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Abstract

An important step for each object recognition task is to find an adequate representation of the
information contained in an image. This representation can be generated through analyzing
the object’s appearance or geometry, and depending on the task needs to fulfill certain
requirements. Recently, research has evidenced that sparse feature descriptors perform well
for many object recognition applications. Therefore Sparse Coding, a sparse feature descriptor
representing images as sparse linear combinations of a few basis elements, has been investigated
in this work in order to emphasize its strengths and drawbacks for different computer vision
tasks. The first goal has been to theoretically analyze Sparse Coding and its main parameters.
Various experiments have been conducted to reason about different parameter settings and
their implications. The evaluation of these experiments made it possible to derive the
importance of various parameters for the feature descriptor’s expressiveness. The second part
of this master’s thesis addresses the applicability of Sparse Coding for the analysis of video
sequences based on two exemplary application scenarios. The first application deals with the
problem of needing many labeled images when training classifiers for object recognition. This
work proposes a general method, based on Sparse Coding, to automatically label individual
frames within natural video sequences. These labels are generated by analyzing the slow
driving force within the sparse feature descriptor. Experiments on two datasets have been
performed to evaluate the proposed system. Based on the results of the analysis of Sparse
Coding, a framework for detecting unusual events and irregularities in videos has been
developed. This unsupervised task has been chosen to identify and assess the strengths and
weaknesses of Sparse Coding compared to other state-of-the-art feature descriptors. This work
emphasized benefits when using Sparse Coding for different computer vision tasks dealing
with video-sequences.

Keywords: Object recognition; Sparse Coding; Video analysis; Automatic labeling; Unusual
event detection;





Kurzfassung

Ein wichtiger Schritt für jedes Objekterkennungssystem ist das Finden einer geeigneten Be-
schreibung für die in den Bildern enthaltene Information. Diese Repräsentation kann durch die
Analyse der Erscheinung oder der Geometrie eines Objektes berechnet werden, und sollte je
nach Verwendungszweck verschiedene Anforderungen erfüllen. Aktuelle Publikationen zeigen,
dass Sparse Beschreibungen für Objekterkennungssysteme sehr gut geeignet sind. Deshalb
wird im Rahmen dieser Masterarbeit Sparse Coding, ein spezielle sparse Beschreibung, welche
das Bild als dünnbesetzte Linearkombination von Basiselementen darstellt, behandelt, um
dessen Eigenschaften für verschiedene Bilderkennungssysteme zu analysieren. Der erste Teil
dieser Arbeit umfasst daher die theoretische Analyse von Sparse Coding und seiner wichtigsten
Parameter. Verschiedene Experimente und Analysen wurden durchgeführt, um Aussagen über
die Parameter und ihre Eigenschaften zu treffen. Der zweite Teil dieser Arbeit widmet sich
der Umsetzung zweier Objekterkennungssysteme basierend auf Videosequenzen. Im ersten
Anwendungsfall wird auf das Problem eingegangen, dass für das Trainieren von Klassifikatoren
zur Objekterkennung vielegekennzeichnete Bilder benötigt werden. Dieser Arbeit stellt eine
generelle Methode, basierend auf Sparse Coding, zur automatischen Generierung solcher
Kennzeichnungen aus Videos vor. Diese Kennzeichnungen werden durch die Analyse der
sich über die Zeit verändernden Beschreibungen berechnet und durch Experimente auf zwei
verschiedenen Datensätzen validiert. Basierend auf den Analyseergebnisse des Sparse Coding,
wurde als zweite Applikation ein System zur Erkennung von Unregelmäßigkeiten in Videose-
quenzen entwickelt. In diesem System wurden die Stärken und Schwächen von Sparse Coding
im Vergleich zu anderen, dem Stand der Technik entsprechenden Bildbeschriebungsmethoden
analysiert. Zusammenfassend zeigt diese Arbeit Stärken von Sparse Coding für verschiedene
videobasierte Anwendungsfälle in der Bilderkennung.

Stichwörter: Objekterkennung; Sparse Kodierung; Videoanalyse; Automatisches Labeling;
Erkennung unüblicher Ereignisse;
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1 Introduction

1.1 The Role of Computer Vision

“A picture is worth a thousand words”

Fred R. Barnard, 1921

In today’s technology-enhanced society, a vast amount of information in various forms, such
as text, videos and images, is generated and consumed every day. In order to deal with this
high quantity of information, it is desirable to use automatic tools and methods to support
human consumers.

Within the area of text processing or mining, technologies, such as information extraction or
search, automated summary generation, machine translation and others, are used in various
application domains. Coexisting, an analogous research field deals with information present
in images and its understanding, called Computer Vision.

Computer Vision generally describes the research field developing theories and applications
with the primary goal to automatically analyze information present in images. A variety
of fields, including, but not limited to mathematics, signal processing, geometry pattern
recognition and artificial intelligence, interact together with the aim to create better tools for
describing and interpreting images.

The interpretation of the embedded information within those images allows - depending on
the use case and task - to support or automate processes in different application areas.

In the area of medical and health care, images coming from a variety of medical equipment
(computer tomography, x-ray, ultrasonic, microscopy, . . . ) play an essential role in prevention,
diagnosis and treatment of diseases and their progress. Various computer vision systems
[90, 29, 60, 24] support human experts in decision making. Such systems are able measure
important parameters about internal organs (like bone structure, tumor size, . . . ) without
the need of surgical interventions.

Many military operations are associated with a high risk for humans. Thus, computer vision
is often used to control robots which can be used to oversee combat actions, to explore
enemy territory, to identify hazardous situations or to automatically navigate missiles to their

1



2 CHAPTER 1. INTRODUCTION

targets [97]. Similar risky actions can also be supported on space missions [67] and other
environments hostile to man.

Industrial applications contain also rich usage possibilities for computer vision supported
technologies. Well-known examples include automatic parcel sorting according to its size,
estimated from a camera image, or other component inspection tasks. Computer vision
systems are widely adopted for automated quality control, where photos taken from parts
passing a control point on a production line are used to check for specified quality criteria.

The automotive sector has recently begun to incorporate various computer vision techniques
to support drivers and increase security. Cameras can detect street signs, calling the driver’s
attention in case of possible traffic violations. To decrease the chance of traffic accidents or
crashes, cameras inspect the car surroundings for pedestrians, cars or other objects. If such a
monitored object could cause a dangerous situation, the system intervenes by triggering an
emergency brake.

Alongside with the adoption in industry applications, computer vision has recently become
very popular in consumer products. Many modern, consumer-grade digital cameras provide
different features to detect faces, focussing on them and automatically taking a picture when
the person smiles. Photo organization software like Apple’s iPhoto 1 can automatically detect
persons and localize faces in photographs. Photo recognition is used to automatically group
photos containing the same person, learned from a few user-provided samples.

Also smartphones with their variety of sensors and high computational power are well suited
for computer vision applications. Augmented reality applications play an important role on
these devices where the goal is to enrich the perception of the real world with additional
information. Based on the information used for enrichment, these systems can serve for
various purposes, from entertainment to navigational support, or even to assist during medical
surgeries.

Different security-related duties can also be simplified or enhanced by computer vision. Human
motion analysis [2] in security-sensitive areas can be used to assist security service personnel
to identify potential threats.

Many of the presented usage scenarios are fairly easy for humans. They are efficient in
identifying and recognizing objects from few samples. Infants are able to understand the
concept of, e.g., a car or a dog, even after having seen only few samples. For most people it
is also an easy task to re-identify a person after having seen just one picture of her. Even
appearance changes due to different hair styles or a recently grown mustache don’t lead to
problems in this process.

Surprisingly the same tasks (person identification from one sample) is still a hard-to-solve
problem for computer vision algorithms. This stresses the need for ongoing research in
computer vision.

1 http://www.apple.com/ilife/iphoto/

http://www.apple.com/ilife/iphoto/
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Until now different application scenarios for vision-centric algorithms have been motivated
without any further details about the involved processes. As in [5] a typical computer vision
system can be represented as a multistage process involving the following steps:

• Sensing describes the process that leads to the actual image(s), which can come from
a multitude of sources (camera systems, medical equipment) by capturing the current
environmental conditions.

• Preprocessing includes enhancement steps on the previously sensed images. This task
consists of a series of operations, like noise reduction, distortion removal, resolution
change, and other quality enhancements.

• Segmentation deals with the separation of an image into different segments or regions
or interest. The most common regions or interest are foreground and background
information.

• Description - as the name already proposes - is the task in which the image is described
by its characteristics. Details of these feature descriptions are mentioned in chapter 2.

• Recognition treats the process of identifying and localizing objects of interest within
the described images.

The combination of the last of these two tasks - namely description and recognition - is
usually referred to as object recognition. Describing the content of an image is one of the
most crucial parts: without a good description of the image, it is extremely hard to recognize
objects in this image in the later recognition stage. Nevertheless, object recognition includes
also aspects from the other tasks (sensing, preprocessing and segmentation), as these ones
influence the results of image description and recognition.

Object recognition is commonly understood as the task of finding and localizing objects
within an image. In order to effectively perform this task, prior knowledge about the object
of interest is needed [92]. This knowledge has to be modeled prior to the actual task of
recognition.

Depending on the task, an object recognition system has to fulfill certain requirements. One
crucial aspect for an object recognition system is the execution and evaluation time it takes
to detect all objects within an image. When analyzing a production line for faulty produced
parts, the time needed for inspecting is crucial in order to maximize the number of produced
and analyzed parts per day. On the other hand, recognition reliability plays also an important
role to minimize false positives (correct parts detected as faulty) and the false negatives
(faulty parts detected as working). Another quality measure for those systems is the system’s
invariance to changes. It is desirable that the system is invariant to different variations of the
object to be detected, like affine transformations, illumination changes or occlusions.
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Due to the different requirements, constraints and application scenarios for object recognition,
there exist a variety of approaches, that don’t fit into an exact categorization, but can be
analyzed and partially classified according to the following properties [92]:

One property, decided on during the description stage, is the object representation, where
mainly two different approaches exist. The first class of descriptors are based on the object’s
geometry and therefore describe it based on its surface, shape or silhouette. In contrast,
appearance-based image descriptors interpret the object depending on the object region
characteristics.

In order to precisely detect and locate a modeled object within the described image, a robust
matching strategy is needed. This matching strategy compares the current image with the
modeled objects and - by maximizing a similarity measure, computed on the correspondence
between model and scene - decides whether the scene contains the objects.

Another important aspect considers the expected object variability to be recognized and
worked with. On a product line, objects belonging to the same class are awaited to share
many characteristics, therefore having a low class-internal variance. In other applications,
objects belonging to the same class could exhibit various deformations, leading to a high class
internal variance. On the other hand, when trying to distinguish multiple object classes, the
variance between different categories is crucial.

Object recognition, i.e. image description and recognition, is also the main topic covered in
this master’s thesis, and will be motivated in the following section.

1.2 Motivation and Aim of this Work

Many technological devices are equipped with video capturing capabilities and it is easily
and cost-effectively possible to create new video material. Such devices include smartphones,
tablet pcs and laptops. Video surveillance systems are also installed in modern cars, in stores,
companies and public places in order to monitor activities and behaviour, and create a waste
amount of video material every day.

Controlling this huge amount of information entirely by humans would become infeasible.
Therefore computer vision algorithms try to reduce or eliminate the manual work and
intervention needed to operate such systems.

To operate efficiently on those video sequences, it is crucial to build a good and robust
description of its content. In recent publications it has been shown that sparse feature
descriptors lead to promising results.

Therefore, the main aim and goal of this master’s thesis was to analyze and apply Sparse
Coding, a sparse feature descriptor, on video sequences. Sparse Coding has been analyzed
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through various experiments, resulting in a set of guidelines to follow when using Sparse
Coding. They highlight the importance of spatial pooling, the process of combining many
low-level descriptors into one, and the used codebook’s size and quality. In addition to
theoretically derive and analyze sparse coding, its application for two different video-based
application scenarios has been tested and evaluated.

The objective of the first application was to introduce and analyze the possibility to automati-
cally generate class labels for individual video sequence frames, based on the temporal change
over time. This allows for fast and efficient automatic label generation, useful when training
object classifiers. In this part, a novel Sparse-Coding based approach for image labeling using
Slow Feature Analysis has been proposed, that, based on this robust description, is able to
cope with large appearance changes.

In the second task of this work, a simple yet effective methodology for detecting unusual
events in unlabeled video streams is introduced and evaluated.

In order to be able to better highlight the characteristics, i.e., the advantages and disadvantages,
of sparse coding, the two tasks have not only been performed using sparse coding, but also other
well-known feature descriptors have been used. In this way, the performance of the different
descriptors can be compared directly. The results indicate, that Sparse Coding provides a
robust mid-level representation, providing better results than other appearance-based feature
descriptors.

1.3 Thesis Outline

To analyze and validate the usage of Sparse Coding as compact, robust mid-level feature
representation, this master’s thesis is composed of several parts. First of all, popular low-level
features and their relation to Sparse Coding are introduced and shortly analyzed. The main
part of this work then defines Sparse Coding formally to highlight the required information
needed to understand the concepts behind it. The whole coding pipeline, the process to derive
a sparse mid-level representation from local low-level features, including the visual codebook
learning and spatial pooling is discussed and validated through various experiments.

Based on this theoretical knowledge, the power of Sparse Coding is demonstrated on two
different, video-related tasks. One shows a novel approach to automated video labeling based
on Slow Feature Analysis and the robust Sparse Coding descriptor, by analyzing the temporal
feature change. The second application uses Sparse Coding as robust feature descriptor to
describe natural video scenes, from which abnormalities and unusual events are detected. At
the end, the main goals and results are summarized, and future work is stimulated.

In terms of chapters, the remainder of this thesis is structured as follows:

2 Image Descriptors: This chapter motivates the need for feature descriptors in com-
puter vision and its main desirable properties. Exemplary a few important feature
descriptors that are used in later experiments are summarized and compared.
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3 Sparse Coding: In this chapter Sparse Coding is derived from the general notion
of matrix factorization, its coding-pipeline including state-of-the-art algorithms are
introduced. It also contains various experiments and results on the most important
parameters of this method like codebook size and quality or the choice of pooling
strategies.

4 Applications: Two applications demonstrate the applicability of Sparse Coding to
video sequences. In the first application an unsupervised method to automatically
detect object class changes and label the individual frames is introduced and different
experimental studies are performed. The second application’s aim is to detect abnormal
events in video streams and report them. A system based on Sparse Coding is introduced
and comparative studies to other feature descriports are evaluated.

5 Conclusion: This chapter summarizes the main findings and provides an outlook for
possible future work in this area.



2 Image Descriptors

2.1 Introduction

Feature descriptors and their change over time form the basis of this masters thesis, therefore
this chapter introduces the usage of feature descriptors for computer vision applications.

First, general properties of feature descriptors and their importance are discussed and
motivated. Thereafter follows a short survey on state of the art feature descriptors, their
strengths and weaknesses. Exemplary for other feature descriptors the Scale Invariant Feature
Transform, the Histogram of Oriented Gradients, the Histogram of Oriented Optical Flow
and the bag-of-words model for computer vision, are introduced as further experiments build
on these descriptors.

A (local) feature descriptor or feature vector is a piece of information different from the one
available in the immediate image neighborhood[94].

This definition already opens a few important questions. The first important aspect is how
the piece of information is represented. As the second term “feature vector” indicates, that
this information is usually stored as a vector of single signals or values. Other issues are how
to measure the difference to the neighborhood and how to define the location of the feature
within the image.

Depending on its usage, a feature descriptor needs to fulfill different requirements. For some
use cases these feature descriptors might encode specific semantic information: edges within
aerial images might indicate roads, or edges might be useful when detecting production faults
in an assembly line. For another use case it is not even relevant what information a feature
encodes. For many tracking and matching applications it is just of importance to identify
and precisely locate individual feature points. It is more important to locate the feature
descriptor over time than to know the information it encodes. A set of such features can
also be used as an image representation, useful for object recognition tasks. Again it is not
needed to know the exact meaning of a single feature, as an image is described based on the
statistics of those features.

Among others, feature descriptors can be analyzed and categorized based on the following
characteristics:

7
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• Invariance
It is desirable that a feature descriptor is invariant to specific changes in the input
image, meaning that the feature descriptor for the modified image should be close to
the one for the original image. These modifications include changes in scale, lightning,
rotations, affine transformations or combinations of these.

• Efficiency
Preferably the detection and computation of features from an image should be efficient
and suitable for time-critical or realtime applications.

• Distinctiveness
Two feature descriptors describing distinctive information should easily be distinguished
based on their feature values.

• Quantity
The number of extracted features from an image should be sufficiently large to represent
even subtleties in small image regions, but a high number of features normally has
a negative impact on computational complexity. Ideally the quantity of local image
features should be correlated to the amount of information present in the image.

Clearly these requirements and characteristics are problem dependent; when having a problem
without time constraints it might be advisable to trade efficiency for more invariance.

As there are quiet a number of different feature descriptors, it would not be feasible to explain
them all as part of this master’s thesis. Thus, the ones used later on in various experiments,
have been chosen to be discussed in more detail in the next sections.

2.2 The Bag-of-Words Model

As already motivated, this thesis analyzes the mid-level feature representation Sparse Coding.
It is called mid-level, because it uses a set of low-level image descriptions and combines them
in a clever way to form a single description for that image. Sparse Coding is, however not the
only form of mid-level feature representation. Without any particular specification of how a
low-level feature looks like or how it is computed, another mid-level feature representation
called the Bag of Words model is introduced, as it gives a good intuition about how one can
combine single descriptors to form a more high-level representation. The later sections then
describe basic, low-level features that can be used with a Bag of Words model, and are used
throughout this work.

The Bag of Words (BoW) model, often also called Bag of Features model, describes a popular
method for data representation originating within the field of natural language processing
[85]. In natural language processing, text documents are often represented by their keywords,
regardless of the order they appear. After some optional initial preprocessing, like stop
word removal or stemming, a dictionary is created using all keywords from all documents.
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Afterwards each document is represented by the count of the individual words within the
dictionary.

The following simple example illustrates these steps and the final feature representations.

