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Abstract

Title: Automatic Differentiation between Pseudoprogression and Tumor Recurrence by

Applying an SVM to Multiparametric MRI-Data

Objective: The aim of this retrospective study was to evaluate whether a differenti-

ation of pseudoprogression and tumor recurrence in patients with resected glioblastoma

multiforme was possible by applying a machine learning approach to data obtained by

several different magnetic resonance imaging (MRI) sequences.

Methods: Data from 8 patients with pseudoprogression and 8 patients with tumor re-

currence was used in this retrospective study. For each patient 8 images, obtained by

multiple MRI sequences, were registered, such that each voxel was characterized by an

8-dimensional feature vector. A region of interest (ROI) was drawn over the contrast-

enhanced lesion in the T1-weighted image. A one-class support vector machine (OC-

SVM) was trained on the feature vectors of the voxels within the ROI of patients with

pseudoprogression. The classifier was tested using cross-validation. The percentage of

voxels within the ROI that were classified by the SVM to represent pseudoprogression

was used to make a decision whether a patient suffered from recurrent tumor or showed

pseudoprogression.

Results: The single voxels were classified with an area under the ROC-curve of 0.66. The

percentages of voxels that were thought to represent pseudoprogression were significantly

larger with a p-value of 0.0104 in patients with pseudoprogression compared to patients

with tumor progression. The sensitivity and specificity with which the single patients

were classified were 0.75 and 0.875 respectively.

Conclusion: The results showed that a differentiation based on MRI data using a ma-

chine learning approach is possible. However the excellent results of previous research by

Hu et al. [1] could not be reproduced. Especially adjustments to the MRI protocols are

expected to improve the method.

Keywords: Glioblastoma multiforme, Pseudoprogression, Support Vector Machine, Mag-

netic Resonance imaging



Kurzfassung

Titel:Automatische Unterscheidung von Pseudoprogression und Tumor Progression durch

Anwendung einer SVM auf MRT-Daten

Ziel: Mit dieser Arbeit sollte retrospektiv überprüft werden, ob es möglich sei, auf-

grund von Daten, die von verschiedenen Magnetresonanztomographiesequenzen (MRT-

Sequenzen) stammten, Pseudoprogression von Tumor-Progression bei Glioblastom-Patienten

mit Methoden des maschinellen Lernens zu unterscheiden.

Methoden: Die Bilder, die von unterschiedlichen MR-Sequenzen stammten, wurden re-

gistriert sodass jedes Voxel durch einen achtdimensionalen Feature-Vektor beschrieben

wurde. Eine “Region of Interest” (ROI) wurde über die kontrastverstärkte Läsion im

T1-gewichteten Bild eingezeichnet. Eine “one-class Support Vector Machine” (OC-SVM)

wurde auf die Feature-Vektoren der Voxels innerhalb dieser ROIs durch Kreuzvalidierung

trainiert und getestet. Der prozentuale Anteil von Voxels innerhalb der ROI, die durch

die SVM als Pseudoprogression klassifiziert wurden, wurde für die Entscheidung, ob ein

Patient ein Tumorrezidiv vorweist oder ob es sich um Pseudoprogression handelt, heran-

gezogen.

Ergebnisse: Die einzelnen Voxels wurden mit einer Fläche unterhalb der ROC-Kurve

(“area under curve”, AUC) von 0.66 klassifiziert. Die prozentualen Anteile an Voxeln, die

als Pseudoprogression klassifiziert wurden, waren in Patienten mit Pseudoprogression si-

gnifikant höher (p-Wert = 0.0104), als in Patienten mit Tumor-Progression. Die einzelnen

Patienten wurden mit einer Sensitivität von 0.75 und einer Spezifität von 0.875 klassifi-

ziert.

Schlussfolgerung: Die Resultate zeigen, dass eine Unterscheidung mithilfe von MR-

Bilddaten und Anwendung von Methoden des maschinellen Lernens möglich ist. Die exzel-

lenten Resultate früherer Untersuchungen durch Hu et al. [1] konnten jedoch nicht repro-

duziert werden. Es ist zu erwarten, dass besonders Anpassungen in den MR-Protokollen

zu einer Verbesserung der Ergebnisse führt.

Schlüsselwörter: Glioblastoma multiforme, Pseudoprogression, Support Vector Machi-

ne, Magnetresonanztomographie
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Notation, Symbols and Definitions

X input space

H feature space

D dimension of vector space

Φ feature map X → H

x data point in input space

w weight vector in feature space

x a vector with entries xi with i = 1 . . . D,

usually a mapped data point in H, x = Φ(x)

xT a transposed vector

xT
1 · x2 dot product between x1 and x2

xn usually a vector of the training set with n = 1 . . . N

N usually number of training samples

yn class label corresponding to the data point xn

ν regularization parameter in ν-SVMs

b constant offset (or threshold)

ρ margin parameter

αn Lagrangian multiplier corresponding to the data point xn

ξn slack variable

k kernel

σ standard deviation or parameter controlling width of gaussian kernel

γ parameter controlling width of gaussian kernel, inverse proportional to σ

T variable in one-class SVM, that allows to make the region bigger

that is estimated to contain the class

c parameter, based on which T is defined

h activation function

sgn(x) =







+1 for x ≥ 0

−1 for x < 0
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1 Introduction

Glioblastoma multiforme is the most common malignant brain tumor. It is commonly

treated with surgical resection and subsequent chemoradiotherapy. The response to the

therapy is assessed using magnetic resonance imaging (MRI). However, treatment related

changes mimic tumor progression. The so-called pseudoprogression cannot be distin-

guished from tumor progression in conventional MRI. The aim of this thesis was to find

a way to distinguish those two entities using MRI. Perfusion imaging was most promising

for the task to reveal differences between pseudoprogression and tumor progression [2].

Most of the recent studies, that evaluated the use of perfusion imaging for the differen-

tiation of pseudoprogression from tumor progression, evaluated mean, minimal and/or

maximal relative cerebral blood volume (CBV) within a region of interest (ROI) [2]. Cur-

rently most researchers try to find a threshold for one or a few of those parameters in

order to make the differentiation. Although those studies yielded significant differences

between patients with recurrent tumor and patients with pseudoprogression, there was

still some degree of overlap.

In contrast to simple threshold-based approaches, in this study a machine learning ap-

proach was chosen for the decision making. Machine learning is found in a wide range

of medical applications. For example machine learning approaches have been used to

perform segmentation in medical images and to perform registration of medical images

from different modalities or time series [3]. Machine learning is also found in computer-

aided detection and diagnosis systems and in content-based image retrieval systems [3].

Numerous machine learning techniques that are used in clinical practice are classification

techniques. For example in radiology computer-aided detection and diagnosis systems are

frequently used for the classification of lesions [3].

For example support vector machines (SVMs) have been shown to be feasible to detect

microcalcification from digital mammograms [4]. SVMs were also applied to detect struc-

tural patterns in cerebral MRI for an early diagnosis of Alzheimer’s disease [5, 6]. SVMs

as well as neural networks were used to identify the type or grade of brain tumors on

MRI [7, 8, 9] and to detect multiple sclerosis [10]. Several different machine learning

approaches were applied in colon cancer research. Detection systems for computed tomo-

graphic colonography have shown to be highly accurate in detecting colonic polyps [3].

Classifiers, such as SVMs, linear discriminant analysis (LDA) and neural networks, can
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also be trained on data obtained by functional MRI (fMRI) in order to differentiate brain

activity patterns [3].

In this study a machine learning approach was used, because that way CBV data can

be combined with more quantitative parameters and data obtained by different MRI se-

quences. Furthermore it automatically finds patterns based on which the classification

can be done. This study is strongly related to the work by Hu et al. [1] and the aim was

to reproduce their excellent results.

