
Alexander Kalchauer

Monitoring of software process KPIs
using a web-enabled dashboard

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Slany, Wolfgang, Univ.-Prof. Dipl.-Ing. Dr.techn.

Supervisor: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.

Graz, May 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklaerung1

Ich erklaere an Eides statt, dass ich die vorliegende Arbeit selbststaendig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen woertlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

ii

Contents

Abstract iii

1 Introduction 3
1.1 Software quality measurement 3

1.2 Dashboard . 4

1.3 Goals . 6

1.4 Content of this thesis . 8

2 Application Life-cycle Management 10
2.1 ALM process models . 10

2.1.1 Circle ALM model . 11

2.1.2 Linear ALM model . 12

2.1.3 Sequential SDLC model 14

2.1.4 Agile SDLC model . 15

2.1.5 Issue management processes 16

2.2 Application Life-cycle Management Tools 18

2.3 Advantaged and Disadvantages 23

3 SW-Management in Numbers 24
3.1 Metrics and KPIs . 25

3.1.1 Metric . 25

3.1.2 KPI . 27

3.2 Software quality models . 28

3.2.1 Goal-Question Metric (GQM) 29

3.2.2 Factor-Criteria-Metrics (FCM) 32

4 Monitoring Tools 35
4.1 Business Intelligence tools based on OLAP 35

4.1.1 SAP . 36

iii

Contents

4.1.2 IBM Cognos . 37

4.1.3 Pentaho BI Suite Community Edition (CE): 38

4.1.4 Jaspersoft . 40

4.1.5 Summary . 41

4.2 SW-qualtiy monitoring tools . 41

4.2.1 SonarQube . 42

4.2.2 Parasoft . 43

4.2.3 Coverity . 43

4.2.4 Stages Enterprise . 44

4.2.5 Summary . 44

4.3 Softnet Cockpit . 45

5 Softnet Cockpit 47
5.1 General Architecture . 47

5.1.1 Front-end . 48

5.1.2 Multidimensional OLAP engine 50

5.1.3 Data-warehouse . 52

5.2 Requirements for the practical part 52

5.2.1 Issue process . 53

5.2.2 Process input data . 55

5.2.3 Metrics . 57

5.2.4 Other requirements . 59

5.3 Implementation and changes to the Softnet Cockpit 59

5.3.1 Relational database schema 59

5.3.2 Changes to the relational database 60

5.3.3 ETL . 61

5.3.4 ETL Changes . 64

5.3.5 Mondrian cube definition 64

5.3.6 Changes in the cube definition 70

5.3.7 JPivot web-pages . 71

5.3.8 JPivot web-pages Changes 73

5.3.9 Installation . 74

6 Queries and query templates 75
6.1 General query . 75

6.2 Queries . 77

6.2.1 State queries . 77

iv

Contents

6.2.2 Clarification queries . 78

6.2.3 Test, Review failed and Re-Open queries 79

6.2.4 Re-assignment or product change queries 80

6.2.5 Snapshot queries . 81

6.2.6 Parent-Child queries . 82

6.3 Parametrization of queries . 84

6.3.1 Parameter in a HTML link 84

6.3.2 Parametrization inside the queries and the code 87

7 Case study about the issue management process in the Softnet
Cockpit 92
7.1 Analysis of the data in the issue process of the partner company 92

7.2 Statement of the partner company 102

7.3 Conclusion . 103

8 Related Work 104
8.1 Process Monitoring . 104

8.2 Projects . 106

9 Conclusion and Future Work 108
9.1 Summary . 108

9.2 Future Work . 109

9.3 Conclusion . 110

References 112

Online References 116

v

List of Figures

2.1 ALM Life-cycle (http://innovationcenter.deteconusa.com/ @ON-
LINE 2013) . 11

2.2 ALM can be viewed as having three aspects (Chappell et al.,
2008) . 12

2.3 Advanced Waterfall Model (Royce, 1970) 14

2.4 ALM products . 19

2.5 OSLC products . 21

2.6 OSLC diagram (OSLC @ONLINE 2013) 22

3.1 DAP Classification for Q-Models (Deissenboeck et al., 2009) . 28

3.2 Goal Question Metric hierarchy (Caldiera and Rombach, 1994) 29

3.3 Goal Question Metric table (Caldiera and Rombach, 1994) . . 31

3.4 Software Quality Metrics (McCall, Richards, and Walters, 1977) 33

4.1 BI OLAP tools . 41

4.2 Metric based testing tools . 45

5.1 Architecture . 49

5.2 Cube . 51

5.3 Model of the issue process of the partner company 53

5.4 Star schema . 62

5.5 Navigation page of metric group 1 72

5.6 Result page of the Softnet Cockpit 73

7.1 Number of events with the Created activity issue in 2011 and
2012 . 94

7.2 Number of issues in the state New in the year 2012 94

7.3 Number of state events to the state Assigned in 2011 and 2012,
splinted to their previous state 96

7.4 Number of issues in the state Assigned over the year 2012 . . . 96

vi

List of Figures

7.5 Number of events with a Re-Assignment activity in 2011 and
2012, and the state where the Re-Assignment happened 97

7.6 Number of state events to the state Opened in 2011 and 2012,
splinted to their previous state 98

7.7 Number of events with a Test-failed activity in 2011 and 2012,
and the state where the test fail happened 98

7.8 Number of state events to the state Resolved in 2011 and 2012,
splinted to their previous state 99

7.9 Number of issues in the state Resolved over the year 2012 . . . 100

7.10 Number of state events to the state Verified in 2011 and 2012,
splinted to their previous state 101

7.11 Number of issues in the state Verified over the year 2012 . . . 101

vii

Abstract

Quality management is a very important aspect in the development of
software applications nowadays. One part of the quality management is the
measurement of quality attributes in software applications and processes,
that influence the development of software. The most important measurable
numbers in a company are key performance indicators (KPI). Tools that can
measure and monitor those KPIs and present them to the user are called
Software Dashboards or Software Cockpits.
This master thesis gives an overview, how to measure an issue tracking
process in a web enabled Software Cockpit. The issue tracking process is
part of the application life-cycle management is software companies. It is
described, in which way the chosen tracking process interacts with other
processes in the life-cycle of a software application. The measurement of
the quality of this process is done by using quality models. Those models
show how to break down abstract quality terms to metrics. Metrics are rules
how to measure one attribute of a software product or process. The metrics
are implemented in Software Cockpits, that use the data of this process
with the rules how to measure the process, to monitor it. Several Software
Cockpits and other monitoring tools are compared to give an overview over
the current market in this area.
In the practial part an existing Software Cockpit is introduced and it is
explained how to change the architecture of this cockpit, to implement
several new metrics. The metrics and the model of the issue process are given
by a partner company in the field of the automotive software producing
industry. The queries, that implement the metrics are splinted into several
sub-groups and described. Finally a case study about the issue tracking
process of the partner company is done. The result of this case study shows
the behavior of the issue tracking process of the partner company. This
study presents the practical business value of the implemented Software
Cockpit.

1

Kurzzusammenfassung

Qualitätsmanagement ist ein wichtiger Bestandteil in der heutigen Entwick-
lung von Software Applikationen. Ein Aspekt des Qualitätsmanagement von
Software Applikation und der beteiligten Software-Entwicklungsprozessen
ist die Messung deren Qualitätsattribute. Die wichtigsten messbaren Ein-
heiten sind eines Unternehmens sind seine Leistungskennzahlen. Tools die
diese Zahlen messen und überwachen können werden Software Dashboards
oder Software Cockpits genannt.
Diese Masterarbeit zeigt auf wie ein Issue-Tracking Prozess mittels eines
Software Cockpits überwacht werden kann. Ein Issue Prozess ist die des
Application Lifecycle Management. Es werden in dieser Arbeit die Zusam-
menhänge der verschiedenen Prozesse innerhalb des ALM beschrieben.
Qualitätsmodelle werden im Qualitätsmanagement verwendet. Diese Mod-
elle beschreiben, wie man abstrakte Qualitätsmerkmale auf sogenannte
Metriken projizieren kann. Metriken sind Regeln, die definieren wie man
einzelne Merkmale eines Softwareprodukt oder Softwareprozesses messen
kann. Metriken werden in den Software Cockpits, die ebenso die Daten über
den Prozess oder das Produkt enthalten, implementiert, um das Produkt
oder den Prozess zu überwachen. Nach dieser Einführung werden mehrere
Software Cockpits miteinander verglichen, um einen Marktüberblick zu
geben.
Im praktischen Teil wird ein bereits existierendes Software Cockpit beschrieben.
Es wird gezeigt wie die Architektur dieses Software Cockpits verändert wer-
den kann, um neue vorgegebene Metriken zu implementieren. Die Querys,
die diese Metriken implementieren werden in Untergruppen eingeteilt und
beschrieben. Abschließend werden noch die Ergebnisse einer Fallstudie über
das Verhalten eines Issue-Tracking Prozesses präsentiert, die in Zusamme-
narbeit mit einer Partnerfirma aus der Automotive Softwareentwicklungs-
branche durchgeführt wurde. Die Fallstudie zeigt den praktischen Wert des
Software Cockpits auf.

2

1 Introduction

This master thesis describes the monitoring of software process KPIs using
a web-enabled dashboard. Section 1.1 of this introduction gives a short
motivation example about the importance of quality measurement and
measurement of software. ISO and industry quality models are introduced.
Section 1.2 introduces the Software Dashboard and shows how Software
Dashboards can be used to measure the quality of a business product.
Section 1.3 describes the goals of this thesis.

1.1 Software quality measurement

Software is a important part in every person’s life nowadays and the influ-
ence of software is increasing each year more and more. Complex software
components are integrated in every car or building. Every person has con-
tact to software every day, by using a smart phone or a mobile computer.
The software industry increases and new software is implemented very
fast. Nevertheless software failures in the past years created the awareness
that the focus of creating software is not only on the fast production of
new software, but is also on producing high quality software. The top ten
examples of failures in 2011 of software presented by Phil Codd show how
much software failures still influence our life and our economy and that
software failures are not a problem of the past (Business Computing World
@ONLINE 2013).

Quality standards like ISO 9001 or industry models like the Capability Ma-
turity Model Integrated (CMMI) and their software oriented sub-categories
the standard ISO 9126 and CMMI-DEV are state of the art models that

3

1 Introduction

ensure the quality in the production of software applications. Those models
define quality dimensions of software applications as well as the processes
involved in the production of the software applications and how to improve
them. Due to the high complexity and high abstraction level of those mod-
els and standards, using one or more quality models is a huge challenge
for companies (Mutafelija and Stromberg, 2003). Nevertheless to usage of
such quality standards and models increased more and more in the last
years . Those quality models are often part of business contracts between
companies or the government. More than 1 million companies are ISO 9001

certificated (ISO 9000 @ONLINE 2013).

One essential part of those quality models is the measurement of the quality
attributes and the measurement of the business processes connected to the
production and usage of a software product. This measurement is used by
the management to control the production and operation of their software
products and processes and take strategic decisions. Due to the fact that
the different management levels need different sights on the measurements
of software products or processes and the giant amount of data available
in companies, tools are needed that can collect, store this data and present
this data on different abstraction levels and sights to the management. The
storage of the available data and the measurement of all dimensions of
a software including the important quality attributes are part of Business
Intelligence solutions of software companies (Negash, 2004). The data is
stored in data warehouses and presented to the user in so called Software
Dashboards.

1.2 Dashboard

Originally a dashboard represents the measurement instruments in the
cockpit of a car. It shows the driver of a car the current status of its car, like
the current speed of the amount or the fuel in the reservoir. This term has
been adopted for the software industry. In the software industry dashboards
are the state of the art way to measure a software product or a associated

4

1 Introduction

business processes. Software Dashboards can also be called Software Cock-
pits. Dashboards that measure data of a business processes are also called
business dashboards or enterprise dashboards. A Software Cockpit runs
queries on a data storage, usually a data warehouse and presents the result
with diagrams or reports to the user.

The data warehouse is the data storage system of a Software Dashboard.
It collects data of the observed processes or software products and all at-
tributes of the products and processes. The data and meta-data can be
from any kind of resource. Usually the resources are software versioning
systems like SVN, ticketing systems like issue tracker or social systems. The
data warehouse is a helper of the Software Dashboard. It stores the data
in a relational database by using the star- or snowflake schema pattern.
On top of the data warehouse the data is structured in multidimensional
cubes by using the Online Analytical Processing(OLAP) technology. OLAP
cubes consist of dimensions hierarchies and measures. The measures are the
information about the product or the investigated process in numbers. The
dimensions represent the kind of attribute of a specific measure. Hierarchies
are abstraction levels of the dimensions. The data in the cube is accessed
with multidimensional queries. Queries use the three elements of the cube to
give the user the possibility to combine different dimensions and investigate
the data on different abstraction levels by using the hierarchies (Chaudhuri
and Dayal, 1997). Modern dashboards give the possibility to drag and drop
through the dimensions in the cube and through hierarchies. Often Software
Dashboards are web-enabled and can be accessed with smart-phones or
tablets.

This master thesis shows a way of implementing the business process: issue
tracking into a Software Dashboard. An issue tracker tracks all bug and
enhancement tasks of one or more software projects. The issue process is
defined by its process model, that defines the states and the state changes
of the process. The model has an entry state, several exit states and middle
states. The states are connected by state change transitions. This graph is
called a state-flow graph. The issues are imported from an issue tracking
tool. An issue is represented in an issue tracker by one issue ticket. Every
issue has a set of attributes like the creation time, the product or person

5

1 Introduction

it is connected to and the state in which the issue is at the current time.
Each attribute of an issue is one dimension in the data warehouse. Beside of
the issue and the attributes that describe the issue process, history based
change events are imported into the Software Dashboard, that change those
attributes. A change event is defined by the attribute it changes, it is also
called activity of this change event, the value of the changed attribute and
the date when the change happened. The most common change events
are the state change events, but also change events of other attributes
are stored. Queries use the process model, the change events, the issues
and their attributes to measure the issue tracking process. The queries are
implemented according to predefined metrics. Metrics are rules to measure
of a property of a software.

1.3 Goals

The main goal of this master thesis is the adoption of an existing Software
Cockpit that monitors an issue tracking process. With this extension it will
be possible to monitor more complex quality dimensions of this issue pro-
cess. Several parts in the architecture of the Software Cockpit have to be
changed to extend the monitoring of the process by new dimensions and
give the possibility to run more complex queries. The Software Cockpit
monitors the issue tracking process of an automotive software producing
company by using a set of metrics and event data given. The Software Cock-
pit imports a data-set of nearly 41000 issues and 250000 change events. The
Software Cockpit has around 200 queries, they are implemented according
to a set of metrics. After the extension of the Software Cockpit a case study
is done with the available data.

Three main parts of the Software Cockpit architecture have to be changed,
to add new dimensions into the Software Cockpit and add the possibility to
create more complex queries:

• The data importation process has to import new history events of
dimensions that should be added to the Software Cockpit. For exam-
ple the clarification dimension has to be imported. The importation

6

1 Introduction

process has to import additionally all history events with a clarifica-
tion activity. The existing Software Cockpit only imports state change
activities. A side goal is to refine the importation for a more consistent
importation and the importation of old data. For example the data of
person that changed their name is not imported yet.

• The structure of the relational database in the data warehouse has
to be extended by the new dimensions. The relational database uses
the database star schema pattern. Every dimension is one branch in
the star schema. For the new dimensions branches in the star scheme
model have to be added.

• The structure of the cube in the data warehouse has to be changed.
New dimensions and measures have to be implemented. The structure
has to be changed to support queries that investigate issues over
several state changes. Therefor state change events of one issue have
to be connected.

New queries have to be implemented. Queries are the way to access the
data in the data warehouse and structure this data for the end user. The
task is to create a framework of queries and templates of different groups of
queries. The technical issue process department has to have the possibility
to create specific queries for the management level and has to be able to
change queries and create new queries fast. The queries in the existing
Software Cockpit are able to count single status change activities, connect
them to different dimensions like the product of an issue or its milestone
and present measures like minimum, maximum or average transition time to
the user. The goal is to create new classes of queries that fulfill the following
requirements:

• A new group of queries implements the tracking of the change of
the state of issues over more than one state change. The independent
state change events of one issue have to be connected to each other.
Queries have to recognize this connection by using existing query
functions. This set of queries does also require additional changes in
the architecture of the Software Cockpit.

• A new category are snapshot view queries. The current queries only
measure the state change events that happened in an issue. Snapshot
queries present the number of issues in a specific state at a given time-

7

1 Introduction

point, instead of the changes done to any issue splinted to the dates
when they happened. The focus of these queries is on the state and not
on the issues and on the monitoring at a given time-point rather than
measures that measure over a certain time-period. Mathematical a
snapshot query can be described as the number of issues that entered
a certain state minus the amount of issues that left an state at one
time. The goal of the snapshot queries is to identify how the process
envelops in one state, by observing a state at several time-points.

• One task is to implement new queries that investigate changes of the
new dimensions that have been added to the Software Cockpit. The
three new dimensions are the test-failed, review-failed and clarification
dimension.

• Parametrization of the queries has to be implemented. The manage-
ment wants to access each query with one HTML link and wants to
access different dimensions for example the product or milestone di-
mension and different levels of one dimension. A example of different
levels of a dimension is the higher level of the product dimension
a complete product or the view on the level of a component of one
product. Without the parametrization the management has to drill
manually through the different dimensions and hierarchies. Therefor
all queries in all groups for all dimensions have to be parametrized.

After extending the Software Cockpit and implementing the queries a small
case study is done with the process model of the issue tracking process and
the event data given by the company. The goal is to evaluate the Software
Cockpit and interpret the informative value of the results of the queries.
The results of the queries are compared to the given issue process model.
The model is checked for its conformance with the model and the results of
the queries are checked for their correctness and informative value.

1.4 Content of this thesis

The goal of the next two chapter of this thesis is to give the practical work
done a theoretical foundation. In the next Chapter 2 it is explained how

8

1 Introduction

the issue tracking process is embedded into the application life-cycle man-
agement (ALM) of a company. Chapter 3 introduces the way of measuring
software. Metrics and Key Performance Indicators (KPIs) are explained. The
two quality meta models Goal-Question-Metrics and Factor-Criteria-Metrics
show how to use metrics. Chapter 4 is a small market study about available
software monitoring tools. Different aspects of the tools are inspected. Chap-
ter 5 and describe the architecture of the implemented Software Cockpit
and the queries that were implemented and added to this Software Cockpit.
The results of the case study about the issue process is presented in Chapter
7. Chapter 8 presents related work done in the field of this master thesis,
while Chapter 9 gives a conclusion and shows how the Software Cockpit
can be improved in the future.

9

2 Application Life-cycle
Management

Application Life-cycle Management (ALM) is a very common phrase in
the information technology (IT) nowadays. Nevertheless there is no gen-
eral definition, the general idea is that ALM expands the generic idea of
life-cycle management to the production of software applications in the
IT industry. The center of the ALM is the software development life-cycle
(SDLC). SDLC includes all processes that are directly connected to the
production of software. ALM furthermore expands the SDLC and includes
all tools and processes in the entire time where an organization spends
money on this asset, from the initial idea to the end of the applications life
(Chappell et al., 2008). Since the idea of ALM is not defined generally every
application has its own sight on application life-cycle parts and its common
processes and patterns. ALM consists of processes from the business side
as well as from the engineering side. It includes all tools and patterns to
fulfill the goal of handling the application from its beginning to its end. This
chapter describes ALM process models and the part of issue management.
Afterward ALM tools are presented.

2.1 ALM process models

Several process models describe the processes and phases in ALM. The
circle model and linear model describe all parts of the ALM. The focus of
the traditional sequential model and the modern agile model is the SDLC.
The first two models and the SDLC models can be combined with each
other. For example can both SDLC models be part of the development phase

10

2 Application Life-cycle Management

of the linear model and describe this phase more detailed. Afterward the
task or issue process, as one important process in ALM is described.

2.1.1 Circle ALM model

Figure 2.1: ALM Life-cycle (http://innovationcenter.deteconusa.com/ @ONLINE 2013)

One possible view on the ALM processes is the circle view (Rossberg, 2009).
In this view the processes are splinted into 5 parts. The circle with the 5

parts is shown in the Figure 2.1. This circle model has an entry point at
the planning phase where the idea is generated and an exit point after an
operations phase.

