
   

 

“Stick and Stones” 

An Augmented Reality Game Based on 

Sketch Detection and Interaction 
 

Denis Poric 

 

 

 

 

 

Inst. for Computer Graphics and Vision 

Graz University of Technology, Austria 

 

 

 

 

 

 

 

 

 

 

Master Thesis  

 

09 September 2011 

 

 

Supervisor:  

Dieter Schmalstieg 

 

 Contact: Denis Poric denis.poric@student.tugraz.at 



Sketch Detection and Interaction  Denis Poric 

2 

 

  



Sketch Detection and Interaction  Denis Poric 

3 

Abstract 

This thesis presents a game, “Stick and Stones”, whose design is centered on 

interaction through sketching. The game is based on a previously existing demo 

application, which supports drawing virtual sketches on a touch-screen, tracking real 

sketches on a whiteboard, and physical interactions between virtual and real 

sketches. We extended this demo application into a two-player game. Each player‟s 

avatar is assigned a number of health points at the game start, and the goal of the 

game is to reduce the health of the opponent‟s avatar to zero – this is achieved by 

hitting it with virtual stones, sketched by the players on their touch screen. The game 

uses multiple natural feature tracking targets, all tracked within a common coordinate 

system. We extended the sketch-extraction and collision-detection algorithms to 

support the new game requirements. Our results show that real and virtual sketching 

can be seamlessly merged into a consistent game experience. 

  

Keywords: natural feature tracking, augmented reality, interaction, game, sketching, 

multiplayer. 

  

Kurzfassung 

In dieser Arbeit wird das Spiel „Stick and Stones“ präsentiert welches auf dem Prinzip 

der Interaktion durch Zeichnen basiert ist. Das Spiel ist basiert auf einer bestehenden 

Demoapplikation welche das Zeichnen von virtuellen Zeichnungen auf einem 

Touchscreen, Tracking von echten Zeichnungen auf einem Whiteboard und 

Interaktionen zwischen virtuellen und echten Zeichnungen unterstützt hat. Dem 

Avatar von jedem Spieler werden am Anfang des Spieles eine bestimmte Anzahl von 

Lebenspunkten zugewiesen und das Ziel des Spieles ist es die Lebenspunkte des 

Gegners auf null zu reduzieren. Dies wird durch das Treffen der Avatare mit von den 

Spielern gezeichneten virtuellen Steinen vollbracht. Das Spiel benutzt Natural 

Feature Tracking marker welche in einem gemeinsamen Koordinatensystem getrackt 

werden. Wir haben die Algorithmen für die Extraktion der Zeichnungen sowie die 

Kollisionsdetektion erweitert um die neuen Anforderungen des Spieles zu erfüllen. 

Unsere Resultate zeigen das echte und virtuelle Zeichnungen zusammengefügt 

werden können um ein kontinuierliches Spielerlebniss zu erzeugen. 

Begriffe: natural feature tracking, Augmented Reality, Interaktion, Spiel, Zeichnen, 
Multiplayer.



Sketch Detection and Interaction  Denis Poric 

4 

  



Sketch Detection and Interaction  Denis Poric 

5 

Table of Contents 

Table of Contents ....................................................................................................................... 5 

Table of Figures .......................................................................................................................... 7 

1 Introduction ......................................................................................................................... 9 

2 Related Work ..................................................................................................................... 13 

3 Sticks and Stones game design .......................................................................................... 21 

3.1 Design changes ........................................................................................................................ 22 

4 Technical Implementation ................................................................................................. 25 

4.1 Multi Marker Tracking ............................................................................................................. 25 

4.2 Sketch Extraction ..................................................................................................................... 32 

4.2.1 Collision Detection......................................................................................................... 36 

4.3 Game Logic .............................................................................................................................. 37 

4.3.1 States ............................................................................................................................. 39 

4.3.2 Player Synchronization .................................................................................................. 43 

5 Results ................................................................................................................................ 47 

6 Future Work ....................................................................................................................... 51 

Acknowledgements .................................................................................................................. 53 

References ................................................................................................................................ 55 

 



Sketch Detection and Interaction  Denis Poric 

6 

  



Sketch Detection and Interaction  Denis Poric 

7 

Table of Figures 

Figure 1: The Reality-Virtuality Continuum as defined in [13] ................................................... 9 

Figure 2: Sketchchaser game setup showcasing the VR objects drawn on a whiteboard [7] . 13 

Figure 3: Some example glyphs used in Sketchaser to signifly virtual objects. From left to 

right: Player1 and 2 starting positions and goal, grass and water patches, a building and 

tree, hills [7] ...................................................................................................................... 14 

Figure 4: A sample gameplay sequence of Art of Defense showcasing what the environment 

looks like and what the players see [10] ........................................................................... 15 

Figure 5: Art of Defense sketching system. Sketches define which kind of tower will be 

rendered. This approach was abandoned during development. [10] .............................. 16 

Figure 6:  MoleARlert main view. Note the marker being carried by the person in the lower 

right of the image [5] ........................................................................................................ 17 

Figure 7: The setup used for TimeWarp [9]. The user is wearing goggles which display the VR 

objects and is using a PDA which is used to navigate around the city and solving the 

riddles ................................................................................................................................ 18 

Figure 8: Examples of other academic AR games. Left Inivisible Train [23] right ARQuake[19]

 ........................................................................................................................................... 19 

Figure 9: Examples of some already available commercial AR games. Upper left Star Wars 

Arcade:  Falcon Gunner [20], Upper right and bottom EyePet [18] and Eye of Judgement 

[17]. ................................................................................................................................... 20 

Figure 10: Part one of the class diagram of the application showing the main class 

SketchGame as well as the BitImage, Physics and TargetBA classes................................ 26 

Figure 11: Part two of the class diagram of the application showing the PatchExtractor, 

SilhouetteImpl, GameLogic, Polygon and Player classes .................................................. 27 

Figure 12: Tracking target general layout ................................................................................ 28 

Figure 13: Typical view of the game field while capturing poses. The cat is the main tracking 

target ................................................................................................................................. 29 

Figure 14: Sample movement of the device that results in best results for the pose estimator

 ........................................................................................................................................... 30 

Figure 15: Mosaic image created from 3 screenshots. They cover approximately three 

quarters of the 2000 × 2000 pixels game field ................................................................. 33 

Figure 16: Result of the adaptive thresholding applied on the mosaic image presented in 

Figure 15............................................................................................................................ 34 

Figure 17: The result of the blob detection ............................................................................. 35 

Figure 18: State machine of Sticks and Stones ........................................................................ 41 

Figure 19: Elements required to play the game: NFT targets, whiteboard, mobile phone and 

black erasable marker ....................................................................................................... 47 

Figure 20: Game starting screen .............................................................................................. 48 

Figure 21: Game field capture. The confidence value indicates the coverage of the mosaic 

image ................................................................................................................................. 48 



Sketch Detection and Interaction  Denis Poric 

8 

Figure 22: Game starting screen showing the two players objects. The text below the player 

one score indicates if the player is active or not .............................................................. 49 

Figure 23: Player one has moved and thrown a stone at the other player. A new stone is 

being drawn. The stone has hit the opponent and it is being kicked out of the screen .. 50 

 



Sketch Detection and Interaction  Denis Poric 

9 

1 Introduction 

During the last few years, advancements in the hardware development of mobile 

devices like smartphones, netbooks etc. have led to the creation of a vast market for 

mobile applications. There are many different types of applications currently available 

such as music players, chat clients, games and even e-Banking applications. Of 

these different application types, games usually are the ones utilizing the more 

“exotic” features of a mobile device like the motion sensors, the camera or the GPS 

receiver. 

Augmented Reality (AR) games are games which combine the real world with 

additional virtual information. These games use the camera for capturing a live-video 

feed and exploit this video feed in some manner for their gameplay.  

 

Figure 1: The Reality-Virtuality Continuum as defined in [13] 

A formal definition of AR was given by Milgram et al in [13] as part of a Reality-

Virtuality Continuum (see Figure 1). The two extremes of this continuum are the 

physical environment (i.e. anything that can be seen either in person or video) and 

the virtual environment (i.e. anything that is computer generated and invisible in 

person). Anything between these two points is called Mixed Reality. In this continuum 

AR lies closer to the reality extreme point and can be defined as "augmenting natural 

feedback to the operator with simulated cues". Another definition which tries to define 

AR without limiting it to certain technologies was given by Robert Azuma in [3]. He 

defines AR as a system that has 3 key properties: 

 It combines real and virtual 

 It is interactive in real time 

 It is registered in 3D 



Sketch Detection and Interaction  Denis Poric 

10 

The goal of this thesis was to design and implement a multiplayer game that 

seamlessly merges real and virtual sketches into a single, consistent AR game 

experience. We implemented the game on a Windows Mobile device using the 

Studierstube ES and Muddleware frameworks. Studierstube ES1 is a general AR 

platform providing all the functionality needed for developing AR applications. 

