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Abstract

German

Um die komplexe Vernetzung zellulärer Systeme besser zu verstehen, sind in the letzten
Jahren diverse bioinformatische Methoden entwickelt worden, welche Transkriptom- und
Metabolomdaten sowohl separat als auch parallel analysieren. In dieser Diplomarbeit
werden Korrelationsmatrizen zur Analyse und Integration von Zeitserien-Messungen von
Transkriptom- und Metabolomdaten von Arabidopsis thaliana verwendet. Die Datensätze
umfassen Kälteakklimatisierungs-, CO2-Erhöhungs- und Sulfur-Defizienz-Experimente.
Das Ziel dieser Diplomarbeit ist es, (1) globale Zusammenhänge zwischen Korrelatio-
nen und Molekülfunction zu analysieren und (2) regulatorische Zusammenhänge zwi-
schen und innerhalb dieser zellulären Levels zu entdecken. Um generelle Zusammenhänge
zwischen Korrelationswerten und funktioneller Verwandtschaft von Genen/Metaboliten
zu bestimmen, wurden globale Korrelationsverteilungen untersucht. Allerdings haben
diese Resultate nur eine geringe Aussagekraft zur Bestimmung von spezifischen bio-
logischen Prozessen, welche unter den experimentellen Gegebenheiten dereguliert sind.
Daher wurde eine neue Methode entwickelt, welche die Überrepräsentation von hohen
Korrelationswerten innerhalb bzw. zwischen Gruppen von Genen/Metaboliten berech-
net. Die Gruppierung von Genen und Metaboliten erfolgt durch die Einbindung von
Annotationsbibliotheken. Dadurch werden funktionell verwandte Moleküle, die poten-
ziell co- oder entgegengesetzt reguliert werden, identifiziert. Die Resultate der paar-
weisen Überrepräsentationsanalyse wurden in Form von Netzwerken dargestellt, in denen
Knoten mit Annotationsbezeichnungen korrespondieren und Kanten die signifikante An-
reicherung von hohen Korrelationswerten indizieren. Die Methode wurde auf Robustheit
gegenüber Parametervariationen und Plausibilität der generierten Resultate durch Ver-
gleich mit vorangegangenen Studien überprüft. Im Einklang mit vorhergehenden Studien
konnten in allen Datensätzen Änderungen der Aminosäuren-Konzentrationen über die
Zeit nachgewiesen werden. Für alle Datensätze wurden weiters Unterschiede in der Genex-
pression von Photosynthese, im primären Stoffwechsel sowie in der globalen Proteinzusam-
mensetzung (z. B. durch induzierte Wachstumsprozesse) berichtet. Weiters wurden für
die CO2- und Sulfur-Defizienz-Datensätze Deregulationen, die im Zusammenhang mit
pflanzlichen Abwehrprozessen stehen, entdeckt. Insbesondere führte Sulfur-Defizienz zu
hohen Korrelationen zwischen Transkripten und Metaboliten in der Biosynthese für Glu-
cosinolat. Die Methode konnte viele dieser zellulären Adaptationsprozesse identifizieren,
wodurch die prinzipielle Anwendbarkeit und Nutzbarkeit gezeigt werden konnte.

Stichwörter: Korrelation, Transkriptom, Metabolom, Überrepräsentationsanalyse;
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English

To understand more thoroughly the cellular intertwinedness, several computational ap-
proaches have recently been proposed in order to analyse and integrate transcriptome
and metabolome data sets separately as well as in parallel. In this thesis, correlation
matrices were utilized for the analysis and integration of transcriptome and metabolome
time-series data sets of Arabidopsis thaliana. The data sets comprise of cold acclimation,
CO2 elevation and sulphur starvation experiments. The goals of the thesis are (1) to
analyse whether correlation values are in general connected to the underlaying function
of genes/metabolites and (2) to uncover putative regulatory dependencies among and
within the cellular levels. Global correlation distributions were explored to identify a
general relationship between correlation value observations and functional dependencies.
However, these distributions are inappropriate to reveal particular, deregulated, biologi-
cal processes under certain experimental settings. In the thesis, a novel method, which
determines within or among annotation label enrichment of high correlation values, is
proposed. Thereby, functionally related groups of gene/metabolites that are potentially
co- or counter-regulated are identified. The results of the pairwise annotation label enrich-
ment analysis are visualized in terms of networks, with nodes corresponding to annotation
labels and edges corresponding to significantly enriched of high correlation values. The
method was examined for robustness to parameter variations and plausibility of the gener-
ated results by drawing comparisons with previous studies. In concordance with previous
studies, for all data sets tight correlations among amino acids were detected. Further, for
all data sets, transcriptional deregulations of photosynthesis, primary metabolism as well
as shifts in the global protein content were in agreement with previous reports. For CO2

elevation and sulphur deficiency, annotation labels associated with plant defence processes
were revealed in line with previous findings. In particular, for sulphur deficiency, tight
correlations between metabolite and transcript levels of glucosinolate biosynthesis were
revealed. These findings underline the general applicability and usefulness of the method.

Keywords: Correlation, Transcriptome, Metabolome, Enrichment Analysis;

3



Contents

List Of Figures 7

List Of Tables 8

1 Introduction 9
1.1 Goals and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Methods 14
2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Notation & Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Global Correlation Structure and Functional Relationship . . . . . . . . . . 16
2.5 Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Analysis of Related Metabolites . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Results 21
3.1 Analysis of the Distribution of Correlation Values . . . . . . . . . . . . . . 21
3.2 Algorithm - Enrichment of Correlation Values in Specific Regions of the

Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Phase 1: Generation of the Correlation Matrix . . . . . . . . . . . . 27
3.2.2 Phase 2: Generation of an Histogram of Observed Correlation Values 30
3.2.3 Phase 3: Permutation of the Molecule Labels to Generate a Null

Distribution of Correlation Value Histograms . . . . . . . . . . . . . 31
3.2.4 Phase 4: Estimation of the P-value or P(Erroneous decision) . . . . 31

3.3 Analysis of the Algorithm’s Output . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Comparison of Outcomes for Different Statistical Tests . . . . . . . 33
3.3.2 Analysis of the Null Distribution . . . . . . . . . . . . . . . . . . . 33
3.3.3 Analysis of the Bootstrap- and Jackknife-based Statistical Test . . . 35
3.3.4 Variation of the Histogram Bin Sizes . . . . . . . . . . . . . . . . . 38

3.4 Integration of Metabolite Profiles with Biological Component Classes . . . 43
3.5 Analysis of Sulphur Starvation Data Sets . . . . . . . . . . . . . . . . . . . 46
3.6 Analysis of Cold Acclimation Data Sets . . . . . . . . . . . . . . . . . . . . 53
3.7 Analysis of Carbon Dioxide Elevation Data Sets . . . . . . . . . . . . . . . 60

4 Discussion 66
4.1 Analysis of Global Correlation Profiles . . . . . . . . . . . . . . . . . . . . 66
4.2 Novel Enrichment Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Integration of KEGG BRITE . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Sulphur Deficiency Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Cold Acclimation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Carbon Dioxide Elevation Data Set . . . . . . . . . . . . . . . . . . . . . . 72

4



4.7 Conclusion and Future directions . . . . . . . . . . . . . . . . . . . . . . . 74

5



List of Figures

3.1 Conditional probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Conditional probabilities in MM correlation matrices . . . . . . . . . . . . 24
3.3 Conditional probabilities in TM correlation matrices . . . . . . . . . . . . . 26
3.4 Schematic outline of the algorithm for within annotation label enrichment

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Schematic outline of the algorithm for among annotation label enrichment

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Schematic representation of the submatrix extraction . . . . . . . . . . . . 30
3.7 Venn diagrams presenting the overlap among the statistical tests . . . . . . 34
3.8 Comparison of null distribution histograms with fitted gamma distribution

for ’Gluconeogenesis’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Comparison of null distribution histograms with fitted gamma distribution

for ’Pentose phosphate pathway’ . . . . . . . . . . . . . . . . . . . . . . . . 37
3.10 Histogram of null distribution and bootstrapped alternative distributions . 38
3.11 Histogram of null distribution and Jackknife alternative distributions . . . 39
3.12 Boxplots of the null distributions with observed correlation value counts . . 40
3.13 Venn diagrams for bin variations . . . . . . . . . . . . . . . . . . . . . . . 41
3.14 Histograms over correlation values for KEGG BRITE ’Peptides’ . . . . . . 44
3.15 Enrichment network derived from S-def roots, metabolite-metabolite cor-

relations and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.16 Enrichment networks derived from S-def, metabolite-transcript correlations

and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.17 Enrichment networks derived from S-def, transcript-transcript correlations

and AraCyc pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.18 Enrichment networks derived from S-def, transcript-transcript correlations

and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.19 Enrichment networks derived from S-def, transcript-transcript correlations

and GO terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.20 Enrichment networks derived from S-def, transcript-transcript correlations

and InterPro PDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.21 Enrichment network derived from cold acclimation, metabolite-metabolite

correlations and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . 53
3.22 Enrichment network derived from cold acclimation, metabolite-transcript

correlations and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . 54
3.23 Enrichment networks derived from cold acclimation, transcript-transcript

correlation matrix and AraCyc pathways. . . . . . . . . . . . . . . . . . . . 56
3.24 Enrichment network derived from cold acclimation, transcript-transcript

correlations and KEGG pathways. . . . . . . . . . . . . . . . . . . . . . . . 57
3.25 Enrichment network derived from cold acclimation, transcript-transcript

correlations and GO terms (biological processes). . . . . . . . . . . . . . . 58

6



3.26 Enrichment network derived from cold acclimation, transcript-transcript
correlations and InterPro PDs. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.27 Enrichment network derived from carbon dioxide elevation, metabolite-
metabolite correlations and KEGG pathways. . . . . . . . . . . . . . . . . 60

3.28 Enrichment network derived from carbon dioxide elevation, metabolite-
transcript correlations and KEGG pathways. . . . . . . . . . . . . . . . . . 61

3.29 Enrichment network derived from carbon dioxide elevation, transcript-
transcript correlations and AraCyc pathways. . . . . . . . . . . . . . . . . 62

3.30 Enrichment network derived from carbon dioxide elevation, transcript-
transcript correlations and KEGG pathways. . . . . . . . . . . . . . . . . . 63

3.31 Enrichment network derived from carbon dioxide elevation, transcript-
transcript correlations and GO terms (biological processes). . . . . . . . . . 64

3.32 Enrichment network derived from carbon dioxide elevation, transcript-
transcript correlations and InterPro PDs. . . . . . . . . . . . . . . . . . . . 65

7



List of Tables

2.1 Summary of the data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Enrichment within/among functional groups . . . . . . . . . . . . . . . . . 17
2.3 Algorithm variants used for the analysis of S-def in roots. . . . . . . . . . . 18
2.4 Algorithm variants used for the analysis of S-def in leaves. . . . . . . . . . 18
2.5 Algorithm variants used for the analysis of the cold data set. . . . . . . . . 19
2.6 Algorithm variants used for the analysis of the carbon dioxide data set. . . 19

3.1 Counts of transcript-transcript pairs which share a particular annotation . 22
3.2 Counts of metabolite-metabolite pairs which share a particular annotation 22
3.3 Counts of transcript-metabolite pairs which share a particular annotation . 22
3.4 Numbers of statistically significant categories . . . . . . . . . . . . . . . . . 33
3.5 Concordance after bin size variation . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Correlated classes of metabolites for Cold stress data set . . . . . . . . . . 43
3.7 Correlated classes of metabolites for carbon dioxide stress data set . . . . . 43
3.8 Correlated classes of metabolites for S-def root data set . . . . . . . . . . . 45

8



Chapter 1

Introduction

In the era of high-throughput biotechnological methods, more and more large scale data
sets are acquired which apparently open the door for a thorough understanding of molec-
ular biological principles. However, unraveling cellular intertwinedness and systems re-
sponses as a whole is considered as a highly complex task which requires the development
of sophisticated computational tools.

A vast array of methods has in recent history been developed which incorporate tran-
scriptome data sets. For instance, to unravel gene function [1, 2] or to reverse engineer
genetic regulatory networks [3, 4, 5] of coexpressed transcripts.

A more involved task is to analyse and interpret correlations among metabolites within
a metabolic network. Steuer et al. [6] have analysed the emergence of metabolite-
metabolite correlations by simulating stochastic differential equations of the Saccha-
romyces cerevisiae glycolysis pathway identified by Hynne et al. [7]. They argued that
some neighbouring metabolites (connected by only a single reaction) might be well corre-
lated whereas others are not. On the contrary, some distant metabolites in the network
show a very strong correlation due to indirect effects. Furthermore, they described that
it is not possible to reverse engineer the biochemical reaction network solely on the basis
of the correlation network, since this problem is underdetermined.

In another theoretical analysis, Camacho et al. [8] employed the framework of meta-
bolic control analysis to demonstrate cases for biochemical reaction which would cause
high/moderate/low negative/positive correlation values. They have also pointed out the
emergence of indirect effects. In addition, they performed simulations of yeast glycolysis
pathway by adopting the model of Teusink et al. [9] to study random fluctuations in the
steady state of the system.

In Krumsiek et al. [10], a probabilistic modelling approach was proposed which is based
on partial correlation coefficient to reconstruct the conditional dependency structure on
the metabolome scale. The group was able to show that many high absolute partial
correlation coefficients correspond to known biochemical reactions. They have applied
their method to blood serum samples of a large human cohort as well as to synthetically
simulated reaction networks.

Specifically, integration of transcriptome and metabolome data has recently gained
attention, since this offers the potential to uncover important regulatory relations between
mRNA and metabolite abundance.

Urbanczyk-Wochniak et al. [11] analysed transcript profiles complemented by meta-
bolic profiles of potato tuber systems by means of PCA and pairwise co-responses of
transcripts and metabolites. In their study, they were able to show that phenotypic dif-
ferences between cell lines could be discriminated by measuring metabolite levels. In
contrast, changes in transcript abundance did not convey that information. Furthermore,
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they concluded that pairwise high absolute transcript-metabolite correlations partially
agree with the functional relationships between those pairs. On the other hand, a sub-
stantial number of high correlation values could not be linked directly to the underlaying
function. To specifically draw conclusions on the emergence of these correlations one
would have to conduct additional experiments. Nevertheless, the generated pieces of
information could provide testable hypotheses for further research [11].

Bradley et al. [12] investigated the global stress response of the metabolome in com-
parison to the transcriptome of Saccharomyces cerevisiae using SVD. The research group
showed that the first right singular vectors of both transcriptome and metabolome were
significantly correlated to each other. As the observed correlations depend on the en-
vironmental conditions, they probabilistically modeled the relation between functional
annotations (e.g. common KEGG pathway), observed correlation coefficients and the en-
vironmental condition. Furthermore, they tested for enrichment of gene ontology terms
among genes which are highly correlated to some common metabolite. The group found
that in general functionally related genes were well correlated to common metabolites. In
particular, the group was able to identify new regulatory interactions between metabolites
and genes (e.g. they predicted a relationship between FBP and VID24).

Takahashi et al. [13] employed linear dynamical systems (LDS) to analyse the tran-
sition timings of the cellular states by time-series experiments of transcript and metabo-
lite levels of Escherichia coli. They identified concerted changes of transcriptome and
metabolome in terms of timing with respect to the experimental stimulus. Furthermore,
they used correlation networks to examine the enrichment of GO terms for biological
processes among genes which are connected to some common metabolite.

Pir et al. [14] applied partial least squares (PLS) to a Saccharomyces cerevisiae data
set to address three aspects: (1) to model metabolic levels as a function of transcript
abundance for several experimental conditions (e.g. different medium composition, growth
rate and gene knockouts), (2) to discriminate experimental conditions based on measured
data and (3) to identify relations between open reading frames (ORFs) and metabolic
data.

Bylesjö et al. [15] investigated wild-type hybrid aspen (Populus tremula x Populus
tremuloides) data by an extension of PLS, namely (O2PLS), which is a combination
of projections to latent structures (OPLS) with orthogonal signal correction (OSC), to
decompose the variability of transcriptome and metabolome measurements into the joint
variability, the unique variability within each data set and the residual variability. Their
approach enabled the identification of strong correlations among transcripts (e.g. sharing
a common GO term) and particular types of metabolites (e.g. carbonhydrates, lipids,
etc.)