The first part of the ALM life-cycle circle is the planning part, it includes the
Requirement Management process and the concertizing of the initial idea.
Often first market studies are done in this part of the circle and business
plans are created. External consultants can be used to evaluate the plan in
this stage to avoid early failures in projects.

In the build or analysis part the application is designed and the architecture
of the application is created. Technical decisions are taken at this stage, for
example which type of SDLC is chosen in this project and which platforms

11

2 Application Life-cycle Management

will be used.

The implementation part consists of the implementation, the customizing
and the testing. This part of the ALM contains the main parts of the SDLC.
Several SDLC runs are done according to version and milestone decisions
done in the previous parts.

In the operation part the application is already implemented, but it can
still need maintenance, bug fixing or a redesign. This part has a important
business aspect, the application is now an asset of the company and asset
management needs to be done.

In the transformation phase the application can get into retirement or a new
application idea can trigger a restart of the circle.

2.1.2 Linear ALM model

Figure 2.2: ALM can be viewed as having three aspects (Chappell et al., 2008)

12

2 Application Life-cycle Management

Chappell has a more straight view on ALM. He speaks of three overlapping
linear phases: the governance, the development and the operation phase.
Figure 2.2 shows this linear model.

The governance phase controls the business aspects of the ALM. At the
beginning the business model and business plans are created. Later on, it
ensures that the business needs are fulfilled and the business plan is fol-
lowed. From the beginning until the application is deployed, the application
is in the project portfolio of a company. When the application is deployed
it moves to the application portfolio management and is handled as asset
of the company. Governance is the only phase that consists from the initial
idea until the end of the lifetime without a break.

The development phase consists of several SDLC turns. The turns are de-
fined through different versions or milestones of application. If there is more
than one SDLC, it is possible that between those SDLC phases maintenance
steps happen. In Figure 2.2 the long green lines are SDLC runs and the short
green lines show maintenance phases. The development phase starts when
the initial idea is already concertized and ends when the application is not
extended anymore.

The operation phase starts for the first time just before the application is
deployed. It handles monitoring and management aspects of the project.
The operation phase is closely connected to the development phase, because
every new SDLC turn and maintenance turn triggers a new operation event.
Nevertheless after the application is deployed for the first time the operation
phase never ends until the end of the applications lifetime (Chappell et al.,
2008).

This model states in a good way the importance of both the development
oriented processes, especially the SDLC processes, and the processes of the
business side and their interaction.

13

2 Application Life-cycle Management

2.1.3 Sequential SDLC model

Sequential models are also called linear or step-wise models. They consist
of several following phases. Every phase can only begin, if the previous is
completed. The different phases should not overlap. In adapted models it
is possible to redo steps and jump to earlier phases of the model. Those
models are not complete linear models (Royce, 1970).

Figure 2.3: Advanced Waterfall Model (Royce, 1970)

The earliest and one of the most common and well defined sequential
models is the waterfall model. There exist many waterfall models with steps
on different abstractions levels and advanced models where it is possible
to jump steps back and redo steps. Figure 2.3 shows a waterfall model that
consists of the six following steps:

• At the beginning the requirements of the application are defined and
documented.

• Analysis defines the general requirements more detailed, including
market analysis and technical aspects. At the end of the analysis the
requirements have to be exactly fixed for the design.

14

2 Application Life-cycle Management

• Design structures the fixed requirements. Often model languages like
Unified Modeling Language are used to create a technical design.

• Coding translates the design into a computer readable and executable
language.

• In testing phase the created program is tested for its requirements.
• Operation phase handles the execution and the maintenance of the

program (Royce, 1970).

One of the biggest disadvantages of this model is its lack of flexibility. The
waterfall model requires fully elaborated documents as completion criteria
for early requirements and design. In modern projects many requirements
are often not documented or in many cases not known. In the early parts
of a project. In projects where the flexibility is not needed, because the
requirements are well defined and change seldom, sequential models are
still very popular. One example of projects that use often sequential models
are embedded systems.

Sequential SDLC models are easy to integrate in the other general models
since one SDLC turn is one completed process and can be treated as one
entity with a defined input and output.

2.1.4 Agile SDLC model

The less flexibility of the sequential SDLC models lead to the creation of
more flexible models. Agile development, tries to solve the problem of
fast changing requirements, by a new model of iterative and incremental
development. It is based on four principles:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan (agilemanifesto @ONLINE

2013)

Although agile development is originally a SDLC model, all four principles
have impact on the other ALM parts in both ALM models.

15

2 Application Life-cycle Management

The importance of individuals and interactions requires flexible tools and
processes. All phases in the ALM have to be changed if necessary. A con-
tinuous working software requires a flexible build management with tools
that offer software versioning, continuous integration and nightly builds.
The goal is that there exists always a running software application, which is
enhanced step by step. Therefor only small changes and small iterations are
done. In Scrum, as a agile example, there exist daily, weekly and monthly
iterations. Each iteration contains small changes and enhancements done to
a software application. This influences the implementation as well as the
operation phase of ALM. Costumer collaboration requires a close interaction
with the customer. Social tools make the interaction between developer and
customer easier. The customer needs also access to the ticketing systems
and has to be always up to date. At every time the customer can change the
requirements. The customer is integrated in all ALM phases. Also respond-
ing to change, requires that processes and tools can be changed at any time.

Due to the fact that agile development influences ALM a lot, the definitions
agile-ALM and agile-ALM tools were created (Goth, 2009).

2.1.5 Issue management processes

This master thesis focuses on one specific process of the ALM: the issue man-
agement process. Issue management is also know as task management in
ALM. The issue process can be divided into two different processes the bug
tracking process and the enhancement tracking process. Both processes are
part of ALM in the different models. This section describes these processes
and associates the processes with the previous introduced models. The bug
tracking is also known as defect management, the enhancement tracking
as technical task management. Both processes influence and are influenced
by the quality management, the build management and the requirement
management.

16

2 Application Life-cycle Management

Bug tracking process

The bug tracking process handles the know faults, failures and errors in
a software application, from the first occurrence until they are solved. An
error is a human action that produces an incorrect result. A fault is the
condition that causes the software to fail. The failure is the termination of
the ability of a product to perform a required function or its inability to
perform within previously specified limits. A failure may occur due to one
or more faults in a software application. (“IEEE Standard Classification for
Software Anomalies” 2010) Faults, failures and errors are named bugs and
are treated same in the bug tracking process. This way bugs can depend on
each other.

Each bug in a software is documented as a bug ticket. Bug tickets can be
physical papers or virtual in a bug tracking system. A bug ticket contains
relevant information and meta data about the bug. The information is for
example: what happened, under which conditions did the bug happen or
how can the bug be reproduced. The meta information is: who identified the
bug or when did the bug happen. The ticket is generated by a developer or
software application support. Bug tickets are the input of the bug tracking
process. In the bug tracking process the bug is analyzed, assigned to a
developer and solved by a developer. The output of the bug tracking process
is that the bug ticket is marked as solved. It is also possible that the bug
is rejected, for example when the bug is already solved or is not solvable.
Chapter 7 describes a bug tracking process and compares two different bug
tracking processes.

Bugs are recognized and furthermore bug tickets are created in two different
phases of the ALM. If the test of a software fails, the bug is recognized in the
testing phase. In the circle model the testing is part of the implementation
phase. In the linear model it is part of the development phase. This is often
controlled by the test management.
If a bug is recognized by a user of the software, the bug ticket is created in
the operation phase of the ALM.
Bugs are solved in maintenance steps or in SDLC phases of a new version

17

2 Application Life-cycle Management

of the software. In the circle model the maintenance is part of the operation
phase, in the linear model maintenance steps happen between the different
SDLC turns.

Enhancement tracking process

The enhancement process is closely connected to the bug tracking process.
The enhancement process also stores tickets with relevant information about
the enhancement and its meta data. Often the same tool is used in both
processes to store the bug and enhancement tickets. The difference between
those two types of processes is the creation of the ticket. The enhancement
tickets are created regarding to the requirements of a software application.
The enhancement tickets describe new features of a software application or
other tasks of the developer. In sequential SDLC all enhancement tickets are
created before the implementation starts. In agile development the enhance-
ment tickets are created at the beginning of each iteration. They are solved
in the implementation phase of ALM.

2.2 Application Life-cycle Management Tools

In the past there existed no specific ALM tools, but many small tools which
handled one aspect of ALM. Nowadays many companies offer complete
tool-sets that cover all parts of ALM. In the most companies there is a core
tool that is extended by several other tools that cover the other aspects of
ALM. Those tool-set are presented as complete ALM solutions.

Gartner describes in their yearly report about ALM tools five companies as
leaders in the production of complete ALM tool-sets: Microsoft, IBM, Atlas-
sian, Rally Software and CollabNet. They fulfill all of the following ALM
requirements: requirements management, project management, quality man-
agement, defect management, build management, release management and
task management. Their first challenger is HP, who has a market leader

18

2 Application Life-cycle Management

Figure 2.4: ALM products

position in quality and test management, but still has not integrated all
aspects of the SDLC like the build management. The leading vendors have
all aspects of ALM in their tool-sets. Most of them have a core tool and built
other tools that cover the other aspects of ALM (Gartner @ONLINE 2013).

Those six ALM tool solutions are analyzed closer in the aspects of task
management, agile development, Software-as-a-Service(Saas) and mobile
apps 2.4.

The Microsoft ALM solution is build around their Visual Studio Ultimate
edition, which includes their Team Foundation Server and Share Point.
Visual Studio Ultimate is sold as Microsoft ALM solution, all other editions
do not have all parts of the ALM tool-set. A task tracker is integrated in the
Team Foundation Server, which is part of Visual Studio Ultimate. They offer
a agile process template for Visual Studio ALM. This can be loaded into the
Visual Studio process tools. Several tools of the Team Foundation Server and
the Share Point are available as Saas. Perfecto Mobile is a mobile extension
of the Team Foundation Server, that gives mobile access to the Team Foun-

19

2 Application Life-cycle Management

dation Server and helps developing mobile applications (Microsoft ALM tools
@ONLINE 2013).

IBM has a core set of six featured ALM products, with the prefix Rational:
Rational TeamConcert, Rational ClearCase, Rational Buildforge, Rational
Requirements Composer, Rational DOORS and Rational Quality Manager.
Beside the six main tools several other small tools are offered by IBM with
the focus on ALM. The task tracker is included in the Rational ClearRequest.
Rational TeamConcert focus is agile ALM in the development process. All
products are available as Saas. Rational Mobile is a not core tool that gives
the possibility to control other products via a mobile phone and offers
special features for mobile development, like mobile multi platform devel-
opment (IBM ALM @ONLINE 2013).

Atlassian offers around their market leading Project- and Issue-tracker Jira,
several other tools in all fields of ALM. All other tools are designed to be
able to work with Jira. They offer a huge amount of plug-ins and add-ons
to Jira, which give the possibility to connect their tools with other non-
Atlassian ALM tools (Atlassian ALM @ONLINE 2013).

Rally Software has a focus on agile development and Saas only. The task
management process, which is the backlog in the agile development, can be
connected with all other issue tracker like Jira, ClearQuest, through their
apps and integration center. They offer apps for mobile project management
and mobile development (Rally ALM @ONLINE 2013).

CollabNet’s main focus is also Saas products with focus on agile develop-
ment. Their core products are agile SDLC products: software versioning
systems and continuous integration systems. Around those core products
they build tools that handle all other parts of the ALM. They also offer
integration solutions to integrate other issue tracker into their agile backlog
solution in their task management (Collab ALM @ONLINE 2013).

20

2 Application Life-cycle Management

HP ALM is based on HPs core strength the HP Quality Center. It is sup-
ported by the HP Requirements Manager, the HP Defects Management, the
HP Business Process Testing and HP ALM. HP ALM combines all other
tools to one ALM solution. All tools are available as Saas. The task and
defect management is included into the HP Quality Center. In agile teams
the HP Agile Manager can be included. (HP ALM @ONLINE 2013)

Open Service for Lifecycle Collaboration (OSLC)

Figure 2.5: OSLC products

Although most companies have their own solutions and interfaces to import
data from tools of other companies, the OSLC foundation was founded
in 2008 to create a standard for the exchange of data between ALM tools.
The standard is based on the W3C Linked Data specification and has the
goal to be a open standard for the interaction between all ALM tools. It is
hugely supported by IBM, but is also supported by more than 30 other user
and producer of ALM tools. Nevertheless the only tools that support the
importation of OSLC data yet are IBM tools. But several other tools support
already the production of different OSLC based data, they are presented in
Figure 2.5.
This gives IBM a huge advantage in the interaction between different ALM
tools. Other tools like the Atlassian tool-set provide a huge amount of APIs
to support the integration of the data of other tools. The advantage of a

21

2 Application Life-cycle Management

open standard is, that it is possible to import any data from old or new
implemented ALM tools, Atlassian and other ALM tool vendors have to
provide APIs for every new supported tool.

The OSLC initiative has different work-groups for the different areas of
OSLC data, like requirements management data, quality management data
or change management data and a core work-group that is responsible for
the interaction from data between the different data areas. Figure 2.6 shows
the example of work-groups in the different areas and the core work-group
(OSLC @ONLINE 2013; Stücka, 2013).

Figure 2.6: OSLC diagram (OSLC @ONLINE 2013)

22

2 Application Life-cycle Management

2.3 Advantaged and Disadvantages

As described in this chapter ALM is an important factor in the production of
software applications. All big players in the field of software producing and
supporting tools offer complete ALM tool-sets. In those tools big data-sets
with much information are created, stored and transferred between different
ALM tools. This data can be used to monitor software processes and software
products and improve the quality aspects of them. Therefor this data has to
be measured. Chapter 3 introduces the measuring of software products and
processes.

23

3 SW-Management in Numbers

Software measurement is an important factor in the production of software
applications nowadays. It is a mechanism for creating a corporate memory
and an aid in answering a variety of questions associated with the enact-
ment of any software process. It helps support project planning, it allows
us to determine the strengths and weaknesses of the current processes and
products, it provides a rationale for adopting and refining techniques, it
allows us to evaluate the quality of specific processes and products (Caldiera
and Rombach, 1994).

According to Sneed (Sneed, Seidl, and Baumgartner, 2010) software is mul-
tidimensional artifact with many dimensions. Three of those dimensions
are measurable: the quantity, the quality and the complexity dimension.
There exist two main possibilities of measuring a software in a time aspect:
continuous measuring and one time measuring. The goal of the continuous
measuring in the production of the software is to reduce the complexity of
the software, raise the quality of the software and change the quantity of a
software. One time measuring is suitable to compare two different software
products, for example when a manager has to decides, what product to buy
or to find out, whether a software product fulfills a given standard or not
(Sneed, Seidl, and Baumgartner, 2010).

Especially the measuring of the quality dimension is very complex, due to
the high amount of attributes of software quality and the different sights on
the quality of software. This chapter describes how to operate the measuring
of software quality, by using quality models and software metrics.

24

3 SW-Management in Numbers

3.1 Metrics and KPIs

Metrics are rules or functions how to measure a software on the source
code level. They rely on the countables of a software application, like the
lines-of-code, statements, procedures or input-output operations. The goal
of measurement may never be the measurement itself, but has to serve a
specific goal (Wagner et al., 2010). Those goals are defined through the
business needs of a company. A business need can be to produce high
quality software, to reduce the maintenance costs in the bug fixing of the
software and satisfy the costumer. A company defines their most important
goals as key performance indicators (KPI).

3.1.1 Metric

The IEEE Standard 1061 defines software metrics as a function whose inputs
are software data and whose output is a single numerical value that can be
interpreted as the degree to which software possesses a given attribute that
affects its quality (Committee et al., 1998). Singh defines two main categories
of software metrics: product metrics and process metrics (G. Singh, D. Singh,
and V. Singh, 2011). Product metrics measure the attributes of a software
product. Process metrics describe the attributes of the processes in the
development of software applications. Those metrics quantify any step in a
software process. Both categories can be divided in several subcategories.

For product metrics Sneed defines three main dimensions of metrics: the
quantity metrics, the complexity metrics and the quality metrics. They are
based on the three main dimensions of a software product (Sneed, Seidl,
and Baumgartner, 2010).

• The quantity metrics describe any sizes of a software product. This can
be the amount of lines in a database, the number of files or number of
tests. A very commonly used base metric in this group is the Lines of
Code (LOC) or number of executions metrics (Albrecht and Gaffney Jr,
1983). Those metrics are often connected with the required number of
features in business metrics like the return on investment per line of

25

3 SW-Management in Numbers

code, or line of code per person. Due to the big amount of possibilities
to define the size of a software, one big problem is to define which
metric is relevant for which reason.

• The next metrics are metrics of the complexity dimension of a software
application. Complexity metrics measures the connections between
different part and elements of a software. It measures the amount of
connections and how strong the connections between those elements
are. Well known metrics of the complexity are the Halsted metrics , the
McCabe metrics (McCabe, 1976) or the Sneed branch density metric
(Sneed, Seidl, and Baumgartner, 2010). Again a problem is to define
the relevant and irrelevant types of connections between elements of a
software product to define the complexity.

• The last metric group measures the quality dimension. Quality metrics
are difficult to define since there are a lot of aspects which define what
quality is. For example many errors in a software product can state that
the software product has less quality, or a good quality if all errors are
known classified. A lot of changes in the software developing process
can mean that this process has a bad quality and has to be improved or
that it has a good quality because it is currently improved. It is difficult
to define when a software product has too many bugs and how it
is correlated to the quality of this product, this number is probably
different in every product. Due to this fact general rules have to be
considered as well as quality contracts between the costumer and the
developer have to be signed. In this way a metric can check, if the code
fulfills the expectations of the costumer in sense of cost and quality
or the contract is failed. Quality metrics are a important part of the
quality models defined in the next section.

ISO 1061 standard describes three different kinds of software product met-
rics: internal, external and quality in use metrics.

• Internal metrics do not rely on the execution of the code, for example
a static code analysis.

• External metrics are applicable on the execution of an application and
depend on input and influences.

• Quality in use metrics measures the numbers in the usage under real
conditions. The external and the quality in use metrics should usually

26

3 SW-Management in Numbers

depend on each other on correspond.

Software process metrics can be divided in three different groups: the
software inventory, the work in process and the velocity group (Loper and
Schmidt, 2005).

• The software inventory is the amount of work done in a software
project. This group includes new features implemented in a software
project as well as the work done to test a software application and
solve bugs.

• Work-in-process are all ideas that are brought into an application.
These metrics are important to measure the progress in a software
project.

• Velocity is the effort that needs to be done to produce a working
software. Those metrics are important to predict future effort and costs
in software projects.

3.1.2 KPI

KPI represent a set of measures focusing of those aspects of organizational
performance that are the most critical for the current and future success of
the organization (Parmenter, 2010). KPIs are very critical numbers for the
management of an organization they are usually known and identified by
the management but sometimes unknown. The management of a company
uses the KPIs to take strategical decisions. The connection between the
metrics and the KPIs is that metrics measure on a lower abstraction level if
the goal for a specific KPI is reached. The KPIs are a subset of the result of
the most critical metrics available in the company. One way to break down
the business goals like the KPIs, which are on a high abstraction level, down
to software metrics, on a lower abstraction level, can be done by using the
goal question metrics model (V. Basili et al., 2007; V. R. Basili, Heidrich,
et al., 2007).

27

3 SW-Management in Numbers

3.2 Software quality models

Quality is a important factor in the production of software applications. A
way to master the high complexity of software quality in software producing
companies, quality models are used to refine the abstraction of quality into
defined and measureable quality attributes. There exist many different types
of quality models, with different strengths and weaknesses. One possibility
to categorize the different quality models is the Definition Assessment
Prediction (DAP) classification Figure 3.1. In this classification there exist
three different purposes of quality models (Deissenboeck et al., 2009):

• Definition: A quality model has to define, what the quality in the
software products or processes in a company is or how it is defined.
This purpose is high important in the management level of companies.

• Assesment: The abstract term quality has to be carried over into mea-
surable entities. Measurement rules are called metrics. The assesment
concernes in the development departments in companies.

• Prediction: A quality model with prediction purpose defines rules that
can forecast the output of the measurable entities. Prediction is used
in the project planning in companies.