Chapter 2 will give an overview over the medical background concerning the problem of

diagnosing pseudoprogression. Furthermore an introduction to some machine learning

approaches will be given. The focus will be laid on Support Vector Machines, because

SVM was the algorithm that was chosen for the classification task. In chapter 3 the used

data set and method will be described in detail. The results will be presented in chap-

ter 4. Finally in chapter 5 the results will be discussed and compared to the results of

Hu et al. [1].
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2 Theoretical Background

2.1 Medical Background

In the USA 7.28 per 100 000 individuals are annually diagnosed with a malignant tumor

in the brain or central nervous system [11]. In comparison, in Austria in 2009 the age-

adjusted incidence rate (based on the WHO standard population) for brain cancer was

4.9 per 100 000 women and men [12]. In the USA for Glioblastoma an incidence rate of

3.19 per 100 000 is reported [11]. Therefore nearly 45% of all malignant brain tumors are

classified as Glioblastoma in the USA. Thus Glioblastoma is the most common malignant

brain tumor [11].

2.1.1 Glioblastoma Multiforme and its Therapy

Glioblastomas multiforme (GBM) arise from glial cells and grow by diffuse infiltration

into the white matter of the brain. GBM are characterized by their distinctive neovascu-

larization and the disruption of the blood-brain barrier (BBB) [13]. GBM are assigned a

WHO-grade IV and patients diagnosed with GBM have a poor prognosis [14]. The mean

survival time is only about 15 months [13].

Current standard of therapy is resection, followed by a chemotherapy combined with ra-

diotherapy according to the Stupp Protocol [15, 16, 17]. A successful treatment leads to a

decrease of the tumor volume. In contrast to that tumor progression or recurrent tumor

are characterized by an increase of the tumor volume [16]. The response to the therapy is

assessed using contrast-enhanced magnetic resonance imaging (MRI). Malignant tumors

show faster and higher levels of enhancement than normal tissue. The increased enhance-

ment generally results from stronger vascularization, which leads to bigger cerebral blood

volume, and a disrupted blood-brain barrier (BBB) [18].

The BBB is formed by specialized endothelial cells around the capillaries in the central

nervous system. It restricts or slows the diffusion of some drugs and other chemical com-

pounds, radioactive ions and disease-causing organisms, such as viruses, from the blood

into the extravascular space. In tissue with disrupted BBB contrast agents can pass into

the extravascular space and cause contrast enhancement on MRI. Based on the size of the

contrast-enhancing regions, the Macdonald criteria are used to assess the clinical response
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of high-grade gliomas to therapy [19]. However, the contrast enhanced regions only rep-

resent regions of disrupted BBB and not the whole tumor volume.

Furthermore a disrupted BBB and consequently contrast enhancement not only occurs

in tumor tissue but can also be the result of other treatment-related effects. Especially

reactions to radiotherapy/radio-chemotherapy like radiation necrosis or the so-called pseu-

doprogression lead to contrast enhancement as well [20]. Thus the evaluation of the size

of contrast-enhancing regions is not sufficient to assess the success of the therapy.

2.1.2 Radiation Necrosis

Radiation necrosis is a severe local tissue reaction to radiotherapy. On MRI it shows

signs of a disrupted BBB, edema and mass effect [20]. Radiation necrosis can occur 3

months to several years after radiotherapy [20, 16]. The incidence of radio necrosis after

radiotherapy is estimated at 3-24% and is suspected to be higher when it is combined with

chemotherapy [20, 21]. The occurrence of radiation necrosis seems to be directly related

to the radiation dose and size of the brain volume to which it is applied during therapy

[20, 21].

The clinical course and symptoms of radiation necrosis are highly variable. Some patients

even remain asymptomatic [20]. Radiation necrosis is normally irreversible and likely to

progress, may even be fatal.

2.1.3 Pseudoprogression

Pseudoprogression typically occurs up to 3 months after therapy [20]. It shows increased

contrast enhancement on MRI and is likely to be misinterpreted as tumor recurrence. In a

study of Chamberlain et al. [22] 15 patients underwent surgery in the first 6 months after

radiochemotherapy because of a suspected recurrence. In 7 of these 15 patients (46%) no

histopathological evidence for tumor was found.

Pseudoprogression is thought to be a local tissue-reaction to the radiotherapy with signs

of inflammation, edema and increased vascular permeability [20]. It is assumed that it is a

self-limiting process. Patients often recover or stabilize spontaneously. Pseudoprogression

is related to a better outcome and overall survival [2]. Therefore it is important not to

mistake pseudoprogression for tumor recurrence and treatment failure. Otherwise the

treatment that is working might be changed to one that might not work. Additionally

after a potential change of the therapy the spontaneous improvement of pseudoprogression

might be interpreted as a result of the new treatment [2].
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2.1.4 Imaging

Conventional contrast enhanced MRI

As stated before, conventional contrast enhanced MRI is not suitable for the differentia-

tion between progression and pseudoprogression, because both lead to increased enhance-

ment. Currently the only possibility to distinguish pseudoprogression from progression in

contrast enhanced MRI is to do follow-up examinations. If the size of the contrast en-

hanced region stabilizes or decreases on follow-up studies, it can be assumed to represent

pseudoprogression. If it worsens, it represents tumor progression [17, 2].

Perfusion Imaging

To measure the perfusion dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is

performed. For that a contrast agent is injected into a peripheral vein in a reproducible

manner [18]. The first passage of the bolus of the contrast agent is detected and its con-

centration versus time for each voxel is measured [23]. Based on the measured curves the

relative cerebral blood volume (CBV), relative cerebral blood flow (CBF), mean transit

time (MTT) and time to peak concentration (TTP) in each voxel can be estimated [24, 25].

These are relative measures and do not allow absolute quantification. DSC-MRI assumes

that the blood-brain barrier is intact and that the signal reduction observed in DSC-MRI

results entirely from contrast agent within the blood vessels. However in regions of dis-

rupted BBB that is generally not true. Contrast agent diffuses into extravascular space

and causes signal changes that lead to an underestimation of CBV [2, 25, 26]. There are

techniques to correct the effects of leaked contrast media. One possibility to reduce the

leakage error is the injection of a small dose of contrast agent prior to the actual measure-

ment. Another way to reduce the error is the reduction of the flip angle, which however

results in lower signal-noise-ratio (SNR) [25, 2]. Reduction of flip angle is simple and is

very effective with gradient-echo sequences [25, 2].

DSC-MRI has been shown to be useful in the differentiation of tumor recurrence and

pseudoprogression [27, 28, 2, 21]. Generally tumor recurrence is associated with stronger

perfusion due to increased metabolic activity and neoagiogenesis. Higher relative CBV

and relative CBF has been seen in recurrent tumor, whereas radio necrosis and pseudo-

progression show decreased relative CBV and relative CBF.

Diffusion-Weighted Imaging

All molecules undergo random, Brownian motion. Free particles, such as water molecules,

are therefore subject to diffusion processes. The speed of the diffusion process is charac-

terized by the diffusion coefficient also referred to as diffusivity. It is influenced by the
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characteristics and geometrical structure of the environment (e.g. viscosity, cell mem-

branes, macromolecules). Diffusion-weighted imaging (DWI) detects differences in the

diffusivity of water molecules in the different tissues. Based on DWI the apparent diffu-

sion coefficient (ADC) is calculated for each voxel [29].

Tumor progression is associated with lower ADC values compared to the ADC values of

necrotic tissue and pseudoprogression [30, 17, 26]. This can be explained by the increased

cellular density, generally found in tumor tissue, which leads to lower diffusivity of water

molecules [30].