Dutta et al. [16] investigated the cellular response to elevated CO2 concentration with
Arabidopsis thaliana liquid cultures. They have performed a systems biology approach
to study changes in transcriptional and metabolic levels. They reported shifts in pho-
tosynthetic processes and primary metabolism as well as effects on ethylene dependent
signaling, which are important in biotic and abiotic response processes.

Kaplan et al. [17] analysed cold acclimation of Arabidopsis thaliana using time-
series measurements of mRNA and metabolite abundance. Kaplan’s group revealed new
important regulatory changes in amino acid biosynthesis, GABA biosynthesis, sucrose
metabolism, raffinose metabolism and carbonhydrate levels in response to the environ-
mental stress.

Hirai et al. [18, 19] conducted sulphur starvation experiments with Arabidopsis tha-
liana. The group has employed a co-clustering analysis (BL-SOM) of transcript and
metabolite levels. They reported similar response patterns for genes and metabolites of
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glucosinolate biosynthesis. Further, they identified changes gene expression and metabo-
lite abundance in several metabolic process i.e. photosynthetic processes and primary
metabolism.

Redestig et al. [20] proposed a novel correlation measure based on hidden Markov
models (HMM), which especially accounts for time shifts in time-series measurements,
motivated by the fact that Pearson’s correlation coefficients is sensitive to time-shifted
profiles and noise. They applied this new correlation measure to four Arabidopsis thaliana
data sets to integrated metabolite and transcript profiles and showed that it performed
better than the lagged Pearson’s correlation coefficient. In case of high noise and high
shifts in time, the HMM-based correlation performed even better than ordinary Pearson’s
correlation. However, for a low noise level and no time shifts among the profiles, Pearson’s
correlation was still better than any other correlation measure. Redestig et al. [20] have
shown that pairwise correlations performed poorly for the purpose of predicting functional
connectivity (e.g. common reaction pathway) of gene-metabolite pairs. Therefore, they
employed OPLS discriminant analysis (OPLS-DA) [21] to discriminate the common vari-
ability of metabolites and transcripts within KEGG pathways in contrast to uncorrelated
variability.

Other methods which elucidate the relation between stochastic signals are i.e. non-
parametric correlation measures (e.g. Spearman’s rank correlation coefficient or Kendall’s
tau coefficient), the mutual information or similarity measures like the euclidean distance.
Non-parametric correlation coefficients apply to data sets which are relate to each other in
a non-linear way and are more robust to noise and outliers than Pearson’s correlation. On
the other hand, their statistical power is considerably lower than Pearson’s correlation.
The strength of mutual information relies on capturing non-linear relationships between
the two signals, which was thoroughly analysed in Steuer et al. [22]. However, mutual
information suffers from an even lower statistical power than non-parametric methods.
Hence, both of the latter approaches require a much larger amount of data to allow for
reliable significance assertions.

Popularity of network-based analysis approaches have also grown in recent history.
For instance, Maere et al. [23] proposed the Cytoscape plug-in BiNGO which allows the
estimation of overrepresented GO terms in a set of genes (e.g. subgraph of a biological
network). The tool provides the opportunity to map significantly overrepresented GO
terms onto the hierarchical structure of the ontology.

In a different approach, Bindea et al. [24] proposed the Cytoscape plug-in ClueGO to
visualize functionally related terms as networks. ClueGO maps genes onto the annotation
labels (e.g. KEGG pathways or GO terms) which in turn are linked to one another by
utilizing kappa statistics. Furthermore, ClueGO can be used to analyse the annotation
term composition of co-clustering of genes (e.g. based on the gene-expression profiles).

1.1 Goals and Outline

The major goal of the thesis was to use correlation matrices for the analysis and integration
of several transcriptome and metabolome data sets in the light of functional annotation
libraries. The data sets comprise of parallel microarray and mass spectrometry time-series
measurements of mRNA and metabolite abundancies, respectively, for the (1) sulphur
deficiency in roots [19], (2) sulphur deficiency in leaves [19], (3) CO2 elevation [16] and
cold acclimation [17].
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Specifically, the following should be investigated:

• Is there a general connection between functional relationship and the observed cor-
relation value distribution? Therefore, the global correlation value distribution is
analysed in the light of functional annotation libraries.

• Which groups of molecules (e.g. transcripts or metabolites with a common function)
are deregulated and how do the deregulated processes related to each other? To
address this question, a novel enrichment analysis approach shall be introduced.

• Different variations of the introduced enrichment analysis approach shall be com-
pared.

• The quality and plausability of the enrichment analysis results should be assessed
on the four data sets by conducting a literature survey.

In the first part of the thesis, global correlation value distributions of three types of corre-
lation matrices ( transcript-transcript, metabolite-transcript and metabolite-metabolite)
were analysed by integrating various annotation libraries (protein-protein interactions,
protein domains, AraCyc pathways, KEGG pathways and GO terms for biological pro-
cesses) of four different data sets. In more detail, conditional probabilities of observing
a correlation value given that the gene/metabolite pairs share an annotation label were
constructed. The goal of this analysis was to elucidate the global connection between
functional relationship and the observed correlation values. Further, the predictive power
of correlation values to infer functional similarity between a pair of molecules were exam-
ined.

In the second part, to address the question of which functionally related molecules are
deregulated and how these processes related to each other, a novel enrichment strategy is
introduced which was developed throughout the thesis. The algorithm takes a full corre-
lation matrix and a set of annotation labels as an input and detects (pairs of) biological
annotation categories (e.g. GO terms or KEGG pathways) for which highly positive or
negative correlation values are statistically enriched. The enrichment method relies on
the determination of the overrepresentation of bin counts in the histogram of observed
correlation values. Of particular importance were the histogram bins at the tails of the
correlation value range, since they are thought to be most valuable of conveying informa-
tion of the underlaying biological system. Hence, the algorithm putatively reveals co- or
counter-regulated functionally related groups of molecules. Several alternative statistical
tests such as bin-specific p-value estimation as well as estimating the alternative distribu-
tion via Jackknife or bootstrap resampling were compared. Furthermore, the robustness
of the algorithm’s output with respect to different histogram bin sizes was investigated,
which revealed high agreement of the top ranked results of the algorithm variants.

In the last part of the thesis, the results of the application of the novel enrichment algo-
rithm to four transcriptome and metabolome time-series experiments are presented (sul-
phur deficiency in roots and leaves [19], cold acclimation [17] and CO2 elevation [16]). For
each data set, a range of combinations of correlation matrices (e.g. transcript-transcript
or metabolite-transcript) and annotation libraries (e.g. KEGG pathways or GO terms)
were analysed. Additionally, the enrichment of single annotation labels as well as pairs
of annotation labels was determined. Importantly, to ease the interpretation process, the
results of the pairwise enrichment approach were visualized as networks with nodes corre-
sponding to the annotation labels and links corresponding to the statistically significant
enrichment of high absolute correlation values.
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Finally, for each data set, a literature survey was conducted to assess the quality and
plausability of the produced results, which proved the general applicability and usefulness
of the proposed approach.
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Chapter 2

Methods

2.1 Dataset

Throughout the thesis four data sets were used, each consisting of time-series profiles of
microarray experiments and measurements of metabolite levels using mass spectrometry.
All data sets stem from measurements in Arabidopsis thaliana and have already been
subject to filtering and normalization. The number of time steps and sampling points
varied among the data sets. The data sets were downloaded from the web1.

The cold stress response data set was generated by Kaplan et al. [17] on Affymetrix
ATH1 microarrays and GC-TOF mass spectrometry in order to study regulatory features
of the metabolome and transcriptome profiles due to cold acclimation.

The sulfur deficiency experiments in leaves and roots were conducted by Hirai et al.
[19] utilizing custom Agilent arrays and FT-mass spectrometry complemented by HPLC
and capillary electrophoresis.

The CO2 response data were acquired using TIGR microarrays and GC-TOF mass
spectrometry by Dutta et al. [16]. Table 2.1 briefly summarizes the experimental settings.
For a more detailed description, consult the stated references.

Table 2.1: The summary of the data sets lists the number of transcripts and metabolites
after filtering. The number within the parenthesis correspond to known metabolites, as
opposed to the total number of measured metabolites to the left. For each experiment the
time points are listed.

Description No. Trans. No. Metab. (Tot./Annot.) Timepoints [h] Source
Cold 6680 302 (87) 0/1/4/12/24/48/96 [17]
CO2 7138 284 (76) 0/1/3/6/9/12/18/24/30 [16]

S-def. root 7342 43 (43) 3/5/12/24/48/168 [19]
S-def. leaf 7342 28 (28) 3/5/12/24/48/168 [19]

The experimental data sets are integrated with several annotation databases, which
were partly obtained from TAIR2 [25] and partly from bioconductor annotation packages
[26]. Firstly, a set of protein-protein interactions (PPIs) was downloaded from AtPIN
[27], which is available at TAIR. Secondly, a collection of protein domains (PDs) con-
sisting of entries from various databases and protein domain extraction applications was
downloaded from TAIR. As a large part of the protein domains from different databases

1http://www.cin.ufpe.br/~igcf/Metabolites
2http://www.arabidopsis.org
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are redundant, a particular emphasis shall be placed on InterPro annotations [28], since
those where used for the enrichment approach, which is introduced later in this thesis.

The third annotation resource consists of AraCyc reaction pathways [29] (available at
TAIR) which assigns genes to their biochemical reaction pathway focusing on Arabidop-
sis species. In addition, a hierarchical organized component classification system was
downloaded from KEGG BRITE using the web interface (’components with biological
roles’)3.

2.2 Framework

All programming was carried out using the statistical programming environment R, Ver-
sion 2.12.2 [30].

Apart from the resource at TAIR, KEGG pathways were incorporated into the anal-
ysis from the bioconductor annotation package KEGG.db, Version 2.4.5 [31] and gene
ontology (GO) terms were incorporated from GO.db, Version 2.4.5 [32]. From GO, bi-
ologcial processes (GO-BP) was used. Venn diagrams were drawn using the R package
VennDiagram, Version 1.0.1 [33].

The results of the enrichment of correlation values among pairs of annotation labels
were visualized using Cytoscape, Version 2.8.1 [34]. Cytoscape is a network visualization
tool, which one the one hand is easy to use and, on the other hand, provides a broad
range of visualization features (e.g. node and edge annotations).

2.3 Notation & Nomenclature

Throughout the thesis Pearson’s correlation measure will be used to measure the correla-
tion between pairs of molecules. As described in the introduction section, one reason for
this choice is that other method (e.g. non-parametric correlation measures or the mutual
information) have a lower statistical power, which is in particular problematic for small
sample sizes (6-9 biological replicates) as is the case for the data sets herein. Note how-
ever, in general other correlation measures would also be applicable. Pearson’s correlation
coefficient between the ith and jth molecule (e.g. transcript or metabolite levels) over n
time points is given by following formula

(R)ij =

∑n
k=1(xik − xi.)(xjk − xj.)√∑n

k=1(xik − xi.)2 ·
∑n

k=1(xjk − xj.)2
(2.1)

In this expression, xik denotes the measurement of molecule i at time point k and xi.
denotes the estimated mean across all time points for the same molecule.

In particular, microarray measurements for the transcript levels are summarized by
the matrix T ∈ Rm×n, where m corresponds to the number of measured transcripts and n
corresponds to the number of experimental conditions. Similarly, the mass spectrometry
measurements of the metabolites shall be denoted by M ∈ Rp×n with p denoting the
number of metabolites.

Based on these measurement matrices, the correlation matrices are constructed by
applying Formula 2.1 for all molecule pairs of the measurement matrices. Thus, for
each biological condition a transcript-transcript correlation matrix denoted by RTT ∈
[−1, 1]m×m, a metabolite-metabolite correlation matrix denoted by RMM ∈ [−1, 1]p×p and
a metabolite-transcript correlation matrix denoted by RMT ∈ [−1, 1]p×m are computed.

3http://www.genome.jp/kegg/brite.html
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The proposed method integrates correlation matrices with biological annotation data-
bases (e.g. KEGG pathways, GO terms, InterPro domains, etc.) to identify single anno-
tations and pairs of annotations for which high correlation values are enriched within this
subpart of the correlation matrix. The entirety of significantly enriched annotation pairs
is visualized as a graph structure, which shall for convenience be referred to as enrich-
ment network herein. In the enrichment network, nodes represent the annotation label
and edges indicating enriched high correlation values between the nodes.

2.4 Global Correlation Structure and Functional Re-

lationship

To evaluate the correlation structure on a global scale, knowledge about functional rela-
tionship was integrated with the correlation matrices for this analysis. For all experimen-
tal conditions, RTT , RMM and RMT was calculated using Pearson’s correlation measure.
The range of possible correlation values [−1, 1] was discretized to 10 equally sized bins.
Subsequently, the conditional probabilities of the form

P (Corr = c|common functional property) (2.2)

were computed for RTT and the following annotation sources:

• Protein Interactome (Set of all PPIs)

• Protein Domains (PDs)

• AraCyc pathway

• KEGG pathway

• Gene Ontology terms for biological processes (GO-BP)

Note, that for this analysis, all available protein domain were used (e.g. InterPro, Pfam,
HMMTigr). Further, the conditional probabilities for RMM and RMT were integrated
with KEGG pathways.

For example, to integrate gene ontology terms, the conditional probabilities were com-
puted by the following expression

P (Corr = c|common GO term) =
count(Corr = c, any common GO label)

count(any common GO label)
(2.3)

and

P (Corr = c|no common GO term) =
count(Corr = c, no common GO label)

count(no common GO label)
(2.4)

Where count(.) denotes the number of joint or marginal counts over all pairs of genes /
metabolites for the data sets.
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2.5 Enrichment Analysis

The algorithm (see Section 3.2) is applied to the combinations of correlation matrices and
annotation library shown in Table 2.2 for all data sets. Note that for the enrichment anal-
ysis with PDs only InterPro domains were used, firstly, because of the high redundancy
among the PD databases and, secondly, InterPro is the most comprehensive PD library in
terms of the number of PD entries. For the within and among annotation label enrichment
analysis on RTT only annotation labels with at least 10 gene assignments and at most
100 gene assignments were used. For the within and among annotation label enrichment
analysis on RMM only KEGG pathways with at least 5 metabolite assignments were used.
For the enrichment analysis on RMT only pathways with at least 5 metabolites/genes and
at most 100 metabolites/genes were used.

Table 2.2: Enrichment within/among functional groups. For all data sets, the combination
of annotation library and correlation matrix used for the analysis is indicated by a tick.
For the intergration of KEGG BRITE classes (compounds with biological roles), only
within annotation label enrichment was performed. Moreover, only InterPro domains
were considered for the enrichment analysis based on protein domains, on the one hand,
because of the high redundancy compared to other protein domain databases and, on the
other hand, since InterPro is the most comprehensive protein data base available at TAIR.

AraCyc KEGG PDs GO-
BP

KEGG
BRITE

RTT

RMT

RMM

The results of the within and between annotation label enrichment analysis were stored
in terms of tables with the associated p-values or P (erroneous decision) for each bin. For
all cases, only the bins at the tail of the histogram were considered for the enrichment
analysis (e.g. [−1,−0.8) and [0.8, 1] or [−1,−0.4) and [0.4, 1]). The significance level
was chosen to be α = 5% for the p-values as well as for P (erroneous decision) in all
cases. P-values were adjusted for multiple testing using FDR [35]. It is important to
note that different variants of the algorithm were used and presented throughout the
results chapter in order to keep the density of the network at a level which is easy to
interpret (see Tables 2.3, 2.4, 2.5 and 2.6 for the chosen algorithm variants). In the case
of pairwise enrichment analysis, the ensemble of significantly enriched pairs of annotation
labels were visualized in terms of a network with nodes corresponding to annotation labels
and edges indicating the significant enrichment of high absolute correlation values, with
green and red edges corresponding to enrichment of positive and negative correlation
values, respectively. The networks offer great benefits for the systems-wide interpretation
process. Significant pairwise interactions are stored in a SIF (simple interaction file)
and which are subsequently loaded into Cytoscape [34] for the purpose of visualization.
Instead of the annotation label identifiers, the annotation label descriptions were shown
to the user (e.g. ’Glycolysis / Gluconeogenesis’ instead of KEGG ID ’00010’). Hence, the
enrichment networks were augmented by node description attributes (*.NA files (node
attribute file)) from the annotation databases (e.g. GO description in GO.db or pathway
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Table 2.3: Analysis of the S-def root data set: The different algorithm variants are listed
with the used parameter settings for the S-def in roots data set. The CV intervals indicate
the interval which was tested for enrichment. The chosen statistical test is given in the
fifth’s row. In case of truncation, the 120 smallest p-values (60 for the positive and
negative interval, respectively) were visualized.