Figure 3.1: DAP Classification for Q-Models (Deissenboeck et al., 2009)

28

3 SW-Management in Numbers

The different purposes of quality models depend on each other. It is not
possible to create the assessment of one quality definition without knowing
the quality definition. Furthermore it is not possible to forecast the output
of a metric without knowing anything about the metric. This dependency is
illustrated in Figure 3.1. Models that do not implement the purpose they
depends on, need a model that implements this purpose. The ideal model
would implement all three categories, but those models are very rare and
cover usually only a small aspect of the quality in a company (Deissenboeck
et al., 2009).

Especially in environments where software applications change fast, quality
models have to be very flexible and adaptable. Therefor it is not possible
to create one specific model with predefined definitions and assessment
rules. A model that gives a framework to define a quality model, by giving
constructs and rules needed to build such a quality model, is called quality
meta model. Companies can use quality meta models to define their own
quality model for their own needs. The two most know, widely used and
adopted meta models are the Goal-Question-Metric and the Factors-Criteria-
Metrics models (Wagner et al., 2010). Both models are meta models for the
definition and especially for the assessment of quality attributes. Those meta
models are introduced in the following section.

3.2.1 Goal-Question Metric (GQM)

Figure 3.2: Goal Question Metric hierarchy (Caldiera and Rombach, 1994)

29

3 SW-Management in Numbers

The GQM approach is first defined by Caldiera and describes a process to
define goals of a software application and define step-wise metrics from the
abstract goals (Caldiera and Rombach, 1994). The metrics can be product,
resource or process oriented. The GQM bases on a NASA project to detect
defects in a set of projects (V. R. Basili and Selby, 1984).

The way of generating the metrics with the GQM method consists of 3 levels:

• In the conceptual level the goals are defined. A goal is defined for an
object, for a variety of reasons, with respect to various models of qual-
ity, from various points of view, relative to a particular environment.
The object can be a product, process or a resource. Ideally the goals
are related to the business goals of a company.

• In the question level the goals are specified by creating questions that
define the goals. A set of questions is used to characterize the way the
assessment or achievement of a specific goal is going to be performed
based on some characterizing model. Questions try to characterize the
object of measurement (product, process, resource) with respect to a
selected quality issue and to determine its quality from the selected
viewpoint.

• In the metric level the data is connected to the questions. Metrics are
created that quantify and measure the questions. The metric can have
an objective or subjective scope. A objective metric depends only on
the measured object, a subjective metric depends on the measured
object and on a viewpoint, it is taken from. An objective metric can be
the size of the code, a subjective metric can be the the readability of
this code. (Caldiera and Rombach, 1994)

All three levels are ordered hierarchically, the hierarchy is shown in Figure
3.2. Each goal can have multiple questions and each question can be con-
nected to multiple metrics. Metrics can answer more than one question, to
avoid multiple implementations of metrics and make them reusable. The
questions should define the goals as completely as possible to ensure that
every relevant aspect is considered.

30

3 SW-Management in Numbers

One output of the GQM model is a table for each goal. The purpose, issue,
object and viewpoint of one goal are described. Each question for this goal
is written below and under the metrics The metrics have to answer these
questions. The Figure 3.3 shows an example of a bug/issue goal.

Figure 3.3: Goal Question Metric table (Caldiera and Rombach, 1994)

Caldiera describes when measurement and furthermore the goals in the
GQM method can be effective. Three objectives have to be considered:

• The model has to focus on specific goals. The purpose, the issue,
the object and the viewpoint of the goal 3.3 should be described as
complete as possible. This way the goals and the questions can be put
easier in conjunction.

• It has to be applied to all life-cycle products, processes and resources.
A goal is often influenced by all aspects of the life-cycle like products,
processes and resources, if only one of those aspects is considered the
goal can be miss-interpreted.

• The interpretation has to base on characterization and understanding
of the organizational context, environment and goals. The quality
model may never serve only itself, it has to serve a specific purpose,

31

3 SW-Management in Numbers

this way the goals in the GQM goals have to set in context with those
points.

Doran describes that a good goal has to have five attributes. The goal has to
be specific, measurable, ambitious, realistic and terminated (Doran, 1981).
In business companies this method is well known as the SMART method.
Goals defined this way can be used in the first layer of the GQM method.

The GQM model and the way from the goals, to the questions and metrics
can be considered as a bottom down model. Koziolek (Koziolek, 2008)
enhances the model by the interpretation of goals in a bottom up way. Each
metric has to be checked, if it answers the question. The questions have
to be evaluated, if they are able to reach the goal and completely define
the goal. In the bottom up step the questions and metrics are enhanced or
adopted.

3.2.2 Factor-Criteria-Metrics (FCM)

The Factor-Criteria-Metric(FCM) model is defined for first time in 1977 by
McCall in a document for the US Air-force to define important factors for
their software application (McCall, Richards, and Walters, 1977). The quality
factors defined in this meta model have a huge impact on the ISO-9126

metric quality model.
The FCM model is a hierarchical model. It is structured in the McCall qual-
ity tree with three layers. The root elements are the factors, they describe
abstract software quality attributes in a business oriented way. Those factors
are on a high business abstraction level and can easily be used as goals
in business plans. The second layer consists of the criteria, they splint the
factors into software oriented sub categories. In the last layer there are the
metrics they describe how to measure the software according to the criteria.
Each factor can have several criteria and each criterion can be measured by
several metrics. Also one metric can be used for more than one criterion
and one criterion can be used in more than one factor. One example of a
definition of factors and their criteria is given following:

32

3 SW-Management in Numbers

CORRECTNESS: Extent to which a program satisfies its specifications
and fulfills the user’s mission objectives.
Criteria: Traceability, Consistency, Completeness
MAINTAINABILITY: Effort required to locate and fix an error in an opera-
tional program.
Criteria: Consistency, Simplicity, Conciseness, Modularity, Self-Descriptiveness
TESTABILITY: Effort required to test a program to insure it performs its
intended function.
Criteria: Simplicity, Modularity, Instrumentation, Self-Descriptiveness

A factor or criterion can have a positive, negative or no impact on other
factors or criteria. It is very important to check those dependencies in the
creation of the metrics. The metrics are created according to the criteria
which describe the software quality attribute. Criteria can have also sub-
criteria and sub-sub-criteria. McCall also describes the time, when a quality
attribute has an impact on the software application and when the metric
has to measure the criterion. All these dependencies are shown in the Table
3.4.

Figure 3.4: Software Quality Metrics (McCall, Richards, and Walters, 1977)

The metrics should start measuring the criteria, at the time point in the
life-cycle marked with a circle. The impact of a fault or wrong metric will be

33

3 SW-Management in Numbers

seen at the time point marked with an x. The longer an unknown fault exists
and the higher the impact of the fault is the higher will be the costs of fixing
the software. At this point the product metrics, which measure the criteria
of the factors, can be connected with process metrics. The process metrics
can break down the process to single steps and define at which point an
application is. The process metric shows in which step of the process which
product metric has to be applied.

The result of metrics is presented to the user. Applications that clean up,
merge and present metrics to the user are called dashboards. A dashboard
is one type of software monitoring tool. The following chapter gives a short
overview about existing software monitoring tools.

34

4 Monitoring Tools

Monitoring a software application through the whole lifetime of the appli-
cation is a very important part in every company nowadays. Monitoring of
software products in every step from the creation to the end of the lifetime
is part of the measuring of software and furthermore part of the quality
management and is essential in the production of high quality products.
Especially in software producing companies, where software is developed
over a long time in several release cycles and one software product is the
major part of the company’s product portfolio, it is important to monitor
this product - in the developing process as well as in the operation.

This chapter gives an overview on monitoring tools available in the market.
It describes Business Intelligence tools, that use Online Analytical Process-
ing(OLAP) as one way to monitor processes, products and resources in
software producing companies. It also compares monitoring tools in the
field of code quality and code testing. Finally one project is introduced
that combines a business intelligence OLAP and a code quality and testing
solution.

4.1 Business Intelligence tools based on OLAP

In the monitoring of software production and software projects it is im-
portant to investigate a huge amount of data from many sources of the
SDLC, that interact with each other. It is necessary to observe this data in
the aspect of the different dimensions of the software and in the aspect of
different abstraction levels of the dimensions. Business Intelligence (BI) is
the technology that focuses on this. It includes applications, infrastructure,

35

4 Monitoring Tools

tools, and best practices that enable access to and analysis of this data
(Business Intelligence @ONLINE 2013).

One category of tools that implement BI is OLAP. The OLAP model is a
way to present multidimensional data to the user and gives the possibility
to interact with this data. The data is aggregated and presented to the user
on a graphical user-interface, the dashboard. The data is represented in
multidimensional cubes. The main functionality is that the cubes are drill-,
slice- and dice-able. More information about the cubes is given in Chapter 5.
The OLAP engine gets the data from data-warehouses by using multidimen-
sional queries. It is possible to split the information of the data-warehouse
into data-marts. Data-marts are a subgroups of the data-warehouse at a
lower level. The data-warehouse can be filled in with any information from
any source by using Extraction Transform Load (ETL) processes. The ad-
vantages of the OLAP model is that the user can browse online through all
dimensions of the current data and history data.

This section provides information about the commercial BI OLAP tools of
SAP, IBM Cognos and the open source tools of Jaspersoft, Pentaho.

4.1.1 SAP

SAP is a company founded in 1972 in Germany for System Analysis and
Program Development. In their big product portfolio they also have a huge
focus on Business Intelligence. One of their main monitoring product is
their Business Warehouse in the SAP NetWeaver product portfolio, the SAP
NetWeaver Business Warehouse. They also have separated reporting and
presentation tools in product portfolio Business Intelligence. The reporting
tools are the Crystal Report packages, the dashboard, the web Intelligence,
the Visual Intelligence and some more.

The 4 main layers of the SAP BI solution are the ETL services, the Storage
Services, the Analysis and Access Services and the Presentation services.

36

4 Monitoring Tools

The ETL services can be a SAP ETL service but also third party imple-
mentations, with SAP certificate are allowed. They support extraction from
several relation based databases as well as from external files, Extensible
Markup Language(XML) data, Business Object Data Services and all SAP
data services through different services and APIs. The transformation step
transform sources like the DataObjects, DataSources and Info Cubes into the
internal structure of the SAP BW by using several different transformation
rules and routines. In the load step the data is loaded into the final objects
called InfoProviders. The InfoProviders are predefined data objects. Those
objects are stored into the DataStorage layer of the SAP BW.

The DataStorage layer has several manager to create and control data cubes
and aggregation tables. The analytic and access services give the access to the
data storage and provides all planning, analysis and navigational functions.
It is possible to run any kind of transformations and run queries to the
database. The access services gives also third party solutions the possibility
to access the data in the Data Storage layer and run queries. Every query
always accesses one InfoProvider. SAP offers the BEx query to design the
queries, which supports drag and drop solutions to create queries of several
dimensions. Queries give a multidimensional result, while the BDx Report
solution returns more flat models. The presentation services uses the BEx
Analyser, Report Designer, Web Analyzer and Web App Designer to create
the visual output form the requested data. It supports several dashboards or
the Crystal tool-set. It is also possible to present the information in own or
third party dashboards or reports. (McDonald et al., 2002; SAP BI @ONLINE
2013)

4.1.2 IBM Cognos

IBM is one of the market leader in Business Intelligence tools and frame-
works. The ETL service bases on the Cognos DataManager. It can be con-
nected to any relational based data system and several other data systems.
It also supports the importation of data from Microsoft EXCEL, or XML
files.

37

4 Monitoring Tools

Cognos supports, beside of the standard multidimensional cubes two spe-
cial cube solutions. Cognos PowerCubes contain calculated and aggregated
data that is organized as dimensions and measures you can view with
Cognos Enterprise. Easier and faster access to precalculated summary data
enables quick analysis. Dynamic cubes extend Dynamic Query in-memory
acceleration to drive performance for dimensional analysis. Cognos Cube
Designer can be used to create a cube definition from a relational data
warehouse. Dynamic cubes help you optimize the value of enterprise data
warehouses, which often have exploding data volumes. At the front-end
Cognos supports several different kind of dashboards, scorecard solutions
and analyzing tools, including the possibility to access those tools online
and on mobile devices.

4.1.3 Pentaho BI Suite Community Edition (CE):

Pentaho is a software producing company with the main focus on Business
Intelligence. Their core framework is based on open source, but they also
offer commercial applications. Their commercial products are for example
the bug and issue tracker Jiira with a direct interface to their business intelli-
gence products or the Business Analytic and Big Data Analytic tools. Those
tools are set on top of their core open source framework and offer a higher
usability experience with drag and drop possibilities at the front-end, better
and more chart possibilities and the connection to mobile devices. They also
have the commercial support and training sessions of the open source tools
in their Business Model. Their open source portfolio consists of the projects
Kettle, Reporting, BI Platform, Mondrian, Weka, CDF, CBF, Saiku Analytics,
CDA and Big Data (Pentaho Community @ONLINE 2013).

Kettle also know as Pentaho Data Integration Community Edition (PDI CE)
is a ETL tool. It offers interfaces to many tools like their own bug tracker
Jiira, but also open bug tracker like Bugzilla. Also they offer interfaces to
many well known databases, for example MySQL (MySQL @ONLINE 2013)
and Oracle. The user can define many transformation processes and manual
jobs by himself. Kettle uses a meta-data driven approach to integrate the
data into the BI Platform.

38

4 Monitoring Tools

Mondrian is an OLAP engine written in Java. It executes queries written
in the MultiDimensional eXpressions(MDX) language, reading data from
a relational database (RDBMS), and presents the results in a multidimen-
sional format via a Java API (Pentaho Community @ONLINE 2013). MDX is
a multidimensional query language. It is a read only language and uses
same syntax as SQL. It should not mixed or compared with SQL. MDX
was introduced by Microsoft. Mondrian does not support all possibilities of
the Microsoft language, but most of them. Many times in the forums and
documentations the reference to the Microsoft MDX reference page. The
cubes are defined in XML file and are directly connected to the relational
database. It is possible to create several cubes in one file, but each query
only accesses one cube. By using the MDX queries the cube is drill and
slice-able. The elements like sets and members are described in Chapter 5.
Saiku Analytics is another open source front-end and dashboard of Pen-
taho. Before the Saiku project started most projects had to use JPivot as
front-end. It is licensed under Apache 2 and free available. It was former
known as PAT (pentahoanalysistool) and is now a separated project. It is
active under development and has a good community. Since it is still early
in development a few features are still missing, compared to JPivot. Saiku
offers the possibility to drag and drop dimensions to queries on run-time.
Queries can be saved and loaded easily, the stored format is an XML format.
It is not possible to parametrize queries. The application is Asynchronous
JavaScript And XML(AJAX) based and multiple queries can be called during
one session. Saiku has all diagram options, which are available in JPivot
(Saiku Analytics @ONLINE 2013).

Reporting is a also known as Pentaho Reporting Community Edition (CE)
and includes the Pentaho Report Designer, Pentaho Reporting Engine, Pen-
taho Reporting SDK and some libraries shared with the whole BI project.
This suite of open-source reporting tools allows you to create relational and
analytical reports from a wide range of data-sources and output types in-
cluding: PDF, Excel, HTML, Text, Rich-Text-File and XML and CSV outputs
of your data (Pentaho BI @ONLINE 2013).

39

4 Monitoring Tools

4.1.4 Jaspersoft

Jaspersoft is a commercial company, which has for every product a open
source community edition of its products. The business model is similar to
the one of Pentaho, they also have commercial features and commercial sup-
port and workshops, additionally to their open source products. Compared
to Pentaho, Jaspersoft more focuses on adding commercial functionality to
their products. Jaspersoft has currently the program Jaspersoft:European
tour as their ”The Open Source BI Conference”. This way they try to sup-
ports open source in the BI world. Jaspersoft has 5 products in their portfolio
as commercial as well as community edition. They are JasperReports Server,
JasperReports Library, Jaspersoft ETL, Jaspersoft Studio and iReport De-
signer. The OLAP engine of Jaspersoft bases on the Mondrian 3.0.1 engine
of Pentaho, they adopted this engine at a few parts. Jaspersoft ETL is the
ETL tool of the Jaspersoft framework. It has the possibility to add data from
more than 500 connectors and components. It is possible to add cron jobs
to the importation process. The ETL tool adds the data to the Jaspersoft
data-warehouse, where it is also possible to add the data to data-marts. The
commercial version adds a dashboard to control the data importation and a
data viewer. Furthermore a real-time synchronization is available.

The JasperReports Library is a web-enable JasperReports library it pro-
duces reports in PDF, XML, HTML, TXT and more formats. The commercial
version adds the possibility to create charts, maps and widgets in flash.
JasperReports Server is the report engine of Jaspersoft. It creates reports and
is available as standalone version as well as a mobile and web version. The
user-interface is customizable. The commercial version adds an ad-hoc web
designer and the possibility to analyze relational and non-relational data.

Jaspersoft Studio is a eclipse-based framework designed to create own
reports and implement own reports or customize the look of the reports.
Jaspersoft Studio as no commercial version yet. iReports Designer is a
netbeans-based framework designed to create own reports and implement
own reports or customize the look of the reports. The commercial version
supports the creation of flash based reports (Jaspersoft BI @ONLINE 2013).

40

4 Monitoring Tools

4.1.5 Summary

The market of BI tools is very big and many tools are offered, open source
software as well as commercial products. Often the commercial products
are more optimized in memory usage and time to execute queries, by
using special cubes that are created dynamically and can be stored in the
random access memory. This is also an advantage, if much data has to be
investigated. All investigated products have a at least small tool that can
be used to predict numbers and results. Japspersoft, SAP and IBM Cognos
have their OLAP engine included in their final product, Pentaho has a very
famous open source engine that is also included in Jaspersofts engine, but
does not combine it in a final product. It is already a market standard that
BI companies have to offer mobile apps to access the data everywhere. A
summary of the attributes of BI OLAP tools is given in Figure 4.1.

Figure 4.1: BI OLAP tools

4.2 SW-qualtiy monitoring tools

This section introduces three tools that are used for software testing and
include at least a set of software metrics. Modern quality monitoring tools
include sets of software metrics to evaluate the tests and compares the
metrics with metrics that do not depend on testing the code. Those tools
need the source code for static analysis as well as a build management
system for dynamic testing. Most testing tools can interact with versioning

41

4 Monitoring Tools

systems and can compare the results of the metric over time by storing the
results of the tests and metrics.

4.2.1 SonarQube

SonarQube, previously known as Sonar, is a code analysis tool with the goal
to manage code quality, offering visual reporting on and across projects
and enabling to replay the past to follow metrics evolution. It is a open
source project and covers seven aspects of code quality and its measurement:
Architecture and Design, Duplications, Unit tests, Complexity, Potential
Bugs, Coding Rules and Comments. It consists of several components. It
can be connected to several continuous integration tools to check out code
and enable continuous monitoring also in agile development. It includes
build management systems, like Apache Maven or Apache Ant, this way
the code can be monitored with static analysis and dynamic testing. It has a
relational database in the back-end to store the results of the metrics and
rules and it has a dashboard to present the result of the metrics and rules to
the user. Most standard metrics, more than 600 coding rules, pattern and
anti-pattern are implemented.
The dashboard is web-enabled. The result of the metrics, coding rules, pat-
tern and anti-pattern can be monitored in the dashboard as well as the
results of the build processes and the unit tests. Right now SonarQube
supports more than 20 programming languages. Additional programming
languages, patterns and metrics can be added by using the plug-in system.
The metrics can be represented with several different diagrams, the dash-
board has a helicopter overview as start page where the most important
metrics are presented. All other metrics can be accessed through the naviga-
tion list. The dashboard includes a so called TimeMaschine, this tool helps
to replay the past and shows the user how quality metrics evolve in time
(Sonarqube @ONLINE 2013).