2.2 Machine Learning

This thesis was about the question whether an automated distinction between tumor

recurrence/progression and pseudoprogression based on a machine learning approach is

possible. Basically the differentiation can be seen as a classification problem with two

classes, progression and pseudoprogression. Both classes are not well distinguishable by

physicians on the basis of the routinely acquired MRI data. However a machine learning

algorithm possibly can learn a pattern in the MRI data based on which it can make a

distinction between the two classes.

In the following, some machine learning methods with focus on supervised learning will

be presented. The field of machine learning is a very wide field and it is impossible to

discuss it to the whole extent in this thesis. However the aim of the following section is

to give an overview of the most basic and important methods. To keep it simple only

two-class classification methods will be considered.

2.2.1 Data Representation

A crucial task in machine learning is the choice of data representation. Each instance,

also called example, sample, observation or data point, has to be described in some way

so that it can be computationally processed. Generally the instances are described by

an input vector, that is also often referred to as feature vector. The components of the

input vector represent the so-called features, attributes or input variables [31]. The ideal

choice of features makes the distinction between two instances of different categories an

easy task.
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2.2.2 Näıve Bayes

The näıve Bayes classifier is a classification method based on probability theory, more

precisely it is based on the Bayes Theorem:

p(A|B) =
p(B|A)p(A)

p(B)
(2.1)

Despite its simplicity, näıve Bayes often outperforms more sophisticated classification

methods [32, 33].

Given a vector x describing one instance withD elements, that each describe one attribute

of the instance, and given one class yk of the K classes then the following applies:

P (yk|x) =
p(x|yk)P (yk)

p(x)
=

p(x|yk)P (yk)
K
∑

l=1

p(x|yl)P (yl)

. (2.2)

The näıve Bayes model assumes that all attributes are independent from each other and

only depend on the output variable. This assumption is generally not true, but it simplifies

the problem enormously [34]. Assuming stochastic independence the following applies:

p(x|yl) =
D
∏

i=1

p(xi|yl). (2.3)

Assuming that the probability distribution for each attribute p(xi|yk) is known, the prob-
ability of an instance to be of the class yk given a certain attribute vector x is easy to

calculate. The substitution of equation 2.3 into equation 2.2 results in the rule of the

näıve Bayes model:

P (yk|x) =
P (yk)

D
∏

i=1

p(xi|yk)
K
∑

l=1

P (yl)
D
∏

i=1

p(xi|yl)
(2.4)

Subsequently with equation 2.4 it is possible to calculate the probability that a given

attribute vector x is of the class yk. The näıve Bayes classifier predicts the class with the

highest probability to be the class of the instance. The biggest advantage of the näıve

Bayes classifier is its efficiency. That is, if you already have a good model, the prediction

of the class for a new instance is fast. However, to get a good estimate of the distribution,

you generally need a lot of data.
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Figure 2.1: KNN-Classifier classifier applied to a toy example using Euclidean distances.
(a) shows the resulting decision boundary using k = 1. (b) shows the resulting
decision boundary using k = 5. k = 5 results in a more general decision
boundary at the cost of more misclassified training data.

2.2.3 Nearest-Neighbor Classifier

A considerably more basic method is the nearest-neighbor classifier. It simply assigns to

an instance with unknown class the class of the nearest, that is the most similar, instance

of the training data. Hence to classify a new instance only the distances to all training

data have to be assessed. Possible choices for the distance would be the Euclidean or the

Mahalanobis distance [34]. A variation of the nearest-neighbor classifier is the k-nearest-

neighbor (KNN) classifier. It assigns to an unclassified instance the class of the majority

of the k nearest neighbors. k-nearest-neighbor works better on noisy data than the basic

nearest-neighbor classifier. Figure 2.1 shows a toy example using two different values for

k. The nearest neighbor algorithms show excellent performances when applied to suitable

data and used with a good distance measure [35].

2.2.4 Linear Discriminant Analysis

The linear discriminant analysis (LDA) is a method that searches for a linear function

(see equation 2.5) that separates the two classes optimally. In the 2-dimensional space

(D = 2) the decision boundary would be a line. In a higher dimensional space (D ≥ 3)

the data would be separated by a hyperplane.

wT · x+ b = 0, w ∈ R
D, b ∈ R. (2.5)
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The decision function that decides whether a data point xn lies in the one or in the other

half-space is then defined as

f(x) = sgn(wT · x+ b). (2.6)

To find the linear function a direction, defined by the vector w, is calculated such that

when the data points are projected onto w, the classes are as well separated as possible

[35]. The projection of a point x onto w is defined as x = wTx. After the projection of

the data points onto w the projected means mk of the classes should be as far apart as

possible and the data points of each class should be in regions as small as possible. Hence

the difference between the two projected means |m1 − m2| is to be maximized and the

scatter s within each class is to be minimized. The scatter s represents an equivalent of

the variance (σ2) and is defined as [35]

s2 =
∑

n

(wTxn −m)2. (2.7)

Fisher’s linear discriminant is defined as the linear function wTx that maximizes the

criterion function J(w) [35, 36]:

J(w) =
(m1 −m2)

2

s21 + s22
. (2.8)
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Figure 2.2: An example of a two-class classification problem. The groups follow bivariate
normal distributions. The ellipses indicate the 2σ-distance to the mean of
the Gaussian distributions. (a) shows the 2 groups divided by a linear deci-
sion boundary defined by the vector w obtained by a LDA. The groups are
separated nearly optimally. (b) shows the same groups and a linear decision
boundary resulting from a bad choice of w.

9



Note that (s21+s22) is also called the total within-class scatter of the projected samples [36].

However Fisher’s linear discriminant is not a discriminant but rather defining a direction

for a projection to one dimension on which the data is separable. To make a separation of

the projected data points a threshold b in that one-dimensional subspace must be found.

b also refers to the distance of the decision boundary to the origin (see equation 2.5). For

estimating an optimal b any classification method can be used [35]. One possible choice

for b would be simply the mean of the two projected class means m1 and m2 [34].

b =
m1 +m2

2
(2.9)

Using equation 2.9 for determining b works only well if the classes nearly follow Gaussian

distributions. In some cases it may be reasonably to chose b by empirically minimizing

the training error for a given dataset [32]. Figure 2.2 shows an example for a two-class

classification problem. It illustrates how the two groups can be separated by a line defined

by a vector w and a threshold b obtained by equation 2.9.

An advantage of the LDA is that it does not matter whether the attributes are corre-

lated [34]. But LDA fails if the distributions of the classes are multimodal and highly

overlapping. In such a case even the “best”w will not provide a useful separation [36].

2.2.5 Support Vector Machines

The support vector machine (SVM) is a classifier which, like the linear discriminant anal-

ysis (LDA), uses linear discriminant hyperplanes (see equation 2.5) to separate the data

into two half-spaces. The hyperplane should be chosen in such a way that the class label

becomes yn = +1 for the one class in the one half-space (wT · xn + b ≥ 0) and yn = −1

for the second class in the other half-space (wT · xn + b < 0). The corresponding decision

function equals to [37]:

f(x) = sgn(wT · x+ b). (2.10)

To find a hyperplane that correctly classifies all data points the data must be linearly

separable.

In contrast to the LDA the SVM tries two find the hyperplane with maximal distance

to the closest data point [37, 38]. That means the margin of the decision boundary is

to be maximized. Figure 2.3 shows an example of a two-class classification problem and

three possible linear decision boundaries. The optimal boundary is the one with maximal

margin.

The distance of a point xn to a hyperplane is given by
∣

∣wT · xn + b
∣

∣ / ‖w‖. Therefore the
margin of the hyperplane is

min
n=1,...,N

|w · xn + b|
‖w‖ . (2.11)
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Figure 2.3: An example of a two-class classification problem. The two groups are linearly
separable by various lines. (a) and (b) show lines that separate the data
without classification errors. However they are not considered to be optimal,
because there still exist decision boundaries with larger margins. The filled
circles and rectangles indicate the data points that lie on the margin of the
decision boundaries. (c) shows the optimal decision boundary with maximal
margin. It is the line with maximal distance to the nearest data points. The
points on the margin represent the support vectors. They define the line.

