by NVD are described in CWE’s list View 635

“Weaknesses used by NVD”.

This view includes 19 items, of which 6 are described as categories, 12 as weaknesses and 1 as a

compound element. Therefore, all NVD’s vulnerabilities which obtain the classification to the

CWE list are related to one of these members.

As of the time of this writing and based on the database of vulnerabilities administered by NVD,

the total number of software vulnerabilities reported since January 1st 2009 is 11,883. Of these,

9,719 entries include reference to corresponding CWE list entry.

Around 81.79% of the vulnerabilities included in NVD’s CVE list since 2009 have been given

matching CWE entry. Figure 27 represents the development of that relation on the monthly

level65. The total number of vulnerabilities published by NVD list since its beginning is 48,20866.

Source \ Year 2009 2010 201167

CVE 4,174 4,594 3,11568

CWE
3,502

(83.90%)

3,708

(80.71%)

2,509

(80.55%)

Table 5: Yearly development of publication of CVE entries

Table 5 lists the amount of vulnerabilities discovered each year and listed in NVD software

vulnerability database. CVE row represents that amount in absolute values, while the CWE row

shows the fraction of software vulnerabilities discovered having reference to the corresponding

CWE list entry.

65

 The NVD CVE vulnerability list has been analyzed for period from January 1
st

 2009 to October 7
th

 2011.

It should be noted that CVE entries have identifiers of publication time and last modification time. This

comparison includes only entries which are published in related time range.
66

 Based on October 14
th

 report from http://nvd.nist.gov
67

 CVE related data for 2011 contains entries published up to the October 7
th

. It is incomplete for the year

2011, but this fact has been taken into account during the consideration and comparison of the data.

Therefore, only the strong trends with significant difference have been considered.
68

 If extrapolated to the end of the year, the expected number would be 4,143

- 83 -

Figure 27: Vulnerabilities published in NVD (total, including ones with CWE reference)

The quantity of those vulnerabilities is characterized both by using absolute and relative values.

It should be noted that, as of the time of this writing, the values from the fourth quarter of 2011

are missing. However, even partial data available for 2011 can be used to recognize particular

courses with strong affinities.

5.3.1 CVE List Publication Dynamics

The development of the software vulnerabilities in their absolute amount69 for the years 2009,

2010 and 2011 is presented in Figure 2870. From the Figure 28 some trends can be observed.

Discovery of software vulnerabilities of the class Code Injection has dropped significantly in 2011

(43 CVEs), compared to 2009 (231) and 2010 (262). Similarly, Path traversal related

vulnerabilities since the beginning of 2011 have been reported in 72 CVE list entries, compared

to 269 entries found in 2010.

69

 As classified by NVD in CVE list and mapped to the CWE entries. The data for 2011 is incomplete, as

explained on the previous page. Only the strong trends are considered.
70

 The incomplete labels refer to Improper Restriction of Operations within the Bounds of a Memory Buffer

(CWE-119) and Permissions, Privileges, and Access Controls (CWE-264), respectively

- 84 -

Figure 28: Distribution of CWE weaknesses in NVD CVE list

This trend is even more accented in the case of SQL Injection related vulnerabilities, which

dropped from 546 and 514 inclusions (2009 and 2010 respectively) to only 130 in 2011.

Neuhaus and Zimmermann describe the similar trend for the years 2008 and 2009 in their

technical report [SECTR10].

On the other side of the trending, the class of Information Exposure related vulnerabilities has

strong upward tendency, followed by Resource Management Errors and Improper Input

Validation classes. The situation visually described in the Figure 28 is further detailed in the

Table 6. It lists the exact numbers representing the development of each weakness type

through the years of 2009, 2010 and 2011. Table 7 helps to get deeper insight and understand

the changes in the growth of some weaknesses types. The Figure 29 and Figure 30 serve the

same purpose, for the weaknesses types SQL Injection and Information exposure.

- 85 -

Weakness type 2009 2010 2011

Code Injection 231 262 43 �

Configuration 44 23 25

Credentials Management 51 50 24 �

Cross-site Scripting 599 584 298 �

Cryptographic Issues 75 64 48

CSRF 68 75 44

Improper Authentication 129 72 46

Improper Input Validation 218 296 310 �

Improper Restriction of Operations within … 491 532 536 �

Information Exposure 126 157 241 �

Link Following 21 25 28

Numeric Errors 139 158 114 �

OS Command Injection 10 13 11

Path Traversal 209 269 72 �

Permissions, Privileges, and Access Controls 285 332 198 �

Race Condition 29 32 15

Resource Management Errors 213 235 318 �

SQL Injection 546 514 130 �

Uncontrolled Format String 18 15 8

Table 6: Distribution of CWE weaknesses in NVD CVE list

Weakness Vendor
Count

2010 2011

Improper Input Validation

Google 16 74

Microsoft 47 32

Adobe 16 25

Apple 14 14

Linux 15 14

Opera 4 10

Improper Restriction of Operations …

Adobe 88 97

Apple 73 96

Microsoft 46 39

Google 20 41

HP 10 25

IBM 17 22

Code Injection

Microsoft 90 5

Adobe 19 1

Apple 14 0
Table 7: Trends among the vendors, excerpt

- 86 -

In the Table 7 the vendor column refers to the software vendors who got the highest share for

the weaknesses type in the time frame. The column count lists the number of hits of the

software products released by the vendor71. In the cases of Improper Input Validation and

Improper Restriction of Operations within the Bounds of a Memory Buffer the situation with the

top six vendors for the year 2011 was described. The Code Injection lists top three vendors from

the year 2010.

The row for the type Improper Input Validation shows that, even after the first three quarters of

the 2011, the number of CVE entries exceeded the previous years’ numbers. The cause for that

change can be found in the sudden increase of weaknesses of that type in the products

published by Google.

The change from 16 reports in 2010 to 74 in the 2011 in this case is significant and amounts for

nearly as 20% of all CVE reports for that weakness type in the current year. The variance shown

in the reports of other vendors is not as much significant, therefore, it can be concluded that

Google was in great extent responsible for such increase.

The second weakness from the Table 7 shows a different trend. Although in the current year the

products of Google and HP were more vulnerable in that category by more than 50% each, the

products of other vendors also demonstrated noticeable growth. Therefore, it can be concluded

that the change in this category is rather the result of the global trend.

In the third row, describing the Code Injection weakness, the 2010 is used as a reference year

for the top three vendors. The cause for that is the fact that in 2011 the distribution among the

vendors is relatively equal, e.g. there are no vendors noticed who have relatively higher share in

the distribution.

On the contrary, in 2010 the products of several vendors took a considerable share in the

distribution. To be precise, Microsoft, Adobe and Apple caused as nearly as 50% of all

weaknesses in this category for the year 2010. The sudden decrease for the whole category in

the year 2011 can be in significant extent attributed to these vendors.

In the case of SQL Injection, which according to the Figure 28 and Table 6 has dropped

significantly in 2011, the vendors or products responsible for that change in the large amount

could not be found. The Figure 29 shows the distribution of the CVE entry publication related to

71

 The vendor-product relation is derived from the CPE list maintained by Mitre Corporation. It should be

noted that some software products do not have the vendor assigned. This is rare case though.

- 87 -

this weakness among the different software products, for the years 2010 and 2011. The similar

trend can be spotted for both years, implying that reason in the decrease may be connected to

the global trend.

Likewise, Figure 30 shows a similar pattern for the Information exposure weakness class. In this

case, there has been noticed an increase in 2011, compared to the previous years. In the year

2011 the individual products involved in that trend got greater share.