42

4 Monitoring Tools

4.2.2 Parasoft

Parasoft is a software producing company, with the focus on software
test tools. They claim that the majority of Fortune 500 companies rely on
Parasoft in order to produce top-quality software consistently and efficiently.
Their main products are Parasoft Test, Parasoft Virtualize and Parasoft
Concerto. Parasoft Virtualize and Parasoft Concerto are responsible for the
test management, environ management and the virtualization on different
platforms. Parasoft Concerto enables the measuring of requirements, the
task management and the project planning. It includes the Parasoft Process
Center, which helps users to configure work-flows for business processes
and measure those processes. Parasoft Test consists of the parts JTest for the
programming language Java, dotTest for the .Net framework, C/C++Test
for C and C++. Each tool part contains the possibility to do static analysis
for patterns flow and metrics, unit testing, development testing, coverage
testing and code review. Additionally for the programming language C
and C++ Insure++ exists, which adds the possibility to test the software
for memory errors. The tools SOATest and LOADTest give the user the
possibility to create load tests and do cloud or web testing.
The result of the metrics and other test tools are presented to the user in a
dashboard, with the possibility to create different diagrams. The results are
stored in a database to create history based diagrams. The most important
metrics are presented on one screen as architecture dashboard (Parasoft
@ONLINE 2013).

4.2.3 Coverity

The main product of Coverity bases on a open source framework Stanford
Checker, but is yet a commercial product. The center tool is the Coverity
test engine, it is connected with CoveritySave a static analysis verification
engine and the analysis pack, which contains dynamic testing, architecture
analysis and analysis integration. The coding languages that are supported
mainly are C, C++ and Java ,additional languages can be added through
the integration tools. Through those integration sets can also third party
metrics, code coverage rules, test execution and other tools integrated.

43

4 Monitoring Tools

Coverity Connect is the center of the monitoring. It contains an issue man-
ager it automatically includes all issues that are found through the test, code
review or metric tools. It is possible to filter and prioritize the issues and
navigate through the issues. This tool can assign issues automatically to free
developer and calculates dependencies between issues. It has also a history
database to improve the issue process and calculate several process metrics
of the issue process.
Coverity Connect does not have a central cockpit integrated in the dash-
board. In the Integrity Manager or Policy Manager tool in the dashboard
section it is possible to create simple charts and reports for the metrics and
result of other tests, but there is no cockpit in the center, that provides the
most important information in one place. The Policy Manager can calculate
different metrics and can send alert messages if the test policies are violated
(Coverity @ONLINE 2013).

4.2.4 Stages Enterprise

Stages Enterprise is a tool from the software producing company method
park and has the focus on monitoring and measuring business processes.
Several different data sources can be connected to Stages Enterprise, with
this data and the process models, process metrics are calculated. They have
a huge set of process metrics included. Stages has a software dashboard
and several reporting tools. Additional metrics can be included by using the
plug-in center. A special feature is the possibility to connect Stage Enterprise
to IBM Rational Team Concert. The processes can be designed by using
different standard models and can be checked for compliance with models
like CMMI, Automotive SPICE or ISO 26262. (Stages @ONLINE 2013)

4.2.5 Summary

Four software and software process quality analysing tools were investi-
gated, which use software metrics to interpret the results and present them
to the user. The first three tools use static analysis as well as dynamic testing
and include build management tools. All tools have a huge amount of

44

4 Monitoring Tools

implemented metrics included and offer interfaces to include more metrics.
The programming languages Java, C, C++ are supported, but the tools can
be extended for other languages. Sonarqube and Parasoft have a cockpit
where the most important metrics can be analyzed fast, this is an important
helper for the management to get a fast overview of software applications
and all projects. In Coverity diagrams and reports have to be generated
manually. The metrics can show how the tests and metrics envolved in the
past, therefor the tools provide a possibility to store results in databases. The
tools Parasoft and Stages Enterprise give the possibility to model software
business processes and monitore those processes. Both tools have a set of
process metrics included, which can be enhanced and have a dashboard
to present the results of the process metrics to the user. A summary of the
attributes of test tools is given in Figure 4.2.

Figure 4.2: Metric based testing tools

4.3 Softnet Cockpit

The Softnet Softcockpit is BI project of the Softnet competence center in
Hagenberg. It is a cooperation project between this competence center the
university of Hagenberg and several business and industry partners. The
prototype was tested in cooperation with Siemens at the SiTEMPPO(Success
in Test Execution, Management, Planning, and rePorting Organizer) project.
The goal of this project was to create a Sofware Cockpit, which is able to
control the test management and quality management of a software product
as well as the process of creating the software application. It should cover

45

4 Monitoring Tools

both, the advantages of test management and metric tools and and the
advantages of the BI OLAP solutions. The project used only open source
tools and own software solutions, which where integrated to a complete
Business Intelligence product. The application consists of three main parts:
The Data Adapters, The Data Warehouse and The user interface. (Albrecht
and Gaffney Jr, 1983).

The adapter get the data from several sources periodical. The source can
be for example bug trackers like Bugzilla for test process management,
source code version control systems like CSV or Mercurial to get product
based data to get metrics like Lines of Code(LOC). The adapters periodi-
cally extract relevant data from different repositories and databases, e.g.,
Bugzilla’s issue database or the change log of CVS. The data is transformed
to a standard data structure and stored in the central data warehouse.
The data warehouse organizes the data as cubes amenable for OLAP. The
data schema supports recording the project history for analyzing the evolu-
tion and forecasting of trends.
The user interface of the cockpit visualizes aggregated information and
offers the flexibility to customize views, metrics and models. The web-based
implementation provides easy access to visual representation of the inte-
grated data.The adapter is a ETL process for every source that should be
integrated or one big ETL process which implements interfaces to all other
applications. The data-warehouse organizes the data as cubes with an OLAP
technology. The application used the open source Mondrian engine (Beer,
2009).
The user interface was implemented with Java Servlet Pages and the tool
JPivot to integrate Mondrian.
A solution based on this Softnet SoftCockpit is used in the practical part of
the master thesis explained in Chapter 5. In this chapter it is described how
to implement a issue tracking process and metrics that measure this process
in this Softcockpit.

46

5 Softnet Cockpit

The goal of the of the Softnet Cockpit is to combine the advantage of a
software metric dashboard in the software quality management and the
advantages of a BI solution based on the OLAP technology. The advantages
of the metric dashboard is that prepared quality metrics are available very
fast and can be observed by the management easily. The advantages of the BI
solution is that a huge amount of data can be used for the measurement and
it is easy to include more data sources in the future. The multidimensional
OLAP model allows also different sights on the dimensions of the data as
well as on different abstraction levels of the data.

In the first section a short overview of the architecture of the Softnet Cockpit
is given. The second section describes the input data and requirements
given by the partner company. The last part describes the implementation
of the Softnet Cockpit more detailed and the changes done in practical part
of this master thesis, which base on the input and requirements.

5.1 General Architecture

The architecture of the Softnet Cockpit solution consists of three parts: the
data-warehouse, the multidimensional OLAP engine and a graphical front-
end. The Softnet Cockpit uses a MySQL database with a multidimensional
relational star schema as data-warehouse. As OLAP engine the open source
tool Mondrian is embedded. It is possible to create multidimensional cubes
and run MDX-queries on this cube, with this tool. As front-end JPivot is
used. It is embedded in java servlet pages. This way the JPivot elements are
accessible through the user on a web page. JPivot can take MDX queries

47

5 Softnet Cockpit

and can execute them on the Mondrian engine. It creates results as multi-
dimensional cubes and diagrams. It can create reports in the pdf or excel
format. A overview of the architecture is given in Figure 5.1.

5.1.1 Front-end

The Software Cockpit dashboard runs on an Apache server. The entry points
are several Java Servlet Pages (JSP) files. In these files the front-end library
JPivot is embedded. JPivot is a JSP custom tag library that renders an OLAP
table and let users perform typical OLAP navigation like slice and dice,
drill down and roll up. JPivot also supports XMLA (XML for Analysis) data-
source access. The JPivot multidimensional result table is embedded into the
Softnet Cockpit data-warehouses JSPs. It supports the direct manipulation
of the MDX queries inside the browser. A generation of diagrams forms
the multidimensional output and the generation of reports in either PDF or
Excel format. JPivot is not supported and developed anymore and Pentaho
already uses Saiku as front-end successor. Also JPivot is older and does
not support features like drag and drop it still has some advantages like
the parametrization of queries, which is not supported in Saiku. (JPivot
@ONLINE 2013)
The web-page consists of several navigation pages for each group of queries
one page and for the later included snapshot queries, test queries with
product groups and diagram optimized queries also one page. Queries are
always in two possible versions available one full parametrized and one
with the possibility to choose between several dimensions, which are shown
as second dimensions beside the always shown product dimension. By
clicking on a query link on the navigation page the selected query is loaded
by JPivot the parameters are replaced and the query is executed by using the
Mondrian engine. The result is presented by JPivot in a multidimensional
result table and if chosen in a diagram. This page also includes the possibility
to change and rerun a MDX query. The MDX queries are also stored in JSP
files on the server. The functionality and construction of the queries will be
explained in Chapter 6.

48

5 Softnet Cockpit

Figure 5.1: Architecture

49

5 Softnet Cockpit

5.1.2 Multidimensional OLAP engine

Mondrian is used as multidimensional OLAP engine and runs also on a
Apache web server. It is set on top of the relational data-warehouse. Mon-
drian creates the multidimensional cubes and can execute MDX queries.

The multidimensional cube does consist of measures and dimensions (Datta
and Thomas, 1999). Measures are the elements inside of the cube and base
on the dimensions, that give additional information. Figure 5.2 has three di-
mensions: time, issues and severity and the measure elements: state change
and product change. Dimensions consist of hierarchies, member, sets and
tupels. The dimensions and cubes for the Mondrian engine are defined in a
XML file. In this file the dimensions and cubes are connected to the tables
in the data-warehouse The dimensions are defined in one part and linked
to the cubes by a definition of the dimension usage.

A dimension consists of levels which are ordered in hierarchies. The hierar-
chies are used to drill through the different abstraction levels in the cubes.

A member is one item in one dimension. Every dimension consists only of
its members. Each member has one value. It can be accessed in a query by a
full qualified or by a member function. Members can be defined in a query,
or predefined as predefined member in the cube definition, if only a subset
of members in the same level is needed.

A set is an ordered collection of zero to n tupels. Like a member a set
can be defined in the query or predefined in the definition of the cube.
Many functions are offered in the library, which calculate operations over
all elements of a set.

A tuple is composed of members of different dimensions. A simple tuple
which contains only one element is also a member of the single dimension.

50

5 Softnet Cockpit

The cubes are drill-, slice-, dice- and pivot-able (Datta and Thomas, 1999).

• Slicing refers to selecting the dimensions used to view the cube.
• Dice refers to selecting actual positions or values on a dimension. Slice

and dice together have the effect of reducing the dimensionality of the
cube.

• Drill-down refers to decreasing the level of aggregation along one or
more dimensional hierarchies, whereas roll-up refers to increasing the
level of aggregation.

• Pivot refers to aggregating over one or more dimensions and pro-
ducing a new cube having an attribute for each dimension and an
additional attribute for the aggregated measure

Figure 5.2: Cube

51

5 Softnet Cockpit

5.1.3 Data-warehouse

The data-warehouse is the data storage of the Softnet Cockpit. It consists of a
relational MySQL database. It uses one of the most frequently used database
pattern in the creation of multidimensional relational databases: the star
schema pattern (Pedersen and Jensen, 2001). The star schema has one main
table in center, which is called fact table. The fact table has one record for
each discrete measurement. In the case of issue process measurement of the
Softnet Cockpit, each discrete measurement is one change that happened in
the issue process. One change is also called history change. It contains the
whole information about the issue that changed and the changed variables.
Some numeric information directly available in the fact table is also called
measures. For further information the fact table is connected to a set of
dimension tables. These tables describe, what is known in the context of
each measurement record. For example information about the product, the
issue or the severity of the issue. The history events describe the past, this
way this data-warehouse is numerical and historical oriented.

The data is imported to the data-warehouse from other data sources by using
Extraction, Transformation, Load (ETL) processes. These processes extract
data from different data sources, transforms it into a form that fits into the
data schema data-warehouse and loads it into the data-warehouse. This
way the data of several sources can be imported into one data-warehouse
(Vassiliadis, Simitsis, and Skiadopoulos, 2002).

5.2 Requirements for the practical part

This section describes the new requirements. The input given by the partner
company can be divided in three parts. The process and the model of the
process, the data correlated to the process and the metrics that should
be implemented. This section describes these parts and gives additional
information about requirements given by the company.

52

5 Softnet Cockpit

5.2.1 Issue process

The issue tracking process of the partner company is printed in Figure 5.3. It
contains all states and the most important state changes, state changes that
are not printed in the diagram can happen also. The process starts in the
state New and ends in one of the final states: Verified, Rejected, Duplicate or
Elaboration. The issue process can be divided in two main parts one includes
the inflow state the other one the outflow states. All states until the state
Assigned are inflow states, the states after Assigned are outflow states. In the
inflow states the issue is checked and classified, in the outflow states the
issue is worked on. When the issue changes from the inflow to the outflow
part it has to be classified to a product and a developer, also attributes like
the severity of the predicted development time have to be set.

N

N?

J

D

A

T

C

R V
O

O!

Open Resolve Test OK

Test Failed

Assign

Submit

Forward

P

Send To

Clarify

Check

Clarify N

Postpone

Reject

Send To Check

Elaborate

Set Duplicate

Q
Review OKReview Failed

Plan For

Review

Resolve For

Review

C!

Check

 States

 N New

 N? New*

 C! Checking

 C Checked

 D Duplicate

 J Rejected

 P Postponed

 E Elaboration

 *Special states

 N? New AND sent to clarify.

 O! Opened AND test failed OR

Opened AND review failed.

 T Targeted

 A Assigned

 O Opened

 O! Opened*

 Q To Be Reviewed

 R Resolved

 V Verified

E

Transfer Into STRQ

Main path of the workflow

Figure 5.3: Model of the issue process of the partner company

53

5 Softnet Cockpit

Inflow states

An issue enters the process to the state New by using the created activity or
by a state change from the empty state or a later state back to the state New.
There are three final states that define that an issues is worked on more.
Duplicate is the final state, for issues which are already reported. Issues in
Rejected have been rejected for any reason. Issues in Elaboration need more
work and will be opened later.

There are two possibilities, if more investigations are needed: the clarifi-
cation and the checking. Issues in Checking state are sent there from the
developer to the project leader or manager to solve open questions. If the
questions are solved the project leader sends the issue into the Checked state.
From Checked the issue can be send to Postpone if it can not be Assigned to a
developer yet, to Assigned, or any of the final inflow states.

The other possibility is the clarification. The clarification process extends the
main process with the clarification flag. This flag is treated like an additional
state. This flag can have three different states: Clarify, Sent and empty. The
initial value is always the empty, this means that the issue does not need
to be clarified. A clarification activity happens at the creation of an issue if
more information is needed to solve or identify the bug or enhancement.
The manager or developer sets the issue as sent to be clarified and gets the
clarification from the reporter. The difference between the checking states in
the main process and the clarification side process is that the checking states
occur internally between developer and project leader and the clarification
process externally between reporter and the developer. After the clarification
the issue is in the state New and can be send to the states Assigned, Postponed,
Checking, or any final inflow state.

Outflow states

The issue is put from the state Assigned to Opened, if it is currently worked
on. Issues may skip the state Opened if their estimated implementation time

54

5 Softnet Cockpit

is very small, then, after the issue is finished, it is put directly into Resolved.

In the state Resolved the issue is tested, if the test fails the issue is put back
into Re-Open, otherwise it is put into the final state Verified. Re-Open is a
special Open state, if a state change to Open and a test fail, or a review fail
happened. In the data-warehouse this state is treated as normal Opened state.
The issue is put into the state ToBeReviewed, if a code review is necessary.
After that the issue is put into Re-Open or Resolved.

Requirements

Clarification, test failed and review failed states and activities are not imple-
mented in any part of the Softnet Cockpit and have to be implemented in
all parts.

5.2.2 Process input data

The data that is read into the data-warehouse is read from data files. They
are available as comma separated values (csv) files. After changes in the
requirements of the input data, the data is now read directly from a Sales-
force Object Query Language database. Each file is read from one database
table. There are two different purposes of data files, one is to describe
the mapping of ids to products or user, which are used in the other data
files and to describe the mapping through different abstraction levels, like
product levels. The second is to store the information and attributes of the
issues like the creation time. The last one contains the history events that
store the information about the changes, that happened in issues.

At the beginning of this project the four files UserFile, StructureFile, Issue-
File, HistoryFile were used in this project. After problems with old data the
two additional files: UserFileOld and StructureFileOld, were also included
to the set of observable input data. This is the information in those data
files:

55

5 Softnet Cockpit

• UserFile
This file contains the whole set of all person involved into the issue
process. Each person has one unique id, this id is used in the other
data files.

• UserFileOld
This file contains the names of person that changed their name during
the run-time of the issue process. The old name is mapped to the new
name. The mapping is necessary because the old name is still used in
the history events.

• StructureFile
All products are stored in this file. There exist several main products,
each product can consist of several product components and each
component can consist of several product component parts. Each
combination of product, product component and product component
part has one unique id.

• StructureFileOld
All combinations of product, product component and product compo-
nent part, that changed their name during the run-time of the issue
process are mapped in this file, to their new name.

• IssueFile:
This file contains all information available about one issue at the
current time. About 50 attributes to one unique id of the issue. The
attributes are for example, the owner of the issue, the creation time,
the product it is mapped to, the severity or the current state.

• HistoryFile
All history events of the issues are stored in this file. A history event
has a unique id, its creation time, the name of the attribute that
should be changed also called activity, the issue that is changed, the
value of the attribute before and the after the history event. There
are nine activities: created, state change, owner change, assignees
change, product component part change, clarification change, test
failed, review failed, and issue type change.

56

5 Softnet Cockpit

Requirements

The history events of the activities: product component part change, clarifi-
cation change, test failed, review failed are not implemented and have to be
included in the Softnet Cockpit. The requirements described at the begin-
ning of this section were added during the project due to grown experience
in the data importation.

5.2.3 Metrics

The initial requirements was to implement the metrics of the following
groups. Those groups are explained raw. They contain also the metrics for
clarification, owner change, test failed and review failed. Every metric con-
tains a simple description in the goal question metric format, a mathematical
explanation and a set of dimensions that have to be implemented for this
metric. In the run-time of the project the parametrization became also a
requirement. The queries had to be parametrized as well as the front-end
pages of the Softnet Cockpit. Also snapshot metrics were added to the
requirements, they add a additional sight on the time aspect of the metrics.

Metric groups

• Number of issues to inflow states
This group contains the metrics that count all history events that lead to
a state in the inflow section. It contains all metrics that count all history
events that leave a state of the inflow section. This group contains also
metrics that count the different clarification history events.

• Number of issues to outflow states
This group contains the metrics that count all history events that lead
to a state in the outflow section. It contains all metrics that count all
history events that leave a state of the outflow section. This group
contains also metrics that count the test or review failed history events.
Two more complex metrics in this group calculate, if a issue has used
the Opened state properly. If the estimated effort time is below a certain

57

5 Softnet Cockpit

time an issue may skip this state, if it is above this time the issue has
to use the Opened state.

• Elapsed time in inflow states
Metrics in this group calculate the minimum, maximum and average
transition time a history change needed for the transition of one inflow
state to the other one. The transition times of the clarification activities
are also calculated.

• Elapsed time in outflow states
Metrics in this group calculate the minimum, maximum and average
transition time a history change needed for the transition of one
outflow state to the other one. The transition times of the test failed
and review failed activities are also calculated, as well as if a re-open
happened correct.

• Processing time until inflow states
Metrics in this group calculate the number of issues, minimum, maxi-
mum and average transition time of issues over several status changes,
with a end state from the inflow states. These metrics are more com-
plex because any amount of history changes with any activity can
happen between the issue was in the beginning state and entered the
end state.

• Processing time until outflow states
Metrics in this group calculate the number of issues, minimum, maxi-
mum and average transition time of issues over several status changes,
with a end state from the outflow states. These metrics are more com-
plex because any amount of history changes with any activity can
happen between the issue was in the beginning state and entered the
end state.

Requirements

Several basic metrics in the first four chapter were implemented, the task is
to implement all other metrics and the three most important metrics of the
last two groups. This includes the metrics for the new dimensions: clarifica-
tion, test failed, review failed and the more complex queries like the correct
use of the state Open or Re-Open. All metrics have to be parametrized,

58

5 Softnet Cockpit

because they have to be accessible in aspect of different dimensions, hi-
erarchies, levels and values. Several different snapshot metrics have to be
implemented, one snapshot metric for every state with different time-lines.

5.2.4 Other requirements

An installation procedure has to be developed that installs the whole ap-
plication, including the set up of the relational database, the setup of the
web-page and data-warehouse and the importation of the external data.