Muddleware2 is a framework intended for providing networking capabilities to AR 

applications which is already supported by Studierstube ES. 

This thesis contributes to two distinct technologies that increase the robustness of the 

AR application and enhance the user interaction, as compared to previous 

approaches. Firstly, a multi-marker pose estimator is responsible for creating a global 

consistent coordinate system from multiple tracking targets. Each tracking target is a 

real-world object with a local coordinate system within the virtual environment, which 

is used for the placement of 3D objects within this environment. By using the multi-

marker pose estimator, users switch between different tracking targets while the 3D 

objects within the virtual environment maintain their positions relative to the global 

coordinate system. Additionally, we use natural feature tracking (NFT) so that 

markers can be integrated into the real world background seamlessly. Secondly, we 

use sketch extraction and collision to detect if and in which direction an object within 

the virtual environment is allowed to move. This is accomplished by detecting real 

world obstructions once the object starts moving. 

The multi-player requirements of the thesis led to a server-client architecture. The 

basic application functionality is provided by the Studierstube ES framework and its 

modules, the networking functionality is provided by the Muddleware framework. All 

remaining functionality is provided by custom created modules based on the above 

frameworks. These modules implement the game logic, sketch detection and 

extraction as well as the multi marker pose estimation and collision detection. The 

whole game consists of three entities: one server and two clients communicating over 

a wireless network. The two clients are synchronized through a database which 

contains gameplay information. 

The thesis consists of five chapters. Chapter 2 is an examination of related work, 

particularly focusing on augmented reality games. Chapter 3 is about the game 

design, as well as the iterative process that led from the original design concept to 

                                                           
1
 http://handheldar.icg.tugraz.at/stbes.php 

2
 http://handheldar.icg.tugraz.at/muddleware.php 



Sketch Detection and Interaction  Denis Poric 

11 

the final design that was implemented. Chapter 4 describes in detail the technical 

implementation of the game. Chapter 5 presents the results achieved within this 

thesis work. Finally, Chapter 6 gives an outlook on future work. 



Sketch Detection and Interaction  Denis Poric 

12 

  



Sketch Detection and Interaction  Denis Poric 

13 

2 Related Work 

AR applications have a broad scope of use. Because of this, various types of AR 

application can be found on handheld devices as well as on stationary devices. Since 

this thesis deals with the design and implementation of an AR game, the related work 

will deal mainly with similar gaming applications either on handheld devices or PCs. 

The first 2 games presented here rely or sketching as a type of user interaction. 

 

Figure 2: Sketchchaser game setup showcasing the VR objects drawn on a whiteboard [7] 

The game described in [8] is called Sketchaser and has some similarities to the game 

developed in this thesis. It is a two-player game where the goal is to capture a flag 

with a virtual vehicle. Figure 2 shows the typical elements needed to be able to play.  

Before the players can start playing the game, they need to draw the game 

environment where the game will take place. They do this by sketching visual 

elements on a whiteboard or on paper. These elements define either certain AR 

elements like trees, buildings, hills etc. or game concepts like player starting points 

and the goal. Example elements can be seen in Figure 3. The game recognizes 

these previously defined shapes and blends the appropriate AR elements in and out 

of the screen as these shapes are drawn and erased. The game allows the players to 

define the size of the AR elements. The AR elements are scaled up or down 

depending on the size of the shapes that the players draws. The players can control 

their virtual vehicles via mouse or joystick. The spatial tracking of the VR objects is 



Sketch Detection and Interaction  Denis Poric 

14 

done via a shape recognition and pose estimation system called Nestor which is 

described in detail in [7]. 

 

Figure 3: Some example glyphs used in Sketchaser to signifly virtual objects. From left to 

right: Player1 and 2 starting positions and goal, grass and water patches, a building and tree, 

hills [7] 

The similarity between this thesis and the abovementioned game is the high level of 

sketch-based user interactivity. Both games require the user to draw the game field 

where the gameplay will take place before the game can actually start. However in 

Sketchaser players can only draw in the real world. There is no way to add virtual 

objects without changing anything on the game background (whiteboard or paper), 

unlike the game developed for this thesis. In our game, players are able to draw own 

virtual objects (stones) and hurl them across the game field. Another difference is in 

the types of tracking that are used in both projects. Sketchaser uses a tracking 

system based on the analysis of the structure of contours of different shapes and 

their different concavities. According to [7] they reach approximately the same or 

better results when compared to tracking via fiducial markers or natural feature 

tracking (NFT). In contrast, we decided to use NFT for tracking and we seamlessly 

integrate markers into the game environment. The major difference between these 

two games is the way in which the multiplayer component is handled. Both games 

support two players. However, in Sketchaser both players are playing on one 

machine with two controllers; in the game developed for this thesis each player has a 

separate device and a server is used to synchronize them. The one device for one 

player condition was necessary because each player has to be able to move 

independently from the other player on the game field.  



Sketch Detection and Interaction  Denis Poric 

15 

 

Figure 4: A sample gameplay sequence of Art of Defense showcasing what the environment 

looks like and what the players see [10] 

The game described in [11] is called Art of Defense and is based on the “tower 

defense” game type. A tower defense game is a game type where the goal is to 

prevent a constantly increasing number of enemies from reaching the player‟s base, 

by placing “towers” which destroy these enemies along the route they take. Art of 

Defense supports two players playing on separate mobile devices connected via 

network. A typical setup can be seen in Figure 4. The goal of the game is to prevent 

as many enemies as possible from reaching the base of the players, which is located 

in the middle of the game field. This is accomplished by placing down defensive 

towers which destroy the incoming enemies. The game field consists of fifteen 

hexagonal tiles. At the beginning of the game only the base tile is present. By placing 

additional tiles, players reveal features of the map like terrain or enemy units. The 

players can position defensive towers on a tile‟s location by placing physical tokens 

on the tile; they can also upgrade them by placing differently colored tokens onto the 

tile. One interesting approach is to allow the players to draw the tokens before 

placing them on a tile, as can be seen in Figure 5. This sketch is processed by the 

game and the correct tower placed. 

Both this game and our game are multiplayer games intended for a mobile device. 

Art of Defense also uses real world sketching as an interaction method. A major 



Sketch Detection and Interaction  Denis Poric 

16 

difference is the tracking method that the games use. While the game presented in 

this thesis uses NFT, Art of Defense uses a more conventional approach (fiducial 

markers). The reasoning for not using NFT was a lack of computational resources on 

the mobile device. Similarly to Sketchaser, also Art of Defense allows only real-world 

sketches as a means to input game objects; in contrast to our game, no virtual 

sketches are present in the gameplay. 

 

Figure 5: Art of Defense sketching system. Sketches define which kind of tower will be 

rendered. This approach was abandoned during development. [10] 

The game described in [6] is called MoleARlert. This game is a multi-player variant of 

the popular Lemmings game created in 1991 by DMA Design. The goal of the game 

is to direct a certain amount of moles to the exit without them getting hurt on the 

different obstacles. MoleARlert is played on 12 x 12 cells outdoor area reminiscent of 

a chessboard. Players have two modes of directing the moles. The first is placing 

special markers, which direct the moles to a certain direction. The second is 

performing certain gestures. These gestures define actions which the first mole in the 

group can take, e.g. “build a bridge” or “dig through a hill”. To allow such a gameplay, 

this game consists of three independent modules. The first is an AR terminal which 

shows an overview of the game field (as presented in Figure 6); the second is the 

marker tracker which tracks the direction markers; the third is the person tracker, 



Sketch Detection and Interaction  Denis Poric 

17 

which tracks the gestures of the players. These three systems are interconnected via 

a network. 

 

Figure 6:  MoleARlert main view. Note the marker being carried by the person in the lower 

right of the image [5] 

This game differs largely from the game presented in this thesis. First, the AR 

terminal is static and the camera is fixed. This does not allow the players to view the 

whole game field from a different perspective than a pre-defined one. The tracking 

systems are also different, and the player interaction is restricted to only the real 

world. This game does however show how diverse the different approaches can be, 

even with the relatively small subfield of games. 