Figure 29: SQL Injection distribution among the products

Figure 30: Information exposure weakness among the products

5.3.2 Twitter Chatter Dynamics

The tendencies depicted by Figure 28 and noticed here are based on software vulnerability

discovery and reporting in the CVE list. The vulnerabilities in the CVE list are published as they

are found (and properly validated). However, the list entries do not bear the information about

- 88 -

general impact and degree of the importance level of a vulnerability, considered from the real-

world or user experience aspect.

There may be different factors characterizing the effect or real-world magnitude of a software

vulnerability. These effects, or impacts, can be observed or evaluated on different ways,

depending on the standpoint used.

For instance, the software vulnerability may be considered in a different way by the diverse

categories of observers. Consequently, security professionals – analysts, company CEO/CIO-s,

end users or malicious persons can have different priorities or criteria when evaluating the

vulnerability.

The emergence of the vulnerability of less popular, narrowly focused business software may be

crucial for company CIOs due to the increased risk and costs demanded to prevent losses. For

end users, announcement of software vulnerability may be important in an aggregate sense if

the software is quite widespread and thus impacts greater range of the user population.

Likewise, one of the parameters considered within the vulnerability assessment may be an

audience using the software. Is the software widespread, what determines its user base

segmentation characteristics? The software availability to the users, its platform base (server or

client side), popularity or exploitability complexity of related vulnerability may also play a role in

the perception of its significance.

These criteria and measures are hard to predict using the provided reports only. The user

perception and insight on software vulnerabilities could be gained directly from the user

interactions or their public statements expressed explicitly or implicitly. This work uses the

Twitter platform for the exchange and distribution of real-time short messages to examine user

activity related to the software vulnerabilities. It is assumed that this type of user interaction

may provide additional information about perception of software vulnerabilities.

Figure 31 illustrates the weekly development of the classes of weaknesses based on the CVE

entry publication in official NVD CVE list. These classes of weaknesses are derived from the

published CVE entries, which contained the reference to the matching CWE weaknesses.

Figure 32, likewise, shows the relative frequency of weaknesses referred by the CVE entries

discussed on Twitter. The time range considered spans through the weeks 21 to 38 of the year

- 89 -

2011, the same during which the Twitter streams have been collected in the database. The sizes

of the squares are relative to individual dataset, and not to the combination of both of them.

Figure 31: Classes of software weaknesses (CWE) derived from CVE publication

Figure 32: Classes of software weaknesses (CWE) derived from Twitter conversation

- 90 -

The figures show that some categories of the software weaknesses have visibly disparate

distributions between datasets among the time ranges. While Resource Management Errors are

relatively constantly reported in CVE list, the level of their appearing in Twitter stream is

relatively low on average, except for a couple of weeks in August and September, when it

comprised a significant portion of the messages posted. Similarly, Code Injection follows the

distribution disproportionally. Cross-site Scripting is relatively less commented by Twitter users

than it could be expected by its publication dynamics, while the representation of weakness of

the type Improper restriction of Operations within the Bounds of a Memory Buffer has relatively

fluctuating development.

As already presented, Figure 32 depicted the reporting of weaknesses types on the Twitter in

the function of the time, in weekly resolution. The next step in the analysis is to provide

aggregate information for the whole period considered. In that sense, Figure 33 shows the

scatter plot relation of CVE list publication and Twitter stream trends during the same period.

This figure shows unusual values for weaknesses Improper Restriction of Operations within the

Bounds of a Memory Buffer (#9) and Resource Management Errors (#17). These categories have

been assigned to the CVE entries reported on Twitter much more frequently than others, both

in CVE list publication and Twitter stream dataset.

The scatter plot also shows that some of the weaknesses do not stand in the approximate field

around imaginary line defining Tweet-CVE diagonal. In the case of Resource Management Errors

or Code Injection it means that those weaknesses have been more frequently mentioned in the

Tweet dataset. On the other side, it also means that Cross-site Scripting, Permissions, Privileges

and Access Controls and SQL Injection in the relative terms have been more accented in the CVE

dataset.

Again looking at the same data, Figure 34 shows the relative line plots of both datasets. Figure

35 has been introduced to represent those relationships when the weaknesses #972 and #17 are

excluded from consideration73. This adjustment has been done only for the technical reasons

and the clarity of representation – to illustrate the interrelation between other types of

weaknesses on their scale. The global data as the sum of all messages have been left intact.

72

 Their absolute position is referred to the order as displayed in Figure 33
73

 Combined they represent more than 50% of tweets generated. The purpose of the second diagram is to

present visually smoother dependence of other weaknesses types involved.

- 91 -

These figures represent the same trends from the Figure 33 but using a different visual

approach.

Figure 33: Cumulative ratio of Twitter based reports compared to CVE publication

The bottom parts of the figures display standard deviation tests for both datasets, respectively.

It can be read that CVE list in both cases demonstrates relatively lower deviation across the

weaknesses types. Given the numbers, mean and standard deviation for CVE dataset amount

47.68 and 59.65 respectively, while the same numbers for Twitter dataset amount 287.63 and

458.61. Also, it can be concluded that the standard deviation of Twitter dataset is significantly

different from one from CVE dataset (P=0,036)74.

The Pearson coefficients for both cases amount r=0,948 (p=0) and r=0,915 (p=0), respectively75.

Both numbers indicate high correlation between CVE and Twitter dataset, which is expected. It

would be highly surprising to find that Twitter conversation has a low correlation to the

publishing dynamics of the CVE entries. However, these numbers, together with figures

accompanied, demonstrate that the Twitter conversation to some extent follows a different

pattern.

74

 Calculation is performed on the complete datasets.
75

 The Pearson coefficient is used to represent the degree of association between two variables, ranging

from -1 to +1. A positive value implies positive association and corresponds to the extent of that

association. The numbers presented here describe high level or strong correlation between the datasets.

- 92 -

Figure 34: Line plot and standard deviation

In the case presented in the first plot (Figure 34), the weakness type #9 (Improper Restriction of

Operations within the Bounds of a Memory Buffer) has been clearly more often discussed in the

Twitter stream than it has been embedded in the CVE entries published in the same time range.

The similar but not so strong trend is demonstrated by the types #1 (Code Injection) and #12

(Numeric Errors), which can be spotted on Figure 33 too.

The scatter plot on Figure 35 shows stronger tendency also for #13 (OS Command Injection). On

the other side, #10 (Information Exposure), #18 (SQL Injection) and #4 (Cross-Site Scripting) are

under-proportionally included in the Twitter stream as it could be expected based on the

amount of their inclusion in CVE list.

Looking back at the Figure 32 and rapid saturation of Resource Management Errors in August

and September, it can be concluded that Twitter conversation from that period contributes

highly to the aggregate results presented in Figure 33 and Figure 34.

Analyzing the Twitter stream for the period beginning from the 3rd week of August, it can be

noticed that CVE-2011-3192 had disproportionally higher share in the Twitter conversations. It

- 93 -

amounted for 864 mentions, while the next positioned CVE-2011-1928 and CVE-2011-3190

occurred in the stream only 61 times each.

Figure 35: Line plot and standard deviation, without types 9 and 17

Entry in the CVE list identified as CVE-2011-3192, published on August 29th, identifies the

software vulnerability found in the range of Apache HTTP Server versions, allowing remote

attackers to cause a denial of service (memory and CPU consumption). This vulnerability refers

to Resource Management Errors (CWE-399) category from the CWE list.

The described case shows that the discovery of one vulnerability in Apache HTTP Server

software caused abnormally high impact among the users in terms of message exchange on

Twitter. Apache HTTP Server is mature and widely spread product, ran as a server product on

many different platforms. As of the October 2011, it owns 64.67% in the web server market

share, serving nearly 100 million active web sites worldwide [NETCRAFT11]. The fact that the

- 94 -

software vulnerability in question enables malicious parties to cause remote DoS in such widely

used product explains its significant impact among the Twitter’s user population.