To simplify that statement it is reasonable to require min
n=1,...,N

∣

∣wT · xn + b
∣

∣ = 1, which

simply results in scalingw such that the margin equals to 1
‖w‖

[38]. That way the condition

that the separating hyperplane has to comply can be written as

yn(w
T · xn + b) ≥ 1. (2.12)

The problem of maximizing the margin therefore reduces to [38]

max
w,b

1

‖w‖ s.t. yn(w
T · xn + b) ≥ 1 for all n (2.13)

or equivalently

min
w,b

1

2
‖w‖2 s.t. yn(w

T · xn + b) ≥ 1 for all n. (2.14)

min 1
2
‖w‖2 is called the objective function. Together with the inequality constraints the

objective function forms the so-called constrained optimization problem as written in

equation 2.14. Such problems are solved by introducing Lagrange multipliers αn ≥ 0 and

optimizing a Lagrangian function:

L(w, b, α) =
1

2
‖w‖2 −

N
∑

n=1

αn

(

yn(x
T
n ·w + b)− 1

)

. (2.15)
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For further information about the approach to solve the optimization problem using La-

grangian see [37, 35]. The following terms result from the statement that the derivatives

of L with respect to b and w must be zero [37]:

N
∑

n=1

αnyn = 0, (2.16)

w =
N
∑

n=1

αnynxn. (2.17)

Hence w is defined by the subset of the training points xn, that have a non-zero αn. Those

are the so-called support vectors (SVs).

If the data is not linearly separable there is no solution for the optimization problem 2.14

[38, 34]. Such a classifier is called a hard margin classifier.

Soft Margin Classifier

For the case that a linear separation is not possible the non-negative slack variables ξn

are introduced. ξn relax the constraints of equation 2.12 as follows:

yn(w
T · xn + b) ≥ 1− ξn. (2.18)

In a non-linearly–separable case, no matter which hyperplane is chosen, there always will

be instances that lie on the wrong side of the hyperplane or lie on the right side but within

the margin, i.e. too close to the hyperplane. After the introduction of ξn in equation 2.18

a solution is possible, even though some training instances may be misclassified. Given

an arbitrary hyperplane with arbitrary w and b the constraints 2.18 can be satisfied just

by making ξn large enough. Consequently large ξn have to be penalized [38, 34].

To achieve the penalization of large ξn the optimization problem in 2.14 is modified as

follows [38]:

min
w,b,ξ

1

2
‖w‖2 + C

N

N
∑

n=1

ξn

s.t. yn(w
T · xn + b) ≥ 1− ξn for all n

ξn ≥ 0,

(2.19)

9 where C > 0 is a regularization parameter trading off generalizability, i.e a large mar-

gin, and training error, i.e. the number of nonseparable points. Note, that not only

misclassified points are penalized but also points in the margin [38, 35]. To determine w

and b equation 2.19 is minimized under the given constraints using a suitable optimiza-
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tion method like quadratic programming [38, 35]. Solving the optimization problem 2.19

shows that only a subset of the data points, namely the points that lie on or within the

margin or on the wrong side of the boundary, define w. These are the so called support

vectors.

ν-SVM

An equivalent to the soft margin SVM is the ν-SVM [37, 39, 38]. The primal problem for

the ν-SVM can be written as [37]

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ+

1

N

N
∑

n=1

ξn

s.t. yn(w
T · xn + b) ≥ ρ− ξn for all i

ξn ≥ 0, and ρ ≥ 0.

(2.20)
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(f) ν = 0.9

Figure 2.4: An example of two groups that are separated using a ν-SVM with a Gaussian
kernel k(xn, x) = exp(−‖xn − x‖2). The colored background indicates the
value inside the sign-function of the decision function (see equation 2.22).
In (a) all training data points but one are correctly classified. However the
decision boundary seems to be quite overfitted and is likely to fail on new data.
In (b) to (f) ν is more and more increased. More classification errors and more
support vectors within the margin are allowed. This leads to a smoother and
more general decision boundary.
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ρ is a parameter that scales the margin. The margin now equals to ρ/ ‖w‖. ν has been

shown to be a lower bound on the fraction of support vectors and an upper bound on the

fraction of instances having margin errors. Hence ν controls the number of support vectors

and margin errors. When increasing ν more errors are allowed and the margin is increased

[37]. Figure 2.4 shows the effects of various values for ν on the decision boundaries of a

ν-SVM applied on a two-class classification problem. Compared to the parameter C in

soft margin SVMs tuning the parameter ν is thought to be more intuitive and therefore

the ν-SVM is often the preferred method [35].

Feature Space

Is the data not linearly separable you can try to find a nonlinear discriminant, which is

generally not easy. Another possibility to separate the data is to map the data from the

input space X to a higher dimensional spaceH. The mapping to the so called feature space

H is done by a nonlinear transformation Φ [37]. In the feature space it may be possible to

find a linear separating hyperplane. In the original input space such a hyperplane yields a

nonlinear decision boundary [35]. Figure 2.5 shows an example of a non-separable problem

that can be linearly separated when mapped with Φ into a proper feature space.
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Figure 2.5: An example of a two-class classification problem mapped into feature space.
The data points x = (x1, x2) are mapped into feature space via the nonlinear
map Φ(x) = (z1, z2, z3) = (x2

1, x
2
2,
√
2x1x2) (adopted from [37]). Afterwards

the optimal separating plane was calculated. (a) shows the data in input space.
(b) shows the data in feature space from an angle where the separating plane
becomes a line. It is evident that the data is linearly separable in feature space.
The filled circles and rectangles indicate the support vectors, that define the
plane. (c) shows the separating plane from a different angle. When the plane
is transformed back into the input space it becomes an ellipse as shown in (a).
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Kernel Trick

The kernel trick refers to a technique that avoids the mapping of each data point via Φ

[37]. It has been shown that the dot product of the mapped data points Φ(x1) = x1 and

Φ(x2) = x2 can be replaced by a kernel function k(x1, x2) between the instances x1 and

x2 in the input space [37]:

k(x1, x2) = Φ(x1)
T ·Φ(x2) (2.21)

Substituting the dot products by the kernel simplifies the computation of the solution

for the optimization problem and subsequently the computation of the decision boundary

enormously. For further explanations about the application of the kernel trick see [37] or

[35].

The kernel function can also be incorporated in the decision function f(x) by plugging

equation 2.17 into the equation of the decision function 2.10 and using equation 2.21 [37]:

f(x) = sgn
(

wT ·Φ(x) + b
)

= sgn

(

N
∑

n=1

αnyn Φ(xn)
T ·Φ(x) + b

)

= sgn

(

N
∑

n=1

αnynk(xn, x) + b

) (2.22)

where αn are the Lagrange multipliers and yn are the class labels. Hence the decision

function f(x) can be thought of as a function based on a linear combination of kernels,

which are centered on the training points with non-zero αn, the Support Vectors, and

which are possibly negated by the class label yn of those. A very popular choice for the

kernel is the Gaussian radial-basis function (RBF) [37]:

k(xn, x) = e−
‖xn−x‖2

2σ2 , σ > 0 (2.23)

The RBF defines a spherical kernel where xn is the center and σ defines the radius. A big

σ results in a smoother decision boundary and therefore in a more general solution. On

the contrary a small σ allows to catch more of the training data in the right class.

2.2.6 One-class Classification and Novelty Detection

One-class classification can also be considered as novelty or outlier detection [35]. The

basic task of novelty detection is to determine whether a new observation comes from

the distribution on which the learner was trained or whether it shows a novel unknown

pattern and therefore does probably not come from that initial distribution [40, 41, 42].