Given the following sentences:

• Sentence 1: “John likes computer vision research. So does Mary.”

• Sentence 2: “John also likes writing papers on computer vision.”

From these sentences the following dictionary is constructed:

• {“john”,“likes”,“computer”,“vision”,“research”,“also”,“writing”,“papers”,“on”,
“so”,“does”,“mary”}

Based on this codebook each sentence is then represented by the count of the codebook
entries:

• Sentence 1:{1,1,1,1,1,0,0,0,0,1,1,1}

• Sentence 2:{1,1,1,1,0,1,1,1,1,0,0,0}

The name bag of words comes from the fact that each sentence is represented by a bag of
words, loosing the original order.

The same concept is also popular as image representation in computer vision applications.
The concept of a document is replaced by an image, and words are represented by some
features.

In [62] Lowe presented a revolutionary method to describe local image regions and how to
effectively match them. For many applications however, a single, more high-level image
representation might be desirable. By representing an image as orderless set (bag) of local
features, in form of a histogram, the bag-of-words-model provides a simple and effective
mid-level feature representation [50, 73].

The process to create a bag-of-words model for a computer vision application is therefore
slightly different, still following the same principles.

First local features are extracted from the image, on predefined locations. These locations
could be chosen randomly, but better results can be achieved using regular grids or some sort
of interest points (corners, edges,. . . ). The bag-of-words model does not specify how these
local features should be described, a popular choice is SIFT, but any other feature descriptor
is also usable. At the end of this process each image is represented by a collection of feature
vectors.
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Based on these features a codebook is constructed, where a simple methodology clusters the
feature descriptors. The codebook is then composed of the cluster centers, meaning that one
codebook entry is a representative description for many local features. When creating the
final feature descriptor, each local feature is mapped to a codebook entry (the nearest cluster
center), thus creating the final histogram representation. Normally this histogram feature is
then normalized, to eliminate the influence of the number of local features extracted, as they
might be different when using interest point detectors.

One of the drawbacks of this approach however is, that the spatial information where a
specific codebook entry appeared in the image is lost. Also the relation between codewords
in the source image can not be expressed with this simple model. To overcome this problems
several publications [82, 87] propose different extensions to incorporate such information.

2.3 Scale Invariant Feature Transform

As mentioned previously, there exists a large number of feature descriptors, of which one,
Scale Invariant Feature Transform (SIFT), is presented in the following. SIFT has been
chosen because many of the topics discussed later on in this work are built upon this popular
descriptor, and it is therefore quiet important for the understanding of this work to know
these concepts.

Scale Invariant Feature Transform, or simply SIFT, is a feature descriptor which was defined
by David Lowe in 1999 [61]. It is a very popular feature descriptor, used for various tasks
such as object recognition, video tracking, panorama stitching, or gesture recognition.

Based on [88] the process of computing a SIFT descriptor for a single location is described.

First of all, the interest points (or key points) have to be selected. This can be done either
randomly, or by using one of many existing techniques. For example, these key points can
be extracted on a fixed-sized grid. There also exist special purpose algorithms for key point
localization, which try to estimate the most interesting image parts to describe the current
scene. Such relevant locations could include corners, edges or other properties that differ
from the surroundings.

For each interest point inside the image, a 16× 16 pixel window around this point is used for
the computation of the descriptor, as shown in figure 2.1. For each pixel within this window,
the gradient magnitudes and orientations are computed. They are weighted using a circular
fall-off function (e.g., a Gaussian) in such a way, that values located far away from the interest
point have lower influence than the nearer ones.

The mentioned window is then partitioned in 16 disjoint subregions of size 4× 4. After that,
each of these subregions is processed by computing a gradient oriented histogram, where the
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degrees are binned and each of the previously computed gradient vectors is added to a bin,
respectively to its orientation. This is done by using its magnitude, weighted by the distance
fall-off function. As a result, one gets a total of 128 non-negative values representing the
“raw” Scale Invariant Feature Transform descriptor.

For contrast invariance in the description of the input image, the descriptor is then normalized
(to length 1). To be also robust to other photometric variations, the descriptors’ individual
values are cut off at 0.2, meaning that all values greater than this threshold are diminished
to 0.2, and after this clipping the descriptor is again normalized to unit length.

Figure 2.1: Illustration of a SIFT feature descriptor containing the input image, detected key
points, the key points including the 16x16 pixel window and one such window
and its subregions.

Due to its popularity, SIFT is widely used in various applications. However, its relatively
high runtime (due to the computation of the gradient) motivated many scientists in this
field to develop various extensions, like PCA-SIFT and SURF. PCA-SIFT [43] computes
all gradients within a 39 × 39 pixel window and then reduces the vector dimension using
principal component analysis. SURF [4] speeds up the SIFT computation by eliminating the
Gaussian filters and uses faster-to-compute box filters with integral images. Grabner et al
[34] explain another fast approximation of SIFT, also relying on integral images.

2.4 Histogram of Oriented Gradients

This section describes how a histogram of oriented gradients also called HOG, is generated
and why it can be used for action and object recognition in practice.

Histograms of oriented gradients were originally developed by Dalal and Triggs in 2005 to have
a feature descriptor for human poses [23]. In their work each HOG describes an individual
human pose, or more generally spoken, the current appearance or state visible in an image.
Therefore, successive poses can be described by a series of HOGs. In this way, and as they are
quiet robust to various changes, HOGs can be successfully applied to various tasks dealing
with object [13], and action recognition [81, 59].
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Dalal et al [23] state that the content of an image can usually be described by only using the
distribution, omitting the precise locations, of the gradients (or edge directions) inside the
image. According to this, an overview over the process of computing the HOG descriptor of
an input image is shown in figure 2.2.

Figure 2.2: Overview over the process of computing a histogram of oriented gradients descrip-
tor. Figure adapted from Dalal et al, originally presented in [23].

First of all, the input image window (of size 64× 128 pixels in the original implementation)
is tiled into partially overlapping larger spatial regions, called blocks, of size 16× 16 pixels,
each of which contains four 8× 8 pixel cells. This overlapping of the blocks, for which the
HOGs will be computed, leads to a dense covering of the input image. The main focus during
the computation of a histogram of oriented gradient lies, as the name already proposes, on
the computation of the gradients. For each pixel inside a cell, the gradient directions or
edge orientations are computed, forming a local histogram. It should be noted, that when
using color images, the gradients of all channels have to be computed individually, and the
gradient vector with the highest norm is then used to describe that pixel. In the original
implementation of Dalal et al, 9 orientation bins evenly cover the range from 0 to 180◦
(unsigned gradient orientations). It is however also possible to include the entire span from
0 to 360◦, which represents the signed orientation of the gradient. By accumulating the
local histograms of one block, an “energy” value can be obtained, which is used to normalize
according to gamma and color values, such that invariance of the descriptor to changes in
the illumination can be ensured. Based on the gradient orientation and position, for each
pixel a weighted value is computed, and some interpolation is performed between neighboring
pixels to have anti-aliasing. Putting these values together for all pixels inside a cell, results
in an orientation histogram. The overlaps of blocks ensure, that the different cells influence
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various neighboring blocks. In order to make the final descriptor contrast invariant, these
overlapping blocks are additionally normalized.

Such a descriptor in form of a histogram can thus be used to describe single states or objects,
or, when used in a sequence, actions going on in sequential images (or videos).

2.5 Histogram of Oriented Optical Flow

In this section, the concept of optical flow and its extraction from video sequences will
be discussed. Furthermore, it is described how different extensions can be applied to the
extracted optical flow feature, in order to make it more robust and invariant, resulting in a
so-called histogram of oriented optical flow.

Optical Flow (OF)

The most intuitive and natural feature to characterize video sequences is the optical flow,
which describes the motion in a sequence of images (or video frames) [17]. Video motion
cannot be captured and represented by low-dimensional models (such as parametric motion
models), which is why the optical flow, a directional feature with an associated magnitude
value (similar to the gradient), has to be computed [88, 18].

Generally, optical flow is understood as computing an independent estimate of motion at each
single pixel of the video frames. Theoretically, this can be done, as shown in figure 2.3, by
using the image values at a certain time t and t+ δ, and by computing the partial derivatives
with respect to space and time coordinates at each image position, i.e., at each pixel. The
motion value is then obtained by summing the minimal brightness or contrast values over
the entire image (or video frame). However, this minimization problem is under-constrained,
which is why various approaches, like described in [88], are used to estimate the true values.

Even though the optical flow seems to be an appropriate feature, it still lacks some quiet
important properties [17]: A first problem is that the number of pixels describing the object
of interest, and thus the descriptor size, changes over time. Additionally, various factors, like
the background noise, changes in the scale of the moving objects (by moving towards or away
from the camera, or by zooming in and out), and the direction of the motion (i.e., moving
from left to the right or vice-versa), influence the resulting features.

In order to overcome some of these drawbacks, one might think of using a distribution of
optical flow vectors. But still, the problem of missing the invariance of motion direction and
scale changes remains the same.

The desired (optimal) motion feature should be based on optical flow, such that the motion
at all points in time are catched, but it should also be more robust to changes in the scale



14 CHAPTER 2. IMAGE DESCRIPTORS

Figure 2.3: Overview over the extraction of motion information in form of optical flow of a
sequence of input images.

and to the direction of the movement. Thus, the expected descriptor should be quiet similar
to the histogram of oriented gradients described in the previous section 2.4. This is where
one can refer to histograms of oriented optical flow, which are described in the following.

Histogram of Oriented Optical Flow (HOOF)

The so-called histogram of oriented optical flow, or simply HOOF, is a feature descriptor which
fulfills the requirements stated previously [17]: It is able to characterize human motion, or,
when using a time series of HOOFs, to represent movements in image sequences or videos.

The methodology how to come up with such a histogram is the same as for HOGs (described
in section 2.4), with the only difference that for HOOFs the optical flow has to be extracted
from the image sequences, and not only the gradients. This process is briefly described in the
following, and also shown in figure 2.4.

The first step in the construction of a HOOF is intuitively to compute the optical flow vectors
for each frame in a video sequence.

In a second step, the computed OF vectors are taken and binned according to their primary
angle. This primary angle describes the minimum of the unsigned values of the angles from
the optical flow vectors to the horizontal axis. This step, i.e., taking the unsigned angles,
makes the descriptor invariant to the direction of the motion in the video, meaning that the
descriptor is the same for the situation where a person runs from the left to the right, and
where the person runs from the right to the left. The number of bins for the angle degrees of
the optical flow vectors is a parameter one can choose freely; but according to [17] numbers
above 30 lead to good results.
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Figure 2.4: Overview over the process of computing a histogram of oriented optical flow
descriptor, by first computing the optical flow, and then creating a histogram as
the final descriptor out of the flow vectors.

Additionally, each flow vector is weighted according to its magnitude. This avoids (or at least
reduces) the influence of the background of the scene significantly: Background noise up to
a certain level is ignored, as its flow magnitude is much lower than the one of the moving
object in the foreground.

In a last step, the obtained histogram is normalized to sum up to one, which finally makes
the descriptor invariant to scale changes of the object in motion.





3 Sparse Coding

This chapter introduces the concept of Sparse Coding by first giving a broad overview and
insight on its recent use in computer vision algorithms in chapter 3.1. The following chapter
3.2 , after a short introduction to numerical optimization, defines sparse coding as a convex
optimization problem and gives some insight on how to solve it in practice. Chapter 3.3
describes the whole process of constructing a sparse descriptor for an image, including
codebook learning and spatial pooling. The last chapter contains experiments and results,
conducted to analyze the main parameters of Sparse Coding.

3.1 Definition

Put into one sentence, sparse coding describes a theoretical framework for modeling data
vectors as linear combinations of few elements from a basis set often called dictionary.

Sparse coding is not a particular method used for learning feature descriptors but a general
methodology to generate sparse signals. In fact it has been first published in 1995 in [27]
within the area of biology.

One can interpret a brain as a special form of computing machinery where information
is processed. It receives external sensory input, like for instance from the visual system
and transforms it into an appropriate motion output. Since it is obvious that in such a
computing system information has to be processed, the brain must be able to store an internal
representation of the mentioned information. In a brain such information is represented and
transmitted as electrical firing patterns of single neurons. It must therefore be possible for
the brain to express and encode all internal and external environmental states using the firing
patterns of a fixed set of neurons. The number of neurons can possibly be large, like for
example the human brain contains about 100 billion such connected neurons [38], but its
amount is fixed. If one for simplicity assumes that each neuron can only be in a “firing” or
“not firing” state and the neurons have a low activity ratio, meaning that only a small fraction
of all neurons is firing at any given time step, this firing pattern forms a sparse code.

The concept of expressing input data as linear combination of basis elements is illustrated in
figure 3.1. The 16× 16 pixel image patch on the top is extracted from the photograph on the
left and the goal is now to express this image patch by a few other image patches. The box on
the bottom is the basis set (dictionary, codebook, vocabulary) which is used to approximate

17
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the input patch. One possible approximation is to take 0.41 times the pixel intensities of
codebook patch 9, 0.11 times codebook patch 27 and 0.16 times codebook patch 50.

If we put the contribution of each codebook element into a vector only the elements at
position 9,27 and 50 are different from 0 and this code is therefore called a sparse vector.

Figure 3.1: Linear combination of an image patch: the 16× 16 pixel image patch extracted
from the natural image in the top left corner is approximated as the linear
combination of three elements out of the 64 dimensional codebook.

Using only this three basis elements of course gives only a rough approximation of the input
patch and one could add more basis patches to get a better approximation. However the whole
idea behind sparse coding is to only take as few basis patches as possible to approximate the
input patch as good as possible. Clearly there has to exist a tradeoff between approximation
accuracy by using more input patches and using as less patches as possible and therefore loose
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some accuracy. This is also visible in the formulation as optimization problem in formula
3.57.

One question that arrises is whether it is favorable to use many basis elements to compute a
good approximation or to use only a few but dominant ones. There exists no global valid
answer but recent literature has shown that for various computer vision related tasks sparse
representations outperform non-sparse ones [68, 103, 66, 37].

Without any formal details one can easily understand the rationale behind this statement
using the following analogue inspired from [99].

One can think of an individual that has the ability to be very good at distinguishing different
tastes of fruit juices when he drinks them. He knows apple juice, orange juice, strawberry
juice, banana juice and lime juice. These five juices would form the formerly mentioned basis
set or dictionary. One can understand that for this individual it is now relatively easy if
he has to identify the ingredients of a mixed fruit juice that contains a high percentage of
one juice (lets assume 93% apple juice). Put into vector form, this unknown juice could be
represented as (0.93, 0, 0, 0.5, 0) if the vector order is (apple,orange,strawberry,banana,lime).
Even if this sparse feature vector is not a good representation, as it does not contain 100% of
the ingredients, the most dominant information is present.

Contrary it would be quite hard to name all ingredients if the juice contains 20% apple juice,
20% orange juice, 20% strawberry juice, 20% banana juice and 20% lime juice written in
vector form as (0.2, 0.2, 0.2, 0.2, 0.2). Even if this second vector is more complete, meaning
that the percentage of known ingredients is higher with respect to the first one, it lacks the
sparseness property.

In many classification problems this analogue holds as well, as it has been shown that many
classification algorithms achieve higher classification rates using sparse feature vectors.

Sparse coding is born out of the idea that sparse codes are used in cortical computations,
therefore almost all of the first publications about sparse coding come from the area of
biology.

In [74] it has been shown that sparse representations lead to receptive fields similar to the
ones in the primary visual cortex of mammalians. With an experiment where the authors
learned 192 basis functions from 16×16 pixel patches from natural scenes they could generate
spatially localized, oriented receptive fields by imposing only two global objectives on a linear
coding scheme: the information to be coded should be preserved and the coefficient activity
should be sparse.

In recent years many new theoretical insights and algorithms have been published: In [54]
and [35] the authors have focused on creating fast algorithms and approximations to solve
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the sparse coding optimization problem while the papers [64, 65] focused on providing fast
and efficient online learning algorithms for the creation of the visual codebook. In [20] the
author published a comparative study of the encoding capabilities of sparse coding and vector
quantization.

Mutch performs object recognition based on sparse coding in [68, 69]; the papers [99, 103]
focus on face recognition using sparse features; [37] uses sparse coding for audio classification;
[66] describes how to use sparse coding for image restoration (inpainting), and in [80] invariant
features are learned using sparse coding.

These papers have shown that, for many tasks it is favorable to combine local low-level features
to a mid-level representation of higher complexity. These representations are typically called
mid-level because they combine several low-level features together, but remain close to that
level, lacking a high-level description of the objects. In recent publications it has become
quite popular to use SIFT as low-level descriptor for Sparse Coding, but the method is
generally independent from the used low-level representation. In [19] HOG has been selected
as low-level feature descriptor for the task of image classification, but other features like HOW
are also possible. There the codebook would encode motion primitives, which are combined
to describe a new motion scene.

It is to note, that Sparse Coding is not the only possibility to create mid-level feature
representations, in fact one such method, namely the bag-of-words-model, has already been
introduced in chapter 2.2. Representing low-level features as a histogram distribution, in
the case of the bag-of-words-model, already creates a higher-level feature representation
with different characteristics. Even though it neglects local information of the low-level
features, recent publications have shown good results. Other methods to generate mid-level
representations include spatial pyramids [50] and deep belief networks [79, 55].

3.2 Formal Definition

As the goal of this chapter is to formally define sparse coding as a convex optimization
problem, a general introduction and overview of numerical optimization and some important
concepts useful for the understanding of the sparse coding definition is given. Two special
classes of numerical optimization, least squares and convex optimization, are described.

Thereafter the problem of matrix factorization or matrix decomposition, how it is also
called, is shortly discussed, as it builds a conceptual basis for many algorithms like sparse
coding. A special case of matrix factorization, called non-negative matrix factorization,
is then introduced, motivated and fundamental algorithms are discussed. Based on that
knowledge sparse coding is defined and algorithms to solve this convex optimization problem
are reviewed.
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3.2.1 A Short Introduction to Numerical Optimization

Formally, a (continuous) numerical or mathematical optimization problem can be written in
its standard form as

minimize f0(x)
subject to fi(x) 6 bi, i = 1 . . .m (3.1)

, where the vector x denotes the n-dimensional optimization variable and f0 : Rn → R
is called the objective function. The functions fi : Rn → R for i = 1 . . .m are called
(inequality) constraint functions and b1 · · ·m are the bounds for these constraints. The
solution for this problem is the vector with the smallest function value for the objective
function from all vectors that satisfy the constraints. Formally this means that for any y
with f1(y) 6 b1 . . . fm(y) 6 bm → f0(y) 6 f0(x∗).