An example of AR game that allows an even larger degree of mobility is TimeWarp 

and is described in [10]. This game can be played alone or with multiple players. The 

goal is to find a mythological being – called Heinzelmännchen – within the city of 

Cologne, by searching for them in different time periods of the city. This is 

accomplished by using an AR display through which these beings can be seen at 

certain locations within the city. This display also allows players to explore certain city 

locations in different time periods. The game uses GPS tracking to display the virtual 

objects within the city. In order to play this game, users have to carry a personal 

digital assistant (PDA) which is used to display various information. In an early 

version of the game, players have also to wear goggles (as can be seen from Figure 



Sketch Detection and Interaction  Denis Poric 

18 

7) on which some of the virtual content is visualized. In a latter version of TimeWarp, 

the whole game is handheld and based solely on an Ultra-Mobile PC (UMPC). 

 

Figure 7: The setup used for TimeWarp [9]. The user is wearing goggles which display the 

VR objects and is using a PDA which is used to navigate around the city and solving the 

riddles 

The major issue with TimeWarp is the tracking accuracy. GPS can be very unreliable 

within urban environments due to loss or weakening of the signal. This in turn causes 

instability in the visualization of the virtual objects – objects tend to drift or change 

locations randomly. Another issue with the early version of the game, is that although 

a PDA was used to display informations users had to additionally wear goggles which 

somewhat hampered them in enjoying the game. 

Beside the above examples, there have been earlier examples of AR games 

developed for academic purposes. Treasures [4] and Pirates! [5] are not AR games 

but can be considered their predecessors. Treasures was developed for PDAs and 

allowed multiple players to play simultaneously. Virtual coins were placed within a 

certain area of the real world. The players had to collect these to earn points. Once a 

coin was found it had to be uploaded to a server which awarded the player a certain 

amount of points. In order to know when a player found a coin the game used GPS to 

track the locations of the players. Pirates! had a similar premise. Players started as 

novice captains of their own ships and had to complete missions to gain experience 

and gain a new rank. The game world consisted of islands which were virtual objects 

and which corresponded to a real world physical location. If players wanted to sail to 

another island, they had to physically move in the room. Since this game was 



Sketch Detection and Interaction  Denis Poric 

19 

intended to be played indoors, it was not feasible to use GPS for tracking. Therefore 

a system of radio frequency proximity sensors was in used to locate the player. 

One of the earliest true AR games was Invisible Train [25] (see Figure 8, left). The 

goal of the game is to prevent two virtual trains from colliding by operating various 

switches and junctions on the tracks. The game supports multiple players whose 

actions are synchronized via a network. 

  

Figure 8: Examples of other academic AR games. Left Inivisible Train [23] right 

ARQuake[19] 

Another early example of an AR game is ARQuake [20] (see Figure 8, right). This 

game is based on one of the first popular first-person shooter game Quake [12] 

developed by idSoftware. The goal of the game is to survive attacks from different 

enemies and reach the end of the level. The player of ARQuake wears goggles 

through which he or she can freely view the AR environment. The player can also 

interact with the virtual world with a physical device shaped as a haptic gun. The 

tracking of the player position in the virtual world is accomplished through GPS and 

fiducial markers spread around the real world. Another example is ARTennis [9] 

which allows two players to play a tennis game. The players use their phones as 

tennis racquets to hit the ball back to the opposing player. The game uses a simple 

physics system to simulate realistic ball movement and bouncing. The last example is 

more complex than the previous games. In Cows vs. Aliens [14] two teams of players 

try to save cows from aliens by leading them to safe areas where the team with most 

saved cows wins the game. The game field consists of pastures and two stables. 

These are represented by fiducial markers and each of these pastures can only have 

four cows at any time. The players need to select to which pasture the cows need to 

move by selecting a cow and sending it to an adjacent pasture. The game runs on a 



Sketch Detection and Interaction  Denis Poric 

20 

server-client architecture. Each player carries a mobile device (the client). Any 

changes are transmitted via the server to all other players. 

AR games are not only being developed for academic purposes. There are many 

commercial AR games available at the moment (see Figure 9). Games for mobile 

devices like the iPhone or the Nintendo DS usually use the inbuilt features of these 

devices like the camera, motion sensors and similar. AR games for gaming consoles 

usually require the console to have a peripheral device to collect data like the EyeToy 

for the Playstation 3 or Kinect for the Xbox360. Some currently available AR games 

for the above systems are: UFO on Tape [15] and Star Wars Arcade: Falcon Gunner 

[22] for the iPhone, A trading card game called Eye of Judgement [18] and a virtual 

pet game called EyePet [19] for the Playstation 3. There is also a similar game which 

is called Fantastic Pets [21] for the Xbox360. 

 

Figure 9: Examples of some already available commercial AR games. Upper left Star Wars 

Arcade:  Falcon Gunner [20], Upper right and bottom EyePet [18] and Eye of Judgement [17]. 



Sketch Detection and Interaction  Denis Poric 

21 

3 Sticks and Stones game design 

“Sticks and Stones” is similar to the Worms game [2]. Players physically draw the 

game field on a whiteboard with a black erasable marker, before the start of the 

game. The recommended shape the players should draw is a hill landscape or cave-

like structure; however, the players may draw whatever shape they find interesting.  

When the game starts, the players‟ avatars are randomly placed on opposite sides of 

the game field. The players can draw virtual stones within a certain distance from 

their avatar, using the touch screen of their device; players select stones by clicking 

on them on the touch screen. Once a stone is selected it can be thrown in a desired 

direction. The players define the direction and the amount of force which will be 

applied on the stone using a rubber-band widget. This metaphor is similar to shooting 

with a slingshot: the longer one pulls away from the slingshot, the stronger the throw 

in the opposite direction. Similarly, the further away from the stone players pull the 

rubber band, the stronger the force that will be applied on the stone. The stone will 

be thrown along the direction opposite to the one of the rubber band. Each stone has 

a mass determined by its size. The stones are also affected by gravity. Therefore a 

stone with high mass will be thrown a shorter distance away then a stone with a 

smaller mass, when the same force is applied. The avatars can be moved around the 

field by clicking once on their figure and then clicking again on the desired 

destination. The avatars can only pick up stones within a defined distance, so they 

will need to move close to the stones to be able to use them. 

The game is time-limited and turn-based. Each player has thirty-second turns to 

complete their tasks. If there is nothing a player can do he may choose to skip his 

turn by not executing any actions. At each turn switch, any stones that have not been 

used are removed from the game field.  

Each avatar is assigned one hundred health points at the start of the game. If an 

avatar is hit by a stone, the avatar loses an amount of health points proportional to 

the mass of the stone. If the health pool of any of the avatars is reduced to zero, that 

avatar loses the current game round. Once this happens the game resets the avatar 

to random locations and starts another round. The game ends once one player has 

won two game rounds. 



Sketch Detection and Interaction  Denis Poric 

22 

3.1 Design changes 

The original game design iteratively evolved during the development of the game, as 

it became clear that certain aspects had to be changed as either impossible to 

implement due to framework constraints, detrimental to the gameplay or not needed 

altogether. 

The first design change was to the game goal. The original goal was to simply kick 

the opponent‟s avatar out of the game field. This was changed to ensure a more 

dynamic gameplay. If the players were able to kick each other‟s avatar out of the 

game field, this could have shortened the game considerably. Due to the random 

spawning of the avatars it would be possible for one avatar to spawn close to the 

edge of the game field. If the other player started the game he would have an unfair 

advantage. Additionally, players with good aim could effectively end a game within a 

few seconds. Another issue that contributed to the change of the design was that the 

collision detection did not support any objects leaving the game field. In order to 

allow objects to leave the game field changes to the collision detection would have to 

be done which would have increased the memory consumption of the game, which 

was not feasible. 

The second change was to the way the stones are placed in the game field. The 

original design had stones automatically spawn in two different locations. The first 

was directly next to the starting positions of the avatars where two to three stones 

would be deposited at the beginning of the game. Once these stones would have 

been used, additional stones would spawn in randomly chosen locations on the 

game field. The decision to change this aspect of the design had a number of 

reasons. The first was that it was impossible to foresee how the physical sketches 

that define the game field would be placed and if the stones would be reachable by 

the avatars, since the players draw arbitrary shapes on the whiteboard. This could 

lead to stones spawning in an inaccessible area and therefore not being usable by 

any avatar – if this happened, the game would be deadlocked. The second reason 

was to introduce a tactical element into the gameplay. If the stones were randomly 

spawned on the game field this could have caused players to play defensively by 

hiding avatars behind obstacles but still within the range of picking up the stones. 