5.3 Implementation and changes to the Softnet
Cockpit

This section describes the architecture of the Softnet Cockpit in a more
detailed way. It takes also the requirements into consideration and describes
what changes were done to the Softnet Cockpit in the practical part of this
master thesis.

5.3.1 Relational database schema

The relational multidimensional database is the data-warehouse of the ap-
plication. Figure 5.4 shows the structure of the relational multidimensional
database.

In the center of the star schema is the fact table. The fact table contains
the relevant information. A fact in this table is one history change that
happened in the issue process or any attribute of an issue, like change of
persons or products.

The fact table is connected to the dimension tables. These tables give the
fact table additional information. The fact table has the primary key of
each dimension table as foreign key, this way they are connected to each
other. The initial database contained the dimension tables: Status, Activity,

59

5 Softnet Cockpit

Severity, Milestone, Version, Priority, Issue, Time and Person. It contains
also the view of the Status table named: PrevStatus. This view is necessary
to identify the state that a issue had been, when a state change happens.

The fact table has also additional attributes that are not linked to dimensions.
They are for example the unique Id or the TransitionTime.

5.3.2 Changes to the relational database

The changes done to the relational database star schema in the practical
part of this master thesis are marked with a red arrow in Figure 5.4. Small
changes have been done to the dim product table, the last level of the
product the product component part was added. Also three values have
been added that document the product values for all product levels if the
name of one product name changed. In the standard values there is the
information about the current product name, in the added values about
the old name. This way a metric can filter for issues until the name of the
product changed and for all issues including old and new product name.
This was needed because the name change of a product can also lead to a
change of different aspects of this product. The table dim prev product is a
view of the dim product table and connected to the fact table. This table is
used, if the product of one issue is changed to store the previous product
value. This is a requirement in the product change metric.

The tables dim clarification, dim testfailed, and dim reviewfailed were
added according to the requirement to add those dimensions. Additionally
a view for the clarification table was added, this is neccessary since a cou-
ple of clarification queries measure, which clarification state an issue left.
The value in the dim prev clarification is the value of the previous history
change of the same issue.

In the fact table the links to the new created tables were added as foreign key.
Additionally the field Parent Id was added. The Parent Id is the id of the
history event that happened before the current history event. The Parent Id
is only used and set for state change history events. This value is used in the
cube is used to create a parent child relationship between the state change

60

5 Softnet Cockpit

history events in the cube definition. Each state history change is connected
to the previous history change directly. In the queries this relationship is
used for the complex metrics that calculate state changes through more than
one following state changes in the issue tracking process.

5.3.3 ETL

The ETL process implemented for the data-warehouse is called process csv.
It is written in java and takes up to seven parameters. It supports the
importation of data from csv files.The structure of the csv files is described in
the previous input section. The ETL process is included into the installation
of the Softnet data-warehouse, but can also be called separately at any time.
It supports the sequentially adding of new history events to the fact table
and adding of new issues from the issue table. It is not possible to detect
changes in the issues or new history events automatically. If issues change
it is advised to rerun a complete importation process.

Extraction

In the extraction phase the information is imported from the csv files and
are stored into java beans, one bean for each input file. The java beans are
stored into lists.

Transformation

The beans that give the information about the mapping of the products and
persons do not need any transformation. They are written at the beginning
into the corresponding dimensions. The most important beans in the trans-
formation are the issue beans and the history beans. The issue beans contain
the information about the issues and the history beans the information
about the changes done to the issues. A fact in the fact table contains the
information about the issue at one time point and the information about
the change that happened.
At the beginning the values of the issue beans that can be changed by an

61

5 Softnet Cockpit

Figure 5.4: Star schema

62

5 Softnet Cockpit

history change are set empty. The other values are kept same they have al-
ways the same value, the history is not available or not needed, for example
the creation time of the issue will stay always same. After that the history
beans are sorted according the their creation time from the oldest to the
newest. Than the history beans are processed in this order.
For each history bean the issue bean that is linked to this history bean is
searched and loaded. Than the type of change also called activity is identi-
fied and written into the activity field of the issue. Afterward the value of
the field that should be changed in the issue is re-written according to the
new value available in the history bean. If a view is available for this activity
to store the previous value before the change happened this value is filled
in now. At the end the last time changed field of the issue is overwritten.
The issue bean is now written into the fact database as fact. The issue bean
has the values at the time of the history change and can be changed by the
next history change. This is done for all history changes.

Load and sort

The loading is the functionality of writing the information into the database.
Information that is not mapped and never changes, like the states, is written
into the database in the installation phase. The information that needs to be
mapped before the transformation, the facts are loaded during the transfor-
mation. Additionally a sorting is done in the loading.

After all events from the history events are loaded the fact issue table
contains all history events, this way it has the same number of rows as the
number of history events. Now the sorting is started. In the sorting process
the facts of each issue are sorted for their created date. The transition time
between the history events with a status activity is calculated by subtracting
the created dates of the two following history events. After the sorting the
fact issue table is updated.

63

5 Softnet Cockpit

5.3.4 ETL Changes

In the extraction phase the possibility was added to import the data from a
Salesforce database (Salesforce @ONLINE 2013). A connection and queries
were implemented. The tables in the Salesforce database correspond to the
csv files, this way no more adoption were necessary.

Also the extraction of the facts from the history table was adapted. The his-
tory changes with the following activities were also extracted, transformed
and loaded into the data-warehouse: clarification, test failed, review failed,
object type, product component part, owner.

The calculation of the parent id, which is necessary for the implementation
of the parent child relationship, was included in to the load and sort part
of the ETL process. In the sort section the facts are already sorted for each
issue, that way it is easy to implement the parent id by writing the id of
each state change fact to the following fact in the parent id field.

5.3.5 Mondrian cube definition

The primary key of the dimensions tables in the relational databases is a
foreign key in the fact table. The cubes in Mondrian is created with the
different dimensions, by a direct link to the database tables. The following
table shows the connection of the MySQL database keys and dimension ta-
bles in the snowflake schema to the cube definition in Mondrian. Afterward
the dimensions are explained. These dimensions are used in the queries,
which implement the metrics, they are explained in the following chapter.

64

5 Softnet Cockpit

Column in the fact Dimension table Dimension in
table of the database in the database Softnet cube

definition
DIM VERSION ID dim version Version
DIM MILESTONE ID dim milestone Milestone
DIM PRODUCT ID dim product Product
DIM STATUS ID dim status Status
DIM PREVSTATUS ID dim status PrevStatus
DIM CLARIFICATION ID dim clarification Clarification
DIM PREV dim clarification PrevClarification
CLARIFICATION ID

DIM PREV PRODUCT ID dim product PrevProduct
DIM PREV PERSON dim person PrevPerson
DIM PRIORITY ID dim priority Priority
DIM SEVERITY ID dim severity Severity
DIM ISSUE TYPE ID dim issuetype IssueType
DIM OBJECT TYPE ID dim objecttype ObjectType
DIM LAST dim date LastTimeChanged
TIME CHANGED ID

DIM LAST TIME INT
CHANGED HOURS ID

DIM TIME CREATED ID dim date CreatedDate
DIM PERSON ASSIGNEE ID dim person Assignee
DIM PERSON REPORTER ID dim person Reporter
DIM PERSON CHANGED ID dim person Changer
DIM PERSON RESOLVED ID dim person Resolver
DIM PERSON OWNER ID dim person Owner
DIM TEST FAILED ID dim testfailed TestFailed
DIM ACTIVITY ID dim activity Activity
DIM REVIEW FAILED ID dim reviewfailed ReviewFailed
DIM TRANSITION dim date Used by Measure
TIME IN DAYS

65

5 Softnet Cockpit

Status and PrevStatus dimension

The Status dimensions contains the 12 states of the issue tracking process,
which is defined previously. A issue can have one state at the time of a
history event. The PrevStatus dimension is used to define, which was the
previous state of the issue. This PrevStatus dimension is only used for state
change activities, otherwise this value would be the same as the Status
dimension and would cause problems in state change queries. Both tables
are filled in the installation process and change never.

Product and PrevProduct dimension

The product dimensions defines the product of an issue. It has 3 levels in the
hierarchy: the product, the product component and the product component
part hierarchy.

Milestone, Severity, Priority, Version, IssueType dimensions

The milestone, severity, priority, version, issue type dimensions describe the
corresponding attribute of one issue. All dimensions have only one level in
their hierarchy. These dimensions are automatically filled during the ETL
process by adding an element to the table if a new element occurs in any of
the input files, this way this dimension can increase in the run time of the
Softnet Cockpit.

Person and PrevPerson dimension

The person dimensions describe, which persons are responsible for an
issue. There are four person dimensions are defined in the Softnet data-
warehouse cube: the owner, changer, assignee and reporter dimension. All
of them refer to the same person table in the star schema database. There is
also one PrevPerson table, which describes the previous person is a person
change history event happened. The person dimension that changed and the
PrevPerson table is referring to can be identified with the activity dimension.

66

5 Softnet Cockpit

If no person change happened, this dimension keeps empty. The person
table in the database is filled during the ETL process through the person
file and has a fixed size.

Clarification and PrevClarification dimension

Clarification is a dimension with two states and an empty row, that are
filled in the installation of the Softnet Cockpit. Those two states are sent
and clarified; both states do not depend on the other states of the states
dimension. PrevClarification is set if a history change with the clarify activity
happens and defines the previous clarification state.

Test and Review failed dimension

Those two dimensions are set, if a test or review failed activity happened.
Each of the tables can have two values: true or false. They are filled into the
table during the installation process and have a fixed size.

Activity dimension

An activity describes what changed during a history event. If a state change
happens the activity is named after the state the activity leads into. All
other activities are named similar to dimension where the change happened.
The activity table is filled during the installation process of the Softnet
data-warehouse and has a fixed number of elements.

FactIssue dimension

This dimension is the fact table itself implemented in the cube. This dimen-
sion is mainly implemented, to create the parent child relationship between
the state change history events. By using the fact table as dimension and
implementing a parent child relation in this dimension for the elements in

67

5 Softnet Cockpit

this dimension it is possible to navigate through all state change history
events of one issue and use parent child function on those history events.

Time Dimensions

There are three time dimensions defined in the cube definition of the Softnet
data-warehouse. They all refer to the same time table in the database. This
table is filled during the installation of the application on the server. All
dates have to be filled in the database manually, if one date does not exist
in this table it has to be added. The date table in the database contains one
or more columns for the year, quarter, month, week and day. The diagram
shows how those date levels are ordered hierarchically in the cube definition
and can be seen as a tree structure. This structure helps to drill through the
cube later in the results, every date can be extended to the lowest granularity
the date.

CreatedDate

This time dimension refers to the creation time of the issues, this time never
changes during the lifetime of the issues. It has all date levels. It is filled
in the ETL process during the importation of the issues. The id in the fact
table is connected to the date table and contains one day as id.

LastChangedDate

This dimension refers to the last change date of an issue. It is connected to
the date table of the database. It has all date levels. It refers to the last history
event that occurred for one issue. It changes for an issue every time a history
event occurs. The time between two state change dates is the transition time
of two history events.

68

5 Softnet Cockpit

LastChangedDateWeek

This date dimension is the same dimension as LastChangedDate, but only
has the root level and the week level. In several metrics company A needs
the level week for all weeks of one year and only this level. The drill down
option of the time dimension lead to confusion in this use case, because
a few weeks were displayed two times. The reason was because if a week
starts in one month and ends in the following one it is displayed in both
as full week. The only way to solve this problem was to create a separated
dimension.

Measure Dimensions

Measure is a special dimension in the cube of the data-warehouse. This di-
mension is not connected to any table of the data-warehouse. It is connected
directly to elements inside the fact table or values which are not connected
to any table. Measures have an aggregator like sum, average or count. This
aggregator defines a mathematical operation done through the run-time of
a query on a amount of defined facts. The measure dimension has only the
root level and one level below, where the measures are defined.

IssuesStatesCount

This measure is a sum up of all history events in the cube or calculated
cube, if the cube is splinted or drilled down. The maximum number of this
measure is the number of facts in the fact table, where each fact represents
one history event.

CurrentIssueCount

This measure counts only the last history event happened to an issues which
fulfill the requirements of the query. This measure is used in the snapshot
queries explained in Chapter 6. The maximum number of this measure is

69

5 Softnet Cockpit

the number of issues in the database.

MinAgeInDays, MaxAgeInDays, AvgAgeInDays

These measures count the minimum, maximum and average age in days
for each issue which fulfills the requirements and are counted in the count
measure. The age is calculated from the creation of the issue in the issue file
to the last change that happened. The average age is calculated, if it can be
rolled up automatically by Mondrian, in more complex queries it has to be
calculated manually.

MinTransitionTime, MaxTransitionTime and AvgTransitionTime

These measures count the time between one state history event and the next
state history event of the same issue. It is only calculated between status
history events and is not available for non state activities. It is calculated
during the sort process of the ETL process. In some queries the average
transition time cannot be rolled up by the Mondrian, in this case the average
transition time has to be calculated manually.

5.3.6 Changes in the cube definition

The dimensions Clarification, TestFailed, ReviewFailed, PrevClarification,
PrevPerson, PrevProduct were added to the cube. Also the LastChanged-
DateWeek time dimension was added. Some minor additions were done
by adding e few predefined member and sets, that are needed later in the
queries. The parent child relationship between in the FactIssue dimension
was added.

70

5 Softnet Cockpit

5.3.7 JPivot web-pages

The start page of the web portal shows, where links to the different groups
of metrics are presented and a sub group where the metrics that base on
new requirements, like snapshot or the week time line. The new metrics
lead directly to the result page, the group links lead to a page where all
metrics of this group are presented as web links. Every metric is available
as parametrized version or standard version, more to the parametrization is
explained in Chapter 6. By clicking on a metric link the main result page is
loaded.
In the center the result page shows the multidimensional result. It is possible
to navigate through this result cube by clicking on a plus this element is
drilled down, by clicking on a minus this element is rolled up. Slicing and
dicing can be done by manipulating the query directly. Above the multidi-
mensional result there is a navigation bar. With the navigation buttons it is
possible to get to the MDX query explorer. Per default this explorer shows
the last query that was executed. In this field the query can be manipulated
and executed. Another option is to create diagrams and change the options
of this diagram. More information about the diagram is given in Chapter-
chap:Querys. The last buttons give the possibility to create reports. Those
reports consist of the multidimensional result, the diagram, if the option is
chosen and can be generated in the formats pdf and excel.
Figure 5.5 shows the navigation page to the first eight metrics of group
one of the metrics. All metrics are have two links to execute the imple-
mented query and present it on the result screen. One is the parametrized
version one the standard version. Additional information is given for both
all metrics. Figure 5.6 shows the most important parts of the result page for
one query. The title is the name of the metric. Below the title there is the
navigation bar. The two big buttons on the top are save and load button, the
implemented save and load option has some errors and was not used in this
project. The three buttons on the right give the option to create reports and
change the reports options. The buttons with the small diagrams give the
possibility to create a diagram of the current result of the query and change
the diagram options. The button with the letters MDX opens the MDX query
explorer. It is activated right now and is presented below the navigation bar.
The query can be changed, set back and executed. On the bottom there is

71

5 Softnet Cockpit

the multidimensional result. On the left axis, there are two dimensions, the
IssueType dimension, which is drilled down and the Version dimensions,
which is rolled up. Both dimensions have only one level below of the high-
est level. On the top axis there is one measure IssuesStatesCount, which
is combined with the time dimension CreatedDate. The time dimension is
drilled down to the year level, this dimension contains more levels below
the year level and can be drilled down further.

Figure 5.5: Navigation page of metric group 1

72

5 Softnet Cockpit

Figure 5.6: Result page of the Softnet Cockpit

5.3.8 JPivot web-pages Changes

The main changes done to the front-end was to insert the premade queries,
which are implemented according to the set of metrics given by our partner
company and the parametrization of the queries. More information about
the queries and the parametrization of the queries is given in the next
chapter.

73

5 Softnet Cockpit

5.3.9 Installation

The prerequisites of the installation process are the installation package, a
Tomcat Apache Server and a MySQL server. During the installation process
the database and its tables in star form are set up. The state, activity and
date tables are filled in with the predefined values, which never change
during run-time. The data-warehouse and the MDX queries are copied to
the Apache Tomcat server. Optionally the ETL process can be run. If the
ETL process is run and the option of importing the data from Salesforce is
activated in the ETL process the installation needs an internet connection.

74

6 Queries and query templates

Queries are a important part of the Softnet Cockpit, they give the possibility
to access the data in the data-warehouse. In Pentaho Mondrian (Pentaho
Community @ONLINE 2013) the queries are written in MDX, a multidimen-
sional query format introduced by Microsoft (Microsoft MDX reference page
@ONLINE 2013). In the Softnet Cockpit solution, the front-end, JPivot, loads
the MDX queries from the query files, or takes them from a MDX editor in
the browser. After that it changes the queries by replacing the parameters,
adds drill down options and passes them to the Mondrian engine. Mondrian
parses each query, creates structured query language (SQL) queries and
executes those SQL queries on the MySQL database, the data-warehouse.
The results of the SQL queries are interpreted by Mondrian and used to cre-
ate multidimensional cubes. JPivot presents those multidimensional cubes
graphically and gives the option to navigate through that cube. A navigation
operation, like the drill through the hierarchies, creates a new MDX query,
which is executed again.

This chapter describes how the queries in the Sofnet Cockpit are imple-
mented generally. After that queries are described, that were implemented
according to the requirements given in the previous chapter. In the last
section of this chapter, it is described, how to parametrize the queries. The
parametrization of the queries was also a requirement.

6.1 General query

This section describes the general construction of a MDX query and the
most important parts of a MDX query.

75

6 Queries and query templates

Listing 6.1: Example query
With Member/Set . . AS . .
S e l e c t . . On Rows

On Column
From . .
Where . .

Listing 6.1 shows a general example. A MDX query consists of 4 main parts:
The first part is the With part. In this part members of dimensions and sets
are defined. A definition can be a simple assign of a value or a complex
calculation. It is important to take care of the order of members, if the
member depend on each other. Members, which have to be calculated first,
have to be ranked first.
The second part, the Select part, defines which values should be printed
on which axis of the multidimensional cube. The most common way is
to use two axes the Row and the Column. The Microsoft documentation
allows more than two axes, but Mondrian does not allow more than two. No
matter how many axes are used the statement Select is only called once. The
statement On stands in front of the name of the axis. On each axis several
dimensions can be combined, but every dimension can only occur on one
axis.
The From statement defines the cube, which is used in this query. Every
cube definition file can have several cube definitions, but the query can only
use one cube.
The Where section contains the slicer of the query. The observed cube is
reduced to the members and sets defined in this section. It is very important
to use this part wisely, to ensure the correct result and reduce the duration
of each query. The execution time depends on the amount of data that is
observed in one query. A dimension, which occurs in the Where section,
cannot occur on an axis.

76

6 Queries and query templates

6.2 Queries

This section describes queries, which were implemented according to the
metrics given by the partner company. The metrics are splinted in six groups,
which are described in Chapter 5. The metrics were created by using the
goal question metric method. The queries explained in this section are
examples of real queries in the productive system. Usually the queries occur
in several different versions, where the dimensions or measure dimensions
are exchanged. This way the metrics can be observed according to several
different dimensions without the necessity of changing the query in the
editor. There are also parametrized versions of the queries in the Softnet
Cockpit. They are described in the last section of this chapter.

6.2.1 State queries

State queries examine the behavior of the issues that change their state. The
previous state and following state of the state of one issue can be observed
at the time of a state change. The state dimension is always part of the
query and is joined with all other dimensions. If a query should monitor
issues over more than one state change, the more complex parent-child
queries are needed. These queries calculate the number of state changes to
or from an state, queries that calculate the number of issues in one state are
the snapshot queries. The state change queries can be divided into three
subgroups:

• Number of changes group:
These queries show all state change history events, which lead from
one state to another state, by using the activity dimension in the Where
clause. The activity is named after the state the issue changes to.

• Elapsed time in group:
Elapsed time queries show the time between the history events of the
issue. It is the time an issue needs from one state to the next, it is called
transition time. The minimum, maximum and average transition time
of all history changes in one query are calculated.

