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als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Analyse von Funktionalitätsabweichungen gewisser

Motorbauteile und deren Auswirkungen auf die Emissionen Stickoxide (NOx) und Rauch

in Hinblick auf die Gesetzgebung. In gleicher Weise sollen Änderungen im Kraftstoff-

verbrauch beobachtet werden. Es stellt sich die Frage wie genau die Motorbauteile

verarbeitet sein müssen damit diese unter einer vorgebenen Wahrscheinlichkeit einen

Abgasnormtest bestehen. Notwendig dafür ist eine Vielzahl an Simulationen, die nur

durch Versuchsplan-generierte Regressionsmodelle zu bewältigen ist. Dabei ermöglicht

ein spezieller Versuchsplan, das Central Composite Design, den Einsatz von quadrat-

ischen Regressoren. Die relevante Information wird schließlich durch Gewichtung der

Regressoren mittels Wahrscheinlichkeiten erreicht. Einerseits wird in dieser Arbeit ein

dimensionsunabhängige Auswertungsmethode entwickelt, welche für jedes Bauteil unter

Berücksichtigung aller anderen Bauteile jene kritischen Funktionsabweichungen aufzeigt,

die zu einem negativen Abgasnormtest führen. Zusätzlich wird eine Methodik ausge-

arbeitet, die aufzeigt welche Toleranzen für einzelne Bauteile noch erlaubt sind damit ein

solcher Abgasnormtest bestanden wird.

Abstract

This master thesis is concerned with the analysis of deviations from a given functionality

of engine devices. Their influence on the emission results of nitrogen oxides (NOx) and

soot considering the legislation in terms of an exhaust emission standard test should be

studied. Additionally the effect on the specific fuel consumption is observed at the same

time. Given an explicit probability to pass the emission test, the target is to determine

the accuracy of each device’s assembly, whereas the achievement requires mounds of data.

Design Of Experiment (DOE) based regression models remedy this demand and provide

the outcomes of numerous scenarios on combined deviations. In the process the Central

Composite Design enables the application of quadratic predictors. At last these combina-

tions are weighted with previously assumed probabilities in order to receive the necessary

information. On the one hand a non-dimensional method providing all device deviations

critical for the emission target is developed. On the other hand knowledge should be im-

parted about how accurate a manufacturer has to produce single engine devices in order

to pass the emission test.
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2 Chapter 1. Preface

1.2 Introduction

In times of an enormous business competition within the automotive market, the main

formula of success is to create an engine with maximum performance and low exhaust

emissions at the same time. And as if that were not enough, with more power but less

fuel consumption just as well as with cheap production costs combined with very high

quality. Since 1948 AVL GmbH Graz has committed to the optimization of internal com-

bustion engines in all conscience and technology, whereas the principal task is taken by

the calibration processes. However, since the full potential of this sector is almost tapped,

new optimization strategies like Robustness Investigations arise. Questions like, to what

extent manufacturer caused engine device deviations from optimal calibration values af-

fect the engine’s characteristics, take the center stage.

This master thesis is based on present robustness investigation results, and presents to

these different- but moreover also completely mathematical established and statistical

approved evaluations- and model construction methods in order to address the existing

issues. This paper especially deals with a Tier 4 Interim diesel engine with a displacement

of approximately 10l and a rated power of 270kW and researches the influences of func-

tionality deviations on the results of NOx, soot and fuel consumption of the stationary

emission exhaust standard C1-test. Given an optimal calibration, functionality failures

of two major parts of the engine, the actuator devices and the turbo charger quantities

should be consulted for the analysis. At that request the regression approach, in its ear-

liest form published by A.M. Legendre (1805) and C.F. Gauss (1809) and enhanced by

U. Yule and K. Pearson, should find a remedy. Still, a conscientious regression model

handling requires high statistical skills and knowledge in terms of design of experiments.

In order to administrate the subsequent investigations of this master thesis, it is neces-

sary to provide the statistical background. Therefore the important points of a regression

model and its valuation are set before the analysis of note. During the first part of this

paper the construction of hypotheses tests, estimation of unknown population parameters

and a couple of diagnostic methods embraced to the so called residual analysis are shown.

In addition an insight of the theory of Designs Of Experiments, which act as a major role

in terms of economic information generation is given. The engine test bench takes the

nearly most essential part among all technical environment installed inside the AVL halls.

Despite the expensive but inevitable application of this facility site, neither its disposition

nor the viability of all conceivable surrounding conditions is guaranteed at all times. Here,

the AVL GmbH internal simulation software MoBEOTM contributes technical assistance

combined with a higher sampling rate. In this paper the arrangement of the conducted

investigations necessitates even faster operating simulation methods in order to assure
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the implementation of as much engine scenarios as possible. Due to the single rates of

deviations and their occurrence distributions, economic designs of experiments providing

different combinations of functionality deviations should be executed by MoBEOTM in

order to achieve the necessary information for a much faster operating regression model.

To this information the statistical ANOVA procedure should detect non-result-significant

device deviations, whose negligence additionally accelerates the computations of the re-

gression model. At last it is possible to simulate the C1-test results of each desired devi-

ation scenario with optional accuracy, whereas the scenario rating is carried out through

probabilities.





Chapter 2

Statistical Background

2.1 Sampling Theory

2.1.1 Samples and Statistics

Definition 2.1. (Random variable)

A n−dimensional random variable, or respectively a random vector is a vectorial function

Y = (Y1, . . . , Yn)T for n ∈ N from a sample space Ω into the n−dimensional space over the

field of the real numbers Rn, i.e. Y ∶ Ω→ Rn.

Definition 2.2. (Realization)

The value y = (y1, . . . , yn)T is called realization of the random sample Y = (Y1, . . . , Yn)T .

Example 2.1. (Die experiment)

Sample space Real number Y Realization of Y

Ω = {1,2,3,4,5,6} Y = sum of even results after 10 tosses y = real outcome (e.g. y = 30)

Definition 2.3. (Cumulative distribution function)

Every random variable Y is associated with a function called the cumulative distribution

function (c.d.f.) of Y , which is given by

FY (y) = P(Y ≤ y) ∀y ∈ R for Y unidimensional

FY (y) = FY1,...,Yn(y1, . . . , yn) = P(Y1 ≤ y1, . . . , Yn ≤ yn) ∀y ∈ Rn for Y multidimensional

Remark 2.1.

A random variable Y is called continuous, when its c.d.f. FY (y) is a continuous function

of y. When FY (y) is a step function, Y is denoted as a discrete random variable.
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Definition 2.4. (Probability mass function (p.m.f.) and probability density

function (p.d.f))

Depending on whether the random variable Y is discrete or continuous, we differ between

the p.m.f and the p.d.f.:

FY (y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑k≤y P(Y = k) Y discrete, k ∈ I ⊆ N0, 0 ≤ P(Y = k) ≤ 1

y

∫
−∞

fY (y)dy Y continuous, fY (y) ≥ 0

whereas P(Y = k) is called probability function and fY density function. Both

purport explicitly the distribution structure of a random variable Y . In contrast the dis-

tribution function of FY (y) provides the cumulative probability for Y to be smaller than

a realizable value y.

Remark 2.2.

In Example 2.1. for the random variable Y we assumed a discrete uniform distribution

deduced from a fair die. For further analysis every random variable is considered as

continuous.

Remark 2.3.

A random variable Y = (Y1, . . . , Yn)T with distribution FY (y) is abbreviated symbolically

by Y ∼ FY or analogically by Yi
i∼ F .

Definition 2.5. (Independence of random variables)

Real random variables Yi ∼ F ∀i = 1, . . . , n are independent if and only if the following

equation holds:

F(Y1,...,Yn)(y1, . . . , yn) =
n

∏
i=1

FYi(yi) ∀(y1, . . . , yn) ∈ Rn

⇔

Yi
ind∼ F

Definition 2.6. (Random sample)

The random variables Y1, . . . , Yn are called random sample of size n from the population

f(y) if Y1, . . . , Yn are independent random variables and the marginal p.d.f or p.m.f. of

each Yi is the same function f(y). Alternatively, Y1, . . . , Yn are called independent and

identically distributed random variables with p.d.f. or p.m.f. f(y). (Notation: Yi
iid∼ F ).

The expected realization value of a random variable Y can be determined as follows:
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Definition 2.7. (Expected value or mean)

µ = E(Y ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
k∈I
kP(Y = k) Y discrete

+∞
∫
−∞

yfY (y)dy Y continuous

Theorem 2.1. 1

Expected values or means are subject to the following conditions:

� E(c) = c

� E(cY ) = cE(Y )

� E(cY + d) = cE(Y ) + d

� E(X + Y ) = E(X) +E(Y )

whereas c, d are arbitrary constants and X,Y are arbitrary random variables.

Thus the expected value or mean is a linear function in its argument.2

A measure for the deviation of Y from the mean is provided by the variance.

Definition 2.8. (Variance)

If E(Y 2) < ∞, then

VAR(Y ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
k∈I

(k −E(Y ))2 P(Y = k) Y discrete

+∞
∫
−∞

(y −E(Y ))2fY (y)dy Y continuous

Theorem 2.2. 3

For variances the following calculation rules hold:

� VAR(c) = 0

� VAR(cY ) = c2VAR(Y )

� VAR(cY + d) = c2VAR(Y )

� VAR(X + Y ) = VAR(X) +VAR(Y ), if X and Y independent random variables

whereas c, d are arbitrary constants and X,Y are random variables.

1cf. [12], p.152
2cf. [7], p.81
3cf. [12], p.153
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A relation between the mean and variance is expressed over the so called displacement

law of Steiner.

Theorem 2.3. (Displacement law)4

For any random variable Y with E(Y 2) < ∞ it can be shown that

VAR(Y ) = E(Y 2) −E2(Y )

Definition 2.9. (Normal distribution)

A random variable Y is normally distributed with parameters µ ∈ R and σ2 > 0 if Y has

the following density function:

fY (y) = 1√
2πσ2

e
−(x−µ)2

2σ2 y ∈ R ⇔ Y ∼ N(µ,σ2)

whereas E(Y ) = µ and VAR(Y ) = σ2. The normal distribution is well-defined over these

parameters.

Definition 2.10. (Exponential distribution)

A random variable Y is exponentially distributed with parameter λ > 0 if Y has the fol-

lowing density function:

fY (y) = λe−λy ∀y ≥ 0 ⇔ Y ∼ EXP(λ)

whereas E(Y ) = 1
λ and VAR(Y ) = 1

λ2 . The exponential distribution is also well-defined

over parameter λ.

Although in practice the distribution type of a studied population is usually assumed to

be known, the specifying parameters are often not available. One of the upmost targets of

statistical research is to estimate these parameters out of random samples in order to assess

the whole population. This is approached with the ’Strong law of large numbers’ theorem

from F. Cantelli and A. Kolmogorow, which enables an arbitrarily accurate estimation of

the distribution parameter due to samples. Also the Monte-Carlo simulation method (cf.

chapter 3) can be traced back to this theorem.

Definition 2.11. (Statistic)

Let y1, . . . , yn be observations of a random sample Y = (Y1, . . . , Yn)T . Any function tn =
tn(y1, . . . , yn)T is called statistic.

Example 2.2. (typical statistics)

Arithmetic mean:

ȳ = 1
n

n

∑
i=1
yi

4cf. [12], p.243
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Empirical standard deviation:

sY =
√

1
n−1

n

∑
i=1

(yi − ȳ)2

Y1, . . . , Yn random sample from a population with known distribution F (θ) but unknown

parameter vector θ ∈ Θ (Θ...parameter space).

Example 2.3. (Normal distribution)

Yi
iid∼ N(µ,σ2) ⇒ θ = (µ,σ2)

2.1.2 Point Estimators

Definition 2.12. (Point estimator)

Y = (Y1, . . . , Yn)T is a random sample with Yi
iid∼ F (θ). A function Tn = Tn(Y1, . . . , Yn)T is

called point estimator of the unknown parameter vector θ ∈ Θ.

Point estimators can be seen as random variables, which follow a certain distribution.

Definition 2.13. (Unbiased estimator)

An estimator is called unbiased (asymptotically unbiased) if

E(Tn) = θ ( lim
n→∞

E(Tn) = θ)

That is, on average, Tn realizes with the unknown parameter vector θ.

Definition 2.14. (Consistent estimator)

An estimator is called consistent if

lim
n→∞

P(∣Tn − θ∣ > ε) = 0) ∀ε > 0

Considering an increasing sample size, a consistent estimator implicates a smaller proba-

bility to deviate from the true parameter vector θ.

Definition 2.15. (Efficient estimator)

An estimator is called efficient if for the mean squared error (MSE) holds:

E((Tn − θ)2) ≤ E((T ′
n − θ)2) ∀ estimators T ′

n of θ

An efficient estimator has the smallest MSE.
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Three sorts of estimators Tn are commonly accepted.

1. Estimation via method of moments

2. Least squares estimator (LSE)

3. Maximum Likelihood estimator (MLE)

In this context the applications will be restricted to LSEs and MLEs.5

2.1.3 Least Squares Estimators

The least squares estimation method, which is part of the theory of linear models (cf.

section 2.4), was developed by Pierre-Simon Laplace and Carl Friedrich Gauss. The target

of this procedure is to minimize the squared sum of errors between drawn observations

and the unknown mean. Hence:

min
n

∑
i=1

(yi −E(Y ))2

Example 2.4. (Normal distribution)

Let y1, . . . , yn be observations of a random sample with distribution N(µ,σ2), whereas

parameters µ and σ2 are unknown. At first we want to find an estimator of µ:

min
µ
f(µ) with f(µ) =

n

∑
i=1

(yi − µ)2 =
n

∑
i=1

(y2
i − 2yiµ + µ2)

⇒ ∂

∂µ
f(µ) = − 2

n

∑
i=1

yi + 2nµ
!= 0⇒ Ê(Y ) = µ̂ = ȳ = 1

n

n

∑
i=1

yi

Applying theorem 2.3, we get an estimation of σ2:

VAR(Y ) ≈ Ê(Y 2) + Ê2(Y )

= 1

n

n

∑
i=1

y2
i − µ̂2 = 1

n

n

∑
i=1

y2
i − 2µ̂2 + µ̂2

= 1

n

n

∑
i=1

y2
i −

2µ̂

n

n

∑
i=1

yi + µ̂2 = 1

n

n

∑
i=1

(yi − µ̂)2

However, Ŝ2 = 1
n

n

∑
i=1

(Yi − Y )2 is not a LSE! Particularly a LSE for σ2 does not exist.

5For more information concerning method of moments cf. [15], p.265
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Considering a random sample Y = (Y1, . . . , Yn)T with Yi
iid∼ N(µ,σ2), the LSE of µ is given

by:

µ̂ = Y = 1
n

n

∑
i=1
Yi

The least squares estimation method is a frequently-used approach for regression models

in order to estimate unknown parameters (cf. section 2.3).

2.1.4 Maximum Likelihood Estimators

In contrast to the least squares method the Maximum Likelihood estimation has several

advantages but also disadvantages like the demand for a known distribution, which re-

quires lots of preliminary work in the most cases. A short overview is presented by the

subsequent lines.

Advantages:

� MLEs can be attached over a

unique procedure to a multiplicity

of statistical estimation problems.

� MLEs are always consistent and at

least asymptotically unbiased and

also asymptotically efficient.

Disadvantages:

� The method requires the know-

ledge of the marginal p.d.f.

� Small sample sizes often lead to bi-

ased MLEs.

For an observed sample y = (y1, . . . , yn)T this approach evaluates the most ’probable’

distribution parameter θ. This procedure is afforded by exchanging the parameter vector

θ with y within the dependency structure of the density function.

Definition 2.16. (Likelihood function)

Given a density function fY of Y and an observed sample y = (y1, . . . , yn)T, we define the

Likelihood function given by

L(θ ∣ y) = fY (y ∣ θ) ∀θ ∈ Θ

For Yi
iid∼ F (θ) the Likelihood function of an observed sample y can be easily calculated

as:

L(θ ∣ y) = L(θ1, . . . , θk ∣ y1, . . . , yn) iid=
n

∏
i=1
fYi(yi ∣ θ1, . . . , θk)

Given an observed sample y, L(θ ∣ y) denotes a function, which reflects a set of densities

with cardinality, equal to the parameter space Θ.
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We are interested to find parameter vector θ̂, which maximizes the Likelihood function.

(i.e.: The Maximum Likelihood estimation finds the parameter θ, which is most reasonable

for the drawn sample).

Definition 2.17. (Maximum Likelihood Estimator - MLE)

The maximizing value θ̂ ∈ Θ, is called Maximum Likelihood Estimator (MLE) of θ given

an observed sample y.

max
θ∈Θ

L(θ ∣ y) = L(θ̂ ∣ y)

If L(θ ∣ y) is differentiable in θj for j = 1, . . . , k, then the score functions

∂
∂θj

L(θ ∣ y) != 0, j = 1, . . . , k

provide candidates for θ̂(y), from which the global maximum has to be detected. Still,

the domain boundaries have to be analyzed separately. It proves to be easier to work with

logL(θ ∣ y), which is monotonic increasing in its argument and therefore unproblematic for

the maximization. Particularly in statistics distributions belonging to the exponential

family are often used for Y . In fact, these become easier to handle after taking the

logarithm.6

Example 2.5. (Estimation of θ in case of the normal distribution)

Let Y1, . . . , Yn
iid∼ N(µ,σ2), µ and σ unknown. A sample y = (y1, . . . , yn)T is drawn.

L(µ,σ2 ∣ y) = (2πσ2)−n/2 exp{− 1

2σ2

n

∑
i=1

(yi − µ)2}

⇒ log(L(µ,σ2 ∣ y)) = n
2

log 2π − n
2

logσ2 − 1

2σ2

n

∑
i=1

(yi − µ)2

Evaluation of the score functions leads to:

∂

∂µ
logL(µ,σ2 ∣ y) = 2

2σ2

n

∑
i=1

(yi − µ) != 0 ⇒ µ̂ = ȳ = 1

n

n

∑
i=1

yi

∂

∂σ2
logL(µ,σ2 ∣ y) = − n

2σ2
+ 1

2σ4

n

∑
i=1

(yi − µ)2 != 0 ⇒ σ̂2 = s2
L = ŝ2 = 1

n

n

∑
i=1

(yi − µ̂)2

Given an observed sample y, θ̂(y) = (µ̂, σ̂2) is MLE of the real parameter θ. Considering

the normal distribution, MLE Y of µ conforms with the corresponding LSE.

6cf. [2], p.217
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Remark 2.4.

Due to the fact that Ŝ2 is only asymptotically unbiased, it is quite popular to replace this

estimator by the unbiased adjusted sample variance S2:

S2 = 1
n−1

n

∑
i=1

(Yi − Y )2

The properties of the estimators Y , S2
L and S2 are discussed in lemma 2.1.

Lemma 2.1. 7

Following facts apply to the MLEs Y and S2
L:

Y = 1
n

n

∑
i=1
Yi

is an unbiased, consistent and efficient estimator of µ = E(Y ).

S2
L = 1

n

n

∑
i=1

(Yi − Y )2

is an asymptotic unbiased and consistent estimator of σ2 = VAR(Y )
and more efficient than the adjusted sample variance S2.

S2 = 1
n−1

n

∑
i=1

(Yi − Y )2

which is an unbiased and consistent estimator of σ2 = VAR(Y ).

2.2 Hypothesis Testing

The goal in this section is to deduce a general method, which provides a decision rule

whether any statements in question about a population are true or not. The actual

decision for one hypothesis is connected to a certain error probability. Again, for that

purpose it is necessary to draw a random sample from a population.

2.2.1 The Hypothesis Test

Definition 2.18. (Hypothesis tests)

Hypotheses tests are statistical methods providing a negative or positive decision about a

null hypothesis. Let F (θ) be a probability distribution with parameter vector θ ∈ Θ = Θ0⊍Θ1

and Y = (Y1, . . . , Yn)T a random sample, then the complementary hypotheses are defined

trough

H0 ∶ θ ∈ Θ0 Null hypothesis H1 ∶ θ ∈ Θ1 Alternative hypothesis

Under H0 the distribution of a suitable Test - statistic T = T (Y1, . . . , Yn)T is known. Given

that distribution, it is possible to establish the probability of the realized value of the test -

statistic. In a corresponding manner, the smaller that probability, the less realistic is the

distribution under H0, and hence the null hypothesis.

7cf. [12], p.242-251 and [2], p.233
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Example 2.6. (Testing the mean)

We consider a population with distribution N(µ,σ2), without knowing neither the true µ

nor the exact σ2. With an observed sample y = (y1, . . . , yn)T it is now possible to test:

H0 ∶ µ = µ0 for µ0 ∈ R H1 ∶ µ ≠ µ0 for µ0 ∈ R

2.2.2 Test - Statistics and its Distributions

This subsection handles with the most important test - statistics and its distributions

required for this paper.

Definition 2.19. (Chi - squared distribution)

A random variable Y is chi-squared distributed with p degrees of freedom (df) if Y has the

following density function:

fY (y) = 1
Γ(p/2)2p/2

x(p/2)−1 e−x/2, 0 < y < ∞⇔ Y ∼ χ2
p

whereas Γ(α) =
∞
∫
0

tα−1e−tdt is the complete Gamma function.

Theorem 2.4. 8

Given a random sample Y = (Y1, . . . , Yn)T of N(µ,σ2) the following facts apply to the

point estimators Y and S2:

1. Y and S2 are independent random variables

2. Y ∼ N(µ, σ2

n )

3. (n − 1)S2/σ2 ∼ χ2
n−1

Corollary 2.1.

It is possible to standardize Y

Y −µ
σ/√n ∼ N(0,1)

Proof.

Theorem 2.4 (2.) and the normal distribution’s displacement invariance in terms of con-

stants imply that the fraction is also normally distributed.

8cf. [2], p.218
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Furthermore:

� E ( Y −µ
σ/√n)

Theorem 2.1= E(Y )−µ
σ/√n

Lemma 2.1= 0

� VAR ( Y −µ
σ/√n)

Theorem 2.2= n
σ2 VAR(Y − µ) Theorem 2.2= nσ2

nσ2 = 1

Example 2.7. (Z-Test)

Suppose Yi
iid∼ N(µ,σ2) for i = 1, . . . , n, whereas σ2 is known. We compare the single mean

µ to a specified value µ0.

Hypotheses:

one-sided H0 ∶ µ ≤ µ0 H1 ∶ µ > µ0

two-sided H0 ∶ µ = µ0 H1 ∶ µ ≠ µ0

Test-statistic:

Due to corollary 2.1

Z = Y −µ
σ
√
n

∼ N(0,1) for µ = µ0

In practice population parameter σ2 is unknown and has to be estimated by S2. The con-

sequence for the distribution of Y −µ
σ/√n was primarily investigated by William Sealy Gosset

(1908) under the synonym ’Student’. He focused on the distribution of the fraction Y −µ
S/√n ,

which indicates the basis for the statistical analysis of parameter µ if σ2 is unknown.

Definition 2.20. (Student-t distribution)

A random variable T is Student-t distributed with p degrees of freedom (df), if T can be

written as

T = U√
V /p ⇔ T ∼ tp

whereas random variables U ∼ N(0,1) and V ∼ χ2
p are independent. Consequently T has

the following density function:9

fT (t) =
Γ( p+1

2
)

Γ( p
2
)

1√
pπ

1

(1+ t2
p
)(p+1)/2

t ∈ R and p > 0

9cf. [2], p.223-224
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By the reason of corollary 2.1 and theorem 2.4 (1. and 3.) the following proposition

holds:

Proposition 2.1.

Ȳ −µ
S/√n =

Ȳ −µ
σ/
√
n√

S2/σ2
≡ N(0,1)√

χ2
n−1/(n−1)

∼ tn−1

Theorem 2.5. 10

For a Student-t distributed random variable T with p degrees of freedom (df) and density

function fT (t ∣p) holds

lim
p→∞

fT (t ∣p) Ð→ 1√
2π
e−x

2/2 ⇔ Tp
p→∞Ð→ T ≡ N(0,1)

Example 2.8. (Student-t Test)

Suppose Yi
iid∼ N(µ,σ2) for i = 1, . . . , n, σ2 is unknown. We compare the mean µ with a

specified value µ0.

Hypotheses:

one-sided H0 ∶ µ ≤ µ0 H1 ∶ µ > µ0

two-sided H0 ∶ µ = µ0 H1 ∶ µ ≠ µ0

Test-statistic:

T = Y −µ
S
√
n

∼ tn−1 for µ = µ0

Likewise, it could be of interest to compare the variances of two populations just as well.

Consider two random samples X1, . . . ,Xm
iid∼ N(µX , σ2

X) and Y1, . . . , Yn
iid∼ N(µY , σ2

Y ). We

might be interested in the ratio between both population variances
σ2
X

σ2
Y

in order to compare

them. Information about this unknown quotient is provided by the ratio of the empirical

variances
S2
X

S2
Y

. By theorem 2.4 (3.) the following proposition holds:

Proposition 2.2.

S2
X/S2

Y

σ2
X/σ2

Y
= S2

X/σ2
X

S2
Y /σ2

Y

Prop≡ χ2
n−1/(n−1)

χ2
m−1/(m−1)

10cf. [2], p.258
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Definition 2.21. (Fisher - Snedecor F distribution)

A random variable F is Fisher - Snedecor distributed with p and q degrees of freedom (df)

if F can be written as

F = U/p
V /q ⇔ F ∼ Fp,q

whereas the random variable U ∼ χ2
p is independent from random variable V ∼ χ2

q. Ana-

logically a F - distributed random variable F has the following density function:

fF (x) =
Γ( p+q

2
)

Γ(p/2)Γ(q/2) (
p
q)

p/2
xp/2−1

(1+ p
2
x)(p+2)/2 0 ≤ x < ∞ and 0 ≤ p, q < ∞

Example 2.9. (Fisher-F Test)

Hypotheses:

one-sided H0 ∶ σ2
X ≤ σ2

Y H1 ∶ σ2
X > σ2

Y

two-sided H0 ∶ σ2
X = σ2

Y H1 ∶ σ2
X ≠ σ2

Y

Test-statistic:

F = S2
X

S2
Y
∼ Fn−1,m−1 under H0

A relation between the Student-t distribution and the Fisher - Snedecor F distribution is

presented by theorem 2.6.