Corr.
Matr.

Annot. within /
between

CV intervals Test

RMM KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RMM KEGG between [−1,−0.8), [0.8, 1] bin-specific p-values
RMT KEGG both [−1,−0.8), [0.8, 1] Jackknife
RTT AraCyc within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT AraCyc between [−1,−0.8), [0.8, 1] Jackknife
RTT KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT KEGG between [−1,−0.8), [0.8, 1] Bootstrap
RTT GO within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT GO between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation
RTT PD within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT PD between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation

Table 2.4: Analysis of the S-def leaf data set: The different algorithm variants are listed
with the used parameter settings for the S-def in leaves data set. The CV intervals indicate
the interval which was tested for enrichment. The chosen statistical test is given in the
fifth’s row. In case of truncation, the 120 smallest p-values (60 for the positive and
negative interval, respectively) were visualized.

Corr.
Matr.

Annot. within /
between

CV intervals Test

RMM KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RMM KEGG between [−1,−0.8), [0.8, 1] bin-specific p-values
RMT KEGG both [−1,−0.8), [0.8, 1] bin-specific p-values
RTT AraCyc within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT AraCyc between [−1,−0.8), [0.8, 1] Jackknife
RTT KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT KEGG between [−1,−0.8), [0.8, 1] Bootstrap
RTT GO within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT GO between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation
RTT PD within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT PD between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation

18



Table 2.5: Analysis of the cold acclimation data set: The different algorithm variants are
listed with the used parameter settings for the cold acclimation data set. The CV intervals
indicate the interval which was tested for enrichment. The chosen statistical test is given
in the fifth’s row. In case of truncation, the 120 smallest p-values (60 for the positive and
negative interval, respectively) were visualized.

Corr.
Matr.

Annot. within /
between

CV intervals Test

RMM KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RMM KEGG between [−1,−0.8), [0.8, 1] bin-specific p-values
RMT KEGG both [−1,−0.8), [0.8, 1] Bootstrap
RTT AraCyc within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT AraCyc between [−1,−0.8), [0.8, 1] Jackknife
RTT KEGG within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT KEGG between [−1,−0.8), [0.8, 1] Bootstrap
RTT GO within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT GO between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation
RTT PD within [−1,−0.8), [0.8, 1] bin-specific p-values
RTT PD between [−1,−0.4), [0.4, 1] bin-specific p-values +

truncation

Table 2.6: Analysis of the CO2 elevation data set: The different algorithm variants are
listed with the used parameter settings for the carbon dioxide data set. The CV intervals
indicate the interval which was tested for enrichment. The chosen statistical test is given
in the fifth’s row. In case of truncation, the 120 smallest p-values (60 for the positive and
negative interval, respectively) were visualized.

Corr.
Matr.

Annot. within /
between

CV intervals Test

RMM KEGG within [−1,−0.8),[0.8, 1] bin-specific p-values
RMM KEGG between [−1,−0.8),[0.8, 1] bin-specific p-values
RMT KEGG both [−1,−0.8),[0.8, 1] bin-specific p-values
RTT AraCyc within [−1,−0.8),[0.8, 1] bin-specific p-values
RTT AraCyc between [−1,−0.4),[0.4, 1] bin-specific p-values
RTT KEGG within [−1,−0.8),[0.8, 1] bin-specific p-values
RTT KEGG between [−1,−0.8),[0.8, 1] Bootstrap
RTT GO within [−1,−0.8),[0.8, 1] bin-specific p-values
RTT GO between [−1,−0.4),[0.4, 1] bin-specific p-values +

truncation to 120 top
ranked pairs

RTT PD within [−1,−0.8),[0.8, 1] bin-specific p-values
RTT PD between [−1,−0.4),[0.4, 1] bin-specific p-values +

truncation to 120 top
ranked pairs
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description in KEGG.db) which were automatically generated by an R-script.

2.6 Analysis of Related Metabolites

Biologically related chemical compounds were grouped according to KEGG BRITE data-
base ’Compounds with biological roles’, which is available on the web4 (see Table 2.2).
This database hierarchically groups KEGG compound into biologically related compound
classes (e.g. amino acids, monosaccharides, etc.). Within compound class enrichment
analysis for high correlation values was conducted by means of the proposed algorithm in
Section 3.2.

4http://www.genome.jp/kegg/brite.html
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Chapter 3

Results

3.1 Analysis of the Distribution of Correlation Val-

ues

This section covers the examination of the distribution of correlation values for each of
the four data sets. The main question, which shall be addressed here, is whether the
distribution of correlation values depends on the functional relationship of two molecules
(e.g. genes tend to be positively correlated if they participate in a similar function). The
analysis is performed on the correlation matrices RTT , RMM and RTM for each data set
separately. For RTT , protein-protein interactions, protein domains, GO terms, KEGG
pathways and AraCyc pathways are integrated into the analysis. RMM and RTM are
examined using KEGG pathways.

Figures 3.1, 3.3 and 3.2 illustrate the conditional and marginal probabilities of the
correlation values given the particular biological categories. Tables 3.1, 3.2 and 3.3 sum-
marize the numbers of pair instances which belong to a particular group.

The analysis drawn on RTT (see Figure 3.1) suggests that some of the annotation
libraries are particularly useful for explaining a certain fraction of the high correlation
values. As can be seen, in all experimental conditions, the conditional distributions of
correlation values given the existence of protein-protein interactions, a common protein
domain or a common AraCyc pathways differ markedly from the marginal distribution
(shown in black). Surprisingly, gene pairs with common GO terms or common KEGG
pathways yield conditional distributions which are essentially equal to the marginal dis-
tribution. Similarly, the conditional distribution of correlation values given ’no common
biological annotation’ is very similar to the marginal distribution. Based on these ob-
servations the distribution of correlation values is (almost) conditionally independent of
common GO terms and KEGG pathways. More formally,

P (Corr|no common annotation) ≈ P (Corr|common GO term) (3.1)

≈ P (Corr|common KEGG ID) (3.2)

≈ P (Corr). (3.3)

Unfortunately, although there is apparently a shift towards positive correlation in the
conditional distributions for an observed PPI, common protein domain or common Ara-
Cyc pathways (as opposed to KEGG pathways and GO terms), it is not possible to
infer i.e. a common biological function or physical interaction based on the correlation
values according to the above mentioned probability distribution. For instance, con-
sider the problem if inferring P (existing PPI|Corr > 0.9), which might be rephrased
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as ’How probable is it that the pair of proteins, associated with the transcripts, phys-
ically interact with each other if the correlation value > 0.9 was observed?’. This can
be addressed by Bayes theorem in a straight forward manner. However, the issue which
arises here is that the prior probability of observing a pair sharing a functional annotation
P (common annotation label) is much lower than the prior probability of observing no
common annotation label P (no common annotation label). For instance, observing a
pair of genes with known or putative protein-protein interactions on RTT is given by

P (existing PPI)

P (no existing PPI) + P (existing PPI)
=

4235

24765123
≈ 10−4 (3.4)

(compare Table 3.1 for cold data set). Hence, this renders the inference task impossible.
Nevertheless, this analysis confirms a connection between annotation labels (e.g. for

AraCyc) and observed correlation values, which underlines the potential of integrating
correlation matrices with biological annotations. A noteworthy point is the observation
of a huge fraction of highly positive and negative correlation values in the cold acclima-
tion data set, which result from the fact that a large fraction of genes are differentially
expressed by the cold acclimation (see Figure 3.1a). This is particularly problematic for
the interpretation of specific pairwise correlations, since there are overwhelmingly many
high correlation values resulting from indirect effects.

Table 3.1: Counts of transcript-transcript pairs which share a particular annotation

Cold stress CO2 stress S-def. leaf S-def. root
# Genes 6680 7138 7342 7342
# Pairs 24765123 23328734 24925810 24925688
# Existing PPIs 4235 2539 4789 4789
# Common PDs 124620 16553 8665 8665
# Common AraCyc pathways 4923 2600 10652 10652
# Common GO terms 6914944 6201557 6053876 6053834
# Common KEGG IDs 43098 38539 42588 42588

Table 3.2: Counts of metabolite-metabolite pairs which share a particular annotation

Cold stress CO2 stress S-def. leaf S-def. root
# Metabolites 302 284 43 28
# Pairs 45451 40186 378 903
# Common KEGG IDs 1232 842 114 234

Table 3.3: Counts of transcript-metabolite pairs which share a particular annotation

Cold stress CO2 stress S-def. leaf S-def. root
# Metabolites 302 284 43 28
# Genes 6680 7138 7342 7342
# Pairs 1703400 2027192 205576 315706
# Common KEGG IDs 9706 9807 3453 4335

Next, the probability distributions over correlation values on RMM are examined (see
Figure 3.2). In all four conditions, the conditional probability of observing a high corre-
lation value (e.g. C >= 0.8) is higher given that they share a KEGG pathway relative
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(a) (b)

(c) (d)

Figure 3.1: Probabilities of transcript-transcript correlations given various forms of func-
tional dependence for each experimental condition. (a), (b), (c) and (d) show the cor-
relation value distributions on the cold data set, the CO2 data set and the sulphur de-
ficiency in leaves and roots, respectively. The marginal distribution is shown in black.
The conditional probabilities of observing some correlation value given known or putative
protein-protein interaction, shared protein domains, shared AraCyc pathways and shared
GO terms are shown in blue, green, turquoise and red, respectively. The conditional prob-
ability of observing a correlation value given that there is no functional relationship is
shown in orange.
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(a) (b)

(c) (d)

Figure 3.2: Probabilities of metabolite-metabolite correlations. (a), (b), (c) and (d) show
the correlation value distributions on the cold data set, the CO2 data set and the sulphur
deficiency in leaves and roots, respectively. The marginal distribution of observing some
correlation value is shown in black. The conditional probability of observing some correla-
tion value given a common KEGG pathway for the metabolites is shown in light gray. The
conditional probability of observing a correlation value given that there is no functional
relationship corresponds to the orange curve.
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to the marginal distribution. In particular, for the cold acclimation and the sulphur star-
vation measured in roots a considerable difference between the probabilities is present,
whereas, for the remaining two data sets, the probabilities differ only slightly. For the
cold acclimation and the CO2 elevation the marginal distribution of correlation values is
markedly shifted towards positive values. This observation is far less present in sulphur
starvation data sets.

The last part of this section turns to the analysis of the probability distribution of
correlation values on RMT (see Figure 3.3). The conditional probability of observing a
correlation value for a metabolite-transcript pair with shared KEGG pathway is very sim-
ilar to the marginal distribution of correlation values for all data sets. This suggests that
in general there is no clear connection between the observed metabolite-transcript corre-
lation values and the pathway co-occurance of these pairs. Hence, metabolite-transcript
correlation values are much harder to interpret.
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(a) (b)

(c) (d)

Figure 3.3: Probabilities of metabolite-transcript correlations. (a), (b), (c) and (d) show
the correlation value distributions on the cold data set, the CO2 data set and the sulphur
deficiency in leaves and roots, respectively. The marginal correlation value distribution
is shown in black. The conditional correlation value distribution given a common KEGG
pathway for the metabolites/genes is shown in light gray. The conditional probability of
observing a correlation value given that there is no functional relationship corresponds to
the orange curve.
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3.2 Algorithm - Enrichment of Correlation Values in

Specific Regions of the Correlation Matrix

In the previous section, the global properties of correlation profiles conditioned on the
functional categories was analysed in detail. However, this does not provide any in-
formation on which biological processes are subject to regulatory activity in a specific
experimental context. Thus, the goal of this section is to give the outline for a method
which discovers biological annotations or pairs of annotations that exhibit a closer statis-
tical relation than would be expected by chance. The method uses the correlation values
between groups of molecules (e.g. with the same annotation label) to test for statistical
overrepresentation of highly positive or negative correlation values.

The algorithm requires a full correlation matrix (e.g. RTT , RMM or RMT ) and an
annotation library. Basically, the method can be structured in four phases. (1) A sub-
correlation matrix is extracted for the current annotation label; (2) a histogram of the
correlation values in the submatrix is generated; (3) permute the molecule labels for
1000 times, extract the sub-correlation matrix and draw a histogram for each permuted
instance; (4) use the counts for each bin over all permuted histogram to compute a p-value
for each bin. Figure 3.4 illustrates the algorithm for within annotation label enrichment
analysis in terms of a flow chart. Similarly, Figure 3.5 schematically depicts the procedure
for the enrichment analysis of pairs of annotation labels. In addition, Figure 3.5 also shows
a fifth’s phase, which was performed manually. In this phase the resulting files (in simple
interaction file (SIF)), which are generated by the enrichment procedure, were loaded
into the Cytoscape environment followed by adapting the visualization. Throughout the
thesis, several variants of the algorithm were considered, which shall be explained in more
detail in the subsequent sections.

3.2.1 Phase 1: Generation of the Correlation Matrix

The algorithm requires a full correlation matrix (e.g. RMM , RMT or RTT ) as well as
an annotation library. The generation of the entire correlation matrix is described in
the methods section. This section discusses the properties of the submatrices which are
extracted from the full matrix.

RTT and RMM are used for both within and among annotation label enrichment anal-
ysis. For the within annotation label version, a submatrix of the full correlation matrix
is used, which corresponds to the currently tested annotation label (e.g. all gene which
correspond to a particular KEGG pathway). This submatrix is quadratic and symmetric,
hence, only the upper-right (or equivalently in the lower-left) triangular part of the matrix
is used for the analysis. This is illustrated schematically in Figure 3.6a.

For the among annotation label enrichment, the submatrix consists of all cross correla-
tions between the molecules of the two annotation labels (see Figure 3.6b). In general this
submatrix is neither symmetric nor quadratic, therefore, all pairs are used for the analysis.
Importantly, molecules which are assigned to both annotation labels are removed in this
step, since those are deterministically set to one and would therefore bias the analysis.

In addition to the previously discussed correlation matrices, the algorithm is also used
forRMT . In this case, within and among annotation label enrichment analysis is performed
in the same run. In general, RMT is neither symmetric nor quadratic. Similarly as above,
for the current annotation label or pair of labels all metabolite-transcript correlation
are extracted (e.g. all metabolites and all transcripts of glycolysis). Since the entire
matrix is not symmetric, the submatrix is also not symmetric, hence, all correlation
values are used for the enrichment analysis (see Figure 3.6c). If the annotation label is the
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Figure 3.4: Schematic outline of the algorithm for the evaluation of enriched correlation
values within functional categories. The algorithm requires an annotation library (e.g.
KEGG pathways) and a correlation matrix (e.g. RTT ). It repeatedly extracts a submatrix
(light blue, phase 1) which corresponds to the current annotation label (light gray, phase
1) and generates a histogram of observed correlation values. Subsequently, it generates a
null distribution for each bin of the histogram by a permutation approach, which in turn
is used to compute the p-values.
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Extract sub-correlation matrix
for the current pair of annotation labels

Figure 3.5: Schematic outline of the algorithm for the evaluation of enriched correla-
tion values among functional categories. The algorithm requires an annotation library
and a correlation matrix. It repeatedly extracts a submatrix (light blue, phase 1) which
corresponds to the current pair of annotation labels (light gray and beige, phase 1) and
generates a histogram of observed correlation values. Subsequently, it generates a null
distribution for each bin of the histogram by employing a permutation approach, which in
turn is used to compute the p-values. In the enrichment network, edges correspond to sig-
nificantly enriched high correlation value between the adjacent nodes (annotation labels).
It is important to note that only the tail bins of the histogram are considered to build the
enrichment network.
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same for metabolites and transcripts, there is only one possible submatrix configuration
to be tested. In contrast, for the between annotation label enrichment there are two
submatrices to be tested: (1) Metabolites of label A correlated with transcripts of label
B and (2) metabolites of label B correlated with transcripts of label A. Moreover, for
between annotation label enrichment, all metabolites and transcripts that occur in both
pathways are removed from the analysis.