Those observations are considered as atypical and are classified as not being part of the

initial class.
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Parzen Window Estimator

For novelty detection a representation of normality is required. The probability density

function p(x) for example would be a good description for the normal data. Any data x for

which p(x) is below a specific threshold can then be considered as novel [40]. The estima-

tion of the probability density function (PDF) is for example done by the Parzen window

estimator. The Parzen window estimator estimates the PDF by the linear combination

of N kernels k(x,xn) [37]:

p(x) =
1

N

N
∑

n=1

k(x,xn), (2.24)

where xn are the known data points of the training set and N is the size of the training

set. A common choice for the kernel is again the Gaussian kernel because it results in a

smooth PDF estimate. This leads to the following density model [43]:

p(x) =
1

N

N
∑

n=1

1

(2πσ2)
d

2

exp

{

−‖x− xn‖2
2σ2

}

, (2.25)

where σ corresponds to the width or standard deviation of the Gaussian kernels and d is

the dimension of the input space. In figure 2.6 some examples of Parzen-window estimates

are shown. It shows the influence of the parameter σ and the number of samples N .

One-class SVM

The one-class SVM (OC-SVM) is another method for novelty detection [41]. It computes

a region as small as possible that includes most of the data points of the training set. For

all points in this region the decision function f (see equation 2.26) takes the value +1.

Anywhere else f takes the value −1.

f(x) = sgn
(

wT ·Φ(x)− ρ
)

(2.26)

To find that optimal region the training data is mapped into the feature space H. The

region is then defined by a hyperplane that separates the data set from the origin in the

feature space with maximal distance to the origin. The following quadratic program is

solved to find the optimal separating hyperplane [41, 37]:

min
w∈H,ξ∈RN ,ρ∈R

1

2
‖w‖2 − ρ+

1

νN

N
∑

n=1

ξn,

subject to wT ·Φ(xn) ≥ ρ− ξn, ξn ≥ 0.

(2.27)
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N = 1000

N = 50

N = 10

σ = 0.5 σ = 0.8 σ = 1.2

Figure 2.6: Parzen-window estimates of a bivariate normal density using different kernel
widths σ and numbers of samples N . A large number of samples (N = 1000)
leads to almost the same distribution, regardless of the kernel width, and
matches the true distribution very well.

The distance of the hyperplane to the origin is ρ/ ‖w‖. Consequently the optimal hy-

perplane is obtained by minimizing ‖w‖. Analogously to the ν-SVM (see section 2.2.5)

the introduction of slack variables ξn allow that data points lie between the hyperplane

and the origin. Such points have non-zero ξn and therefore non-zero ξn are penalized.

The parameter ν controls to which extent ξn are penalized and consequently controls the

fraction of the points fall on the wrong side of the hyperplane. The decision function

(see equation 2.26) of the OC-SVM reduces to a thresholded Parzen window estimator,

provided that the OC-SVM is applied using a kernel with integral 1, such as the Gaussian

kernel, and that the parameter ν = 1 [41, 37]. For ν < 1 the decision function still is a

thresholded density but it is obtained only by a subset of the training data, the support

vectors (SVs) [37].
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Safty Margin in OC-SVMs

In two-class ν-SVMs the parameter ν controls the fraction of SVs and data points with

margin errors. A larger ν leads to a more generally shaped decision boundary and to a

larger margin. However more data points with margin errors do not lead automatically

to more training errors. Because in two-class ν-SVMs data points within the margin can

still lie on the right side of the hyperplane and are therefore possibly classified correctly.

On the contrary, in OC-SVMs this is not the case. The data points with margin errors

are considered as outliers and fall on the wrong side of the hyperplane. They are therefore

classified wrongly.

In OC-SVMs a larger ν does not lead to a larger margin between two classes, simply

because there is only one class. Instead of maximizing the margin between two classes the

distance of the hyperplane to the origin in feature space is maximized. A larger ν has not

only the result of a more generally shaped decision boundary but also results in a larger

distance of the hyperplane in feature space to the origin. Hence a larger ν always has the

effect of reducing the size of the region, that is estimated to contain the training data.

Consequently it makes sense to introduce a “safety margin” in OC-SVMs. To increase

the generalizability of the classifier Schölkopf et al. [44, 37] suggest to make the region,

that is estimated to contain the training data, slightly larger than it is estimated by the

algorithm. They do this by reducing ρ in the decision function 2.26 by some factor γ.

To avoid confusion with the kernel parameter used by the LIBSVM package, which is

introduced later, this parameter will here be called T , because it controls the threshold of

the thresholded density, that is estimated by the OC-SVM. Hence the decision function

becomes

f(x) = sgn
(

wT ·Φ(x)− (ρ− T )
)

, T > 0. (2.28)

In the end the kernelized version of the decision function equals to

f(x) = sgn

(

N
∑

n=1

αnk(xn, x)− (ρ− T )

)

, T > 0. (2.29)

Reducing ρ has the effect of shifting the hyperplane in feature space towards the origin.

The distance to the origin is now given by ρ−T

‖w‖
. Taken together, in OC-SVMs a larger ν

results in a more general shaped decision boundary on the cost of a smaller region that is

estimated to contain the training data. Therefore the region is made larger again by the

parameter T .
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2.2.7 Neural Networks

The term“neural networks” comes from the attempt to model the brain as an information

processing system by means of mathematical models [43]. However the approach has

shown to be also suitable for the application as a learning method. In the context of

machine learning the most successful implementation of a neural network is the “feed-

forward neural network”, also called the “multilayer perceptron” [43].

In comparison to the support vector machine the multilayer perceptron can be fast in

processing new data, because of its possibly better compactness, although it provides the

same generalization performance. The drawback is that the objective function, which is

to be optimized in neural networks, is not a convex function of model parameters. Hence

the training is computationally costly and it is not certain whether the optimal solution

to the problem is found [43].

The SVM basically first defines basis functions that are centered on the training data

points and then selects during training a subset of these. On the contrary neural networks

start with a fixed number of basis functions, which are however adaptive.

Neural networks consist of several layers of nodes. The nodes of the network are often

named after the basic information processing units of the brain, the neurons. Figure 2.7

shows a schematic of an example of a single neuron. The neurons “fire” when the signals

that are passed to them are in sum larger then a certain threshold. In the context

of machine learning instead of a step function the output signal of a neuron is usually

controlled by a differentiable activation function.

The most basic implementation of a neural network has three layers of units: an input

layer, a hidden layer and the output layer [32]. For a two-class classification problem

there are 2 units in the output layer. The input layer consists of the input variables. The

x0 = 1 w0j

x1 w1j

x2 w2j Σ h zj

...
...

xD wDj

Figure 2.7: Schematic of a neuron. The input variables xi are weighted with the pa-
rameters wij. Afterwards they are linearly combined and transformed by the
nonlinear activation function h. zj is the output of the neuron. x0 is fixed to
1 because w0j represents the bias.
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hidden layer lies between the output and the input layer. The units of the hidden layer

represent the adaptive basis functions. Figure 2.8 shows the schematic of a feed-forward

neural network.