Theorem 2.6. 11

For a Student-t distributed random variable T with p degrees of freedom (df), the following

holds

T ∼ tp⇔ T 2 ∼ F1,p

2.2.3 Decision Criterion - Critical Region K

Each consequence of a hypothesis test has the risk of a wrong decision. This risk is

measured by an ’a priori’ determined probability.

Definition 2.22. (Critical region)

The critical region K of H0 with chosen risk α (e.g.: α = 0.05) is defined over the proba-

bility for an incorrect decision against H0, which should be less or equal α.

P(T ∈K) ≤ α ∀θ ∈ Θ0

The risk α is also called type 1 error and stands for the significance level of a

hypothesis test.

11cf. [12], p.211



18 Chapter 2. Statistical Background

Decision rule:

Ð→ If the test - statistic realizes in K, reject H0 with risk α.

The probability of a correct decision regarding the alternative hypothesis is defined

through

P(T ∈K) = β(θ) ∀θ ∈ Θ1

β(θ) with unknown population parameter vector θ is called statistical power. In the

opposite way 1 − β(θ) is the probability for a wrong decision against hypothesis H1.

1 − β(θ) is denoted as type 2 error.

In a hypothesis test the risks of wrong decisions can be easily illustrated if a true parameter

of µ namely µ1 > µ0 is assumed. Hence both, the distribution of the test - statistic under

H1 and β(θ = µ1) are known.

Example 2.10. (Continuation of 2.8)

Yi
iid∼ N(µ1, σ2) for i = 1, . . . , n, σ2 is unknown.

Hypotheses:

one-sided H0 ∶ µ1 = µ0 = 0 H1 ∶ µ1 > µ0 = 0

Test-statistics:

T ∣H0 =
Y − µ0

S√
n

∼ tn−1

T ∣H1 =
Y − µ1

S√
n

∼ FT ∣H1

Figure 2.1: Decision risks of a hypothesis test
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Figure 2.1 illustrates both distributions of the test - statistic, and Type 1 - just as well

as Type 2 error. The critical region K of H0 is chosen such that P(T ∈ K) = α. Thus

we get K = (tn−1,1−α,+∞) with tn−1,1−α the (1−α) − quantile of the tn−1 distribution (i.e.:
t1−α

∫
−∞

fT (t) dt = 1 − α).12

Probability reject H0 confirm H0

true β(µ1) 1 − α
false α 1 − β(µ1)

Table 2.1: Decision risks of a hypothesis test

Table 2.1 recapitulates all decision errors.

2.2.4 Decision Criterion / P-value Approach

The main disadvantage of the critical region K is that it does not tell the decision maker

whether the realized value of the test - statistic has realized near to the border of K or

far away from the critical region. The problem arises from the fact that the critical region

does not take probabilistic weighting into account.

This can be avoided through the p-value approach, which is offered in several statistic

software packages. Another big advantage is provided by the fact that the p-value gives

the exact significance level, where H0 is rejected. Hence it is not necessary to determine

a significance level α in advance.

Definition 2.23. (P-value)

The p-value is the smallest level of significance that would lead to rejection of the null

hypothesis. Dependent on whether the testing is carried out one-sided or two-sided, the

p-value is specified in the following way:

One-sided alternative:

p = p(y1, . . . , yn) ∶= P(T > t) = 1 − FT ∣H0
(t)

Decision rule:

Reject H0, if p ≤ α

Figure 2.2 illustrates the situation.

12cf. subsection 2.9.1
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Figure 2.2: P-value one-sided

Two-sided alternative:

Consider an observed sample provides a test value t = t(y1, . . . , yn)T which realizes

either left or right of tn−1,0.5. Then

t < t0.5 ∶ p
2 = FT ∣H0

(t) ⇒ p = 2FT ∣H0
(t) = 2

t

∫
−∞

fT ∣H0
(t)dt

t ≥ t0.5 ∶ p
2 = 1 − FT ∣H0

(t) ⇒ p = 2(1 − FT ∣H0
(t)) = 2(1 −

t

∫
−∞

fT ∣H0
(t)dt)

Choose p =min{2FT ∣H0
(t),2(1 − FT ∣H0

(t))}

Decision rule:

Reject H0, if p ≤ α

Figure 2.3: P-value two-sided

Figure 2.3 visualizes the situation considering the normal distribution.
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Example 2.11. (Functionality deviations of throttle valves)

In Germany an engine device factory claims that their throttle valve production series

’tv2011’ operates in the mean with no functionality deviation y (i.e. 0% ECU signal

deviation from optimal functionality). During a production period it has turned out that

deviations behave like normal distributed random variables.

AVL GmbH Graz obtains the contract to inspect 200 devices of this series in order to

affirm the factory’s deviation specification. Regarding that series of experiments AVL

GmbH Graz eventually detected an average deviation of ȳ = 0.08124% ECU signal and an

empirical standard deviation s = 0.4899% ECU signal.

From a statistical point of view it would be reasonable to carry out a two-sided Student-t

test with α = 0.05:

Hypotheses:

H0 ∶ µ = 0 H1 ∶ µ ≠ 0

Test-statistic:

T = Y −0
S

√

200

∼ t199 for µ = 0

By reason of the realized test statistic t = 2.3451, which is revealed

in K = (−∞,−1.9719
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
−t199,α/2

) ⊍ (+1.9719
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
t199,1−α/2

,+∞), the null hypothesis has to be rejected.

Moreover, by the result of the p-value p = 0.02 ≤ 0.05 = α the type 1 error, or respectively

the significance level could be scaled down to α = 0.02. Thus the factory’s declaration about

the throttle valve functionality deviation can be refused with a probability of 98%.

2.3 Regression Analysis

Lemma 2.1 exposes that Y is an unbiased, a consistent and an efficient estimator of E(Y ).
That means if a sample of one population is drawn, the mean of its observations is ’quasi

the best’ estimator of the expected value E(Y ) of Y .

This section deals with the problematic whether the estimation via arithmetic mean can

be improved or not. Indeed this question can be affirmed, as long as observations out of

other correlated populations are made.
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2.3.1 Correlation Analysis

In statistics an important point is to analyze the interrelationship between two or more

random variables. It might be of interest to resolve the coherence between NOx and Soot

measurements at an engine test bench for instance.

Definition 2.24. (Covariance)

Let X ∼ FX and Y ∼ FY , then the covariance is defined through

COV (X,Y ) =
+∞
∫
−∞

+∞
∫
−∞

(x −E(X))(y −E(Y ))fX,Y (x, y)dxdy

whereas fX,Y (x, y) is the density function of the two dimensional random variable (X,Y).

The algebraic sign of the covariance reflects whether the relationship between both random

variables is positive or negative. Considering NOx and Soot, a quite possible outcome

would be a negative covariance between both random variables.

Measuring this relationship requires the calculation of the correlation coefficient.

Definition 2.25. (Correlation coefficient)

X ∼ FX and Y ∼ FY , then the correlation coefficient

ρXY = σXY
σXσY

= COV (X,Y )√
V AR(X)V AR(Y ) with −1 ≤ ρXY ≤ +1

measures both, the kind but also the strength of the coherence between the two random

variables. However, in practice the correlation coefficient is not computable and has to be

estimated by the empirical correlation coefficient.

Definition 2.26. (Empirical correlation coefficient)

Consider the observation tuples (xi, yi) of the two random samples Xi
iid∼ FX and Yi

iid∼ FY

for 1 ≤ i ≤ n. Then the empirical correlation coefficient is defined by

r(X,Y ) = sXY
sXsY

=
n

∑
i=1

(xi−x)(yi−y)
√

n

∑
i=1

(xi−x)2
n

∑
i=1

(yi−y)2

with −1 ≤ r(X,Y ) ≤ +1

whereas sXY is the adjusted empirical covariance, which is given by

sXY =
n

∑
i=1

(xi−x)(yi−y)

n−1

Remark 2.5.

The result ∣r(X,Y )∣ ≤ 1 follows directly from the Schwarz’ Inequality.13

13cf. [3], pp.122
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Unlike the correlation analysis, the regression analysis, whose name originally arise in the

fields of biology, where it was coined by Francis Galton, a cousin of Charles Darwin, deals

with the functional relationship between random variables. Thus we gain the possibility to

estimate realizations from one random variable additionally by observations of the other

one.

2.3.2 Simple Linear Regression

We consider random variables Xi ∼ FXi and Yi
ind∼ N(E(Yi), σ2), 1 ≤ i ≤ n. The target is

to predict Y out of observations made in other populations FXi , which are recorded in

the so called predictor X. In this regard the following model is shown:

Y = f(x) + ε (2.1)

whereas f is a linear function and the random variable ε ∼ N(0, σ2
ε ) is called random

error.

A general linear function would be

f(x) = kx + d with d, k, x ∈ R (2.2)

We replace d with β0 and k with β1. Following equation (2.1) and equation (2.3) we get

Yi = β0 + β1xi + εi, for 1 ≤ i ≤ n (2.3)

whereas

� intercept parameter β0 ∈ R is unknown

� slope parameter β1 ∈ R is unknown

� random errors εi
iid∼ N(0, σ2

ε ) are unknown

� variance σ2 of Y is unknown

Yi is a function of the random variable εi for all 1 ≤ i ≤ n. We use the linearity of the

mean and get:

E(Yi) = µi = β0 + β1xi +E(εi)
´¹¸¹¶
=0

1 ≤ i ≤ n (2.4)

Following equation (2.4) we get the mean of the random vector Y as µ = (µ1, . . . , µn)T.

Parameters β0 and β1 are unknown and have to be estimated through β̂0 and β̂1 from the

data by a least squares estimation for instance.14

14cf. subsection 2.4.2
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Finally we get additionally to Y another estimation of E(Y ), the so called regression

function

Ê(Y ) = µ̂ = β̂0 + β̂1x (2.5)

whereas the estimated parameters are given by:

β̂0 = Y − β̂1x

β̂1 =

n

∑
i=1

(xi − x)(Yi − Y )
n

∑
i=1

(xi − x)2

= s
2
xY

s2
x

Example 2.12. (Prediction of mass flow NOx)

AVL GmbH Graz performs a test run on a diesel engine and observes y = Mass Flow NOx

and x = Duration of Current data at n = 245 measuring points. AVL GmbH Graz targets

a prediction of Mass Flow NOx in dependency of Duration of Current over the regression

approach, which delivers an estimation of the mean E(Y ) of Mass Flow NOx in the end.

In the process the following function was obtained:

µNOx = −31.556 + 170.878xduc

Figure 2.4: Simple linear regression

Assuming that Duration of Current lasts for exactly one ms, the Mass Flow NOx value

would be expected to be about 139 in g/h.
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2.3.3 Multiple Linear Regression

Analogously it is possible to predict the mean of random variable Yi
ind∼ N(E(Yi), σ2) not

only by one but also by k ≥ 2 predictors. Pretending n experiments, we view the model

as:

Y =Xnβ+ε =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 . . . xnk

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

β1

β2

⋮
βk

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

ε1

ε2

⋮
εn

⎞
⎟⎟⎟⎟⎟⎟
⎠

= β11+β2x2+β3x3+⋅ ⋅ ⋅+βkxk+ε (2.6)

whereas

� Xn is called model - or design matrix

� predictor variables xj = (x1j, . . . , xnj)T are linearly independent ∀1 ≤ j ≤ n

� parameter vector β = (β1, . . . , βk)T with k ≤ n is unknown

� ε = (ε1, . . . , εn)T model error is unknown with ε
iid∼ N(0, σ2In), In identity matrix

� variance σ2 of random variable Y is unknown

After estimating parameter vector β from the data we get a prediction rule of mean vector

µ = E(Y ).

Regression hypercube:

µ̂ = β̂11 + β̂2x2 + β̂3x3 + ⋅ ⋅ ⋅ + β̂kxk (2.7)

whereas the parameter estimating MLEs β̂1, . . . , β̂k are computed over:

β̂ = (XTX)−1
XTy

2.4 Linear Model Theory

The goal of this section is to generalize the regression approach and to find its mathemat-

ical roots. Following assumptions are made:

� Yi
ind∼ N(µi, σ2) ∀1 ≤ i ≤ n

� Random vector Y = (Y1, . . . , Yn)T and µ = (µ1, . . . , µn)T are element of the

n − dimensional real vector space Rn.
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Note: In the general scheme, random variables Yi ∈ R ∀i do not need to be normally dis-

tributed. However lots of repeated experiments of one random variable Yi for

i ∈ {1, . . . , n} constant, have to follow a normal distribution with mean E(Yi).

Example 2.13. (Normal distribution over the mean structure)

AVL GmbH Graz instructs one of his statisticians to built up a functional relationship

between y = NOx outcome in g/kWh and x = Main Injection Timing measured in degree

crank angle respecting a C1 exhaust emission standard test.

Therefore a regression model is constructed, which estimates µ = E(NOx) in dependency

of Main Injection Timing. After previous assumptions, true observation values have to

scatter normally distributed around the estimation of µ given a fixed setting of Main

Injection Timing. Figure 2.5 illustrates the desired situation.

Figure 2.5: Distribution assumption - Regression analysis

In practice we assume that costs increase with the amount of experiments. For that rea-

son the statistician uses design of experiments (DOEs), which purport a proportionally

little number of different experimental points providing as much information as possible.

Before starting into the realm of constructing DOEs, some theoretical background con-

cerning Linear Algebra has to be established.

2.4.1 Linear Subspace and Orthogonal Projections

Definition 2.27. (Linear subspace)

A sub - vector space L ⊆ Rn is called linear subspace, if

1. 0 ∈ L

2. ∀x1, x2 ∈ L⇒ linear combination ax1 + bx2 ∈ L ∀a, b ∈ R
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Example 2.14. (Linear subset)

R2 is a linear subset of R3.

Definition 2.28. (Linear model)

A linear model with dimension k is a hypothesis H0 concerning the mean vector µ ∈ Rn

H0 ∶ µ ∈ L

whereas L is a linear subspace of Rn with dimension k.

Hypothesis H0 claims that the mean vector µ consists of only k different component

values.

Definition 2.29. (Inner product)

The inner product or scalar product of two vectors x, y ∈ Rn is defined by

x ⋅ y = xTy = yTx =
n

∑
i=1
xiyi

Definition 2.30. (Euclidean norm)

The Euclidean norm ∥ ⋅ ∥2 provides the length of a vector x ∈ Rn and is denoted by

∥x∥2 =
√
x ⋅ x =

√
n

∑
i=1
x2
i

Definition 2.31. (Basis)

A basis of a linear subspace L with dimension k is a set of vector elements {x1, . . . , xk}
in L, which satisfies

1. y ∈ L⇒ ∃β1, ..., βk with y =
k

∑
j=1
xjβj =Xβ

⇒ y ∈ L is linear combination of the basis vectors x1, . . . , xk ∈ Rn

2. The vectors x1, . . . , xk are linearly independent if:

a1x1 + ⋅ ⋅ ⋅ + akxk = 0⇒ a1 = ⋅ ⋅ ⋅ = ak = 0

The set {x1, . . . , xk} is called orthogonal basis (OGB)

3. If length ∥xi∥2
2 =

√
x2

1i + ⋅ ⋅ ⋅ + x2
ni = 1 ∀1 ≤ i ≤ k then {x1, . . . , xn} is called ortho-

normal basis (ONB)
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Example 2.15. (Simple linear regression)

Consider the regression model

µi = β1 + β2xi for 1 ≤ i ≤ n

with observed values x1, . . . , xn and with unknown parameters β1, β2. Single rows µi merged

to a vector lead to

E(Y ) = µ = β11 + β2x

with 1 = (1, . . . ,1)T and x = (x1, . . . , xn)T . Following that µ is a linear combination of the

vectors 1 and x with unknown parameters β1, β2 ∈ R.

Lemma 2.2.

Let the set {x1, . . . , xk} be a basis of the linear model L. Then the hypothesis H0 ∶ µ ∈ L
is uniquely displayed through

µ =
k

∑
i=1
xjβj =Xβ

with unknown parameter vector β = (β1, . . . , βk)T and basis vectors x1, . . . , xk embraced to

the so called model- or design matrix X:

X =Xn×k = (xT1 , . . . , xTk ) =
⎛
⎜⎜⎜
⎝

x11 . . . x1k

⋮ ⋱ ⋮
xn1 . . . xnk

⎞
⎟⎟⎟
⎠

Assuming Yi
ind∼ N(µi, σ2) may lead to an affirmation of H0: µ = (µ1, . . . , µn)T ∈ L, whereas

L linear subspace of Rn with dimension k. Given a basis of L, µ ∈ L is representable over

a linear combination of k basis vectors.

Considering the theory of regression that is, E(Y ) is the sum of k − 1 different parame-

terized mutually exclusive indicator functions and one constant.

To continue we take a closer look on the properties of a linear model:

Definition 2.32. (Orthogonal projection)

Given the linear subspace L of Rn, there is always a unique point x in L, whose vector

(y − x)T is orthogonal to every other vector z in L.

For y ∈ Rn⇒ ∃̂x ∈ L with (y − x)T ⋅ z = 0⇔ (y − x)T ⊥ z ∀z ∈ L

The point x = pL(y) ∈ L is called orthogonal projection from y onto L.
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Example 2.16. (Orthogonal projection)

R2 is linear subspace of R3. For y ∈ R3 the orthogonal projection of y is given by x =
pR2(y) ∈ R2 (i.e. every vector element of R2 is orthogonal to the vector (y − x)T ∈ R3).

Figure 2.6: Orthogonal projection

Lemma 2.3. 15

� Following the theorem of Pythagoras x = pL(y) is the unique point in L, which

minimizes the squared sum of errors between drawn observations and unknown mean

µ.

f(a) = ∥y − a∥2
2 for a ∈ L and y ∈ Rn

� If {e1, . . . , ek} orthogonal basis of L then pL(y) is received via

pL(y) =
k

∑
j=1

ej ⋅y
∥ej∥2

2
ej

It is possible to transform each basis into an orthogonal basis via the Gram-Schmidt-

orthogonalization procedure16.

Now we want to point out the orthogonal projection with the model matrix X. Consider

{x1, . . . , xk} is a basis of the linear model L. We already know if E(Y ) = µ ∈ L there is the

unique form:

µ =
k

∑
i=1
xjβj =Xβ

15cf. [10], p.28
16cf. [5], p.296
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Parameter vector β is unknown and has to be estimated by its MSE, which is achieved

by minimizing the squared sum of deviations from the mean µ:

⇒min
µ

∥y − µ∥2
2 = min

β
∥y −Xβ∥2

2

∥y −Xβ∥2
2 = (y −Xβ)T (y −Xβ)
= yTy − 2βTXTy + βTXTXβ

⇒ ∂

∂β
f(β) = −2XTy + 2XTXβ

!= 0

XTXβ̂ =XTy

Columns of X are basis of L ⇒ columns of X are linearly independent ⇒ Inverse of

(XTX) exists:

⇒ β̂ = (XTX)−1XTy ⇒ µ̂ =X(XTX)−1XTy

Lemma 2.3

³·µ= pL(y)

2.4.2 Projection Matrix H

Definition 2.33. (Hat- or projection matrix H)

Let X be a model matrix with k columns then

X(XTX)−1XT ∶=H

is embraced to a single matrix, the hat- or projection matrix.

Altogether we have

µ̂ = pL(y) =Xβ̂ =X

β̂

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(XTX)−1XTy =Hy

Coefficients hij for 1 ≤ i, j ≤ n play a major role in section 2.9 residual analysis.

2.4.3 Distribution of the Estimators

Theorem 2.7. 17

Let X ∼ N(µx, σ2
X) and Y ∼ N(µY , σ2

Y ) be two normally distributed random variables.

Then the sum of both random variables is also normally distributed with the following

parameters:

X + Y ∼ N(µX + µY , σ2
X + σ2

Y )
17cf. [12], p.202
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Theorem 2.8. 18

Let X1, . . . ,Xn be normally distributed random variables with Xi ∼ N(µi, σ2
i ) for 1 ≤ i ≤ n

and a1, . . . , an and b1, . . . , bn are fixed constants. Then it holds:

Z =
n

∑
i=1

(aiXi + bi) ∼ N (
n

∑
i=1

(aiµi + bi),
n

∑
i=1
a2
iσ

2
i )

That is, a linear combination of normal distributed random variables remains still nor-

mally distributed.

Slope parameter vector β̂ is a linear combination of the normally distributed random

variable Y :

⇒ β̂ ∼ N(E(β̂),VAR(β̂))

whereas

E(β̂) = E((XTX)−1XTY ) = (XTX)−1XTE(Y ) = (XTX)−1XTXβ = β

⇒ β̂ is a unbiased MSE

VAR(β̂) = VAR((XTX)−1XTY ) = (XTX)−1XT VAR(Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ2In

X(XTX)−1 = σ2(XTX)−1

Given the normally distributed β̂ one may measure the significance of a single predictor j

of a linear model µ̂ =Xβ̂ for j = 2, . . . , k given the existence of all other predictors through

a t-test and the p-value approach:

Hypotheses:

H0: βj = 0 for j = 2, . . . , k

Test statistic:

T = β̂j−βj
S
√
vjj

H0∼ tn−k+1 for vjj j − th diagonal element of (XTX)−1

If H0 is not rejected, then predictor j has no significant relevance for the estimation of µ

and can be removed from the examined model.

The orthogonal projection µ̂ is a linear combination of the normally distributed random

variable Y :

⇒ µ̂ ∼ N(E(µ̂),VAR(µ̂))
whereas

E(µ̂) =X E(β̂) =Xβ = µ and VAR(µ̂) =X VAR(β̂)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ2(XTX)−1

XT = σ2H

18cf. [2], p.184
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The prediction error, or respectively the residual vector r = y − µ̂ is a sum of two

normally distributed random variables :

⇒ r ∼ N(E(r),VAR(r))
whereas

E(r) = (I −H)E(Y ) = (I −H)Xβ = 0

VAR(r) = (I −H)VAR(Y )(I −H) = σ2(I −H)

Definition 2.34. (Standardized residuals)

For reasons of comparability we construct the standardized residual vector rstd

rstd = r−0

σ̂
√
I−H

Standardized residuals are often constructed to proof the claimed homoscedasticity in

terms of the regression (cf. section 2.9.2).

2.4.4 Maximum-Likelihood-Estimation and Likelihood-Ratio-Test

We consider a linear model L and Yi
ind∼ N(µi, σ2) for 1 ≤ i ≤ n with µi and σ2 unknown.

The following theorem holds for the MLEs of µ = (µ1, . . . , µn)T and σ2.

Theorem 2.9. 19

Regarding the linear model L, MLEs of µ and σ2 exist if and only if y ∉ L. They are given

by:

� µ̂ = pL(y)

� σ̂2 = 1
n∥y − µ̂∥2

2

� with maximal Likelihood function value L(µ̂, σ̂2) = 1
(2πσ̂2)n/2e−n/2

Remark 2.6.

It proves to be more convenient to work with the unbiased estimator (adjusted sample

variance) for σ2.

σ̃2 = 1
n−k∥y − µ̂∥2

2

To obtain a decision for a linear model L2 it is necessary to assume another linear subspace

L1 of Rn with L2 ⊂ L1 and dimL2 < dimL1. Now we face the hypotheses:

H0: µ ∈ L2 against H1: µ ∈ L1/L2

19cf. [10], p.29
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The Likelihood-Ratio-Test-Statistic is given by

R(y) = L(µ̂1,σ̂1
2)

L(µ̂2,σ̂2
2)

with (µ̂i, σ̂i2) MLEs under Li for i = 1,2.

Because L2 ⊂ L1 it follows that L(µ̂1, σ̂1
2) ≥ L(µ̂2, σ̂2

2) and therefore 1 ≤ R(y) < ∞
with probability 1. This is due to the fact that the Likelihood function increases with

decreasing distance ∥y − µ∥2, and it holds, that the higher the dimension of L the lower

the distance between y and µ.

H0 is inadequate compared to H1, if L(µ̂1, σ̂1
2) ≫ L(µ̂2, σ̂2

2). Following that the critical

area K = (c,∞) is defined over the desired probability α of a wrong decision against the

null hypothesis:

PL2(R(Y ) > c) = α for µ ∈ L2 and α ∈ (0,1)

With theorem 2.9

R(y) = ( σ̂1
2

σ̂2
2)

−n/2
= ( ∥y−µ̂1∥2

2

∥y−µ̂2∥2
2
)
−n/2

With pL2(y) ∶= p2(y) and pL1(y) ∶= p1(y) the F statistic is given by:

F (y) = ∥µ̂1−µ̂2∥2
2/(k1−k2)

∥y−µ̂1∥2
2/(n−k1) = ∥p1(y)−p2(y)∥2

2/(k1−k2)
∥y−p1(y)∥2

2/(n−k1)

The following relationship between R(y) and F (y) holds:

Theorem 2.10. 20

The Likelihood ratio R(y) is monotonically increasing in F (y) with

R(y) = (1 + const × F (y))n/2

Theorem 2.11. 21

1. Given H0 (i.e. µ ∈ L2) random variable F (Y ) follows a Fk1−k2,n−k1 distribution

2. µ̂2 = p2(Y ) and F (Y ) are independent random variables

20cf. [10], p.33,34
21cf. [10], p.42,43
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2.5 Simple Analysis of Variance (ANOVA)

In this section the relationship between one dependent random variable Y and one factor

A is analyzed. For this purpose ni ∈ N realizations yi are observed for i = 1, . . . , r at r

determined factor levels of A.