(a) (b)

(c)

Figure 3.6: Schematic representation of the submatrix extraction. (a) and (b) are squared
and symmetric matrices (e.g RMM or RTT ), which is indicated by the diagonal line. (c) in
general is non-squared and non-symmetric (e.g. RMT ). The shaded regions correspond to
correlations of molecules that correspond to a particular pathway. In (a), the interest lays
on correlation values within a particular functional category (light blue region), since the
submatrix is symmetric, the analysis is drawn on the upper triangular part of the matrix.
In (b), the interest lays on the distribution of correlation values between molecules of
two distinct categories. This submatrix is in general non-squared and non-symmetric and
hence, the whole submatrix needs to be taken into consideration for the further analysis.
In (c), different data sources are integrated by correlation matrices, thus, the data types
are map onto the same functional annotations (e.g. biochemical pathway for transcripts
and metabolites). The entire matrix is non-symmetric and non-squared, thus, the four
submatrices (orange submatrices and light blue submatices) are again non-symmetric and
non-squared. Note that although the figures exemplify transcript-transcript correlations,
the same applies i.e. to metabolite-metabolite correlation matrices.

3.2.2 Phase 2: Generation of an Histogram of Observed Corre-
lation Values

With the submatrix (see discussion above), a histogram over the correlation values is
computed. Therefore, the number of bins over the correlation value interval needs to be
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specified. Importantly, this thesis claims that the histogram profile is indicative of co-
regulatory processes for a prespecified groups of molecules. That is, i.e. for co-responding
molecules the frequency or probability mass of correlation values is shifted towards positive
values. Conversely, reciprocal influence manifests in a shift towards negative correlation
values (e.g. pathway A is induced, while pathway B is silenced).

To address the question of which bins are most informative to draw a statistical test
on, two variants are compared. Further, the robustness of the algorithm with respect to
this parameter is assessed. (1) The bin intervals corresponding to [−1,−0.8) and [0.8, 1]
were used for the enrichment analysis and (2) bin intervals ranging from [−1,−0.4) and
[0.4, 1] were used. The results of this analysis are presented in Section 3.3.

3.2.3 Phase 3: Permutation of the Molecule Labels to Generate
a Null Distribution of Correlation Value Histograms

To decide whether an annotation label or a pair of annotation labels represents a bi-
ologically relevant association, a statistical test was developed relying on permutation
sampling. To construct the null distribution, gene or metabolite labels are randomly
permuted for 1000 times. For each permutation step the histogram is computed. The
estimated count distribution for each bin is subsequently fitted to a gamma distribution.
The parameters of the gamma distribution are stored and reused for annotation labels
with the same set cardinality NL =

∣∣{m ∈ M : isAttributedWith(m,L)
}∣∣ with M rep-

resenting the set of all molecules (e.g. all spotted microarray probes). That is, i.e. the
number of genes assigned to KEGG pathway L. Consequently, permutation sampling only
needs to be done once for each annotation label with the same cardinality NL, which yields
computational efficiency, if taken into account.

3.2.4 Phase 4: Estimation of the P-value or P(Erroneous deci-
sion)

The null distribution is estimated for each bin separately implying bin-specific p-value
estimation. Note that only the bins representing the tails of the correlation value range
are considered for the enrichment analysis, rather than those in the middle of the range,
since the former once are thought to be much more valuable for elucidating changes in
biological processes (e.g. [0.8, 1] is biologically more relevant than [0, 0.2)). In this section
four variants to assess the statistical significance of the observed bin counts are presented.

The first way of testing for overrepresentation of CVs is by means of estimating the
bin-specific p-values using the gamma distribution which is given by

p-value =

∞∫
Cobserved

βα

γ(α)
xα−1 exp−βx dx (3.5)

with Cobserved denoting the observed number of correlation values in the bin of interest.
α denotes the shape parameter and β the rate, which, as mentioned above, depend on
the cardinality of the annotation label NL. The p-values are adjusted for multiple testing
using FDR [35].

In the second approach, in addition to the estimated null distribution the alternative
distribution is estimated, again by utilizing a sampling strategy, namely bootstrapping.
Based on the observed submatrix entries for a particular annotation label, the correlation
values are resampled with replacement for 100 times. Each time, a histogram is generated

31



which in the end gives rise to the alternative distribution. Analog to the null distribution,
the alternative distribution is represented in terms of a fitted gamma distribution. Hence,
the following quantity is estimated using the null and alternative distribution

P (erroneous decision) = P (false negative) + P (false positive) (3.6)

=

t∫
0

p(x|αbs a, βbs a)dx+

∞∫
t

p(x|αnull, βnull)dx (3.7)

With αbs a and βbs a representing the parameters of gamma distribution of the boot-
strapped alternative distribution, whereas, αnull and βnull represent the parameters of the
null distribution. The parameter t corresponds to the significance level which is found
by minimizing the above expression with respect to t. For the optimization the optimize
method of R is utilized. Note however that bootstrapping assumes independently and
identically distributed (i.i.d.) samples which is obviously not the case for correlation val-
ues. In other words, the CVs are inherently related with each other. In this respect the
approach violates the statistical independence assumption. Nevertheless, as discussed in
the case studies, the results for this test approach are comparable to the other significance
tests.

Similar to the second approach, the third test again makes use of a sampling strategy
to estimate the alternative distribution. In this case, however, 100 Jackknife samples
are drawn such that each time one row and one column are left out from the original
submatrix, which correspond to leaving out one or two molecules for the within or between
annotation label enrichment analysis, respectively. This approach corrects for the violated
independence assertion of the bootstrap version. The resulting alternative distribution is
again fitted to a gamma distribution. Significant instances are computed analogously to
the bootstrapped version by estimating P (erroneous decision). Note, that since Jackknife
reduces the originally observed submatrix, the null distribution is also estimated for the
reduced submatrix.

The fourth method, though only of minor importance for the rest of the thesis, is a
weighted χ2-test. As opposed to the previous approaches which estimate the significance
for each bin separately, this variant seeks to summarize the information over the entire
histogram to generate one p-value. The quantile is computed by

χ2
test =

N∑
i=1

(wi ·Oi − wi · Ei)2

wi · Ei
(3.8)

with N denoting the number of histogram bins, Oi denoting the observed count for bin
i and Ei representing the expected number of correlation values in bin i. Ei results from
the null distribution (see above). The weights were arbitrarily chosen to be the squared
values of the correlation values for the bin means (e.g. bin 1 corresponds to the interval
[−1,−0.8) for which the weight is set w1 = 0.92). The intention for the weighted χ2-test
was to place more emphasis on the tails of the histogram (e.g. high absolute correlation
values), while at the same time down-weighting small correlation values. The degree of
freedom was set to #bins − 1. The resulting p-value was adjusted for multiple testing
using FDR [35]. Note that this approach also suffers from the violated i.i.d. assumption.
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3.3 Analysis of the Algorithm’s Output

3.3.1 Comparison of Outcomes for Different Statistical Tests

Four different statistical tests have been designated to test for significant enrichment of
correlation values: (1) Bin-specific p-value estimation, (2) bootstrapped and (3) Jackknife
P (erroneous decision) estimation as well as (4) p-value estimation according to weighted
χ2-test. Thus, the aim of this section is to determine the overlap between the test results.

The comparison was drawn on the CO2 data set for within annotation label enrichment
on RTT using all annotation databases.

Table 3.4: Numbers of statistically significant categories on the CO2 data set. The sig-
nificance level was set to 5% for all tests. The comparison of the bin-specific statisti-
cal test variants was drawn on the correlation value intervals [−1,−0.8), [−0.8,−0.6),
[−0.6,−0.4) as well as , [0.4, 0.6), [0.6, 0.8) and [0.8, 1]. Furthermore, weighted χ2 used
the entire histogram, consisting of 10 equally sized bins, for the test.

Functional category AraCyc KEGG GO InterPro
Number of Tests 62 81 283 84
Gamma dist. + adj. p-value 11 23 33 44
Bootstrapped P(erroneous decision) 4 9 12 21
Jackknife P(erroneous decision) 8 23 39 38
Weighted χ2 12 20 21 40

The significance assertions of the bin-specific tests were compared for agreement for
the correlation value intervals [−1,−0.8), [−0.8,−0.6), [−0.6,−0.4) as well as , [0.4, 0.6),
[0.6, 0.8) and [0.8, 1], separately. Furthermore, the weighted χ2-test used the entire his-
togram. The bin-specific tests were defined to be in concordance with the weighted χ2

variant if (1) weighted χ2-test indicated significance and the bin-specific variant results
in significance for at least one bin and (2) neither weighted χ2-test nor the bin-specific
variant (for any of the bins) indicate significance.

Using the p-value estimation for single bins, the p-value estimation relying on the
weighted χ2-test and P (erroneous decision) estimation according to the Jackknife proce-
dure, a comparable number of significant categories were found (see Table 3.4). Generally,
bootstrapped P (erroneous decision) seems to be the most stringent among the four pro-
posed test, because it yields the smallest number of significant instances.

Next, the inspection of the intersection of the produced results reveals strong concor-
dance with varying levels of stringency among the methods (see Figure 3.7). For all anno-
tation libraries, virtually all significance assertions of bootstrapped P (erroneous decision)
were also indicated by all other tests. Furthermore, the fraction of significant annotation
labels is approximately in the range of the defined significance threshold for the boot-
strapped P (erroneous decision). Based on the Venn diagrams, a significant overlap
among results can be observed. For instance, the fractions of significant instances found
by at least three of the tests are 0.53 (AraCyc), 0.79 (KEGG), 0.7 (InterPro domains)
and 0.44 (GO) (compare Figure 3.7).

3.3.2 Analysis of the Null Distribution

This section explores the appropriateness of the gamma distribution for fitting the null
distribution. In particular, two annotation labels shall be compared with markedly dif-

33



(a) (b)

(c) (d)

Figure 3.7: Venn diagrams showing the concordance between the results of the four dis-
cussed statistical tests for (a) AraCyc pathways, (b) KEGG pathways, (d) GO terms and
(c) InterPro domains. All tests were performed for within annotation label enrichment
for the CO2 data set.
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ferent numbers of molecule assignments NL to determine any biases due to variation of
the set sizes.

The analysis is performed for the AraCyc pathways ’Gluconeogenesis’ and ’Pentose
phosphate pathway’ on for the sulphur deficiency in roots data set on RTT . For both,
’Gluconeogenesis’ and ’Pentose phosphate pathway’, the comparison of the bin-specific
null distributions with their corresponding gamma-fitted null distributions reveals that
the shapes of the distributions are very similar (see Figures 3.8 and 3.9). There were
no adverse effect on the shape similarity caused by the particular bin choice (compare
different bins in Figures 3.8 and 3.9) as well as due to different annotation set cardinalities
(e.g. pentose phosphate pathway has set cardinality NPPP = 11, whereas, gluconeogenesis
has set cardinality NGluc = 30). Furthermore, the histograms of correlation values are
markedly different for the two AraCyc pathways (compare Figures 3.8a and 3.9a) which
underlines the appropriateness of the choice of the gamma distribution.

Another way of comparing the similarity of distributions is to generate Q-Q plots.
Figures 3.8 and 3.9 shows the corresponding Q-Q plots for the CV intervals [−1,−0.8),
[−0.8,−0.6), [0.6, 0.8) and [0.8, 1] of AraCyc ’Gluconeogenesis’ and ’Pentose phosphate
pathway’, respectively. The plots underscore the similarity of the distributions, though
for high quantiles the distributions seem to disagree slightly.

The last point in this section illustrates the p-value estimation for the examples of
within pathway enrichment analysis of AraCyc pathway ’Gluconeogenesis’ and ’Pentose
phosphate pathway’ for sulphur deficiency, RTT and CV interval [0.8, 1] (see Figures 3.8b
and 3.9b). P-value estimation is based on the fitted gamma distribution (red). The green
area indicates the 5% significance level and the blue vertical line marks the observed
number of correlation values for the correlation value interval [0.8, 1]. Additionally, the
histogram displays the number of observed correlation values due to permutation sampling
for this bin. According to the statistical test, ’Gluconeogenesis’ is statistically enriched for
highly positive correlation values, whereas, ’Pentose phosphate pathway’ is not enriched
for highly positive correlation values.

3.3.3 Analysis of the Bootstrap- and Jackknife-based Statistical
Test

This section examines the statistical tests which are based on resampling of the observed
correlation values to estimate the alternative distribution. Firstly, the general adequacy
of these resampling strategies shall be illuminated. Secondly, the representation of the
resampled alternative distributions in terms of gamma distributions is inspected.

As described in Section 3.2.4, the bootstrapped estimation of P (erroneous decision) =
P (false negative) + P (false positive) is performed by sampling correlation values with
replacement from the observed submatrix of the correlation matrix. This corresponds to
independently picking samples of pairs of molecules from the submatrix. The analysis re-
vealed that the bootstrapped alternative distribution is adequately represented by a fitted
gamma distribution (see Figure 3.10b). An illustration of a statistical test using boot-
strap resampling of the alternative distribution is shown in Figure 3.10a for the KEGG
pathway 00010, CV interval [0.8, 1], CO2 elevation and RTT . The bootstrapped alterna-
tive distribution (blue) is shown in contrast to the null distribution (red + histogram).
The significance threshold t was chosen such that P (erroneous decision) (green area) is
minimized.

Jackknife sampling seems to be a more natural choice to introduce variability to the
observed correlation matrix, because it preserves relationships among correlation values
within the matrix. In contrast, bootstrap sampling may result in correlation value his-
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 3.8: Comparison of null distribution histograms with fitted gamma distribution for
’Gluconeogenesis’ of AraCyc for the S-def roots data set. (a) shows the within pathway
correlation value distribution of AraCyc ’Gluconeogenesis’. The cardinality of this path-
way for the S-def roots data set is NGluc = 30. (b) Illustrates the estimation of the p-value.
The null distribution is shown in red and as a histogram. The green area corresponding
to the 5% significance level and the blue vertical line marks the observed number of CVs
in the bin [0.8, 1]. (c), (e), (g) and (i) show the histograms of the null distributions along
with the fitted gamma distribution (green) for the correlation value intervals [−1,−0.8),
[−0.8,−0.6), [0.6, 0.8) and [0.8, 1], respectively. Furthermore, (d), (f), (h) and (j) show
the Q-Q plots of the fitted gamma distribution against the originally sampled null distri-
butions for the correlation value intervals [−1,−0.8), [−0.8,−0.6), [0.6, 0.8) and [0.8, 1],
respectively.
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(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 3.9: Comparison of null distribution histograms with fitted gamma distribution
for ’Pentose phosphate pathway’ of AraCyc for the S-def roots data set. (a) shows the
within pathway correlation value distribution of AraCyc ’Pentose phosphate pathway’.
The cardinality of this pathway for the S-def roots data set is NPPP = 11. (b) illustrates
the estimation of the p-value. The null distribution is shown in red and as a histogram,
with the green area corresponding to the 5% significance level and the blue vertical line
marking the observed number of CVs in the bin [0.8, 1]. The histogram represents to
original null histogram, whereas the fitted gamma distribution is shown in red. (c), (e),
(g) and (i) show the histograms of the null distributions along with the fitted gamma
distribution (green) for the correlation value intervals [−1,−0.8), [−0.8,−0.6), [0.6, 0.8)
and [0.8, 1], respectively. Furthermore, (d), (f), (h) and (j) show the Q-Q plots of the fitted
gamma distribution against the originally sampled null distributions for the correlation
value intervals [−1,−0.8), [−0.8,−0.6), [0.6, 0.8) and [0.8, 1], respectively.
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tograms which are very unlikely caused by a real correlation matrix. For the purpose of
testing the appropriateness of the Jackknife variant, the KEGG pathways 00071, 00010
and 00020 are tested for within pathway enrichment for CO2 elevation and RTT . The
analysis revealed that the resampled alternative distributions are relatively dissimilar
compared to the corresponding gamma distributions (see Figures 3.11b, 3.11d and 3.11f).
The actual shape of the sampled alternative distribution depends on the set cardinality
and the overall shape of the histogram. Despite the limitation of the gamma distribution
to represent the Jackknife alternative distribution adequately, the test based on Jackknife
sampling performs comparably to the other test variants (see Section 3.3.1).