The second example of a software vulnerability causing relatively higher user impact can be

found in the fifth week of July 2011, as shown in Figure 32 under the type Code Injection. This is

clearly a period in which Code Injection type got the highest attention in the Twitter’s user

community.

From the Twitter stream dataset it can be read that this activity spike has been caused by

vulnerabilities identified as CVE-2011-2505 and CVE-2011-2506. They have been mentioned 93

and 92 times respectively. In the observed week, however, the vulnerability ranked as the next

one occurred 21 times only. Both of these CVE entries are referred to the same product –

phpMyAdmin.

CVE-2011-2505 identifies vulnerability present in the authentication module of the product,

which improperly handles input query string. Similarly, CVE-2011-2506 describes the

configuration generator which improperly handles the presence of comment closing delimiters

submitted by remote users. The amount of the mentions of both entries summed together is

more than 8 times higher than the next most commented vulnerability in the time frame

considered. As they both relate to the same product, it can be concluded that phpMyAdmin at

that time received significant attention by Twitter users. phpMyAdmin is an open source tool

written in PHP, used for web based administration of MySQL databases, downloaded in more

than 25 million copies [SRFG11].

The last three weeks of June and five weeks of July underwent the high level of activity in the

Twitter stream. This can serve as a third example of high user movement caused by the

software vulnerability in the CVE list. This activity has been especially evident in CWE’s category

of Improper Restriction of Operations within the Bounds of a Memory Buffer, identified shortly

as CWE-119.

The period selected is relatively long to consider only one weaknesses type. In these weeks,

1,920 messages containing CVE reference76 have been published. Of them, 1,055 messages

referred the category CWE-119.

76

 Which further contains reference to a CWE weakness type

- 95 -

Product name Num. of messages Weakness

Adobe Flash Player 366
CWE-119 351

77

CWE-79 14

Internet Explorer 202
CWE-119 166

CWE-399 31

PHP 171
CWE-264 86

CWE-119 79

Windows Server 2008 113
CWE-119 98

CWE-189 9

Table 8: Distribution of the products and weaknesses types in selected June/July weeks

The distribution of the most mentioned products, sorted by the number of aggregate

occurrence in the period is shown in Table 8. This table helps to understand the spike in June

and July described here. The last column of the table (Particular weakness) lists two most

accented weaknesses types from the set of all product mentions in the period observed.

The analysis of the data shows that, in the period analyzed, several products have been affected

by CWE-119 weakness type. However, Adobe Flash Player accounted for more than 19% of all

traffic and more than 33% of all CWE-119 reflections78. Table 8 also shows that the greatest

amount of the traffic dedicated to Adobe Flash Player referred to class CWE-119. Therefore, it

can be concluded that release of CVE-2011-2110 contributed significantly to the spike apparent

in June and July in Figure 32. In this case, again, Twitter users discussed widely popular software

product. Many versions of that product and platform-specific implementations have been

targeted by that software vulnerability.

5.3.3 Dismantling the Numbers

First part of this section provided the description of the CVE publication dataset from the aspect

of underlying CWE weakness type. It illustrated the development of weaknesses types identified

by security analysts and professionals from different organizations, companies and institutions

77

 CVE-2011-2110
78

 1,055 Tweets mentioned CWE-119

- 96 -

worldwide, further channelized and published through the CVE publication process. They data

gathered covered the development for the years 2009, 2010 and 2011.

That activity identified the tendencies inherent to the discovery and publication dynamics. It has

been discovered, and then concluded, that some categories of weaknesses had strong upward

or downturn tendencies. In several cases, the reasons behind these tendencies have been

identified, and explained. In the case of weakness category Improper Input Validation, one

software vendor induced the shift in the discovery dynamics for that category.

In the other case concerning Improper Restriction of Operations within the Bounds of a Memory

Buffer, it has been found that the products of three main software vendors, the known and

highly developed companies on the market, took a part in more than 50% of revealed

vulnerabilities of a particular weakness category. In the following year, the number of the

discovered and reported vulnerabilities of that type, referring the products of those vendors,

has significantly decreased.

In some other cases it has been shown that the weaknesses were not been focused around one

group of software products or companies. They were rather distributed semi-equally among the

many different products. The rise or decline in the total amount of reports per weakness

category, therefore, can be rather attributed to the global trend. To analyze the reasons which

could define the global trends is out of the scope of this work. They may be determined by new

technologies, frameworks, languages, libraries or practices used in the software development

process, however, there is not enough data to perform an analysis and draw a conclusion.

The second part of this section has been dedicated to the description and investigation of CVE

entry publication or conversation dynamics in the Twitter dataset. In other words, it approached

the analysis of the weaknesses distribution from the aspect of Twitter users involved in the

communication.

The development of related Twitter chatter has been illustrated visually both for the weekly and

aggregate data. The differences and similarities of CVE and Twitter datasets have been

statistically described, analyzed and commented. Furthermore, the three examples, describing

the cases of Apache HTTP Server, phpMyAdmin and Adobe Flash Player, demonstrated the

examination of the events noticed in the weekly overview, as depicted in Figure 31 and Figure

32. It has been shown how the disclosure of several vulnerabilities with high impact for the

popular product caused noticeable effect on related Twitter traffic.

- 97 -

5.4 Characteristics of Weakness Type

As already stated in the previous sections, some 80% of the CVE entries receive mapping to one

of 19 corresponding CWE weakness types. CWE weakness is, depending on the type79, further

structurally characterized by several underlying parameters. This section presents the relation

and distribution of the three groups of these parameters. The bases for comparison are the data

sets containing the vulnerabilities mentioned in the users’ tweets, and ones published in the

CVE database.

Analyzed was the share of elements of each property, both in the Twitter and CVE publication

dataset. It has been assumed that the advantage in that share on the Twitter dataset side

corresponds to the types of properties and their elements with higher importance or preference

for the users. Based on that, the idea of this section is to determine the latent characteristics of

the weakness types which have drawn the most interest and activity on the users’ side.

In that sense, tracked were Impact Scope, Consequence Scope and Time of Introduction. The

corresponding parts of this section explain their meaning and role further. The Figure 22 shows

the markup of a Twitter message, illustrating the real-world usage of the three properties

presented here.

Each CWE entry may consist of several different parameters of each class. As shown in Appendix

1, the weakness CWE-476 has one parameter in the class Time of Introduction and two

parameters in class Common Consequences. The inclusion of those parameters is optional. This

is also demonstrated on the example of CWE-476, which does not have a parameter describing

Impact Scope.

Figure 36 illustrates the aggregate relation between the Consequence scope elements in the

Twitter messages and CVE list datasets. The relation is determined by the dynamics of inclusion

of the CVE identifiers in the messages, on the one side, and the publication dynamics of the CVE

entries in the public CVE list, on the other side. The CVE entries in the both datasets refer to the

CWE weaknesses type, which is further characterized by the Consequence scope element,

among the others.

The Consequence scope determines the individual consequence that may be associated with the

weakness. This field identifies six elements: Confidentiality, Integrity, Availability, Access

79

 Category, compound type or weakness

- 98 -

Control, Non-Repudiation and Other. Each weakness type may have one or more of those

elements, referring to the aspects of information security affected by the weakness.

Figure 36: Line plot describing the development of Consequence Scope

As the Figure 36 shows, the CVE entries containing the properties such as Availability, Non-

Repudiation and Other have been relatively more popular among the Twitter users, while the

vulnerabilities affecting Integrity exhibited no change in the Twitter users’ mentions. The scope

of Access Control received comparatively 25% less interest in the Twitter stream, compared to

the publication dynamics in the CVE list.