Model:

Yij
ind∼ N(µi, σ2), i = 1, . . . , r; j = 1, . . . , ni;

r

∑
i=1
ni = n

whereas

E(Y ) = µ = (
µ1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
µ11, . . . , µ1n1 , . . . ,

µr

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
µr1, . . . , µrnr)T

Thus the model of Y is represented by a linear subspace L1 with OGB {e1, . . . , er}, whereas

the basis vectors ei = (0, . . . ,0,1, . . . ,1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

ni

,0, . . .0)T, i = 1, . . . , r, are orthogonal.

Following theorem 2.9, the MLE µ̂ is obtained through the orthogonal projection from Y

onto L1:

µ̂ = p1(Y ) =
r

∑
i=1

ei⋅Y
∥ei∥2

2
ei =

r

∑
i=1

Yi.
ni
ei =

r

∑
i=1
Y i.ei = (Y 1., . . . , Y 1., . . . , Y r., . . . , Y r.)T

with group mean

Y i. = 1
ni

ni

∑
j=1
Yij, i = 1, . . . , r

2.5.1 Test between two Linear Models

Now it is possible to test two linear models against each other.

H0: µ1 = µ2 = ⋅ ⋅ ⋅ = µr ⇒ µ ∈ L2 with dimL2 = 1

H1: ∃i, l ≤ r ∶ µi ≠ µl ⇒ µ ∈ L1 with dimL1 = r − 1

Considering hypothesis H0 the basis of L2 is given by OGB = {1}. Applying theorem 2.9

we receive the total mean as the estimator of µ.

µ̂ = p2(Y ) ⋅ 1 = Y .. ⋅ 1 = 1
n

r

∑
i=1

ni

∑
j=1
Yij

For the F statistic we get

F (Y ) = ∥p1(Y )−p2(Y )∥2
2/(r−1)

σ̃1
2 ∼ Fr−1,n−r

and consider the following square sums.
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SSA: Sum of squares between samples

with SSA = ∥p1(Y ) − p2(Y )∥2
2 =

r

∑
i=1

ni

∑
j=1

(Y i. − Y ..)2 =
r

∑
i=1
ni(Y i. − Y ..)2

SSA measures the improvement if we replace estimator p2(Y ) by p1(Y ).

SSR: Sum of squares within samples

with SSR = (n − r)σ̃1
2 = ∥Y − p1(Y )∥2

2 =
r

∑
i=1

ni

∑
j=1

(Yij − Y i.)2

SSR measures the prediction error.

SST : Total sum of squares

with SST = ∥Y − p2(Y )∥2
2 =

r

∑
i=1

ni

∑
j=1

(Yij − Y ..)2

SST measures the deviation of Y from the total mean.

The successive progression of this test procedure - increasing, or respectively decreasing

the dimension of the alternative hypothesis - is also called ANOVA, which stands for

’Analysis of variance’. Thereby two kinds of ANOVA routines are commonly used:

� Forward ANOVA: Initiate with the lowest possible dimension for H1 and increase

with it successively.

� Backward ANOVA: Initiate with the highest possible dimension for H1 and de-

crease with it successively.

Theorem 2.12. Subsequent properties apply if Yij
ind∼ N(µi, σ2):

1. SSR ∼ σ2χ2
n−r

2. Under H0: SSA ∼ σ2χ2
r−1 and SST ∼ σ2χ2

n−1

3. SSR and SSA are independent random variables

4. SST = SSA + SSR

5. E(MSR) = E(SSRn−r ) = E(σ̃2) = σ2

6. Given H0

F = MSA
MSR ∼ Fr−1,n−r

p-value: p = PF (F > f)

critical area: K = (Fr−1,n−r;1−α)

neglect H0 either f ∈K or p ≤ α
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2.5.2 Re-Parameterization

So far, the model was parameterized with

µij = µi, j = 1, . . . , ni

At the same time it is possible to use the parameterization

µij = µ0 + αi, j = 1, . . . , ni

whereas αi have to satisfy orthogonality constraints. Pretending a linear model with

dimension 1 we get:

H0: µi = µ, i = 1, . . . , r ⇔ H⋆
0 : αi = 0, i = 1, . . . , r

Assuming αi = µi − µ0 we get for µ

µ =
r

∑
i=1

eiµi =
r

∑
i=1

ei(µi − µ0) +
r

∑
i=1

eiµ0 =
r

∑
i=1

eiαi + µ01 (2.8)

The characteristic of a hypothesis test requires disjoint hypotheses. For that reason

orthogonality is claimed

(
r

∑
i=1
eiαi) ⋅ 1 = 0 or (

r

∑
i=1
ei1) ⋅ αi = 0

which can be reduced to the following term:

r

∑
i=1

niαi = 0 (2.9)

The MLE of (2.8) satisfying constraint (2.9) is given by

α̂i = µ̂i − µ̂0 = Y i. − Y ..

2.5.3 Relationship to Multiple Linear Regression

Summing up the following model is considered

Yij = µ0 + αi + εij, i = 1, . . . , r; j = 1, . . . , ni;
r

∑
i=1
ni = n;

r

∑
i=1
niαi = 0

whereas εij
iid∼ N(0, σ2) are unknown model random errors. In matrix notation we get:

Y = µ + ε =Xβ + ε with Xn×r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 . . . 0

⋮ ⋱ ⋮ ⋮
1 0 . . . 0

⋮ ⋱ ⋮ ⋮
0 0 . . . 1

⋮ ⋱ ⋮ ⋮
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Moreover the LSE of parameter vector β = (β1, . . . , βr)T = (µ0+α1, . . . , µ0+αr)T is denoted

as

β̂ = (Y 1., . . . , Y r.)T

Through a linear re-parameterization we get the regression model

Yij = β⋆0 + β⋆1x⋆1j + ⋅ ⋅ ⋅ + β⋆r−1x
⋆
(r−1)j + εij, i = 1, . . . , r and j = 1, . . . , ni

with x⋆ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if observation j is in group i

0 else

or in matrix notation

Y =X⋆β⋆ + ε with X⋆
n×r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 . . . 1

⋮ ⋱ ⋮ ⋮
1 0 . . . 1

⋮ ⋱ ⋮ ⋮
0 0 . . . 1

⋮ ⋱ ⋮ ⋮
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, i.e. x⋆ij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xij 1 ≤ j ≤ r − 1

1 j = r

and LSE of β⋆ is

β̂⋆ = (β̂⋆0 , . . . , β̂⋆(r−1))T = (β̂r, β̂1 − β̂r, . . . , β̂(r−1) − β̂r)T

In this case we have a simple linear regression model with one factor as predictor variable.

Thus on the one hand the slope of the regression function is zero, on the other hand the

regression function has a different constant height for each factor level in the predictor.

Example 2.17. (Simple factorial regression function)

AVL GmbH Graz analyzes the exhaust emission outcome of a diesel engine over the quan-

tity Soot (in g/kWh). In the process the engine should work off a DOE providing five

different levels of EGR Valve Position, whereas the number of measurements is chosen

randomly at each level.

Eventually the target is to resolve whether the EGR Valve Position has a significant effect

on the soot outcome for that engine from the statistical point of view. Therefore two linear

models are tested against each other over a forward-ANOVA-procedure (i.e. started with

the homogeneity hypothesis).

Hypotheses:

H0: µ1 = ⋅ ⋅ ⋅ = µ5 ⇒ µ ∈ L2 with dimL2 = 1

H1: µi ≠ µj ∀i ≠ j and i, j = 1,2,3,4,5⇒ µ ∈ L1 with dimL1 = 4
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ANOVA table:

Source df Square sum Mean square sum F-value p-value

EGR Valve Position 4 0.0259 (SSA) 0.0065 (MSA) 83.1150 < 2.2e − 16

Error 42 0.0033 (SSR) 0.0001 (MSR)

Total 46 0.0291 (SST )

Table 2.2: ANOVA table factorial DOE

Hypothesis H0 has to be rejected as a result of the extreme small p-value in table 2.2. It

can be concluded that EGR Valve Position has a significant effect on Soot outcome. Hence

a regression model of Soot predicted by EGR Valve Position would be adequate.

Figure 2.7 reveals the corresponding regression model:

Figure 2.7: Regression function - Factorial DOE

A disadvantage of this estimation method is that extrapolation is not possible. No state-

ment exists of the Soot outcome when the EGR Valve Position is set to the 35% ECU

signal. This problem is remedied in section 2.7.

However, we have to deal with interactions between the predictor variables beforehand.

This becomes effective, when more than one predictor quantity is considered and we have

to worry about how these predictor quantities effect each other.
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2.6 2 Factorial DOEs

Here the task is to evaluate the relationship between a dependent random variable Y

and two factors A and B, whereas A and B are assumed on finite possible realizations.

Thus we observe Y in dependency of factor levels ai, 1 ≤ i ≤ r, of A and factor levels

bj, 1 ≤ j ≤ s, of B.

Example 2.18. (Battery design)22

� Variable Y: Life duration in hours for a battery design

� Variable A: Type of material with factor levels a1 = 1, a2 = 2 and a3 = 3

� Variable B: Outdoor temperature with factor levels b1 = −9○, b2 = 21○ and b3 = 52○

� t = 4 observations of Y at each factor level combination

� n = rst = 3 × 3 × 4 = 36 observations yijk

Life duration (in h) for a battery design

material
temperature in ○Celsius

mean
−9○ 21○ 52○

1
130 155

74 180

34 40

80 75

20 70

82 58 ȳ1..

ȳ1j. 134.75 57.25 57.50 83.16

2
150 188

159 126

136 122

106 115

25 70

58 45 ȳ2..

ȳ2j. 155.75 119.75 49.50 108.33

3
138 110

168 160

174 120

150 139

96 104

82 60 ȳ3..

ȳ3j. 144 145.75 85.50 125.083

ȳ.j. 144.83 107.583 64.16 ȳ... = 105.5278

Table 2.3: Example 2 factorial DOE (Battery design)

Model:

Yijk
ind∼ N(µij, σ2), i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t; n = rst

whereas the fixed means µij are unknown. This model for Y is represented by a linear

subspace L0 with OGB {e11, . . . , ers<n}, whereas eij = (0, . . . ,0,1, . . . ,1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

t

,0, . . .0)T. Hence,

E(Y ) = µ = (
µ11

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
µ111, . . . , µ11t, . . . ,

µrs

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
µrs1, . . . , µrst)T

22cf. [9], p.165
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Following theorem 2.9 the MLE µ̂ is obtained through the orthogonal projection from Y onto L0:

µ̂ =
r

∑
i=1

s

∑
j=1

eij ⋅Y
∥eij∥2

2
eij =

r

∑
i=1

s

∑
j=1

Yij.
t eij =

r

∑
i=1

s

∑
j=1
Y ij.eij = (Y 11., . . . , Y 11., . . . , Y rs., . . . , Y rs.)T

Y ij. is the mean of all observations when factors A and B are on level i = 1, . . . , r, and

respectively level on j = 1, . . . , s. Altogether the following linear models are handled:

H0: any µij ∀i ∀j ⇒ µ ∈ L0 with dimL0 = n − rs

H1: µij = αi + βj i = 1, . . . , r; j = 1, . . . , s⇒ µ ∈ L1 with dimL1 = (r − 1)(s − 1)

H2: µij = αi i = 1, . . . , r; ⇒ µ ∈ L2 with dimL2 = (r − 1)

H3: µij = βj j = 1, . . . , s ⇒ µ ∈ L3 with dimL3 = (s − 1)

H4: µij = µ0 ∀i ∀j ⇒ µ ∈ L4 with dimL4 = 1

The to following orthogonality constraints are respected:

r

∑
i=1
γij = 0 ∀j;

s

∑
j=1
γij = 0 ∀i;

r

∑
i=1
αi =

s

∑
j=1
βj = 0

Hence subsequent means are distinguished:

Cell mean Y ij. = 1
t

t

∑
k=1
Yijk for i = 1, . . . , r; j = 1, . . . , s

Row mean Y i.. = 1
st

s

∑
j=1

t

∑
k=1
Yijk for i = 1, . . . , r

Column mean Y .j. = 1
rt

r

∑
i=1

t

∑
k=1
Yijk for j = 1, . . . , s

Total mean Y ... = 1
rst

r

∑
i=1

s

∑
j=1

t

∑
k=1
Yijk

MLEs of the previously listed linear models are calculated through the corresponding

orthogonal projections.

� H0 is a factorial model respecting an interaction between factor A and B

p0(Y )ijk = Y ij. and σ̃0
2 = 1

n−rs
r

∑
i=1

s

∑
j=1

t

∑
k=1

(Yijk − Y ij.)2

� H1 is a factorial model respecting factor A and B but no kind of interaction

p1(Y )ijk = Y i.. + Y .j. − Y ... and σ̃1
2 = 1

n−r−s+1

r

∑
i=1

s

∑
j=1

t

∑
k=1

(Yijk − Y i.. − Y .j. + Y ...)2

� H2 is a factorial model respecting only factor A

p2(Y )ijk = Y i.. and σ̃2
2 = 1

n−r
r

∑
i=1

s

∑
j=1

t

∑
k=1

(Yijk − Y i..)2
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� H3 is a factorial model respecting only factor B

p3(Y )ijk = Y .j. and σ̃3
2 = 1

n−s
r

∑
i=1

s

∑
j=1

t

∑
k=1

(Yijk − Y .j.)2

� H4 is the homogeneity hypothesis

p4(Y )ijk = Y ..j. and σ̃4
2 = 1

n−1

r

∑
i=1

s

∑
j=1

t

∑
k=1

(Yijk − Y ...)2

Theorem of Pythagoras implies the subsequent square sum decomposition:

∥Y − p4(Y )∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SST

= ∥p2(Y ) − p4(Y )∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SSA

+∥p3(Y ) − p4(Y )∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SSB

+∥p0(Y ) − p1(Y )∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SS(AB)

+∥Y − p0(Y )∥2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SSR

The next step shows a backward-ANOVA-procedure starting with the most complex

model:

1. H1 against H0 (Testing the interaction term)

F (Y ) = ∥p0(Y )−p1(Y )∥2
2/((r−1)(s−1))

σ̃0
2

H1∼ F(r−1)(s−1),rs(t−1)

break if H1 has to be rejected else continue

2. H2 against H0 (Testing factor B)

F (Y ) = ∥p3(Y )−p4(Y )∥2
2/((s−1)

σ̃0
2

H2∼ F(s−1),rs(t−1)

3. H3 against H0 (Testing factor A)

F (Y ) = ∥p2(Y )−p4(Y )∥2
2/((r−1)

σ̃0
2

H3∼ F(r−1),rs(t−1)

Theorem 2.13 embraces the last results.

Theorem 2.13. 23

For Yijk
ind∼ N(µij, σ2) = N(µ0 + αi + βj + γij, σ2) the following properties hold:

1. SSR ∼ σ2χ2
rs(t−1) and E(MSR) = E( SSR

rs(t−1)) = E(σ̃2) = σ2

2. SSA, SSB and SSA + SSB stochastically independent from SS(AB)

3. SSA, SSB and SS(AB) stochastically independent from SSR

4. For H1 against H0: SS(AB)
H1∼ σ2χ2

(r−1)(s−1)

5. For H2 against H0: SSB
H2∼ σ2χ2

(s−1)

6. For H3 against H0: SSB
H3∼ σ2χ2

(r−1)

7. p-values:

pB = PFB(FB > fB), pA = PFA(FA > fA) and pAB = PFAB(FAB > fAB)

Neglect the null hypothesis when p ≤ α

23cf. [10], p.192



42 Chapter 2. Statistical Background

Example 2.19. (Continuation of example 2.18)

Table 2.4 illustrates an ANOVA-forward-procedure for the life duration of a battery design:

Source Degrees of freedom Square sum Mean square sum F-value P-value

A 2 10683.722 5241.861 7.911 0.002

B 2 39118.722 19559.361 28.968 < 1.909e − 07

AB 4 9613.778 2403.444 3.560 0.019

Error 27 18230.750 675.213

Total 36 77647.022

Table 2.4: ANOVA table 2 factorial DOE (Battery design)

According to table 2.4 it is a matter of dispute whether an interaction model is appropriate

or not (p-value
!= 0.019). On the other hand both main effects play a basic role of the life

time of a battery design. Given the ANOVA sequence in table 2.4 it is possible to show

the percental improvement within the regression approach compared to an estimation

over the mean.

Pie diagram 2.8 demonstrates this:

Figure 2.8: ANOVA pie diagram 2 factorial DOE (Battery design)

Figure 2.8 shows that

1. factor A claims 14% of the information used for the prediction.

2. factor B claims 51% of the information used for the prediction.

3. interaction factor AB claims 12% of the information used for the prediction, given

factor A and B are already in the model.

4. about 23% of the prediction error remain
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Compared to the estimation of the battery’s lifetime over the mean, with an interaction

regression model, we would economize (1− 18230.750
77647.022)⋅100 = 76.52% of the original estimation

error. This ratio is well known under synonym R2.

Definition 2.35. (Coefficient of determination R2)

The performance of an entire regression model can be outlined through the coefficient of

determination R2, whereas

R2 = 1 − SSR
SST with 0 ≤ R2 ≤ 1.

A disadvantage of R2 is that the increase of variables in the model increases R2 auto-

matically up to 1 (R2 → 1). Because of that R2 has to be adjusted.

Definition 2.36. (Adjusted coefficient of determination R2
adj)

The adjusted coefficient of determination R2
adj, which punishes additional predictor

variables is given by

R2
adj = 1 − SSR/(n−p)

SST/(n−1) with 0 ≤ R2
adj ≤ 1

whereas p is the number of predictor variables.

Because of the huge number of experiments, generally factorial DOEs turn out to be

only useful for a few factors. Particularly a reduction of factor levels allows more system

variables and may also lead to faster computations at the same time.

2.7 2k Factorial DOEs

A special case of factorial DOEs are 2k factorial DOEs, which take k factors each with 2

levels (qualitative or quantitative) into account so that a full factorial design

(i.e.: each possible factor level combination is actuated) yields 2k observations. A

collective parameterization is achieved by labeling the lower levels with (−) and the higher

levels with (+).
In the present section the following requirements are needed:

� Factors are fixed and not variable

� DOEs are completely randomized (i.e., if there are t ≥ 2 observations of each factor

level combination, then these t observations are recorded in the concerning DOE’s

cell randomly)

� Random errors (model errors) are normally distributed

� Y is linear over the domain of quantitative factors
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Due to the last point, regression models using only quantitative predictor variables are

replaced by continuous (in this case by linear) functions. For that purpose example 2.17

can be recalled, where Soot outcome in g/kWh was predicted by EGR Valve Position in

% ECU signal.

Example 2.20. (Continuation of example 2.17)

AVL GmbH runs only two instead of five operation levels of EGR Valve Position, specifi-

cally 30% =̂ (−) and 50% =̂ (+) ECU signal. The modification is cleary presented by com-

paring figure 2.9 and figure 2.10:

Figure 2.9: Discrete regression func-

tion

Figure 2.10: Continuous regression

function

With this new approach it is possible to estimate Soot outcome not only for one actuated

EGR Valve Position. It is also possible to estimate Soot at every user-defined EGR Valve

Position within two effectively controlled EGR valve positions (i.e.: Now we are not only

able to interpolate but also to extrapolate).

If we assume two factors and allow an interaction, we obtain a first order regression

model:

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε

whereas we parameterize

xi = νi×(νi−+νi+)/2
(νi+−νi−)/2 ∈ [−1,1] for i, j = 1,2

and estimate E(Y ) through

µ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂3x1x2
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2.7.1 22 Factorial DOEs

In the first instance we deal with a 22 factorial DOE, the most simple special case of 2k

factorial DOEs. Hence for one random variable Y two factors A and B, each with two

factor levels, are assumed as predictor variables. Additionally for each of the 22 = 4 factor

level combinations t ≥ 2 observations are made.

Model:

Yijk = µ0 + αi + βj + γij + εijk with i, j = 1,2; k = 1, . . . , t for t ≥ 2; εijk
iid∼ N(0, σ2)

The following orthogonality constraints are respected:

α1 + α2 = β1 + β2 = 0, γ11 + γ21 = γ12 + γ22 = 0, γ11 + γ12 = γ21 + γ22 = 0

During the continuing analysis concerning 2k factorial DOEs, an important role is played

by the cell sums yij. of all observations of each factor level combination (i, j). A quite

usual notation of it derives from chemistry:

y11. = (1) = (−−), y21. = a = (+−), y12. = b = (−+), y22. = ab = (++),

Example 2.21. (Reaction time of a chemical process)24

� Variable Y: Reaction time in seconds of the chemical process

� Variable A: Concentration of the reactant with factor levels

(−) = 15% and (+) = 25%

� Variable B: Amount of the catalyst with factor levels

(−) = 1 pound and (+) = 2 pound

� t = 3 observations of Y at each factor level combination

� n = rst = 2 × 2 × 2 × 3 = 12 observations yijk

A/B (−) (+)
(−) 28 18

25 19

27 23

y1j. (1) = 80 b = 60

(+) 36 31

32 30

32 29

y2j. a = 100 ab = 90

Table 2.5: Example 22 factorial DOE (Reaction time of a chemical process)

24cf. [9], p.204
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2.7.2 Effects

Factor effects on Y can be easily explained by figure 2.11:

Figure 2.11: Treatment combinations in the 22 design

Given the computations of the marginal effects,

Effect of A at B−: (a − (1))/t; Effect of A at B+: (ab − b)/t

we may compute the whole main effect of A:

EA = 1
2t(ab + a − b − (1)) = 1

2t(y22. + y21. − y12. − y11.)

Similarly we receive the main effect of B,

EB = 1
2t(ab + b − a − (1)) = 1

2t(y22. + y12. − y21. − y11.)

and the interaction effect AB:

EAB = 1
2t(ab + (1) − a − (b)) = 1

2t(y22. + y11. − y21. − y12.)

2.7.3 Contrasts

Another possibility to detect important effects is provided trough the theory of contrasts.

In doing so the primary used square sums are replaced by contrast sum of squares.

Definition 2.37. (Contrast)

A contrast is a weighted sum of all possible cell sums and is given by

C =
r

∑
i=1

s

∑
i=1
cijYij. with

r

∑
i=1

s

∑
i=1
cij = 0
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The sum of squares of any contrast with one degree of freedom is computed over

SSC = C2

t∑i∑j c2ij
= σ2C2

VAR(C)

Theorem 2.14.

For a contrast and its square sum the following properties hold

1. C ∼ N(Γ, σ2c2) with Γ = t
r

∑
i=1

s

∑
i=1
cijµij and c =

√
t
r

∑
i=1

s

∑
i=1
c2
ij

2. T = C−Γ

c
√
MSR

∼ tn−rs

3. E(SSC) = σ2 + Γ2

c2 , SSC ∼ σ2χ2
1, for Γ = 0

Proof.

ad 1.: Yijk
ind∼ N(µij, σ2) ⇒ Due to theorem 2.7 Yij. is as a sum of normally distributed

random variables normally distributed, and furthermore

E(C) theorem 2.1=
r

∑
i=1

s

∑
i=1
cij

t

∑
k=1

E(Yijk) =
r

∑
i=1

s

∑
i=1
cijtµij = t

r

∑
i=1

s

∑
i=1
cijµij = Γ

VAR(C) theorem 2.2=
r

∑
i=1

s

∑
i=1
c2
ij

t

∑
k=1

VAR(Yijk) =
r

∑
i=1

s

∑
i=1
c2
ijtσ

2 = σ2c2

ad 2.: By reason of definition 2.20 and theorem 2.4 (1.) we easily get the desired result:

T = C−Γ√
σ̃2c2

= C−Γ

c
√
MSR

= C−Γ

c
√
SSR/(n−rs) ∼ tn−rs

ad 3.: Owing to point 1. of this theorem the subsequent line holds

E(SSC) = E(σ2C2

σ2c2 ) theorem 2.1= 1
c2E(C2) theorem 2.3= 1

c2 (VAR(C) +E2(C)) = σ2 + Γ2

c2

Theorem 2.4 (3.) implies: SSC = C2/c2 ∼ σ2χ2
1

Following the second statement of theorem 2.14 and combined with theorem 2.6 we con-

clude:

F = T 2 = C2

c2MSR = SSC
MSR ∼ F1,n−r
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It is essential that contrasts are main components of effects. This gets clear through

reviewing the main effect A for instance:

EA = 1

2t
(ab + a − b − (1)) = 1

2t
(1Y22. + 1Y21. + (−1)Y12. + (−1)Y11.)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CA

= 1

2t

r

∑
i=1

s

∑
j=1

cAijYij.

⇒ cAij =
⎛
⎝
−1 −1

1 1

⎞
⎠

Generally within the 22 DOEs cEij = ±1 and accordingly

c2
E = (

√
t
r=2

∑
i=1

s=2

∑
j=1
c2
Eij

)
2

= 4t and SScE = SSE = C2
E

c2E
= C2

E

4t

Thus it is possible to show through a contrast whether a linear combination of single

means is significant. An effect would be rejected when its contrast Γ = 0. Therefore we

test for contrast Γ:

Hypotheses:

H0 ∶ Γ = t
r

∑
i=1

s

∑
i=1
cijµij = 0 H1 ∶ Γ ≠ t

r

∑
i=1

s

∑
i=1
cijµij

Test-statistic:

F = SSC
MSR

H0∼ F1,n−r

Decision rule: Reject H0, if p ≤ α.