This can be explained by the fact that the optimized parameter t (which corresponds
to the significance threshold) is relatively robust against shape variations of the alterna-
tive distribution. Figures 3.11a, 3.11c and 3.11e presents the performance of Jackknife
sampling.

(a) (b)

Figure 3.10: Histogram of null distribution and bootstrapped alternative distributions for
RTT , KEGG pathway ’00010 - Glycolysis / Gluconeogenesis’ and CV interval [0.8, 1]. (a)
shows the null distribution (histogram + fitted gamma distribution in red) along with the
bootstrapped gamma fitted alternative distribution (blue). The green region corresponds to
P (erroneous decision). (b) shows the histogram along with the fitted gamma distribution
of the bootstrapped alternative distribution. The gamma distribution is also appropriate
for fitting the bootstrapped alternative distribution.

3.3.4 Variation of the Histogram Bin Sizes

Up to this section, the p-values and P (erroneous decision) were examined primarily
for the bin intervals [−1,−0.8) and [0.8, 1]. However, apparently, a broader range of
correlation value might be informative to determine biological association of a group of
molecules. That is, i.e. is there a shift towards positive correlation values in general, in
contrast to the question whether only high correlation values are observed. Figure 3.12
illustrates the motivation for using increased correlation value intervals. In this section,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Histogram of null distribution and Jackknife alternative distributions for the
CO2 data set and RTT using the CV interval [0.8, 1]. (a), (c) and (e) show three examples
of estimating P (erroneous decision) according to the Jackknife alternative distribution
for KEGG pathway 00071, 00010 and 00030, respectively. The null distribution is shown
in red and as a histogram along with the alternative distribution in blue. The green region
corresponds to P (erroneous decision). (b), (d) and (f) show the non-parametric densities
of the Jackknife alternative distribution in black along with the fitted gamma distribution
in blue.
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Figure 3.12: Boxplots of the bin-specific null distributions with observed correlation value
counts for the example of CO2 Elevation, RTT and the pair of AraCyc annotations ’aerobic
respiration – electron donor II’ and ’TCA cycle variation III (eukaryotic)’. For all ten
bins over the correlation value range a boxplot is drawn, which illustrates the estimated null
distribution for that bin. Furthermore, the observed number of correlation values in each
bin is marked (red circle). The majority of correlation values is shifted towards positive
correlation values. Hence, using a broader range of correlation values (e.g. [0.4, 1]) might
further increase statistical significance.
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(a) (b)

Figure 3.13: The Venn diagram illustrates the number of statistically significant pairs of
KEGG pathways for CO2 elevation and RTT . (a) shows the concordance between two test
variants of varying bin size and a fixed significance level of 5%. Bin size 0.6 corresponds
to using the CV intervals [−1,−0.4) and [0.4, 1], whereas, bin size 0.2 corresponds to the
intervals [−1,−0.8) and [0.8, 1]. Increasing the bin interval resulted in a massive increase
of significant results. (b) shows the overlap after truncation of the results from the tests
on [−1,−0.4) and [0.4, 1] to the 120 top smallest p-values.

the two significance test variants are compared. Firstly, CV enrichment is estimated
using bin-specific p-values for the correlation value intervals [−1,−0.8) and [0.8, 1], as
performed previously. Secondly, CV enrichment is estimated using bin-specific p-values
for the correlation value intervals [−1,−0.4) and [0.4, 1].

The enrichment analysis was performed for the CO2 elevation data set and pairs of
KEGG pathway on RTT . Out of 118 KEGG pathways a total of 2059 pairwise pathway
enrichment tests were performed.

The results of the two enrichment test variants were surprisingly divergent. CV en-
richment for the CV intervals [−1,−0.4) and [0.4, 1] generated an extraordinary high
number of significance assertions (707 significant KEGG pairs). In comparison, using the
CV intervals [−1,−0.8) and [0.8, 1] results in only 49 significant KEGG pairs (see Figure
3.13). Using the kappa statistics to estimate the concordance between the tests results in
κ = 0.075. These observations lead to the suggestion that the CV enrichment for the CV
intervals [−1,−0.4) and [0.4, 1] might have produced many false positives.

Hence, as the excessive number of significant pairwise interactions is implausibly high,
it was investigated whether the overlapping annotation label pairs exhibit smaller p-values
compared to the non-overlapping ones for the test variant on the interval [−1,−0.4) and
[0.4, 1] (compare Figure 3.13a).

Therefore, the set of significant KEGG pairs for the CV intervals [−1,−0.4) and
[0.4, 1] was truncated to the 120 top ranked pairs (60 for the positive correlations and
60 for the negative) according to the p-values. The comparison between the truncated
list of significant pairs on [−1,−0.4) and [0.4, 1] and the results on [−1,−0.8) and [0.8, 1]
revealed that 30 significant pairs still show overlap, which is a significant concordance (see
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Table 3.13b; kappa statistics = 0.276).

Table 3.5: Concordance between the enrichment tests of variant 1 (using the CV intervals
[−1,−0.8) and [0.8, 1]) and variant 2 (using the CV intervals [−1,−0.4) and [0.4, 1]). For
fixed significance level α =5% for both variants, variant 2 yields an excessive number of
significance assertions. After truncation of the result list of variant 2 to the 120 smallest
p-values (60 for the positive negative intervals, respectively), a substantial overlap of 30
significance assertions was observed. Kappa statistics was used to estimate the agreement
between the test variants.

Variant 1 Variant 2 Overlap kappa statistics
fixed 5% sig. level 49 707 44 0.075

truncated Variant 2 49 120 30 0.276
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3.4 Integration of Metabolite Profiles with Biological

Component Classes

In this section we analyse the correlation profile of functionally related metabolites as
classified by KEGG BRITE ’Compounds with biological roles’ [36]. The classification
system is characterized by three hierarchical levels. The aim of this section is to reveal
compound classes for which the assigned metabolites are enriched in positive or negative
correlation values. In other words, strongly correlated metabolite classes shall be identified
(e.g. high correlation of several amino acid species). The analysis was performed by
utilizing the introduced enrichment analysis approach with bin-specific p-value estimation
for the CV intervals [−1,−0.8) and [0.8, 1].

In 3 out of 4 experimental conditions, ’Peptides’ and its subclasses (Amino acids in
level 2 and Common/Other amino acids in level 3) were significantly enriched for high
positive CVs (see Tables 3.6, 3.7 and 3.8). For the cold stress data set, ’Monosaccha-
rides’ were significantly enriched for highly negative correlation values. For the sulphur
starvation in leaves, no statistically significant compound classes were found (see Table
3.6). However, the examination of the histograms of CVs for ’Peptides’ suggests highly
positive correlation of amino acids in all experimental conditions (see Figure 3.14).

Table 3.6: Correlated classes of metabolites for the COLD stress data set. According to
the hierarchical classification of metabolite groups, several amino acid levels were found to
be tightly correlated. ’Monosaccharides’ were found to be enriched for negative correlation
values. Note that ’Amino acids’ and ’Common/Other amino acids’ are subclasses of
’Peptides’.

Metabolite class Hierarchy level p-value for C ≤ −0.8 p-value for C ≥ 0.8
Peptides 1 – 3.07e-6

Amino acids 2 – 2.03e-6
Common amino acids 3 – 1.29e-5

Other amino acids 3 – 6.38e-6
Carbonhydrates 1 0.107 –
Monosaccharides 2 0.031 –

Table 3.7: Correlated classes of metabolites for the CO2 stress data set. According to
the hierarchical classification of metabolite groups, several amino acid levels were found
to be tightly correlated. Note that ’Amino acids’ and ’Common/Other amino acids’ are
subclasses of ’Peptides’.

Metabolite class Hierarchy level p-value for C ≤ −0.8 p-value for C ≥ 0.8
Peptides 1 – 0.0145

Amino acids 2 – 0.0086
Common amino acids 3 – 0.026

Other amino acids 3 – 0.024
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(a) (b)

(c) (d)

Figure 3.14: Histograms over correlation values for KEGG BRITE ’Peptides’. (a), (b),
(c) and (d) show the histograms of the CV frequency within metabolites of ’Peptides’ for
the CO2, S-def in roots and leaves and cold data set, respectively. All histograms suggest
strong correlation of metabolites in the KEGG BRITE class of ’Peptides’ indicated by a
marked shift of the CVs towards positive values. Note that for S-def in leaves also a shift
towards positive CVs is present, though not for the interval [0.8, 1], in particular.
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Table 3.8: Correlated classes of metabolites for the sulphur deficiency stress in roots.
According to the hierarchical classification of metabolite groups, several amino acid levels
were found to be tightly correlated. Note that ’Amino acids’ and ’Common/Other amino
acids’ are subclasses of ’Peptides’.

Metabolite class Hierarchy level p-value for C ≤ −0.8 p-value for C ≥ 0.8
Peptides 1 – 0.00076

Amino acids 2 – 0.00077
Common amino acids 3 – 0.00036

Other amino acids 3 – 0.00084
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3.5 Analysis of Sulphur Starvation Data Sets

This section focuses on the analysis of the sulphur deficiency data sets [18, 19]. Both
data sets comprise of microarray and mass spectrometry time-series measurements for
the time points 3h, 5h, 12h, 24h, 48h and 168h of mRNA and metabolite level levels,
respectively. The data set was generated to reveal important regulatory interactions
among transcripts and metabolites which are affected by sulphur limitation, as sulphur
is known play important roles in sulphur metabolism, plant defence processes, stress
response etc. [37].

Figure 3.15: Enrichment network derived from S-def roots, RMM and KEGG pathways.
Bin-specific p-value estimation was used. Red and green links correspond to significantly
enriched correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively.

Results drawn from RMM: There were no significant within KEGG pathway en-
richments for high CVs for both two data sets.

The analysis of KEGG pathway pairs of the root data set revealed metabolites of glu-
cosinolate biosynthesis as highly enriched for positive and/or negative correlation values
with i.e. ’Glycine, serine, and threonine’, ’Biosynthesis of plant secondary metabolites’,
’Porphyrin and chlorophyll metabolism’ and ’Cyanoamino acid metabolism’, underlining
its importance in cellular response to sulphur starvation (see Figure 3.15). There were no
significant pairs of KEGG pathways found for the leaf data set.

Results drawn from RMT: In the leaf data set, metabolites of ’Glucosinolate biosyn-
thesis’ are enriched for negative correlations with genes from ’Ribosome’ and ’Porphyrin
and chlorophyll metabolism’. Moreover, metabolites from ’Glucosinolate biosynthesis’
are enriched for positive correlations paired with genes of ’Limonene and pinene degra-
dation’. Ribosomal genes are enriched for negative correlation values with metabolites
of ’Aminoacyl-tRNA biosynthesis’, ’Cyanoamino acid metabolism’, ’Metabolic pathways
and ’Biosynthesis of secondary metabolites’ (see Figure 3.16a).

For the root data set, the approach revealed genes of ’Glucosinolate biosynthesis’ as
enriched for highly negative correlation values with metabolites of ’Glycine, serine and
threonine metabolism’, ’Porphyrin and chlorophyll metabolism’ and ’Cyanoamino acid
metabolism’. Interestingly, genes of ’Glucosinolate biosynthesis’ are enriched for high
positive and negative CVs with metabolites of the same pathway (see Figure 3.16b)
. Moreover, the enrichment network suggests an association of genes of ’Photosynthe-
sis - antenna proteins’ with metabolites of ’Nitrogen metabolism’, ’Cyanoamino acid
metabolism’, ’Biosynthesis of secondary metabolites’ and ’Aminoacyl-tRNA biosynthesis’,
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(a) (b)

Figure 3.16: Enrichment networks derived from S-def (a) leaves and (b) roots, RMT

and KEGG pathways. (a), bin-specific p-value estimation was used for the CV intervals
[−1,−0.8) and [0.8, 1]. (b), Jackknife sampling was used for the CV intervals [−1,−0.8)
and [0.8, 1]. Red and green links correspond to significantly enriched correlation values in
the ranges [−1,−0.8) and [0.8, 1], respectively. The arrows point from metabolites of some
category to the transcripts of another category.

while metabolites of ’Cyanoamino acid metabolism’ and ’Aminoacyl-tRNA biosynthesis’
are both enriched for positive CVs with ’Phenylpropanoid biosynthesis’ (see Figure 3.16b).

Results drawn from RTT: For the leaf data set, photosynthesis related pathways
and ’Glucosinolate biosynthesis’ were found to be highly enriched for positive CVs for
AraCyc and KEGG annotations. Similarly, for the enrichment analysis with GO terms,
genes of ’Glucosinolate biosynthetic processes’ were found to be highly correlated. Fur-
thermore, ’Response to chitin’ was among the top ranked GO terms with respect to the
p-value for positive correlation values. Using the InterPro domains for within annotation
label enrichment, ’DNA-binding, integrase-type’, which is a DNA binding domain that
occurs i.e. in transcription factors and ’Heat shock protein Hsp20’ domain were among
the top ranking InterPro domains.

For the root data set, the proposed method revealed ’Photosynthesis - antenna pro-
teins’ and ’Glucosinolate biosynthesis’ to be enriched for high positive CVs using the
AraCyc library. The KEGG annotations resulted in similar findings. Using GO terms, ’Ri-
bosome biosynthesis’, ’Glucosinolate biosynthesis’ and ’Photosynthesis’ were among the
most highly enriched terms for positive CVs with respect to the p-values. Integrating the
InterPro domains revealed ’Chlorophyll A-B binding protein, plant’ and ’DNA-binding,
integrase-type’ were among the top ranked domains for positive CVs.

According to the pairwise enrichment analysis for the root data set, ’Glucosinolate
biosynthesis’ is densely connected to other AraCyc pathways (see Figure 3.17a). There
are links from ’Photorespiration’ and ’Photosynthesis light reaction’ to several amino
acid degradation or biosynthesis pathways (e.g. ’Valine degradation’, ’Leucine biosynthe-
sis’ and ’Leucine degradation I’). Additionally, several pathways which can be assigned
to primary metabolism (various amino acid degradation/biosynthesis pathways, carbon-
hydrate pathways, citrate cycle and photosynthesis related pathways etc.) are present in
the network (see Figure 3.17a).
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For the leaf data set, the most tightly connected annotation labels are again ’Glucosino-
late biosynthesis’ , pathways associated with amino acid and carbonhydrate metabolism,
citrate cycle and pathways associated with photosynthesis (see Figure 3.17b). A compar-
ison of the generated networks between both tissue types i.e. for AraCyc pathways (see
Figure 3.18) shows considerable overlap between the results. For instance, computation
of the intersection of the two graphs reveals that ’Photosynthesis light reaction’ to be en-
riched for high CVs with ’Glycolysis’, ’Gluconeogenesis’, ’Glucosinolate biosynthesis’ and
’Calvin-Benson-Bassham cycle’ in both tissue types. Further, edges from several amino
acid biosynthesis pathways (lysine, leucine, methionine) to glucosinolate biosynthesis are
preserved among the tissue types. For the other annotation libraries, the results also show
a considerable overlap.

Integrating the KEGG pathway annotations yields largely similar information com-
pared to the AraCyc pathways. For instance, ’Glucosinolate biosynthesis’ is again linked
with ’Photosynthesis’. Moreover, KEGG pathways such as ’RNA polymerase’, ’RNA
degradation’, ’Proteasome’, ’Ubiquinone and aminoacyl-tRNA biosynthesis’, which are
not present in AraCyc, suggest general changes of protein abundance, induced by the
experimental conditions (see Figure 3.18).