Generally various such optimization problems are grouped into classes of optimization problems
based on the form of the objective function or its constraints. As an example, the optimization
problem defined in Eq.(3.1) is called linear optimization problem if all functions (objective
and constraints) fi for i = 0 . . .m are linear and therefore satisfy

fi(αx+ βy) = αfi(x) + βfi(y)
for all x, y ∈ Rn and α, β ∈ R (3.2)

. As an exemplary application of such optimization problems, portfolio optimization could be
mentioned. The aim of portfolio optimization is to spend a capital into a set of i assets. xi
contains the investment into a single asset and therefore the vector x describes an individual
portfolio. The constraints could represent restrictions on the budget (invest no more than
5000$), restrictions on individual assets (asset 3 can not be bought in combination with asset 6
or investment on asset 5 must be higher than 400$) or other requirements (no negative amount
of money can be invested). The objective function could be a measure of the overall risk of
the portfolio return. Then solving the Eq.(3.1) in this setting enables to automatically choose
the best combination of assets that minimize risk based on all possible asset combinations
that satisfy the constraints.

Least-squares problem

The so-called least squares problem describes a special class of optimization problems. All
problems in this class are constraint-free (meaning that m = 0) and the objective function is
a sum of terms of the form aTi x− bit. The optimization problem therefore can be described
as

minimize f0(x) = ||Ax− b||2 =
k∑
i=1

(aTi x− bit)2 (3.3)
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. Again x ∈ R is the optimization variable, A ∈ Rk×n and aTi is a single row of A. Note that
in this setting k > n. It is possible to reduce the solving of a least-squares problem to solving
a set of linear equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

. . .

am,1x1 + am,2x2 + · · ·+ am,nxn = bm (3.4)
(3.5)

, which can also be represented in matrix notation as

Ax = b (3.6)

. Left-multiplying by AT gives

(ATA)x = AT b (3.7)

, for which the analytical solution

x = (ATA)−1AT b (3.8)

exists. There exist good algorithms to solve such least-squares problems and it is also possible
to take into account some special structures within the coefficient matrix A. For example if
A is sparse, meaning that there are less than k ∗ n non-zero entries within A the least-squares
problem can usually be solved much faster. To identify a given problem as least-squares
optimization problem one needs just to ensure that the optimization function is a quadratic
function. There exist various extensions of the least-squares problem by modifying the cost
function with the goal to penalize the influence of single terms to the final solution. One
example is weighted least squares:

minimize f0(x) =
k∑
i=1

wi(aTi x− bit)2 (3.9)

, where w1 . . . wn are positive weights chosen to embed some knowledge about the size of
individual terms aTi − b1. In regularized least squares extra terms are added to the original
cost function to induce some prior knowledge and create a tradeoff between minimizing the
original objective function and the introduced balancing term. If a positive multiple φ of the
sum of squared variables is added, the minimization problem becomes

minimize f0(x) =
k∑
i=1

(aTi x− bit)2 + φ
n∑
i=1

x2
i (3.10)

and penalizes large values of x which could be desired given some prior knowledge about the
optimization problem.
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Convex Optimization

A convex optimization problem, which optimizes convex functions over convex sets, can be
expressed in the general form

minimize f0(x)
subject to fi(x) 6 bi, i = 1 . . .m (3.11)

, where the optimization function f0 and the optimization constraints f1, . . . , fm satisfy

fi(αx+ βy) 6 αfi(x) + βfi(y)
for all x, y ∈ Rn and α, β ∈ R, α+ β = 1, α > 0,β > 0. (3.12)

. Both, the introduced least squares problem in Eq.(3.3) and the linear optimization problem
in Eq.(3.2), are special cases of the convex optimization problem. When comparing Eq.(3.12)
with Eq.(3.2), we see that equality is replaced by inequality, which means that convexity is a
more general restriction than linearity and therefore any linear optimization can be seen as a
specialization of the convex optimization idea.

3.2.2 Matrix Factorization

Matrix factorization [31] is the right-hand product of the following approximation:

X ≈ A1A2 . . . Ak (3.13)

for an input matrix X, where A1, A2, . . . Ak are the factor matrices and k is the number of
such factor matrices. Or put in other words matrix factorization is the approximation of
a single matrix as a product of two or more matrices. For most problem settings k = 2 or
k = 3, for the reminder of this chapter matrix factorization is discussed for the case of k = 2
and the standard notation

X ≈WH (3.14)

is used. W is often called mixing matrix containing the decomposition features column-wise
while H contains the activations for each feature on input matrix X. This formulation already
shows the relation between matrix factorization and the short informal introduction to Sparse
Coding given in the previous section. Recapitulating, Sparse Coding describes a process to
represent input data as sparse linear combination of a basis set. This is exactly what the
matrix factorization states: input X is described in terms of (generally non-sparse) activations
H of a basis set W . Therefore in the remainder of this chapter the general idea of matrix
factorization is further developed to incorporate sparseness and generate only non-negative
activations, to finally arrive to the formal definition of Sparse Coding.

Generally, matrix factorization is non-unique meaning that there exists more than one
solution for a given X, and there exist well-known algorithms to solve that problem, like
LU-decomposition where X is decomposed into a lower-triangular and an upper-triangular
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matrix, QR-decomposition where one of the two factor matrices is orthogonal and the other
one right triangular which are described in more detail based on [32]. Other methods to solve
this problem include singular value decomposition, Cholesky decomposition or the Jordan
decomposition method.

Figure 3.2: Illustration of a general matrix factorization: X contains the column-wise features,
W is a basis matrix and H contains the activations of each basis for a given
feature.

LU Decomposition

The general idea of LU decomposition is to decompose X = L · U using a modification of
Gaussian elimination, like the iterative Doolittle algorithm which will be described briefly in
the following. Note that L denotes a lower, and U an upper triangular matrix.

Assume a quadratic N ×N matrix X, with non-zero entries on the diagonal. In a first step,
the initial matrix to be decomposed is taken as X(0) = X. The following procedure is then
repeated for n = 1, . . . , N − 1.

The entries of the nth column of X below the diagonal are eliminated. This means: each each
entry in this column below the diagonal, i.e. Xi,n for i = n+ 1, . . . , N . To eliminate these
entries, the idea is to use

Xi,n = −

X
(n−1)
i,n

X
(n−1)
n,n

 ·X(n−1)
n,n (3.15)
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. The current lower triangular matrix is defined as the identity matrix with one “modified”
column:

L
′(n)
i,n =

−
X

(n−1)
i,n

X
(n−1)
n,n

if i > n,

0 otherwise.
(3.16)

L(n) = I + L′(n) (3.17)

. The matrix is then updated:

X(n) = L(n) ·X(n−1) (3.18)

. This process is repeated until n = N − 1. After that, in the matrix X(N−1), all entries
below the diagonal are deleted. Thus it represents the upper triangular matrix from the
definition:

U = X(N−1) (3.19)

. Finally, one can bring everything together:

X = L(1)−1 · L(1) ·X(0)

= L(1)−1 ·X(1)

= L(1)−1 · L(2)−1 · L(2) ·X(1)

= L(1)−1 · L(2)−1 ·X(2)

= . . .

= L(1)−1 · · · · · L(N−1)−1 ·X(N−1) (3.20)

. Thus the lower triangular matrix is defined as

L = L(1)−1 · · · · · L(N−1)−1 (3.21)

and from this one gets

X = L · U (3.22)

. A more generalized definition of the LU decomposition also allows for zero-entries on the
diagonal, where the idea is to exchange the rows inside matrix, i.e. to apply some permutation,
such that the problem can be overcome, leading to

P−1 ·X = L · U (3.23)
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QR Decomposition

The principle of the QR decomposition is to factorize a N ×M matrix A according to

X = Q ·R (3.24)

, where Q is an orthogonal matrix and R an upper triangular matrix.

This method of factorization can be applied to linear least squares problems

For decomposing a matrix X in this way, there exist several approaches. One of them, the
Gram-Schmidt process is shortly covered in the following:

The matrix X is treated column-wise, knowing that X = [X1, . . . , XN ]. A projection on the
column vectors, denoted as x, is then defined as

projex = e>x

e>e
· e (3.25)

. From this one further defines

u1 = x1 e1 = u1
‖u1‖

u2 = x2 − proje1x2 e2 = u2
‖u2‖

u3 = x3 − proje1x3 − proje2x3 e3 = u3
‖u3‖

...
...

uK = xK −
K−1∑
k=1

projek
xK eK = uK

‖uK‖
(3.26)

Applications of Matrix Factorization

Based on the quality measures used for the approximation and the constraints imposed on
the factor matrices this factorization builds the basis for many important techniques.

Exemplary for other applications the use of matrix factorization as basis for recommender
systems is described based on the publications [76, 48, 89].

Generally, recommender systems are information processing engines aiming to predict the
preference or rating of an item not yet rated by a user based on item caracteristics (content-
based recommender systems) or user models (collaborative filtering recommender systems).
In a collaborative filtering system users are defined by the set U = {u1, u2, . . . , up} and items
I are expressed as I = {i1, i2, . . . , iq} The goal now is to compute a rating matrix R containing
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all rated items iq for all users up. Based on a training matrix R̂ containing ratings for a
subset of users and items the goal is to decompose it into two individual matrices:

R ≈ UI = R̂ (3.27)

, where matrix U contains the users and each item is described as vector in I. In case of a
tourist recommender system one such vector in I could contain the hotel category and the
corresponding entry in U determines how much the user likes that specific hotel category.
Single recommendations can easily be computed with the dot product of the feature vector
from user ui and item ij .

3.2.3 Non-Negative Matrix Factorization

Since most physical quantities, like amounts, lengths or weights, are non-negative and the
input matrix X for a matrix decomposition can contain such information, it seems rational to
extend the matrix factorization formulation and imposing a non-negativity constraint on the
factor matrices. This extension has first been published as curve resolution [56] and positive
matrix factorization but is now widely known as non-negative matrix factorization (NMF)
[52].

To measure the quality of the approximation, one has to define a cost function that measures
the distance between two of the (non-negative) factor matrices. A popular choice (also taken
by D. Lee in [53]) is to take the Euclidean distance between W and H:

‖W −H‖2 =
∑
i,j

(wi,j − hi,j)2 (3.28)

. Using this cost function, it is now possible to formulate the non-negative matrix factorization
as optimization problem:

min
W,H
‖X −WH‖2

subject to W,H ≥ 0 (3.29)

. Here W ≥ 0 and H ≥ 0 are the key part as they impose the non-negativity constraint and
are the main difference between ordinary matrix factorization and non-negative factorization.
Given a non-negative matrix X with m columns containing a n-dimensional data vector each
it is then approximately factorized into the n× r matrix W and r×m matrix H where r can
be chosen arbitrarily but is often smaller than m or n resulting in a compression of the data
contained in X. Eq.(3.14) can be written for each input vector (column) separately as

x1 ≈Wh1

x2 ≈Wh2

xm ≈Whm (3.30)
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. From this formulation it becomes easy to see that each input data vector xi is approximated
as a linear combination of a common basis matrix W weighted by h. Computing W can
therefore be interpreted as learning a good basis optimized for linear approximations of X.

The function ‖X −WH‖2 is convex in W holding H fixed and in H holding W fixed, but
is not convex in the general case for both variables. Therefore, most algorithms alternate
between the two convex optimization problems when solving the factorization, instead of
solving a non-convex optimization problem.

Algorithms

In the following different algorithms for solving the optimization problem defined in 3.29 are
described.

Gradient descent algorithm

A simple method to compute W and H is to use an alternating gradient descent method.
Provided that the gradient of the optimization function f(x) can be computed gradient
descent finds the nearest local minimum from a starting point p0 by iteratively moving from
pi to pi+1 into the direction of −∇f(pi)) since this is the direction where f(x) decreases
fastest. Alternating in this context means that gradient descent is alternatingly applied to H
and W . The general descent algorithm is described in algorithm 1, for gradient descent the
descent direction 4x = −∇f(x) is used.

Algorithm 1 General descent algorithm
1: given a start point x
2:
3: repeat
4: determine a descent direction 4x
5:
6: choose a step size t > 0 (line search)
7: x = x+ t4x
8: until convergence

In the following a simple gradient descent update rule is developed based on [21] and [8].
Considering the already mentioned Euclidean cost function as approximation error gives

JE = ‖X −WH‖2 =
∑
i,j

(xi,j − [WH]i,j)2 (3.31)



3.2. Formal Definition 29

. For one gradient descent step we update H according to

H = H −∇∂JE
∂H

(3.32)

or expressed as individual terms:

hki = hki −∇ki
∂JE
∂hki

(3.33)

. Expressing the cost function in matrix notation gives

JE = ‖X −WH‖2 = 1
2 tr((X −WH)T (X −WH)) (3.34)

, where the trace function tr() of a matrix is the sum of its main diagonal elements defined
as

tr(A) = a11 + a22 + · · ·+ ann =
n∑
i=1

aii (3.35)

. Differentiating JE with respect to ∂H gives

∂JE = −tr((X −WH)TW∂H) (3.36)
= −tr(W TX −W TWH)T∂H) (3.37)
= −

∑
ki

[
W TX −W TWH

]
ki
∂ski (3.38)

and therefore one gets

∂JE
∂ski

= −

[
W TX −W TWH

]
ki
∂ski

∂ski
= −(

[
W TX

]
ki
−

[
W TWH

]
ki

) (3.39)

. . Therefore the final update rule for H becomes

hki = hki +∇ki(
[
W TX

]
ki
−

[
W TWH

]
ki

) (3.40)

. Since W and H are symmetric, the same calculations will result in the gradient update
step for W :

wki = wki +∇ki(
[
XHT

]
pn
−

[
WHHT

]
pn

) (3.41)

. The simple gradient descent algorithm to solve the NMF problem then alternates between
the update steps in Eq.(3.40) and Eq.(3.41), until some convergence criterion like a fixed
maximum number of iterations is met. This procedure is denoted in algorithm 2. Since the
two derived update rules do not maintain the positivity contains on the elements within W
and H, one would use the following update rules to enforce the non-negativity:

wki = max(0, wki +∇ki(
[
XHT

]
pn
−

[
WHHT

]
pn

)) (3.42)

hki = max(0, hki +∇ki(
[
W TX

]
ki
−

[
W TWH

]
ki

)) (3.43)
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. Like for all other gradient descent applications the crucial parameter to tune is the step size
which also highly influences the final convergence of the algorithm. Furthermore enforcing the
non-negativity after each update step by setting all negative values to the smallest positive
value 0 makes convergence analysis even harder. As mentioned in [8], using a simple geometric
update rule for the step size, like scaling by a fraction at each iteration often produces poor
factorizations and is therefore very sensitive to the initialization of W and H.

Algorithm 2 Gradient descent algorithm for NMF
1: initialize W and H randomly
2: W = rand(m, k),
3: H = rand(k, n)
4: repeat

W = W −∇W
∂f

∂W

H = H −∇H
∂f

∂H

5: until convergence

Multiplicative Update Algorithm

In [53] Lee proposed the following multiplicative update rules to be non-increasing under the
Euclidean distance measure:

H = H
(W TX)

(W TWH) (3.44)

W = W
(XHT )

(WHHT ) (3.45)

. In practice, a small constant is added to the denominator to avoid division by zero:

H = H
(W TX)

(W TWH + 10−9) (3.46)

W = W
(XHT )

(WHHT + 10−9) (3.47)

. The most important difference to the already mentioned gradient descent update is that
for the multiplicative update each update consists of a multiplication with a factor while in
gradient descent a addition is used at each iteration. These multiplicative update rules can be
derived from the already mentioned gradient descent update rules in Eq.(3.40) and Eq.(3.41)
using a clever choice of ∇ki. If it is chosen such that the first and third terms in Eq.(3.40)
and Eq.(3.41) vanish, the already presented multiplicative update rules can be constructed.
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Choosing ∇ki = hki

[WTWH]ki
gives

hki = hki +∇ki(
[
W TX

]
ki
−

[
W TWH

]
ki

) (3.48)

= hki + hki
[W TWH]ki

(
[
W TX

]
ki
−

[
W TWH

]
ki

) (3.49)

= hki(1 +

[
W TX

]
ki

[W TWH]ki
− 1) (3.50)

= hki

[
W TX

]
ki

[W TWH]ki
) (3.51)

and using ∇ki = hki

[WHHT ]ki
, the same steps are used to derive the update rule for W :

wki = wki +∇ki(
[
XHT

]
pn
−

[
WHHT

]
pn

) (3.52)

= wki + hki
[WHHT ]ki

(
[
XHT

]
pn
−

[
WHHT

]
pn

) (3.53)

= wki(1 +

[
XHT

]
ki

[WHHT ]ki
− 1) (3.54)

= wki

[
XHT

]
ki

[WHHT ]ki
) (3.55)

Algorithm 3 Multiplicative update algorithm for NMF
1: initialize W and H randomly
2: W = rand(m, k),
3: H = rand(k, n)
4: repeat

H = H
(W TX)

(W TWH + 10−9)

W = W
(XHT )

(WHHT + 10−9)

5: until convergence

It has to be noted that, although this is the first well-known algorithm to solve the problem of
non-negative matrix factorization and has therefore served as a baseline for newer algorithms
this method has some disadvantages. First of all it has been shown that the multiplicative
update rule needs far more steps to converge, compared to the two other methods, steepest
descent and alternating least squares. A more serious problem however is that the proof of
convergence to a local minimum initially claimed by Lee and Seung has been shown to not
hold in [33] and other publications.
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Also this non-negative matrix factorization has been extended: by using the squared Frobenius
norm as a penalty term “smoothness” can be enforced as it penalizes large values within the
matrix.

Another interesting extension to the NMF algorithm has been proposed in [95], where a
temporal continuity objective is used for the task of sound source separation.