Definition 2.38. (Orthogonal contrasts)

Two contrasts C1 and C2

C1 =
r

∑
i=1

s

∑
i=1
cijYij. and C2 =

r

∑
i=1

s

∑
i=1
dijYij.

are orthogonal if

r

∑
i=1

s

∑
i=1
cijdij = 0

Remark 2.7.

The SSA of a predictor variable A with r factor levels is decomposed by (r−1) orthogonal

contrasts in (r − 1) independent contrast sum of squares, each with 1 degree of freedom.

Hence it is possible to execute (r − 1) F-tests for all orthogonal contrasts.
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Proposition 2.3. 25

Considering a 22 DOE it can be shown that

� the contrasts CA, CB and CAB are orthogonal

� SSA, SSB and SSAB are stochastically independent

(⇒ no significant difference between forward- and backward ANOVA)

For this reason the following square sum decomposition holds:

SST = SSA + SSB + SSAB + SSR

with degrees of freedom 4t − 1 = 1 + 1 + 1 + 4(t − 1)

Example 2.22. (Continuation of example 2.21)

SSA = (

ab

³·µ
90 +

a

³·µ
100 −

b

³·µ
60 −

(1)
³·µ
80 )2

4t
= 502

4(3) = 208.33

SSB = (

ab

³·µ
90 +

b

³·µ
60 −

a

³·µ
100 −

(1)
³·µ
80 )2

4t
= (−30)2

4(3) = 75.00

SSAB = (

ab

³·µ
90 +

(1)
³·µ
80 −

a

³·µ
100 −

b

³·µ
60 )2

4t
= 102

4(3) = 8.33

SST =
r=2

∑
i=1

s=2

∑
j=1

t=3

∑
k=1

(Yijk − Y...)2 = 323.00

SSR = SST − SSA − SSB − SSAB = 31.34

Subsequent ANOVA table 2.6 outlines the results of the F tests:

Source Degrees of freedom Square sum Mean square sum F-value P-value

A 1 208.33 208.33 53.15 0.0001

B 1 75.00 75.00 19.13 0.0024

AB 1 8.33 8.33 2.13 0.1826

Error 8 31.34 3.92

Total 11 323.00

Table 2.6: ANOVA table 22 factorial DOE (Chemical process)

25cf. [9], p.91,206
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As a result the interaction effect between predictor A and B, EAB has no significant

influence on reaction time Y . Hence a regression model of Y would only include the main

effects of A and B. After a least squares estimation of the unknown parameters we result

with the following first order regression model:

ŷ = 27.5 + 4.165x1 − 2.5x2

whereas x1, x2 ∈ [−1,+1] with ’−1’ lower- and ’+1’ higher level. The resulting regression

plane is illustrated in figure 2.12:

Figure 2.12: Regression plane - 1st order model

2.7.4 23 Factorial DOE

Assuming three predictor variables, each with two levels ((−) and (+)) and t ≥ 2

observations for each factor level combination, leads to a 23 factorial DOE.

Model:

Yijkl = µ0 + αi + βj + δk + (αβ)ij + (αδ)ik + (βδ)jk + γijk + εijkl with i, j, k = 1,2, l = 1, . . . , t

whereas random errors satisfy εijkl
iid∼ N(0, σ2). Altogether we have to consider 21 ortho-

gonality constraints for i = 1,2; j = 1,2; k = 1,2:

∑
i

αi = ∑
j

βj = ∑
k

δk = 0

∑
i

(αβ)ij = ∑
i

(αδ)ik = 0

∑
j

(αβ)ij = ∑
j

(βδ)jk = 0

∑
k

(αδ)ik = ∑
k

(βδ)jk = 0

∑
i

γijk = ∑
j

γijk = ∑
k

γijk = 0
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Cell totals:

Y111. = (1) =̂ − − −
Y121. = (b) =̂ − + −
Y112. = (c) =̂ − − +
Y122. = (bc) =̂ − + +

Y211. = (a) =̂ + − −
Y221. = (ab) =̂ + + −
Y212. = (ac) =̂ + − +
Y222. = (abc) =̂ + + +

Considering a 23 factorial DOE, effects and contrasts are given by

Effect E: E = 1
22tCE for E ∈ {A,B,C,AB,AC,BC,ABC}

Contrast CE: CE = (a + 1 − 2 IA)(b + 1 − 2 IB)(c + 1 − 2 IC)

with indicator function

IF =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if effect E consists of factor F

0 else
for F ∈ {A,B,C}

Furthermore

SSE = C2
E

8t

AB = 1

4t
(

CAB

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A∣B+ −A∣B−)

= 1

4t
((1) + c + ab + abc − a − ac − b − bc)

ABC = 1

4t
(

CABC

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AB∣C+ −AB∣C−)

= 1

4t
(a + b + c + abc − ab − ac − bc − (1))
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2.7.5 The General 2k Factorial DOE

In the general 2k factorial DOE k predictor variables are considered at two factor levels,

whereas t ≥ 1 replications are permitted. The general computation formula of all effects

and contrasts is given by

Effect E: E = 1
2k−1t

CE for E ∈ {A,B, . . . ,A . . .K}

Contrast CE: CE = (a + 1 − 2 IA) . . . (k + 1 − 2 IK)

and

SSE = C2
E

2kt

The typical ANOVA table of a 2k factorial design is presented in table 2.7:

Source SS df

k main effects

A SSA 1

⋮ ⋮ ⋮
K SSK 1

(k
2
) double interactions

AB SSAB 1

⋮ ⋮ ⋮
JK SSJK 1

⋮ ⋮ ⋮
(k
k
) = 1 full interaction

ABC . . .K SSABC...K 1

Error SSR 2k(t − 1)
Total SST t2k − 1

Table 2.7: ANOVA table 2k factorial DOE

2.8 Quadratic Behavior of the Regression Function

Until now the general 2k DOE required a linearity of Y over the area of quantitative

factors. What if this constraint turns out to be not adequate? Then the first order regres-

sion model has to be replaced by a more complex model, the second order regression

model.
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To begin with, we need a method to check whether this condition is violated or not. This

is realized through applying center points to a DOE in order to verify the behavior in the

middle of the so far observed factor levels. Considering these observations of Y , many

applications of single factor levels necessitate the usage of means.

Example 2.23. (Regression model for Soot)

Assuming the target is to find an adequate regression model for Mass Flow Soot

in g/h with EGR Valve Position and Waste Gate Position in % ECU signal as predictors,

prior to this, a line plot has to be checked for linear or quadratice relationships:

Figure 2.13: Line plot 1 - Quadratic be-

havior

Figure 2.14: Line plot 2 - Quadratic be-

havior

Both figures 2.13 and 2.14 indicate a quadratic relationship between predictor and target

variable. Following that it would be advisable to bring both predictors quadratically in

the regression model.

Considering two predictor variables, the quadratic expansion of the first order model is

called second order model and is given by equation 2.10.

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε (2.10)

For a 22 DOE, we would add 3 ≤ nc ≤ 5 replicates of (0,0) to the already existing points

(−,−), (+,−), (−,+) and (+,+).26 Altogether the resulting DOE consists of 4 + nc runs,

from which five are independent from each other.

26cf. [9], p.250
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Indeed, an estimation method (e.g. Least-squares-method) of the unknown parameters

βs of model 2.10 require six independent runs. To work with a second order model, we

still need a larger DOE, whereas two different construction methods should be mentioned

at this point:

1. 3k factorial DOEs

2. Central Composite Designs (CCD)

2.8.1 3k Factorial DOEs

As the name suggests, 3k factorial DOEs use three equidistant factor levels for each

variable, parameterized with (−1), (0) and (+1). Altogether a full factorial DOE of this

type has 3k independent runs, and consequently resolves easily the estimation problem.

The theory requirements remain similar to 2k factorial DOEs (cf. section 2.7) with the

only exception of the last point. Hence both linear- and quadratic behaviors of Y are

possible within the predictor factor levels. Of course, 3k DOEs provide more information

about Y , but on the other hand the computing time triples with each additional factor.

For this reason this approach is disregarded in the context of this thesis.27 A much more

time - efficient method is presented in the next subsection.

2.8.2 Central Composite Designs (CCD)

In addition to the 3 ≤ nC ≤ 5 center points so called axial points are inserted into the

DOE. Precisely, these axial points enable estimation methods of the unknown parameters

in the second order model. A DOE with k factors of a random variable Y consists of the

following operation parts:

� 2k factorial points

� nC center points (motivate quadratic behavior)

� 2k axial runs (enable 2nd order model approach)

� Total number of runs: n = 2k + nC + 2k

A computing time comparison of a 2k, 3k and a CCD is provided by table 2.8.

27for further information cf. [9], p.347
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k 2k DOE 3k DOE CCD (nc=5)

2 4 9 13

3 8 27 19

4 16 81 29

5 32 243 47

6 64 729 81

7 128 2187 147

⋮ ⋮ ⋮ ⋮

Table 2.8: DOE runtime comparison

As clearly outlined the running times are completely different.

Central Composite Design building plans for k = 2 and k = 3 predictor variables are

presented in figure 2.15 and respectively in figure 2.16:

Figure 2.15: CCD of 2 factors Figure 2.16: CCD of 3 factors

The choice of the distance α to the design center (0,0) can be varied (exception: α
!≠ 0)

and always implies enough independent runs. Reinforcing section 2.4.3, at an arbitrary

operation point x, the prediction’s variance V AR(µ̂(x)) = σ2xT(XTX)−1x is dependent

on the design matrix X and therefore also directly dependent on the choice of α.

In 1957 George E. P. Box and William G. Hunter suggested that a good prediction over

a second order model with k predictors provides a stable variance at all operation points

x with equal distance to the design center. The prediction variance is constant for all

surface points of a ball with radius α.

Thus we claim rotatability of the experimental design, which is ordinary achieved by

setting α to the Euclidean distance between the center point and one factorial point:

1 ≤ α = ∥(0, . . . ,0) − (−1, . . . ,−1)∥2
2 =

√
k

The unknown regression parameters of the second order model are now obtainable.
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Example 2.24. (CCD)

AVL GmbH Graz is interested to construct a regression model for Mass Flow NOx Engine

Out (in g/h) in dependency of Main Injection Timing (in ms) and EGR Valve Position

(in % ECU signal). By reason of possible quadratic influences a CCD is conducted at the

engine test bench. In the process the points of table 2.9 were tested:

Type

Main

Injection

Timing

EGR

Valve

Position

x1 x2 MF NOXEO

factorial 8 20 -1 -1 523.0
factorial 8 30 -1 1 281.5
factorial 12 20 1 -1 669.4
factorial 12 30 1 1 349.5

axial 7.17 25 -1.414 0 310.0
axial 12.82 25 1.414 0 519.8
axial 10 17.92 0 -1.414 1046.3
axial 10 32.07 0 1.414 300.6

centre 10 25 0 0 397.4
centre 10 25 0 0 397.2
centre 10 25 0 0 397.1
centre 10 25 0 0 397.1
centre 10 25 0 0 397.1

Table 2.9: Central composite design

Columns x1 and x2 provide the parametrization values of Main Injection Timing and EGR

Valve Position.

In the first instance the ANOVA should establish if both predictors have explanatory

power regarding a model of NOx:

Source Degrees of freedom Square sum Mean square sum F-value P-value

MI 4 39433 9858 579896 8.921e − 12

EGR 3 466074 155358 9138697 3.991e − 14

MI:EGR 1 1537 1537 90391 7.343e − 10

Error 4 0 0

Table 2.10: ANOVA table CCD
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Amongst others, at the end high significance is detected for the interaction of both predic-

tors, which automatically implies the importance of both variables. On the one hand figure

2.17 shows that Main Injection Timing has no quadratic, but rather a linear relationship

to NOx. In contrast, EGR Valve Position should definitely enter also quadratically in a

regression model (cf. figure 2.18).

Figure 2.17: Line plot 3 - Quadratic be-

havior

Figure 2.18: Line plot 4 - Quadratic be-

havior

After the parameter estimation the following 2nd order regression model is obtained:

Ê(MF_NOx) = µ̂ = 388 + 63.9x1 − 202x2 + 117.8x2
2 − 19.6x1x2

The response surface plot, a typical regression plane of a 2nd order model for Y

including two factors A and B, is shown in figure 2.19:

Figure 2.19: Regression plane - 2nd order model
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Finally it remains to verify whether the estimation model, which actually reflects the mean

of Y given a certain predictor setting, is correctly exposed. Among other aspects, this

question arises from the normality assumption of Y (illustrated by figure 2.5 in example

2.13) in subsection 2.3.2 and subsection 2.3.3, and is pursued through the analysis of the

estimation errors, the so called residual analysis.

2.9 Residual Analysis

Models for a target variable Y using k ≥ 1 predictor variables x1, . . . , xk were defined in

equation (2.6), whereas the following matrix notation was found:

Y =Xnβ + ε

with Yi
ind∼ N(E(Yi), σ2) or equivalently ε

iid∼ N(0, σ2In) with In identity matrix. The

residual vector r = y − µ̂ ∼ N(0, σ2(I − H)) estimates the model error ε = y − µ
(cf. subsection 2.4.3). In statistics five basic violations are checked by the residuals:

1. rstd ≁ N

2. Residual variance σ2(I −H) is not constant but proportional to µ̂

3. Nonlinearity of the regression function

4. Slope parameter vector β is basically affected by a few observations

(high-leverage-points)

5. Model fits all but one or a few outlying observations

In case not all violations can be resolved, it is due to the operating statistician to find the

best compromise among all points.

2.9.1 Normal Distribution of the Residuals (Q-Q Plot)

The residual vector r estimates the model error ε, which was assumed as normally dis-

tributed. In turn, this was equivalent to a normally distributed Y under its mean struc-

ture. The major problem of Yi
ind≁ N(E(Yi), σ2) is positioned in subsection 2.4.3, where

the normal distribution is explicitly needed in order to test whether a predictor variable is

significant or not. Without the normality assumption this test procedure is not available,

because the distribution under hypothesis H0 is unknown.
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There exist some methods to check whether the residuals are normally distributed or not.

In this paper one graphical method is taken into consideration using a certain scatter

plot, also called the Quantile-Quantile-plot (Q-Q plot). Before presenting the Q-Q

plot it is elementary to be well versed in the theory of quantiles.

Let y1, . . . , yn be realizations of the random sample Yi
iid∼ F . We may order the realizations

by y(1) ≤ ⋅ ⋅ ⋅ ≤ y(n), which is the realization of the so called order statistic Y(1) ≤ ⋅ ⋅ ⋅ ≤ Y(n).

Definition 2.39. (Empirical distribution function)

The empirical distribution function of a sample with size n is defined as

Fn(y) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 y < y(1)
i
n y(i) ≤ y ≤ y(i+1) for i = 1, . . . , n − 1

1 y(n) ≤ y

For the empirical distribution function holds:28

Fn(y)
n→∞Ð→ FY (y)

Definition 2.40. (Empirical quantiles of a distribution F)

Consider a random variable Y with c.d.f. FY , then its p−th quantile yp satisfies FY (yp) = p,

and it can be estimated by the empirical quantile qp from a sample y(1) ≤ ⋅ ⋅ ⋅ ≤ y(n).

qp ∶= (1 − g)x(⌊(n−1)p⌋+1) + g x(⌊(n−1)p⌋+2)

with g = (n − 1)p − ⌊(n − 1)p⌋.29

Hence quantile qp reflects the border within a realization set, whereas left of it (p ⋅ 100)%
and right of it ((1 − p) ⋅ 100)% of all observations can be found. Figure 2.20 shows a

theoretical quantile yp concerning the normal distribution.

Figure 2.20: The p−th quantile of N(0,1)

whereas evidently in this case p < 0.5.

28cf. [14], p.300
29cf. R explanation, http://127.0.0.1:21994/library/stats/html/quantile.html
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Theorem 2.15.

If F is a distribution function with F (x) = G(z) = G(x−µσ ) and Yi
iid∼ F , then

Y(i) ≈ F −1 ( i
n+1

) = σG−1 ( i
n+1

) + µ for i = 1, . . . , n

Proof.

One can show that F (Y ) ∶= U ∼ U(0,1) with U(0,1) continuous uniform

distribution30 over (0,1). By the reason of Ui
iid∼ U(0,1) it can also be shown that31

U(i) ∼ Beta(i, n − i + 1)

with

Y ∼ Beta(α,β) ⇔ fY (y ∣α,β) = yα−1(1 − y)β−1 1
B(α,β) with 0 ≤ y ≤ 1; α,β > 0

whereas B(α,β) = Γ(α)Γ(β)
Γ(α+β) is the Beta function and Γ(.) is the Gamma function32. The

mean of a Beta(α,β) distributed random variable Y is

E(Y ) = α
α+β

and therefore

E(U(i)) = i
n+1

Altogether we get

U(i) ≡ F (Y(i)) ∼ Beta(i, n − i + 1)
⇒ F −1(U(i)) ≡ F −1 (F (Y(i)))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y
(i)

We replace U(i) by its mean and result with

Y(i) ≈ F −1 ( i

n + 1
)

Furthermore

F (Y(i)) ≈ F (F −1 ( i

n + 1
)) = G (z)

≈ i

n + 1
= G

⎛
⎝
F −1 ( i

n+1
) − µ

σ

⎞
⎠

G−1 ( i

n + 1
) =

F −1 ( i
n+1

) − µ
σ

G−1 ( i

n + 1
) = 1

σ
F −1 ( i

n + 1
) − µ

σ

30cf. [2], p.98
31cf. [2], p.106
32cf. definition 2.19.
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For practical applications replace the theoretical parameters (µ,σ) by their estimates

(x̄, s).

The Quantile-Quantile-plot:

By means of a Q-Q-plot it is possible to check a sample’s adaption towards a theoretical

distribution, whereas the ideal case is represented a straight line.

In practice, the in ascending order arranged standardized residuals rstd
(i)

for 1 ≤ i ≤ n are

plotted (by use of a scatter plot) against the theoretical quantiles G−1 ( i
n+1

) of N(0,1).
Equidistant quantiles G−1 ( i

n+1
) in terms of probability of any normal distribution, are

closer together at the center of the domain than at the tails of the density function.

Thus, if the applied points are located close to the identity line and are more assembled

in the center of the plot, it can be concluded that rstd ≈ N . An example for a good, or

respectively a bad adaption is illustrated by figure 2.21 and figure 2.22:

Figure 2.21: Q-Q plot (Good adaption) Figure 2.22: Q-Q plot (Bad adaption)

Without loss of generality s2 may be a badly biased estimator (mainly for small samples

or for data with outliers33), and therefore the reference line may be not appropriate.

Therefore the statistician tries to implement a more robust design. For instance the

statistic software package RTM uses a reference line formed by points (q0.25, z0.25) and

(q0.75, z0.75), whereas for p ≤ 1 zp denotes the p−th theoretical quantile of N(0,1). The

estimator s is replaced by the interquartile standard deviation sq, which is defined by

sq = iqr
1.349 =

q0.75−q0.25

1.349

Hence the ’new’ reference line connects the empirical quantiles q0.25 and q0.75 of an obser-

vation set, and is given by

G−1 ( i
n+1

) = 1
sq
F −1 ( i

n+1
) − q0.25

sq
+ z0.25

Figures 2.23 and 2.24 illustrate the situation for s = 3.49, sq = 2.71 and x = −0.22.

33cf. subsection 2.9.4



62 Chapter 2. Statistical Background

Figure 2.23: Q-Q plot (Outliers)
Figure 2.24: Adjusted Q-Q plot (Out-

liers)

Normal distributed standardized residuals imply that the concerning regression model has

no distribution defect. If the residuals turn out to be not normally distributed, then the

assumption Yi
ind∼ N(Xβ,σ2) has to be rejected.

Solution:

Residuals are dependent on two quantities:

� observations y of Y

� the design matrix X

Hence a different distributional structure can be achieved by

1. transforming y

2. transforming single columns of X

3. deleting single observations i, for 1 ≤ i ≤ n

4. accounting an additional predictor variable

5. neglecting an existent predictor variable

2.9.2 Constant Residual Variance (Box-Cox-Transformation)

Another essential assumption is the constant variance of Yi for all i. From a regression

model (Ê(Yi)) we claim constant variance in order to avoid quality differences of the

estimation in dependency of the predictor setting. Hence, there is no dependency structure

between residual vector r and predicted mean µ̂ (’fitted values’) allowed, whereas among

statisticians this demand is called homoscedasticity.
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This is checked by plotting ri against µ̂i:

Figure 2.25: Residuals vs. fitted values (Bad)

Figure 2.25 clearly depicts a dependency structure between residuals and predictions. The

higher the prediction outcome is, the worse is its accuracy.

Solution:

This model defect may be resolved by transforming the target variable Y through a so

called Box-Cox-Transformation (G. Box, D. Cox 1964) before estimating the unknown

parameter vector β. Resulting estimations of the transformed model have to be trans-

formed back in the opposite direction. In reaction to the model’s defect, we suppose that

the standard deviation of Y is proportional to a power α of the mean (i.e.: σ ∝ µα).

Definition 2.41. (Box-Cox-Transformation)

Let Y be a random variable with mean E(Y ) = µ and variance VAR(Y ) = σ2 ∝ µ2α. Then

the continuous differentiable function

Y ⋆ =∶ T (Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y λ λ ≠ 0

logY λ = 0

is called Box-Cox-Transformation of Y .

Consider a Taylor series for T (Y ) around µ:34

Y ⋆ = T (Y ) = T (µ) + T ′(µ)(Y − µ) +⋯
⇒ VAR(T (Y )) = VAR(Y ⋆) ≈ VAR(T (µ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+(T ′(µ))2 VAR(Y − µ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=VAR(Y )

≈(T ′(µ))2µ2α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ2µ2(λ−1)µ2α
λ ≠ 0

µ2(α−1) λ = 0

34cf. [6], p.353
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Which choice of λ = λ(α) yields constant VAR(Y ⋆)?

VAR(Y ⋆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ2µ2(λ−1)µ2α
λ ≠ 0

µ2(α−1) λ = 0

Choosing λ = 1 − α leads to a constant variance in both cases

VAR(Y ⋆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − α)2 α ≠ 1

1 α = 1

However, λ is unknown and has to be estimated. Given λ, we aspire a minimal model

error. Therefore we minimize the deviance:

SSR(β(λ)) = ∥y⋆ −Xβ(λ)∥2
2

The Box-Cox-Transformation T (Y ) has a constant variance:

⇒ Y ⋆ ind∼ N(Xβ(λ)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
µ(λ)

, σ2(λ))

Following the transformation theorem of density functions we get the marginal

density functions of each Yi:35

⇒ f(yi, λ, µi(λ), σ2(λ)) = 1√
2πσ2(λ)

e
− (y

⋆

i −µi(λ))
2

2σ2(λ) ∣ ∂
∂yi

T (yi)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jacobian determinant

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2πσ2(λ)e

− (y
λ
i −x

T
i β(λ))

2

2σ2(λ) yλ−1
i λ ≠ 0

1√
2πσ2(λ)e

− (logyi−x
T
i β(λ))

2

2σ2(λ) 1
yi

λ = 0

The independence of Yi enables a Maximum Likelihood Estimation. As shown in sub-

section 2.1.4, we take the logarithm of the product of the Likelihood functions with

parameters β and σ2.

L((λ,β(λ), σ2(λ))∣ y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−n
2

log 2πσ2(λ) − 1
2σ2(λ) ∑

i

(yλi − xTi β(λ))2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+(λ − 1)∑i log yi λ ≠ 0

−n
2

log 2πσ2(λ) − 1
2σ2(λ)

SSR(β(λ))
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
i

(log yi − xTi β(λ))2 −∑i log yi λ = 0

35cf. [14], p.135
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Evaluating the score functions lead to the following estimators:

∂

∂β
L(λ,β(λ), σ2(λ)∣ y) != 0 ⇒

∂

∂σ2
L(λ,β(λ), σ2(λ)∣ y) != 0 ⇒

β̂(λ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(XTX)−1XTyλ λ ≠ 0

(XTX)−1XT log y λ = 0

σ̂2(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n∑

i

(yλi − xTi β̂(λ))2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ ≠ 0

1
n

SSR(β̂(λ))
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
i

(log yi − xTi β̂(λ))2 λ = 0

Attaching the λ−dependent MLEs to L leads to the continuous Profile(-Log)-Likelihood-

function:

pL(λ) = L(λ, β̂(λ), σ̂2(λ)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−n2 logSSR(β̂(λ)) + (λ − 1)∑i log yi λ ≠ 0

−n2 logSSR(β̂(λ)) −∑i log yi λ = 0

Note:

� The major influence on pL(λ) is exerted by n
2SSR(β̂(λ))

� Maximizing pL(λ) automatically implicates a minimal SSR(β̂(λ))

It is possible to find the maximizing λ̂ by an explicit grid under the Profile(-Log)-

Likelihood-function. The Profile(-Log)-Likelihood-function of the model used in figure

2.25 is presented in figure 2.26:

Figure 2.26: Profile(-Log)-Likelihood

function

Figure 2.27: Residuals vs. fitted values

(Good)
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At the same time a 95% − confidence interval for λ̂ is offered. This means, considering a

statistical test with a significance level α = 0.05, there is ’no difference’ between the λs

on the grid, which lead to a function value above the horizontal line. The center of the

95% − confidence interval proposes a λ̂ = 0.6 . Therefore we build a regression model for

Y λ̂=0.6 and recall the test plot used at the beginning of this subsection.

After estimating E(Y ⋆), µ̂ has to be replaced by µ̂1/λ̂ in order to receive an estimation of

E(Y ).