77

6 Queries and query templates

• Left state group:
These queries show all state change history events, that lead to another
state and filter for its previous state. They use the PrevStatus dimension
in the Where clause to identify the previous state and present all history
events, that lead to this state. These queries are usually combined with
either elapsed time or number of query, as additional information.

Listing 6.2: State query 1

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . Children } , { [Measures] . [
I ssuesSta tesCount] , [Measures] . [MinTransitionTimeInDays] , [Measures] . [
MaxTransitionTimeInDays] , [Measures] . [AvgTransitionTimeInDays]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Version] . [Al l vers ion]})
ON ROWS

From [SoftCockpitCube]
Where [PrevStatus] . [Al l S t a t u s] . [POSTPONED]

Listing 6.3: State query 2

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . Children } , { [Measures] . [
I ssuesSta tesCount] , [Measures] . [MinTransitionTimeInDays] , [Measures] . [
MaxTransitionTimeInDays] , [Measures] . [AvgTransitionTimeInDays]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Version] . [Al l vers ion]})
ON ROWS

From [SoftCockpitCube]
Where [A c t i v i t y] . [Al l a c t i v i t y] . [POSTPONED]

This first query, in Listing 6.2, calculates all history events, which left
the state Postponed and presents the minimum, maximum and average
transition time from Postponed to any another state. In the result, on the row
the product and the version of the history changes and on the column the
transition time and the date of the history changes are shown. The second
query, presented in Listing 6.3, measures all history events that lead into the
state Postponed. In this query it is enough to filter for the activity the history
event leads into, because there is an activity for each state history event.

6.2.2 Clarification queries

Clarification is a special dimension and represents a state an issue can have
additionally to the other states. All clarification queries filter for the clarifi-
cation activity in their Where clause and are combined with one clarification
state: Sent, Clarify or empty. The subgroups of the state queries can also be
applied to this group.

78

6 Queries and query templates

Listing 6.4: Clarification query
S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . Children } , { [Measures] . [

I ssuesSta tesCount] , [Measures] . [MinAgeInDays] , [Measures] . [MaxAgeInDays] , [
Measures] . [AvgAgeInDays]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Version] . [Al l vers ion]})
ON ROWS

From [SoftCockpitCube]
Where ([A c t i v i t y] . [Al l a c t i v i t i e s] . [t x t C l a r i f i c a t i o n c] , [C l a r i f i c a t i o n] . [Al l

c l a r i f i c a t i o n] . [Sent]

The query in Listing 6.4 checks for all history events, which lead to the state
Sent of the clarification dimension. It shows the age of the issues in these
events. The average age is calculated separately, because Mondrian cannot
roll this measure up in this query. The other values are the same as in the
state query before.

6.2.3 Test, Review failed and Re-Open queries

Test and review failed are history events, that can occur in the states Resolved,
ToBeReviewed or Verified. They lead into the special Open state, Re-Open,
which is internally treated like a normal Open. Both the state change history
event and the test or review failed history event can occur independently.
There are two queries which identify, if an issue in the state Open is a real
open or a Re-Open, by checking the current activity and the previous state of
the history events. Two other queries check if a test or review failed activity
occurred in the correct state.

Listing 6.5: Test query 1

With member [PrevStatus] . [Tested] as ’ Aggregate ({ [PrevStatus] . [Al l S t a t u s] . [
RESOLVED] , [PrevStatus] . [Al l S t a t u s] . [VERIFIED]}) ’

member [Measures] . [AvgAge] as ’ (([Measures] . [SumAgeInDays] , [PrevStatus] . [Tested
] , [A c t i v i t y] . [Al l a c t i v i t i e s] . [opened]) / [Measures] . [I s suesSta tesCount]) ’

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . Children } , { [Measures] . [
I ssuesSta tesCount] , [Measures] . [MinAgeInDays] , [Measures] . [MaxAgeInDays] , [
Measures] . [AvgAge]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Milestone] . [Al l
milestone]}) ON ROWS

From [SoftCockpitCube]
Where ([PrevStatus] . [Tested] , [A c t i v i t y] . [Al l a c t i v i t i e s] . [opened])

79

6 Queries and query templates

Listing 6.6: Test query 2

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . Children } , { [Measures] . [
I ssuesSta tesCount] , [Measures] . [MinAgeInDays] , [Measures] . [MaxAgeInDays] , [
Measures] . [AvgAge]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Milestone] . [Al l
milestone]}) ON ROWS

From [SoftCockpitCube]
Where ([A c t i v i t y] . [Al l a c t i v i t i e s] . [t x t t e s t f a i l e d])

The query in Listing 6.5 shows all Re-Open history events. It shows all
events, which have been in the states Verified or Resolved and lead to the
state Open, by filtering history changes with the open activity in the Where
clause. The number of issues, and their minimum, maximum and average
age are calculated. A state change from state Resolved or Verified should only
happens, if a test fails.
The result of this query should be compared with the result of the query
that calculates the number of test failed history events. The number of the
test fails and the state changes to the state Re-Open have to correspond. This
is calculated in the query presented in Listing 6.6.

6.2.4 Re-assignment or product change queries

Re-Assign and ProductComponentPart changes are history events, which occur
independently from any other history event. The queries check how many
of those changes happened and when they did happen.

Listing 6.7: Product component query
With s e t [NonEmpty] as ’ Except ({ [Product] . [Al l product] . Children } , { [Product] . [Al l

product] . [] . [] . [] }) ’
member [Product] . [NonEmpty] as ’ Aggregate ([NonEmpty]) ’
s e t [NonEmptyPrev] as ’ Except ({ [PrevProduct] . [Al l product] . Children } , { [

PrevProduct] . [Al l product] . [] . [] . [] }) ’
member [PrevProduct] . [NonEmpty] as ’ Aggregate ([NonEmptyPrev]) ’
member [Measures] . [Avg] as ’ (([Measures] . [SumAgeInDays] , [A c t i v i t y] . [Al l

a c t i v i t i e s] . [pkl ComponentPart c] , [PrevProduct] . [NonEmpty]) / [Measures] . [
I ssuesSta tesCount]) ’

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . [2 0 1 1] , [LastChangedDate
] . [Al l date] . [2 0 1 2] } , { [Measures] . [I ssuesSta tesCount] , [Measures] . [
MinAgeInDays] , [Measures] . [MaxAgeInDays] , [Measures] . [Avg]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [S e v e r i t y] . [Al l s e v e r i t y
]}) ON ROWS

From [SoftCockpitCube]
Where ([A c t i v i t y] . [Al l a c t i v i t i e s] . [pkl ComponentPart c] , [PrevProduct] . [NonEmpty

])

80

6 Queries and query templates

Listing 6.7 shows a query that calculates all history events, which caused
the change of a product component part of the product dimension. The
duration of the execution of these queries for all years is very long, therefor
the data-set in the time dimension is restricted to the years 2011 and 2012.
The Mondrian engine cannot roll up the average age in this query, due to
the complexity of the calculation between different members. The average
has to be calculated manually.

6.2.5 Snapshot queries

Snapshot queries show the number of issues that are in one given time-
point in a certain state. It would also be possible to show the number of
issues in other non status activities. All other queries calculate the changes
into or from one state, or other history events, with a non state activity. A
snapshot query calculates the number of issues in one state, by subtracting
all history events, that document when a issue enters a specific state, by all
history events that document, if a issue enters this state. This means that
for the calculation of one snapshot day all previous days in the history of
the database have to be investigated. The execution time for the calculation
raises for each additional snapshot day more than in other queries, since for
every additional snapshot day all other previous days have to be included.
It was decided to investigate issues only for one day in each week. The
execution time for 52 days is much better as 356 days in one year.
It is necessary to create the snapshot days that include all previous days
manually in the cube definition. As a example for the year 2012 a data set
with 52 snapshot days was implemented. This set is named Dates and is a
predefined set in the cube definition file. It contains for each last day of each
week an element as member of the LastChangedDate time dimension. Each
member contains all days from the beginning of the period to this day.

Listing 6.8: Snapshot query
With member [Measures] . [Count] as ’ ([Measures] . [I s suesSta tesCount] , [A c t i v i t y] . [Al l

a c t i v i t i e s] . [assigned]) −([Measures] . [I ssuesSta tesCount] , [PrevStatus] . [Al l
S t a t u s] . [assigned]) ’

S e l e c t NON EMPTY ([Measures] . [Count]) ON COLUMNS,
NON EMPTY [Dates] ON ROWS

From [SoftCockpitCube]

81

6 Queries and query templates

Listing 6.8 presents a snapshot query. It calculates for 52 snapshot days in
the year 2012 the number of issues in the state Assigned. The snapshot days
are stored in the predefined Dates set and are presented on the Rows axis. On
the Columns axis the snapshot measure is printed. This measure is defined
as a member in this query. The measure takes all history changes under the
condition that their activity leads to the state Assigned and subtracts this
number by all history changes that have the previous state Assigned.

6.2.6 Parent-Child queries

Parent-Child queries monitor issues through more than history state change.
It is easy to query for one state change or past state change in the history, by
checking their activities in the history. Monitoring of state changes over more
than one state, with a mandatory start and end point is not trivial, because
it is the only kind of query, that has to consider the dependecies between
history changes. An issue can be affected by any amount of history events
and can be in any amount of states between the history event to the start
state and to the end state. To solve this problem the parent-child hierarchy
was introduced in Chapter 5. It is used to connect the history changes of one
issue, which depend on each other. In the database the facts between state
changes of a same issue were connected, by giving one fact the issue fact of
the previous state change fact as parent id. In the cube definition these ids
are used to create a parent-child relationship. Usually this relationship is
used to create the hierarchy inside of dimensions, for example in the product
dimension Product, ProductPart and ProductComponentPart. In the parent-
child relationship of the issue tracking model, it is used to connect the state
changes between the states of the issue tracking model. The queries can use
the functions, which are intended to navigate through parent-child relations
between the dimensions in our process oriented model. The navigation
through the state facts in the fact table itself is possible by defining the fact
table as dimension. Additionally the attribute activity was set inside this
dimension, this way it is possible to access the activity of a current state
change two times, inside this query and through the activity dimension in
one query. This is necessary to define a start and an end activity.

82

6 Queries and query templates

Listing 6.9: Parent child query
With member [Measures] . [A c t i v i t y] as ’ I I f (([F a c t I s s u e] . CurrentMember . Level .Name =

"FactIssueID") , [F a c t I s s u e] . CurrentMember . P r o p e r t i e s ("Activity") , NULL) ’
s e t [Counter] as ’ F i l t e r (Descendants ([F a c t I s s u e] . CurrentMember , 0 . 0 ,

SELF AND AFTER) , ((((([Measures] . [A c t i v i t y] , [LastChangedDate] . [Al l date
] . [2 0 1 0]) = 1 0 . 0) OR (([Measures] . [A c t i v i t y] , [LastChangedDate] . [Al l date
] . [2 0 1 0]) = 4 0 . 0)) OR (([Measures] . [A c t i v i t y] , [LastChangedDate] . [Al l date
] . [2 0 1 1]) = 1 0 . 0)) OR (([Measures] . [A c t i v i t y] , [LastChangedDate] . [Al l date
] . [2 0 1 1]) = 4 0 . 0))) ’

member [S t a t u s] . [Counter] as ’ Aggregate ([Counter]) ’
member [Measures] . [AvgTransition] as ’ (([Measures] . [SumTransitionTime] , [

A c t i v i t y] . [Al l a c t i v i t i e s] . [v e r i f i e d] , [S t a t u s] . [Counter]) / [Measures] . [
I ssuesSta tesCount]) ’

S e l e c t NON EMPTY Cross jo in ({ [LastChangedDate] . [Al l date] . [2 0 1 0] , [LastChangedDate
] . [Al l date] . [2 0 1 1] } , { [Measures] . [I ssuesSta tesCount] , [Measures] . [
MinTransitionTimeInDays] , [Measures] . [MaxTransitionTimeInDays] , [Measures] . [
AvgTransition]}) ON COLUMNS,

NON EMPTY Cross jo in ([Product] . [Al l product] . Children , { [Owner] . [Al l person]}) ON
ROWS

From [SoftCockpitCube]
Where ([A c t i v i t y] . [Al l a c t i v i t i e s] . [v e r i f i e d] , [S t a t u s] . [Counter])

Listing 6.9 shows a complex parent child query. It checks for all issues which
start in the state New and stops in the state Verified. The query does not
check for circles in the process. If an issue is several times in the Verified
state, only the last change to Verified is observed as last state.
At the beginning a member is defined, for the attribute activity in the Facts
dimension and stored in the measures dimension. The measure dimension is
usually intended for calculations, but is easy to handle and used as storage
dimension. The attribute is the same as in the dimension activity. Since a
dimension can only be used once, the definition of this member as attribute
of the Fact dimension is used to filter a second time, at the beginning and
at the end of the parent-child chain. The set Counter is defined, this set
contains all descendants of the current activities starting from the activity
new or created, by using the parent-child function Descendants, with a time
restriction. All members are facts from the fact dimension and represent state
changes. Only state changes have the parent-child relationship implemented.
The numbers 10.0 and 40.0 are the ids of the New and Created activity in the
activity dimension of the database. The only way to access the attribute in
this dimension, is by using its value. In the installation the states are added
manually and the attribute has always the same value. If the insertion of
the states in the installation would change, this query has to be adopted.
The member represents all state change facts and their descendants, where

83

6 Queries and query templates

the activities New and Created lead into. This includes the New state, but
also changes to later states like Assigned or Verified. In the Where clause the
result is filtered for the activity Verified, this is done to filter for the final
state. The final result contains now all facts, which lead to the Verified state
and have a fact in their parent-child relation, with a state New. The Select
defines, which way the result is displayed. It is important to know that this
query takes a lot of time, if many facts are included in the query the time
restrictions, like the number of months that are investigated, have to be as
strict as possible.

6.3 Parametrization of queries

In the Softnet Cockpit MDX queries can be executed by typing the queries
in the MDX query editor and execute them, or by executing predefined
queries, that are saved in query files. The predefined queries are executed
by calling the web-page that includes the JPivot interface to the Mondrian
engine. Parameter in the HTML link define, which predefined query should
be executed. It is also possible to parametrize elements inside of the queries.
This gives the Softnet Cockpit more flexibility. For example if a user wants
to execute one query for one special hierarchy of one dimension he can
call the parametrized query with this hierarchy and does not have to call
the general query and drill down to the expected hierarchy. The first part
of this section describes how to access one query, the second part how the
parametrized elements inside of this query are defined.

6.3.1 Parameter in a HTML link

The HTML links to the web-enabled dashboard exists of several parameter
they are explained in this section.
An example of a link to a full parametrized query:
s e r v e r l o c a t i o n /tes tpage . j s p ? query=0\ 1\ SnapshotStatusParamObject\¶m1= o b j e c t

\¶mProduct =[Version] . [Al l\%20Version]\¶mStatus =[S t a t u s] . [Al l\%20 S t a t u s
]\¶mObjectType=CRQ\¶mDate1 =[CreatedDate] . [Day].[2008−11−11]\&
paramDate2 =[CreatedDate] . [Day].[2009−11−11]\¶mDate3 =[CreatedDate] . [Day
].[2010−11−11]\¶mDate4 =[CreatedDate] . [Day].[2011−11−11]\& paramDate5 =[
CreatedDate] . [Day].[2012−11−11]

84

6 Queries and query templates

Parameter query

The Softnet Cockpit contains many different query files to structure the
different queries. The value of this parameter is the name of the query file,
where the query is stored without the .jsp suffix. Each HTML link has to
have this parameter. Files with the ending Param in their name contain
full parametrized queries, other files contain no parametrization inside the
queries.
Examples are: query= 1 3 NumberOfForwarded or
query= 1 4 NumberOfLeftNewParam

Parameter param1

The param1 parameter is used if more than one query is stored in one file, to
define the query that should be executed. Queries can not be parametrized
between different dimensions like Product, Status or Milestone. This requires
one query for each dimension or combination of dimensions. All queries,
that display the same result for different dimensions, are stored in the same
file with different names for these dimensions. If the file has queries without
name or same name the last of those queries is executed. If the parameter
has no corresponding query name in the file the last query in the file will
be executed.
Examples are: param1=Product, param1=Milestone, param1=issueType

Parameter param(Hierarchy)

The value of this parameter is a dimension, with all hierarchies in this
dimension defined. Only the queries that have parametrized dimensions,
defined inside, have these parameters. They have one parameter for each
parametrized dimensions. Every query can have several parametrized val-
ues inside its statement. The goal of this parametrization is to access one
specific hierarchy level or element in one hierarchy level of one dimension
in the query. The user does not have to drill through all levels to one specific

85

6 Queries and query templates

element and can share or save the link to this level or element.

The value of this parameter has to be the exact value of the last level as a
string value, or the whole hierarchy. If a level has more than one child or
a level other than the last one should be shown, the exact level hierarchy,
including sharp brackets for each level, has to be added. A generic example
would be: [TopLevel].[n MiddleLevel].[Value] , [TopLevel].[MiddleLevel]
or just the value without brackets. For example the level date has to have
always the whole level path, due to its three possibilities in the middle level
(day, month and year). The value element, which is always the last element,
is one specific element or the All Value. In case of the All Value, all children
of the top level will be displayed. The All Value consists of the string All one
empty space and the name of the hierarchy. In case of a person hierarchy
it is always All person. The specification of the All Value, the hierarchies
and the levels are in the definition of the cube, the SoftcockpitCube.xml file.
In some new queries the parametrized element inside the query contains
additionally the children function; .Children. In this case only elements of the
level below the given one are printed. In the query this is used to eliminate
the additional click to the hierarchy and produce a better diagram, without
the sum of this level at the beginning.
There exist a few problems. If there are more dimensions and views
which point to the same table, it is possible that the use of the value
only causes a switch to the wrong view. It is advisable to use always
the full path like [TopLevel].[n MiddleLevel].[Value]. Those dimensions
are the hierarchies which have also a previous table like Status or Prod-
uct, or the Person hierarchies, which occur as Owner, Changer and Re-
porter. Examples for different possibilities of this parameter are: paramIs-
sueType=Defect, paramSeverity=D, paramOwner=[Owner].[All Person],
paramDate=[CreatedDate].[day].[2012-10-29], [CreatedDate].[week].[2012-
W51], [CreatedDate].[month].[2012-Q4-M10], [CreatedDate].[quarter].[2012-
Q4], [CreatedDate].[year].[2012], paramStatus=[Status].[All Status].[assigned]

86

6 Queries and query templates

Parameter reallyload

The parameter reallyload can have the values 0 or 1. This parameter is
optional. It can load a pre-saved query. The parameter query has to be set
correctly. If the button save in the program is pressed, the values of a query
will be stored in a special XML save file on the server. Only one save-file can
exist for each query file. The query will be loaded if such an XML file exists
and the query is called with the reallyload parameter set to the value 1.

Parameter of the diagram

The attributes of the diagram can be set in four parameters. All parameter
are optionally. If one or more of the parameters are not set the the value
of this parameter is the default value defined in the attributes file of the
diagram.
The parameter diagram can have the values true or false and defines if the
chart is visible or invisible.
The parameters diagramWidth, diagramHeight define the width and the height
of the chart as integer values.
The parameter diagramType defines the type of the chart, like lines or bars in
3D. The value of diagramType is an number between 1 and 16. The mapping
from this value to the concrete chart is defined in chartpropertiesform.xml.
They occur also in the same order in the options menu of the dashboard in
the chart options. If necessary all other parameters of the chart can also be
parametrized.

6.3.2 Parametrization inside the queries and the code

This section explains, how the parameter are parsed and handled inside of
the code in the jsp files or inside of the query files.

87

6 Queries and query templates

Page for executing queries

The file Testpage.jsp contains the main functionality of the dashboard and the
links to the JPivot and the Mondrian libraries. This file loads and executes the
query files. The Mondrian tool resolves and executes the queries JPivot is the
interface to Mondrian and displays the results as sheets and diagrams. The
default diagram values are interpreted and set to their attribute variables. If
the reallyload parameter is set, also the XML file including the stored values
of a query is loaded.

Query files

All query files are located in the folder apache-tomcatwebappsSoftCockpit-
MondrianWEB-INFqueries. These files contain the queries. Each file can
contain one or more queries. Each query is included in the jpivot tag
<jp:mondrianQuery id="" queryName="" jdbcDriver="" jdbcUrl=""

catalogUri="">

ID attribute

The ID attribute of the Mondrian query has to have the same name as the
one defined in the testpage.jsp and in all other queries. If several testpages
are used each page can handle one id and can only execute queries with
exactly this id. More testpages can be used as a workaround to handle more
than one query at a given time.