The other characteristic represented by the Figure 37 is the Impact Scope. The impact scope

determines the exact classes of the impact of specific CWE weakness type. It may contain one or

more of these classes. There are 16 different classes under these characteristics: Read memory,

Read files or directories, Read application data, Other, Modify memory, Modify file or

directories, Modify application data, DoS: crash/exit/restart, Hide activities, Gain

privileges/assume identity, Execute unauthorized code, DoS: resource consumption other, DoS:

resource consumption memory, DoS: resource consumption CPU, DoS: instability, DoS:

crash/exit/restart and Bypass protection mechanism.

Figure 37 draws the aggregate relation of the specific CWE weakness type in the Twitter and

CVE datasets, in the term of its underlying impact scope. Similarly as in the previous example,

- 99 -

the relation is determined by the frequency of Twitter mentions of CVE identifiers and CVE

publication list dynamics.

Some of the impact scopes from the Figure 37 can be categorized in one of two groups.

Stronger emphasis in the Twitter stream received categories such as DoS: crash/exit/restart,

DoS: resource consumption (memory), DoS: resource consumption (CPU), Other, Hide activities,

and Modify application data. This group is more often commented in the Twitter than it is in

CVE dataset. Some of its members got 15% or even double relative increase.

The second group characterizes the impact scope categories which received relatively less

interest among the Twitter users. These are: Read application data, Execute unauthorized code

and commands, Bypass protection mechanism and Read files or directories. This group

represents the impact scopes which occurred relatively less often among the Twitter

population, than it would be expected based on the CVE publication dynamics. The members of

this group received approximately 20-50% decrease in the Twitter dataset compared to CVE

publication frequency.

Figure 37: Line plot describing the development of Impact Scope

- 100 -

The Figure 37 shows graphically shows the difference in the relative share of impact scopes

from each of the groups mentioned here. The vulnerabilities having the latent characteristics

from the first group of the impact scopes have been comparatively more discussed and

forwarded by the Twitter users. That group is dominated by the entries from the DoS and data

manipulation families. This information can be confirmed from the example from Section 3,

which discussed Apache HTTP Server vulnerability.

Based on that, the users demonstrated higher interest the vulnerabilities which impact was

distributed on the large scale. On the other side, the vulnerabilities based around the impact

scope described by the second group have been of less interest, importance or significance for

the Twitter users.

The third property of weakness type is Time of introduction. This characteristic describes the

time of introduction of the software weaknesses in the software development process. It can be

any of the three phases of the software development: Architecture and Design, Implementation

or Operation.

Figure 38 draws the relationship of Time of introduction between the Twitter stream dataset

and the dataset representing the CVE publication dynamics. This plot shows that Architecture

and Design and Implementation have almost the same share and development in the both

datasets. Their exact numbers differ about 1% in the Twitter stream dataset.

This correlation seemed strange at beginning, but after a more detailed look at the entries from

CWE List View 635, it could be confirmed that these two phases occur very often together

among the CWE entries. That fact raises the question about the adequacy of categorization

selected for this property.

Besides that, from the two groups, the vulnerabilities created in the Operation phase of

software development had relative increase of approximately 17% in the Twitter dataset. That

implies that vulnerabilities from the later phases of the software development have been a

slightly more interesting and popular among the user population.

The next finding brings to the conclusion that the most of discovered software vulnerabilities

have been created in the phases of Architecture and Design and Implementation, sharing nearly

the same probability among those phases.

- 101 -

Figure 38: Time of introduction

The interpretation of comparisons performed in this section is that the software weaknesses

drawing the significant part of the attention of the Twitter users have been producing

consequences in the areas of Availability, Non-Repudiation and Other. Furthermore, considering

the other category, the weaknesses whose impacts have been based on data modification

operations or some denial of service types have been causing the higher level of interest among

the users. Lastly, the data analyzed shows that Operation phase of the software development

process produces almost 20% of all software weaknesses.

5.5 CVE Entry Distribution in the Term of Publication

Time

The value of the Twitter information and the degree of its quality been mentioned in the

Section 3.2 in Chapter 2 [TWRESP09]. Similarly, the idea behind the analysis presented in this

section is to discover and describe some of the properties of Twitter communication in the

domain of the software vulnerability information management.

- 102 -

The first crucial task is to discover how the new information propagates on Twitter, in the

temporal sense. What time frame defines the critical period before and after the publication

and modification of a CVE entry? In order to assess such information, the first necessary step is

to investigate what kinds of data are provided by the official information sources.

The life cycle of a CVE entry begins with its candidate status. The software vulnerabilities, upon

their first submission, get assigned the candidate status. Based on the predefined procedures,

the submissions are further disseminated, reviewed and evaluated. That process involves

several phases through which a CVE candidate passes.

After its final acceptance by the decision board, the candidate gets converted into an

appropriate entry and announced on the CVE list. With this step, the candidate becomes the

CVE entry officially. This is the moment when the wider public, interested parties and

stakeholders get informed about the vulnerability formally, through a public announcement.

Usually, such announcement results in a public attention toward the related entry; it may affect

the security bulletins, reports and recommendations worldwide. Some announcements may be

further distributed by the media, with higher or lower level of interest. The level of public

awareness about the vulnerability may depend on its significance, which may further depend on

the perception of vulnerability on the side of the persons or bodies deciding about information

delivery process.

The structure of an entry in the CVE list provides, among the other information, its time of

publication and the time of last modification.

The time of the last modification provides information about the last update of a CVE entry.

Usually, the most of modifications relate to the changes of descriptions, updates of the

references or other smaller adjustments. Sometimes, more substantial changes are completed.

These can be based on splitting of an entry into separate entries, or its merging with another

one.

The time of publication of the entry provides not the time of its initial creation, but of its

conversion from candidate to entry status. The CVE entries are initially announced as

candidates. After the predefined review process is done, they are further converted to the

entries and included in the official CVE list. Therefore, the temporal information about the

status of an entry in its earlier lifecycle stages is not provided in the CVE list directly.

- 103 -

This section analyzes the effect of the relative time of the publication and modification of a CVE

entry on its circulation in the Twitter message stream. The figures presented here describe the

relation of the time difference between publication and modification of a CVE entry and its

discussion and related activity level on Twitter. The time difference factor is determined as the

time of Twitter message broadcast reduced by the time of publication e.g. last modification of a

CVE entry80.

Figure 39: Comparison between CVE last modified and published time

Figure 39 describes the typical Twitter activity level related to the CVE entries in the function of

time. The left part of the figure presents the activity distribution relative to the last modification

time of a CVE entry. The right part of the figure, similarly, presents such relation relative to the

publication time of a CVE entry. Figure 39 presents the distribution in the time range of 20,000

hours, where the central points define the last modification and publication times.

For the time of publication, it can be observed that some 36 percent of all mentions of CVE

candidates refers to the negative time. Hence, the important part of all CVE mentions relates to

the conversation held during their candidate phase, before they get published as the CVE

entries.

Figure 40 further disseminates and presents the distribution depicted on Figure 39, based on

the relative time periods. This makes possible to get deeper insight into the developments

80

 The times are handled in the form of the timestamp, which can be in later stage converted into the

other representation type, if appropriate

- 104 -

related to specific and critical time periods. The figure refers to the CVE publication time, which

is primarily considered.

Figure 40: Difference between CVE publication time and timestamp of the Twitter message

The time frames measured in the Figure 40 are periods of 160 days before the publication, 100

days after the publication, as well as 100 hours before and after the publication. Unlike the

Figure 39, the values presented in the Figure 40 refer to the data available to the one of two

statuses only. Accordingly, the distribution for the positive time range covers only the status of

the CVE entry.