2.9.3 Lack of Fit of the Regression Function

Similar as a cone trend presented in figure 2.25, a quadratic trend between residual vector

r and estimation vector µ̂ is also an inadmissible model defect (compare figure 2.28).

However, those two have to be handled differently. In the presented case of a quadratic

structure, a statistician talks about a so called lack of fit scenario. That is, if the residuals

have a quadratic dependence on the estimation. We may compare the residuals of a first

order - and a second order regression model, i.e.:

� µ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂12x1x2 . . . First order regression model

� µ̃ = β̃0 + β̃1x1 + β̃2x2 + β̃12x1x2 + β̃11x2
1 + β̃22x2

2 . . . Second order regression model

Figure 2.28: Lack of fit Figure 2.29: Lack of fit (Remedied)

Solution:

As long as the DOE permits a second order model, this problem, in case it was not han-

dled ’a priori’ (cf. section 2.8), can be solved by including quadratic predictors. This

action counteracts the existent model defect (cf. figure 2.29).
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2.9.4 High Leverage Points and Outliers (Cook’s Distance)

From subsection 2.4.2 we already know that the orthogonal projection from y ∈ Rn onto

a linear subspace L is done by the hat- or projection matrix H.

µ̂ =Xβ̂ =Hy

For the i−th observation the formula above reads

µ̂i =
n

∑
j=1
hijyj = hiiyi +∑j≠i hijyj ⇒ ∂

∂yi
µ̂i = hii for 1 ≤ i ≤ n

⇒ Diagonal elements hii measure the influence of yi on µ̂i

Definition 2.42. (High leverage point)

Observation yi for 1 ≤ i ≤ n is called high leverage point if

hii > 2h̄ = 2 1
n

n

∑
i=1
hii

Single high leverage points may lead to a biased regression function for the majority of

observations yi, which are considerable more assembled. Therefore the statistician ini-

tially disregards these points in order to get a better estimation for the majority of vector

elements yi.

The performance of a regression function is also determined by the square sums of resid-

uals SSR, which was chosen as minimal as possible for the given the data. Realizations

yi are undesirable enlarging SSR much more than all other observations are. Addition-

ally outliers may also destroy the required standard normal distributed structure of all

residuals.

Definition 2.43. (Outlier)

A point yi with residuum is denoted as an outlier if

∣rstdi∣ > 2

Solution:

Both, high leverage points and outliers can be handled through the Cook’s distance ap-

proach.

Definition 2.44. (Cook’s - Distance)

The Cook’s distance is only dependent on rstd and hii and is given by

Di =
r2
stdi

∑i hii
( hii

1−hii )

⇒Di is large if yi is a high leverage point, or rstdi is an outlier, or both facts apply.
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Typical rule:

Observation yi should be removed out of the data if

� Di > 0.5 or Di > 1

� ∣rstdi∣ > 2

Figure 2.30: Cook’s distance and outliers

Following figure 2.30, observations 6 and 8 are definitely outliers, and might be regarded

also as high leverage points.
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Robustness Investigation

3.1 Background

The ever-increasing competition within the automotive market faces the tightening of en-

vironmental laws, which forces the automotive industry in a balance of cheap production

costs and maximum functionality, durability and performance combined with low exhaust

emissions and low fuel consumption.

Even though AVL GmbH achieves good compromises with its conducted engine calibra-

tions in this area, these methods are limited in application. Today it is necessary to

prospect for participating areas of the whole process, which remained uncontrolled in the

past in order to present better results than the concurrence. Key words like functionality

distributions of engine devices, device aging or functional stress distributions

should be mentioned at this point. This paper will only deal with the first issue: Func-

tionality distributions of engine devices.

3.2 Analysis Targets and C1-Test

3.2.1 Analysis Targets

To start with, it is assumed that in practice the main part of mass-produced engine de-

vices do not exactly reach their calibrated operation values. These differences in quality

are caused by several reasons, as variations in chemical compositions or already existent

accuracy deviations (i.e. caused by bearings) in the construction unit.

The question arises to what extent these tolerances cause deviations in matters of

emissions, like nitric oxide NO and nitrogen dioxide NO2 (embraced to NOx) or

particulate matter PM regarding an inevitable exhaust standard emission test.
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In particular this paper focuses on the influences caused by two groups of engine devices:

1. Engine actuator devices

2. Turbo chargers

The possible increase or decrease in specific fuel consumption should be observed at the

same time. Therefore the main targets of this paper are to determine

� which engine devices have a significant influence to these quantities con-

cerning a test operation map.

� the valid functionality deviations of all quantities in order to achieve a

positive test outcome.

- which engine devices can be assembled less carefully.

- which engine devices have to assembled more exactly.

- upper tolerance bounds for all quantities.

� the consequence on the fuel consumption.

For our analysis we do not consider an application of a Diesel Oxidation Catalyst

(DOC) and a Diesel Particulate Filter (DPF). Additionally it is assumed that there

is no NOx reduction implemented. By reasons of neglecting both the DPF and the DOC,

tailpipe particles and consequently particulate matter is not available for our analysis.

In addition PM measuring equipment like a ’Smart Sampler’ is still very expensive

and therefore not always disposable. However a popular rough rule of thumb says that

particulate matter consists of about 66% soot, about 33% soluble parts and about 1%

metal abrasion plus oil additives. The soluble parts are completely oxidized by the DOC,

so that the blackening rate of soot, measured by a so called ’Smoke Meeter’ is a good

indicator for tailpipe PM.

3.2.2 C1-Test

This paper deals with a Tier 4 Interim diesel engine with a displacement of ap-

proximately 10l and a rated power of 270kW charged by two turbos. A simplified

sketch of the double charged engine with its main actuator devices is shown in figure 3.1:
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Figure 3.1: Sketch of a double charged diesel engine

Emissions of such engines are tested through a stationary C1-test (compare table 3.1)

and a transient NRTC-test (Non-Road Transient Cycle-test), which is applied to off-

road vehicle engines and diesel powered off-road industrial equipment. However, this

paper will only deal with the stationary C1-test. During this test procedure the engine

needs to maintain with its engine speed (in rpm) and torque (in Newton meters)

for a certain time at eight explicitly given operating points, of which each provides a

different weighting level wi for i = 1, . . . ,8. The meeting of these exact system controlled

calibrations necessitates a deactivation of the Engine Control Unit (ECU). In the

end the eight weighted measuring results are summed up and divided by the cumulative

weighted power in order to get the break specific values, which are needed for a C1-test

decision.

C1

point

Engine Speed

(in rpm ’N’)

Torque Nm

(in Newton meters ’Nm’)

Weighting

wi

1 2000 1297.4 0.15

2 2000 976.8 0.15

3 2000 650.2 0.15

4 2000 129.3 0.10

5 1500 1710.9 0.10

6 1500 1274.2 0.10

7 1500 849.9 0.10

8 600 0.0 0.15

Table 3.1: C1-test operation map
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Resulting with a large pool of quantity measurements after the test procedure, at first

observations related to the target variables are considered. Following the assumptions

made for the exhaust after treatment system, it is sufficient to evaluate the measurements

for NOx directly after leaving the engine. Thus, at each point we focus on the following

parameters:

� Mass Flow NOx Engine Out in g/h (’MF_NOXEO’)

� Mass Flow Soot ’Avl’ Engine Out in g/h (’MFSOOTAE’)

� Mass Flow Fuel in kg/h (’MF_FUEL’)

� Power in kW (’PWR’)

The C1-target of soot is a development objective of AVL GmbH in order to achieve a

positive test result concerning PM. Beside a desired engineering-target, a positive C1-test

requires the following boundaries of NOx:

� Break Specific NOx Engine Out in g/kWh

(BS_NOXEO or furthermore simply denoted as NOx):

BS_NOXEO = ∑
8
i=1wiMF_NOXEOi

∑8
i=1wi PWRi

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2.0 g/kWh C1-target

1.7 g/kWh Engineering-target (E-target)

� Break Specific Soot AVL Engine Out in g/kWh

(BSSOOTAE or furthermore simply denoted as Soot):

BSSOOTAE = ∑
8
i=1wiMFSOOTAEi

∑8
i=1wi PWRi

≤ 0.09 g/kWH

Additionally we investigate two targets of interest for Fuel Consumption:

� Break Specific Fuel Consumption in g/kWh

(BSFC or furthermore simply denoted as Fuel Consumption):

BSFC = ∑
8
i=1wiMF_FUELi

∑8
i=1wi PWRi

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

231 g/kWh Target A

235 g/kWh Target B

3.3 Statistical Modeling

In the next step the goal is to restate the accuracy deviations of the influencing quantities

in an adaptable mathematical language. At first it is necessary to concentrate our studies

on the following question:

Which probability distribution can be assumed for a device’s accuracy deviation?

This question may be answered either by self made experiments, also denoted as pri-

mary statistics, or directly by manufacturer advices. Latter passive information search

is called secondary statistics by the statistician.
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Secondly, once a type of distribution is identified, it is also important to have an idea

about its parameter vector θ. Considering a normal distribution, θ consists of the mean µ

and the variance σ2. Whereas on one hand it is accordable to set the mean to the planned

functionality value, the variation should be estimated by an adequate sized random sam-

ple on the other hand.

Thirdly, ending up with a distribution it might be indispensable to constrain the domain

of the probability distribution F (µ,σ2) in order to achieve cost and time effectiveness.

Many distributions - like the normal distribution - are defined over all real numbers,

although without loss of generality the main part of probability (depending on σ2) is

concentrated over a comparatively small interval. Therefore, a restriction to that interval

does generally not lead to a radical loss of information.

Considering the further analysis, there was neither time for experiments nor any informa-

tion of the manufacturer in terms of σ2 available. Furthermore it was necessary to invent

the possible σ2 = s2 and assume it as directly adopted from the respective manufacturers.

Given the parameter vector θ each domain was restricted to a 99% probability mass pro-

viding support.

Finally and fourthly it is assumed that device deviations provide a smaller probability

the worse they emerge.

3.3.1 Parameterization

Given that more than one engine operation point is consulted (e.g.: C1-test) it is required

to establish a parameterization, which ascertains the comparability within the operation

map. To begin with we define the following:

Definition 3.1. (Optimal functionality)

If an engine device works with intended functionality, it works with optimal functionality

(o.f.).

Furthermore we assume that device deviations are independent from the engine’s operat-

ing status (i.e.: independent from engine speed and torque).

That means if a throttle valve deviates with 5% ECU signal from optimal functionality

at one operation point, the observed deviation persists at every possible engine operation

point.

For DOE reasons the parameterization is dependent on the kind of distribution used for

the deviation and therefore separately quoted in subsection 3.3.2 and 3.3.3.
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3.3.2 Normal Distributed Accuracy Deviations

Thinking about EGR Valve Positions or the Duration of Current, an arguable assumption

would be a positive and a negative deviation from optimal functionality. In order of that it

would make sense to use a normal distribution for the accuracy deviation of such devices.

As a reason of the distribution’s continuity it is necessary to define a finite amount of

equivalence classes, in which similar device deviations are treated the same. In this process

the number of classes determines the analysis’ performance. While more classes lead to

better results, they still imply a growth in expenditure of time.

Having regard to 99% of a device production and for reasons of comparability we re-

parameterize the domain under the density function to [−1 − ∆x
2 ,+1 + ∆x

2
], whereas x

denotes the relative deviation within these bounderies and ∆x the constant length of the

equivalence classes. Following that we replace the optimal functionality value of a deviceby

zero (µ = o.f.→ 0) at each operation point, and from now on treat all devices with relative

functionality deviation x within [−∆x
2 ,+∆x

2
] as devices with optimal functionality.

All the same we have to re-parameterize the figured out empirical standard deviation s.

We use the following attribute of the normal distribution.

Remark 3.1. For N(µ,σ2) the following probabilities are given:

�

µ+σ

∫
µ−σ

1√
2πσ2

e
−(x−µ)2

2σ2 dx ≈ 0.6827

�

µ+2σ

∫
µ−2σ

1√
2πσ2

e
−(x−µ)2

2σ2 dx ≈ 0.9545

�

µ+2.575σ

∫
µ−2.575σ

1√
2πσ2

e
−(x−µ)2

2σ2 dx ≈ 0.99

This can easily be verified over the distribution’s quantiles.

With the knowledge of s we may directly compute the worst absolute deviation xwa

within the range of 99%:

2.575 s ≈ ±xwa (3.1)

Thus we set the outer boundaries µ ± xwa to ±1. Altogether we have

� µ = o.f.→ 0

� µ − xwa → −1

� µ + xwa → +1

Additionally we want to apply the approach to the equivalence classes. Furthermore we

have to replace the worst absolute deviation xwa by xwa (1 + ∆x
2 ).
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Hence we get

2.575 s (1 + ∆x

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s̃

= xwa (1 + ∆x
2 )

Parameterizing xwa ∶= 1 leads to

2.575 s̃ = (1 + ∆x

2
)

s̃ =
(1 + ∆x

2 )
2.575

Eventually the density functions remain only dependent from class length ∆x and do

not change their parameters within the operation map. Figure 3.2 reveals all previous

assumptions.

Figure 3.2: Normal distributed accuracy deviation

3.3.3 Exponential Distributed Accuracy Deviations

Exponential distributed accuracy deviations become evident regarding the efficiency of

both turbo chargers. It is supposed that such devices are constructed with the maximum

of producible efficiency. In practice this means the functionality of a turbo charger may

only degrade and respectively deviate in one direction.

Subsequent assumptions should be adopted from subsection 3.3.2:

� Implementation of equidistant equivalence classes with length ∆x.

� Restriction to 99% of the whole production.

Considering a probability mass of 0.99 the support of a re-parameterized density func-

tion is [−1,+1 +∆x]. Hence optimal functionality is reached at the left boundary of the

support and can be parameterized with ’−1’ for this reason. All in all every device with

functionality deviation x ∈ [−1,−1 +∆x] is supposed to be perfectly constructed.
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Given that distribution parameter λ is either known or estimated by λ̂, the worst absolute

deviation is received through solving the following equation (independent from o.f.!) for

xwa:
o.f.

∫
o.f.−xwa

λeλ(x−o.f.) dx
!= 0.99 (3.2)

Resulting with xwa we parameterize o.f.−xwa to ’+1’ and result in considering the following

parameterization:

� o.f.→ −1

� o.f. − xwa → +1

In order to receive the representable density under the parameterized range of 99% we

have to equalize the following integrals

o.f.

∫
o.f.−xwa

λ̂ e λ̂(x−o.f.) dx =
+1+∆x

∫
−1

λ̃ e−λ̃(x+1) dx

and solve for λ̃. Center point ’0’ plays a secondary role for this distribution. However, the

usage of a CCD design requires observations at center points. Figure 3.3 illustrates the

constructed density, whose dependency structure is only dependent on the chosen ∆x:

Figure 3.3: Exponential distributed accuracy deviation
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3.4 Construction of DOEs

Verifying the deviation effects on a target variable requires lots of observations given

different combinations of device deviations in order to achieve a statement. In the sta-

tionary case it is possible to operate directly with an engine test bench or indirectly over

the AVL GmbH simulation software MoBEOTM, where man-made caused deviation sce-

narios are easy to induce. By comparison, MoBEOTM is faster than the test bench, but

in contrast the software package also falsifies the result to a certain extent.

3.4.1 Previous Approach

So far AVL GmbH accomplished stationary investigations concerning the influences of

production tolerances on emissions over a Monte-Carlo simulation. Particularly a DOE

with about 100 uniformly distributed functionality deviation combinations was simulated

and evaluated. Comparable to this analysis, there were also regression models constructed

concerning the received data. However, yet AVL GmbH has not precisely concerned with

the subject of constant residual variance as discussed in subsection 2.9.2 (The AVL GmbH

internal statistic software CameoTM does not offer a complete Box-Cox-Transformation

routine). Furthermore, also insignificant variables were included in the regression model

(no application of ANOVA), which directly led to an unnecessary expenditure of time.

Eventually about 10000 normally distributed device functionality deviations were ran-

domly selected and in terms of emissions evaluated by the regression model.

This approach is rather inefficient when regarding that the regression model basically

simulates under almost the same conditions, namely close to optimal functionality. Little

differences in the argument are only reasonable when the significance structure of the

predictor (detected through the ANOVA) is already known, and even so, only for highly

significant effects. To conclude, the evaluation performance is rather left to chance.

3.4.2 New Approach

The goal of this thesis is to eliminate the randomness provided by the Monte-Carlo method

and to reach specifically all possible combinations of functionality deviations with error

corresponding to the length ∆x of our defined equivalence classes of deviation. At last it is

possible to weight each combination of device functionality anomalies by the corresponding

probability to occur.

Thus this idea requests a full factorial treatment, which is already for few devices neither

efficiently executable with MoBEOTM nor even less realizable with a test bench. In

addition the robustness investigation was also planned on the HiL (Hardware in the

loop) test bench with a maximum of 100 to 200 NRTC-tests. Full factorial calculations

need considerably more tests to provide a highly informative outcome.
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Assuming five normally distributed devices with an equivalence class increment ∆x = 0.05

would lead to 41 supporting points for each device. Hence a full factorial treatment

involves 415 = 115.856.201 possible combinations of device deviations. Evaluating a C1-

test octuplicates the complexity and finally forces MoBEOTM to a calculation lasting 131.5

years.

A solution for this problem can be derived by a Central Composite Design. Supposing

k devices, we are confronted with a hypercube consisting of a k-dimensional grid with

increment ∆x. Referring to figure 2.16, a CCD proposes to evaluate the corner points,

repeatedly the center point and the axial points. Given that the resulting regression

models have a good performance (residual analysis and R2 resulted satisfactorily), we now

obtained the possibility to estimate every point inside the hypercube with the advantage

that a regression model is a considerable degree faster than MoBEOTM. In addition the

CCD’s attribute of constant prediction variance on spheres discussed in subsection 2.8.2

applies very well to the context. That is, the prediction variance is independent of the signs

within the combination vector, which actually agrees completely with the assumption of

normal distributed functionality deviations. Hence two relative functionality combinations

within the range of 99% – for instance the combinations (−0.95,+0.85) and (+0.95,−0.85)
– have the same probability to occur on the one hand, but any target estimations for both

inputs through a regression model based on a CCD provide the same estimation variance.

Figure 3.4 depicts the two dimensional case.

Figure 3.4: CCD simulation points vs. regression simulation points
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Generally a full 2 factorial CCD consists of 2k + 5 + 2k measuring points. In case of k = 5

devices are respected, 47 experiments have to be executed with MoBEOTM. Additionally

the ANOVA procedure enables a dimension reduction of the hypercube and prevents the

operator from experiments not necessarily needed. The remaining supporting points are

interpolated by simplified regression models with good prediction properties. Supposing

for each C1 point one CCD, the expenditure of total calculation time amounts to 36 min-

utes.

3.4.3 CCD Actuator Devices

Primarily we want to investigate the functional relationship between our considered target

variables and a couple of actuator devices, which are used as predictor variables. The

design matrix X consists of observations from

1. X1 = ECU_phiMi (Main Injection Timing) in degree crank angle

2. X2 = ECU_RailP_Act (Rail Pressure) in bar

3. X3 = ECU_WG_Pos_Act (Waste Gate Position) in percent

4. X4 = ECU_TV_Pos_Act (Throttle Valve Position) in percent

5. X5 = ECU_EGR_Pos_Act (EGR Valve Position) in percent

All listed devices may deviate with their functionality in both directions. In this case

the application of normal distributions to all parameters is adequate. Given all estimated

empirical standard deviations we may compute the worst absolute deviation xwa within

the range of 99%. The predented deviations s and xwa are listed in table 3.2:

Actuator device s
99% deviation from optimal functionality

xwa = ±2.575 s

Main Injection Timing 0.77 ±2○CrA

Rail Pressure 77.00 ±200 bar

Waste Gate Position 1.94 ±5% ECU signal

Throttle Valve Position 7.77 ±20% ECU signal

EGR Valve Position 1.94 ±5% ECU signal

Table 3.2: Actuator functionality deviations
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In subsection 3.3.1 we agreed with the assumption that device deviations are independent

from the engine’s operating status. But up to now it was concealed that device function-

ality deviations may not be (totally) approachable at all operation points.

For example this takes effect when thinking about the functionality deviation of a throttle

valve. At a C1-point there are no problems for xwa = ±20 as long as the optimal function-

ality (o.f.) is within 20% to 80%. Supposing at one point an o.f. = 0 and at the same time

a throttle valve with functionality deviation −20% ECU signal, this leads directly to a

conflict, because it is utterly not possible to open the throttle valve for more than 100%.

For these exceptions it is assumed that the concerned devices operate with the maximum

possible deviation, although the corresponding deviation’s probability remains the same.

Such critical spots are revealed in table 3.3:

C1

point

ECU

_phiMi

ECU

_RailP_Act

ECU_WG

_Pos_Act

ECU_TV

_Pos_Act

ECU_EGR

_Pos_Act

1 10.00 2000.58 29.15 0 25.35

2 6.32 2000.51 27.30 0 31.47

3 5.22 2000.37 0 0 38.68

4 7.35 1468.60 0 0 36.66

5 7.53 2008.58 25.01 0 27.69

6 4.76 1806.89 0 0 32.77

7 2.62 1563.16 0 0 34.75

8 -0.72 500.20 0 0 23.82

Table 3.3: Functionality boundaries

� Calibrations in red are on possible actuator setting limits

� Calibrations in blue are close to possible actuator setting limits

Pretending a maximum value of 2051 bar for Rail Pressure and assuming the lowest pos-

sible settings of both – Throttle Valve Position and Waste Gate Position – with 0% ECU

signal, the subsequent CCD point values illustrated in table 3.4 have to be executed.

Especially for the first C1-point we commit MoBEOTM with table 3.6, which already pro-

vides the accordingly simulated target variables. However real input values of table 3.6

may defalse true existing functionality deviations and therefore have to be treated with

their considered parameterization in the further analysis (compare table 3.5).
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C1

point

ECU

_phiMi

ECU

_RailP_Act

ECU_WG

_Pos_Act

ECU_TV

_Pos_Act

ECU_EGR

_Pos_Act

Factorial point values (−1,+1)

1 (8.00,12.00) (1800.58,2051.00) (24.15,34.15) (0,20) (20.35,30.35)

2 (4.32,8.32) (1800.51,2051.00) (22.30,32.30) (0,20) (26.47,36.47)

3 (3.22,7.22) (1800.37,2051.00) (0,5) (0,20) (33.68,43.68)

4 (5.35,9.35) (1268.60,1668.60) (0,5) (0,20) (31.66,41.66)

5 (5.53,9.53) (1808.58,2051.00) (20.01,30.01) (0,20) (22.69,32.69)

6 (2.76,6.76) (1606.89,2006.89) (0,5) (0,20) (27.77,37.77)

7 (0.62,4.62) (1363.16,1763.16) (0,5) (0,20) (29.75,39.75)

8 (-2.72,1.28) (300.20,700.20) (0,5) (0,20) (18.82,28.82)

Center point values 0

1 10.00 2000.58 29.15 0 25.35

2 6.32 2000.51 27.30 0 31.47

3 5.22 2000.37 0 0 38.68

4 7.35 1468.60 0 0 36.66

5 7.53 2008.58 25.01 0 27.69

6 4.76 1806.89 0 0 32.77

7 2.62 1563.16 0 0 34.75

8 -0.72 500.20 0 0 23.82

Axial point values with (−
√

5,+
√

5)

1 (5.53,14.47) (1553.37,2051.00) (17.97,40.33) (0.00,47.72) (14.17,36.53)

2 (1.85,10.79) (1553.30,2051.00) (16.12,38.48) (0.00,47.72) (20.29,42.65)

3 (0.75,9.69) (1553.16,2051.00) (0.00,11.18) (0.00,47.72) (27.50,49.86)

4 (2.88,11.82) (1021.39,1915.81) (0.00,11.18) (0.00,47.72) (25.50,47.84)

5 (3.06,12.00) (1561.37,2051.00) (13.83,36.19) (0.00,47.72) (16.51,38.87)

6 (0.29,9.23) (1359.68,2051.00) (0.00,11.18) (0.00,47.72) (21.59,43.95)

7 (-1.85,7.09) (1115.95,2010.37) (0.00,11.18) (0.00,47.72) (23.57,45.93)

8 (-5.19,3.75) (52.99,947.41) (0.00,11.18) (0.00,47.72) (12.64,35.00)

Table 3.4: Actuator devices: CCDs for C1-test
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3.4.4 CCD Turbo Charger Quantities

Beside the actuator devices this paper’s interest also lies in the interaction between the

turbo charger efficiency fluctuations and the variations of the target variables. Turbo

chargers improve the engine’s power by compressing the air before reaching the combus-

tion. Two turbo chargers should be accounted, a ’High Pressure’- and a ’Low Pressure’

unit, whereas each separately consists of a turbine powered compressor, whose driving

speed is eventually dependent on the exhaust mass flow rate. The design matrix X for

the regression includes the following variables, which are established by their degree of

efficiency :

1. X1 = HP_Turb_mf (High Pressure Turbine Mass Flow Coefficient)

2. X2 = HP_Turb_eta (High Pressure Turbine Efficiency)

3. X3 = HP_Comp_eta (High Pressure Compressor Efficiency)

4. X4 = LP_Turb_mf (Low Pressure Turbine Mass Flow Coefficient)

5. X5 = LP_Turb_eta (Low Pressure Turbine Efficiency)

6. X6 = LP_Comp_eta (Low Pressure Compressor Efficiency)

While a decrease or even an increase is assumed for mass flow efficiency, in practice the

turbine and compressor efficiencies may only become worse. Hence we model the perfor-

mance of parameters X1 and X4 with a normal distribution and the remaining part with

the exponential distribution.