The objective important to arrive to the concept of sparse coding is a sparsity constraint on
the non-negative matrix factorization formulated by P. Hoyer in 2002 [40] which is discussed
in the next chapter. The extension from the general matrix factorization to a non-negative
matrix factorization has already been motivated in the introduction to this section. In
addition, from a biologically inspired point of view, since Sparse Coding (and therefore also
non-negative matrix factorization) can be related to the neuronal activity in the brain, this
extension makes sense, because the neurons firing intensity can not be negative. Furthermore,
if negative activations are allowed, two activations could cancel each other out and a more
compact, sparse representation could be achieved without the canceling activations.

The question why one should also consider a sparsity extension to the NMF formalization has
been answered in the experiments conducted in [40]. The author constructed 10 individual
features and used them to create random data vectors. They then performed non-negative
Sparse Coding and non-negative Matrix factorization on this data and analyzed if both
algorithms can effectively identify and reconstruct the basis features. The results show
that NMF cannot represent all hidden features with any given dimensionality. With a
specific number of components NMF can extract all hidden components resulting in zero
reconstruction error, and there exists no overcomplete representation to improve this result.
When using nonnegative Sparse Coding however, combinations of the original features are
learned, resulting in a sparser representation of the input patterns.

3.2.4 Sparse Coding

To incorporate sparsity into the optimization problem presented in Eq.(3.29) a sparsity penalty
function is added to the Euclidean distance cost function giving the following optimization
problem:

min
W,H
‖X −WH‖2 + λS(W )

subject to W,H ≥ 0 (3.56)

, where λ ≥ 0 is the sparsity weight and S() is the sparsity penalty function.

Mapping this optimization problem into the sparse coding context, the following notation is
used from now on: X = [x1, x2, . . . , xm] ∈ Rm×n denotes the unlabeled input data we want
to compute the sparse codes for, therefore xi ∈ Rn is one such input vector, D ∈ Rn×d is a
dictionary/codebook containing d elements. ui denotes one sparse activation vector given
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dictionary D and input vector xi which we want to compute. Then the construction of sparse
codes can be formulated exactly as in Eq.(3.56) with just a slightly different notation:

min
U,D

m∑
i=1
‖xi − uiD‖2 + λS(ui) (3.57)

. As this definition of sparse coding does not impose any non-negativity constraint on U
or D, the data will be described as linear combination of additive and subtractive elements.
This implies that there exists a small chance that from the few non-zero factors one cancels
out another. This however stands in contradiction with the intuition of representing the
input data X as a combination of the activation to approximate again the whole data. This
restriction seems also plausible from a neuroscience perspective as sparse coding has been
created to represent the firing patterns of neurons and these impulses cannot be negative.
Including the non-negativity constraints the optimization problem becomes the following:

min
U,D

m∑
i=1
‖xi − uiD‖2 + λS(ui)

subject to ∀i, j;Ui,j ≥ 0, ∀iui = ‖1‖, λ ≥ 0 (3.58)

. Again S(x) denotes a sparsity penalty function. In [75] the authors showed that choices
for the penalty function like S(x) = −e−x2 , S(x) = log(1 + x2, and S(x) = ‖x‖ all produce
similar sparse codes. The typical choice of S(x) = ‖x‖ however imposes a problem: the
objective function can always be decreased by scaling down U and scaling up D because
S(x) is strictly increasing on the values x. This behavior comes from the fact that for any
α > 1 using D = αD and U = 1

αU does not alter the first term
∑m
i=1 ‖xi − uiD‖2 but always

decreases λS(ui).

This formulation as optimization problem balances two terms:

The first term represents a given input sample xm as a weighted linear combination of the
basis atoms within the codebook and the weights given by the activations ui and minimizes
its reconstruction error

On the other hand the second term minimizes the sparsity penalty, meaning that it forces
the activation vector ui, to contain only few non-zero elements. So there exists a tradeoff
between low reconstruction error and a sparse activation vector, since the fewer basis atoms
are used to represent the input data, the higher the reconstruction error will be. This tradeoff
is controlled by λ.
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Feature-Sign Search Algorithm

Since computing large, over complete representations is a computationally challenging task,
it is important to have efficient algorithms for solving the sparse coding problem. To give an
intuition on how such algorithms work, exemplary the so called feature-sign search algorithm
proposed in [54] is discussed as it is currently one of the most efficient ways to solve the
optimization problem presented in Eq.(3.56).

The whole procedure is based on the knowledge that the whole sparse coding formulation
is not a convex optimization problem, but it can be splitted into two subproblems, which
both can be solved as convex optimization problems. Performing alternating optimization
on these two subproblems, the initial optimization problem can be solved. Using either one
of L1-penalty (‖uj‖1), epsilonL1 penalty (

√
s2
j + ε) or log-penalty (log(1 + s2

j )) as sparsity
penalty function in Eq.(3.58), the optimization problem becomes convex with respect to D,
when the activation-matrix U is fixed and vice-versa.

The authors argue that generic tools to solve the remaining convex optimization problems like
gradient-based methods or generic solvers are to slow and therefore propose their algorithm.
It is shown that, when holding the activations U fixed and solving the optimization problem
for each uj separately, knowing only the sign of the uij at the optimal value is reduced to the
L1-regularized least squares problem to a unconstrained quadratic optimization problem.

Algorithm 4 Feature-sign search algorithm
1: initialize x = ~0, θ = ~0, set = where θi ∈ {−1, 0, 1}
2: From zero coefficients of x select i = arg maxi|

∂||y−Ax||2
∂xi

|
3: Activate xi (add i to the active set) only if locally improves the objective:
4: if |∂||y−Ax||

2

∂xi
| > ρ thenθi = −1, set = {i}

⋃
set

5: if |∂||y−Ax||
2

∂xi
| < −ρ thenθi = 1, set = {i}

⋃
set

6: Feature-sign step:
7: Â is a sub matrix of A containing only the columns corresponding to the active set
8: x̂ and θ̂ are sub vectors of x and θ corresponding to the active set
9: compute the analytical solution: minimizex̂||y − Âx̂||2 + ρθ̂T x̂:

10: x̂new = (ÂT Â)−1(ÂT y − ρθ̂/2)
11: perform discrete line search on the closed line segment from x̂ to x̂new
12: Check the objective value at x̂new and all points where any coefficient changes sign
13: Update x̂ (and corresponding entries in x) to the point with the lowest objective value
14: Remove zero coefficients of x̂ from active set and update θ = sign(x)
15: Check the optimality conditions:
16: optimality condition for nonzero coefficients: |∂||y−Ax||

2

∂xi
|+ ρsign(xi) = 0,∀xi 6= 0

17: optimality condition for zero coefficients: |∂||y−Ax||
2

∂xi
| 6 ρ∀xi 6= 0
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The proposed algorithm (also described in pseudo-code in Algorithm 4) tries to “guess” the
sign (negative, zero, positive) of the individual activations, hence also the name “feature-sign
search”. Based on these guesses the remaining unconstrained problem can be solved; refining
them at each step until some convergence criterion is met. For the convergence proof of the
proposed method or further details the interested reader can refer to the original publication
[54].

In addition the same paper contains a second algorithm for solving the remaining optimization
problem, the one when holding the dictionary D fixed and solving for the activations U . This
reduces to a least squares problem with quadratic constrains, solvable using gradient descent.
However the authors propose to solve the problem analytically using the Lagrange dual and
show in different experiments that this leads to a huge performance gain.

3.3 Coding Pipeline

The generation of sparse codes can be divided into two major phases, depicted in figure 3.3.

Figure 3.3: Illustration of the sparse coding pipeline: 1) some dictionary learning algorithm is
used to create a dictionary from unlabeled input data. 2) The encoding transforms
each new input batch into a sparse linear combination of dictionary elements. 3)
Spatial pooling is performed to create the final sparse feature descriptor for an
input image
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In the first phase the fixed basis set, often also referred to as dictionary or codebook, is
learned. Given a set of input vectors (x1, x2 . . . xn) ∈ Rn an appropriate codebook learning
algorithm is used to create the dictionary D ∈ Rn×d. Details on different codebook learning
techniques are explained in section 3.4.

Once the codebook is available the new feature vector x is encoded to create its sparse
description. Optionally, but in practice performed often a spatial pooling operation on a
set of sparse feature descriptors s1, s2, . . . , sn is performed to generate one single sparse
feature descriptor s out of it. In this second phase the sparse representation is computed by
minimizing Eq.(3.57) holding the dictionary D fixed.

3.4 Codebook Learning

In the following algorithms to compute or earn the codebook are presented. The first two
methods are not special methods for Sparse Coding, but represent general principles useful
to generate codebooks. The last method, “Online dictionary learning for Sparse Coding” [64],
however represents an algorithm specifically created and tailored for fast online computation
of a codebook.

Random Patches

One very basic method to create a codebook is to take d unique random samples from the
input data X und use them to construct the d-dimensional codebook. This then means that
new data is represented as linear combinations of random data from the dictionary training
data and has been shown to result in relatively good sparse codes [20]. One such created
codebook is depicted in figure 3.4. Of course this does not involve any sophisticated learning
phase as the ’learning’ consists of drawing distinct random samples from the input data but
for the sake of completeness it is mentioned in this section.

K-Means Clustering

Another more complex choice to create a visual codebook, not necessarily restricted to sparse
coding, is the k-means clustering algorithm. K-means is one of the simplest non-hierarchical
clustering methods and it is also runtime efficient. The main idea to use it for codebook
learning is to group the dictionary training data into k clusters and use the cluster centroids as
codebook entries. The pseudo code algorithm to create the k clusters is written in algorithm
5 and can be summarized to the following steps:

• the initial cluster centers Cinitial are initialized randomly

• each data vector in X is assigned to the cluster whose center of mass is nearest to that
vector by means of an appropriate distance function

• for each cluster, its center is recalculated
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• the two steps are repeated until some stopping criterion has achieved. This could for
example be a fixed number of iterations or, as indicated in the pseudocode until the
cluster centers do not change anymore.

Commonly used distance functions are the Euclidean norm d(x, y) = ‖x− y‖ or the Maha-
lanobis distance d(x, y) =

√
(x− y)TS−1(x− y), where S denotes the covariance matrix.

Algorithm 5 K-Means clustering algorithm
Require: X set of N data vectors, Cinitial initial k cluster centers

1: repeat
2: Cprevious ← Cinitial
3: for i=1:N do
4: P(i) = arg min d(xi, ci) . generate new optimal partitions
5: end for
6: for j=1:k do
7: C(j) = average of xi where P (i) = j . generate new optimal centroids
8: end for
9: until C = Cprevious

10: return C k cluster centroids of X, P cluster label of X

One of the weaknesses of the k-means algorithm, namely that the number of needed clusters
needs to be known in advance, does not impose a problem in this setting, as the size of the
codebook has anyway to be fixed. For other applications k ≈

√
n
2 is a good heuristic. In

figure 3.4 the result of learning a k-means codebook (for k = 25) is illustrated.

Figure 3.4: Two codebooks generated from 8× 8 pixel patches extracted from the first image.
The first codebook contains random patches, the second one contains the cluster
centers computed with a k-means (for k = 25) algorithm.

One major drawback of the original k-means algorithm is that it is defined as batch variant
and thus needs all available data during the computation and therefore is quite memory
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intensive. Another often mentioned drawback is that the outcoming clusters are affected by
the initial positions of the centroids and could give poor results if the optimization loop is
not performed until the clusters stabilize. When comparing an exemplary codebook created
with the k-means algorithm visible in figure 3.4 one sees that it shares many common patches
with a codebook learned with an algorithm specifically invented to be used for sparse coding
depicted in figure 3.5.

Figure 3.5: Evolution of a codebook learned for time steps t = {1, 5, 10, 100, 1000, 10000}
based on 8 x 8 pixel patches from a natural image using the Online Dictionary
Learning Algorithm for Sparse Coding proposed in [64]

Online Dictionary Learning for Sparse Coding

This section introduces a novel online codebook learning algorithm based on [100, 64, 65].
Online learning in this context and also in general learning problems is a paradigm where
one instance is learned at a time. For codebook learning this means that a codebook is
constructed based on one data element ( a image patch for example) and updated when new
data comes in. It is not needed t have all data available at once like in the batch k-means
algorithm. Clearly this gives the advantage to compute codebooks for larger datasets that
would not fit completely into main memory to be processed by k-means.

The novelty of this algorithm is that as implied already by its name it is an online algorithm
to learn the visual codebook by incrementally updating it. Another big advantage is that it
is parameter free and it is therefore not needed to tune a learning rate. The pseudocode of
the algorithm is summarized in algorithms 6 and 7.
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Algorithm 6 Online dictionary learning for sparse coding
Require: D0 ∈ Rm×k initial dictionary, T number of iterations

1: A0 ← 0
2: B0 ← 0
3: for t← 1, T do
4: Draw random sample xt from px
5: Sparse coding: compute using LARS

αt =̂ argmin
α∈Rk

1
2‖xt −Dt−1α‖22 + λ‖α‖1

6: At ← At−1 + αtα
T
t

7: Bt ← Bt−1 + xtα
T
t

8: Compute Dt using Algorithm 2, with Dt−1 as warm restart:

Dt =̂ argmin
D∈C

1
t

t∑
i=1

1
2‖xi −Dαi‖

2
2 + λ‖αi‖1

=̂ argmin
D∈C

1
t
(1
2Tr(D

TDAt)− Tr(DTBt))

9: end for
10: return Dt (learned dictionary)

Algorithm 7 Dictionary Update
Require: D = [d1, . . . , dk] ∈ Rm×k input dictionary,

1: A = [a1, . . . , ak] ∈ Rk×k =
∑t
i=1 αiα

T
i ,

2: B = [b1, . . . , bk] ∈ Rm×k =
∑t
i=1 xiα

T
i

3: repeat
4: for j ← 1, k do
5: update the j-th column to optimize for (9):

uj ←
1
Ajj

(bj −Daj) + dj

dj ←
1

max(‖uj‖2, 1)uj

6: end for
7: until convergence
8: return D (updated dictionary)
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3.5 Spatial Pooling

After the computation of the sparse codes, one ends up with a set of sparse feature descriptors,
each one being a vector. This is also illustrated in figure 3.6. The large colored box on
the left is the set of feature vectors, each row corresponds to one sparse descriptor (one
is highlighted in red) and each column is the activation of all feature descriptors to one
codebook entry. If the sparse codes are computed based on image patches, this matrix can be
interpreted as each row being the activation of each single patch, extracted from one image
to one specific codebook entry. A column on the contrary represents all (sparse) activations
from the codebook to reconstruct the single image patch taken from the whole image. Dark
blue indicates zero activation whereas red indicates high activation; therefore one can see
that each feature vector and the total matrix are indeed sparse.

The question now is how to combine the information present in the descriptors into one single
descriptor to describe the whole image, not only a single patch.

Exactly for this purpose the spatial pooling function comes in. The idea is to combine the
activations for one codebook entry into one single value resulting in a feature descriptor
having the same size of the codebook, one entry per codebook. One idea could be to take the
average of all activations, others could include to take the maximum or minimum activation
value, or simply draw a random activation value to express the activity of the whole image
with respect to one basis element.

The aim of a spatial pooling operation is therefore, to describe the neighboring feature
descriptors by summarizing their characteristics within a certain region of interest. If this
region of interest is the whole input image, pooling allows to describe the image as a
combination of the local descriptors, resulting in a much more compact representation. A
compact representation is favorable for many tasks, but this is not the only reason for feature
pooling. When combining these local descriptors, a certain degree of robustness to noise and
clutter within single local features can be achieved. Depending on the used pooling function,
the resulting descriptor can also be more robust to image transformations then the original
local image descriptors.

Feature pooling is not a concept specific to Sparse Coding, but an ingredient for many
visual systems. Biologically inspired systems [83, 79, 41, 51] usually use maximum or average
pooling, meaning that they construct the global descriptor as maximum or average of the local
descriptors. But also popular feature descriptors like HOG or SIFT perform pooling, when
combining the local gradient orientations within a predefined neighborhood into a histogram.
All pooling applications share the common goal to combine the local features by preserving
important information and remove unneeded details. Most of the pooling functions tend
to remove spatial information, assuming that to describe an object it is sufficient to know
whether a local feature is present or absent. In the following experiments, different pooling
functions are therefore evaluated on the same task, in order to evaluate their expressiveness
of the local features.
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Figure 3.6 shows the feature descriptors for different pooling strategies. The colored feature
vectors on the right of the image are the result of different pooling strategies. The first feature
vector for instance is the result of the maximum pooling function, meaning that for every
codebook entry the maximal activation is used. The following section 3.6 contains the results
for a classification task using different pooling strategies. There also the different pooling
methods and resulting feature vectors are discussed in more detail.

Figure 3.6: All activations intensities on a codebook containing 64 elements. One sparse code
for an image patch corresponds to one column (marked in red) in the matrix. On
the right side, the resulting feature vectors after the following pooling methods
are plotted: (a) maximum pooling, (b) average pooling, (c) random pooling,
(d) square root pooling, (e) absolute pooling. Blue indicates 0 activation, red
indicates maximum activation.
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3.6 Experiments and Results

3.6.1 General Information

This section provides information about general concepts, techniques and methodologies
applied in the following experiments. It contains information about Support Vector Machines,
a powerful classification method and highlights some characteristics of the used datasets
useful for further interpretation of the simulation results.

All experiments have in common that they measure the performance when varying different
Sparse Coding parameters, like the codebook size or the pooling method, for a supervised
classification task. Generally, solving a classification task requires an algorithm that decides
for a given input (e.g. an image) represented as feature vector x to which of the available
classes Ck for k = 1, . . . , n it most likely belongs, based on previously analyzed labeled samples.
This classification algorithm generates an output y, taking one of the possible values 1, . . . , k,
for each input x, and therefore classifies each x into a class Ck. This can also be written as a
mapping function of the form

yk = yk(x;w) (3.59)

, where w denotes a parameter vector for this mapping function. The classification algorithm
used to learn this mapping function for the following experiments is called Support Vector
Machine and is shortly described in this section.