Likewise, the plots presenting the negative time range represent the distribution of the

messages only for the status of the CVE candidate. As explained before, in the period before its

official publication, the CVE entry finds itself in the candidate status. The time after the

publication refers to the official CVE entry status.

- 105 -

The top part of the figure depicts the relation for the positive81 and the negative82 part of the

timeline. Similarly, the bottom part of the figure depicts the same relation, which is provided in

the scale on the hourly level and covers a few days relative at the entry publication time.

The plots on the left side show that around 13% of all related Twitter conversations in the entry

status happened by the first day after publication time. Furthermore, the 30% are reached after

4 days, while half of all the conversation referring some entry is done during the first 10 days.

The CVE candidate can be considered as software vulnerability in the phase of its investigation

and status decision. As a result, in this phase the candidate is more relevant for computer

security and professional community, than it is for the public. After its acceptance, confirmation

and conversion into the CVE entry, it becomes “more open” and probably of interest to the

wider community.

The right part of Figure 40 describes the conversation in the phase before the CVE entry is

published in the CVE list, e.g. during the time it is considered as a candidate. It is not uncommon

that some vulnerabilities stay on the candidate list for a couple of months – the discussion in

that direction is visible on the top right plot. However, as the publication date gets closer, the

communication intensifies. The result is that some 50% of related conversation happens during

the last three days prior to publication.

Figure 39 shows the similar relation, but for the last modification date of a CVE entry. It should

be noted that CVE candidate can be converted to the CVE entry only once. For this reason, the

publication time is generally set only once, without later changes. The time of the last

modification, however, can be changed several times in the lifecycle of a CVE entry.

The plot on the left part of Figure 39 suggests that some 91% of all conversations referring an

individual CVE entry occur before its last modification time. However, that information should

be taken with the reserve, as the moment of an analysis of the dataset followed several weeks

after the final data sample has been taken.

This section presented the findings related to the distribution of the CVE references in the

Twitter stream in relation to their publication and last modification date. It has been

demonstrated that some 91% of CVE entries are not updated in the period following their

occurrence in the Twitter stream.

81

 Discussion in entry status
82

 Discussion as candidate

- 106 -

The fact that around 30% of all CVE entry mentions on the Twitter happen during the first four

days shows that, on average, the CVE entries on Twitter propagate more slowly than it could be

expected. However, that fact may be useful when constructing the real time significance

measurement and recognition tool for the vulnerabilities. The entities broadcasted on a faster

rate could be candidates for a further investigation.

On the other side, the related Twitter activity increases rapidly as the CVE candidate approaches

official publication event, covering 50% of activity in the last three days prior to the publication.

This information may be useful to predict those event types timely.

- 107 -

6 Conclusion and Further Directions

As the online social networks represent a relatively new approach in the areas of information

sharing and online collaboration, the goal of this work was to explore their potential usage in

the field of software vulnerability identification and tracking.

Online social networks are still a rapidly growing and varying concept. They are changing and

reshaping other types of services on the Internet, affecting the paradigm of the Internet and its

presence in the personal and business world. In many domains there are opportunities to

investigate potentials for research and practical application of the OSNs. At the time when this

thesis proposal was prepared, the application of OSNs in software vulnerability research has not

been largely explored. From that point, this work represents a contribution in that direction.

The first task of the work was to perform the literature survey. The second and third chapters

are dedicated to this segment of activities. The second chapter investigated the general area of

OSNs, with the focus on Twitter. Twitter concentrates on single, but a powerful concept of the

real time exchange of short messages. The third chapter explored the area of software

vulnerabilities. The taxonomy systems in the field were surveyed, and the problems of different

approaches were presented.

In the second task, which is based on the findings from the previous survey, the software

framework was constructed and employed in the work. This software framework has been used

to monitor and gather data from Twitter during a couple of months. Afterwards, the framework

processed the gathered data and prepared it for further analyses. Chapter 4 presents that

framework, the external data sources and the basics on the data sets gathered.

Once the data in the form of Twitter messages and their descriptions have been gathered and

organized, they have been processed, augmented and enriched by the software framework

accordingly. The idea behind that was to recognize the entities in the Twitter messages and

- 108 -

structure their meaning through the usage of semantic technologies and data from external

sources. That has been done, and the results of the analyses were presented in Chapter 5.

It should be mentioned that both the software framework and the research done had to be

accommodated to the scope of this work. Therefore, there is still a potential present to extend

the software framework, introduce new approaches and include new data sources. On the

research side, even the current basis holds enough data for the extensible investigation.

The result of this work is a database of tweets covering the period from the May 15th to the

September 17th 2011, occupying some 2.5 GB of disk storage. The data analysis involved two

main approaches. The first one, presented in the sections 1 and 2 in Chapter 5, is based on the

keywords representing the software vendors, products, or identifiers of software security

related bulletins and advisories. This approach proved the possibility to get timely information

about the unknown vulnerability of tremendously popular and spread software.

The spike displayed in Figure 25 demonstrated how the occurrence of the exploit for the

popular software drastically increased the related activity on Twitter. Such approach could be

used to detect the security breaches in the known software and inform users and system

administrators a shortly after the detection of the incident.

The second approach in the analysis of the gathered messages was to recognize the identifiers

of the CVE list and employ their descriptors to mine underlying information and trends further.

This approach can be applied to gather periodical information about the trends and hot topics in

the software vulnerability industry. They can be related to vendors, products, programming

languages, development approaches or any other information which is provided in the

underlying and related structured resources.

Another idea used in this direction has been to approach already disclosed software

vulnerabilities from the user’s perspective. As it has been shown in Chapter 4 and Chapter 5, the

assessment of scopes of CVE identifiers is usually being done by the security professionals.

Using CVSS, they are subjectively evaluating and determining the impact and criticality of a

vulnerability.

On the other side, however, it could be useful to assess the impact of the vulnerability from the

aggregate user point of view. With the practical example, Section 3 demonstrated that users do

- 109 -

have preferences and that their global voice could be used to assess and predict the potential

impact of vulnerabilities.

During the work on this thesis I found issues in the several areas:

1) Security bulletins, advisories, enumeration lists

Some of the public sources do not provide structured and easily obtainable information to other

users. These are, among others, MS (Microsoft) and ZDI (Zero Day Initiative). There exist a

number of companies providing specialized packages and solutions for the software

vulnerability management. They monitor the software and publish advisories; however, they do

not provide their data in the form structured for the interchange, ingestion and further

integration. Although Mitre and NVD tried to approach the field from the structured and

cooperative perspective, not all organizations are trying to follow this approach. The resulting

situation is not optimal in the term of effort invested and results produced globally.

2) Naming and classification of the software packages

Although Mitre approached this question with their CPE, the solution is still far from the perfect

one. OSVDB follows their approach, but it also has comparable issues and too many similarities.

The problem with CPE is that the structure of their database and naming schema are not

optimal. There are too many redundancies. There are also other problems related to the data

change in the function of time. For instance, how to approach the acquisitions and alterations of

the vendor names, or how to define the vendors of public domain software or software which

has been authored by several physical persons?

Experimenting on the Freshmeat database enlightened one other problem, which is the

ambiguity in the software package and vendor names. In the open source area especially, there

are many software packages having the names based on the common English words. Many of

those packages are in an immature development phase or are not used widely. The successful

inclusion of such data requires a specially developed technique of product name disambiguation

in the messages.

This technique should be developed also in the other cases of ambiguities, for instance, in the

cases where the incomplete program names were published. Recognizing separate versions,

editions or updates of products was out of the scope of this work – these also pose new

challenges.

- 110 -

3) CVE, CWE issues

CWE represents a comprehensive list of software weaknesses. However, in the CVE database

only 19 of them are recognized and assigned to the vulnerabilities found. There is a rate of

about 20% of the vulnerabilities not receiving the CWE weakness classification. It seems unlikely

that only 19 of all the weaknesses types fit the CVE list, especially as the field is always

advancing and new types of weaknesses are discovered.