This knowledge, or respectively the estimation of the corresponding distribution param-

eters, enables a computation of the absolute efficiency deviation xwa within the enacted

range of 99% over equation (3.1) and (3.2).

Turbo charger quantity s λ̂ s ≈ 1/λ̂
99% deviation

from o.f.

HP Turbine Mass Flow 0.0194 ±0.05%
HP Degree Turbine Efficiency 153.5 0.0065 −0.03%

HP Degree Compressor Efficiency 153.5 0.0065 −0.03%
LP Turbine Mass Flow 0.0194 ±0.05%

LP Degree Turbine Efficiency 153.5 0.0065 −0.03%
LP Degree Compressor Efficiency 153.5 0.0065 −0.03%

Table 3.7: Turbo charger efficiency deviations

Analogically to the actuator devices, for each C1-point we construct one CCD with

n = 26 + 5 + 2 ⋅ 6 = 81 runs, respecting the proposed turbo charger quantities. In do-

ing so we assume optimal functionality of all actuator devices. Once again we have the

realizable (table 3.8) and the parameterized CCD (table 3.9):
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Concerning the turbo charger quantities, the effectiveness variations of
√

6xwa from o.f.

are rather unrealistic in practice. For that reason we reduce the distance between design

center and axial points to an arguable deviation value chosen as
√

2. Thus the demand

for independence (outlined in section 2.8) is kept and all parameters remain estimable.

3.5 Statistic Programming Language RTM

The following statistical computations and evaluations were executed with the free avail-

able36 statistic software environment and programming language R, which has the ability

to handle basic mathematical arithmetic operations just as well as complex statistical

function calls. The software is administered by the ’R Development Core Team’, which

assures continuous updates and back ups, which assures the ’being up-to-date’ of the

current evaluations.

Many reasons37 speak for the usage of R, where four should be mentioned at this point:

� The programming language itself is rather intuitive and easy to read, but simulta-

neously also very flexible with the application of statistical functions.

� The amount of different kinds of plots or data tables is not set to any boundaries.

� R is a freeware and can be easily installed on most operation systems as Linux or

Windows.

� The AVL GmbH internal statistic program CameoTM of does not support a com-

plete Box-Cox-Transformation routine.

3.6 Statistical Evaluation

The goal of this subsection is to use an ANOVA test routine to determine which of

the listed engine quantities have a significant influence on a considered target variable.

This influence is estimated through a regression model. Possible non-important predictor

variables can be neglected for the prediction. This reduces the time expenditure of a full

factorial calculation for a multiple of the number of its equivalence classes.

To a greater extent we additionally get an idea which variables are considerable the most

deciding ones for the estimation of the response. With this knowledge it is possible to

select the critical quantities, which have to be constructed more carefully in terms of a

C1-test result of a certain target variable.

36Developed by R. Ihaka, R. Gentleman, Auckland (New Zealand) 1993; License: GNU General Public

License; Homepage: www.r-project.org
37cf. [12], p.633
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3.6.1 ANOVA - Actuator Devices

In order to obtain the break specific values of MF_NOXEO, MFSOOTAE and MF_FUEL

for the C1-test, we have to divide the weighted sum of the eight mass flow results with the

weighted power sum (compare: subsection 3.2.2). Finally we get the results of a C1-test

given the relative actuator deviations purported by eight identically parameterized CCDs

(cf. table 3.10).

R

u

n

ECU

_phiMi

ECU_Rail

P_Act

ECU_WG

_Pos_Act

ECU_TV

_Pos_Act

ECU_EGR

_Pos_Act

BS

_NOXEO

BS

SOOTAE

BS

FC

1 −1 −1 −1 −1 −1 1.633 0.051 240.68

2 −1 −1 −1 −1 +1 1.025 0.094 238.76

3 −1 −1 −1 +1 −1 1.630 0.051 240.60

4 −1 −1 −1 +1 +1 1.021 0.094 238.70

5 −1 −1 +1 −1 −1 1.592 0.061 237.89

6 −1 −1 +1 −1 +1 0.964 0.113 237.42

7 −1 −1 +1 +1 −1 1.586 0.061 238.12

8 −1 −1 +1 +1 +1 0.957 0.114 237.44

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
31 +1 +1 +1 +1 −1 1.972 0.048 229.20

32 +1 +1 +1 +1 +1 1.153 0.106 228.53

33 −2.24 0 0 0 0 1.138 0.070 244.02

34 +2.24 0 0 0 0 1.796 0.070 225.89

35 0 −2.24 0 0 0 1.386 0.087 234.83

36 0 +2.24 0 0 0 1.415 0.065 233.02

37 0 0 −2.24 0 0 1.423 0.063 234.66

38 0 0 +2.24 0 0 1.324 0.082 232.13

39 0 0 0 −2.24 0 1.410 0.069 233.27

40 0 0 0 +2.24 0 1.387 0.072 233.53

41 0 0 0 0 −2.24 2.702 0.021 236.21

42 0 0 0 0 +2.24 0.877 0.129 233.09

43 0 0 0 0 0 1.412 0.069 233.29

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
47 0 0 0 0 0 1.411 0.069 233.32

Table 3.10: CCD C1-test: Results
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After loading table 3.10 for instance via

R Source Code 1: Loading a DOE into R
> read.table(CCD, file="C1_Test_CCD.xls",row.names=F,quote=T,sep=".")

in R, as discussed in section 2.5, we have to define the predictor variables as factors. Thus:

R Source Code 2: Defining variables as factors
> ECU_phiMI <-factor(ECU_phiMI)

> ECU_RailP_Act <-factor(ECU_RailP_Act)

> ECU_WG_Pos_Act <-factor(ECU_WG_Pos_Act)

> ECU_TV_Pos_Act <-factor(ECU_TV_Pos_Act)

> ECU_EGR_Pos_Act <-factor(ECU_EGR_Pos_Act)

Now its is possible to call an ANOVA F-test sequence for all three target variables. At

first we observe prediction effects up to any 3-way interaction. Considering BS_NOXEO

the relating ANOVA function call is

R Source Code 3: Calling an ANOVA table
> mod.aov<-aov(BS_NOXEO~(ECU_phiMI+ECU_RailP_Act+ECU_WG_Pos_Act+ECU_TV_Pos_Act+ECU_EGR_Pos_Act)^3)

> summary(mod.aov)

which is returned as the ANOVA table 3.11:

Df Sum Sq Mean Sq F value Pr(>F)

ECU_phiMI 4 0.9379 0.23447 4.3117e+05 < 2.2e-16 ***

ECU_RailP_Act 3 0.0104 0.00346 6.3562e+03 < 2.2e-16 ***

ECU_WG_Pos_Act 3 0.0739 0.02462 4.5270e+04 < 2.2e-16 ***

ECU_TV_Pos_Act 3 0.0234 0.00781 1.4356e+04 < 2.2e-16 ***

ECU_EGR_Pos_Act 3 5.9890 1.99634 3.6711e+06 < 2.2e-16 ***

ECU_phiMI:ECU_RailP_Act 1 0.0000 0.00001 1.0084e+01 0.009894 **

ECU_phiMI:ECU_WG_Pos_Act 1 0.0036 0.00364 6.6937e+03 1.819e-15 ***

ECU_phiMI:ECU_TV_Pos_Act 1 0.0000 0.00003 4.8218e+01 3.976e-05 ***

ECU_phiMI:ECU_EGR_Pos_Act 1 0.0697 0.06969 1.2815e+05 < 2.2e-16 ***

ECU_RailP_Act:ECU_WG_Pos_Act 1 0.0000 0.00001 1.2200e+01 0.005796 **

ECU_RailP_Act:ECU_TV_Pos_Act 1 0.0000 0.00000 1.1200e-01 0.744774

ECU_RailP_Act:ECU_EGR_Pos_Act 1 0.0004 0.00040 7.4357e+02 1.018e-10 ***

ECU_WG_Pos_Act:ECU_TV_Pos_Act 1 0.0000 0.00000 8.8859e+00 0.013786 *

ECU_WG_Pos_Act:ECU_EGR_Pos_Act 1 0.0001 0.00015 2.6843e+02 1.493e-08 ***

ECU_TV_Pos_Act:ECU_EGR_Pos_Act 1 0.0000 0.00000 2.2804e+00 0.161954

ECU_phiMI:ECU_RailP_Act:ECU_WG_Pos_Act 1 0.0000 0.00001 1.3404e+01 0.004381 **

ECU_phiMI:ECU_RailP_Act:ECU_TV_Pos_Act 1 0.0000 0.00001 9.4789e+00 0.011665 *

ECU_phiMI:ECU_RailP_Act:ECU_EGR_Pos_Act 1 0.0000 0.00001 2.0513e+01 0.001093 **

ECU_phiMI:ECU_WG_Pos_Act:ECU_TV_Pos_Act 1 0.0000 0.00000 9.0050e-01 0.365019

ECU_phiMI:ECU_WG_Pos_Act:ECU_EGR_Pos_Act 1 0.0002 0.00023 4.1471e+02 1.799e-09 ***

ECU_phiMI:ECU_TV_Pos_Act:ECU_EGR_Pos_Act 1 0.0000 0.00000 2.1608e+00 0.172315

ECU_RailP_Act:ECU_WG_Pos_Act:ECU_TV_Pos_Act 1 0.0000 0.00000 3.3350e-01 0.576386

ECU_RailP_Act:ECU_WG_Pos_Act:ECU_EGR_Pos_Act 1 0.0000 0.00000 4.7000e-03 0.946965

ECU_RailP_Act:ECU_TV_Pos_Act:ECU_EGR_Pos_Act 1 0.0000 0.00000 2.1481e+00 0.173468

ECU_WG_Pos_Act:ECU_TV_Pos_Act:ECU_EGR_Pos_Act 1 0.0000 0.00000 1.6600e-01 0.692253

Residuals 10 0.0000 0.00000

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 3.11: ANOVA table: NOx - Actuator devices
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Apparently the proposed model estimates the real values of the CCD perfectly (SSR ≈ 0).

Following that MSR ≈ 0, which leads, more or less independently from the effect improve-

ment, to small p-values. However, in this case small p-values may deceive the operators

decision. This becomes clearer when regarding the p-values of the main effects ECU_TV

_Pos_Act and ECU_EGR_Pos_Act. According to these, both effects are highly significant

for the estimation of the mean of BS_NOXEO, but indeed by comparing the decrease of

SSR (2nd column), ECU_EGR_Pos_Act is much more important.

Before eliminating any main effects, it is essential to verify whether corresponding inter-

action effects are significant or not. In the current case of BS_NOXEO, two main effects

seem to bring comparatively almost no information into the prediction model, namely

ECU_RailP_Act and ECU_TV_Pos_Act. Additionally all interaction effects with these

devices are not significant either. Consequently we advance the following way:

� A prediction model for BS_NOXEO should only account:

ECU_phiMi, ECU_WG_Pos_Act and ECU_EGR_Pos_Act.

� 2-way interactions are sufficient. Eliminate all 3-way interactions.

Given that all interaction enhancements are rather small compared to the

influences of the main effects, ANOVA tables can be easier rated by constructing pie

diagrams. In doing so for each main effect, we implement one slice. To this we attach

an interaction slice, representing all interactions, and an error slice, standing for SSR. All

reflect the percentage of the overall improvement of the linear model compared to the

estimation over the mean. That is, the percentage of main effect A would be SSA
SST .

A pie diagram for the last ANOVA table is presented by figure 3.5:

Figure 3.5: ANOVA - Pie chart: NOx vs. actuator devices
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Regarding figure 3.5 we get a good overview, which devices (and rather more to what

extent) influence the estimation of BS_NOXEO. And exactly this information suggests

which devices are sensitive to BS_NOXEO considering a C1-test. Following that, we

already know the C1-result of BS_NOXEO does not depend on the considered function-

ality tolerances of ECU_TV_Pos_Act and ECU_WG_Pos_Act. More precisely, we should

mainly care about the production of EGR valves.

Repeated ANOVA analyses for BSSOOTAE and BSFC provide the following pie charts:

Figure 3.6: ANOVA - Pie chart: Soot vs.

actuator devices

Figure 3.7: ANOVA - Pie chart: Fuel con-

sumption vs. actuator devices

For both BSSOOTAE (figure 3.6) and BSFC (figure 3.7) interactions are negligible (≈ 1%),

the statements about significant regression predictors can be directly deduced from the

slice’s amplitude.

Hence a linear model of the C1-test result of BSSOOTAE would regard

1. ECU_EGR_Pos_Act

2. ECU_WG_Pos_Act

3. ECU_RailP_Act

and correspondingly the linear model of the C1-test result of BSFC would include

1. ECU_phiMi

2. ECU_WG_Pos_Act

3. ECU_EGR_Pos_Act
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3.6.2 ANOVA - Turbo Charger Quantities

On behalf of AVL GmbH Graz, the functional relationships between the target variables

and the turbo charger quantities should be studied at each single C1-Point in addition

to the whole C1-test analysis, to provide a satisfying answer to the question whether

dependency structures of a target variable change during a C1-test.

Following that, we deal with 9 ANOVA tables (8 single C1-point-tables + 1 complete

C1-test table) for each target variable. Again 3-way interactions have no significant effect

to any considered target variable. The ANOVA results of the linear models considering

2-way interactions are presented by the following plots:

Figure 3.8 - Analysis of NOx:

Each single C1-point pie chart represents the dependency structure of MF_NOXEO,

whereas the last and ninth reflects the ANOVA of the pre-calculated BS_NOXEO C1-test

results. It is clearly indicated that for NOx the most important turbo charger quantities

are both High Pressure Turbine Mass Flow and Low Pressure Turbine Mass Flow. In the

majority of all cases, Compressor- and Turbine Degrees of Efficiencies sum their influence

ratio to about 40%, whereas the single holdings are more or less equal. With exception of

the idle running case residuals and interactions, which are comparatively small. However

latter ones should be kept in a linear model.

Altogether, each of the six turbo charger quantities and the corresponding interactions

should be included in all nine regression models.

Figure 3.9 - Analysis of Soot:

When looking at the single C1-point pies, it may appear – likewise to NOx – that both

mass flow quantities are the leading predictors. But in fact, degrees of efficiencies are more

important for the single Soot results. Even though the idle running state possesses high

significant interactions, the AVL GmbH assumes that these are rather based on random

effects. All in all the last pie chart affirms the previous single results, and it is suggested

to care about all predictor variables when constructing a regression model.

Figure 3.10 - Analysis of Fuel Consumption:

Once again the idle running state is not in accordance with the remaining cases. It provides

a high squared sum of residuals just as well as highly significant interactions. For that

reason a relating prediction model would have submitted a bad performance. Clearly

without ambiguity, both Mass Flows (HP and LP) are the most important predictor

variables, whereas Compressor- and Turbine Degrees of Efficiencies become important

with a decreasing driving speed. In terms of the last chart it would be possible to eliminate

all but the mass flow variables. However, a loss explanation rate of about 4% is not desired,

and therefore all prediction variables are included.
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Figure 3.8: ANOVA - Pie charts: NOx vs. turbo charger quantities
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Figure 3.9: ANOVA - Pie charts: Soot vs. turbo charger quantities
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Figure 3.10: ANOVA - Pie charts: Fuel consumption vs. turbo charger quantities
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3.7 Quadratic Predictors

Due to the ANOVA approach an idea has developed, whether the pretended predictor

variables should be included in a target variable’s second order prediction model. How-

ever, we did not yet check if any predictor variable has to be taken quadratically. Indeed,

this may apply to insignificant predictors.

Following section 2.8 we illuminate the situation trough a plot, connecting the mean val-

ues of the CCD’s parameter values with lines. The graphical results of the NOx model,

which was predicted by the actuator devices, serves as an example in this paper. The

corresponding R command considering ECU_phiMi could be:

R Source Code 4: Inspection for quadratic predictor variables
> l<-min(BS_NOXEO) #lower bound of y-axis

> u<-max(BS_NOXEO) #upper bound of y-axis

>

> Center<-mean(BS_NOXEO[43:47]) #mean NOx result given ECU_phiMI=0

>

> j<-0 #mean NOx result given ECU_phiMI=-1

> for (i in 1:32){

> if (ECU_phiMI[i]==-1){

> j<-BS_NOXEO[i]+j

> }}

> low_mean_nox_phi<-j/16

>

> j<-0 #mean NOx result given ECU_phiMI=+1

> for (i in 1:32){

> if (ECU_phiMI[i]==+1){

> j<-BS_NOXEO[i]+j

> }}

> high_mean_nox_phi<-j/16

>

> axial_neg<-BS_NOXEO[33] #NOx result given ECU_phiMI=-sqrt(5)

> axial_pos<-BS_NOXEO[34] #NOx result given ECU_phiMI=+sqrt(5)

>

> plot(c(ECU_phiMI[33],Phi_low,ECU_phiMI[47],Phi_high,ECU_phiMI[34]

+ ,c(axial_neg,low_mean_nox_phi,Center,high_mean_nox_phi,axial_pos),ylim=c(l,u))

> lines(c(ECU_phiMI[33],Phi_low,ECU_phiMI[47],Phi_high,ECU_phiMI[34])

+ ,c(axial_neg,low_mean_nox_phi,Center,high_mean_nox_phi,axial_pos))
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The resulting line plots of all actuator devices are shown in figures 3.11 - 3.15:

Figure 3.11: Line plot - Main Injection Figure 3.12: Line plot - Rail Pressure

Figure 3.13: Line plot - Waste Gate Figure 3.14: Line plot - Throttle Valve

Figure 3.15: Line plot - EGR Valve

While all actuator devices except the EGR

valve exhibit a rather linear connection to

the break specific NOx value, the nega-

tive quadratic relation between EGR Valve

Position and BS_NOXEO is clearly visible.

Furthermore a positive correlation to Main In-

jection Timing can be identified just as well

as a slightly negative correlation to the Waste

Gate Position. With regard to Rail Pressure

and Throttle Valve Position, the respective

plots presenting almost horizontal lines affirm

the statement of unimportance made in the

ANOVA (see figure 3.5).
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3.8 Residual Analysis and Regression Models

Regarding the last results of the actuator device analysis concerning the predictor of a

second order model, we are now able to write the model:

µ = E(BS_NOXEO) = β0 + β1x1 + β3x3 + β5x5 + β13x1x3 + β15x1x5 + β35x3x5 + β55x2
5

As presented in subsection 3.4.3, x1 (x3, x5) is the observation vector of X1 (X3, X5).

Unknown parameter β = (β0, β1, . . . , β55)T has to be estimated by β̂ = (β̂0, β̂1, . . . , β̂55)T by

means of a Maximum Likelihood Estimation method for instance. Referring to example

2.10 a regression model should not only operate at the pretended DOE levels, but also

anywhere in between. Therefore we have to transform the discrete factor levels of the

DOE into continuous input parameters. That is:

R Source Code 5: Defining factors as continuous variables
> ECU_phiMI=c(rep(c(-1,1), each=16, times=1),-sqrt(5),sqrt(5),rep(0,times=13))

> ECU_RailP_Act=c(rep(c(-1,1), each=8, times=2),rep(0,times=2),-sqrt(5),sqrt(5),rep(0,times=11))

> ECU_WG_Pos_Act=c(rep(c(-1,1), each=4, times=4),rep(0,times=4),-sqrt(5),sqrt(5),rep(0,times=9))

> ECU_TV_Pos_Act=c(rep(c(-1,1), each=2, times=8),rep(0,times=6),-sqrt(5),sqrt(5),rep(0,times=7))

> ECU_EGR_Pos_Act=c(rep(c(-1,1), each=1, times=16),rep(0,times=8),-sqrt(5),sqrt(5),rep(0,times=5))

The estimators of the regression model are easy obtainable trough the ’lm’ command in

R:

R Source Code 6: Calling a regression model
> mod_lm<-lm(BS_NOXEO~(ECU_phiMI+ECU_WG_Pos_Act+ECU_EGR_Pos_Act)^2+I(ECU_EGR_Pos_Act^2))

> summary(mod_lm)

Call:

lm(formula = BS_NOXEO ~ (ECU_phiMI + ECU_WG_Pos_Act + ECU_EGR_Pos_Act)^2 +

I(ECU_EGR_Pos_Act^2))

Residuals:

Min 1Q Median 3Q Max

-0.055294 -0.014317 -0.003606 0.011400 0.112005

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.392830 0.006461 215.563 < 2e-16 ***

ECU_phiMI 0.149413 0.005033 29.684 < 2e-16 ***

ECU_WG_Pos_Act -0.034142 0.005033 -6.783 4.26e-08 ***

ECU_EGR_Pos_Act -0.370512 0.005033 -73.610 < 2e-16 ***

I(ECU_EGR_Pos_Act^2) 0.073683 0.004892 15.063 < 2e-16 ***

ECU_phiMI:ECU_WG_Pos_Act -0.010665 0.005767 -1.850 0.072 .

ECU_phiMI:ECU_EGR_Pos_Act -0.046666 0.005767 -8.092 7.13e-10 ***

ECU_WG_Pos_Act:ECU_EGR_Pos_Act -0.002136 0.005767 -0.370 0.713

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.03262 on 39 degrees of freedom

Multiple R-squared: 0.9942, Adjusted R-squared: 0.9931

F-statistic: 948.8 on 7 and 39 DF, p-value: < 2.2e-16

Table 3.12: Regression model: NOx - Actuator devices
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The command ’summary’ calls an overview table with the most important facts concern-

ing the regression model. As can be seen, at first the residuals’ sample quantiles min = q0,

q1/4, q1/2, q3/4 and q1 = max are shown. In principle they provide information of the

residuals distribution structure. Still, because these are treated separately in the residual

analysis, it is not necessary to give more statements on this information.

The core information of the regression model is presented by the subsequent lines, where

we get a view on the estimated parameters β̂ (column ’Estimate’) along with the ’Std.

Error’ sβ̂, just as well as the information whether single estimators are significant (col-

umn ’t value’ and ’Pr(> ∣ t ∣))’. The evaluation is carried out by a t-test procedure (cf.

subsection 2.4.3), where all but the tested estimator are assumed ≠ 0 (that is: H0 ∶ βj = 0

j = 2, . . . , p − 1). Given the whole model, for instance, the interaction between Waste

Gate Position and EGR Valve Position is not statistically relevant for the given regres-

sion model. But since the amount of predictor variables is rather small, we may consider

an unmodified second order model without drastically affecting the computing time.

In addition to the residual standard-, or respectively the mean squared error MSR (cf.

subsection 2.5.1), R2 and R2
adj (section 2.6) are offered. In the last line we finally find the

F-statistic and corresponding p-value of a global F-test, where H0 ∶ β2 = ⋅ ⋅ ⋅ = βp−1 = 0

(which is a verification test detecting if there is a significant improvement of the whole

regression model over the mean).

3.8.1 Residual Analysis

From the statistical point of view regression models having none of the defects discussed

in section 2.9 are denoted as good prediction models. We already know that any occurring

violations can be detected by the residual structure.

Turning the theory to practice we consult the so far constructed regression model of

BS_NOXEO. To begin with we prospect for indications of a non-constant residual variance,

discussed in subsection 2.9.2. Hence we focus our interests to the Profile(-Log)-Likelihood-

function of the Box-Cox-Transformed target variable (cf. figure 2.26). In R we put this

into action through calling the ’boxcox’ command:

R Source Code 7: Power of the Box-Cox-Transformation
> boxcox(BS_NOXEO~(ECU_phiMI+ECU_WG_Pos_Act+ECU_EGR_Pos_Act)^2+I(ECU_EGR_Pos_Act^2),

+ lambda = seq(-0.7,0.7, 1/8),plotit=T)

As an output we receive the following plot:
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Figure 3.16: Box-Cox-Transformation

Following figure 3.16, R proposes a Box-Cox-Transformation of BS_NOXEO with power

within [−0.5,+0.2]. Previous performed analyses showed that a better residual structure

is achieved by choosing the power of the Box-Cox-Transformation at the right boundary

of the proposed confidence interval. A transformation with λ = 0.15 is chosen and a

summary of the transformed model can be recalled:

R Source Code 8: Calling a Box-Cox-Transformed regression model
> mod.lm<-lm((BS_NOXEO)^(0.15)~(ECU_phiMI+ECU_WG_Pos_Act+ECU_EGR_Pos_Act)^2+I(ECU_EGR_Pos_Act^2))

> summary(mod.lm)

Call:

lm(formula = (BS_NOXEO)^(0.15) ~ (ECU_phiMI + ECU_WG_Pos_Act +

ECU_EGR_Pos_Act)^2 + I(ECU_EGR_Pos_Act^2))

Residuals:

Min 1Q Median 3Q Max

-0.0049822 -0.0013330 -0.0002575 0.0010529 0.0052252

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0506201 0.0004429 2371.931 < 2e-16 ***

ECU_phiMI 0.0160932 0.0003451 46.640 < 2e-16 ***

ECU_WG_Pos_Act -0.0038958 0.0003451 -11.290 7.38e-14 ***

ECU_EGR_Pos_Act -0.0397789 0.0003451 -115.283 < 2e-16 ***

I(ECU_EGR_Pos_Act^2) 0.0034502 0.0003353 10.289 1.14e-12 ***

ECU_phiMI:ECU_WG_Pos_Act -0.0007923 0.0003953 -2.004 0.0520 .

ECU_phiMI:ECU_EGR_Pos_Act -0.0017377 0.0003953 -4.396 8.24e-05 ***

ECU_WG_Pos_Act:ECU_EGR_Pos_Act -0.0011733 0.0003953 -2.968 0.0051 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.002236 on 39 degrees of freedom

Multiple R-squared: 0.9975, Adjusted R-squared: 0.9971

Table 3.13: Regression model: NOx - Actuator devices
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Disregarding the induced constant residual variance, unlike before, the transformed model

exhibits a better performance in terms of smaller residuals, full parameter significance,

smaller MSR, higher R2 and a higher F test value.