This could make them inaccessible to the other avatar and would lead to a deadlock. 



Sketch Detection and Interaction  Denis Poric 

23 

The third change was the removal of power-up items. With the change to the health 

pool system and the changes to the stone generation described above, the planned 

power ups (bouncy stone and jetpack) became a redundancy. Additionally, any 

power ups that would be spawned would have the same issues described above for 

the spawning of stones. Therefore, they were removed from the design. 

The final change to the original design was the removal of a sudden-death round. 

This round was designed to make sure that the game would not draw on too long if 

players were stuck or ran out of projectiles. With giving the players the ability to 

create their own stones and increasing the mobility of the players this gameplay 

component became redundant. 



Sketch Detection and Interaction  Denis Poric 

24 

  



Sketch Detection and Interaction  Denis Poric 

25 

4 Technical Implementation 

The implementation of “Sticks and Stones” is based on a previous application (from 

hereon called original application), which was developed to showcase the interaction 

between virtual sketches and real sketches. Such application was implemented in 

C++ using the Studierstube ES framework and allowed the user to draw a virtual 

shape on a smartphone which then interacted with the real sketches on a 

whiteboard. “Sticks and Stones” is also implemented in C++ using the Studierstube 

ES framework, which provides most of the base functionality. This thesis will not 

explain in detail the Studierstube ES framework. More information can be found in 

[17].  

The game can be divided into three large parts: 

 Multi marker tracking 

 Sketch extraction 

 Game logic and support functions 

The multi marker tracking part provides the functionality for tracking single and 

multiple targets. The sketch extraction part is in charge of creating a collision map by 

detecting sketches in the live-video feed; the map covers the whole game field and is 

used for collision detection. The game logic part handles all game-related functions 

like determining when a turn ends, which player is active, and what the score is. This 

chapter shows how the three parts of Sticks and Stones were implemented. Figures 

10 and 11 show a more accurate composition of Sticks and Stones. 

4.1  Multi Marker Tracking 

The original application used fiducial markers for tracking and was able to track only 

one specific tracking target. In order to fulfill the requirements set by the game design 

the players need to be able to move their cameras on a large game area, to get a full 

overview of the whole game field, or to focus on a particular area of the game field. 

The issue with the original application is that it was very difficult to keep the marker 

constantly in sight while these different actions were going on. Constraining the game 

field to make sure that the marker is always visible is a very limiting factor for the 

gameplay.  



Sketch Detection and Interaction  Denis Poric 

26 

 

 

Figure 10: Part one of the class diagram of the application showing the main class 

SketchGame as well as the BitImage, Physics and TargetBA classes 



Sketch Detection and Interaction  Denis Poric 

27 

 

 

Figure 11: Part two of the class diagram of the application showing the PatchExtractor, 

SilhouetteImpl, GameLogic, Polygon and Player classes 

 



Sketch Detection and Interaction  Denis Poric 

28 

In contrast, in this thesis we decided to allow the application to track multiple tracking 

targets (as seen in Figure 12), so that the players would have the freedom to move  

their cameras around a much larger game field. Furthermore, we switched to natural-

feature tracking targets to increase robustness, as compared to fiducial markers. 

However, this solution presents an issue whenever a tracking-target switch occurs. 

Each tracking target defines a local coordinate system with the origin point on its 

center. This local coordinate system is used to estimate the pose of the camera 

within the virtual environment. Due to the fact that all local coordinate systems are 

distinct, the virtual objects (avatars and stones) take up different physical positions 

depending on which tracking target is currently in use; whenever a tracking-target 

switch happens, all virtual objects change their anchor on the screen and in the 

physical environment, since the local coordinate system has changed. The solution to 

this issue is to use a consistent global coordinate system, unique to all tracking 

targets.  

 

Figure 12: Tracking target general layout 

This can be done by declaring one tracking target as the reference coordinate 

system, and converting the coordinates of all other systems into the coordinates of 

the reference system. We used a library written by Gerhard Reitmayr which was 



Sketch Detection and Interaction  Denis Poric 

29 

originally implemented using TooN (Tom's Object-oriented numerics) [1]. This library 

inputs a number of measurements, each composed by the sequential camera-frame 

number in which the measurement was taken, the index of the visible tracking target 

and the pose matrix relative to it. After initialization the previously collected data is 

prepared and a sparse matrix (i.e. majority of values is zero) is created. The size of 

the matrix is defined by the following formula  

                 

where F is the amount of frames and T is the amount of targets. After this, a weighted 

least-squares Cholesky decomposition of said matrix is conducted. Once the 

decomposition has been completed, a matrix is expanded for each target from a sub-

vector of the   vector of the decomposition. These matrices are transformation 

matrices which transform one pose from the local coordinate system of the tracking 

target into the reference coordinate system. This enables the application to use 

multiple tracking targets as a unique, consistent coordinate system.  

In this thesis, we implemented a number of changes to the original application. The 

first change was to switch to natural-feature tracking (NFT). While tracking via fiducial 

markers works well the markers themselves can be obstructive and break immersion. 

NFT targets fit better the game environment and are more robust, e.g. against partial 

occlusions. NFT is computationally intensive but at present feasible on phones [23]. 

 

Figure 13: Typical view of the game field while capturing poses. The cat is the main tracking 

target 



Sketch Detection and Interaction  Denis Poric 

30 

The second change was to integrate the pose-estimation library by Gerhard Reitmayr 

as a game component, porting it to the Studierstube Math library. The measurements 

which this pose estimator requires are stored in a vector by the game. Once the 

game has been started, each player is tasked to capture a certain amount of 

measurements. The capturing is started by clicking on the screen once, reaching the 

screen shown in Figure 13. At this point, players need to physically move the 

smartphone on the game field while keeping all tracking targets in the camera‟s field 

of view. Movement of the smartphone in a circular motion around the markers during 

the pose capturing has produced the best results during testing (see Figure 14).  

 

 

 

Figure 14: Sample movement of the device that results in best results for the pose estimator 

The game captures the poses of all visible tracking targets automatically every ten 

frames. An earlier implementation required users to capture each pose individually. 

This was changed later, as it was a tedious solution to click the screen once for each 

measurement, especially as the number of required measurements increases. During 

testing, various numbers of measurements were used. Generally, the pose 



Sketch Detection and Interaction  Denis Poric 

31 

estimation achieves higher accuracy when using more measurements. The game 

currently uses thirty-five measurements per tracking target, since testing has shown 

that this amount of measurements is a good compromise between accuracy and real-

time performance. The pose estimation itself only produces a set of transformation 

matrices. The last step required to enable multi-target tracking was to decide a global 

coordinate system for all tracking targets. We achieve this by defining a main marker, 

whose coordinate system is considered as the reference one. While this marker is 

visible no transformations are executed. As soon as this marker is not detected 

anymore, the game goes through all visible targets and picks the first one it finds. 

Based on its index, the game then picks the appropriate transformation matrix. 

The new pose is calculated according to the following formula 

Pm = Pv   Mv 

where Pv is the pose of the currently visible tracking target, Mv is the appropriate 

transformation matrix which will transform the target coordinate system into the global 

coordinate system and Pm is the resulting pose which is finally used by the game. 

This whole process is done for every frame in which the main marker is not visible. 

This approach is sensitive to tracking loss. During development two issues have 

been discovered. First, momentary tracking losses can disrupt the capturing of 

measurements. When this happens, the measurement vector is not fully filled due to 

the fact the game captures only the measurement for visible tracking targets. If a 

target is not visible, it will be skipped. During the initialization of the pose optimizer 

the internal arrays are filled with the data contained in the measurements vector. 

After this, the optimizer checks if all the values within these arrays are valid. If an 

invalid value is detected the initialization returns to the calling function immediately 

with a failure. To prevent this, the application checks the success of the initialization 

before starting the optimization. If the initialization failed, all measurements are 

erased and the user is prompted to restart the whole measurement capture process. 

A further safeguard has been implemented to detect if the amount of transformation 

matrices matches the amount of tracking targets. If this is not the case, the capturing 

of the measurements is restarted from the beginning. In general, for the pose 

estimation to succeed users must always focus the camera on all markers to make 

sure that the transformation matrices are all present and properly initialized. 



Sketch Detection and Interaction  Denis Poric 

32 

4.2 Sketch Extraction 

The original application extracted sketches on a per-frame basis. Each grayscale 

frame was fully processed, and a thresholding conducted to receive a binary image. 