Another potential problem with CWE is related to the classification of the underlying properties

of the weakness. The strong correlations of some values83 indicate that either the classification

system of the subcategory is not optimal, or the quality of the process of manual classification

alone should be reviewed.

The following suggestions apply to the further work:

1) The semantic relation in the areas of naming and classification of software packages and

vendors should be further defined and improved. The same applies to different systems for

vulnerability enumeration and classification. The proposals of Howison, Berger et al.

[HOWISON08, SEMANTICOSS10] in the area of OSS could be extended or used as starting points

in this sense.

2) As already mentioned, the further development of the application and vendor name

disambiguation techniques would be of use in the further work. That especially applies to the

area of commercial software, as the data for OSS software are generally available in relatively

accessible forms. However, the data and representations are not completely consistent among

the different OSS repositories. There is an ongoing work in that direction [HOWISON08].

83

 For instance, Figure 38 shows that Implementation and Architecture and Design have nearly the same

values.

- 111 -

Appendix 1: Example of the CWE List Entry

CWE-476: NULL Pointer Dereference

Weakness ID: 476 (Weakness Base)

Description

Description Summary

A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL,

typically causing a crash or exit.

Extended Description

NULL pointer dereference issues can occur through a number of flaws, including race conditions, and simple programming

omissions.

Time of Introduction

� Implementation

Applicable Platforms

Languages

� C

� C++

� Java

� .NET

Common Consequences

Scope Effect

Availability

Technical Impact: DoS: crash / exit / restart

NULL pointer dereferences usually result in the failure of the process unless exception handling

(on some platforms) is available and implemented. Even when exception handling is being used, it

can still be very difficult to return the software to a safe state of operation.

Integrity

Confidentiality

Availability

Technical Impact: Execute unauthorized code or commands

In very rare circumstances and environments, code execution is possible.

Likelihood of Exploit

Medium

Detection Methods

Automated Dynamic

Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software

using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,

and fault injection. The software's operation may slow down, but it should not become unstable,

crash, or generate incorrect results.

Effectiveness: Moderate

Manual Dynamic

Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them. For

example, run the program under low memory conditions, run with insufficient privileges or

permissions, interrupt a transaction before it is completed, or disable connectivity to basic

network services such as DNS. Monitor the software for any unexpected behavior. If you trigger an

unhandled exception or similar error that was discovered and handled by the application's

- 112 -

environment, it may still indicate unexpected conditions that were not handled by the application

itself.

Demonstrative Examples

Example 1

While there are no complete fixes aside from conscientious programming, the following steps will go a long way to ensure

that NULL pointer dereferences do not occur.

if (pointer1 != NULL) {

/* make use of pointer1 */

/* ... */

}

If you are working with a multithreaded or otherwise asynchronous environment, ensure that

proper locking APIs are used to lock before the if statement; and unlock when it has finished.

Example 2

This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it

into a buffer.

(Bad Code)

Example Language: C

void host_lookup(char *user_supplied_addr){

struct hostent *hp;

in_addr_t *addr;

char hostname[64];

in_addr_t inet_addr(const char *cp);

/*routine that ensures user_supplied_addr is in the right format for conversion */

validate_addr_form(user_supplied_addr);

addr = inet_addr(user_supplied_addr);

hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);

strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not resolve to a hostname, then the

call to gethostbyaddr() will return NULL. Since the code does not check the return value from gethostbyaddr (CWE-252), a

NULL pointer dereference would then occur in the call to strcpy().

Note that this example is also vulnerable to a buffer overflow (see CWE-119).

Example 3

In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker

can control the program's environment so that "cmd" is not defined, the program throws a NULL pointer exception when it

attempts to call the trim() method.

(Bad Code)

Example Language: Java

String cmd = System.getProperty("cmd");

cmd = cmd.trim();

Observed Examples

Reference Description

CVE-2005-3274
race condition causes a table to be corrupted if a timer activates while it is being modified, leading

to resultant NULL dereference; also involves locking.

CVE-2002-1912 large number of packets leads to NULL dereference

- 113 -

CVE-2005-0772 packet with invalid error status value triggers NULL dereference

CVE-2009-4895 chain: race condition for an argument value, possibly resulting in NULL dereference

CVE-2009-3547
chain: race condition might allow resource to be released before operating on it, leading to NULL

dereference

CVE-2009-3620
chain: some unprivileged ioctls do not verify that a structure has been initialized before invocation,

leading to NULL dereference

CVE-2009-2698
chain: IP and UDP layers each track the same value with different mechanisms that can get out of

sync, possibly resulting in a NULL dereference

CVE-2009-2692 chain: uninitialized function pointers can be dereferenced allowing code execution

CVE-2009-0949 chain: improper initialization of memory can lead to NULL dereference

CVE-2008-3597
chain: game server can access player data structures before initialization has happened leading to

NULL dereference

CVE-2008-5183 chain: unchecked return value can lead to NULL dereference

CVE-2004-0079

CVE-2004-0365

CVE-2003-1013

CVE-2003-1000

CVE-2004-0389

CVE-2004-0119

CVE-2004-0458

CVE-2002-0401

Potential Mitigations

Phase:

Implementation

If all pointers that could have been modified are sanity-checked previous to use, nearly all NULL

pointer dereferences can be prevented.

Phase: Requirements The choice could be made to use a language that is not susceptible to these issues.

Phase:

Implementation

Check the results of all functions that return a value and verify that the value is non-null before

acting upon it.

Effectiveness: Moderate

Checking the return value of the function will typically be sufficient, however beware of race

conditions (CWE-362) in a concurrent environment.

This solution does not handle the use of improperly initialized variables (CWE-665).

Phase: Architecture

and Design

Identify all variables and data stores that receive information from external sources, and apply

input validation to make sure that they are only initialized to expected values.

Phase:

Implementation

Explicitly initialize all your variables and other data stores, either during declaration or just before

the first usage.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques

use data flow analysis to minimize the number of false positives. This is not a perfect solution,

since 100% accuracy and coverage are not feasible.

Weakness Ordinalities

Ordinality Description

Resultant
NULL pointer dereferences are frequently resultant from rarely encountered error conditions,

since these are most likely to escape detection during the testing phases.

- 114 -

Relationships

Nature Type ID Name View
N.

Chain

ChildOf 398 Indicator of Poor Code Quality

699

700

1000

ChildOf 465 Pointer Issues 700

ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711

ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734

ChildOf 742
CERT C Secure Coding Section 08 - Memory

Management (MEM)
734

ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800

ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900

ChildOf 871 CERT C++ Secure Coding Section 03 - Expressions (EXP) 868

ChildOf 876
CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868

MemberOf 630 Weaknesses Examined by SAMATE 630

CanFollow 252 Unchecked Return Value 1000 690

CanFollow 789 Uncontrolled Memory Allocation 1000

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Null Dereference

CLASP Null-pointer dereference

PLOVER Null Dereference (Null Pointer Dereference)

OWASP Top Ten 2004 A9 CWE_More_Specific Denial of Service

CERT C Secure Coding EXP34-C Ensure a null pointer is not dereferenced

CERT C Secure Coding MEM32-C Detect and handle memory allocation errors

CERT C++ Secure Coding EXP34-CPP Ensure a null pointer is not dereferenced

CERT C++ Secure Coding MEM32-CPP Detect and handle memory allocation errors

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version: 1.7)

54
Probing an Application Through Targeting its

Error Reporting

28 Fuzzing

129 Pointer Attack

White Box Definitions

A weakness where the code path has:

1. start statement that assigns a null value to the pointer

2. end statement that dereferences a pointer

3. the code path does not contain any other statement that assigns value to the pointer

Content History

- 115 -

Submissions

Submission Date Submitter Organization Source

 7 Pernicious Kingdoms Externally Mined

Modifications

Modification Date Modifier
Organiza

tion
Source

2008-07-01
Eric Dalci

updated Time_of_Introduction
Cigital External

2008-08-01 added/updated white box definitions
KDM

Analytics
External

2008-09-08

CWE Content Team

updated Applicable_Platforms, Common_Consequences, Relationships,

Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities

MITRE Internal

2008-11-24
CWE Content Team

updated Relationships, Taxonomy_Mappings
MITRE Internal

2009-05-27
CWE Content Team

updated Demonstrative_Examples
MITRE Internal

2009-10-29
CWE Content Team

updated Relationships
MITRE Internal

2009-12-28

CWE Content Team

updated Common_Consequences, Demonstrative_Examples, Other_Notes,

Potential_Mitigations, Weakness_Ordinalities

MITRE Internal

2010-02-16
CWE Content Team

updated Potential_Mitigations, Relationships
MITRE Internal

2010-06-21

CWE Content Team

updated Demonstrative_Examples, Description, Detection_Factors,

Potential_Mitigations

MITRE Internal

2010-09-27
CWE Content Team

updated Demonstrative_Examples, Observed_Examples, Relationships
MITRE Internal

2010-12-13
CWE Content Team

updated Relationships
MITRE Internal

2011-06-01
CWE Content Team

updated Common_Consequences
MITRE Internal

2011-06-27
CWE Content Team

updated Related_Attack_Patterns, Relationships
MITRE Internal

2011-09-13
CWE Content Team

updated Relationships, Taxonomy_Mappings
MITRE Internal

Notice: this example has been adapted based on the original representation from

http://cwe.mitre.org/data/definitions/476.html.

Appendix 2: Definition of

Category in CWE 2.0

- 116 -

Definition of Types Weakness and

Category in CWE 2.0

ypes Weakness and

- 117 -

- 118 -

Appendix 3: OSVDB Data Model Overview

- 119 -

Bibliography

[ALEXA11] The top 500 sites on the web. Alexa.

Retrieved from http://www.alexa.com/topsites, November 2011.

[ASLAM95] Aslam, T. A Taxonomy of Security Faults in the UNIX Operating System. MSc

thesis. Purdue Univeristy, 1995.

[ASSET96] Arthur, W.B. et al. Asset Pricing Under Endogenous Expectations in an Artificial

Stock Market. (Working papers) Wisconsin Madison - Social Systems, 1996.

[BPOINT10] Vincent, A. and Armstrong, M. Predicting break-points in trading strategies

with Twitter. October 2010.

[CABRERA2002] Cabrera, A. and Cabrera, E.F. Knowledge Sharing Dillemas. Organization

Studies, September 2002.

[CCS11] Attribution-ShareAlike 3.0 Unported.

Retrieved from http://creativecommons.org/licenses/by-sa/3.0/, November

2011.

[CHIRPS09] Krishnamurthy, Balachander et al. A few chirps about Twitter. Proceedings of

the first workshop on online social networks. ACM New York, USA, 2008.

[CMSEI05] Seacord, R.C. and Householder, A.D. A Structured Approach to Classifying

Security Vulnerabilities. Software Engineering Institute, Carnegie Mellon

University, 2005.

[CULP00] Culp, S. 2000. Definition of a security vulnerability. MicrosoftTechNet, 2000.

[CVE2011-2172] Common Vulnerabilities and Exposures - CVE-2011-2172. Retrieved from

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2172, November

2011.

[CVEED11] CVE Editorial Board.

Retrieved from http://cve.mitre.org/community/board, September 2011.

- 120 -

[CVSS07] Mell, P., Scarfone, K., Romanosky, S. A Complete Guide to the Common

Vulnerability Scoring System Version 2.0. National Institute of Standards and

Technology and Carnegie Mellon University, 2007.

[CWE07] About CWE. The Mitre Corporation.

Retrieved from http://cwe.mitre.org/about, September 2011.

[CWEFAQ11] CWE FAQ. The Mitre Corporation.

Retrieved from http://cwe.mitre.org/about/faq.html, September 2011.

[DBLCL11] The 1000 most-visited web sites on the web. DoubleClick. Retrieved from

http://www.google.com/adplanner/static/top1000, November 2011.

[DBP11] The DBpedia Knowledge Base. Retrieved from http://dbpedia.org/About,

November 2011.

[FBTW10] Facebook, Twitter and The Two Branches of Social Media [OP-ED], retrieved

from http://mashable.com/2010/10/11/facebook-twitter-social, Mai 2011.

[GNUFD11] GNU Free Documentation License.

Retrieved from http://www.gnu.org/copyleft/fdl.html, November 2011.

[HC11] HighCharts product page.

Retrieved from http://www.highcharts.com/products/highcharts, November

2011.

[HEILPISK09] Heil, Bill and Piskorski, Mikolaj. New Twitter Research: Men Follow Men and

Nobody Tweets. Harvard Business Blog, June 1, 2009.

[HEYF99] Heylighen, Francis. Collective Intelligence and its Implementation on the Web:

algorithms to develop a collective mental map. Computational & Mathematical

Organization Theory, Springer, 1999.

[HL98] Howard, J.D. and Longstaff, T.A. A Common Language for Computer

Security Incidents. Sandia National Laboratories, 1998.

[HOWISON08] Howison, J. Cross-repository data linking with RDF and OWL. 3rd Workshop on

Public Data about Software Development (WoPDaSD 2008), p.15-22, 2009.

- 121 -

[IATAC11] Information Assurance Tools Report – Vulnerability Assessment. Sixth Edition.

IATAC, Herndon 2011.

[IBMXSS11] PM3664: Search Center - Cross Site Scripting Vulnerability. Retrieved from

http://www-01.ibm.com/support/docview.wss?uid=swg1PM36644, November

2011.

[ISO27005]

ISO/IEC 27005:2008: Information technology -- Security techniques --

Information security risk management. International Organization for

Standardization, Geneva, Switzerland.

[JANET08] How “Janet” Fooled the Twittersphere (and me) She’s the Voice of Exxon Mobil.

Retrieved from http://www.web-strategist.com/blog/2008/08/01/how-janet-

fooled-the-twittersphere-shes-the-voice-of-exxon-mobil, Mai 2011.

[JAVA07] Java, Akshay et al. Why We Twitter: Understanding Microblogging Usage and

Communities. In Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD

Workshop 2007. San Jose, USA, 2007.

[JKALUC10] Kalucki, J. Twitter Streaming API Architecture, 2010. Retrieved from

http://www.slideshare.net/jkalucki/chirp-2010streamingapiarchpost,

September 2011.

[JONES06] Jones, A. L. Have internet message boards changed market behavior?, info,

Volume 8, Issue 5, 2006.

[KOOBFACE10] Thomas, K. and Nicol, D.M. The Koobface Botnet and the Rise of Social

Malware. 5th International Conference on Malicious and Unwanted Software

(Malware), 2010.

[KRSUL98] Krsul, Ivan V. Software vulnerability analysis. Purdue University, 1998.

[LAMPSON04] Lampson, Butler W. Computer Security in the Real World. Computer, p. 37-46,

June 2004.

[LANDWEHR01] Landwehr, Carl E. Computer security. In International Journal of Information

Security, Springer, 2001.

- 122 -

[LP11] Carpenter, B and Baldwin, B. Text Analysis with LingPipe 4. LingPipe Publishing,

New York, 2011.

[METCAL05] Odlyzko, Andrei and Tilly, Benjamin. A refutation of Metcalfe’s Law and a

better estimate for the value of networks and network interconnections.