In concordance with the previous enrichment networks, integrating GO terms yields
high node degrees for ’Glucosinolate biosynthetic process’ and ’Ribosome biogenesis’ for
the root data set (see Figure 3.19a). In both, root and leaf data set, ’Photosynthesis’,
’Photorespiration’ and/or ’Photosynthesis light reaction’ are enriched for positive corre-
lations with ’Glucosinolate biosynthetic process’ (see Figure 3.19). Some of the GO terms
which are connected to ’Ribosome biogenesis’ (e.g. ’DNA replication’, ’DNA repair’)
suggest global adaption processes in response to sulphur deficiency (see Figure 3.19a).
Several GO terms, which are associated with primary metabolic processes can be found
in both networks (see Figure 3.19). For instance, ’Glycolysis’, ’Leucine biosynthetic pro-
cess’, ’Arginine biosynthetic process’ or ’Malate metabolic process’. ’Cellular response to
sulphate starvation’ is enriched for negative correlation values compared to ’response to
chitin’ for the leaf data set, which itself is enriched for positive correlation values with
’Response to other organisms’ and ’Jasmonic mediated signaling pathway’ (see Figure
3.19b).

Using the InterPro domains for the pairwise enrichment analysis revealed several pro-
tein domains that are specific for transcription factors or proteins with function in signal
transduction. For instance, ’DNA-binding integrase-type’, ’Pathogenesis-related tran-
scriptional factor/ERF’, ’Toll/interleukin-1 receptor homology (TIR) domain’ for ’Protein
kinase, catalytic domain’ for both, the root and leaf data set (see Figure 3.20). Addi-
tionally, glutathione-S-transferase domains, which are constituent parts of glutatione-S-
transferases, can be found in both networks.
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(a)

(b)

Figure 3.17: Enrichment networks derived from S-def (a) roots and (b) leaves, RTT

and AraCyc pathways. Jackknife sampling for the CV intervals [−1,−0.8) and [0.8, 1]
was performed in both cases. Red and green links correspond to significantly enriched
correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively.

49



(a)

(b)

Figure 3.18: Enrichment networks derived from S-def (a) leaves and (b) roots, RTT

and KEGG pathways. Bootstrap sampling for the CV intervals [−1,−0.8) and [0.8, 1]
was performed in both cases. Red and green links correspond to significantly enriched
correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively.
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(a)

(b)

Figure 3.19: Enrichment networks derived from S-def (a) leaves and (b) roots, RTT

and GO terms (biological processes). Bin-specific p-value estimation for the CV intervals
[−1,−0.4) and [0.4, 1] was used in both cases. Links were drawn for the 120 top ranked GO
term pairs (60 for positive and 60 for negative CVs) according to the p-values. Red and
green links correspond to significantly enriched correlation values in the ranges [−1,−0.8)
and [0.8, 1], respectively.
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(a)

(b)

Figure 3.20: Enrichment networks derived from S-def (a) leaves and (b) roots, RTT and
InterPro PDs. Bin-specific p-value estimation for the CV intervals [−1,−0.4) and [0.4, 1]
was used in both cases. Links were drawn for the 120 top ranked InterPro domains pairs
(60 for positive and 60 for negative CVs) according to the p-values. Red and green links
correspond to significantly enriched correlation values in the ranges [−1,−0.8) and [0.8, 1],
respectively.

52



3.6 Analysis of Cold Acclimation Data Sets

This section focuses on the analysis of the data set published by Kaplan et al. [17]. The
data set comprises of microarray and mass spectrometry time-series measurements for the
time points 0h, 1h, 4h, 12h, 24h, 48h and 96h of mRNA and metabolite levels, respectively.
The data set was aimed at identifying regulatory interactions among transcripts and
metabolites as well as deregulated processes, which are affected by cold acclimation. Cold
acclimation induces complex changes of metabolite and transcript abundances, to prevent
the plant from being injured by ice formation under freezing temperatures [38].

Figure 3.21: Enrichment network derived from cold acclimation, RMM and KEGG path-
ways. Bin-specific p-value estimation was used. Red and green links correspond to signifi-
cantly enriched correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively. Note
that for this data set no significant enrichment for negative CVs was detected.

Results drawn from RMM: There are no significant within KEGG pathway enrich-
ments. For the between KEGG pathway enrichment analysis, several pathways for alka-
loid biosynthesis pathways are linked to ’Aminoacyl-tRNA biosynthesis’ (see Figure 3.21).
The network suggests high CVs of metabolites contained in ’Glutathione metabolism’,
’Glycine, serine and threonine metabolism’, ’Cyanoamino acid metabolism’, ’Nitrogen
metabolism’, ’Alkaloid biosynthesis’ and ’Biosynthesis of terpenoids and steroids’ with
metabolites of ’Glucosinolate biosynthesis’.

Results drawn from RMT: The analysis revealed gene expression changes of many
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Figure 3.22: Enrichment network derived from cold acclimation, RMT and KEGG path-
ways. Bootstrapped P (erroneous decision) estimation was used. Red and green links cor-
respond to significantly enriched correlation values in the ranges [−1,−0.8) and [0.8, 1],
respectively. The arrows point from metabolites of some category to the transcripts of
another category.
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amino acid related pathways, for biosynthesis and degradation, indicating changes in
transcript levels imposed by cold acclimation (see Figure 3.22). Furthermore, several
genes related with functions in carbonhydrate metabolism are deregulated. Metabolites
of ’Galactose metabolism’ are enriched for negative correlation values with genes of ’Pho-
tosynthesis’ and ’Terpenoid backbone biosynthesis’ and for positive correlation values with
genes of ’Splicosome’. Metabolites of ’Aminoacyl-tRNA biosynthesis’ exhibit high posi-
tive and negative CVs with genes of many KEGG pathways (e.g. amino acid biosynthesis
or metabolism).

Results drawn from RTT: First, the top ranking within annotation label enrichment
results shall be presented.

Using the AraCyc pathways, ’Photosynthesis light reactions’, ’Chlorophyllide a biosyn-
thesis’, ’Calvin-Benson-Bassham cycle’, ’TCA cycle variation III & V’ and ’Gluconeogen-
esis’ are highly enriched for positive CVs. This suggests a tight transcriptional regulation
of ’Photosynthesis’ and primary metabolism.

Similarly, ’Photosynthesis’ and ’photosynthesis - antenna proteins’ are among the top
ranked KEGG pathways. Moreover, using KEGG pathways ’Splicosome’, ’Proteasome’,
’RNA degradation’ also appears among the most significant pathways.

For the GO term analysis, ’Photosynthetic electron transport in photosystem I’, ’Pro-
teolysis involved in cellular protein catabolic process’, ’Chlorophyll biosynthetic process’,
’Photosynthesis light harvesting’ and ’Translational initiation’ were detected.

Within InterPro domain enrichment revealed ’Pentatricopeptide repeat’, several heli-
case domains (e.g. ’DEAD/DEAH box type, N-terminal, RNA helicase’), ’WD40 repeat’
(and related domains) among the top ranked results.

In the following, the results of the pairwise enrichment test for all annotation label
databases shall be described.

The comparison of the generated enrichment networks using bin-specific p-values es-
timation (Figure 3.23a) and the bootstrapping approach (see Figure 3.23b) shows strong
concordance between the results, despite of variations of the algorithm parameters. In
particular, highly significant pairs of annotation labels are present in both network, which
underlines the robustness of the method.

The enrichment network for the AraCyc pathways yields (1) ’Starch biosynthesis’ is en-
riched for negative CVs with ’Photorespiration’, ’Calvin-Benson-Bassham cycle’, ’Chloro-
phyllide a biosynthesis I’ and ’Gluconeogenesis’; (2) ’Sucrose biosynthesis’ is linked to
’Gluconeogenesis’, ’Glycolysis’, ’Calvin-Benson-Bassham cycle’, ’Chlorophyllide a biosyn-
thesis’, ’NAD/NADH phosphorylation and dephosphorylation’ and ’Glucosinolate biosyn-
thesis from dihomomethionine’; (3) ’Phospholipases’ is enriched for negative correlations
with ’Chlorophyllide a biosynthesis I’; (4) ’Triacylglycerol biosynthesis’, a storage form
for fatty acids, is enriched for positive correlations with photosynthetic processes; (5)
’Fatty acid β-oxidation II’ is enriched for negative correlations with photosynthesis; (6)
glucosinolate biosynthesis and photosynthesis are enriched for positive correlation val-
ues; (7) and, ’Flavonoid biosynthesis’ is enriched for negative CVs with ’Chorophyllide a
biosynthesis’ (see Figures 3.23a and 3.23b);

The enrichment network based on RTT and KEGG pathways (see Figure 3.24) indi-
cates a global shift of RNA and protein abundance (e.g. see ’Proteasome’, ’Splicosome’,
’RNA degradation’, ’Protein processing in endoplasmatic reticulum’). Additionally, sev-
eral enriched pairs of KEGG pathways correspond to pairs in the AraCyc networks (e.g.
’Photosynthesis’, ’Glucosinolate biosynthesis’, ’Glycolysis’, ’Gluconeogenesis’, Carbon fix-
ation in photosynthetic organisms’ or ’TCA cycle’).

Several GO processes associated with photosynthesis constitute hub nodes of the net-
work (see Figure 3.25). Furthermore, some hub nodes are related to general changes in

55



(a)

(b)

Figure 3.23: Enrichment networks derived from cold acclimation, RTT and AraCyc path-
ways. (a), illustrates significantly indicated pairs of AraCyc pathways using ordinary p-
value estimation for the CV intervals [−1,−0.4) (red) and [0.4, 1] (green) for the top 120
ranked AraCyc pairs (60 for positive and 60 for negative CVs) according to the p-values.
(b), shows the resulting network using bootstrapped P (erroneous decision) estimation for
the CV intervals [−1,−0.8) (red) and [0.8, 1] (green).
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Figure 3.24: Enrichment network derived from cold acclimation, RTT and KEGG path-
ways. Bin-specific p-value estimation for the CV intervals [−1,−0.4) and [0.4, 1] was
used followed by truncation to the top ranked pairs (60 for positive and 60 for negative
CVs) according to the p-values. Red and green links correspond to significantly enriched
correlation values in the ranges [−1,−0.4) and [0.4, 1], respectively.
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Figure 3.25: Enrichment network derived from cold acclimation, RTT and GO terms
(biological processes). Bin-specific p-value estimation for the CV intervals [−1,−0.4) and
[0.4, 1] was used followed by truncation to the top ranked pairs (60 for positive and 60 for
negative CVs) according to the p-values. Red and green links correspond to significantly
enriched correlation values in the ranges [−1,−0.4) and [0.4, 1], respectively.
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RNA or protein abundance (e.g. ’RNA processing’, ’tRNA aminoacylation for protein
translation’, ’Translational initiation’, ’Protein catabolic process’). For the GO term pair
’Sulphur assimilation’ and ’Photosynthesis’, positive CVs are enriched (compare Figure
3.25).

Figure 3.26: Enrichment network derived from cold acclimation, RTT and InterPro PDs.
Bin-specific p-value estimation for the CV intervals [−1,−0.4) and [0.4, 1] was used fol-
lowed by truncation to the top ranked pairs (60 for positive and 60 for negative CVs)
according to the p-values. Red and green links correspond to significantly enriched corre-
lation values in the ranges [−1,−0.4) and [0.4, 1], respectively.

For the enrichment network based on InterPro domains, a relatively high number of
highly significant categories was found (see Figure 3.26). Protein domains with the highest
node degrees in general correspond to domains which are also top ranked according to the
within annotation label enrichment. This network, as the previous ones, reflects global
change in protein and RNA composition due to the occurrence of i.e. proteasome-specific
domains, ribosome-specific domains, DNA/RNA helicases.
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3.7 Analysis of Carbon Dioxide Elevation Data Sets

This section presents the results of the analysis of the elevated CO2 elevation data set [16].
The data set comprises of microarray and mass spectrometry time-series measurements
for the time points 0h, 1h, 3h, 6h, 9h, 12h, 18h, 24h and 30h of mRNA and metabolite
levels, respectively. The data set aims at a better understanding of important regulatory
interactions among transcripts and metabolites due to CO2 elevation. Of particular im-
portance were the study of primary metabolism and processes related to photosynthesis.

Results drawn from RMM: Within annotation label enrichment analysis did not

Figure 3.27: Enrichment network derived from CO2 elevation, RMM and KEGG path-
ways. Bin-specific p-value estimation was used. Red and green links correspond to signif-
icantly enriched correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively.

reveal any pathways for which high CVs are overrepresented among the metabolites.
For the enrichment analysis of pairs of KEGG pathways, metabolites of ’Cyanoamino

acid metabolism’ are enriched for positive correlation values with metabolites of ’Al-
kaloid biosynthesis’, ’Ascorbate and aldarate metabolism’ and ’Biosynthesis of phenyl-
propanoids’ (see Figure 3.27).

Results drawn from RMT : Only a very small number of metabolite-to-transcript
annotation pairs were enriched for highly positive or negative correlation values. Note that
the only nodes with out-degree greater than zero are ’Metabolic pathways’, ’Aminoacyl-
tRNA biosynthesis’ and ’Biosynthesis of secondary metabolites’. In other words, the
nodes which represent groups of metabolites are fairly general due to the small number
of metabolites in the data set (see Figure 3.28). Nevertheless, the pathways ’Ubiqui-
tin mediated proteolysis’ and ’Proteasome’, which are classified as ’Folding, Sorting and
Degradation’, and ’Aminoacyl-tRNA biosynthesis’, which is classified as ’Translation’, ac-
cording to KEGG BRITE [36], indicate global changes in protein composition in parallel
with shifts in metabolite concentrations (see Figure 3.28). Moreover, ’Photosynthesis’ was
revealed to be enriched for negative correlation values with these rearrangement processes.

Results drawn from RTT: The top ranking results for the within annotation la-
bel enrichment analysis according to bin-specific p-value estimation for the CV ranges
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Figure 3.28: Enrichment network derived from CO2 elevation, RMT and KEGG pathways.
Bin-specific p-value estimation was used. Red and green links correspond to significantly
enriched correlation values in the ranges [−1,−0.8) and [0.8, 1], respectively. The arrows
point from metabolites of some category to the transcripts of another category.

[−1,−0.8) and [0.8, 1] listed below for each annotation library. Using KEGG pathways,
the pathways ’Photosynthesis’, ’Photosynthesis - antenna proteins’, ’Purine metabolism’,
’Proteasome’ and ’Pyrimidine metabolism’ were most pronouncedly enriched for positive
CVs. Similarly, ’Calvin-Benson-Bassham cycle’ (aka. carbon fixation), ’Rubisco shunt’,
’Photorespiration’ and ’Photosynthesis light reactions’ were enriched for positive corre-
lation values within AraCyc pathways. Additionally, ’NAD/NADH phosphorylation and
dephosphorylation’, ’TCA cycle variation III & V’ and ’Aerobic respiration – electron
donor II & III’ were enriched for positive correlation values by integrating AraCyc path-
ways.

Within group enrichment based on GO terms resulted in the following top ranking
terms: ’Apoptotic process’, ’Response to biotic stimulus’, ’Photosynthesis’, ’Photosynthe-
sis light harvesting’, ’Response to chitin’, ’Ribosome biogenesis’, ’Phosphate ion transport’
and ’Cellular response to phosphate starvation’.

For the InterPro within group enrichment top ranking domains were ’Pentatricopeptide
repeat’, ’Protein kinase-like domain’, ’Protein kinase, catalytic domain’, ’Serine/threonine-
protein kinase, active site’, ’AAA+ ATPase domain’, ’DNA-binding, integrase-type’ and
’AP2/ERF domain’.

’Pentatricopeptide repeats’ were found in proteins which are related to mitochondria
or chloroplasts [28]. The protein kinase related domains might suggest expression changes
for genes associated with signal transduction, while, DNA-binding domains and AP/ERF
are identified with transcription factors [28].