The approach used was the adaptive thresholding described in [16]: the grayscale 

frame was divided into cells of predetermined size, and for each cell a mean 

threshold calculated. Pixel values where finally assigned in a binary image, 

depending if the pixel value in the grayscale frame was larger or smaller than the 

threshold. This dynamic approach is used to cope with local illumination differences. 

If a global thresholding approach was used, the segmentation would be wrong 

because these local illumination changes would not be taken into consideration. The 

binary image may contain gaps in the extracted sketches, usually caused by different 

thresholds used in adjacent cells. Therefore, the original application executed blob 

detection after thresholding. A new image was created and filled with white pixels. 

For each black pixel in the thresholded binary image, the neighborhood of the same 

pixel in the grayscale frame was examined. This neighborhood consists of the 

surrounding eight pixels, and for each of these pixels a gradient is calculated. The 

gradient was set to 255 (white) if the current neighborhood pixel in the binary 

thresholded image is zero. Otherwise, the gradient was set to the difference between 

the current neighborhood pixel and the central pixel of the current frame. For image 

storage, the original application used static two-dimensional unsigned-char arrays. 

In this thesis, we implemented a number of changes to the original application. The 

first change is that the input for the sketch extraction was changed from the camera-

frame size to a 2000 × 2000 image which covers the whole game field and is 

centered on the main marker. The size of this image was empirically chosen to cover 

the area of a commercially available whiteboard (60cm wide and 40cm high). Players 

must create this image before a game can start: each player is required to captures a 

certain amount of screenshots of the visible environment. Each screenshot is taken 

by clicking on the screen of the smartphone. Screenshots can be taken without all 

tracking targets visible, since at this stage the pose estimation is able to transform 

between the poses of the different tracking targets. While taking the screenshots, the 

player must be careful not to move their smartphone too far away from the 

whiteboard. While this will still capture the sketches and quickly cover the area 

needed to start playing, it will also degrade the quality of the detected sketches. 



Sketch Detection and Interaction  Denis Poric 

33 

Therefore the players should try to take the screenshots while within a 20cm range 

from the markers. Additionally, extreme angles are also not recommended. Optimally 

the players should take their screenshots while viewing the scene perpendicularly. 

Each of these screenshots needs to be projected into the main marker coordinate 

system, since the screenshots are taken in camera or screen space. Due to the 

projection the screenshot can however be stretched and sheared which can cause 

gaps to form between the projected pixels. To prevent this, only the corners of the 

screenshot are projected into marker space and for each pixel which falls in the area 

between these corners an inverse bilinear interpolation is conducted. The resulting 

mosaic image is similar to the one presented in Figure 15. In order to know which 

pixels have already been set a binary image of the same size is used and each pixel 

that has been interpolated is set to true in it. After the interpolation is completed the 

amount of captured pixels is summed up and divided by the total amount of pixels. 

Once three quarters of the mosaic image have been filled, the game starts the sketch 

extraction. This value was chosen since it is a good compromise between precision 

and time needed to capture the game field.  

 

Figure 15: Mosaic image created from 3 screenshots. They cover approximately three quarters 

of the 2000 × 2000 pixels game field 



Sketch Detection and Interaction  Denis Poric 

34 

We also implemented changes to the sketch extraction part of the original 

application. Since the players are required by the game design to draw the game 

field before they can start the game, and this field stays static for the remainder of the 

game, there was no need to extract the sketches for every frame. Furthermore, since 

the input had changed to an image which encompasses the whole game field, the 

extraction per frame was not feasible anymore. Therefore the application was 

modified to execute the sketch extraction only once, after the three-quarter threshold 

has been reached. Also due to the change of the dimensions of the input image for 

the sketch extraction, all the internal image sizes of the sketch extractor had to be 

modified. Additionally, the cell sizes which are used during the adaptive thresholding 

had also to be changed due to the fact that the existing cell sizes produced worse 

results on the smartphone. Currently the game uses a cell size of twenty-five pixels 

for mobile devices and eight pixels for PC‟s. The above values were chosen 

 

Figure 16: Result of the adaptive thresholding applied on the mosaic image presented in 

Figure 15 

empirically, by testing with multiple values and choosing those where the resulting 

binary thresholding image for the same scene was the most accurate one and where 

the least false positives were identified. The results of the thresholding and the 

sketch extraction can be seen in Figures 16 and 17.  



Sketch Detection and Interaction  Denis Poric 

35 

 

 

Figure 17: The result of the blob detection 

Once the above changes were implemented, an issue surfaced when the game was 

being tested on a smartphone. As explained above, there are multiple images being 

manipulated simultaneously. The original application used unsigned char matrices to 

store the pixel data. Since the dimensions of the images were changed from 

320 × 240 pixels to 2000 × 2000 pixels, it resulted in a massive increase in required 

memory. While this change did not cause any issues on the PC it proved to be too 

much for the smartphone due to the harsher memory restrictions for an application. 

On Windows Mobile 6 devices, all processes are given 32MB of memory for use. 

Since the game required a minimum of 12MB for three images – and additional 

memory for all the DLLs and the NFT target database – there was not enough 

memory available for additional allocations and the operating system would not allow 

any more memory to be allocated once the 32MB limit was reached. Exchanging the 

static arrays to dynamically allocated arrays resolved the issues, however when 

using different combinations of tracking targets a lack of memory still occurred. An 

examination of the images has shown that by using a whole byte (256 possible 

values) we were essentially wasting memory since the majority of images used in the 



Sketch Detection and Interaction  Denis Poric 

36 

sketch extraction encoded a binary image where the pixels had only two possible 

values: zero for black and 255 for white.  

We rectified this by implementing a bit-image class. The bit image itself serves as an 

interface to a two-dimensional character array where each byte stores eight pixels. 

The data is encoded by bit shifting and bit logic operations. To prevent code bloating, 

functions to access the array were implemented. These functions accept x and y 

pixel coordinates, ranging from 0 to 2000, and internally convert the x value to an 

appropriate range. This is done according to the following formula: 

       
  

 
    

Where xi is the input x coordinate and xb is the resulting bit image x coordinate. While 

this give us the byte where the required bit is encoded the bit location is still required. 

To calculate the location of the required bit the following formula is used 

           

Where xi is again the input x coordinate, i is the location of the bit within the relevant 

byte and mod is the modulo operation. The introduction of the bit image class has 

reduced the binary image memory consumption by three quarters and has resolved 

all memory issues. 

4.2.1 Collision Detection 

The original application implemented a collision detection system. For each frame, in 

which a virtual object was moving or falling, the game checked if a collision 

happened. Once the collision check started, the application determined the dominant 

movement component by checking if the x- or the y-axis movement component was 

bigger. After this the silhouette of the virtual object was calculated as its extent within 

the virtual environment, stored as minimum and maximum coordinate pairs as well as 

per-pixel maximum x and y value for the x-axis and y-axis. After the silhouette was 

calculated, the application finally checked if the object was within the limits of the 

current frame. If this is not the case a collision was reported and the object stopped 

moving. Further checks were also done: the binary thresholded image which 

contained the extracted real sketches (similar to the one presented in Figure 17) was 

checked for a collision with the virtual object, which was handled in the main 

rendering loop. 



Sketch Detection and Interaction  Denis Poric 

37 

In this thesis, due to the changes to the sketch extraction system, we implemented a 

few changes to the collision detection code. The change of the dimensions of the 

binary thresholded image, which is used for the collision detection, required a change 

to the silhouette system. The maximum x and y range values of the silhouette were 

changed to 2000. 

Besides the collisions between real sketches and virtual objects, already handled by 

the original application, we implemented support for collisions between two virtual 

objects. These collisions can only happen between a polygon (stone) and an avatar 

object of two opposing players. We based the collision detection for this event on a 

bounding box intersection. For each frame the bounding box of the polygon and the 

opposing avatar are checked for intersections. As soon as an intersection is detected 

the opposing avatar is set in motion along the motion vector of the polygon. This type 

of collision also causes the avatar, which was hit, to lose health. 

4.3  Game Logic 

The final component of the game is the game logic. The game logic module is in 

charge of the gameplay-related actions, such as determining the score or controlling 

the player movement, handling collisions and similar tasks. 