Manuscript, March 2, 2005.

[MSFT11] Infographic: The Growth of Mobile Marketing and Tagging. Microsoft,

03/2011. Retrieved from http://tag.microsoft.com/community/tag-blog-

item/11-03-21/The_Growth_of_Mobile_Marketing_and_Tagging.aspx, May

2011.

[MSGBRD04] Antweiler, W. and Frank, M. Z. Is all that talk just noise? The information

content of internet stock message boards”. Journal of Finance, volume 59,

number 3, 2004.

[NATHAZ10] Vieweg, S. et al. Microblogging During Two Natural Hazards Events: What

Twitter May Contribute to Situational Awareness. Proceedings of the 28th

international conference on Human factors in computing systems. ACM, 2010.

[NETCRAFT11] October 2011 Web Server Survey. Netcraft. Retrieved from

http://news.netcraft.com/archives/2011/10/06/october-2011-web-server-

survey.html, November 2011.

[NISTSP02]

Stoneburner, G. et al. Risk Management Guide for Information Technology

Systems. Special publication 800-30. National Institute of Standards and

Technology, July 2002.

[NRL93] Landwehr, C.E. et al. A Taxonomy of Computer Program Security Flaws, with

Examples. Center for Computer High Assurance Systems, 1993.

[OIS04] Guidelines for Security Vulnerability Reporting and Response. Organization for

Internet Safety, 2004.

[OLOUFA03] Oloufa, A. A. et al. Situational awareness of construction equipment using GPS,

wireless and web technologies. Automation in Construction, Volume 12, Issue

6. November 2003.

- 123 -

[ONT04] Garshol, L.M. Metadata? Thesauri? Taxonomies? Topic Maps! Ontopia, 2004.

[OREILLY03] The Architecture of Participation, June 2004, retrieved from

http://oreilly.com/pub/a/oreilly/tim/articles/architecture_of_participation.ht

ml, May 2011.

[OREILLY07] O’Reilly, Tim. What is Web 2.0: Design Patterns and Business Models for the

Next Generation of Software. O’Reilly Media, USA, 2007.

[OZMENT07] Ozment, A. Vulnerability Discovery & Software Security. PhD Thesis. University

of Cambridge & Magdalene College, 2007.

[PARAMO96] Parasuraman, R. and Moloua, M. Automation and human performance. Theory

and applications. Lawrence Erlbaum Associates Inc, 1996.

[PLEVY98] Levy, Pierre. Becoming Virtual: Reality in the Digital Age. Plenum Trade, New

York, 1998.

[PRACUNIX96] Garfinkel, S. and Spafford, G. Practical UNIX and Internet Security, Second

Edition. O'Reilly & Associates, Inc, 1996.

[PRIVTW10] Humphreys, L. M., Krishnamurthy, B. and Gill, P. How Much Is Too Much?

Privacy Issues on Twitter. Paper presented at the annual meeting of the

International Communication Association, Singapore, 2010.

[RISOS76] Abbott, R.P. et al. Security Analysis and Enhancements of Computer Operating

Systems. Institute for Computer Sciences and Technology. National Bureau of

Standards, 1976.

[RTWFACT10] Suh, B. et al. Want to be Retweeted? Large Scale Analytics on Factors

Impacting Retweet in Twitter Network. In Proceedings of the IEEE Second

International Conference on Social Computing (SocialCom), p. 177-184,

August 2010.

[SARWOOD91] Sarter, N. B. and Woods, D. D. Situation Awareness: A critical but ill-defined

phenomenon. International Journal of Aviation Psychology, p. 45-57, 1991.

[SECTR10] Neuhaus, S. and Zimmermann, T. Security trend analysis with CVE topic

models. Technical Report, DISI, University of Trento, May 2010.

- 124 -

[SEMANTICOSS10] Berger, O. et al. Weaving a Semantic Web across OSS repositories: a spotlight

on bts-link, UDD, SWIM. International Journal of Open Source Software and

Processes, 32/2010, Volume 2, Issue 2, p. 29 - 40, 2010.

[SFLU09] Morozov, E. Swine flu: Twitter's power to misinform. Retrieved from

http://neteffect.foreignpolicy.com/posts/2009/04/25/swine_flu_twitters_pow

er_to_misinform, Mai 2011.

[SITANAL05] Grégio, A.R.A. et al. Taxonomias de Vulnerabilidades: Situação Atual. V

Simpósio Brasileiro em Segurança da Informação e de Sistemas

Computacionais. Brasil, 2005.

[SKING05] Tsipenyuk K. et al. Seven Pernicious Kingdoms: A Taxonomy of Software

Security Errors. Security & Privacy, IEEE, Vol. 3 Issue 6, 2005.

[SOM10] Sakaki, T. et al. Earthquake shakes Twitter users: real-time event detection by

social sensors. In Proceedings of the 19th international conference on World

wide web. ACM, 2010.

[SOOD11] Sood, A.K. and Enbody, R. Chain Exploitation – Social Networks Malware.

ISACA Journal, Volume 1, 2011.

[SPDGROUP00] Sonnenwald, D.H. and L.G. Pierce. Information behavior in dynamic group work

contexts: interwoven situational awareness, dense social networks and

contested collaboration in command and control. Information Processing and

Management 36, p. 461-479, 2000.

[SRFG11] Download Timeline of phpMyAdmin. Sourceforge. Retrieved from

http://sf.net/projects/phpmyadmin/files/stats/timeline, November 2011.

[SVCONS05] Polepeddi, S. Software Vulnerability Taxonomy Consolidation. Master’s Thesis,

Information Networking Institute, Carnegie Mellon University, 2005.

[TADOPT09] Hughes, A. L. and Palen, L. Twitter Adoption and Use in Mass Convergence and

Emergency Events. In Proceedings of the 6th International ISCRAM Conference

– Gothenburg, Sweden, May 2009.

- 125 -

[THONO10] Nowey, T. Konzeption eines Systems zur überbetrieblichen Sammlung und

Nutzung von quantitativen Daten über Informationssicherheitsvorfälle. PhD

Thesis. University of Regensburg, 2010.

[TREE06] Engle, S. et al. Tree Approach to Vulnerability Classification. University of

California at Davis, 2006.

[TWEET09] Twitter Blog. Retrieved from http://blog.twitter.com/2009/11/whats-

happening.html. May 2011.

[TWITTER11] #numbers, retrieved from http://blog.twitter.com/2011/03/numbers.html,

May 2011.

[TWNEWS10] Haewoon, K. et al. What is Twitter, a social network or a news media?. In

Proceedings of the 19th International Conference on World wide web, ACM,

2010.

[TWRESP09] Mills, A. et al. Web 2.0 Emergency Applications: How useful can Twitter be for

emergency response? In Journal of Information Privacy & Security, Volume 5,

Issue 3, 2009.

[TWRTW10] Boyd, D. et al. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting

on Twitter. In Proceedings of the 43rd Hawaii International Conference on

System Sciences, 2010.

[TWSTAT09] Lenhard, Amanda and Fox, Susannah. Twitter and status updating. Pew

Internet & American Life Project, Washington D.C. 2009.

[TWTRADE10] Sprenger, O. T. and Welpe, I. M. Tweets and Trades: The Information Content

of Stock Microblogs. Working paper. Technische Universität München, 2010.

[VCMOD08] Engle, S and Bishop, M. A Model for Vulnerability Analysis and Classification.

Department of Computer Science. University of California, Davis, 2008.

[WMOUTH09] Jansen, B. J. et al. Twitter power: Tweets as electronic word of mouth. In

Journal of the American Society for Information Science and Technology,

Volume 60, Issue 11, 2009.