Support Vector Machines

Support vector machines (SVMs) are based on the idea that linearly non separable data x
can be separated by a so-called hyperplane after transferring the data to a higher dimension,
using a nonlinear mapping ϕ() [25]. This mapping ϕ() is applied to any training pattern xk
for k = 1, . . . , n, giving

yk = ϕ(xk) (3.60)

A linear discriminant (which represents the hyperplane, separating the high-dimensional data)
is then defined as

g(y) = aty (3.61)

where at is some weight vector, which has been mapped to the same high-dimensional space
as the patterns.

Additionally it has to be defined to which class, in a two-class classification problem ω1 or
ω2, a pattern belongs. To do so, for each pattern a variable zk is introduced, taking a value
zk ∈ {−1; +1} depending on the class.
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The separating hyperplane can then be linearly mapped to the base axis, ensuring for all the
n patterns in this way that

zk · g(yk) ≥ 1 (3.62)

Training the SVM consists in finding this hyperplane, or more precisely in finding the
(optimal) hyperplane with the highest distance b from the nearest training data, which are
also called support vectors, assuming that a higher margin between optimal hyperplane and
support vectors means a higher difference between the clusters, and therefore a more general
classifier.

The distance b′ from any (transformed) pattern y to the optimal hyperplane is given as

|g(y)|
‖a‖

= b′ (3.63)

When now looking at 3.62, the abolute value is not required any more (as the value is > 1
and thus positive in any case). From this follows, that the distance of any pattern to the
optimal hyperplane is at least b:

g(zk · yk)
‖a‖

≥ b (3.64)

Thus the real purpose of training or learning is to find a parameter vector a which should
maximize this minimal distance b.

Datasets

Caltech 101

Caltech101 is a famous image dataset provided by the California Institute of Technology since
2003. It is composed of a total of 9144, images grouped in 101 different object categories and
an additional background category. On average each object category contains between 31
and 800 objects with a resolution of about 300 x 200 pixels. First results on this dataset have
been published by Li Fei-Fei using a bayesian algorithm to learn generative visual models
in [26]. State of the art performance on this dataset is reported in [101, 12, 11, 91, 58] and
ranges between 79% and 84.3% correct classification accuracy using 30 training samples per
class.
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Caltech 256

Caltech256 [36] is the extension of the Caltech101 dataset, containing 30607 images contained
in 256 object categories, again containing also an additional background category. Similar
to Caltech101, the Caltech256 dataset has been produced using Google Images search and
manually screening and categorizing the images. Reported performance on Caltech256 is lower
than on Caltech101, with good results for 30 training samples per class, reaching between
35% and 45% classification rate [12, 11, 102, 96]. The differences between the two datasets
are visualized in table 3.1 taken from [36].

Dataset Released Categories total images Images per Category
Min Median Mean Max

Caltech101 2003 102 9144 31 59 90 800
Caltech256 2006 257 30607 80 100 109 827

Table 3.1: Comparison of Caltech datasets

It is to note that both Caltech datasets have a high within-class variability, meaning that
objects are represented as photos, drawings or even cartoon-like. Some include background
information, are cropped or rotated.

Columbia Object Image Library

The Columbia Object Image Library (COIL-100) [70] is an image dataset containing 7200
color images of 100 object categories. The images where generated placing the objects on a
turntable and taking images using a fixed color camera at intervals of 5 degrees rotation. The
images were size normalized and histogram stretched in a post-processing step. In contrast
to the Caltech datasets, COIL-100 contain all the same black background, are cropped
tightly and contain always the same physical object (although from different viewpoints).
Illumination does also not change.
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Figure 3.7: Caltech 101 Dataset
five samples from eight different object categories taken from Caltech 101 dataset:

car_side,butterfly,chair,octopus,pizza,rooster,faces,helicopter.
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ht]

Figure 3.8: Columbia Object Image Library Dataset
five samples from eight different object categories taken from COIL-100 dataset:

Bail1,Bottle2,Box1,Can2,Car10,Duck,Vase2,Telephone.
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3.6.2 Impact of Codebook Size

In the experiment described in this section we how the size of the visual codebook influences
the classification for a supervised classification task on the Coil-100 dataset. A larger codebook
implies that there are more basic elements the sparse coding algorithm can choose from to
express the input image. Therefore we want to show that the classification accuracy improves
for larger codebooks, however we hypothesize that from a certain codebook size onwards,
increasing the size results in worse performance. This is expected mainly because at some
point all dominant information can be incorporated into the codebook and adding more
elements brings noise into the codebook which then influences the created descriptor and the
final classification rate.

Experimental Setup

To conduct this experiment, eleven different k-dimensional codebooks for

k ∈ {16, 32, 64, 128, 256, 512, 768, 1024, 1536, 2048, 4098} (3.65)

have been learned using the online codebook learning algorithm for sparse coding, described in
algorithm 6. The codebooks have been created from the full Coil-100 dataset and have then be
used to compute the final sparse feature descriptor using maximum pooling. Using this features
a linear classifier based on the SVM algorithm has been trained for i ∈ {5, 10, 15, 20, 25, 30}
random samples per class. The samples not used for training have been used for evaluation.
The achieved classification rates averaged over three trails are noted in table 3.4 where the
best results are marked bold. A plot of the same data is available in figure 3.9.

Results

The results for the described experiment are contained in table 3.4: each row corresponds
to the average classification accuracy for a specific codebook size and different number of
training samples per class. The classification accuracy is weighted according to the class size
to normalize the results with respect to the individual class sizes. The bold accuracy values
represent the best result for a fixed number of training samples over all different codebook
sizes.

The same information is represented as line chart in figure 3.9. The x-axis contains the
different codebook sizes, the classification rate is represented on the y-axis and the colors
code the different training sizes.
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30 25 20 15 10 5
16 0,942619 0,920638 0,916923 0,891930 0,850645 0,774030
32 0,947857 0,934894 0,926923 0,901228 0,866935 0,78
64 0,968333 0,961064 0,952885 0,932456 0,888065 0,805821
128 0,972143 0,964255 0,957308 0,931404 0,885968 0,791493
256 0,975000 0,967477 0,960192 0,941228 0,941228 0,805821
512 0,981667 0,967021 0,962692 0,938421 0,899516 0,800746
768 0,984286 0,976383 0,959615 0,944561 0,891774 0,811343
1024 0,977857 0,969362 0,959231 0,941754 0,902097 0,811642
1536 0,966667 0,952979 0,940385 0,914386 0,868387 0,759701
2048 0,968095 0,952766 0,943462 0,914912 0,869032 0,765970
4098 0,952143 0,941915 0,931538 0,906842 0,853226 0,760896

Table 3.2: Classification performance for different codebook sizes
average classification rate over 3 trails for the following codebook sizes

size = {16, 32, 64, 128, 256, 512, 768, 1024, 1536, 2048, 4098} using t = {5, 10, 15, 20, 25, 30}
training samples per class. Highest classification rate per number of positive samples is

highlighted in bold.

Figure 3.9: Classification performance for different sized codebooks for the Coil-100 dataset
and t = {5, 10, 15, 20, 25, 30} training samples per class. One can see that after a
certain codebook size is reached (x-axis) classification performance for all numbers
of training samples begins to drop.
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Interpretation

The main outcome of this experiment show that the classification accuracy gets better for
increasing codebook size, but, after reaching a certain size, it declines again. This indicates
that, if the codebook is too small, many images from different classes could be roughly
approximated by the same basis features, resulting in similar feature descriptors for different
images. However on the other hand, if the codebook is to large, the classification accuracy
declines again which could be the result of having very similar codebook elements. This
phenomena is also visible in image 3.5 where a few basis elements are nearly the same.

It is however to note that even for very small codebooks (16,32 and 64 elements) the sparse
features already lead to a good performance. The results show that codebook sizes from 512
to 2048 basis elements provide good results, which is also supported by recent publications
like [109] or [96].

3.6.3 Impact of Codebook Quality

This experiment analyzes the impact of the codebook quality on the classification accuracy
for a supervised classification task. With codebook quality we do not refer to the codebook
size, whose impact has already been described previously in section 3.6.2 but rather to the
information that is used to construct the codebook and therefore is used as basis elements
during the coding stage. Therefore we created four different codebooks of equal size, where
three of them are learned from the same dataset on which the classification task is performed,
and one is generated from a totally different dataset.

Note that all codebooks have been learned using the same methodology, the only difference is
the input data.

Our initial intentions before conducting this experiments were, that first of all that codebooks
learned from few images perform worse than the ones trained on many images, simply because
few images could not suffice to learn all important basis elements contained in the whole
dataset. However we also argue that, if a codebook is created from a different dataset it
could approach the quality and classification accuracy of a codebook trained on the original
dataset given that the data covers a broad range of possible input.

Experimental Setup

As already mentioned, for this experiments we trained four different codebooks, each containing
1024 bases learned using Mairal’s Online Dictionary Learning Algorithm described before
in section 3.4. As basic feature descriptors, SIFT features extracted densely every 16 pixels
have been used. As datasets, the Coil-100 and Caltech101 datasets have been used where the
classification task has been performed on the Coil-100 dataset. Caltech101 has been used
because first of all it does not contain any classes looking similar to the ones from Coil-100
and therefore codebooks trained on both datasets could contain different information. On the
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other hand Caltech101 is also known to contain very diverse representations within the same
class which range from photographs to hand drawings. Therefore Caltech101 is expected to
contain a broad range of visual features.

Specifically the following codebooks have been created:

• coil-100 : dataset created based on all images from the Coil-100 dataset

• 1
2 coil-100 : dataset created based on the first 50% images from the Coil-100 dataset

• 1
4 coil-100 : dataset created based on the first 25% images from the Coil-100 dataset

• Caltech101 : dataset created based on all images from the Caltech101 dataset

Note that both codebooks, 1
2 coil-100 and 1

4 coil-100, do not contain information from all
classes, because of the way they are created.

Results

Table 3.3 contains the average classification accuracies over three trials for the four mentioned
datasets. Figure 3.10 contains the same information plotted in a chart. The x-axis contains
the number of training samples per class used, the y-axis represents the classification accuracy,
and the different codebooks are color-coded.

dataset 5 10 15 20 25 30
coil-100 0.811642 0.891774 0.944561 0.959615 0.976383 0.984286

1
2 coil-100 0.673831 0.765161 0.809707 0.838397 0.862269 0.88
1
4 coil-100 0.580298 0.687258 0.739064 0.776153 0.797305 0.819286
Caltech101 0.84602 0.921612 0.961462 0.975256 0.982553 0.988095

Table 3.3: Classification performance for different codebooks
Average classification rate over 3 trails for the following 1024-dimensional codebooks: (1)

codebook learned from the full coil-100 dataset, (2) codebook based on first half images from
coil-100, (3) codebook based on first 25% of coil-100 and (4) a codebook generated from the
whole Caltech101 dataset using t = {5, 10, 15, 20, 25, 30} training samples per class. Highest

classification rate is highlighted in bold.
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Figure 3.10: Impact of the codebook quality on classification performance for the Coil-100
dataset: all indicates that all samples from Coil-100 are used for codebook
learning, images/2 and images/4 indicate that 1

2(1
4) of the dataset images have

been randomly chosen to generate the codebook, Caltech101 is a codebook
generated from a different dataset (the Caltech101 dataset)

Interpretation

From both representations of the experimental data it is clearly visible that the feature
descriptors based on the Caltech101 codebook provide best classification results. It shows
also that the difference to the second-best performing codebook (based on the full Coil-100
dataset) diminishes for increasing numbers of used training samples. The codebooks trained
on a subset of the Coil-100 dataset provide the worst performance, where the codebook
trained on the fewest training data performs worst.

The first observable behavior that this data shows that the final classification is better for
codebooks learned from more data. This seems to be intuitive since when learning the
codebook on many data samples the important basis can be better represented than by
only sampling a subset of the available features. The more surprising fact is however that a
codebook learned from a totally different dataset (compare figures 3.7 and 3.8) can achieve
and even outperform the codebook learned on the full testdataset. The Caltech101 codebook,
based on the diverse visual informations even not present in the Coil100, could provide a
good basis to express the Coil100 features, even though it might contain basis components
that are even not present in the Coil100 dataset. This whole finding implies that for certain
application scenarios it is not even needed to create and learn a specific codebook. It is
enough to have available one trained codebook that contains a broad range of the feature
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domain, possibly also created with a synthetic dataset. This codebook could then be reused in
many applications without the need to use algorithms like Mairals Online Codebook Learning
to create a new codebook every time.

It is however to note that in the previous comment we combined two different viewpoints.
The one that is supported by our data shows that, as already mentioned, given enough data
to learn the codebook, it can outperform even domain-specific ones. The Online Codebook
Learning algorithm on the other hand aims to extract the relevant basis in an iterative
fashion. Such a codebook therefore just contains the relevant information needed to express
the given data, it could therefore be smaller than a ’general’ codebook. It can also contain
more fine-grained information, useful to express the specific data, but that would be irrelevant
when creating a general codebook.

Therefore the codebook learning algorithms can therefore be used to either create very data-
specific or more general codebooks, depending on the possible usage scenarios. These findings
are also supported by a recent publication of Coates et al [20], studying the importance of
the encoding for Sparse Coding and Vector Quantization.

3.6.4 Pooling Strategies

If we consider U as the solution of the sparse coding equation 3.58 on the set of local descriptors
X = x1, x2, . . . , xM , using a fixed codebook D we can define different pooling functions to
compute the final feature vector. Since U contains the responses of each local feature descriptor
to the items in the codebook D, different pooling functions construct different feature vectors.
In this section we define several different pooling functions and analyze their impact on the
final classification rate similar to experiments done in [102, 96, 14].

The general pooling function can be defined like in [102] as z = F (U) where F is defined on
each column of U , since each column contains the responses of each local image feature to
one particular dictionary entry Dk. For our experiments we defined the following pooling
functions:

maximum pooling:
zj = max{u1j , u2j , . . . , uMj}

min pooling:
zj = min{u1j , u2j , . . . , uMj}

average pooling:

zj = 1
M

M∑
i=1

uij
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random pooling:
zj = uij where i = rand (1, . . . ,M)

absolute maximum pooling:

zj = max{|u1j |, |u2j |, . . . , |uMj |}

mean squared square root pooling:

zj =

√√√√ 1
M

M∑
i=1

u2
ij

mean absolute pooling:

zj = 1
M

M∑
i=1
|uij |

where |x| is the absolute value of x, zj denotes the j-th entry in the final feature vector and
uij is the element of U in the i-th row and j-th column.

Experimental Setup

The following steps describe the basic experimental procedure and setup to evaluate the
different feature pooling strategies. For our experimental evaluation of the different pooling
strategies we followed the Locality-constrained Linear Coding method proposed in [96] using
Caltech 101 [26] as dataset.

• Feature extraction: As basic feature descriptor we used the Scale Invariant Feature
Transform (SIFT), densely extracted from a 6 pixel grid, using a patch size of 16 pixels.
Using this method for every image within the dataset we extracted between 850 and
1400 SIFT features depending on the input image dimensions.

• Codebook creation: The experiment relies on a pretrained codebook (denoted by D
in 3.58 ) created using the K-Means clustering to extract the 1024 basis features from
the whole dataset.

• Pooling: After the projection of the image features onto the codebook we used the
different pooling strategies to extract a descriptor for the image features.

• Classification: For the classification task we used a linear multiclass Support Vector
Machine trained on {5, 10, 15, 20, 25, 30} images and evaluated on the remaining ones.
The reported classification rate is a weighted average over the individual classes to take
into account that some classes contain more items than others.
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Figure 3.11: Comparison of the classification accuracy for different spatial pooling strategies

Results

The results of the described experiment are presented in table 3.4. The best classification
performance for different numbers of training images per class are highlighted in bold an
indicate clearly that maximum pooling is the best-performing feature pooling strategy. The
same information is also presented in plot 3.11, where the relation between the different
pooling strategies is easier visible. All mentioned results were averaged over three trials in
order to minimize the influence of the randomly chosen training samples per class.

training images (1) (2) (3) (4) (5) (6) (7)
per class max min avg rand max abs mean root mean abs

5 0,488 0,324 0,275 0,023 0,472 0,422 0,310
10 0,586 0,413 0,379 0,028 0,582 0,525 0,380
15 0,634 0,473 0,438 0,033 0,629 0,578 0,434
20 0,671 0,505 0,477 0,036 0,663 0,630 0,461
25 0,695 0,541 0,503 0,041 0,684 0,646 0,514
30 0,714 0,549 0,537 0,041 0,697 0,677 0,545

Table 3.4: Classification performance on different feature pooling strategies: average classifica-
tion rate over 3 trails for the following pooling strategies: (1) maximum pooling, (2)
minimum pooling, (3) average pooling, (4) random pooling, (5) absolute maximum
pooling, (6) mean squared square root pooling, (7) mean absolute pooling. Best
result is highlighted in bold
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Interpretation

The data shows that there is almost no difference between maximum pooling and absolute
maximum pooling. The same holds for average and mean absolute pooling. This can
be explained by the fact that non-negative sparse coding is used, leading to no negative
activations and therefore to no difference between absolute and non-absolute measures.Recent
publications [83, 30] indicate that maximum pooling is biologically plausible, meaning that
with a high probability the from single neuron activations in mammal brains also the ones
with highest activations are used. This implies that the environment we observe is the
maximal response of external inputs arriving in our visual cortex. Boureau et al performed
also an analysis of feature pooling [15] in recognition systems and confirm the results of this
experiment including the importance of maximum pooling.





4 Applications

This chapter contains two exemplary use cases for the sparse feature descriptors discussed in
chapter 3.

In the first application, the sparse feature descriptors are used to predict class changes in
real-world unlabeled video segments by exploiting slowly changing uncorrelated features
available in the feature descriptor. Experiments on two different datasets highlight the
performance of the proposed method.

The second application in chapter 4.2 deals with the task of unusual event detection by
analyzing and evaluating the performance of different motion- and appearance-based feature
descriptors.