The original application was a technology demo and did not have a game logic 

module. The actions which the application was able to execute were controlled by a 

set of five states. The users were able to draw polygons on the screen by using the 

stylus and holding it pressed on the touch screen until they had drawn the desired 

polygon shape. The polygon itself was implemented as a separate Polygon class. It 

contained two buffers which were used to render the object; of these, one contained 

the polygon‟s contour while the second was responsible for rendering the interior of 

the polygon. Besides these two buffers, there were also two vectors storing the 

coordinates of the vertices in screen space and marker space. When a polygon was 

drawn, vertices in screen space coordinates were added to the appropriate vector. 

Once the user lifted the stylus, no more vertices would be added and a projection of 

the coordinates into marker space would take place. After this, the polygon borders 

and interior would be rendered and the polygon would start falling along the direction 

the gravity was affecting it. If the user wished to move the polygon he or she clicked 

on the screen. While a polygon was present on screen this would cause the creation 

of a force vector which would be applied to the polygon on release of the stylus. This 



Sketch Detection and Interaction  Denis Poric 

38 

force was also visualized by drawing a line between the polygon center and the 

current stylus location. The further the stylus was from the polygon at the time of 

release, the stronger the force applied. The application differentiated two polygon 

movements: falling and being thrown. Depending on which kind of movement was 

happening when a collision occurred, the polygon would behave differently. If the 

polygon was just falling after being drawn then it would just be stopped where the 

collision occurred. If it was however being thrown at that moment then the polygon 

would be destroyed and a cloud texture would be rendered to signify the crash. 

In this thesis, we modified the original application to support the game logic. The first 

addition was the addition of a Player class. This was necessary because the game 

design needs virtual avatars or figures with which players can interact. The Player 

class was implemented by deriving it from the Polygon class. This was done as both 

objects are subject to the same collision and rendering routines. 

The extreme points of a Polygon are calculated by looping through the screen-space 

and marker-space arrays and finding the minimum and maximum x and y values per 

array. These coordinates are then stored in a 4-element vector. For a Polygon, the 

first two coordinates of this vector are the x and y values in screen space while the 

last 2 are the x and y marker space coordinates. For a Player, only the marker space 

coordinates are saved. One of the requirements of the game design was the ability to 

hit players with stones, and this requires collisions between two virtual objects. We 

detect these by checking if a bounding box intersection happens between the 

objects. An intersection is detected by checking if the interval created by the 

extremes of one object intersect the extremes of the other object.  

During testing it became apparent that some collisions would not be registered 

properly on both game clients. The issue was caused by the fact that only the screen 

location of the player was shared between the two clients. This caused projection and 

tracking errors to affect the collision detection. Additionally avatars would become 

distorted by movement across the game field. This was again caused by a short loss 

of tracking which caused the projection of the screen space coordinates to produce 

erroneous results. To resolve these issues we decided to switch the rendering and 

bounding box calculations of the player object to marker-space coordinates. 

Therefore, all functions which deal with filling the vertex buffer and silhouette 

calculations in the Polygon class were overridden in the Player class. Once this was 

completed, another issue presented itself in the silhouette calculation. The issue was 



Sketch Detection and Interaction  Denis Poric 

39 

caused again by the projection of the coordinates. Since the main marker is located 

in the middle of the coordinate system, the projected coordinates could take on 

negative values. The silhouette calculation was not designed to work with negative 

values. Therefore the silhouette is calculated with a temporary array in which all 

marker space coordinates are shifted by 999 to make sure that the minimum 

coordinate is (0, 0). 

The final change was the addition of the GameLogic class. This class is intended to 

supervise when a turn switch should occur and to report which player is currently 

active. Additionally, it is in charge of creating the Player objects during the game 

initialization. For every frame that is processed, the game subtracts the time required 

for the frame from the remaining time in the GameLogic object. If the remaining time 

is zero or lower, the game starts the turn switch. Due to the fact that every time the 

user interacts with the game the rendering pauses it may occur that the two game 

clients receive the command to switch turns at different times. This in turn causes the 

clients to lose synchronization and eventually leads to both clients waiting for the 

other to finish its turn. To prevent this, a state condition was added to the turn 

switching requirement as well. Both clients need to have the turn-switch flag set and 

they need to be in the STATE_PLAYER_WAITING state to execute a turn switch. 

The switch itself is relatively simple and is executed by switching the active player 

object with the inactive and vice versa. Additionally, the force vectors for the polygon 

and the direction vector of the players are set to zero and the remaining time of the 

GameLogic instance is reset to 30 seconds. 

4.3.1 States 

The original application was controlled by a state machine containing five states: 

 

STATE_WAITING 

STATE_POLYGON_FALLING 

STATE_POLYGON_READY 

STATE_RUNNING 

STATE_SHOW_CLOUD 

 

In this thesis, due to game design requirements, we introduced new states and 

repurposed some other states. New states regulate the avatars‟ movement, the 

application initialization, turn switching and player reinitialization. STATE_WAITING 



Sketch Detection and Interaction  Denis Poric 

40 

was split into STATE_POLYGON_WAITING and STATE_PLAYER_WAITING. The 

new states are: 

 

STATE_INIT 

STATE_POSE_OPTIMIZE 

STATE_CAPTURE_BLOBS 

STATE_POLYGON_WAITING 

STATE_POLYGON_PICKING 

STATE_PLAYER_MOVING 

STATE_PLAYER_FALLING 

STATE_PLAYER_WAITING 

STATE_PLAYER_SET_DESTINATION 

STATE_PLAYER_DONE_REINIT 

STATE_REMOTE_PLAYER_TURN 

STATE_REINIT 

STATE_FINISH_GAME 

 

As can be seen from Figure 18, the game starts in the STATE_INIT state. This 

happens after the player and polygon objects are created and all necessary data is 

loaded. Once the user clicks on the screen, the game switches to the 

STATE_POSE_OPTIMIZE state. When in this state, the game collects poses for the 

measurements required by the pose estimator (as described in Chapter 4.1). Once 

enough poses have been collected and the pose estimator finishes his estimation, 

the game switches to the STATE_CAPTURE_BLOBS state. During this state, the 

game waits for the user to take screenshots of the game field. The screenshots are 

processed as described in Chapter 4.2. Once this is completed, the game switches to 

two different states, depending on which player is the active player. This is 

determined by which player connected to the server first. This player is marked as 

the active player while the other player is marked as the inactive player. The active 

player switches to the STATE_PLAYER_WAITING state while the inactive player 

switches to the STATE_REMOTE_PLAYER_TURN state. Since it is very likely that 

both players will not complete the pose estimation and sketch extraction at exactly 

the same time, a busy loop mechanism makes sure that the faster player waits until 

the slower player is done with the previously mentioned actions. From this point on, 

the active player state is stored in the shared database and used by the inactive 



Sketch Detection and Interaction  Denis Poric 

41 

player to determine its current state. From the STATE_PLAYER_WAITING state the 

active player can enter three different states: 

 STATE_SET_DESTINATION – the game enters this state if the active player 

has clicked on his avatar. If the player clicks on the screen again while being 

in this state, the game sets a destination point for the player object and 

switches to the STATE_PLAYER_MOVING state, which causes the avatar to 

move. The movement of the player is based on an interpolation of the player 

position between the origin and destination points. 

 

Figure 18: State machine of Sticks and Stones 

The player object traverses this distance within five seconds. To know by 

how much the player needs to be moved in a frame the game uses the 

following formula 

         



Sketch Detection and Interaction  Denis Poric 

42 

where s is one fifth of the total distance between the original location and 

destination, t is the elapsed time since the movement started and l the  

 

resulting position. Once the player is twenty distance units away from the 

destination point, a collision occurs or the player reaches the edge of the 

game field, the player figure is stopped and the game switches to the 

STATE_PLAYER_WAITING state again. 

 STATE_POLYGON_READY – the game enters this state if the active player 

has clicked on a polygon object. If the screen is clicked again the game will 

start capturing the force points and will draw a line connecting the touch point 

with the center of the polygon. Once the touch is released, the state switches 

to the STATE_RUNNING state and the difference of the coordinates of the 

last touch location and the polygon centre is set as a current force which is 

then applied to the polygon. If the polygon collides with something or reaches 

the edge of the game field, the game switches to STATE_SHOW_CLOUD, 

which causes the destruction of the polygon. The polygon is replaced by a 

cloud texture which expands for a few seconds and then disappears. Once 

the cloud is gone, the game switches back to STATE_PLAYER_WAITING. 

 STATE_POLYGON_WAITING – players enter this state if they click on any 

location of the screen but a player or polygon object. If the screen is clicked 

again the players will start adding vertices to the polygon object since the 

object is just reset and not deleted. If a polygon already exists on the screen 

then the game will not enter this state. Once the polygon has been drawn the 

game will switch into the STATE_POLYGON_FALLING state, which will 

cause the polygon to move along the defined gravity direction. Once a 

collision occurs or the polygon reaches the edge of the screen the polygon is 

stopped and the game switches to the STATE_PLAYER_WAITING state 

again. 