Generally possible occurrences of residual violations are exposed over the ’plot(mod.lm)’

call, which is leading to four analysis plots. For the currently existent transformed regres-

sion model we get:

R Source Code 9: Residual diagnostic plots
> plot(mod.lm)

Figure 3.17: Residuals vs. fitted Figure 3.18: Q-Q plot

Figure 3.19: Std. residuals vs. fitted Figure 3.20: High-leverage points and out-

liers

By means of figure 3.17, which reveals a possible conspicuous structure within the

residuals, R addresses to violations 2. (residual variance is not constant) and 4. (Lack of

fit). Figure 3.19 concentrates the residuals over a square root transformation and makes

them comparable by a standardization.
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All in all figure 3.19 can be perceived as a loupe of figure 3.17. Both plots do not exhibit

any model violation.

The Q-Q-plot in figure 3.18 shows a ’more or less’ satisfactory adaption to the reference

line.

Considering figure 3.20 we detect residuals 33, 34, 37 and 41 as outliers. These are the cor-

responding residuals to both, the axial points of ECU_phiMI and the lower axial points of

ECU_WG_Pos_Act and respectively of ECU_EGR_Pos_Act. However, residual-outliers of

axial points do not cause any troubles, because the regression model’s domain is restricted

to [−1,+1] in practice, which does not actually include any axial point by construction.

Indeed residual 41 is due to a high leverage point, and has to be removed, but disregarding

the respective observation would ban the required quadratic consideration of ECU_EGR

_Pos_Act.

Concluding, the transformed regression model has turned out to be quite solid (good

residual behavior and high R2). Hence we may release the so far constructed regression

model for predicting every point within the three dimensional cube with an edge length

of 2, which is [−1,+1]3
.

3.8.2 Regression Models

All relevant regression models were proved on the lines of subsection 3.8.1 and resulted

the following way:

Regression Models - Actuator Devices

Ê(BS_NOXEO⋆) =
µ̂0.15 =1.051 + 0.016x1 − 0.004x3 − 0.040x5 + 0.003x2

5 − 0.001x1x3 − 0.002x1x5−
− 0.001x3 x5

Ê(BSSOOTAE⋆) =
µ̂0.75 =0.140 − 0.008x2 + 0.009x3 + 0.036x5 + 0.003x3x5

Ê(BSFC⋆) =
µ̂−5.35 =2.122 ⋅ 10−13 + 1.948 ⋅ 10−14x1 + 2.023 ⋅ 10−15x2 + 4.248 ⋅ 10−15x3+

+ 2.830 ⋅ 10−15x5 − 1.217 ⋅ 10−16x1x3 − 1.269 ⋅ 10−15x3x5

with x1, . . . , x5 optional input within [−1,+1] corresponding to the considered actuator

devices (cf. subsection 3.4.3).
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Regression Models - Turbo Charger Quantities

Ê(BS_NOXEO⋆) =
µ̂1 =1.491 + 6.307x1 − 3.557x2 − 3.323x3 − 14176x4 + 1.993x5 + 2.062x6−

− 4.730x2
1 + 4.134x1x4 + 5.686x2x4 + 5.527x3x4

Ê(BSSOOTAE⋆) =
µ̂0.4 =5.039 − 3.266x1 − 0.438x2 − 1.112x3 + 0.615x4 − 2.020x5 − 1.276x6

+ 0.839x2
1 + 1.016x1x2 + 0.938x1x3 − 0.439x1x4 − 0.982x2x4 − 1.028x3x4+

+ 0.775x3x5 + 0.841x4x5 + 0.842x4x6

Ê(BSFC⋆) =
µ̂−5 =1.469 ⋅ 10−12 + 3.669 ⋅ 10−14x1 + 3.840 ⋅ 10−15x2 + 4.330 ⋅ 10−15x3+

+ 1.656 ⋅ 10−14x4 + 3.308 ⋅ 10−15x5 + 3.990 ⋅ 10−15x6 + 3.524 ⋅ 10−15x1x4

with x1, . . . , x6 arbitrary selectable in [−1,+1] and related to the set of turbo charger

quantities outlined in subsection 3.4.4. A listing of all single C1-point regression models

for NOx and Soot, as alluded in subsection, 3.6.2 would be beyond the scope of this paper.

3.9 Simulation

By means of the constructed regression models it is now possible to simulate relative de-

viation combinations within the 99% range (cf. figure 3.4). As assumed in section 3.3 we

introduce equivalence classes on [−1,+1] with length ∆x, which determines the accuracy

but also the computing time of the simulation run.

Regarding the prediction model of BS_NOXEO in subsection 3.8.2 we identify three con-

trolling actuator devices (’Main Injection Timing’, ’Waste Gate Valve Position’ and ’EGR

Valve Position’), whose functionality deviations should be explicitly controlled. For this

analysis 41 equivalence classes were chosen for each device. It results in:

∆x = 0.05

Three prediction parameters and a fast operating regression model allow a full factorial cal-

culation of all equivalence class combinations. Therefore we observe 413 = 68921 different

BS_NOXEO results (in g/kWh), produced by the same number of different manufactured

engines. The code conversion of this calculation in R is presented by the following lines:
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R Source Code 10: Simulation: NOx - Actuator devices
#Call regression model.

> mod.NOx<-lm((BS_NOXEO)^(0.15)~(ECU_phiMI+ECU_WG_Pos_Act+ECU_EGR_Pos_Act)^2+I(ECU_EGR_Pos_Act^2))

> Delta<-0.05 #Length of the equivalence classes.

> Amount<-2/Delta+1 #Amount of the equivalence classes.

> PHI<-seq(-1,1,0.05) #Generation of the equivalence classes.

> WG<-seq(-1,1,0.05)

> EGR<-seq(-1,1,0.05)

> Dev_matrix<-cbind(PHI,WG,EGR) #Embracing the classes to a matrix.

> colnames(Dev_matrix)<-c("PHI","WG","EGR") #Labeling.

#Full factorial composition of all #equivalence classes saved to Comp.

> Comp = array(0, dim=c(41^3,3))

> p<-1

> for (a in 1:(Amount)){

+ for (b in 1:(Amount)){

+ for (c in 1:(Amount)){

+ Comp[p,]<-c(Dev_matrix[a,1],Dev_matrix[b,2],Dev_matrix[c,3])

+ p<-p+1

+ }}}

> Save=array(0, dim=c(Amount^3,4,18)) #Initialization of a memory matrix.

> Counter=array(0,dim=c(1,18)) #Counts the amount of results in a class.

#Simulation run.

> C1<-c(1:(Amount^3))

> i<-1

> for (p in 1:(41^3)){

+ dataframe_1<-data.frame(ECU_phiMI=Comp[p,1],ECU_WG_Pos_Act=Comp[p,2],ECU_EGR_Pos_Act=Comp[p,3])

+ C1[i]<-(predict(mod_NOx, dataframe_1))^(1/0.15) #Reverse Box-Cox transformation of the

#output and saving to vector C1.

+ if (C1[i]<=1.04){ #Result rating through 18 classes

+ Counter[,1]<-Counter[,1]+1 #with intermediate length 0.06 g/kWh.

+ Save[Counter[,1],,1]<-c(Comp[p,],c1[i])

+ }

+ if (C1[i]>1.04){

+ if (C1[i]<=1.10){

+ Counter[,2]<-Counter[,2]+1

+ Save[Counter[,2],,2]<-c(Comp[p,],c1[i])

+ }}

+ .

+ .

+ .

+ if (C1[i]>1.94){

+ if (C1[i]<=2) {

+ Counter[,17]<-Counter[,17]+1

+ Save[Counter[,17],,17]<-c(Comp[p,],c1[i])

+ }}

+ if (C1[i]>2){

+ Counter[,18]<-Counter[,18]+1

+ Save[Counter[,18],,18]<-c(Comp[p,],c1[i])

+ }

+ i<-i+1

+ }
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In order to get a better overview of the simulation run results of BS_NOXEO we construct

a histogram:

R Source Code 11: Histogram: Simulation results
> c<-c(1:2) #Sort run for engineering-target. > z<-1

> for (i in 1:(Amount^3)){

+ if(C1[i]>=1.7){

+ c[z]<-C1[i]

+ z<-z+1}}

> d<-c(1:2) #Sort run for C1-target.

> z<-1

> for (i in 1:(Amount^3)){

+ if(C1[i]>=2){

+ d[z]<-C1[i]

+ z<-z+1}}

> hist(C1) #Calling histogram.

> hist(c,add=T,breaks=8,col="orange")

> hist(d,add=T,breaks=2,col="red")

> abline(v=1.7,col="orange")

> abline(v=2,col="red")

Figure 3.21: Simulation run results NOx - Actuator devices

Given the assumptions concerning NOx and the actuator devices (range of 99%, normal

distributed functionality accuracies, pretended standard deviations ŝ), figure 3.21 presents

the non-probability-weigthed results of the regression model.

� 85.50% of experiment space do accomplish the E-Target

� 14.25% of experiment space do not accomplish the E-Target

� 0.25% of experiment space do not accomplish the C1-Target
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Along the previous lines, the simulation was repeated for ’BSSOOTAE’ and ’BSFC’ just

as well as for the group of turbo charger quantities.

3.10 Evaluation of the Results

By means of the histogram in figure 3.21 it is not possible to utilize it for any practical

purpose. We have to focus not only on the result but on the result’s argument, which is

consciously a combination of functionality deviations.

3.10.1 Evaluation - Actuator Devices

In the case of the BS_NOXEO prediction by the actuator devices we may plot all rela-

tive combinations within [−1,1]3 and flag every target-critical result with a color. The

Engineering-target of NOx might be interesting for instance:

R Source Code 12: Critical deviations in a 3D cube - NOx vs. Soot
> k<-1 #Sorting out of critical deviations. > Deviation<-array(0,dim=c(sum(Counter[,13:18]),4))

> for(j in 13:18){ #Results of classes 13-18 are greater or

+ for(i in 1:Counter[,j]){ #equal 1.7 g/kWh.

+ Deviation[k,]<-Save[i,,j]

+ <-k+1

+ }}

> library(rgl) #library ’rgl’ provides 3D-plots.

> plot3d(Deviation[,1:3]*100,col="darkorange",angle=1,type="p")#Calling the plot.

> rgl.snapshot(’Critical_Deviations.png’) #Saving.

Repeating the last lines for BSSOOTAE with its target of 0.09 g/kWh this eventually

leads to the following figures 3.22 and 3.23:

Figure 3.22: Critical actuator deviations

NOx

Figure 3.23: Critical actuator deviations

Soot
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Both plots comply with the results made in terms of the ANOVA. EGR Valve Position

is the decisive predictor variable. Concerning BS_NOXEO, the interaction between Main

Injection Timing and EGR Valve Position is as clearly visible as the interaction between

Waste Gate Position and EGR Valve Position related to BSSOOTAE.

Hence we gain an insight of critical accuracy deviations. Following that we may expect

to pass the Engineering-target of BS_NOXEO, if

� EGR valve functionality deviation is kept within [−35%,+100%] of the considered

99% tolerance interval

� Main Injection Timing is precipitated for more than 70% of its considered 99%

tolerance interval

In almost the same manner we may argue: The pretended target for BSSOOTAE is

accomplished by all means, if

� EGR valve functionality deviation is kept within [−100%,+30%] of the considered

99% tolerance interval

Yet it is not certain whether the presented critical functionality deviations are also critical

in practice. As already noticed, the critical combinations in both cases are rather settled

at the cube’s frame. In terms of normal distributed functionality deviations it can be re-

called, that outer combination points have smaller probabilities to realize than the inner

ones. In addition the description through a deviation-cube is not ultimate for more than

three predictor variables. Thus, it is a better approach to describe the situation directly

through probabilities.

For the implementation of this approach we access the functionality independence among

all predictor devices. Due to definition 2.5 it is possible to multiply the single probabilities

of a deviation combination in order to get the total probability of the entire combination.

Given the normal distributed device deviations, the determined 99% range and an equiva-

lence class length ∆x, we are able to evaluate the C1-test result probabilities of the target

variables. For this purpose we need to compute s̃ (cf. subsection 3.3.2), which is given

by:

s̃ = 1+ 0.05
2

2.575 = 0.398
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For BS_NOXEO we need the subsequent input lines:

R Source Code 13: Probabilities for a NOx C1-result
> P<-array(0,dim=c(18,1)) #Initialization of a probability

> k<-0 #vector P for 18 classes.

> z<-1

> for(j in 1:18){

+ if(Counter[,j]==0){ #Trivial case.

+ P[z]<-0

+ z<-z+1}

+ else{

+ for(i in 1:Counter[,j]){

#Probabilities for a equivalence classes.

+ act_1<-pnorm(Save[i,1,j]+Delta/2,0,0.398)-pnorm(Save[i,1,j]-Delta/2,0,0.398)

+ act_3<-pnorm(Save[i,2,j]+Delta/2,0,0.398)-pnorm(Save[i,2,j]-Delta/2,0,0.398)

+ act_5<-pnorm(Save[i,3,j]+Delta/2,0,0.398)-pnorm(Save[i,3,j]-Delta/2,0,0.398)

+ k<-k+act_1*act_3*act_5 #Multiplication.

+ }

+ P[z]<-k #Saving.

+ z<-z+1

+ k<-0

+ }}

Calling the weighted version of histogram 3.21 requires

R Source Code 14: Histogram: Probability-weighted simulation results
> z<-1

> c<-c(1:2)

> for (i in 1:18){

+ if(P[i]!=0){

+ c[z:((z-1)+P[i]*1000000)]<-rnorm(P[i]*1000000,1.01+0.06*(i-1),0.01)

+ z<-z+round(P[i]*1000000) #Allocation of 1.000.000 random numbers.

+ }} #Percental sectioning by class, whereas #probabilities given the single means

#are equal to the class’ center.

> hist(c,axes=F,prob=T)

> abline(v=1.7,col="orange",lty=2) #Flag engineering-target.

> abline(v=2,col="red",lty=2) #Flag C1-target.

> text(a+0.05,1.5, labels=c("",paste(as.character #Labeling

+ (round(P[1:18]*100, digits=3)),"%",sep="")),pos = 2, srt = 90)

Analog recalls of R source codes 13 and 14 for BSSOOTAE and BSFC generate a his-

togram for each simulation, providing the target result range just as well as the corre-

sponding probabilities. The simulation runs are consequently sorted by its outcome and

the respective probabilities of the arguments are summed up. Executed in R we obtain

figures 3.24 - 3.26, which depict an interesting phenomenon. It seems that the normal dis-

tributed functionality deviations turn into approximately normal distributed C1-results

for all target variables.
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Figure 3.24: Actuator devices: C1-result

probabilities - NOx

Figure 3.25: Actuator devices: C1-result

probabilities - Fuel Consumption

Figure 3.26: Actuator devices: C1-result

probabilities - Soot

Important facts: Due to the chosen

99% range concerning the predictor vari-

ables these histograms do not include

the whole information. More pre-

cisely, for each predictor variable we loose

1%, which implies for the NOx- and Soot

case a controllable probability mass of

0.993 = 0.9703. Indeed all bar probabilities

add themselves to this value and we obtain

a worst case- (WC) and a best case (BC)

scenario.

For BS_NOXEO we consequently get (cf. figure 3.24):

� The Engineering-target is reached with a probability within

[93.88%,93.88% + (100 − 97.03)%] = [93.88%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

WC

,96.85%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

BC

]

� The Engineering-target is not accomplished with a probability within

[3.15%,3.15% + (100 − 97.03)%] = [3.15%
´¹¹¹¹¸¹¹¹¹¶

BC

,6.12%
´¹¹¹¹¸¹¹¹¹¶

WC

]

� The C1-target is not passed with a probability within

[0.003%,0.003% + (100 − 97.03)%] = [0.003%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

BC

,2.973%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

WC

]

Figure 3.26 reveals BSSOOTAE:

� The considered target of Soot is reached with a probability within

[92.40%,92.40% + (100 − 97.03)%] = [92.40%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

WC

,95.37%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

BC

]

� The Engineering-target is not accomplished with a probability within

[4.63%,4.63% + (100 − 97.03)%] = [4.63%
´¹¹¹¹¸¹¹¹¹¶

BC

,7.60%
´¹¹¹¹¸¹¹¹¹¶

WC

]
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Considering BSFC, the results in the histogram of figure 3.25 four predictor variables

have to be respected, and a controllable probability mass of 0.994 = 0.9606 is therefore

faced. In order to maintain the computing times of NOx and Soot, the lengths of the

equivalence classes should be enlarged to ∆x = 0.125 (that are 17 equivalence classes).

With the resulting s̃ = 0.437 we get:

� Target A is kept with a probability within [3.76%
´¹¹¹¹¸¹¹¹¹¶

WC

,7.70%
´¹¹¹¹¸¹¹¹¹¶

BC

]

� Target B is kept with a probability within [72.95%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

BC

,76.89%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

WC

]

The distance between worst- and best case is primarily dependent of the chosen treatment

range of a device’s functionality deviation. In fact it is possible to reduce the probability

intervals to just one exact probability, but only when regarding a 100%- and not a 99%

range. In practice, this is realizable for instance, if the manufacturer rejects devices with

a functionality deviation over a certain level in the forefront of the delivery. However,

meeting this demand is not always possible in reality.

Regardless it is inevitable to ask for more precise results given an observation area smaller

than 100%. In addition to that the critical functionality deviations have not been adressed

yet. Both matters can be settled through fixing a device’s functionality deviation. For

this purpose it is necessary to sort the critical results of each device by its functionality

deviation equivalence classes. Considering EGR Valve Position the source code might be:

R Source Code 15: Grading by critical deviations - EGR Valve Position
> Counter2<-array(0,dim=c(1,Amount)) #Counter for critical results per

#equivalence class.

> phi_store<-array(0,dim=c(10000,4,Amount)) #Memory matrix of critical deviations.

> for (l in 1:Amount){

> for (j in 13:18){ #Engineering target.

> for (i in 1:Counter[,j]) {

+ if(Save[i,3,j]==EGR[l]){ #Save[i,3,j] contains all simulated

+ Counter2[,l]<-Counter2[,l]+1 #deviations of EGR (column 3).

+ phi_store[Counter2[,l],,l]<-Save[i,,j] #Deviation classes j=13:18 cause

+ }}}} #a result >=1.7 g/kWh.

With reference to the simulation results released by the models of BS_NOXEO and

BSSOOTAE, which actually had three predictor variables, each device’s equivalence class

contained 412 = 1681 observations. ’Counter2’ provides the number of critical observa-

tions of each device’s equivalence class (≤ 1681). For the NOx simulation and the EGR

Valve Position we may call those through R source code 16.
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R Source Code 16: Number of critical deviations - EGR Valve Position
> colnames(Counter2)<-c(as.character(EGR)) #Labeling.

> Counter2 #Call.

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

[1,] 1344 1239 1134 1030 923 817 711 605 498 390 282 176 90 36 6 0 0 0

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.14: Number of critical deviations - EGR Valve Position

This result agrees with the information provided by figure 3.22, in which a negative

EGR valve functionality deviation is ’more or less’ independently from the other player’s

deviations accordingly with an increasing number of critical C1 results. Indeed, at this

point the rather more important result is that a general approach for improving the

probability statements of figures 3.24 - 3.26 has been emerged. By means of table 3.14 it

is clearly visible that the positive EGR valve deviations do not cause any critical results.

Following that the worst case scenario can be meliorated by a probability of 0.5% (compare

figure 3.2); more of that should be alluded later.

Given an EGR Valve Position, whose relative deviation is fixed to −0.3 for instance, the

other critical actuator deviations for NOx may be called by:

R Source Code 17: Sorted critical deviations - EGR Valve Position
> colnames(phi_store)<-c("PHI","WG","EGR","C1-result") #Labeling.

> phi_store[1:counter2[,15],,15] #Call of class ’-0.3’.

PHI WG EGR C1-result

[1,] 0.95 -1.00 -0.3 1.701015

[2,] 1.00 -1.00 -0.3 1.710149

[3,] 1.00 -0.95 -0.3 1.707870

[4,] 1.00 -0.90 -0.3 1.705593

[5,] 1.00 -0.85 -0.3 1.703319

[6,] 1.00 -0.80 -0.3 1.701047

Table 3.15: Critical deviations of a fixed EGR Valve Position functionality deviation

The result above has no probability weighting, which is indeed necessary to make things

interpretable. Hence we aspire a construction of an overview matrix for each predictor

variable, which contains the probability for a critical result in every equivalence class.

In addition to make it comparable, the ratio between the theoretical probability and the

critical probability of each case has to be regarded. Again the implementation will be

presented for BS_NOXEO and EGR Valve Position. In the process all probabilities of

each critical combination with an equal EGR valve deviation are added. Hence we receive

the probability of a critical result respecting the realization probabilities of the other

corresponding deviations. Moreover we want to include table 3.14.
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R Source Code 18: Critical ratio of the EGR valve functionality deviation
> l<-1 #Summation of all probabilities of

> o<-0 #critical deviations given a fixed

> Overview<-array(0,dim=c(Amount,5)) #EGR valve deviation.

> Overview[,1]<-EGR #Save deviation grid to column 1

> for(j in 1:Amount){

+ for(i in 1:Counter2[,j]){

+ for(f in 1:3){

+ l<-l*(pnorm(phi_store[i,f,j]+Delta/2,0,0.398)-pnorm(phi_store[i,f,j]-Delta/2,0,0.398))

+ }

+ o<-l+o

+ l<-1

+ }

+ Overview[j,2]<-o #Saving the critical equivalence

+ o<-0 #class probabilities to column 2.

+ }

> pgrid<-array(0,dim=c(Amount)) #Computation of the theoretical

> j<-1 #probabilities.

> for (i in 1:Amount){

> pgrid[j]<-pnorm(EGR[i]+Delta/2,0,0.398)-pnorm(EGR[i]-Delta/2,0,0.398)

> j<-j+1}

> Overview[,3]<-pgrid*0.99^2 #Scaling and saving to column 3.

> Overview[,4]<-proba[,2]/proba[,3] #Ratio critical vs. theoretical

#probability saved to column 4.

> Overview[,5]<-Counter2 #Critical amount saved to column 5.

#Labling.

> colnames(Overview)<-c("Equivalence class","Critical prob.","Theoretical prob.","Ratio","Counter2")

> Overview #Call.

Equivalence class Critical prob. Theoretical prob. Ratio Counter2

[1,] -1.00 1.98e-03 0.002 0.942 1344

[2,] -0.95 2.54e-03 0.003 0.891 1239

[3,] -0.90 3.12e-03 0.004 0.818 1134

[4,] -0.85 3.62e-03 0.005 0.720 1030

[5,] -0.80 3.93e-03 0.007 0.602 923

[6,] -0.75 3.93e-03 0.008 0.472 817

[7,] -0.70 3.63e-03 0.010 0.347 711

[8,] -0.65 3.08e-03 0.013 0.238 605

[9,] -0.60 2.35e-03 0.016 0.149 498

[10,] -0.55 1.60e-03 0.019 0.085 390

[11,] -0.50 9.77e-04 0.022 0.044 282

[12,] -0.45 4.94e-04 0.026 0.019 176

[13,] -0.40 1.75e-04 0.030 0.006 90

[14,] -0.35 3.53e-05 0.033 0.001 36

[15,] -0.30 1.91e-06 0.037 0.000 6

[16,] -0.25 0.00e+00 0.040 0.000 0

[17,] -0.20 0.00e+00 0.043 0.000 0

... ... ... ... ... ...

[39,] 0.90 0.00e+00 0.004 0.000 0

[40,] 0.95 0.00e+00 0.003 0.000 0

[41,] 1.00 0.00e+00 0.002 0.000 0

Table 3.16: Critical ratio of the EGR Valve deviation
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With the aid of the column ’Ratio’ we may easily implement a graphical version of the

table ’Overview’. For this purpose we assume 100.000 EGR valve devices with normal

distributed functionality deviations with parameters µ = 0 and σ = s̃ = 0.398.

R Source Code 19: Histogram: Critical ratio of EGR Valve Position deviation

> X <- rnorm(100000,mean=0,sd=(0.398)) #Generation of the EGR valves.

> table<-array(0,dim=c(100000,Amount)) #Initialization memory table

> z<-1 #Outcome classification by

> for (j in 1:Amount){ #equivalence classes.

+ for (i in 1:100000){

+ if(X[i]>=EGR[j]-Delta/2){

+ if(X[i]<=EGR[j]+Delta/2){

+ table[z,j]<-X[i] #Saving.

+ z<-z+1}}}

+ z<-1

+ }

> A<-array(0,dim=c(Amount)) #Elimination of non-necessary lines.

> for (j in 1:Amount){

+ for(i in 1:100000){

+ if(table[i,j]!=0){

+ if(table[i+1,j]==0){

+ if(table[i+2,j]==0){

+ A[j]<-i

+ }}}}}

> B<-array(0,dim=c(sum(A))) #Critical amount =

> z<-1 #Theoretical amount*ratio.

> for(j in 1:Amount){

+ for(i in 1:(round(Overview[j,4]*A[j])+1)){

+ B[z]<-table[i,j]

+ z<-z+1

+ }}

> l<-0 #Elimination of non-necessary lines.

> for(i in 1:sum(A)){

+ if (B[i]!=0){

+ if (B[i+1]==0){

+ if (B[i+2]==0){

+ l<-i

+ }}}}

#Calling histogram.

> hist(X, axes=F,prob=F,breaks=seq(-1-Delta/2,1+Delta/2,by=Delta),col="green")

> axis(1,at=c(-1,-0.5,0,0.5,1)) #Re-labeling.