A unit of the hidden layer with subscript j computes a linear combination of the input

variables xi with i = 1, . . . , D, where the input variables are weighted with the parameters

w(1)

ji and a bias w(1)

j0 is added. The superscript (1) denotes that the weight corresponds to

the first layer. The result is transformed by a differentiable, nonlinear activation function

h. So the output of a unit in the hidden layer is given by [43]:

zj = h

(

D
∑

i=1

w(1)

ji xi + w(1)

j0

)

. (2.30)

x0=1 z0=1

z1

x1 z2

x2 z3 y1

... z4 y2
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4D
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w
(1)

MD

w
(2)
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...
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(2)

24

w
(2)

2M

Figure 2.8: Schematic of a feed-forward neural network. The network has three layers
of units. Hence, such a network structure is sometimes called a “three-layer
network”. Sometimes the same structure is also called “single-hidden-layer”
network, because there is only one hidden layer. When referring to the number
of layers of adaptive weights the structure can be called“two-layer network”as
well [43]. xi are the input variables, zj are output signals of the hidden units
and yk are the output variables of the network. w(1)

ji and w(2)

kl are the weights
of the first and the second layer respectively.
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For the activation functions h generally sigmoidal functions are chosen [43]. Logistic

sigmoid or tanh-function are a common choices. The outputs of the hidden layer are

again linearly combined and transformed by an activation function σ to give the network

outputs as follows [43]:

yk = σ

(

M
∑

j=1

w(2)

kj zj + w(2)

k0

)

. (2.31)

The bias variable w(1)

j0 can be incorporated into the set of weight parameters when intro-

ducing an additional input variable x0 and setting it to x0 = 1. Similarly the bias variable

w(2)

k0 of the second layer can be absorbed into the set of second-layer weights w(2)

kj . In the

end the overall network function becomes

yk(x,w) = σ

(

M
∑

j=0

w(2)

kj h

(

D
∑

i=0

w(1)

ji xi

))

(2.32)

where σ is a logistic sigmoid function (illustrated in Figure 2.9):

σ(a) =
1

1 + exp(−a)
. (2.33)

0

0.5

1.0

−10 −5 0 5 10

Figure 2.9: The curve shows the sigmoid function σ(a) as in equation 2.33.

Network Training

For training a neural network two aspects have to be solved: identification of the structure

of the network and learning the weight parameters. The problem of determining the

weights of a fixed structure is solved. However the structure of the network must generally

be found by experimentation and experience [33].

Given a fixed network structure the weights w have to be adjusted such that the predicted

output variables y = (y1, . . . , yK) for an input vector xn match the target values as close

as possible. The target vector tn could for example describe a class to which the instance

xn is known to belong. Hence, the error between output and target should be minimal,
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so an error function has to be minimized. For example, the sum-of-squares error function

E(w), as written in equation 2.34, can be minimized with respect to the weights w using

gradient descent [43] to obtain optimal weights.

E(w) =
1

2

N
∑

n=1

‖y(xn,w)− tn‖2. (2.34)

A common algorithm to evaluate the gradient of the error function E(w) for a feed-forward

neural network is known as “error backpropagation”. For further information about this

algorithm see [43, 36].

2.2.8 Summary

The range of machine learning methods is a lot larger than presented here and most of

the methods are a lot more sophisticated than the examples of this overview. The optimal

choice concerning the learning algorithm is strongly dependent on the problem and the

data that is available.

Näıve Bayes is simple, but a large number of data is required to estimate the probability

distribution of the input variables. Furthermore independence of the input variables is

required. Concerning the differentiation of progression and pseudoprogression both inde-

pendence of the input variables and a large number of data is not given. Therefore Näıve

Bayes is not an appropriate algorithm to solve this classification problem.

When the classes highly overlap simple algorithms like K-Nearest-Neighbor (KNN) cannot

be expected to perform well. Linear Discriminant analysis (LDA) only considers linear

decision boundaries in input space. It does not work well on data that is not normally

distributed and is highly overlapping. Both can be expected from the MRI data concern-

ing the assessment of treatment response of Glioblastoma. Consequently KNN and LDA

are not appropriate choices for the differentiation of pseudoprogression and progression.

However, the Support Vector Machine (SVM) is a promising approach. Not much prior

knowledge about the data is needed, to apply a SVM to a classification problem. Never-

theless the choice of the kernel and the regularization parameter ν or C is critical. There

is no general guideline of how to find those parameters. The radial basis function (equa-

tion 2.23) is a reasonable first choice [45]. Advantage of the RBF is that only one kernel

parameter, the kernel width, has to be selected. SVMs generalize well when appropriate

parameters are found.

One-class classification makes sense when there is only one specific class of interest that is

to be separated from several other classes. This is an advantage when the other classes all

together are very heterogeneous. Using two-class SVM more data would be necessary to

model the other classes accurately in the training process. One-class classification instead
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only needs data from the one class of interest for training.

Neural networks are prone to overfitting, especially when not much data is available.

Since there is not much data available, concerning the problem of distinguishing pseu-

doprogession form tumor recurrence, the approach of neural networks was not the first

choice. Besides, neural networks are computationally costly and without any experience

it is difficult to find appropriate network structures.
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3 Materials and Methods

3.1 Data Acquisition

The initial data set of this retrospective study consisted of the data from 55 follow-up stud-

ies from patients who were diagnosed with glioblastoma multiforme (GBM). All patients

had undergone surgical resection followed by radiation therapy combined with chemother-

apy with temozolomide according to the Stupp protocol [15] and a subsquent adjuvant

chemotherapy with temozolomide [16]. Response to the therapy was controlled by MRI,

including perfusion protocols, in intervals of 3 months after the surgery. The MRI data of

these follow-up examinations were used to predict tumor recurrence or pseudoprogression.

The true outcome was determined by further follow-up MRI scans.

The data came from 4 different MRI Scanners and each of them was using different proto-

cols. To avoid biases in the data due to different hardware and protocols only data of the

scanner providing the largest data set was used in the detailed analysis. Thus the number

of data sets reduced to 20. For 4 patients data sets of two different follow-up studies, from

two different dates were present. Only the data from the latest study was used. Hence

16 data sets were used for the further study. 8 patients were diagnosed with tumor recur-

rence and 8 patients showed pseudoprogression. The used MRI data was acquired with a

3-Tesla MRI scanner (MAGNETOM TimTrio, Siemens Healthcare, Erlangen, Germany)

and the following protocols were applied:

• Contrast-enhanced T1 weighted imaging (T1WI):

repetition time varied from 505 to 917 ms, echo time = 20 ms, flip angle = 90◦,

voxel size = 0.86 × 0.86 × 4 mm3, spacing between slices = 4.8 mm, Field of view

(FOV) varied from 175 to 220× 220 mm2.

• T2 weighted imaging (T2WI):

repetition time = 5000 ms, echo time = 102 ms, flip angle = 140◦, voxel size =

0.69× 0.69× 4 mm3, spacing between slices = 4.8 mm, FOV = 220× 220 mm2.

• Fluid Attenuated Inversion Recovery (FLAIR):

repetition time = 9240 ms, echo time = 106 ms, inversion time = 2500 ms, flip

angle = 150◦, voxel size = 0.86 × 0.86 × 4 mm3, spacing between slices = 4.8 mm,

FOV = 199× 220 mm2.
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• Dynamic susceptibility contrast-enhanced (DSC) perfusion weighted imaging:

repetition time = 1250 ms, echo time = 28 ms, flip angle = 60◦, voxel size =

1.8× 1.8× 5.4 mm3, spacing between slices = 6 mm, FOV = 230× 230 mm2.

Based on perfusion imaging the following quantitative parameter maps were created:

– relative cerebral blood volume (CBV)

– relative cerebral blood flow (CBF)

– Mean transit time (MTT)

– Time to peak (TTP)

• Diffusion weighted imaging (DWI):

repetition time = 2800 or 2900 ms, echo time = 106 or 109 ms, flip angle = 90◦,

voxel size = 1.72× 1.72× 5.4 mm3, spacing between slices = 6 mm, FOV = 220×
220 mm2.

Apparent diffusion coefficient (ADC) map was created.

The calculation of CBV, CBF, MTT, TTP and ADC maps was performed by the built-in

Software by Siemens.