These tasks have been chosen to evaluate the performance of the Sparse Coding feature
representation, as both tasks need a robust and compact description of the video sequences.
For the task of scene change detection, it is desired to have a compact description while
preserving all information needed to detect the scene changes as they appear. In contrast, for
the task of unusual event detection the descriptor has to bee robust to appearance changes
occurring within the normal events. People walking down a street change their appearance
because of their body movement, different perspective and possible occlusions. The feature
descriptor, however should be capable of finding a common representation of those variances
but at the same time effectively discriminate them from abnormal events.

4.1 Class Change Detection in Unlabeled Video Sequences

This section describes an application scenario for the feature descriptor based on sparse
coding where it is used to analyze unlabeled video sequences. After stating the problem
we want to solve in section 4.1.1, some experiments in section 4.1.4 are explained and the
corresponding results (section 4.1.5) we can conclude that sparse coding is a powerful tool for
sequence-based data analysis.

The presented system [86] analyzes the feature descriptor change over time using slow feature
analysis (SFA) and interprets the most dominant signal variation as visual class changes. It
therefore provides a novel, unsupervised approach to automated labeling of image sequences.

57
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Figure 4.1: The temporal coherence principle: with high probability two consecutive frames
contain the same object(s), even though characteristics like lighting, viewpoint or
scale might change

4.1.1 Problem Definition

The problem to be tackled by the application is the following: Given a video sequence, find
the most dominant changes present in the video. This changes can then be interpreted in a
classification sense as class changes, as they are expected to change the underlying feature
descriptor at most. Note that the input video data is unlabeled, meaning that there is
absolutely no information present about any video frame except the pixel values itself. For
the video sequence depicted in figure 4.1, the detected classes would therefore not be elephant
and gazelle, but rather class1 and class2, as the algorithm has no notion of class names and
should only detect class changes.

These labels are useful, and in fact needed, when training classifiers for object recognition
tasks. Such classifiers are normally trained on positive and negative samples for all possible
object categories and should include a wide range appearance variations. This leads to a huge
amount of needed training data, and hand labeling quickly becomes unfeasible. Negative
samples are usually easier to generate: starting with a few training images a classifier is trained
and evaluated on images not containing the object. The wrongly classified images are then
used as negative samples to retrain the classifier. Automatically generating positive labels
for different object categories is harder. Some applications rely on a correctly initialized and
learned tracker, following the object class of interest and therefore generating positive labels.
All of the mentioned methods, however, rely on some sort of initial setup or information. In
the following we propose an unsupervised method for class label generation, relying solely on
the video sequence and its incorporated information.

To solve such a task there are various possible solutions, but all include tracking the behavior
of a feature descriptor over time. Under the assumption that the different classes present in
the video are differently colored, one could simply track the pixel intensities as a histogram
over time. If the color change from one frame to another (or within a pre-defined window
size) surpasses a given threshold a class change is detected.

However, this choice of feature descriptor has some limitations. First of all it is not invariant
to varying light conditions as they might occur within a video sequence. If at some time
the light increases, the histogram will reflect the chances and might detect a new class while
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Figure 4.2: Illustration of a video sequence with the corresponding first slow feature indicating
a rapid change

the same object is present in the video only under other light conditions. The next problem
is that the assumption that different classes would be composed of different colors might
be totally wrong. Thinking of a video sequence containing an elephant in the wilderness,
followed by a hippopotamus on land, both color histograms would look nearly the same.
They would mainly contain gray values and could lack red and blue. Other possible problems
include partial occlusions or heavy spatial transformations due to zooming and shaking with
a camcorder, resulting in a drastically changed feature descriptor.

On the other hand the described sparse feature descriptor already has the property that it
changes drastically from one to another video frame even if they share most visual information.
This can be seen in the illustration 4.3 where five feature descriptors for consecutive video
frames are plotted.

The vertical bars indicate a positive activation, all other entries in the feature descriptor are
zero. The color indicates the activation intensity where red is the maximum intensity and
blue the minimal one. One might suspect that for nearly equal input the activations for the
linear combination on the same codebook are nearly the same or show at least some common
basis activations. However as seen in the figure this is not the case. Note that the depicted
features are created based on SIFT features on a rather large codebook and that the factors
like codebook size, spatial pooling function and basis features impact these results.

The underlying assumption for such a task to work is that the frequently changing sparse
codes, although looking diverse, carry some common information. One method that is capable
to identify individual slowly changing information from a single input source is the Slow
Feature Analysis (SFA) which is described in detail in the following section 4.1.2.

The entire process of unsupervised labeling the classes in a video sequence is summarized
also in the overview plot of figure 4.4. It shows that first of all the features of the video
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Figure 4.3: Five sparse feature descriptors calculated from consecutive video frames, where
the color is mapped to the activation intensity, all other activations are zero.
It shows that although the consecutive video frames contain nearly the same
information the sparse feature descriptors are quiet different.

frames have to be extracted, as mentioned previously in section 2, and these features are then
used as input for the slow features analysis algorithm (described in section 4.1.2). After the
analysis, the decision if the video sequence contains class changes is made based on the slowly
varying signals. If the signals change by more than a certain pre-specified threshold, than the
algorithm decides that this indicates a class change, which is then labeled. In this way, this
processing queue should be able to detect the changes between different objects or scenes
that are shown in the video: In the figure the change between an elephant (in the first part
of the video sequence) and a gazelle (the last part of the shown sequence) is detected.

Available scene change or cut detection algorithms for video sequences mostly apply statistical
principles to evaluate feature descriptors [57, 84]. Another reproach is followed in [42] where
segmentation and tracking methods are combined to detect scene cuts. Additionaly there
exist also methods using motion features [71] and [105] raw pixel values to accomplish the
mentioned task.
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Figure 4.4: Proposed pipeline for frame labeling based on Slow Feature Analysis: after the
extraction of a basic feature descriptor for each individual frame, batch-based
SFA is computed. Using a threshold function label changes are detected and the
frames are labeled accordingly.
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4.1.2 Slow Feature Analysis

Slow Feature Analysis (SFA) describes an unsupervised method to learn slowly varying or
invariant signals from a single input signal. Its power is based on the fact that it can extract
a high number of decorrelated features from the input signal, ordered by their slowness, and
that it is guaranteed to find the optimal solution within a set of linear expansions. Formally
the problem can be formulated as in [98]:

Given an input signal x(t) = [x1(t), x2(t), . . . , xI(t)] with t ∈ [t0, t1], the goal is to find
an input-output mapping function g(x) = [g1(x), . . . , gJ(x)] generating the output signal
y(t) = [y1(t), . . . , yJ(t)] with yj(t) = gj(x(t)) such that for each j ∈ 1, . . . , J

∆j := ∆(yj) := 〈y2
j 〉 is minimal (4.1)

under the following constraints:

〈yj〉 =0 (zero mean) (4.2)
〈y2
j 〉 =1 (unit variance) (4.3)

∀j′ < j : 〈yj′yj〉 =0 (decorrelation) (4.4)

, where 〈 〉 expresses temporal averaging. The variation of the temporal output signal is
minimized by Eq.(4.2), constraints in Eq.(4.2) and Eq.(4.3) avoid the trivial constant solutions
y(t) = const and constraint Eq.(4.4) ensures that the output signals do not reproduce each
other but contain different information.

This is generally a hard problem of variational calculus, meaning that instead of functions,
functionals are extremized, but if gj are constrained to a fixed set of linear combinations of
nonlinear functions, the problem becomes feasible.

Learning the slow features of an input signal consists of the following steps:

• Input: The input to the algorithm is the I-dimensional vector x̃(t).

• Normalization: x̃ is normalized to obtain the normalized input signal
x(t) = [x1(t), . . . , xI(t)] to satisfy Eq.(4.2) and Eq.(4.3).

• Nonlinear expansion An arbitrary nonlinear expansion function h̃(x) is used to
construct the signal z̃(t). Common choices for h̃(x) are all monomials of degree one
(linear SFA) and degree two (quadratic SFA).

• Whitening: z̃(t) is again normalized to satisfy the zero mean and unit variance
properties. This step is often called whitening or sphering phase.

• Principal Component Analysis: PCA is performed on the temporal normalized
signal z̃(t), the resulting eigenvectors with the smallest eigenvalues are used as weights
to compute the slowly varying functions.

• Application: The slowest n SFA signals can then be applied to new test data.
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A simple toy example from [98] is used to illustrate the involved steps and the outcome in more
detail. Suppose there exists an input signal x(t) in the two-dimensional input space which is
defined as the combination of two individual signals x(t) = x1(t) + x2(t) for each time step
t. The two individual signals are defined as x1(t) = sin(t) + cos(11t)2 and x2(t) = cos(11t)
which are two rapidly oscillating functions. However they share a common ’slow’ signal
yslow(t) = sin(t) which can be shown with the following simple equation:

y(t) = x1(t)− x2(t)2

= (sin(t) + cos(11t)2)− (cos(11t))2

= sin(t) (4.5)

. We are now interested in this slow varying function g(x) which we have seen is g(x) = x1−x2
2.

The first step in the SFA algorithm performs the transformation of the non-linear problem
into a linear problem by expansion into a predefined subspace. As we know that our desired
slow function is a polynomial of degree two, we use this subspace for our example. Therefore
our new signals in the expanded space are z1 = x1, z2 = x2, z3 = x1x2, z4 = x2

1 and z5 = x2
2.

Since every polynomial of degree two can now be formulated as a linear combination of these
five signals, our problem becomes linear. The next step involves the normalization of the
expanded signals to satisfy the constraints in Eq.(4.2), Eq.(4.3) and Eq.(4.4). After the
constraints are satisfied in the normalized space, the time derivative ż(t) is calculated which
indicates the temporal variation. The signal with the lowest variance in the time derivative
ż(t) represents now the slowest varying signal g(x) in the normalized feature space. The
slowest signal in the input space is then computed as y(t) = g(x(t)).

To show that the concept of slowly varying functions can be exploited in numerous domains,
some recent publications are shortly summerized.

Recently it has been shown in [44] that the unsupervised Slow Feature Analysis algorithm
can approximate the classification capability of the supervised Fisher’s Linear Discriminant
Analysis under the assumption that temporal coherence is present in the input data, meaning
that temporally near samples are likely to be from the same class.

In [7] the Slow Feature Analysis algorithm was used to perform supervised pattern recognition
on the MNIST dataset. The author showed that, provided that the classes are non-overlaping
and the function space is large enough, the slowly varying functions learned by SFA respond
similarly for input vectors belonging to the same class.

Another application of SFA has recently been published in [49] where the slow signals together
with color information and textural features are used as appearance descriptors to train a
patch-based classifier for a street segmentation task using a single camera.

In [45] the first online variant of the Slow Feature Analysis algorithm has been published. The
authors derive the online algorithm using a combination of incremental Principal Component
Analysis and Minor Component Analysis and evaluate its performance in various experiments.
In [72] SFA is performed on image patches extracted from an autonomous mobile robot
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camera to retrieve visual features. Using a hierarchical network of SFA layers, in [28] object
recognition is performed. The results indicate that SFA can learn robust representations for
slowly occuring transformations.

On a more theoretical level in [93] the authors give a maximum likelihood interpretation of
the SFA algorithm and show that their probabilistic model can successfully deal with noise.
Konen and Koch analyze in [47] the slowness concept in SFA and come to the conclusion that
this slowness depends on the driving force of the underlying time series components. In [9]
Blaschke et al could show that linear Slow Feature Analysis and second order Independent
Component Analysis are formally equivalent, implying that statistical independence and
slowness have the same expressability in this case.

4.1.3 Implementation

The involved components and steps are described based on the illustrative pipeline in figure
4.4 which can be divided into the following main steps: basic feature extraction, slow feature
analysis and class segmentation or decision.

Basic Feature Extraction

As a first step from the input video/images a basic feature descriptor is computed. Given a
set of input images {i1, i2, . . . , in}, for each one a feature vector f is computed. For evaluation
and comparison purposes the following feature descriptors have been extracted:

• SC: the sparse feature descriptors discussed in chapter 3. The descriptor is computed by
using SIFT features extracted densely on a 6×6 pixel grid, a 1024-dimensional codebook
calculated based on the Caltech101 dataset and the maximum pooling operation.

• BOF: a normalized bag-of features descriptor based on SIFT features extracted on key
points.

• PHOG: Pyramid Histogram of Oriented Gradients descriptor, a HOG descriptor
computed from a scale pyramid, Used 80 histogram bins and an angle of 360 degrees.

The most interesting comparison, without any prior knowledge, might be the bag-of-features
descriptor as it is also (usually) a sparse descriptor although its sparsity is not enforced by
any constraint or even guaranteed. If an image contains all features present in the codebook,
which could happen if the codebook size is too small, then the descriptor is not sparse anymore
but has low activations on every dimension.
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Slow Feature Analysis

Based on the set of basic feature descriptors {fi, . . . , fn} the k slowly varying functions are
extracted using the MATLAB toolkit sfa-tk[6] in an extended version that improved the
numerical stability [46]. The original implementation runs into numerical instabilities if the
covariance matrix in the expanded signal space does not have full rank. To overcome this
problem, the modified version uses singular value decomposition and adds small noise to force
full rank. Even though an incremental version of the SFA algorithm has been proposed in
[45], the current implementation performs batch-based slow feature analysis. For each such
patch of feature descriptors a fixed number of slowly varying functions in the function space
of all polynomials of degree 2 are calculated performing the steps mentioned in section 4.1.2.
Since the amount of data to be processed is quite small because the SFA is not performed on
the raw pixel data but on the compressed information available in the basis feature descriptor
we would not benefit much from the incremental approach in our setting.

Class Segmentation

Based on the computed slow signals it is relatively easy to detect the biggest changes in the
signal. As the information needed to discriminate N classes is contained in the first N − 1
slow functions (as shown in [28]), this problem reduces to finding the biggest changes in
the desired amount of functions. After first experiments with a threshold-based approach,
based on the normalized signal value, its window-based mean and standard deviation values,
the approach that has found to work best has been to first slightly smooth the slow signals
and then recursively calculate the maximal difference between adjacent signal values. Signal
smoothing can be easily performed using the MATLAB smooth() functions contained in
the Curve Fitting Toolbox. Calculating the maximal recursive difference in MATLAB can
be performed using the function call [value index]=max(diff(diff(diff(signal)))); or
[value index]=max(diff(signal,3)); in short notation where signal contains a single
slow feature and index will contain the index with the maximal change in one signal. Since it
could happen that within such a sliding window there exist multiple or even no class changes
we assume as a precondition that for every window the exact number of class changes is
known in advance.

4.1.4 Experiments

To evaluate if the feature descriptor based on sparse coding contains enough information
to discriminate the classes after the slow feature analysis, we performed experiments based
on two datasets. The first dataset is a 3:30 minutes long amateur video called Baby Wild
Animals! retrieved from the video portal Youtube1 and will later on be referenced as animal
dataset. As a first step a ground truth dataset for the video has been created by manually
marking the changes from one animal to another which are summarized in table 4.1. Note
that these frame numbers are not necessarily 100% correct as it is sometimes really hard

1 http://www.youtube.com/watch?v=nDDDqF1rpjM

http://www.youtube.com/watch?v=nDDDqF1rpjM
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to decide at which exact moment one animal disappears and a new comes in, especially in
the case of second-long cross-fading or zooming. Note that the whole application relies only
on unlabeled data and unsupervised methods therefore the labels (animal names) are only
needed for evaluation purposes not for the SFA algorithm itself.

frame animal
1-20 Intro

21-375 Elephant
376-615 Gazelle
616-775 Monkey
776-1200 Monkey 2
1201-1530 Rhinoceros
1531-1840 Zebra
1841-2230 Lioness
2231-2450 Lioness 2
2451-2830 Gazelle 2
2831-3220 Hyenas
3221-3780 Zebra 2
3781-4080 Rhinoceros 2
4081-4310 Rhinoceros 3
4311-4700 Outro

Table 4.1: The fifteen manually identified classes and their appearance in the video indicated
by the frame numbers.

The second dataset contains short video sequences from people crossing a road and will be
further on refered to as extended tracks dataset. It consists of a total of 551 frames belonging
to 13 people (classes) and has been used in [3]. The class with the most samples contains 80
frames whereas the smallest class only contains 7 video frames. The exact frames per class
are listed in table 4.2

The aim of the first conducted experiment was to analyze how well the proposed architecture
works in predicting the class change based on the sparse descriptor and the change in the
slow functions. Therefore for both datasets the steps described above and illustrated in the
pipeline 4.4 were performed. At the end of the pipeline the algorithm predicts the exact
frame where the class change happened and is then compared to the labeled ground truth.
These results are presented and discussed in section 4.1.5.

The next experiment had a different goal. Having the predicted class changes from the
previous experiment and knowing that some of them might be labeled wrong, we tried to
analyze the consequences of the mislabeling. The main idea is the following: having an
unlabeled video sequence it could be possible to predict the labels using SFA and based on
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frame class
1-30 1
31-70 2
71-13 3

140-161 4
162-210 5
211-233 6
234 -279 7
280 - 326 8
327-370 9
371-417 10
418-496 11
497-529 12
530-551 13

Table 4.2: The frames and corresponding classes for the extended tracks datasett

that labels perform supervised classification. In short this means that our architecture could
perform classical supervised classification by creating labels using an unsupervised learning
method based on extracting slowly varying signals. Based on the estimated class labels we
trained a standard linear SVM and evaluated it on the ground truth labels. For comparison
we also trained a model based on the correct labels. The results in section 4.1.5 indicate
that even though some labels are wrong and therefore the SVM learns on incorrect data its
classification performance does not drop by a significant amount.

In addition to evaluating the classification performance using the estimated class labels, we
also evaluate the classification performance on newly, unseen objects. Our proposed method
could be feed with hours of different video material, and if the video material covers most of
the possible appearance variations within an object class, even objects not coming from the
input video sequences should be classified correctly. Snapshots of the training video sequences
for classes elephant and zebra are represented in figure 4.5. Samples of correctly and wrongly
classified samples, retrieved using Google Image search, are highlighted in green and red. The
classification accuracy on this unseen objects is highly dependent on the information available
within the video sequence, therefore no accuracy measure is reported for this experiment. The
image, however, clearly shows that poses contain in the training sequences could be correctly
classified (e.g, zebras from side view), while most misclassified samples contain poses not
present in the training data (e.g., elephant from the back or lying zebras).
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Figure 4.5: Samples of correct and wrong classified animals for categories elephant and
zebra. The top two filmstrips illustrate the video sequences used to learn the
classifier, the green and red filmstrips contain correctly and wrong classified
animals, respectively.
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4.1.5 Results

This chapter gives the results of the conducted experiments, which analyze whether slowness
can be used to effectively discriminate visual object categories.