> axis(2,at=c(0,1000,2000,3000,4000,5000),labels=c(0,0.01,0.02,0.03,0.04,0.05))

#Adding critical amount.

> hist(B[1:l],breaks=seq(-1-Delta/2,1+Delta/2,by=Delta),col="orange",add=T)

> xfit<-seq(min(X),max(X),length=Amount-1) #Exposing density of the concerning

> yfit<-dnorm(xfit,mean=mean(X),sd=sd(X)) #normal distribution.

> yfit <- yfit*diff(h$mids[1:2])*length(X)

> lines(xfit, yfit, col="blue")

Respecting the distributions of all other device’s deviations at the same time, the resulting

histogram in figure 3.27 gives information about critical EGR valve functionality devia-

tions, which are denoted by 41 relative equivalence classes. Thus, pretending a C1-target,

every occurrence probability of a device’s deviation is split up in a critical part and an

uncritical part, whereas the ratio is determined by all included predictor devices. Reap-

plications of R source codes 13 - 19 produce the corresponding device analysis histograms

for all desired target variables.
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Figure 3.27: Critical deviations:

EGR Valve Position - C1 result NOx

Figure 3.28: Critical deviations:

Main Injection Timing - C1 result NOx

Figure 3.29: Critical deviations:

Waste Gate Position - C1 result NOx

Hence a dimensional independent approach

for the determination of critical device

deviations in terms of a C1-test target

has been developed. The orange bars of

figures 3.27 - 3.29 denote the probabili-

ties of an Engineering-target failure given a

device functionality deviation is located in

a certain equivalence class. Indeed the sum

of all critical probabilities is identical for

each device, and corresponds to the criti-

cal probability illustrated in figure 3.24.

By now it is possible to improve the presented worst- and best case statements made by

means of figures 3.24 - 3.26. Regarding the Engineering-target of BS_NOXEO we may

re-evaluate:

� Figure 3.27: EGR Valve Position beyond ’+1’ uncritical.

Worst case upgrade for ≈ 0.495%

� Figure 3.27: EGR Valve Position beyond ’−1’ critical.

Best case downgrade for ≈ 0.495%

� Figure 3.28: Main Injection Timing beyond ’−1’ uncritical.

Worst case upgrade for ≈ 0.495%

� Figure 3.29:Waste Gate Position beyond ’±1’ uncritical.

Worst case upgrade for ≈ 0.99%

BS_NOXEO C1-targets are reached with a probability within

Engineering-target: [93.880% + 1.980%,96.850% − 0.495%] = [95.860%,96.355%]

C1-target: [96.730% + 1.980%,99.997% − 0.495%] = [98.710%,99.502%]
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Figure 3.30: Critical deviations:

EGR Valve Position - C1 result Soot

Figure 3.31: Critical deviations:

Rail Pressure - C1 result Soot

Figure 3.32: Critical deviations:

Waste Gate Position - C1 result Soot

Critical actuator device deviations of the

C1-test result for BSSOOTAE are depicted

by figures 3.30 - 3.32. Again the EGR

Valve Position is the representative quan-

tity, which automatically leads to an ac-

complishment of the considered C1-test

target of Soot independently from the devi-

ations of the remaining devices with a rel-

ative functionality greater or equal ’+0.3’.

Similar to BS_NOXEO, the current probability interval regarding a positive pass of the

Soot target should be updated:

� Figure 3.30: EGR Valve Position beyond ’−1’ uncritical.

Worst case upgrade for ≈ 0.495%

� Figure 3.30: EGR Valve Position beyond ’+1’ critical.

Best case downgrade for ≈ 0.495%

� Figure 3.31: Rail Pressure beyond ’+1’ uncritical.

Worst case upgrade for ≈ 0.495%

� Figure 3.32:Waste Gate Position beyond ’−1’ uncritical.

Worst case upgrade for ≈ 0.99%

C1-test target is reached with a probability within

Soot-target: [92.400% + 1.485%,95.370% − 0.495%] = [93.885%,94.875%]
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A typical problem of engine exhaust emission tests is the NOx Soot trade-off. The C1-

test measurements of both emission types should be kept low, although the NOx result

directly competes with the Soot result. This incident is relevant when comparing the

NOx and Soot results of table 3.6 by figure 3.33 for instance.

Figure 3.33: NOx - Soot trade-off

The relationship is not linear but quadratic, and therefore the critical device deviations

are not easy to uncover. However one advantage can be found in the predicament. As

long as only one device exhibits disjoint target-critical domains regarding NOx and Soot,

the critical probability masses of all devices are also disjoint. This is due to the fact

that critical integrated probabilities affect all devices, and therefore also the one with the

disjoint domain.

This clearly applies to figure 3.27 and figure 3.30, where on the one hand only the left

boundary is critical for the NOx result, whereas on the other hand only the right boundary

causes problems in terms of the C1-target of Soot. Hence we may match both histograms

to illustrate the probability to achieve both targets. Certainly we still have to account for

one circumstance. A matching of both histograms claims for absolute comparability. Yet,

there is a difference between the set of predictor variables. While NOx is predicted among

others exclusively by Main Injection Timing, Soot is predicted also by Rail Pressure, which

is likewise not considered for NOx. Conversely both actuator devices have no significant

influence to the other target variables. For that reason we add Rail Pressure to our NOx

estimation assumptions, just as well as Main Injection Timing to the considered Soot

estimation assumptions. Due to the fact that both inputs have no influence to their

target variables, probabilities of critical areas do not significantly change. In fact we have

to update the controllable probability to 0.994 = 0.9606 before making any statements.
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A match of figure 3.27 and 3.30 is presented in figure 3.34

Figure 3.34: Critical deviations: EGR Valve Position - NOx Soot trade-off

The worst case probability to achieve the Engineering-target for NOx and the considered

target for Soot is given by

Worst-case scenario: (0.994 ⋅ 100)% − 3.15%
´¹¹¹¹¸¹¹¹¹¶

BC - NOx

− 4.63%
´¹¹¹¹¸¹¹¹¹¶

BC - Soot

= 88.28%

The best case scenario is obtained through

Best-case scenario: (100 ⋅ (1 − 0.994))% + 88.28% = 92.22%

As previously arranged we aspire a diminution of the calculated probability interval.

Regarding the boundaries of figure 3.34 it becomes clear that we definitely have to degrade

our best cases ’promises’ for

(1 − 0.994)/4 = 0.00985

As previously explained we may also match both waste gate histograms, illustrated in

figure 3.29 and 3.32, and simply stack the critical probabilities on top of each other.

Figure 3.35: Critical deviations: Waste Gate Position - NOx Soot trade-off

Figure 3.35 displays an uncritical left boundary, which indicates a worst-case improve-

ment of 0.49%. Regarding figures 3.28 and 3.31 increases the ’promises’ for 0.98%.
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Given all actuator device assumptions, it is eventually possible to display the improved

probability intervals to achieve both target combinations in table 3.17:

C1-test result BS_NOXEO

Engineering-Target C1-Target

C1-test result

BSSOOTAE

Soot-

Target
[89.75%,91.23%] [91.45%,94.88%]

Table 3.17: Probabilities to achieve NOx and Soot target

In the next step we want to occupy our studies with the question, how accurate all devices

have to be produced in order to achieve both C1-test goals; the Engineering-target of

NOx and the pretended target of Soot. As already emerged, EGR Valve Position is for

both, NOx and Soot the most important predictor variable. It definitely makes sense to

experiment with different accurate EGR valve productions as recently expressed. On the

basis of R source code 20 it is possible to execute this. While other deviation parameters s

remain unmodified, we want to try different theoretical standard deviations σ of the EGR

Valve Position, and compare the resulting probabilities to achieve both C1-test targets.

Thus before executing R source code 19 we have to uncover the real estimated deviation

s:

s̃ = 1+∆x
2

2.575 = 1+∆x
2

xwa
s

R Source Code 20: Influences of a more accurate EGR valve production to a

C1-test result
> k<-0

> v<-1

> Sigma<-c(5,3,2.5,2,1.4,1.2,1,0.8,0.5,0.2,0.1) #Possible EGR valve functionality

> Crit_Prob<-array(0,dim=c(length(Sigma),2)) #standard deviations sigma of interest.

> for (d in 1:length(Sigma)){

+ z<-1

+ for(j in 1:18){

+ if(counter[,j]==0){ #Trivial case.

+ P[z]<-0

+ z<-z+1}

+ else{

+ for(i in 1:counter[,j]){

+ act_1<-pnorm(deviation[i,1,j]+Delta/2,0,0.398)-pnorm(deviation[i,1,j]-Delta/2,0,0.398)

+ act_3<-pnorm(deviation[i,2,j]+Delta/2,0,0.398)-pnorm(deviation[i,2,j]-Delta/2,0,0.398)

+ act_5<-pnorm(deviation[i,3,j]+Delta/2,0,(1+Delta/2)/(5/Sigma[d]))

+ -pnorm(deviation[i,3,j]-0.025,0,(1+Delta/2)/(5/Sigma[d]))

+ k<-k+act_1*act_3*act_5

+ }

+ P[z]<-k

+ z<-z+1

+ k<-0

+ }}

+ Crit_Prob[v,]<-c(Sigma[d],sum(P[13:18])) #Saving s and probability for not

+ v<-v+1 #achieving Engineering-target

+ P<-array(0,dim=c(18,1))

+ }
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Consequently, an overview with the best-case scenarios to fail the C1-test targets just as

well as the worst-case probabilities for accomplishing both targets is received, which is

stated in table 3.18. As presented in table 3.2, the estimated standard deviation of the

EGR Valve Position was approximately s = 2 until now.

Theoretical σ

EGR

Valve

Position

Worst absolute

deviation xwa

within the 99%

range

Best case

probability for

Engineering-target

failure

Best case

probability of

the

Soot-target

failure

Worst case

probability to

achieve both

C1-targets

5.0 ±12.88% ECU-sgn 7.24% 9.39% 79.43%

3.0 ±7.73% ECU-sgn 6.48% 8.74% 80.84%

2.5 ±6.44% ECU-sgn 5.17% 7.18% 83.71%

2.0 ±5.15% ECU-sgn 3.19% 4.69% 88.18%

1.4 ±3.61% ECU-sgn 0.81% 1.39% 95.05%

1.2 ±3.09% ECU-sgn 0.35% 0.66% 95.72%

1.0 ±2.58% ECU-sgn 0.11% 0.23% 95.99%

0.8 ±2.06% ECU-sgn 0.02% 0.05% 96.06%

0.5 ±1.29% ECU-sgn 0.00% 0.00% 96.06%

0.2 ±0.52% ECU-sgn 0.00% 0.00% 96.06%

0.1 ±0.26% ECU-sgn 0.00% 0.00% 96.06%

Table 3.18: Influences of a more accurate EGR valve production to a positive NOx and

Soot C1-test result

At the end of this subsection we want to concern ourselves with the Fuel Consumption

analysis during a C1-test. So far the the following results have been collected:

� The ANOVA detected four significant predictors for BSFC

1. Main Injection Timing

2. Rail Pressure

3. Waste Gate Position

4. EGR Valve Position

� 0.994 = 0.9606 controllable probability

� ∆x = 0.125⇒ s̃ = 0.437 corresponds to 17 equivalence classes

� 174 = 83521 BSFC simulation results

� Simulation time cost: ≈ 6 minutes
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Given the pretended actuator device functionality deviations we computed the distribution

of the C1-test results through R source codes 13 and 14 and received:

� Probability for target A: [3.76%
´¹¹¹¹¸¹¹¹¹¶

WC

,7.70%
´¹¹¹¹¸¹¹¹¹¶

BC

]

� Probability for target B: [72.95%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

BC

,76.89%
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

WC

]

Again we aspire an improvement of these intervals by regarding the boundaries of figures

3.36 to 3.39.

Figure 3.36: Critical deviations:

Main Injection Timing - C1 result BSFC

Figure 3.37: Critical deviations:

Waste Gate Position - C1 result BSFC

Figure 3.38: Critical deviations:

Rail Pressure - C1 result BSFC

Figure 3.39: Critical deviations:

EGR Valve Position - C1 result BSFC

Regarding figure 3.37 to 3.39 all boundaries are not clearly uncritical for target B, and

even less for target A. However, figure 3.36 claims an increase of the worst-case scenario

of 0.49% for both targets, but also a decrease of the best case scenario of 0.49%. At last

we update the probability intervals to:

BSFC C1-targets are reached with a probability within

Target A: [4.253%,7.208%]

Target B: [73.443%,76.397%]
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3.10.2 Evaluation - Turbo Charger Quantities

Last but not least the developed research method should be applied to the considered

turbo charger quantities. We have to respect one fundamental difference compared to the

subsection of the actuator devices. Instead of assuming a normal distributed functionality

deviation of all devices (illustrated in figure 3.2), here we have to consider also exponential

distributed deviations (see figure 3.3).

Furthermore we want to continue the research of subsection 3.6.2, where two methods

have been compared: On the one hand the simulated C1-test measurements, which were

the result of eight combined C1 operation point DOEs, which were directly used for

the parameter estimation of one regression model. On the other hand and based on

the simulated data of each C1-test operation point we generated a regression model and

combined the single model predictions to a C1-test result.

Recapitulating table 3.7 and the ANOVA results of subsection 3.6.2 the following overview

list is arranged:

� ANOVA: All six components significant are for NOx, Soot and BSFC

� 0.996 = 0.9415 maximal analytically achievable probability

� Deviation grid equivalence classes

Normal distribution: ∆x = 1/3⇒ s̃ = 0.453

Exponential distribution: ∆x = 0.005⇒ λ̂ = 131.58⇒ 1/λ̂ = 0.0076

� 7 equivalence classes ⇒ 76 = 117649 different experiments

� Simulation time ≈ 9 minutes

The execution of the correspondingly modified R source codes 13 - 14 on both C1-test

NOx results, provided through one regression model on the one hand, and through eight

single regression models contrariwise, leads to the following histograms:

Figure 3.40: Turbo charger quantities: Composite C1 result probabilities - NOx
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Figure 3.41: Turbo charger quantities: C1 result probabilities - NOx

In both histograms there is no significant difference between the conducted results visible

according to the statement of the AVL GmbH. To obtain the results in figure 3.40, there

is the eightfold complexity required compared to those in figure 3.41. Since there are no

real comparable measurements to the predictions, we favor the less expensive approach

concerning this analysis. Moreover NOx responds uncritically to the assumed manufac-

turer tolerances. Thus we forbear of a boundary investigation.

Reapplications of R source codes 13 - 14 to Soot produce the subsequent histograms

depicted in figures 3.42 to 3.43.

Figure 3.42: Turbo charger quantities:

Composite C1 result probabilities - Soot

Figure 3.43: Turbo charger quantities: C1

result probabilities - Soot

Even if both methods cause noticeable different probabilities, for all that, the probability

to fail the target of Soot, on which basically we account for, remains almost the same.

The situation is not that bad represented, but in fact to a certain extent we still remain

critical. The uncontrollable boundaries should be roughly inspected trough a histogram

called by R source codes 13 and 19.
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Figure 3.44: Critical deviations:

HP Turbine Mass Flow - C1 result Soot

Figure 3.45: Critical deviations:

HP Turbine Efficiency - C1 result Soot

Figure 3.46: Critical deviations:

HP Compressor Efficiency - C1 result Soot

Figure 3.47: Critical deviations:

LP Turbine Mass flow - C1 result Soot

Figure 3.48: Critical deviations:

LP Turbine Efficiency - C1 result Soot

Figure 3.49: Critical deviations:

LP Compressor Efficiency - C1 result Soot

None of figures 3.44 to 3.49 exhibit any critical boundaries in the displayed graphics.

However a view on the corresponding overview table 3.16 reveals that exponential deviated

devices induce a worse Soot outcome the more they deviate over the considered boundary.

Therefore the best case scenario has to be reduced for (1−0.994)⋅100 ≈ 3.94%. In the next

step it can be observed that the more high pressure- and low pressure mass flow deviate

positively, the better for a lower C1-test result of Soot. Following that we upgrade the

worst case scenario for 0.5%. Althogether we have:

C1-test target is reached with a probability within

Soot-target: [94.64%,96.06%]



124 Chapter 3. Robustness Investigation

After the detection of the uncritical NOx behavior concerning the pretended turbo charger

functionality deviations, we have to focus on the C1-test Soot result, when changing the

construction accuracy of the manufacturer. The last pie chart of the ANOVA summary

in figure 3.9 assigns Low Pressure Mass Flow and High Pressure Compressor Efficiency as

the most important predictor variables. Therefore we pretend certain accuracy levels for

these and let them variate and record the change of the Soot outcome. Hence, we present

the appositely modified R source code 20 and give a ’résumé’ of the worst case scenario

over a 3D plot (compare figure 3.50).

Figure 3.50: Influences of a more accurate turbo charger production to a positive Soot

C1-test result

While the current worst case scenario is approximately revolved by the red circle, a remark-

able good trade-off point is highlighted trough the pointing arrow. At these coordinates

– (σ = 0.02, λ = 161), corresponding to xwa = 4.680% and respectively to xwa = 0.0286% –

the worst case probability to achieve the Soot-target is 95.59%.

At the end of this subsection the BSFC results, depicted in figure 3.51, should be con-

sulted:

Figure 3.51: Turbo charger quantities: C1 result probabilities - Fuel Consumption
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While the accomplishment of target A has a probability within [1.21%,7.06%], we can

expect to pass target B with a probability within [94.15%,100.00%]. The boundaries of

figures 3.52 and 3.57 reveal an almost definite probability of 1.21% to pass target A while

target B has no critical boundaries.

Figure 3.52: Critical deviations:

HP Turbine Mass Flow - C1 result BSFC

Figure 3.53: Critical deviations:

HP Turbine Efficiency - C1 result BSFC

Figure 3.54: Critical deviations:

HP Compressor Efficiency - C1 result

BSFC

Figure 3.55: Critical deviations:

LP Turbine Mass flow - C1 result BSFC

Figure 3.56: Critical deviations:

LP Turbine Efficiency - C1 result BSFC

Figure 3.57: Critical deviations:

LP Compressor Efficiency - C1 result BSFC

BSFC C1-targets are reached with a probability of

Target A: ≈ 1.21%

Target B: 100%





Chapter 4

Conclusion and Outlook

The objective of this diploma thesis is to develop a mathematical and respectively a sta-

tistical method which analyzes the influences of engine device functionality deviations on

the exhaust emission results of a stationary C1-test. This paper in particular dealt with

the actuator devices and both turbo chargers of a Tier 4 Interim diesel engine with a

displacement of approximately 10l and a rated power of 270kW.

The general idea of the deduced evaluation method was to simulate every possible scenario

and arrange it with an according probability of occurrence. However, the realization of

this idea demands the adoption of distributions, which modeled every single functionality

deviations among one considered device. In the presented process the normal- and the

exponential distribution are exposed to be suitable for modeling these tolerances. Due

to the fact that these distributions have a continuous domain, it was necessary to cut off

the domain at certain points on the one hand, but also section the remaining part into

a countable number of equivalence classes on the other hand. Consequently it remained

a countable number of combined deviation scenarios, which were only dependent on the

length ∆x of the equivalence classes and from the amount of considered devices, whereas

all combinations were hit by a full factorial calculation. The utilization of the AVL GmbH

internal simulation software MoBEOTM was not appropriate for the huge amount of sim-

ulations, so that it was necessary to adopt DOE based and residual analysis approved

regression models to assume the role of MoBEOTM. A good coefficient of determination

(R2 ≈ 1) and the insertion of quadratic predictors assured adequate simulation results.

Finally it was possible to detect the critical deviation area of each devices’ C1-test result

over a histogram, and the probability of a target variable to fail the C1-test. Recapitula-

tory this paper offeres specifications how accurate single devices have to be produced in

order to achieve still positive C1-test results in terms of Soot and NOx.
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4.1 Results - Actuator Devices

As listed in table 3.2, five actuator devices with their explicit given functionality stan-

dard deviations s were consulted for the analysis. Experts agree about modeling these

deviations over normal distributions, which led to the problem that DOE purported de-

viations were not achievable at some operation points. This problem was resolved by

passing MoBEOTM those convertible device deviations, which were as closest as possible

to the unaccessible DOE proposed deviations, whereas the parametrization remained the

same. For this purpose and combined with the assumption that device deviations do not

change within the operation map, it was possible to embrace all eight C1-point DOEs to

one single DOE, which represented the whole C1-test. The comparability was achieved

by a deviation re-parametrization to {−1,0,+1}. The expansion to a Central Composite

Design and its additional observations at the axial points {−
√

5,+
√

5} enabled quadratic

predictors for a proximate regression model, which was intended for predicting any devi-

ation combination within the interval [−1,+1].
Before arranging the regression models for each of the target variables, it was necessary

to verify through the ANOVA which of the considered actuator devices and which of their

joint interactions had a significant predictor status. Table 4.1 shows the percentages of

the overall enhancement when using a regression model for the prediction of the target

variables instead of their mean.

C1-Test
sign emp.

covariance
NOx

sign emp.

covariance
Soot

sign emp.

covariance

Fuel

Consumption

MI + 13% 0% + 92%

RP 0% − 4% + 1%

WG − 1% + 6% + 5%

TV 0% 0% 0%

EGR − 85% + 89% + 2%

Interactions 1% 1% 1%

Table 4.1: Influences actuator devices

The regression model of NOx was the only model which respected a quadratic predictor,

even if this applied only to the EGR Valve Position.

The simulation values alone had no explanatory power without weighting the predictions’

arguments with probabilities, so that the first statements in form of a worst- and best

case scenario were assignable with histograms 3.24 to 3.26.
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In form of probability intervals these statements were improved and respectively short-

ened by histograms 3.27 to 3.39, wherein critical boundaries were illustrated. In terms of

accomplishing the desired C1-test target, the improved probability intervals are recapit-

ulated by table 4.2:

C1-test target Probability interval

NOx C1-target [98.710%,99.502%]
NOx Engineering-target [95.860%,96.355%]

Soot-target [93.885%,94.875%]
Soot-target & NOx C1-target [91.450%,94.880%]

Soot-target & NOx Engineering-target [89.750%,91.230%]
Fuel Consumption target A [4.253%,7.208%]
Fuel Consumption target B [73.443%,76.397%]

Table 4.2: Actuator devices: Probabilities to pass C1-test targets

Through a more accurate EGR valve production, reflected by a reduction of the func-

tionality standard deviation from s = 2 down to s = 0.8, the probability interval to pass

the Engineering-target of NOx and the C1-target of Soot could have been meliorated to

[96.06%,100.00%].

4.2 Results - Turbo Charger Quantities

The functionality deviations of the six turbo charger quantities were described over effi-

ciency deviations, which required additionally the adoption of the exponential distribution

(cf. table 3.7). In contrast to the actuator devices, the question was addressed, whether

there are significant dependency differences within the C1-test operation map. However,

in that case it turned out that there are no differences among the C1-test failure prob-

abilities, when on the hand using eight single regression models and on the other hand

using only one regression model (cf. evaluations of subsection 3.8 and 3.9). On this ac-

count we continued the analysis with the more time-saving version (with one regression

model). Along the lines of table 4.1, table 4.3 presents the percental reduction of the

residual square sum SSR given that all turbo charger quantities are respected for the

regression model. Furthermore High Pressure Turbine Mass Flow Coefficient turned out

to be quadratically required in the predictor of the NOx and the Soot model.
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C1-Test
sign emp.

covariance
NOx

sign emp.

covariance
Soot

sign emp.

covariance

Fuel

Consumption

HP MF + 27% − 11% + 79%

HP TU − 11% − 15% + 1%

HP CO − 12% − 18% + 1%

LP MF − 27% + 21% + 16%

LP TU + 10% − 16% + 1%

LP CO + 11% − 17% + 1%

Interactions 2% 2% 2%

Table 4.3: Influences turbo charger quantities

In dependence on table 4.2 the probability results of the turbo charger quantities should

be outlined in table 4.4 all the same:

C1-test target Probability interval

NOx C1-target ≈ 100.00%

NOx Engineering-target ≈ 100.00%

Soot-target [94.640%,96.06%]
Soot-target & NOx C1-target [94.640%,96.06%]

Soot-target & NOx Engineering-target [94.64%,96.06%]
Fuel Consumption target A ≈ 1.21%

Fuel Consumption target B ≈ 100.00%

Table 4.4: Turbo charger quantities: Probabilities to pass C1-test targets

An increase of the worst case probability to 95.59% in terms of achieving the C1-target

of Soot and the Engineering-target of NOx was most efficiently caused by increasing the

parameter λ = 153.5 of High Pressure Compressor Efficiency to λ = 161.

4.3 Outlook

Finally it can be stated that a full factorial treatment is not necessarily a bad approach,

as long as the operation points in the grid are chosen efficiently. This may be achieved by

customizing the single lengths of the equivalence classes by their significance, which is de-

termined through the ANOVA. If a predictor is highly significant for a target variable, it is

advisable to choose a short length ∆x. On the other hand, less significant predictors of the

model should provide less equivalence classes. In case that many predictor variables are
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assumed at the beginning of the analysis, the central composite design may rapidly lead

to an unconvertible working load. This problem can be remedied by screening techniques

enabled by fractional factorial designs of experiments. In addition, the further goal is to

attach the conducted theory to other subject areas. Furthermore an extension of the anal-

ysis to transient NRTC tests, it is also possible to expand the carried out analysis to two

additional extensive subject areas, which are on the one hand Aging (the functionality of

engine device may change over their life period) and Functional Stress Distributions

(in practice engines are subject to different mechanical stresses). In the same manner as

the main topic, both play a circumstantial role for the optimization process. However,

the main challenge is certainly to respect and evaluate their interactions.
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