3.2 Image Registration and Resampling

The 8 input images were registered and resampled using the SMP8 software package

(Statistical Parameter Mapping, [46]) for MATLAB R© (R2010a, The MathWorks, Inc.,

Natick, Massachusetts, United States). This was a crucial task because in the further

analysis each volume element of the tissue was characterized by an 8-dimensional feature

vector. The feature vector consisted of the intensities of the volume element in the 8

different images. Therefore it was necessary that the voxels at the same position in each

image referred to the same volume element in the tissue. Figure 3.2 illustrates how the

feature vector of one volume element was obtained.

All images of one patient were registered to the contrast enhanced T1-weighted image.

Since the perfusion maps and the ADC-maps did not contain very much anatomical

information, those maps were not directly registered to the T1-weighted image. Instead,

the first image of the time series that was performed to acquire the perfusion data was

registered to the T1-weighted image. The perfusion maps (CBV, CBF, MTT, TTP) were

forced to remain in alignment. That means the transformation matrix that resulted from

the transformation of the first time point of the perfusion acquisition series to the T1-

weighted image was also applied to the perfusion maps. In the same way the first image of

the diffusion acquisition series was registered to the T1-weighted image and the ADC-map

was transformed by the resulting transformation matrix.

The registration algorithm of SPM8 is based on the work by Collignon et al. [47]. Collignon
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Feature vector = (a, b, c, d, e, f, g, h)

Figure 3.1: This graphic illustrates how the feature vector for one voxel was obtained
from the registered images. For each image it shows the slice from the same
position. The images were ordered from top to bottom as follows: T1WI,
T2WI, FLAIR, CBV, CBF, MTT, TTP, ADC.

et al. proposed a rigid body registration for 3D multi-modality medical image data. They

maximize the similarity of all possible pairs of voxel values by maximizing the mutual

information of the joint probability distribution. The developers of SPM8 varied the

algorithm such that the computations are accelerated and that getting stuck in local

minima is better avoided [46].

The images were also resliced and resampled to provide that the slices and the resolution

of each image matched. The CBV-map was used as reference image that defined the space

to which the other images were resliced and resampled. A perfusion map was chosen as

reference because all the perfusion images had already the same resolution and they had

the lowest resolution. Thus only minimal interpolations were necessary in the process of

reslicing and resampling. Trilinear interpolation was used as interpolation method.

In the end all images were resliced and resampled to a voxel size of 1.8 × 1.8 × 5.4 mm3

and a spacing between slices of 6 mm.

3.3 Selection of ROI and Normalization

The contrast enhanced lesions were manually segmented in the original contrast enhanced

T1-weighted image by an experienced neuro-oncologist. To provide comparability within

subjects the image intensities had to be normalized. Therefore a second region of interest
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8 Input images

Selection of regions of interest (ROIs)
in contrast-enhanced T1-weighted image

⋆ Contrast enhanced lesion (ROI)
⋆ Region in normal appearing white matter (nawm-ROI).

Registration
to contrast-enhanced T1WI

Resampling
to space of perfusion-maps

Extract voxel-intensities
of ROIs in each image

Normalization
Devide voxel values of the ROI by the mean of the

nawm-ROI in each image.

8-dimensional vector
characterizing each voxel within ROI

Figure 3.2: Flow-chart showing the steps in image processing for feature extraction
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(ROI) in the normal appearing white matter (nawm) was selected. Those 2 ROIs were

preserved as two separate binary masks. Since the T1-weighted images were resliced and

resampled the files containing the ROI-masks had to be resliced and resampled as well

as described in section 3.2. Subsequently the ROIs could be transferred easily to all the

other images.

T1WI, T2WI, FLAIR, CBV, CBF, MTT, TTP and ADC were normalized by dividing

the voxel intensities by the mean intensity in the nawm-ROI of the corresponding image.

Figure 3.2 summarizes all the previously described steps in image processing for feature

extraction.

3.4 Scaling - Normalization of Intensity Range

When using SVMs it is advisable to have attributes, whose values have the same range.

Otherwise attributes that have a greater numeric range might dominate those with smaller

numeric ranges [45]. Moreover the kernel used in the SVM has the same width in all

dimensions. That means that the distribution of all attributes is estimated with the same

kernel width. Hence it makes sense that the attributes should have approximately the

same maximum and minimum.

The data is for example often mapped to the range from 0 to 1 by linear scaling [45, 33].

Linear scaling is when the minimal value of the entire data set is subtracted of the data

and afterwards the data is divided by the range, that is the difference between the minimal

and the maximal value. Of course this has to be done for all attributes separately.

However, the result of this approach is highly influenced by outliers. Therefore the data

was not divided by the difference between minimum and maximum, but instead of the

maximum the 0.95-quantile of the entire data set for each sequence was used.

To illustrate the effect of scaling Figure 3.3 shows averaged normalized histograms for each

sequence before and after the scaling of the data. To get those histograms the histograms

for each patient and sequence were calculated and normalized by the number of voxels

within the ROI of the corresponding patient. Those normalized histograms were averaged

over all patients. Figure 3.3 shows those histograms for each sequence before and after

the scaling. The shapes of the histograms have not changed, but it becomes apparent

that after the scaling the values lie approximately in the same range, independent from

the sequences.

3.5 Training and Classification

Analogously to Hu et al. [1] a one-class support vector machine (OC-SVM) was chosen as

classifier. The implementation for the OC-SVM was adopted from the LIBSVM package
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(a) Averaged normalized histograms before the scaling of the data
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(b) Averaged normalized histograms after the scaling of the data

Figure 3.3: The histograms of the data of each patient and sequence were normalized by
the number of voxels within the ROI of the corresponding patient. Those nor-
malized histograms were averaged over all patients resulting in the histograms
shown above. The dark bars denote the values below the 0.05-quantile and
above the 0.95-quantile respectively. (a) shows the histograms before the scal-
ing of the data. In each sequence the data between the 0.05-quantile and
the 0.95-quantile lie in ranges of sizes of about 0.25 to 7 depending on the
sequence. (b) shows the histograms after the scaling. The shapes of the his-
tograms have not changed and the majority of the data in each sequence lies
in ranges of less varying sizes (0.25 to 1).

[48] for MATLAB R©. As kernel function the radius basis function (RBF) (k(xn, x) =

exp(−γ ‖xn − x‖2)) was selected.
Each voxel within the ROI was considered as an spatially independent sample. However

it was important to give each patient the same weight in the training processes. The

data from patients with large ROIs should not dominate the training set. To meet this

requirement from each patient with confirmed pseudoprogression the same number of

voxels was randomly sampled. The number of sampled voxels in one patient was the

number of voxels of the smallest ROI. The combination of these sampled data points

resulted in the training set on which the OC-SVM was trained.

Hu et al. [1] hypothesized that the trained OC-SVM classifies significantly more voxels as
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positives in subjects showing pseudoprogression than in subjects suffering from recurrent

tumor. Hence, by evaluating the percentage of positive voxels within the ROI the patients

can be classified into pseudoprogression or progression.

3.6 Validation

To evaluate the classifier several performance measures were computed. To increase the

generalizability cross-validation was performed. Using receiver operating characteristic

(ROC) an optimal threshold for the fraction of positively classified voxels was determined.

3.6.1 Leave-One-Out Cross-Validation

Due to the small number of patients the performance of the classifier was evaluated by

leave-one-out cross-validation. The SVM was trained using data of all patients with

confirmed pseudoprogression but one. This was repeated until each patient was left out

from the training once, which resulted in 8 different models. Afterwards those models

were tested with the data from the patients which were left out at the training and with

data from randomly sampled patients showing progression. As a result each performance

measure was computed 8-times. In the end those measures where averaged:

averaged measure =

∑K

i=k measurei
K

, (3.1)

where K is the number of reruns for the cross-validation. The averaged performance

measures were the basis for the evaluation and optimization of the classifier.