Inspection of the network reveals that ’Photosynthesis light reactions’ is linked to
’Calvin-Benson-Bassham cycle’ and ’Rubisco shunt’ (see Figure 3.29). Furthermore, ’Gly-
colysis’ is enriched for negative correlation values with ’Photosynthesis light reaction’ and
’Photorespiration’ and genes of ’NAD/NADH phosphorylation and dephosphorylation’
are are overrepresented for positive CVs with genes of ’TCA cycle’, which in turn is
linked to ’Aerobic respiration – electron donor’.

For the pairwise enrichment analysis using KEGG pathways, ’Proteasome’, ’Ubiqui-
tin mediated proteolysis’, ’Protein processing in endoplasmatic reticulum’, ’RNA poly-
merase’, ’Spliceosome’, ’Purine metabolism’, ’Pyrimidine metabolism’ and ’Aminoacyl-
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Figure 3.29: Enrichment network derived from CO2 elevation, RTT and AraCyc path-
ways. Bin-specific p-value estimation for the CV intervals [−1,−0.4) and [0.4, 1] was
used. Red and green links correspond to significantly enriched correlation values in the
ranges [−1,−0.4) and [0.4, 1], respectively.

tRNA biosynthesis’ were found to be the nodes with the highest node degrees, which
suggests a global change in gene expression and protein abundance (see Figure 3.30).
Moreover, genes of ’Photosynthesis’ were revealed to be enriched for positive CVs with
’Glyoxylate and dicarboxylate metabolism’. For the pairwise enrichment analysis us-
ing the GO terms, ’Response to biotic stimulus’, ’Ribosome biogenesis’, ’Response to
chitin’ and ’Phosphate transport’ are hub nodes of the network. These pathways are also
top ranked using the within annotation label enrichment analysis (see above). Further-
more, ’Nucleosome assembly’, ’Protein transport’, ’Protein targeting to mitochondrion’
and ’Phloem or xylem histogenesis’ are enriched for positive correlation values with ’Ri-
bosome biogenesis’. ’Response to ethylene stimulus’, ’Response to jasmonic acid stimulus’
and ’Jasmonic acid mediated signaling pathway’ are enriched for positive correlation val-
ues with ’Response to biotic stimulus’ (see Figure 3.31).

According to the results by integrating InterPro domains, several transcription factors
related domains (e.g. ’Pathogenesis-related transcriptional factor/ERF, DNA-binding’ or
’Transcription regulator HTH, Myb-type DNA-binding’) as well as to domains related
with functions in signal transduction (e.g. ’Protein kinase, ATP binding site’ or ’Serine-
threonine/tyrosine-protein kinase catalytic domain’) are linked to one another and to
other domains. This suggests changes in regulatory activity on the transcription level.
Some of the protein kinases specific domains are also linked to cytochrome P450-specific
domains.
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Figure 3.30: Enrichment network derived from CO2 elevation, RTT and KEGG path-
ways. Bootstrapped P (erroneous decision) estimation for the CV intervals [−1,−0.8)
and [0.8, 1] was used. Red and green links correspond to significantly enriched correlation
values in the ranges [−1,−0.8) and [0.8, 1], respectively.
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Figure 3.31: Enrichment network derived from CO2 elevation, RTT and GO terms (bi-
ological processes). Bin-specific p-value estimation for the CV intervals [−1,−0.4) and
[0.4, 1] was used followed by truncation to the top ranked pairs (60 for positive and 60 for
negative CVs) according to the p-values. Red and green links correspond to significantly
enriched correlation values in the ranges [−1,−0.4) and [0.4, 1], respectively.
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Figure 3.32: Enrichment network derived from CO2 elevation, RTT and InterPro PDs.
Bin-specific p-value estimation for the CV intervals [−1,−0.4) and [0.4, 1] was used fol-
lowed by truncation to the top ranked pairs (60 for positive and 60 for negative CVs)
according to the p-values. Red and green links correspond to significantly enriched corre-
lation values in the ranges [−1,−0.4) and [0.4, 1], respectively.
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Chapter 4

Discussion

Similarity measures like Pearson’s correlation measure have successfully been applied in
order to elucidate relationships among molecule levels and putative regulatory dependen-
cies in biological systems (e.g. [6, 2]). Recently, several research groups have proposed
to take advantage of parallel analysis of several omics-data sets (e.g. transcriptome and
metabolome). It has been demonstrated that parallel analysis of i.e. transcriptome and
metabolome data sets potentially illuminate regulatory connectivity between the cellular
levels, which in the case of separately analysing the omics-data sets would not emerge
[11, 18, 19]. On the contrary, firstly, due the complicated regulatory dependencies be-
tween e.g. metabolome and transcriptome and, secondly, due to the lack of information
about i.e. protein content, post-translationional modifications or enzymatic activity the
interpretation of metabolite-transcript correlations is a challenging task [20].

The goal of the thesis was to analyse and integrate transcriptome and metabolome
data sets using correlation matrices and various annotation libraries. In particular, the
potential usefulness of correlations to reveal biologically relevant information about the
underlaying system were assessed to answer two general questions: (1) Is there a general
connection between functional relationship and the observed correlation value and, (2)
which annotation labels (e.g. reaction pathways or GO terms) are deregulated and how
are these processes related to each other?

4.1 Analysis of Global Correlation Profiles

As shown in the result section, for transcript-transcript RTT and metabolite-metabolite
RMM correlation matrices a considerable fraction of high correlation values can be at-
tributed to some biological function. For some annotation databases, hence, the con-
ditional probabilities P (Corr| some functional relation) and P (Corr| no functional
relation) differ especially for the high correlation values (e.g. high positive correlation
values are more likely if some functional relationship exists), which was, however, not
the case for KEGG pathways and GO terms. Unfortunately, an overwhelming frac-
tion of high positive or negative correlation values was also found when no functional
or physical relationship was present. In other words, the prior probability of ’no common
function’ is much higher than the prior probability of ’any functional relation’. This in
turn implies that it is impossible to use this global scale information to infer the func-
tional relationship after observing some correlation value (e.g. using Bayes’ rule to query
P (any functional relation|Corr)).

Nevertheless, it is still reasonable to assume that functional grouping of genes/metabo-
lites might be connected to high correlation values among groups of molecules, albeit, on
the global scale i.e. a functional relationship between genes/metabolites was averaged.
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Put differently, correlation values in a local context might be useful to identify putative,
co-regulatory processes between molecules.

For the cold and the CO2 data set, a global shift towards positive correlation values
was observed for RMM . One explanation for this observation might be substantial effects
on metabolic adaption processes of the plant, imposed by the experimental conditions.
Note, however, that markedly different numbers and types metabolites were acquired be
the research groups, which might have biased this analysis. For instance, a considerable
number of metabolites are amino acids in all data sets. The problem of metabolome data
acquisition was also discussed in Nikiforova et al. [37]. Nevertheless, the analysis showed
that metabolic profiles convey relevant information about the cellular state, which might
be used to address questions regarding i.e. metabolic regulation.

On a global scale metabolite-transcript correlation matrices RMT do not seem to pro-
vide much information about pathway co-occurrence of the molecular species. Hence, one
could argue that RMT is much harder to interpret than, for instance, correlations among
genes or metabolites separately. In other words, there is no easily applicable principle
to reveal the cause of an observed correlation value between a metabolite-to-transcript
pair. This seems also clear because of fundamentally different regulatory principles within
these cellular layers and the complicated intertwinedness of the layers. Moreover, there
is no information present i.e. about the protein abundances, enzyme activities or post-
translational modifications, which challenges the interpretation of metabolite-transcript
correlations [20, 39, 40, 41]. Despite these complications, Urbanczyk-Wochniak et al.
[11] have demonstrated that some metabolite-transcript correlations convey information
about regulatory connectivity.

4.2 Novel Enrichment Algorithm

Though the global correlation value distribution is connected with functional relation-
ship for some correlation matrices and annotation libraries, this analysis does not pro-
vide any information about which particular functions/pathways are actually deregu-
lated. Furthermore, interpretation of correlation values between single pairs of molecules
has been demonstrated to perform poorly, because of many indirect effects and spurious
high absolute correlation values [20]. One strategy to overcome this issue is by grouping
genes/metabolites a priori according to their functional relationship and perform an en-
richment or overrepresentation analysis (e.g. Gene set enrichment analysis [42] or BiNGO
[23] are two popular examples, which reveal groups of statistically differentially regulated
groups of genes). The success of these methods motivated the development of a novel ap-
proach which integrates correlation matrices and annotation libraries in order to identify
groups of molecules for which high absolute correlation values are overrepresented. The
results of the approach putatively elucidate regulatory interactions between and within
groups of genes/metabolites.

In general, the algorithm seeks to filter out within or among annotation label en-
richment of high correlation values. Hence, in contrast to the above section, where the
correlation matrix was analysed on a global scale, this algorithm examines local (sub)-
correlation matrices that are enriched for high (positive or negative) correlation values.

One major advantage of the method is its flexibility to integrate different data sources.
This was demonstrated in this thesis using measurements of metabolite levels and mea-
surements of transcript abundances. The method exploits the histogram of correlation val-
ues in order to aggregate (dis)similarity information among groups of transcripts/metabo-
lites. Groups of molecules were formed by incorporating annotation libraries, which en-
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abled the generation of a system-wide picture of pathway relationships, relationships
between biological processes or relationships among protein domains.

The method was employed for within as well as for among annotation label enrichment
of high correlation values. Moreover, it was proposed to visualize the entirety of significant
pairs annotation label in terms of networks, referred to as enrichment networks herein,
because of the eased interpretation process of the algorithm’s output. The enrichment
network might provide the possibility to guide further in depth analysis as well as guiding
the discovery of finer-grained cellular processes (e.g. which particular set of molecules
was responsible for the enrichment of a pathway interaction?), but this was beyond the
scope of this thesis.

Functional grouping of genes or metabolites is thought to be crucial to uncover a high-
level view of the disregulated processes. Redestig et al. [20] argued grouping is especially
important in cases where millions of correlation values are investigated. ClueGO [24] is a
bioinformatics tool which generates networks among annotation labels, which is therefore
similar to the proposed method. However, ClueGO links annotation labels based on the
similarity of gene assignments to the annotation labels using kappa statistics. In contrast,
herein, the annotation associations emerge from the measured data sets. Furthermore,
by testing for enrichment of negative CVs the proposed method not only concentrates on
group similarity, but also on potentially counter-regulated groups of transcripts/metabo-
lites, which offers a richer view on cellular processes.

In the following, the properties and limitations of the algorithm are recapitulated along
with possible extensions or improvements.

Firstly, in this thesis, correlation matrices where generated using Pearson’s correla-
tion measure. Other possible correlation measures might be non-parametric correlation
measures (e.g. Kendall’s tau) or mutual information, these are more appropriate for cap-
turing nonlinear relationships at the price of a lower statistical power. Thus, much more
biological replicates would be required to get reliable results with those correlation mea-
sures [22]. On the other hand, Pearson’s correlation measure is sensitive to shifts among
the transcript or metabolite time-series profiles. Redestig et al. [20] have proposed a
HMM-based correlation measure which copes with shifts and relatively high noise levels
in time-series profiles. More elaborate similarity measures might also be utilized for this
analysis, for instance, the local shape-similarity measure proposed by Balasubramaniyan
et al. [43]. Though, this similarity measure is not appropriate for short-time series profiles
as encountered in this thesis.

Secondly, obviously the quality of the generated results strongly depends on the quality
of the annotation database as well as the comprehensiveness of the acquired omics-data. It
has been argued that metabolite-metabolite or metabolite-transcript correlation values are
more difficult to interpret than i.e. transcript-transcript correlations due to the nature of
the interdependencies and regulatory mechanisms. The interpretation was also challenged
by the fact that only a relatively small number of metabolites was identified (compare
Table 2.1). As these correspond to only few metabolite classes (e.g. amino acids or
carbonhydrates), the metabolome view is far from complete. This is also reflected by fairly
general enriched metabolite annotation labels (e.g. ’Metabolic pathway’ or ’Biosynthesis
of secondary metabolites’) considering the analysis drawn on RMM or RMT in the case
studies. With the advancement of metabolomic analysis techniques and the improvement
and extension of the annotation libraries the approach is believed gain its usefulness to
integrate omic-data across different levels. A further aspect, that challenges the analysis
with this approach is the nature of the data sets. For instance, for the cold stress data set,
a relatively high fraction of high correlation values was observed compared with for the
sulphur limitation experiments. Hence, using a single significance level (e.g. 5%) results in
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an excessive number of significant results for the former example, whereas, only very few
significant instances emerge for the latter one. This challenges the visual representation
and inspection of the generated enrichment networks. To address this issue, different
statistical tests were applied to optimize the network size. For instance, if a large number
of significant instances was found only the top ranking results were presented or a more
stringent test was used (e.g. bootstrapping approach).

Thirdly, annotation libraries often comprise annotation labels which are hierarchically
structured or strongly overlapping. In other words, there might be several different sig-
nificant annotation label pairs which are basically induced by a common set of molecules
(e.g. occurrence of WD40-repeat InterPro domains in Figure 3.32). A consequence of this
is that the absence of edges between two nodes in the enrichment networks might either
be caused by the acceptance of the null hypothesis (no enrichment of high CVs) or due
to the absence of a statistical test, which challenges the intuitive interpretation of the
networks. A possible improvement would be to preprocess the annotation library so as to
make the library non-redundant (e.g. remove hierarchy superclasses, compute redundan-
cies, remove strongly overlapping annotations, introduce annotations which represent the
overlap, etc.). Removal of redundancies due to the hierarchical structure of annotation
libraries is also performed by ClueGO [24].

Fourth, it is difficult to define a general notion of which histogram profiles need to be
considered as statistically significant. In this thesis, it was claimed that high correlation
values are much more informative than low correlation values. Therefore, the method
concentrated on testing the overrepresentation of histogram bin counts for high correlation
values, rather than examining the entire shape of the histogram. Thus, this rises the
question of which correlation value intervals to use for the test. In this thesis, two variants
have been compared with each other (e.g. using the CV intervals [−1,−0.8) and [0.8, 1]
in contrast to [−1,−0.4) and [0.4, 1]). The enrichment analysis for correlation values on
the interval [−1,−0.4) and [0.4, 1] results in an implausible high number of significant
annotation pairs. Fortunately, however, the top ranking significant annotation labels or
annotation pairs showed high concordance between the bin size variants, which underlines
the robustness with respect to the ranks of the result lists.

A variant which was intended to capture the entire histogram shape was the weighted
χ2-test. However, it is difficult to define weights for the χ2-test which capture adequately
biological relevant features. Further, it suffers from the violation of the i.i.d. assumption.
Therefore, this variant was not used for the case studies.

Fifth, the null distribution was computed once for each input correlation matrix and
annotation label set cardinality by permuting the molecules labels. The parameters of
the subsequently fitted gamma distribution were stored and reused for each annotation
label with the same set size. This yields huge computational benefits.

Unfortunately, in some cases this particular sampling strategy has resulted in ’over-
counting’ of high correlation values, hence to overestimation of the p-values. Especially
in the case of pairwise enrichment analysis where the molecules of one of the participating
annotation labels are tightly correlated. Based on the same systematic biases, it was also
observed that hub nodes in the enrichment networks, in general, also are annotations
with high enrichment for high CVs. Consequently, links in the enrichment network which
connect a hub node and a node with only one edge might likely correspond to a false
positive result.

To overcome this issue, a different permutation sampling approach might be imple-
mented. For the pairwise enrichment analysis, i.e. clamping the gene/metabolite labels
of one annotation label while shuffling the annotation labels of the other annotation label
might be considered. This would result in different null distributions for each correlation
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matrix, annotation label and set size of the partner label, as opposed to the variant used
herein, where different set sizes correspond to different null distributions. In this case,
however, the efficiency gained by storing and reusing the null distribution parameters is
largely lost resulting in a much larger algorithmic runtime. Despite the systematic bias
due to simplified assumptions for the permutation sampling, highly significant results
might still be of biological relevance.

Several strategies for assessing statistical significance (e.g. p-value estimation based
on the fitted gamma distribution, bootstrapped and Jackknife alternative distribution
estimation, etc.) have been implemented and compared against each other. They mostly
differ in terms of their stringency, but show strong overlap among the generated results.
This argues for the relative similarity of these tests.