QueryName attribute

The attribute queryName should be unique for all queries in one single file. If
the file contains only one query, this attribute is optional and not necessary.
If the queryName attribute is missing or more than one query has the same
name, always the last query in the file will be executed.

88

6 Queries and query templates

JdbcDriver, JdbcUrl attributes

The attributes JdbcDriver and JdbcUrl point to the data-warehouse database.

CatalogUri attribute

The attribute catalogUri contains the link to the definition of the cube.

Selection of one query in a query file

The tag <jp:chooseQuery id="" queryName=""> defines which query in
the file will be executed, if there are more than one queries. In this case
queryName takes the param1 parameter of the HTML-link. This way the
HTML-link is connected to the queries and the correct query will be exe-
cuted.

QueryName attribute:

The queryName attribute defines the query, which will be executed and
corresponds to the queryName attribute in the <jp:mondrianQuery> query
parts.

Id attribute:

The id attribute has to have the same name as the one in the testpage.jsp
file.

Defining a parameter for a query

The <jp:setParam query="" httpParam="" mdxParam=""> tag defines the
a parameter for the use inside of a query. It has to be opened before the
<jp:mondrianQuery> tag and closed after < jp:mondrianQuery> tag with
<jp:setParam>.

89

6 Queries and query templates

Query attribute

The query attribute has to have as value the queryName of the corresponding
query.

HTTPParam attribute

The HTTPParam attribute has to have the same value than the corresponding
one in the HTML link.

MDXParam attribute

The mdxParam attribute is the name of the parameter that will be used inside
of the MDX query. In the query the Parameter function calls the parameter.
This function can only occur once for each parameter and query, multiple
calls for one predefined parameter will lead to an error. Defining more than
one parameter for one level or hierarchy is possible. Each parameter has to
be defined outside and used inside of the query.

Parameter function

The function to call the parameter inside of the query is Parameter(paramMDX,
Level, DefaultValue, description). Jpivot replaces this function with the correct
statement before executing the whole query with Mondrian.

ParamMdx attribute

The attribute ParamMdx is the name of the parameter in the set statement
defined outside of the query.

90

6 Queries and query templates

Level attribute

The level attribute is one specific level in the cube definition. An example
would be [CreatedDate].[Year], it is the Year level of the CreatedDate time
dimension.

DefaultValue attribute

The DefaultValue should be set if there is no value or a wrong value. Never-
theless it is not good to trust the default value, because the query can lead
to an error if wrong or missing arguments are entered.

Description attribute

Description is just a description of the parameter and is not used later
anymore and can not be accessed.

The following chapter presents a case study done with the results of the
queries. The results are analysed and compared with the model of the issue
tracking process.

91

7 Case study about the issue
management process in the
Softnet Cockpit

This chapter is a case study about the issue management process of the
partner company of this master thesis. The issue management process
is analyzed according to the process model described in Chapter 5. The
Software Cockpit including the queries and the imported data is used to
analyze the states in the process model. The number of issues and the
behavior of the issues between the states is analyzed, by using the snapshot
queries and state queries, described in Chapter 6. The run-time of the issues
and their average time in the states is not analyzed and can be part of
further case studies. The analysis of the process model is the start point
of a continuous monitoring and further improvement of the issue tracking
process. The data was also presented to the partner company and interpreted
by the partner company.

7.1 Analysis of the data in the issue process of
the partner company

In the following section several queries are run on the Softnet Cockpit with
the changes and the new implemented queries. The goal was to evaluate the
queries and compare the process model to the real behavior of the history
events. The number of issues in the states and the history changes are ana-
lyzed. Due to the huge amount of data only one specific product as example
was investigated in the years 2011 and 2012. The investigated repository

92

7 Case study about the issue management process in the Softnet Cockpit

contains around 45000 issues and has between 10000 and 18000 issues in
each product between the years 1999 until 2012. The chosen product has
around 18000 issues. The number of history events of all activities in this
project is around 250000. The number of history changes for the chosen
product is around 90000. The analysis is only done for the number of issues
in a state or number of history changes. The duration an issue stays in one
state or several states is not investigated in this case study.

Creation

At the beginning the number of issues that were created for the chosen
product are investigated. Figure 7.1 shows the number of history events that
created an issue in the years 2011 and 2012. In the year 2011 1368 new issues
were created. This number falls to 1324 in the year 2012. The Created activity
is not a state change activity. There exists also a history event for issues
that move to the state New from an empty state as state change history
event, but only few issues use this event. Therefor new created issues are
put automatically in New and the state change history events to the state
New are only used to identify issues that re-enter the state New. An issue
can only be created once, this way the number of history events with the
Created activity is also the number of created issues.
Figure 7.2 shows the number of existing issues in the state New in the year
2012. This is calculated by using the snapshot query. The upper graph shows
all issues in the state New, the lower graph shows only the number of issues
in the state New, that do not have a milestone assigned. The number of
around 12000 issues in the state New is very high in relation to the number
of overall 45000 issues that exist and the number of 1324 issues that were
created in the year 2012. The number issues without an assigned milestone
is much lower around 3000, but still more than twice the number of created
issues in this year. Both graphs behave same and raise slightly with a drop
down in the middle of the year. This shows that over the year the number of
issues that are created and that leave this state is equal. The reason for the
high number of issues in this state that have an assigned milestone, which
intended in the issue process, is given by the partner company in Section 7.2.

93

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.1: Number of events with the Created activity issue in 2011 and 2012

Figure 7.2: Number of issues in the state New in the year 2012

Checking and Checked

The number of issues in the state Checking is very low at the beginning of
the year 2012, the number is at 77 and increases until the middle of 2012

and decreases to 33 at the end of 2012. The number of issues in the state
Checked is at 23 at the beginning of 2012 and increases steady to 53 at the
end of 2012. The number of issues in both states and the number of history
events with an activity of one of those states is very low, those states are
only used rarely.

94

7 Case study about the issue management process in the Softnet Cockpit

Postponed

From the beginning to the middle of 2012 the number of issues in the state
Postponed is constant around 100, than it jumps down to 60 stays at this
number until the end of 2012. The number of history events that lead to and
from this state is very low and only high in the middle of 2012, when the
number of issues in this state jumps from 100 to 60 issues.

Assigned

In the state Assigned the issue is already assigned to a developer and
attributes of the issue like the milestone, product, or severity are already set.
The issue is ready to get implemented. Figure 7.3 shows the history events,
which lead to the state Assigned, splinted to their previous state. Nearly all
issues enter the state Assigned from the state New, a few issues have been in
the state Checked or Checking before. A couple of issues are moved back from
Opened to Assigned. This behavior is not explicitly modeled in the process,
but could state a re-assignment or that an issue is moved into the backlog
of a developer due to lack of time. Remarkable is also, that in the year 2012

44 issues were moved from Elaboration to Assigned, but none in 2011.
By comparing the numbers of created issues with the number of history
changes that lead from a earlier state to Assigned it can be identified, that
more than 90 percent of the issues, which have been created in 2012, have
become assigned. In 2011 75 percent have become assigned after their
creation.
The diagram of the snapshot query in Figure 7.4 shows, that the number of
issues in the state Assigned stays constant or is even decreasing over the year.
This means that issues are not only constantly created in the year 2012, but
also assigned to a project and developer. The number of issues in this state
is quite high between 300 and 400 compared to the overall created issues in
the year 2012.

The number of history events with an Re-Assignment activity is shown in
Figure 7.5. If a Re-Assignment activity happens, in most cases it happens in
the Assigned state, sometimes in Checked, New or Opened, but never in the
final states. The number of Re-Assigned events in the state Opened is nearly

95

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.3: Number of state events to the state Assigned in 2011 and 2012, splinted to their
previous state

Figure 7.4: Number of issues in the state Assigned over the year 2012

equal to the number of state changes from Opened to Assigned. It can be
assumed that those are the same issues and that this behavior is intended,
since the new developer has to analyze and open the issue by himself. The
issues with a Re-Assignment activity in the state New have probably already
been in Assigned, but have been moved back to New.

96

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.5: Number of events with a Re-Assignment activity in 2011 and 2012, and the state
where the Re-Assignment happened

Opened

Figure 7.6 shows the history events, that lead to the state Opened. All events
with previous state Assigned are regular Opened. Only very few issues use
this activity. The major number of issues use the state Opened only as Re-
Opened. A few issues became Re-Opened after they were already in the state
Verified.

The numbers in Figure 7.7 show the result of a query that calculates the
number of history events with the test-failed activity. Events with the test-
failed activity happen independently from state change events, but should
occur together with a state change event form Resolved to Opened. The
number of history changes from the states Resolved to Opened is nearly
equal to the number of failed tests, some test-fails occur in the state Opened.
This means the event with the activity Test-failed together Re-Opened state
transition is used as intended in the process model. The state Opened for the
purpose of handling issues that need more development time is only used
rare.

97

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.6: Number of state events to the state Opened in 2011 and 2012, splinted to their
previous state

Figure 7.7: Number of events with a Test-failed activity in 2011 and 2012, and the state
where the test fail happened

Resolved

An issue in the state Resolved is already implemented or solved and ready
to get tested. Figure 7.8 shows the number of history events into the state
Resolved splinted to their previous state. Most state changes happened from
the state Assigned to Resolved, a few occurred from New or Opened to Resolved
and nearly no changes from other states. Changes from New to Resolved
indicate issues with a very low or no development time, or issues which
have already been solved, but need to be tested. The sum of all changes to
Resolved in 2012 was 1195, which is around 100 issues lower as the number
of created issues in this year. The sum of test fails in this state divided
through this number shows that nearly 11 percent of the events that lead to

98

7 Case study about the issue management process in the Softnet Cockpit

Resolved had a test-failed activity.

The graph in Figure 7.9 shows the number of issues in the state Resolved over
the year 2012. At the beginning of the year the number of issues in Resolved
is very high. More than 2000 issues in this state are more than 200 percent of
the number of issues created in this year. This seems to be not intended in
the process model, since Resolved is not a final state. At the middle of 2012

the number of issues in the state Resolved decreased tremendously in one
week. After that the graph is nearly constant at a level around 350 issues.

Figure 7.8: Number of state events to the state Resolved in 2011 and 2012, splinted to their
previous state

Duplicate, Rejected and Elaboration

The states Duplicate, Rejected and Elaboration are final states, that are used, if
an issue is not going to be resolved. The number of issues in these states is
quite low compared to the number of issues in the state Verified. The final
state Elaboration is not used in the year 2012 and there is also only one issue
in this state, from a previous year. The number of issues in the state Rejected
is at 159 at the beginning of 2012, it raises constantly and has a jump in the
middle of 2012 from 240 to 340 issues. Afterward the number of issues in
this state raise constantly again. The number of issues in the state Duplicate
raises constant from 215 to 255 during the year 2012.

99

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.9: Number of issues in the state Resolved over the year 2012

Verified

Verified is a final state that indicates that a issue is resolved and tested.
A issue should never leave this state again. Figure 7.11 shows number of
history events to the status Verified splinted to their previous states. Changes
from any other state than Resolved to Verified are issues that have already
been solved in the past, like through another issue, or did not use the
Resolved state correctly. The number of issues that are in the state Verified
and did not use the Resolved state is low, in the year 2012 there were 2944

state changes from Resolved to Verified, this means 88 percent of the state
changes to Verified are from the state Resolved. Most other state changes are
from New to Verified.
The snapshot graph in Figure 7.10 shows the number of issues in the state
Verified in the year 2012. The graph raises constantly with one exception
where the graph jumps up from from 6000 issues to over 8000 issues in this
state. This jump is the opposite behavior from the state Resolved, where the
graph jumps down.

100

7 Case study about the issue management process in the Softnet Cockpit

Figure 7.10: Number of state events to the state Verified in 2011 and 2012, splinted to their
previous state

Figure 7.11: Number of issues in the state Verified over the year 2012

101

7 Case study about the issue management process in the Softnet Cockpit

7.2 Statement of the partner company

The results of the case study were presented to the partner company, to
verify the results of the queries. They said that the issue process is still
under development and will be improved. At the creation of an issue it is
put into the state New and should not have a defined milestone. Issues get
the information about a milestone in the assignment phase. Most issues,
which have a milestone, are rather old and have maybe been reassigned and
put to the state New later. It is also possible that these states are duplicates,
or are obsolete due to another reason. Those issues should be analyzed
and put into a final state. Since this process needs much effort and has no
priority this process is done very slowly. The lower graph in the diagram
7.1 represents the issues in New with an undefined milestone, they are
the current issues and should get assigned. Nevertheless since in the year
2012 about 1300 issues were created and 3000 issues without an assigned
milestone are in this state this number should decrease and not increase.
But a very slow increase is still acceptable.
They explained, that the difference between the states Assigned and Opened
is, that the management wants to check which tasks are right now under
development and which tasks are only in the backlog and assigned to a
specific developer. A developer can have many assigned issues, but should
only have an issue in the state Opened, if it is right now under development.
But unfortunately the developer do not accept this state yet and do not use
it in the implementation of an issue. They said that, the assignment and the
implementation of the issues in this part of the issue management process
should be improved. They also try to reduce the number of issues in the
state Assigned, since quotation of created issues to assigned issues should
be better over one year. In the Assigned state most Re-Assignment activities
should happen.
They said that the huge jump in the snapshot graphs in the Resolved and
Verify states is not on purpose. This huge number of state changes in one
week occurred due to a cleanup of the database in July 2012. Such cleanups
should only occur rarely, but can happen. A solution should be found how
to avoid the big influence of this cleanup on the Softnet Cockpit output.
The partner company proposed, that a possible solution could be a new
separated final state or a flag. A MDX query solution would be to use

102

7 Case study about the issue management process in the Softnet Cockpit

the CreatedDate dimension, as time dimension in the snapshot query and
set the beginning date to a younger date, this way very old issues could
be eliminated from the issue. This query would not show a real snapshot
anymore.

7.3 Conclusion

The case study proves that in most cases the issue process model is im-
plemented correctly in the partner company. The assignment of the issues
stays constant over the year and the assignments correspond to the number
of new created issues. Also the number of resolved and verified issues
conforms to those numbers and proves that the issue tracking model is used
correctly. The step of sending issues back to the state Opened, if tests or
reviews fail works very well. In its normal purpose to contain issues that
need more time to get implemented, the Opened state is used too seldom.
Also the states Checked and Checking are rarely used. Solutions have to be
found that those states are better accepted by the developers, or the process
should be adopted. The standard process in the Bugzilla issue tracker for
example does not have an Opened state and only an Assigned state (Bugzilla
process @ONLINE 2013).
In the year 2012 a correction of the data in the states Resolved and Verified
happened. This had a big influence on the numbers and queries in the
Softnet Cockpit. A solution should be found, how to mark the changes and
ignore them in the queries. Nevertheless such changes should not occur
often and show that the process needs to be improved. Issues should never
stay too long in one of the earlier states, which rises the probability that
such issues stay in those states too long.
There is a huge backlog of old issues in the state New. These old issues
should be cleaned up like already done if possible.
Also the number of reassignments is quite high compared to the number of
assigns only. The assignment of issues to developer takes much time and
the number of issues should be reduced.

103

8 Related Work

This chapter provides information about projects, tools and scientific papers,
which are related to this master project. It is splinted into a section, in which
process monitoring approaches are investigated and a section in which
similar cockpit projects are compared with the Softnet Cockpit, that is used
in this master thesis.

8.1 Process Monitoring

A couple of work is already done about the monitoring of software pro-
cesses. (Feiler and Humphrey, 1993) describes a general approach about
the monitoring of software processes. A separated observer is used, that
monitors the enhance state of the observed process. This agent can be imple-
mented by the observed process or by a separate process. The goal is to get
the gathered data about the process and its performance. Furthermore the
data is used in a process measurement database for the process planning,
analysis, control and adjustment. It is also possible to use a system of several
component agents, which are connected to several condition monitor agents
that observe a process component system, that consists of several processes
(Bunch et al., 2004). The goal of the project in this master thesis is also to
monitor a process in the software development. The differences are, that
the Softnet Cockpit uses only the history data of a software process and
evaluates this data in a OLAP cockpit and does not directly implemented
agents in the software process.

(Zur Muehlen and Rosemann, 2000) explains process monitoring as a part
of the process change management. The prior steps in the process change

104

8 Related Work

management are prioritization of relevant processes, process modeling, pro-
cess analysis, process optimization, process implementation and process
realization. The result of the process monitoring can trigger that those steps
have to be redone. This way the process change management can be seen as
circle. There are three sights on the process monitoring: the process view,
the resource view and the object view. In the process view all key perfor-
mance indicators, which are related to the business process are presented.
Examples can be the average, maximum and minimum process time, the
average, maximum and minimum costs of the execution of one process, and
the quality of the process expressed in the number of failures or loops as
an indicator for necessary rework. If a report of this view is produced, it
can contain one specific instance of a process model or an aggregation of
several process instances. The resource view concentrates on the costs of a
process. A very efficient process can also be not successful if the costs of
using it are too high. The data for the resource monitoring can be from the
asset management accounting. Costs which can not be connected to one
process have to be splinted partly to one process. The object view displays
the attributes of all objects that are connected to the process. It explains the
difference between an object and a process, that a processes can be defined
as the logical sequence of functions necessary to process a business relevant
object (Zur Muehlen and Rosemann, 2000). This project is more business
oriented than the work, done in this master thesis. But the parts of the
process monitoring explained in this paper can be connected to this master
thesis. The metrics and the KPIs are part of the process view, the costs of
processes were not investigated in this project, the object view can be found
in the dimensional presentation of the process in the Softnet Cockpit.

(Van der Aalst, 2011) describes a way of investigating processes, instead
of only monitoring a process his main goal is the mining of processes. He
shows how to collect the data to mine a software process. The main data
are event logs. An event can have any kind of attributes like timestamps,
the transactional information and the resource usage but is often only
named after the activity. An event can be from any kind of resources like a
code visioning system, an email client or a issue tracking system. (Poncin,
Serebrenik, and Brand, 2011) try to apply the approach of mining business
processes generally to mining for processes in software repositories. They

105

8 Related Work

describe the problem of extracting the logs from different sources, especially
they investigate the source code repository CVS and the bug-tracker Bugzilla.
By using those event logs produced by the tool FRASR. They create with
the tools ProM Fuzzy Miner ticket trees from the open source project GCC
and compare this model with the standard Bugzilla life cycle model. This
master thesis had also the focus on evaluating a given process with event
logs. The event logs as history events and the model as issue tracking graph
was given by the investigated partner company. Instead of mining a process
the process was monitored in this master thesis.

8.2 Projects

Several projects have been done in the field of Software Cockpits.

One of the firsts ideas to collect, every information about a software project
and present them to the user was done by (Münch and Heidrich, 2004).
The researches done in this field resulted in the start of the Soft-Pit project
(Heidrich, Münch, and Wickenkamp, 2006). The goal of this project was
the build a software project management control center. It should be sim-
ilar to a cockpit in a airplane. This way they called it a Software Cockpit.
This tool should be used in scientific projects and in small companies. The
project was founded and implemented by several scientific and commercial
partner. Since there was a focus on project data, this cockpit focuses on
process data, but also product and resource data can be investigated. In the
evaluation of the data process metrics and the most important process KPIs
were implemented in this cockpit. This project is very similar to the Softnet
Cockpit that was used in this master thesis, both cockpits monitor business
processes in the field of software projects.

The two projects Q-Bench (QBench @ONLINE 2013) and sd&m (Bennicke
et al., 2007) are also two public projects, with the goal to implement an
integrated Software Cockpit. Both projects concentrate on the software ap-
plication and more on product metrics. The goal of sd&m is to develop a
cockpit that has several adapters, that can be connected to different projects,

106

8 Related Work

to store the data of several different projects in one data-warehouse and
analyze it with integrated rules and metrics. Several quality models are
used in this project to identify the metrics and rules. Q-Bench uses product
metrics, heuristics and quality models to ensure the quality of applications
in object oriented software projects. Both projects use also metrics and data
from several sources in the software development, but focus more on the
product instead of the processes, which are related to this project.