The state changes of the inactive player work differently. They do not depend on any 

user input but on the states of the active player. The inactive player checks each 

frame what the current state of the active player is. Some states are ignored, like the 

STATE_POLYGON_READY, STATE_POLYGON_WAITING and all the initialization 

states (STATE_INIT, STATE_POSE_OPTIMIZE etc.), since these states are just 



Sketch Detection and Interaction  Denis Poric 

43 

used to prompt the active player for some input, or states which cannot occur 

anymore. Rather, the inactive player checks if the states which should happen after 

these have been triggered and gets relevant data from the database (e.g. polygon 

vertex coordinates if the active player‟s state is STATE_POLYGON_FALLING). 

The game design defines that the game is played in multiple rounds. This requires 

the ability to reinitialize the players and reset the game field and player locations. To 

accomplish this, the STATE_REINIT was introduced. If, during the collision between 

a polygon and avatar, the health of the avatar goes below zero then the 

reinitialization state is triggered. Once this state is registered by the inactive player 

(i.e. the player that was hit by the polygon) it is also triggered in the active player and 

both clients display a message urging the user to click on the screen. Once the user 

clicks, a similar busy loop is used as at the end of the STATE_CAPTURE_BLOBS 

state. Both clients reinitialize their respective avatars and update the database with 

the new values. The only value which is kept is the player score. After this, the 

players switch to STATE_PLAYER_DONE_REINIT and check the state of the other 

player in a busy loop. Once both players are in this state they exit the busy loop and 

the active and inactive players are set to the same states as at the beginning of a 

new game, STATE_PLAYER_WAITING and STATE_REMOTE_PLAYER_TURN 

respectively. 

The last state that both players enter is STATE_FINISH_GAME. This state can be 

triggered by two actions: 

 By clicking outside the area covered by the video feed 

 By winning three rounds of the game. Once the game logic detects that the 

score of one of the players is three it sets the state of the game to the 

STATE_FINISH_GAME. When this happens a message is displayed to both 

players indicating who won and who lost. When a player clicks on their 

screen while this message is present, the game is exited. 

4.3.2 Player Synchronization 

One of the difficulties encountered in this thesis is that two players share the same 

game field. They have to be able to see what happens with the other player without 

having to look at his or her screen. Therefore, some method had to be introduced to 

synchronize the two clients. The method that we used is the Muddleware networking 



Sketch Detection and Interaction  Denis Poric 

44 

solution, explained in [24]. The synchronization works by sharing certain variables of 

the Player and Polygon objects via a server-side application. This server 

administrates a database contained in a XML file which stores the shared elements in 

XML element form. The database structure is shown below. 

 

<?xml version="1.0" standalone="no" ?> 

<DB> 

<Player /> 

<Player/> 

<Polygon/> 

</DB> 

 

It contains three elements: two player and one polygon elements. All the shared 

variables are encoded as attributes of the appropriate XML elements. An exemplary 

player entry is shown below. 

 

<Player id="1" PositionX="-549" PositionY="-380" DirectionX="316" 

DirectionY="116" isInit="false" localCollision="false" 

remoteCollision="false" state="0" active="true" health="100" score="0" 

isTurnUp="false" roundSwitch="false" /> 

 

The id attribute defines the player, while PositionX and PositionY define the location 

of the center of the player. DirectionX and DirectionY are only set if the player is 

moving and indicate the destination. The attribute isInit is used in the initialization by 

the application to check which player has already been initialized. The localCollision 

and remoteCollision attributes are used to signal to the game clients where the 

collision occurred and to stop the player movement if one of these flags is set. The 

state attribute is used to share the current game state. health and score encode the 

current score and health values. The rest of the attributes (active, isTurnUp and 

roundSwitch) are used to indicate turn switches and round switches.  

The Polygon element is similar in structure. 

 

<Polygon isInit="true" localCollision="true" remoteCollision="false" 

polyKicked="0" forceX="0" forceY="0" vertexCount="25" coordX1="-506" 

coordY1="-226" … /> 

 



Sketch Detection and Interaction  Denis Poric 

45 

The isInit attribute indicates to the game if the polygon has been initialized, similar to 

the player. localCollision and remoteCollision have the same task as their Player 

counterparts, while polyKicked is used to differentiate if a polygon was kicked or is 

falling. The next two attributes, forceX and forceY, are set when a polygon is kicked, 

and store the x and y components of the force vector. The vertexCount attribute 

indicates how many vertices the polygon has. The last attributes are the marker 

space coordinates of the vertices. There are twice as many as the number of 

vertices, and they are numbered starting from 1 (i.e. coordX5/coordY5 is the fifth 

vertex-coordinate pair). 

In order to share the attributes, the Polygon and Player classes are derived from the 

Muddleware interface Element. Each class has variables which match the above-

mentioned attributes. These variables are updated by two methods. Variables for 

which it is not essential to immediately send the updated values to the database are 

updated before each rendering pass if their values have changed in the database. 

Any changes are uploaded to the database after the frame has been drawn. Any 

variables like the state of the active client, the flag indicating if a collision was 

detected or not and other similar ones which require immediate updating use a direct 

call to the Muddleware system, through the method sendAndReceive().  

In order to connect to the database, the configuration file needs to be edited by 

adding the host to which the game should connect. Since the database is required to 

play the game, if the game cannot connect to it due to network issues or an error in 

the configuration file, it cancels the initialization of the rest of the application and ends 

the application. 



Sketch Detection and Interaction  Denis Poric 

46 

  



Sketch Detection and Interaction  Denis Poric 

47 

5 Results 

The goal of the thesis was to design and implement a game which allows seamless 

real- and virtual-sketch interaction within an AR game. In this thesis, we took an 

original application that demonstrated sketch-based interaction in AR, and extended 

it to a game called Sticks and Stones. We integrated multi-marker tracking and 

modified the sketch extraction and interaction systems to allow two players to play 

the game over a wireless network. The game was deployed and tested on a 

commercially available HTC HD2 mobile phone running Windows Mobile 6.5 

Professional with a 1GHz Qualcomm Snapdragon CPU, AMD z430 GPU and 576MB 

RAM. The game plays fluidly with a frame rate of approximately 15 to 25 frames per 

second, depending on the scene that is being viewed. This frame rate can be 

improved by connecting the phones to their charging modules. To play the game, 

besides the elements presented in Figure 19, a separate wireless-enabled PC is 

required . 

 

Figure 19: Elements required to play the game: NFT targets, whiteboard, mobile phone and 

black erasable marker 

The game is started by starting the StbES executable. The first scene that the 

players see is a video feed from the camera and a message prompting them to click 



Sketch Detection and Interaction  Denis Poric 

48 

once on the screen to start the pose capturing, as seen in Figure 20. If no markers 

are visible or tracking is lost, the game displays a red warning message in the center 

of the screen. Once the player clicks on the screen the capturing starts and a counter 

is shown to the player indicating how many poses have been captured.  

 

Figure 20: Game starting screen 

 

Figure 21: Game field capture. The confidence value indicates the coverage of the mosaic 

image 

When this counter reaches 35, the user is asked to capture a few screenshots of the 

game field by clicking once on the screen on the phone. The user needs to reach the 

indicated confidence value (0.75) as can be seen in Figure 21. At this point, the 

game waits until the other player completes the same steps; the game starts as soon 

as both players have completed the screenshot capturing.  Each player sees a scene 

similar to the one shown in Figure 22. The avatars are each located in random 

locations on opposite sides of the main tracking target.  



Sketch Detection and Interaction  Denis Poric 

49 

 

Figure 22: Game starting screen showing the two players objects. The text below the player 

one score indicates if the player is active or not 

The active player can select his or her avatar and move it anywhere within the game 

field, or draw a polygon. If a polygon is drawn, it is affected by gravity and falls to the 

bottom of the window; if it does not hit a player it can then be selected and thrown in 

any direction the player desires. If an avatar is hit by the thrown or falling polygon, it 

is pushed along the same movement direction and its health is reduced as can be 

seen in Figure 23. These steps repeat until one of the avatars loses all health points. 

If the health points of one of the players reach 0 the avatars are reset to random 

positions and a new round starts. 