The first result is given in table 4.3, which contains a comparison of the detected versus the
actual class borders for the animal dataset. The numbers indicate the frames. within the
video.

class detected ground truth missdetected frames
Intro 1-23 1-20 3

Elephant 24-382 21-375 10
Gazelle 383-616 376-615 8
Monkey 617-928 616-775 154
Monkey 2 929-1072 776-1200 281
Rhinoceros 1073-1530 1201-1530 128

Zebra 1531-1844 1531-1840 4
Lioness 1845-2236 1841-2230 10
Lioness 2 2237-2458 2231-2450 14
Gazelle 2 2459-2893 2451-2830 71
Hyenas 2894-3328 2831-3220 71
Zebra 2 3329-3642 3221-3780 146

Rhinoceros 2 3643-3993 3781-4080 225
Rhinoceros 3 3994-4317 4081-4310 94

Outro 4318-4700 4311-4700 9

Table 4.3: Class borders detected by the SFA algorithm and the manual annotated ground
truth for the animal dataset

The next table 4.4 contains the results for the same experiment based on the extended tracks
dataset.

For both datasets the classification capabilities based on the probably wrong detected class
borders has been evaluated and the results are visible in tables 4.5 and 4.6. For all test we
used a changing number of samples for training the SVM and testing the learned model by
taking every x-th training sample and evaluating on the rest. The exact numbers of training
and test samples are visible in the first two columns. The result of training the SVM on the
class labels extracted from the SFA signals and tested on the ground truth labels is contained
in columns 3 and 4 whereas the remaining columns contain the results based on training and
testing on the ground truth data. The accuracy is expressed as mean over the individual class
accuracies, weighted by their class-size to prevent that misclassification in small classes have
higher influence. The indicated standard deviation is the standard deviation of all individual
accuracies. Therefore a low standard deviation indicates that all individual classes can be
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class detected ground truth missdetected frames
1 1-30 1-30 0
2 31-70 31-71 1
3 71-139 72-139 1
4 140-161 140-160 1
5 162-210 161-209 2
6 211-233 210-216 8
7 234 -279 217-272 24
8 280 - 326 273-326 7
9 327-370 327-370 0
10 371-417 371-416 1
11 418-496 417-496 1
12 497-529 497-529 0
13 530-551 530-551 0

Table 4.4: Class borders detected by the SFA algorithm and the manual annotated ground
truth for the extended tracks dataset

recognized equally good while a high deviation is a sign for having some classes that can be
recognized better than others.

Another experimental goal was to qualitatively compare the slow signals extracted by the
SFA algorithm for different feature descriptors. Since the output SFA values depend on the
input signals, which have different value ranges it is not possible to compute some distance
measure on these signals for the different features.

Therefore for a quick analysis the first slowly varying signal for the three already mentioned
feature descriptors and for different frames are illustrated in figure 4.6.

4.1.6 Discussion

From the experimental results showed in the previous section, it is clearly visible that the
slow components extracted using SFA serve as a good indicator for visual class changes.
Given that the video is encoded with 30 frames per second, even the class with the most
miss detected frames (Monkey 2) fails just for a few seconds in the original video. Given
that between some classes the video contains long fade-in, where no or even both animals
are visible this seems to be a good result. It is also to note that the manual labeled ground
truth frames are not necessarily 100% correct as sometimes it is even difficult for humans to
accurately annotate the moment when one class ends and a new one starts. It is to note that
generally the number of miss detected frames for the extended tracks dataset is much lower
than the one for the animals dataset. One reason for this might be contained in the dataset
itself. The animal dataset is a video created for a human audience, not a synthetic dataset.
It therefore contains blurred frames, jittery video sequences and animated scene changes.
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# samples train:sfa - test:ground train:ground - test:ground
train test mean accuracy standard deviation mean accuracy standard deviation
2347 2353 0.9946 0.00460016 0.992344 0.00485368
1562 3138 0.994408 0.00592073 0.990439 0.00718787
1168 3532 0.992399 0.00671143 0.98932 0.00837344
932 3768 0.991111 0.00768069 0.988714 0.00774758
581 4119 0.989001 0.0098038 0.987507 0.00961077
464 4236 0.987952 0.00846541 0.987232 0.0100202
305 4395 0.98613 0.0127703 0.983767 0.0137247
227 4473 0.963857 0.0550626 0.971422 0.0426032
168 4532 0.887729 0.264721 0.892406 0.250044
127 4573 0.882995 0.258925 0.876673 0.259023
87 4613 0.856727 0.261359 0.874702 0.247859
56 4644 0.804432 0.306633 0.794059 0.326191
41 4659 0.78056 0.259704 0.78537 0.24276
25 4675 0.660694 0.395944 0.664635 0.327906
16 4686 0.535826 0.327945 0.624041 0.319573

Table 4.5: Classification results using a linear Support Vector Machine for class labels predicted
by SFA and the manually annotated ground truth labels for the animals dataset.
Even tough the SVM learned on a few wrong labels (see table 4.3) the classification
accuracy is comparable to the ground truth accuracy.

# samples train:sfa - test:ground train:ground - test:ground
train test mean accuracy standard deviation mean accuracy standard deviation
272 279 0.981496 0.0519346 0.97619 0.0719677
180 371 0.965315 0.0810797 0.966667 0.11547
134 417 0.895425 0.249018 0.90873 0.286944
107 444 0.90078 0.203108 0.906629 0.285934
88 463 0.87253 0.253706 0.895028 0.232751
74 477 0.848693 0.247112 0.871555 0.237789
63 488 0.811254 0.321924 0.851051 0.285232
57 494 0.80694 0.333319 0.863545 0.276736
50 501 0.790199 0.312047 0.819091 0.271874

Table 4.6: Classification results using a linear Support Vector Machine for class labels predicted
by SFA and the manually annotated ground truth labels for the extended tracks
dataset. Even tough the SVM learned on a few wrong labels (see table 4.4) the
classification accuracy is comparable to the ground truth accuracy.
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Figure 4.6: Slowly varying signals for different batches of frames and different feature de-
scriptors (BOF= bag-of-features representations based on SIFT, SC= Sparse
Coding, PHOG= Pyramid Histogram of Oriented Gradients). The ground truth
class changes are marked with black dashed lines in the signals. All slow signals
extracted from the different feature descriptors indicate some change, some more
prominent than others.

On the other hand the extended tracks dataset contains video sequences from people crossing
a road with clear cuts between different persons. However this is still a challenging dataset as
it contains nearly the same background information for all classes and the SFA algorithm must
be able to discriminate the classes without getting distracted by the constant background
information.

For both datasets, the results for the supervised classification experiments show, that the
classification accuracy drops when fewer training samples are used as it is expected for any
classification algorithm. More interesting however is the fact that even for very few training
samples the linear SVM can distinguish the individual classes based on the sparse feature
descriptor very well. Even having only 16 individual samples (not 16 per class) to train the
SVM , evaluating on the 4686 remaining samples gives an accuracy much better than random
guessing. In both tables it is visible that the difference in classification capability if trained
on the SFA labels or on the ground truth is under 1% for a reasonable amount of training
samples.

Note that the amount of training samples is not a limiting factor for the proposed solution as
labels for every frame are available and could be used in the training phase. It is therefore
valid to state that the proposed way of performing supervised classification based on estimated
class labels produces comparable results by gaining the additional benefit that it can also be
performed on unlabeled video sequences.
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Summarizing the whole chapter, including the outcome from various experiments, it contains
a novel approach to automated labeling of video sequences based on slowness information
extracted using slow feature analysis and Sparse Coding as robust mid-level feature represen-
tation. In contrast to other labeling methods based on tracking or self-learning, this method
works without any initial setup, and is therefore not dependent on a correctly trained prior
model. Using Sparse Coding as robust feature representation this approach can even handle
huge changes in lighting, scale and rotation. The proposed method could successfully shrink
the manual effort associated with generating labels for classifier training.

4.2 Unusual Event Detection

This section describes a problem setting where the sparse coding feature descriptor is used for
the task of detecting unusual events in video sequences. The task of finding unusual events is
shortly introduced in section 4.2.1 and section 4.2.2 reviews tree state-of-the art systems for
detecting unusual events based on sparse coding, multiple local monitors and infinite Hidden
Markov models.

Section 4.2.4 describes the implementation details and the performed experiments to evaluate
the usability of Sparse Coding for such a task. Its results are discussed in section 4.2.5.

4.2.1 Problem Definition

The following section describes the concept of unusual events and the detection of such in
different contexts and media, where first of all the ambiguity of the term “unusual event”
itself will be treated [106] [10].

The first problem one faces when trying to generally define the concept of an unusual event
is that it strongly depends on the context, but also on the definition of its counterpart: What
is a usual event in the same context?

The application area of unusual event detection is widespread: it ranges from audio, to visual
information like videos or images, but also to any other sensory data.

In most cases, unusual events are related to irregular and extraordinary, unlikely or unexpected,
rare events in a sequence of normal ones. Usually they describe some temporal state, which
is often more relevant than the more likely and expected regular events, like e.g. suspicious
behavior in some video.

The reason why the detection of such irregular events gets important is related to the usual
problem of having too much data, containing only few important informations - like in the field
of surveillance. As already mentioned in the motivation, hours of video material is recorded
every day, but the interesting and noteworthy moments of this data normally describe a
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special or irregular event. Unusual event detection allows to detect such events, therefore
acting as a filter to human control.

When applying unusual event detection, supervised methodologies often emerge to be not
well suited: semi-supervised or even completely unsupervised techniques can iteratively learn
or adapt to the changing “usual” situation, resulting in more reliable detections of unusual
events.

For detecting such unusual events different approaches exist, some of them are briefly explained
in the following section.

Figure 4.7: Some scenes from the UCSD Anomaly Detection Dataset: the first two are normal
samples containing walking people, the abnormalities depicted are two biker, a
skateboarder and a golf cart

4.2.2 Different Approaches to Detect Unusual Events

Unusual event detection using Sparse Coding

The system proposed by Zhao, Fei-Fei and Xing [108] detects unusual events in an online
fashion using Sparse Coding. Its core idea is the same as for our system that is discussed in
section 4.2.4.

Their system does not need any initialization phase where a model based on normal events
is learned, therefore no initial training data is learned. Using Sparse Coding they compute
a reconstruction cost which determines the absence or presence of an unusual event in the
following way:
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After having learned an initial dictionary needed for Sparse Coding using a sliding window
approach each event is described using spatio-temporal interest points. For each such event the
optimal reconstruction cost is calculated by essentially solving the Sparse Coding optimization
problem with the current dictionary. If this cost lies above a certain threshold the current
frame is signaled as unusual event. Before analyzing the next video frame the codebook is
updated.

The idea behind this technique is that the reconstruction error of the unusual, irregular events
is higher than the one of the majority of the video frames: the unusual events cannot easily
be reconstructed, as the codebook will mostly contain elements to describe usual events.

In addition to the fact, that no initial knowledge about the content of the video is required,
the completely unsupervised approach also enables continuous learning during the entire
video, still not allowing for concept drifts.

Cong, Yuan and Liu describe a very similar approach in their work [22]. They introduce a
sparse reconstruction cost, which corresponds to the reconstruction error used by Zhao et al,
using this cost as a measure for the rarity (or normalness) of single events. The main difference
lies in the choice of the used feature, where Cong et al rely on a Multi-scale Histogram of
Optical Flow to describe the video scenes. Their initial system is defined for offline use, but
in addition to that, the authors extend their model to also enable online detection of unusual
events by continuous incremental updates of the dictionary.

Unusual event detection using multiple monitors

One approach of detecting unusual or rare events is to use multiple local monitors, as described
in the paper of Adam et al [1].

They describe a large-scale surveillance system which is based on the idea of collecting local
low-level statistics or measurements at multiple fixed spacial locations, called monitors. The
idea is that if the current measurement of one of these monitors is unusual or abnormal, this
single monitor gives an alert. Using some ambiguity threshold, the over-all system comes to
a final decision whether there exists a local or global unusual event.

The technology described in this paper is applied to long-time real-life videos, as it is the
case in large-scale surveillance according to the authors.

This method of using multiple monitors is quiet different, as its success or failure does not
only depend on the implemented algorithm, but also on the setup of the system itself. Adam
et al state for example, that in order to best possibly overcome the problem of occlusion,
they use a density of the monitors such that each individual is usually “tracked” by five
monitors.
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An advantage of this technique is that it performs well and it is quiet robust also in crowded
scenes because of the multiple spacial information that is collected contemporaneously, which
appears to be a major problem of usual tracking-based algorithms, causing them to fail due
to the crowdedness, rendering the tracking of single individuals nearly impossible.

According to the authors, the system is quiet effective after having collected sufficient low-level
data, which is usually the case after a few minutes. In this context it has to be mentioned
that most unusual event detectors are tested on relatively short video sequences, where the
currently explained approach would fail, as this short time tests often do not even cover the
time period required for the setup and the initial learning of this multiple monitor system.

On the other side, this approach seems to be well suited for many real-time applications: It is
not computationally demanding and is tested on relatively long video sequences. Additionally,
Adam et al state that the principle of having a simple and intuitive algorithm like in this
case brings the advantage that the entire system gets predictable and thus its decisions can
be better understood.

One drawback that the authors claim is that still it is not possible to detect unusual events
if they are composed of a sequence of usual events, e.g. if someone enters a security door
without previously having opened it by inserting an identification card.

Unusual event detection using infinite hidden Markov models

In contrast to other techniques, Zhang et al present an approach based on iteratively adapted
hidden Markov models [77]. More precisely, they use ergodic K-class HMMs, where the
number of classes is equal to one normal state plus the number of unusual events.

Their model is built up using one single state (or HMM class), which should represent the
normal situation or event. This starting state is learned a priori, by using a set of usual event
examples. The model, i.e. the parameters of this normal event, is learned using a maximum
likelihood method on the usual events. The authors use a Gaussian mixture to model the
probability density functions of all the HMMs. The corresponding parameters are estimated
using expectation maximization.

After having learned this HMM representing the usual event, the test video is divided into
overlapping sub-sequences, computing for each of the sub-sequences the likelihood, where low
values indicate abnormal events.

As soon as such an unusual event is detected, this one is supposed to represent a new HMM,
even though it is not possible to train and learn an entire model using only one single example
(i.e. the currently detected unusual event). Therefore the authors propose to use some
adaptation techniques, like maximum a posteriori, in order to adapt the existing model -
representing the normal state - to the new unusual situation.
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After knowing the models for the normal state (which has been well learned) and an irregular
state (given by a currently detected unusual event), the HMM is modified, by adding an
additional state to it. Viterbi decoding is applied to the updated HMM and the parameters,
to detect the transition points and thus when the unusual event started (and ended).

Then the system proceeds, searching for the next lowest likelihood, and in this way detecting
the next abnormal event in the sequence.

Zhang et al give results of testing their approach on audio (i.e. speech with applause, or
laughter inside), on videos (a poker game, including cheating, like hiding cards), and on
audio-visual data, i.e. a video about a presentation containing both kinds of information.
They argue that their approach results in being able to successfully detect rare and unexpected
events, after having been trained on an appropriate number of usual events, which in most
practical cases is available.

4.2.3 Motivation

In the following I try to motivate why an unusual event detection system based on features
developed using Sparse Coding might be an interesting area for experiments and what is
expected from the results.

There exists plenty of literature [39, 10, 77, 108, 1, 106, 22] on abnormal event detection
systems, each working in a slightly different environment or under different constraints. Most
of them are evaluated on different datasets, using different methods to model usual or unusual
events and even report different quality measures. Depending on the desired application
scenario for some systems it is sufficient to reliably determine whether a specific time span
contains usual or unusual events, while for others it might be necessary to also precisely
locate the source of abnormality.

Many recent publications [107, 78, 19, 103, 104] in the area of computer vision show that sparse
representation-based methods achieve good performance for various application domains.
All applications have in common that they use a sparse mid-level feature representation
of the task specific basis elements (e.g., motion primitives for activity recognition). Using
an appropriate pooling function, Sparse Coding gives a compact and robust appearance
description. Describing activities as sparse combinations of learned motion primitives has
shown to result in state-of-the-art performance for activity recognition tasks [78, 104]. Unusual
event detection can be seen as a simpler form of activity recognition, where, instead of
recognizing a learned activity pattern, the task is simplified to detect whether an activity is
close to the learned ones or not. In this case, the learned “activities” describe usual events,
unusual events are then measured based on their relation to the learned ones. Since Sparse
Coding has been shown to perform good for activity recognition, we expect that this sparse
mid-level representation is also suited for the task of unusual event detection.
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The first motivation to build this unusual event detection system based on Sparse Coding is
therefore not only to evaluate Sparse Coding for this task, but also to provide a framework
and platform to evaluate other feature descriptors, under the same conditions and on the
same data. This results in a fair and comparable performance evaluation for different feature
descriptors.

From this experiments we expect results indicating that Sparse Coding performs at least
as good as other state-of-the-art appearance-based feature descriptors. This expectation
is based on various recent publications where sparse feature descriptors could outperform
other methods on object recognition tasks. Therefore we expect that some of the information
modeled by the feature descriptor, useful for object recognition, might also prove useful for
unusual event detection. Since abnormal event detection could be interpreted as a binary
classification problem generating outputs “usual event” or “unusual event”, this seams a
reasonable assumption.

We also evaluate the performance of a motion-based feature descriptor (Histogram of oriented
flow) and compare it to the performance of the other appearance-based descriptors. For this
comparison we do not state any initial believes or thoughts about its outcome.

On one hand Sparse Coding describes each image based on its appearance, and we expect
unusual events to show a different semblance than usual ones. On the other hand many
unusual events might also expose different motion patterns than usual ones. Pedestrians and
skateborders generate different motion while having a really similar appearance. Therefore
this is an interesting comparison, allowing to express strengths or weaknesses of motion- vs.
appearance-based feature descriptors for unusual event detection.