Business Process Cockpit (BPC) is a tool that supports real-time monitoring,
analysis, management, and optimization of business processes. It is a big
project with several partner, but the main partner is HP. This cockpit in-
cludes a ProcessDatawarehouse (PWD) that stores the data about a process
and updates the data online. Queries, that are designed specially to observe
and control processes can be executed. It gives also the possibility to influ-
ence the process and send events to the process to manage running systems.
It can create reports by using commercial OLAP reporting tools like the
CrystalReport tool-set. It is also able to communicate with process mining
tools to analyze undocumented processes and improve the processes (Sayal
et al., 2002). This project is very similar to the Softnet Cockpit, it focuses in
processes and uses a special process oriented data-warehouse. Differences
are that this project uses commercial software, the Softnet Cockpit uses only
open source parts. The queries in the Softnet Cockpit are also more flexible
and can be parametrized.

107

9 Conclusion and Future Work

This chapter presents a short summary of the chapters in this master thesis
in the context of the goals. After that possible future work in the field
of the Software Cockpit are presented. The last section provides a small
conclusion.

9.1 Summary

This master thesis is written in the context of the implementation of the
quality measurement of an issue tracking process in a automotive software
development company, by using a software measurement and monitoring
tool.

At the beginning the application life-cycle management is introduced. Soft-
ware companies use ALM to control the work-flow of their products through
all stages, from the first idea until the end of the product. Issue tracking
is one important process in the ALM. It handles the enhancements and
bugs that are connected to a software application. It is important that ALM
processes, like this issue process runs steady through the whole lifetime of
the product. Quality is an important aspect of this process. One important
part of the quality engineering is the measurement of the quality. Quality
models are to define abstract quality attributes. Metrics are one part of the
software quality models. They are rules, that describe how to measure a
software process or application. Software monitoring tools implement those
metrics and are used for a continuous quality monitoring. A short mar-
ket overview was given about the most important software monitoring tools.

108

9 Conclusion and Future Work

In the practical part a Software Cockpit, a software application and process
monitoring tool, was presented. It bases on the OLAP technology and uses
open source tools. This part of the thesis includes also the changes, that
were done to this Software Cockpit, according to the requirements and the
data of a partner company. Those changes were done to the front-end as
well as to the back-end and the database. Most changes that were done
to the architecture were necessary, to implement the queries, that give the
possibility to access the data in the Software Cockpit. The queries were
implemented regarding to a set of metrics given by the partner company.
The queries were grouped and explained. Example queries of each group
were given, to allow a fast use and adoption of the queries. It was also
described, how to parametrize the queries.

At the end a case study was done, which presented the behavior of the
issues in the issue process of the partner company. The case study was
done by using the data of the partner company in the Software Cockpit and
using the process model. Beside of a few problems in the process the issues
followed the process model correctly. The case study can be a good start
point, for a continuous monitoring of this process in the future.

9.2 Future Work

This section describes future work that could be done to the Softnet Cock-
pit.

There are several metrics in the Sofnet Cockpit that correlate, but are called
and calculated separately and have to be compared to each other. An exam-
ple would be the test and review failed metrics correlate to the state change
metric from the state Resolved to the state Opened. Another example would
be the re-assignment metric of issues and the state change metric from the
states Opened or Resolved to the state Assigned. Metrics could be developed,
that use both aspects and compares them with each other to get a better
overview over the process. Also problems between those correlated history
events could be figured out earlier.

109

9 Conclusion and Future Work

Queries should be implemented that can separate old issues and current
issues. As showed in the case study in Chapter 7, there exists a problem
with old data and old issues in the issue tracker and data data of clean-ups
of the database. This influences the results of the queries a lot. Especially in
the run-time measurement, old issues influence on the average calculated
run-time a lot. The queries should be able to identify old issues and separate
between old issues and new issues, without the need of cleaning the whole
database.

In the metrics upper and lower boarders should be identified and included
into the queries or the data-warehouse. The case study showed the behavior
of the issues in the issue process and the partner company made a statement
on how the behavior should be. A future work could be to implement upper
and lower boarders into the metrics and the data-warehouse, according to
the information of the case study and the statement. This way it could be
easier identified, if the behavior of the issues in the process flow and in the
states is correct, or if problems occurred.

The case study showed, that there is probably a high number of old dupli-
cate issues in the state New. A future work could be to identify duplicates by
using the information in the Software Cockpit and enhance the the Software
Cockpit by attributes of the issues that makes it easier to identify duplicate
issues. The information of the attributes in this Software Cockpit could
be easily combined with technicians like the natural language processing
(Runeson, Alexandersson, and Nyholm, 2007), to identify duplicates fast
and avoid old duplicate issues in the current issue tracking work-flow.

9.3 Conclusion

In the complex field of quality engineering in the software development, this
thesis has given one possibility to measure a software process. The project as
part of this master thesis showed a way to monitor a issue tracking process.
There are only few papers and projects in the field of process monitoring

110

9 Conclusion and Future Work

with process metrics in combination with a OLAP oriented Software Cock-
pit. This made it difficult to find a solution to implement the more complex
queries, like the parent-child queries and parametrization of those queries.
At the end it was possible to find a solution, and present this solution in
this master thesis. Nearly all requirements, especially the necessary changes
in the architecture and the queries, given by the partner company could be
implemented in the Softnet Cockpit.

There are still some disadvantages, that were discovered in the run-time of
this project. The user interface is rather old and does not offer new tech-
niques like drag and drop or well designed reports. Also the OLAP engine
takes much time to execute complicated queries and therefor the queries
must be restricted to less dimensions, or the time over which a query is
calculated has to be reduced. Another interface and a faster OLAP engine
would improve the experience of this Softnet Cockpit much.

Nevertheless the final version of the Softnet Cockpit is huge help for the
project management in the software development, in their goal to monitor
this software process and improve its quality. Especially since quality in
such processes is a very important factor, it is important to measure all
attributes of a process online. This can offer the OLAP based Softnet Cockpit.

In the future this tool will be a good advantage, for this company, to monitor
their issue process and especially the quality of their process.

111

References

Albrecht, Allan J. and John E Gaffney Jr (1983). “Software function, source
lines of code, and development effort prediction: a software science
validation.” In: Software Engineering, IEEE Transactions on 6, pp. 639–648

(cit. on pp. 25, 46).
Basili, Victor R, Jens Heidrich, et al. (2007). “Bridging the Gap between

Business Strategy and Software Development.” In: ICIS, p. 25 (cit. on
p. 27).

Basili, Victor R and Richard W Selby (1984). “Data collection and analysis
in software research and management.” In: Proceedings of the American
Statistical Association and Biomeasure Society (cit. on p. 30).

Basili, Victor et al. (2007). “GQMˆ+ Strategies–Aligning Business Strategies
with Software Measurement.” In: Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International Symposium on. IEEE,
pp. 488–490 (cit. on p. 27).

Beer, Wolfgang (2009). “Gerhard Weiss, Gustav Pomberger Wolfgang Beer,
Georg Buchgeher, Bernhard Dorninger, Josef Pichler, Herbert Prahofer,
Rudolf Ramler, Fritz Stallinger, Rainer Weinreich.” In: Hagenberg Research,
p. 157 (cit. on p. 46).

Bennicke, Marcel et al. (2007). “Das sd&m Software Cockpit: Architektur
und Erfahrungen.” In: GI Jahrestagung (2), pp. 254–260 (cit. on p. 106).

Bunch, Larry et al. (2004). “Software agents for process monitoring and noti-
fication.” In: Proceedings of the 2004 ACM symposium on Applied computing.
ACM, pp. 94–100 (cit. on p. 104).

Caldiera, Victor R Basili1 Gianluigi and H Dieter Rombach (1994). “The
goal question metric approach.” In: Encyclopedia of software engineering 2,
pp. 528–532 (cit. on pp. 24, 29–31).

Chappell, David et al. (2008). “What is Application Lifecycle Management?”
In: White Paper, December (cit. on pp. 10, 12, 13).

112

References

Chaudhuri, Surajit and Umeshwar Dayal (1997). “An overview of data
warehousing and OLAP technology.” In: ACM Sigmod record 26.1, pp. 65–
74 (cit. on p. 5).

Committee, Software & Systems Engineering Standards et al. (1998). “IEEE
Std 1061-1998—IEEE standard for a software quality metrics methodol-
ogy.” In: IEEE Computer Society, Tech. Rep (cit. on p. 25).

Datta, Anindya and Helen Thomas (1999). “The cube data model: a con-
ceptual model and algebra for on-line analytical processing in data
warehouses.” In: Decision Support Systems 27.3, pp. 289–301 (cit. on
pp. 50, 51).

Deissenboeck, Florian et al. (2009). “Software quality models: Purposes,
usage scenarios and requirements.” In: Software Quality, 2009. WOSQ’09.
ICSE Workshop on. IEEE, pp. 9–14 (cit. on pp. 28, 29).

Doran, George T (1981). “There’s a SMART way to write management’s
goals and objectives.” In: Management Review 70.11, pp. 35–36 (cit. on
p. 32).

Feiler, Peter H and Watts S Humphrey (1993). “Software process develop-
ment and enactment: Concepts and definitions.” In: Software Process,
1993. Continuous Software Process Improvement, Second International Confer-
ence on the. IEEE, pp. 28–40 (cit. on p. 104).

Goth, Greg (2009). “Agile tool market growing with the philosophy.” In:
Software, IEEE 26.2, pp. 88–91 (cit. on p. 16).

Heidrich, Jens, Jürgen Münch, and Axel Wickenkamp (2006). “Zielorientierte
Nutzung von Projektleitständen.” In: GI Jahrestagung (2), pp. 87–94 (cit.
on p. 106).

“IEEE Standard Classification for Software Anomalies” (2010). In: IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. C1–15. doi: 10.1109/
IEEESTD.2010.5399061 (cit. on p. 17).

Koziolek, Heiko (2008). “Goal, question, metric.” In: Dependability metrics.
Springer, pp. 39–42 (cit. on p. 32).

Loper, Stefanie and Gabriele Schmidt (2005). “Softwareprozessmetriken und
agile Methoden.” In: (cit. on p. 27).

McCabe, Thomas J. (1976). “A complexity measure.” In: Software Engineering,
IEEE Transactions on 4, pp. 308–320 (cit. on p. 26).

McCall, Jim A, Paul K Richards, and Gene F Walters (1977). Factors in software
quality. General Electric, National Technical Information Service. (cit. on
pp. 32, 33).

113

http://dx.doi.org/10.1109/IEEESTD.2010.5399061
http://dx.doi.org/10.1109/IEEESTD.2010.5399061

References

McDonald, Kevin et al. (2002). Mastering the SAP business information ware-
house. Wiley (cit. on p. 37).

Münch, Jürgen and Jens Heidrich (2004). “Software project control centers:
concepts and approaches.” In: Journal of Systems and Software 70.1, pp. 3–
19 (cit. on p. 106).

Mutafelija, Boris and Harvey Stromberg (2003). Systematic process improve-
ment using ISO 9001: 2000 and CMMI. Artech House on Demand (cit. on
p. 4).

Negash, Solomon (2004). “Business intelligence.” In: Communications of the
Association for Information Systems 13.1, pp. 177–195 (cit. on p. 4).

Parmenter, David (2010). Key performance indicators (KPI): developing, imple-
menting, and using winning KPIs. Wiley (cit. on p. 27).

Pedersen, Torben Bach and Christian S Jensen (2001). “Multidimensional
database technology.” In: Computer 34.12, pp. 40–46 (cit. on p. 52).

Poncin, Wouter, Alexander Serebrenik, and Mark van den Brand (2011).
“Process mining software repositories.” In: Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on. IEEE, pp. 5–14

(cit. on p. 105).
Rossberg, Joachim (2009). Application Lifecycle Management. English. Apress.

isbn: 978-1-4302-1080-1. doi: 10.1007/978-1-4302-1079-5_2. url:
http://dx.doi.org/10.1007/978-1-4302-1079-5_2 (cit. on p. 11).

Royce, Winston W (1970). “Managing the development of large software
systems.” In: proceedings of IEEE WESCON. Vol. 26. 8. Los Angeles (cit. on
pp. 14, 15).

Runeson, Per, Magnus Alexandersson, and Oskar Nyholm (2007). “Detec-
tion of duplicate defect reports using natural language processing.” In:
Software Engineering, 2007. ICSE 2007. 29th International Conference on.
IEEE, pp. 499–510 (cit. on p. 110).

Sayal, Mehmet et al. (2002). “Business process cockpit.” In: Proceedings of the
28th international conference on Very Large Data Bases. VLDB Endowment,
pp. 880–883 (cit. on p. 107).

Singh, Gurdev, Dilbag Singh, and Vikram Singh (2011). “A Study of Soft-
ware metrics.” In: International Journal of Computational Engineering and
Management 11, pp. 2230–7893 (cit. on p. 25).

Sneed, Harry M, Richard Seidl, and Manfred Baumgartner (2010). Software
in Zahlen: Die Vermessung von Applikationen. Hanser (cit. on pp. 24–26).

114

http://dx.doi.org/10.1007/978-1-4302-1079-5_2
http://dx.doi.org/10.1007/978-1-4302-1079-5_2

References

Stücka, Renate (2013). “Passt überall.” In: iX Developer 3/2013, pp. 78–80

(cit. on p. 22).
Van der Aalst, Wil MP (2011). Process mining. Springerverlag Berlin Heidel-

berg (cit. on p. 105).
Vassiliadis, Panos, Alkis Simitsis, and Spiros Skiadopoulos (2002). “Con-

ceptual modeling for ETL processes.” In: Proceedings of the 5th ACM
international workshop on Data Warehousing and OLAP. ACM, pp. 14–21

(cit. on p. 52).
Wagner, Stefan et al. (2010). “Softwarequalitätsmodelle–Praxisempfehlungen

und Forschungsagenda.” In: Informatik-Spektrum 33.1, pp. 37–44 (cit. on
pp. 25, 29).

Zur Muehlen, Michael and Michael Rosemann (2000). “Workflow-based pro-
cess monitoring and controlling-technical and organizational issues.” In:
System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International
Conference on. IEEE, 10–pp (cit. on pp. 104, 105).

115

Online References

agilemanifesto @ONLINE (Mar. 2013). url: http://agilemanifesto.org/
principles.html (cit. on p. 15).

Atlassian ALM @ONLINE (June 2013). url: http://www.atlassian.com/
software (cit. on p. 20).

Bugzilla process @ONLINE (Apr. 2013). url: http://www.bugzilla.org/
docs/2.16/html/how.html (cit. on p. 103).

Business Computing World @ONLINE (May 2013). url: http://www.businesscomputingworld.
co.uk/top-10-software-failures-of-2011/ (cit. on p. 3).

Business Intelligence @ONLINE (May 2013). url: http://www.gartner.com/
it-glossary/business-intelligence-bi/ (cit. on p. 36).

Collab ALM @ONLINE (June 2013). url: http://www.collab.net/ (cit. on
p. 20).

Coverity @ONLINE (July 2013). url: http://www.coverity.com/products/
index.html (cit. on p. 44).

Gartner @ONLINE (June 2013). url: http://www.gartner.com/technology/
reprints.do?id=1-1ASCXON&ct=120606&st=sb (cit. on p. 19).

HP ALM @ONLINE (June 2013). url: http : / / www8 . hp . com / us / en /

software-solutions/software.html?compURI=1174315#.UcB4hflQaYU

(cit. on p. 21).
http://innovationcenter.deteconusa.com/ @ONLINE (Apr. 2013). url: http://

innovationcenter.deteconusa.com/article/next-generation-mobile-

application-management-strategies-for-leveraging-mobile-applications-

within-the-enterprise/ (cit. on p. 11).
IBM ALM @ONLINE (June 2013). url: http://www-03.ibm.com/software/

products/us/en/category/SW860 (cit. on p. 20).
ISO 9000 @ONLINE (May 2013). url: http://www.iso.org/iso/iso_9000

(cit. on p. 4).
Jaspersoft BI @ONLINE (July 2013). url: https://www.jaspersoft.com/de/

products-de (cit. on p. 40).

116

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://www.atlassian.com/software
http://www.atlassian.com/software
http://www.bugzilla.org/docs/2.16/html/how.html
http://www.bugzilla.org/docs/2.16/html/how.html
http://www.businesscomputingworld.co.uk/top-10-software-failures-of-2011/
http://www.businesscomputingworld.co.uk/top-10-software-failures-of-2011/
http://www.gartner.com/it-glossary/business-intelligence-bi/
http://www.gartner.com/it-glossary/business-intelligence-bi/
http://www.collab.net/
http://www.coverity.com/products/index.html
http://www.coverity.com/products/index.html
http://www.gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1174315#.UcB4hflQaYU
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1174315#.UcB4hflQaYU
http://innovationcenter.deteconusa.com/article/next-generation-mobile-application-management-strategies-for-leveraging-mobile-applications-within-the-enterprise/
http://innovationcenter.deteconusa.com/article/next-generation-mobile-application-management-strategies-for-leveraging-mobile-applications-within-the-enterprise/
http://innovationcenter.deteconusa.com/article/next-generation-mobile-application-management-strategies-for-leveraging-mobile-applications-within-the-enterprise/
http://innovationcenter.deteconusa.com/article/next-generation-mobile-application-management-strategies-for-leveraging-mobile-applications-within-the-enterprise/
http://www-03.ibm.com/software/products/us/en/category/SW860
http://www-03.ibm.com/software/products/us/en/category/SW860
http://www.iso.org/iso/iso_9000
https://www.jaspersoft.com/de/products-de
https://www.jaspersoft.com/de/products-de

Online References

JPivot @ONLINE (July 2013). url: http://jpivot.sourceforge.net/ (cit.
on p. 48).

Microsoft ALM tools @ONLINE (Apr. 2013). url: http://www.microsoft.
com/visualstudio/eng#alm (cit. on p. 20).

Microsoft MDX reference page @ONLINE (Apr. 2013). url: http://msdn.
microsoft.com/en-us/library/aa216767(v=sql.80).aspx (cit. on
p. 75).

MySQL @ONLINE (Apr. 2013). url: http://www.mysql.com/ (cit. on p. 38).
OSLC @ONLINE (June 2013). url: http://open-services.net/resources/

tutorials/integrating-products-with-oslc/overview-of-oslc/

(cit. on p. 22).
Parasoft @ONLINE (July 2013). url: http : / / www . parasoft . com / jsp /

products.jsp?itemId=13 (cit. on p. 43).
Pentaho BI @ONLINE (July 2013). url: http://www.pentaho.com/explore/

products/ (cit. on p. 39).
Pentaho Community @ONLINE (Apr. 2013). url: http://community.pentaho.

com/ (cit. on pp. 38, 39, 75).
QBench @ONLINE (June 2013). url: www.qbench.de (cit. on p. 106).
Rally ALM @ONLINE (June 2013). url: http://www.rallydev.com/about/

what-is-rally (cit. on p. 20).
Saiku Analytics @ONLINE (July 2013). url: http://analytical-labs.com/

(cit. on p. 39).
Salesforce @ONLINE (July 2013). url: http://www.salesforce.com/de/

(cit. on p. 64).
SAP BI @ONLINE (July 2013). url: http://help.sap.com/bobi (cit. on

p. 37).
Sonarqube @ONLINE (July 2013). url: http://www.sonarqube.org/downloads/

(cit. on p. 42).
Stages @ONLINE (July 2013). url: http://stages.methodpark.de/ (cit. on

p. 44).

117

http://jpivot.sourceforge.net/
http://www.microsoft.com/visualstudio/eng#alm
http://www.microsoft.com/visualstudio/eng#alm
http://msdn.microsoft.com/en-us/library/aa216767(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa216767(v=sql.80).aspx
http://www.mysql.com/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/overview-of-oslc/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/overview-of-oslc/
http://www.parasoft.com/jsp/products.jsp?itemId=13
http://www.parasoft.com/jsp/products.jsp?itemId=13
http://www.pentaho.com/explore/products/
http://www.pentaho.com/explore/products/
http://community.pentaho.com/
http://community.pentaho.com/
www.qbench.de
http://www.rallydev.com/about/what-is-rally
http://www.rallydev.com/about/what-is-rally
http://analytical-labs.com/
http://www.salesforce.com/de/
http://help.sap.com/bobi
http://www.sonarqube.org/downloads/
http://stages.methodpark.de/