 

 

 

 

 



Sketch Detection and Interaction  Denis Poric 

50 

 

Figure 23: Player one has moved and thrown a stone at the other player. A new stone is being 

drawn. The stone has hit the opponent and it is being kicked out of the screen 



Sketch Detection and Interaction  Denis Poric 

51 

6 Future Work 

One area, in which further work could be done, would be the improvement of the 

sketch extraction. The current implementation is sensitive to different lighting 

conditions. The blob detection also produces false positives (sketches detected 

where there are none) so an increase of the accuracy in the sketch detection would 

benefit the game.  Another area of improvement is the estimation of the marker 

poses to offer more accurate transformation matrices. 

While designing the game, certain ideas were formulated but later not implemented 

due to time constraints. Allowing multiple polygons on the game field could be an 

interesting addition to the game, as well as extending it to more than two players. 

Random "unstable" sections of rock could be added around the playing field as virtual 

objects. When these are hit two things could happen: 

 They could produce a few rocks which drop down. These rocks may be used 

by the avatars as ammunitions or they could hurt both avatars. 

 They could reveal a hidden water well which starts raining down water. The 

water is hazardous to the avatars and if it submerges their figure they lose 

the game. There would be a limitation to two water wells in the game field to 

prevent the whole field getting flooded. If an avatar gets submerged by water 

it would lose the current round and the game would reset for the next round. 

Another thing that could be added is the ability for players to construct ramps. These 

ramps could be constructed by drawing them on the phone. Each player would have 

a limited number of charges of ramps to draw. If a rock hits a ramp, it gets bounced 

back in the opposite direction or destroyed. The ramps could be used to deflect direct 

throws or to divert water away. Additional power-up items could be added to the 

game to modify either the stone projectiles or the avatars themselves. Power ups 

could be explosive stones to destroy the ramps, additional ramp charges, watertight 

ramps which would be impervious to water.  Extending the gravitational influence to 

avatars could enable interesting new gameplay opportunities like jumping over 

obstacles, creating bottlenecks with ramps or diverting the water to the enemy avatar. 

Overall, we believe that the game presented in this thesis provides vast opportunities 

for future work, both on the technical challenges required to improve its robustness, 

and on the novel gameplay possibilities given by sketch-based interaction. 



Sketch Detection and Interaction  Denis Poric 

52 

  



Sketch Detection and Interaction  Denis Poric 

53 

Acknowledgements 

I would like firstly to thank my parents for all their support and help they have given 

me over the last few years. Secondly I would like to thank my supervisor Alessandro 

Mulloni for his aid and helpful suggestions given during the work on the thesis, and 

the very helpful comments during the reviewing of the thesis.   



Sketch Detection and Interaction  Denis Poric 

54 

  



Sketch Detection and Interaction  Denis Poric 

55 

References  

[1] Toon: Tom‟s object-oriented numerics library.  

 http://www.edwardrosten.com/cvd/toon.html Retrieved: 23.10.2011 

[2] Team 17 Worms.  

 http://worms.team17.com/ Retrieved: 23.10.2011 

[3] R. Azuma. A Survey of Augmented Reality.  Presence: Teleoperators and Virtual 

Environments 6, 4 (August 1997), pages. 355 - 385.   

[4] L. Barkhuus, M. Chalmers, P. Tennent,  M. Hall, M. Bell, S. Sherwood, and B. Brown. 

Picking pockets on the lawn: The development of tactics and strategies in a mobile 

game. In Proceedings of UbiComp 2005, pages 358–374. Springer, 2005. 

[5] S. Björk, J. Falk, R. Hansson, and P. Ljungstrand. Pirates! Using the physical world as 

a game board. In IN PROCEEDINGS OF INTERACT 2001, pages 9–13, 2001. 

[6] S. Engelhardt, A. Langs, G. Lochmann, I. Schmidt, and S. Muller. Molearlert - an 

augmented reality game based on lemmings. In Proc. 8th IEEE Int. Symp. Mixed and 

Augmented Reality ISMAR 2009, pages 183–184, 2009. 

[7] N. Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst. Shape recognition and pose 

estimation for mobile augmented reality. 17(10):1369–1379, 2011. 

[8] N. Hagbi, R. Grasset, O. Bergig, M. Billinghurst, and J. El-Sana. In-place sketching for 

content authoring in augmented reality games. In Proc. IEEE Virtual Reality Conf. (VR), 

pages 91–94, 2010. 

[9] A. Henrysson, M. Billinghurst, and M. Ollila. AR tennis. In ACM SIGGRAPH 2006 

Sketches, Article No. 13 SIGGRAPH ‟06, New York, NY, USA, 2006. ACM. 

[10] I. Herbst, A. Braun, R. McCall, and W. Broll. Timewarp: Interactive time travel with a 

mobile mixed reality game. In Proceedings of the 10th international conference on 

Human computer interaction with mobile devices and services, MobileHCI ‟08, pages 

235–244, New York, NY, USA, 2008. ACM. 

[11] D. T. Huynh, K. Raveendran, Y. Xu, K. Spreen, and B. MacIntyre. Art of defense: a 

collaborative handheld augmented reality board game. In Proceedings of the 2009 

ACM SIGGRAPH Symposium on Video Games, Sandbox ‟09, pages 135–142, New 

York, NY, USA, 2009. ACM. 

[12] idSoftware. Quake. 

 http://www.idsoftware.com/games/quake/quake# Retrieved 18.10.2011 

[13] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino. Augmented reality: A class of 

displays on the reality-virtuality continuum. pages 282–292, 1994. 

[14] A. Mulloni. A collaborative and location-aware application based on augmented reality 

for mobile devices. Master‟s thesis, Universit„a degli Studi di Udine, 2007. 

http://www.edwardrosten.com/cvd/toon.html
http://worms.team17.com/
http://www.idsoftware.com/games/quake/quake


Sketch Detection and Interaction  Denis Poric 

56 

[15] Revolutionary Concepts. UFO on Tape. 

 http://www.revolutionaryconcepts.net/uot Retrieved: 23.10.2011 

[16] A. Walker, R. Fisher, S. Perkins and E. Wolfart. Adaptive thresholding. 

 http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm Retrieved: 18.10.2011 

[17] D. Schmalstieg and Daniel Wagner. Mobile phones as a platform for Augmented 

Reality. Proceedings of the IEEE VR 2008 Workshop on Software Engineering and 

Architectures for Realtime Interactive Systems (Reno, NV, USA), pp. 43-44, Shaker 

Verlag, March 2008.   

[18] Sony Computer Entertainment. Eye of Judgement. 

 http://www.eyeofjudgment.com/ Retrieved 23.10.2011 

[19] Sony Computer Entertainment. EyePet. 

 http://www.eyepet.com/ Retrieved 23.10.2011 

[20] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, and W. Piekarski. First 

person indoor/outdoor augmented reality application: ARQuake. Personal Ubiquitous 

Comput., 6:75–86, January 2002. 

[21] THQ. Fantastic pets  

 http://www.thq.com/us/fantastic-pets/360 Retrieved: 02.11. 2011. 

[22] THQWireless. Star Wars Arcade: Falcon Gunner 

 http://www.thq.com/uk/star-wars-flight-of-the-falcon/wireless Retrieved: 18.10.2011 

[23] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Pose tracking 

from natural features on mobile phones. In Proc. 7th IEEE/ACM Int. Symp. Mixed and 

Augmented Reality ISMAR 2008, pages 125–134, 2008. 

[24] D. Wagner and D. Schmalstieg. Muddleware for prototyping mixed reality multiuser 

games. In Proc. IEEE Virtual Reality Conf. VR ’07, pages 235–238, 2007. 

[25] D. Wagner, T. Pintaric, and D. Schmalstieg. The invisible train: a collaborative 

handheld augmented reality demonstrator. In ACM SIGGRAPH 2004 Emerging 

technologies, SIGGRAPH ‟04, page 12, New York, NY, USA, 2004. ACM. 

http://www.revolutionaryconcepts.net/uot
http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
http://www.eyeofjudgment.com/
http://www.eyepet.com/
http://www.thq.com/us/fantastic-pets/360
http://www.thq.com/uk/star-wars-flight-of-the-falcon/wireless

	Table of Figures
	1  Introduction
	2 Related Work
	3  Sticks and Stones game design
	3.1 Design changes

	4 Technical Implementation
	4.1  Multi Marker Tracking
	4.2 Sketch Extraction
	4.2.1 Collision Detection

	4.3  Game Logic
	4.3.1 States
	4.3.2 Player Synchronization


	5 Results
	6  Future Work
	Acknowledgements
	References