4.2.4 Implementation

The used system for detecting unusual events in video streams is comparable to the systems
reviewed in the previous section 4.2.2. Generally the system proceeds in two stages: during
learning stage usual events are analyzed to model usual events. During detection phase the
modeled usual behavior is compared with the current video scene and its discrepancy is
measured. Based on this distance measure the algorithm decides then whether to signal an
unusual situation or not.

This basic architecture is now explained in more detail and then used later on to perform
various experiments. An overview over the entire learning and detection process is additionally
shown in figure 4.8.

As a first step when trying to learn usual events we need to represent the current video scene
with some sort of feature descriptor, either raw pixel values or more advanced descriptors
like SIFT [62] or HOG [23]. Since we aim to detect not only global unusual scenes but also
the abnormality’s location, we divide the input image into a fixed number of 4 × 3 = 12
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Figure 4.8: An overview over the process of detecting an unusual event: The left box shows
the learning phase. On the right, the detection phase is sketched, where the single
frames of the input video are checked for unusual events.

equaly-sized patches and compute the feature descriptors for each patch. This decomposition
of the single input image into twelve image regions allows to model local normality and detect
the unusual events within single patches whose position in the input image is known. An
illustration of these patches can be seen in image 4.9, containing some sample results and
two unusual events detected in different scenes.

One decision, sensitive to the final performance of the described system, is the choice of
the feature descriptor to use to describe the video sequence. To evaluate and compare the
performance of Sparse Coding several feature descriptors have been used which are now
described shortly.

• MV: As a basic feature descriptor mean and variance of the pixel intensities within a
single local patch are computed.

• HOG: The histogram of oriented gradients [23] which basically counts frequencies of
gradient directions or edge orientations at fixed positions.

• HOF: The histogram of oriented flow [17] represents an image as optical flow information
binned on its primary angle and weighted according to its magnitude.
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• SC: The Sparse Coding feature descriptor has been presented in chapter 3.

• BOW-SIFT: Describes a bag-of-words model computed on SIFT features.

Figure 4.9: Four images illustrating some results for the unusual event detection on the UCSD
Anomaly Detection dataset: the top images contain no unusual events where
all people are walking. The images at the bottom contain unusual events: one
contains a skateboarder, the other one a golf car.

Summarizing these features it is to note that they express quite different characteristics. The
mean-variance feature describes each local patch as mean and variance of the greyscale pixel
values. The intuition to use and evaluate such a simple feature descriptor is that even the pixel
intensities should change when representing unusual events and therefore its variance should
be high compared to the learned usual pixel intensities. In contrast HOG is a more advanced
feature descriptor which is robust to most photometric and geometric transformations. With
HOF a scene (containing either usual or unusual events) is represented as optical flow or
motion of objects surfaces and edges within the scene. This feature descriptor is used to
analyze if usual and unusual scenes differ significantly in their optical flow and can therefore
be detected and separated. For the Sparse Coding feature descriptor we assume that usual
and unusual events are visually different and therefore different codebook entries are used
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when computing the sparse feature descriptors. Therefore the feature descriptors describing
unusual events are expected to be different enough to be separated from usual events.

For each of the already mentioned local image patches the feature descriptors are calculated
and stored to be used in the next step. In the case of sparse coding the exact pipeline
as described in 3.3 has been followed. For the final implementation, a 1024-dimensional
codebook pretrained on the Caltech101 dataset has been used although different codebooks
and sizes have been evaluated. Experiments with a codebook created on the video sequence
used for the unusual event detection task did not give any markable performance change
as also supported by the experiments in 3.6.3 which show that a generic codebook can give
comparable performance. The actual training stage is a computation of clusters based on all
training sequences containing usual events. These clusters are calculated for each of the 12
image regions separately, therefore to each local cell up to 500 clusters are assigned. These
clusters represent the most dominant features used to describe usual events within a specific
location. For the actual clustering the fast implementation of the k-means algorithm from
Piotr Dollár’s Matlab toolbox2 has been used.

The last step missing is the detection of the actual unusual events. For each video frame
from all video sequences within the test set, the distance of its associated features with
the previously learned centroids is calculated and the minimal distance from a feature to a
centroid is used as measure of compliance with the previously learned model. The rational
behind this is that features close to the one seen in the learning phase (or its class centers
respectively) are more likely to not represent unusual events. After temporal smoothing
over two consecutive image frames to prevent unwanted spikes in the distance for each of
the 12 image locations, the presence or absence of an unusual event is decided by a simple
thresholding criterion.

4.2.5 Results and Discussion

To evaluate the performance of a sparse feature descriptor, experiments have been conducted
to compare it against other feature descriptors using the same detection framework as
described in section 4.2.4.

As dataset, the UCSD Anomaly Detection Dataset, created for the publication [63] and
containing crowded public walkways has been used. It has been generated using stationary
cameras observing public walkways, containing various crowdedness levels. As normal events,
this dataset contains people walking on the walkways. Abnormal events are characterized
by people using other means of transportation (bikes, wheelchairs, skateboards, golf cars) or
people walking on the green spaces instead of the walkway. The recorded video material has
been splitter into various short scenes, each containing approximately 200 frames. Included
in the dataset is also a manually generated ground truth dataset. For each frame the ground
truth data defines if a unusual event is present or not. In addition for 10 sequences the exact
location of the abnormality is represented as binary pixel mask.

2 http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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This dataset has been chosen for this experiments because it contains a wide variety of unusual
events. Some of them my be easily detected by its appearance (golf car) while others are very
similar to normal walking people, but expose a different motion pattern. This variety allows
us to reason which unusual events are easier or harder to detect and why Sparse Coding
might serve as a good representation to encode them.

As basic feature descriptors the following well-known and already introduced feature descrip-
tors have been used: Sparse Coding, HOF, HOG, MV and BOW-SIFT. For each feature
descriptor various detection thresholds were tested and, based on the available ground truth
from the UCSD dataset, the number of detected true positive, true negative, false positive
and false negative unusual events were recorded on a per-frame basis.

Based on this data, the performance is calculated as precision, recall and F1 score. Precision
is defined as

precision = truepositive

truepositive+ falsepositive

and gives a ratio of how many of the detected unusual events are really unusual events. Recall
on the other hand measures the ratio of true unusual events within the detected ones and is
defined as

recall = truepositive

truepositive+ falsenegative

. It is easy to show that both of these measures influence each other: suppose our unusual
event detector just detects one single frame as unusual event, all other events are recognized
as usual. This gives the maximal precision of 1 but would lead to a lower recall (assuming
that there is more than one unusual frame within the observed sequence). On the other
hand one could achieve high recall by detecting all frames as unusual events, leading to 0
false negative samples and therefore a recall of 1, but also to a low precision due to the high
number of false positives.

Therefore for most problems it is needed to balance those two measures, where for some
problems it might be favorable to trade recall for additional precision, while for others it is
not. One measure that balances both precision and recall is the so-called F-score which is
used as final performance indicator for this experiments. It is defined as

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

and for our case using β = 1 (often also called F1-score) gives

Fβ = 2 · precision · recall
precision+ recall

. It defines a weighted average between recall and precision and ranges from 0 to 1.

The best performance expressed as F1 score for the different feature descriptors on 9 different
video sequences taken from the UCSD dataset is reported in table 4.7.
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19 20 24 25 26 27 31 33 36
SC 0,666 0,812 0,830 0,725 0,511 0,821 0,946 0,897 0,664
HOF 0,608 0,793 0,786 0,650 0,509 0,724 0,944 0,894 0,641
HOG 0,337 0,451 0,030 0,518 0,083 0,511 0 0,207 0
MV 0,410 0,432 0,703 0 0 0,325 0,125 0 0,174
BOW 0,509 0,481 0,809 0,623 0,602 0,697 0,502 0,788 0,646s

Table 4.7: F1 measure for detecting unusual events on different UCSD video sequences for
different feature descriptors.

The same data is also depicted in plot 4.10 and allows a few interpretations. First of all the
data shows that the Histogramm of Oriented Flow, the Bag-of-Words model of SIFT features
and the Sparse Coding feature descriptor are the ones performing best on the tested sequences.
Even though the Mean-Variance descriptor performed surprisingly well on sequence 24 HOG
and MV feature descriptors do not allow a reliable detection of unusual events for all tested
sequences.

Figure 4.10: F1 score for nine different scenes taken from the UCSD Anomaly Detection
dataset for different feature descriptors.



84 CHAPTER 4. APPLICATIONS

Except for video sequence 26 the optimal threshold for Sparse Coding always resulted in a
higher F1 score than the other optimal configurations. For video 26 the bag-of-words model
performed slightly better than the Sparse Coding descriptor.

Another interesting finding is that the performance of the Histogram of Oriented Flow is
always very close to the one of Sparse Coding. If the one drops, the other one does, to.
This is surprising because they describe the input using a totally different paradigm: HOF
describes each image as a histogram of oriented optical movement, whereas sparse coding
describes the scene as linear combination of a few heavy active base elements. This leads to
the conclusion that for our image sequences a unusual event characterizes by an appearance
change (encoded using sparse coding) and a movement change (encoded using optical flow).
This seems intuitive, as most unusual events (golf car, wheelchair, bike) in our videos have
different shapes with respect to walking people and also expose different motion behavior.

In the following a few scenes from different test videos completed with the detected unusual
events for different feature descriptors are presented and discussed. This should give an
intuition and better understanding of the meaning of the various performance indicators in our
use case. It also should highlight individual strengths and weaknesses in an understandable
format. Each image contains the same scene for the five feature descriptors, its 12 local blocks
and, if detected, the red bordered cell containing an unusual event.

Figure 4.11 contains the results for detecting the golf car from UCSD scene 19 where the
systems based on SC, HOG and HOF features did correctly identify the location of the
unusual event. The systems using the bag-of-words feature and the mean-variance descriptor
did not report any unusual behavior in this specific moment. It is also to note that the
flow-based system contains two false-positive local alerts. This could be explained by the fact
that for most training scenes both locations contained people and therefore movement while
for the depicted frame there seems to be almost no movement in the foreground. This could
therefore result in a high distance to learned movement patterns and therefore to a unusual
event detection.

Figure 4.11: Detected unusual events for different descriptors based on UCSD scene 19
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Images 4.12 and 4.13 both show again the detection results for unusual events contained in
scenes 20 and 24 respectively. For those two frames the SIFT- and MV-based systems could
only detect one of the two unusual events, while all other systems could correctly identify
both driving cars as unusual with respect to the rest of the scenes. Again it is to note that
some false positives where created, again most the motion feature.

Figure 4.12: Detected unusual events for different descriptors based on UCSD scene 20

Figure 4.13: Detected unusual events for different descriptors based on UCSD scene 24

The next two images contain results for more advanced, harder to detect unusual events.
Figure 4.14 contains a bicyclist moving beside the pedestrian, both on approximately the
same speed. In figure 4.15 there are two unusual events at the same time: a car driving down
the walkway and a cyclist driving in the opposite direction.

For both scenes HOG and MV did not report any unusual events. Compared to the already
described figures, in this two the histogram of oriented flow based system was able to detect
all unusual events without any false positives being reported. The sparse coding based system
could identify two of the three unusual events, but had problems on the cyclist which looks
nearly identical to a usual pedestrian. This behavior could also be observed in other scenes
and is based on the fact that both, a walking person and a cyclist from behind look similar
and could be represented by the same basis elements from the dictionary, thus leading to
similar feature representations. The bag-of-words based system performed well on the second
of the last depicted scene, but reported only false positives on the previous one. For the
Sparse Coding feature descriptors different combinations of extraction parameters (dense
SIFT locations) and codebooks have been tested and confirm the results presented in section
3.6. We could not find any significant performance boost when exchanging the pre-trained
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codebook based on the Caltech-101 dataset by one learned from the UCSD training dataset.
For the perfect sampling size the intuitive results indicate that the performance gets better for
finer sampling and significantly drops above a sample-distance of around 8 pixels. This can
be well-explained because of the low-resolution images presented in the dataset: computing
the SIFT features only every 8 or more cells results in only very few features per local patch,
loosing most of the needed information.

Figure 4.14: Detected unusual events for different descriptors based on UCSD scene 36

Figure 4.15: Detected unusual events for different descriptors based on UCSD scene 36

Summarizing the findings we can argue that Sparse Coding achieves the best performance
among all tested feature descriptors in the described setting. It could detect most of the
unusual events without generating a huge amount of false positives. The Histogram of oriented
flow and the bag-of-words SIFT descriptor performed also well but the motion feature tends
to generate a lot of false positives in other cells. Depending whether a global or local unusual
event detection system should be realized this has a lower or higher impact on the final
result.

The results clearly indicate that a sparse mid-level representation generated via Sparse
Coding allows better discrimination of usual from unusual events than low-level SIFT or
HOG descriptors. The resulting video sequences show that the sparse representation is more
robust to short occlusions (e.g., other pedestrians hiding the source to the unusual event)
and can even detect unusual events when the motion-based feature is not able to express any
abnormality.



5 Conclusion

Recently it has been shown that sparse, mid-level feature representations achieve state-of-the-
art performance on many computer vision tasks. Although they are computationally more
demanding than low-level feature descriptors, their robustness to great appearance changes
justifies their usage. In addition, their sparse and compact representation achieves good
results for many classification tasks. However, most of those publications where restricted to
image-based methods. Therefore the goal of this master’s thesis was to assess the applicability
of Sparse Coding for video-based applications.

The information presented and elaborated in this master’s thesis focused on Sparse Coding and
its applicability and performance for analyzing image sequences. After a short introduction to
the notion of feature descriptors in computer vision the main aspects of Sparse Coding have
been presented. Sparse coding has been derived as a convex optimization problem starting
from a general matrix factorization problem, including efficient algorithms to solve it. The
whole coding pipeline starting from a raw input image until the computation of the final
global sparse feature descriptor has been presented and analyzed.

Studies on the impact of codebook size and quality have been performed and indicate that
even codebooks trained on a completely different, task-unrelated dataset can provide the same
performance as using the task-specific dataset. This knowledge about the needed codebook
quality a high range of flexibility when performing experiments with Sparse Coding, as it is
not necessary to train a codebook on the given dataset to guarantee good results. Codebooks
can therefore be shared and reused in other experiments.

The data also shows that codebook size is not a critical parameter, as Sparse Coding even
performs good with very small codebooks. However performance starts to drop when the
codebook grows too large, due to the noise modeled into the codebook. This implies that
when performing Sparse Coding, the codebooks size should be kept within limits to not create
noisy descriptions.

The next experiments confirmed that the biologically plausible maximum-pooling operation
results in the best-performing sparse codes compared to other pooling functions and should
thus be considered for various tasks dealing with Sparse Coding.

After this analysis of sparse coding two different video-based applications have been elaborated.
The work published in [86] is described in much detail, and in this way a novel approach
for automated labeling of video sequences based on a Slow Feature Analysis performed on
the Sparse Coding feature descriptor is presented. It allows to automatically generate a

87
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large amount of labels, and experimental results show that the labeling process creates good
results. It has also been shown that even though feature descriptors can change heavily from
one image frame to the next, slow feature analysis provides a powerful framework to extract
and analyze the underlying slow driving force. The outcome encourage to use the proposed
system in real-world applications, like automatically segmenting and labeling huge media
catalogs from video-on-demand services.

The second developed application tackled the task of unusual event detection within video
sequences using Sparse Coding as efficient and compact feature representation. Its performance
has been evaluated and compared to different structure and motion based feature descriptors.
Experimental results show that it generates better performance than other state-of-the-
art appearance-based descriptors and also creates less false alarms than the motion-based
Histogram of Oriented Motion feature. It would thus be a readonable decision to use Sparse
Coding for unusual event detection in various fields of applications, like video surveillance.

Intuitively this master’s thesis is not able to answer all possible research questions in the
presented field. But the conducted experiments and results opened possibilities for future
work and new research questions.

For Sparse Coding in general an interesting opportunity for future research could try to come
up with a real online variant of the whole coding pipeline. Although algorithms for online
codebook learning exist, the whole feature computation is still not possible in an online fashion.
Since for every new input image the codebook is updated in an online fashion, all preceding
feature descriptors are based on outdated information and would need a projection onto the
new codebook. With the availability of such an online method, the codebook refinement and
feature computation could be performed simultaneously without the need of recomputing all
previous features.

The system from [86] contains an exemplary application and demonstration of slowness as a
feature descriptor and stimulates further work in this direction. It would be preferable not to
use the slow signal directly for image labeling, but to use it as an unsupervised class prior for
various detection or tracking tasks. Modeling this slowness into a semi-supervised setting
could allow to detect similar objects based on the slowness characteristics, despite the fact
that their feature descriptors are totally different.

The described unusual event detection system illustrates strengths and weaknesses of the
feature descriptors’ expressiveness which could be verified on related tasks. An experiment
worth to perform would be the combination of appearance and motion to detect unusual
events, as some scenes have shown to contain events hard to detect for motion-based systems
but easy for the ones operating on appearance information and vice-versa. This could also
allow to actually learn the coherence of motion and appearance in such systems.
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The main contributions in this work are the following:

• An indeed analysis of Sparse Coding, its theoretical foundations and algorithmic
challenges, and the main parameters has been performed. This work stresses the
importance of spatial pooling to create a robust representation, and highlights the
importance of the codebook. The biologically plausible maximum and average spatial
pooling functions have shown to provide the best results. Additionally, this work
suggests that codebooks containing between 256 and 2048 atoms should be used for
best performance.

• This work presented a novel approach to unsupervised image sequence labeling by
analyzing the mid-level feature representation over time [86]. This analysis has been
computed using Slow Feature Analysis, showing that a slow driving force can be used
to efficiently detect visual class changes. Using Sparse Coding as image representation,
larger appearance changes than with traditional methods can be handled. In addi-
tion it stimulates the usage of Slow Feature Analysis for other image-sequence based
applications that aim at analyzing descriptors over time.

• As part of this master’s thesis it has also been shown, that Sparse Coding is a powerful
feature representation for the task of unusual event detection. It could outperform all
other tested appearance-based descriptors and generated less false positives than the
motion based feature.
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