4.3 Integration of KEGG BRITE

In line with Kaplan et al. [17] and Dutta et al. [16], the method reported significant
co-response patterns for amino acids. This pattern was also discovered for the sulphur
limitation data sets, although, Hirai et al. [19] did not explicitly mention this fact.
As sulphur metabolism is directly linked to amino acids levels [37, 44], this metabolic
links might be reflected by the results of the algorithm (compare Figure 3.14). For the
cold acclimation data set, monosaccharides were identified to be enriched for negative
correlation values, which might suggests a reciprocal metabolic regulation among the
present monosaccharides. Stitt et al. [45] discussed thoroughly the important relation of
acquired freezing tolerance and cellular sugar concentrations, which might be attributed
to this observation (compare Table 3.6).

4.4 Sulphur Deficiency Data Set

Hirai et al. [19] mentioned marked changes and co-clustering of glucosinolates as well
as genes associated with glucosinolate biosynthesis, which were in line with the results
herein. Importantly, this observation was recovered from RTT , RMM and RMT (compare
Figures 3.15, 3.16, 3.17, 3.18 and 3.19).

Nikiforova et al. [37] revised molecular transport and related biochemical pathways,
which are affected by sulphur limitation. For instance, sulphur metabolism is linked by
biochemical reactions directly to glycine and serine metabolism (compare Figures 3.15,
3.18).

Hirai’s clustering analysis (BL-SOM) [18] reported genes of photosynthesis and glu-
cosinolate biosynthesis pathway to be tightly co-expressed for the leaf data set, which
was also detected by the enrichment network approach (compare Figures 3.17, 3.18 and
3.19). A known phenotypic consequence of sulphur depletion is chlorosis in leaves [37],
which refers to a lack of chlorophyll, which might be connected to the chlorophyll related
annotations for several annotation libraries. In addition, Hirai et al. [18] reported major
changes in primary metabolism and glucosinolate biosynthesis as well as photosynthesis
in roots, which were also revealed by the proposed method (compare Figure 3.17a).

The algorithm discovered an association between ’Glucosinolate biosynthesis’ and ’Sul-
fate assimilation’, which is in line with the review of Rausch et al. [44] (compare Figures
3.17, 3.18 and 3.19), who mentioned that plants under sulphur limitation assimilate to
this environmental condition. Several sulphur containing molecules such as glucosinolates,
glutathiones play an important role in plant defence mechanisms [44]. Inspection of the
enrichment networks recover many plant defence specific annotations and relationships
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among the annotations, which are in line with current knowledge about the relationships.
Among those, the presence ’Response to ethylene’ (in the GO-based network) suggests a
modulation of plant defense responses [46] (compare Figures 3.16a and 3.19).

Furthermore, the InterPro domain-based networks highlight several Glutathione-S-
transferase specific domains, which are important to dispose of xenobiotics [47]. Glu-
tathiones are also known to provide a redox buffer against reactive oxygen [48, 44]. Genes
containing glutathione-S-transferase domain are enriched for negative correlations with
EF-hand containing genes, according to the networks. Both, glutathione-S-transferases
and EF hand proteins have been linked to plant response upon insect wounding [49] (com-
pare Figure 3.20). Importantly, Hirai et al. [19] also noted regulatory changes in genes
coding for glutathione-S-transferases.

Another interesting aspect is that plants upon sulphur limitation undergo morpho-
logical changes, such as enhancement of root growth [37]. Many nodes and interactions
in the enrichment networks are in line with this observation (e.g. pathways and terms
that are associated with transcription, DNA replication and translation; compare Figures
3.18 and 3.19). Furthermore, many transcription factor or protein kinase related protein
domains are statistically interacting with each other, according to the results. It might
be speculated that some of the proteins associated with the domains play a role in the
realization of these morphological adaptations (compare Figure 3.20).

4.5 Cold Acclimation Data Set

During cold acclimation plants exhibit a number of cellular changes. Stitt et al. [45]
discussed thoroughly the tight correlation between the development of freezing tolerance
and sugar levels. The enrichment networks revealed several pathways sugar metabolism
(e.g. starch biosynthesis and degradation, galactose degradation, sucrose degradation,
gluconeogenesis in Figures 3.23, 3.24 and 3.25).

Moreover, the networks also revealed tightly linked pathways/terms related with gly-
colysis, citrate cycle, NAD/NADH phosphorylation and dephosphorylation, which are in
a close connection to sugar levels [50].

Cold acclimation is also related to changes photosynthesis. Photosynthesis slows down
as a biochemical consequence of cold acclimation [45]. Photosynthesis (and related an-
notation labels like chlorophyll, carbon fixation, etc.) are also tightly connected to many
other categories in the corresponding networks, suggesting a putative regulatory connec-
tion between those nodes (compare Figures 3.23, 3.24 and 3.25).

In line with Kaplan et al. [17], enrichment of positive CVs is present between ’Sulphur
assimilation’ and ’Photosynthesis’ (compare Figure 3.25).

Another interesting aspect of plants exhibiting freezing tolerance is that water content
is reduced in the cells, while the protein content is increased [45, 17]. An inspection
of the networks shows that many annotation labels indicate a general shift in protein
abundance and transcriptional activity (e.g. ’Proteasome’, ’Splicosome’ and ’Aminoacyl-
tRNA biosynthesis’ in Figures 3.24 and 3.25). These findings might be linked to the
reported increase in protein abundance during cold acclimation.

In agreement with Kaplan et al. [17], the algorithm reports a general increase of amino
acid biosynthesis genes and an change in amino acid abundance (compare Figure 3.14).

As reported by Hannah et al. [51], cold acclimation causes downregulation of photosyn-
thesis and upregulation of flavonoid metabolism. These reciprocally regulated processes
also emerged from the enrichment network based on AraCyc pathway (compare Figure
3.23) .
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The enrichment networks suggests similarities between gene expression changes of
glutathione metabolism, proteasome and spliceosome (compare Figure 3.24), hence all
are up regulated. Taking together that glutathione is a prominent antioxidant [48] and
concentrations of antioxidants are increase upon cold acclimation [45], this might suggest
an important role of glutathiones during cold acclimation.

On the same data set, Kaplan et al. [17] reports increased expression of genes as-
sociated the synthesis of phospholipids, starch, sugar, flavonoid, protein amino acids
and terpenoid biosynthesis, while genes of photorespiration, folic acid, sulphate assimila-
tion, ethylene, fatty acid, gluconeogenesis, amino acids, brassinosteroids and chlorophyll
biosynthesis were found as downregulated. Aggregating the information of the enrichment
networks based on several annotation libraries, virtually all of the previously mentioned
processes where present in the generated results (compare Figures 3.23, 3.24 and 3.25).

In particular for the cold data set and the pairwise enrichment analysis drawn on Inter-
Pro domains resulted in an excessive number of significant instances, even after truncation
of the results to the top ranked. In fact, all links correspond to p-value=0 in Figure 3.26.
An explanation for this observation might be that, on the one hand, a much higher num-
ber of pairwise tests were performed (compare Table 3.1; higher number of gene-pairs
with common InterPro domain) and, on the other hand, as the global correlation profile
analysis has revealed, protein domains are informative for the explanation of observed
correlation values (see Figure 3.1; in comparison with e.g. GO term, KEGG pathways).

Nevertheless, nodes with the high node degrees might be biologically relevant domains.
For instance, some proteins containing ’Pentatricopeptide repeat’ have been associated
with post-transcriptional processes such as sequence-specific RNA-binding proteins, RNA
stabilization or RNA processing [28] (compare Figure 3.26). Proteins carrying a ’DEAD-
/DEAH box type, N-terminal, RNA helicase’ domain are thought to be important for var-
ious processes such as RNA synthesis or degradation (e.g. splicing, transport, ribosome
biosynthesis, translation or degradation) [28] and ’WD40 repeats’ facilitate protein-protein
interactions and occur in proteins which participate in signal transduction, transcriptional
regulation to cell cycle control and apoptosis [28].

These protein domains underline general shifts in the protein level due to the acquired
freezing tolerance.

4.6 Carbon Dioxide Elevation Data Set

In line with Dutta et al. [16], who reported an increase in amino acid abundance during
the duration of the experiment, the method revealed changes of amino acid levels (compare
Figure 3.14). In particular, it was reported that amino acids are accumulated.

Furthermore, transcriptional regulation of primary metabolism is tightly interacting,
according to the enrichment networks (e.g. see glycolysis, citrate cycle or NAD/NADH
(de)phosphorylation; compare Figure 3.29), which fits into the picture about the biological
relationship of TCA and electron transport and oxidative phosphorylation ([50] chapter
16 and 17).

Moreover, genes of ’Photosynthesis’ were revealed to be enriched for positive CVs
with ’Glyoxylate and dicarboxylate metabolism’, which is in agreement with the findings
of Dutta et al. [16]. They noted a significant decrease of photosynthesis and carbon
utilization, which is present in the networks be links between photosynthesis-related an-
notations and Calvin-Benson-Bassham cycle or carbon fixation (compare Figure 3.29 and
3.30). Additionally it was revealed that ’Photosynthesis light reactions’ is linked to ’Ru-
bisco shunt’ (compare Figure 3.29). Dutta et al. [16] mentioned that carbon fixation
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competes with photosynthesis for the activity of rubisco, which might be reflected by this
part of the network.

Dutta et al. [16] reported a similar decline of mRNA levels of genes in ’Photosynthesis’
and gene related with glyoxylate, glycolate and glycerate metabolism, which agrees with
the result generated by the proposed method (see ’Photosynthesis’ and ’Glyoxylate and
dicarboxylate metabolism’; Figure 3.30).

It is known that plants exhibit enhanced growth and structural changes upon increased
CO2 levels [52, 53]. In line with this, there is strong evidence for adaption processes of the
plant due to tightly interlinked KEGG annotations like ’Proteasome’, ’Ubiquitin mediated
proteolysis’, ’Protein processing in endoplasmatic reticulum’, ’RNA polymerase’, ’Spliceo-
some’, ’Purine metabolism’, ’Pyrimidine metabolism’ and ’Aminoacyl-tRNA biosynthe-
sis’, which suggests a global change in gene expression and protein abundance (see Figure
3.30). In other words, this suggests that some proteins are degradated while at the
same time other proteins are synthesized. Moreover, i.e. ’Nucleosome assembly’, ’Pro-
tein transport’, ’Protein targeting to mitochondrion’ or ’Phloem or xylem histogenesis’
are enriched for positive correlation values with ’Ribosome biogenesis’ in the GO-based
network (compare Figure 3.31), which underlines the above argument.

The analysis using InterPro annotations revealed genes carrying a ’Pentatricopeptide
repeat’ domain to be tightly co-expressed. Proteins with such domains are related with
targets in mitochondria or chloroplasts [28]. Some of these proteins might have a putative
role in sequence-specific RNA-binding [28, 54].

The enrichment analysis revealed protein kinase specific domains within and among
InterPro domains. They suggest changes in the expression of genes coding for signalling
proteins. Moreover, ’DNA-binding integrase-type’ indicates the change in gene expres-
sion of transcription factors (compare Figure 3.32). Interestingly, the AP2/ERF domain,
which was studied by Pré et al. [46] to reveal its role in ethylene-mediated signalling
in plant defense, occurs among the top ranked InterPro domains for within annotation
label enrichment. As described, jasmonic acid, beside ethylene, is another important
hormone playing a role in plant defense [46]. Both, ethylene and jasmonic acid are as-
sociated with AP2/ERF domain carrying transcription factors to respond to particular
pathogens. In line with these results, the proposed method revealed relationships be-
tween ’Response to ethylene stimulus’, ’Response to jasmonic acid stimulus’, ’Jasmonic
acid mediated signalling pathway’ and ’Response to biotic stimulus’ (compare Figure
3.31). Dutta et al. [16], firstly, linked CO2 elevation to effects in ethylene biosynthe-
sis, which can be confirmed by the approach proposed in this thesis. Furthermore, they
conducted an time-point specific differential expression analysis which resulted in the en-
richment of ’Defense response’ and ’Response to biotic stimulus’. The latter one, also
occurs among the top ranked GO terms revealed by the proposed method herein. The
network based on the InterPro integration recovered ’Pathogenesis-related transcriptional
factor/ERF, DNA-binding’, which agrees with the knowledge about ethylene and jas-
monic acid induced response to pathogens [46]. Furthermore, for the InterPro network,
several other transcription factor specific domains can be found, some of which are also
linked to ’Pathogenesis-related transcriptional factor/ERF, DNA-binding’. The presence
of edges between protein kinases specific domains and ERF transcription factor domains
might suggest adaption processes in signal transduction (compare Figure 3.32).

The presence of links between cytochrome P450 domains with protein kinase domains,
suggests gene expression changes in signal transduction in parallel with expression changes
in cytochrome P450. Cytochrome P450 is a family of genes which catalyse a wide range of
biochemical reactions. Among the many functions, cytochrome P450 participates in the
biosynthesis or degradation of hormones, signalling molecules, defense compounds and
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xenobiotics [55]. In this context, it might be speculated that cytochrome P450 plays a
role in coping with biotic stress or plant defence compounds, which would fit into the
picture of sustained ethylene signalling [16].

4.7 Conclusion and Future directions

The proposed algorithm recovers results from recent studies [16, 17, 18, 19, 20] on RTT

by integrating various annotation libraries, though there is still potential to improve to
method’s performance. In addition, many findings, which were not explicitly reported
in these papers, can be linked to evidence of similar studies (e.g. AP2/ERF domain
which is linked to ethylene and jasmonic acid-related signaling, was detected as one of the
top ranked results for the within enrichment analysis, CO2 data set and RTT [46, 28]).
Especially, top ranked annotation labels or annotation pairs (e.g. in terms of their p-
values or P (erroneous decision)) recover many previously mentioned cellular adaptation
processes in response to these environmental stresses. Hence, this thesis provides a proof
of concept for a novel enrichment analysis approach, which is believed to be valuable for
identifying high level system-wide regulatory relationships and, additionally, might be
useful to guide further experimental studies. However, in order to elucidate the true false
positve and false negative rate of the method it is necessary to compare the performance
of the algorithm either to a bench mark data set or to a similar bioinformatical approach
(e.g. ClueGO [24]), which is part of future work.

In general, RMM is much harder to interpret than RTT [6, 8]. The proposed algorithm
in general succeeded in finding several associations among metabolites based on their
level profile. For instance, amino acids were found to be tightly correlated in all data sets.
However, for RMM often only fairly general annotation labels can be used for statistical
tests, because of the small number of acquired metabolites and the limitation of using at
least five metabolites for the enrichment test.

An even harder task is concerned with the interpretation of RMT . The quality of
the algorithm depends strongly on the comprehension of the annotation libraries and
the number of molecules acquired. Hence, the small number of identified metabolites
challenged the quality of the results drawn on metabolic data used in here. Nevertheless,
in some cases (e.g. glucosinolate biosynthesis in S-def conditions) the algorithm produced
plausible results, in concordance with the literature. However, the analysis of RMT also
suffered from the small number of measured metabolites. Again, metabolite nodes in
the networks correspond to fairly general annotation labels hindering the interpretation
process of the resulting networks.

A number of advancements and extensions might be useful for the algorithm in order
to optimize its performance (e.g. improved permutation sampling approach) as well as to
improve its usability for biologists.

Out of the developments throughout this thesis, either a bioconductor package or a
Cytoscape plug-in might be developed. With particular focus on the optimization of the
method, the network visualization and network annotation and the user-interactive navi-
gation within the network. For instance, a richer set of graph annotation might be useful
such as color code to represent within annotation libraries or line width might be associ-
ated with the p-value levels. Furthermore, parameters of the algorithm like significance
levels, significance test variant or bin intervals in the histogram should interactively nav-
igated. An important point is also to remove redundancies within annotation libraries,
e.g. as proposed by Bindea et al. [24].

With the establishment of new and advanced high-throughput solutions (e.g. the
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establishment of maps of molecule-kinase interactions [56] or biotechnological approaches
to measure the affinity of chemical compounds to proteins [57, 58]), the method might
also be considered for an adaption to integrate a broader spectrum of omics data.
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