3.6.2 Performance Measures

The classification by a two-class classifier can result in four cases. The first one is when

a sample that truly belongs to the “positive” class is classified as being a positive. That

would be a true positive (TP). The second case is when a sample believed by the classifier

to be a positive, but in truth belongs to the “negative” class. Such a case is called a false

positive (FP). Accordingly the case of a negative sample that is rightly classified as such

is called true negative (TN). A sample that is wrongly predicted to be a negative but in

truth is a positive is a false negative (FN). From the numbers of TP, FP, TN and FN the

confusion matrix is built (table 3.1) and several performance measures for the classifier

can be computed.
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actual class
positive negative

predicted class
positive TP FP TP+FP
negative FN TN FN+TN

TP+FN FP+TN TP+FP+FN+TN

Table 3.1: The confusion matrix, also sometimes referred to as truth table, gives an
overview over the performance of a classifier. From its elements several perfor-
mance measures like sensitivity and specificity can be computed.

Sensitivity and Specificity

Sensitivity (SN) corresponds to the probability that a patient who in truth should be

a positive actually is classified as positive. It is the ability of the classifier to recognize

positive results.

Sensitivity =
TP

TP + FN
= True-Positive-Rate (3.2)

Specificity (SP) corresponds to the probability that a patient who should be classified as

negative is truly identified as a negative by the classifier. It is the ability to recognize

negative results.

Specificity =
TN

TN + FP
= 1− False-Positive-Rate (3.3)

Both sensitivity and specificity should be large. Assuming that a classifier classified all

samples as positive, then clearly all truly positive examples would be recognized correctly.

The sensitivity would amount to the optimal value of 1. However, the specificity would

be as bad as it can get, namely 0, because none of the in truth negative samples would be

identified as such. In short, a high sensitivity leads in most cases to a reduced specificity

and vice versa. It is essential to find an acceptable trade-off between those two measures

depending on the application of the classifier. The product of sensitivity and specificity

can be calculated as an overall measure for the performance of the classifier [33]:

Sensitivity · Specificity = SN · SP =
TP · TN

(TP + FN) · (TN + FP )
(3.4)

ROC-Curve

The receiver operating characteristic (ROC) curve plots the sensitivity against the false-

positive-rate (1 - specificity). It illustrates the tradeoff between sensitivity and specificity
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Figure 3.4: 4 examples for ROC-Curves. The dotted line is the result of a completely
random classifier. This is the worst classifier possible, because any classifier
that is below the diagonal can be improved by inverting its decision. The
more the curves converge the upper left corner the better. The AUC for the
red dashed line is indicated by the red shaded area.

at different values of one parameter of the classifier, such as a threshold that separates

the data into two classes. The more the ROC-curve converges the upper left corner the

better. The area under the curve (AUC) is a measure for the quality of a classifier. The

bigger the area the better. The AUC can be interpreted as the probability that a positive

instance is ranked over another negative one [33]. A completely random classifier has an

AUC of 0.5. Any other classifier can only do equally well or better. The AUC can only

be ≥ 0.5 because any classifier whose ROC-curve is below the diagonal can be improved

by inverting its decision [35]. Figure 3.4 shows some examples for ROC-curves.

3.6.3 Parameter Optimization

To train the OC-SVM two parameters had to be selected: γ and ν. In the LIBSVM pack-

age γ controls the width of the kernel function, providing that the radial basis function is

used as kernel function. ν controls the fraction of the training data that is allowed to be

misclassified by the OC-SVM.

In the LIBSVM package the radial basis function is defined as

f(xn, x) = exp(−γ · ‖xn − x‖2). In comparison to the the Gaussian function

f(xn, x) = a · exp(−‖xn − x‖2 /2σ2) it becomes clear that γ is inverse propotional to

the squared standard deviation of the kernel: γ = 1
2σ2 . Therefore a larger γ leads to a

smaller kernel width. Because σ provides a better impression of the size of the kernel,
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instead of tuning γ directly, σ of the expression γ = 1
2σ2 was used as parameter in the

further optimization process.

To find the optimal value the OC-SVM was trained with the following values for σ: 0.05,

0.1, 0.15, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.5, 0.75, 1, 1.5

and 2.

Additionally the parameter ν was varied. The classifier was trained with the following

values for ν: 0.1, 0.3, 0.5, 0.65, 0.8, 0.9, 0.95, 0.99.

However, in OC-SVMs a larger ν also results in a smaller region that is estimated to

contain the training data. Therefore the region defining hyperplane was shifted towards

the origin in feature space, which is equivalent to making the region bigger by a “safty

margin”. The probability that a new point falls into the region and is classified increases

to be positive. The distance of the hyperplane to the origin is given by ρ

‖w‖
. By reducing ρ

by a factor T > 0 the distance between the region defining hyperplane to the origin is re-

duced to ρ−T

‖w‖
. T was determined with respect to the SVs that were considered as outliers.

More precisely, T was chosen such that a defined fraction c of the SVs, that originally fell

on the wrong side of the hyperplane, was classified correctly after the modification of the

margin by T . For example, c = 0.3 resulted in a more “liberal” classifier. 30% of the SVs

that at first represented training errors were classifed correctly with c = 0.3. c was varied

from 0 to 1. c = 1 means, that the region was modified such that all outliers fell into it.

c = 0 means that the region remains as it was estimated by the OC-SVM.

For each training run different training sets were randomly sampled, which led to different

results in each training run. Therefore the training process with a specific parameter set

was repeated 40 times. Each time the training set was randomly resampled. The perfor-

mance measures obtained by leave-one-out cross-validation (each time one patients was

left out) were averaged over the 40 runs. The parameters that resulted in classifiers that

on average classified the single voxels with the largest product of sensitivity and specificity

(SN · SP ) were considered to be optimal.
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4 Results

4.1 Parameter Selection

The largest product of sensitivity and specificity (SN · SP ), averaged in cross validation

and averaged over 40 training runs, that could be achieved in the parameter optimization

process was 0.4000. It was obtained with the following parameters: σ = 0.425 (equivalent

to γ = 2.77), ν = 0.90 and c = 0.65.

Furthermore, the parameter combinations of σ, ν and c presented in table 4.1 all yielded

values for SN ·SP of larger than 0.3990. This suggests that parameters of σ = 0.30 to 0.45,

ν = 0.9 to 0.99 and c = 0.65 to 0.70 are a robust choice to obtain a good classifier.

Table 4.1: Parameter combinations of σ, ν and c, that all showed almost the same good
result of SN · SP > 0.3990.

σ 0.300 0.300 0.350 0.400 0.400 0.425 0.425 0.450
ν 0.900 0.990 0.950 0.900 0.950 0.900 0.990 0.900
c 0.650 0.700 0.650 0.650 0.650 0.650 0.700 0.650

In the following the results of a classifier trained with one specific training data set are

presented as an example. The OC-SVM was trained using the parameters considered

as optimal: σ = 0.425 (equivalent to γ = 2.77), ν = 0.90 and c = 0.65. Again, due to

random sampling of the training data the classifier would yield different results even when

the same paramerters are used. The results presented here are obtained from a averagely

well performing classifier with SN · SP = 0.4001, obtained by cross-validation, for the

voxelwise classification.

Figure 4.1 shows the ROC curve obtained by the voxel-for-voxel classification by the

example classifier mentioned above. More precisely, in each training run of the leave-one-

out cross-validation (each run one patient was left out) sensitivity and specificity, with

respect to the correctly classified single voxels, were calculated for various values of c.

For each c the mean of sensitivity and the mean of specificity over all folds in the cross-

validation process was built. Plotted as a ROC-curve this yielded an area under the curve

(AUC) of 0.66639. The largest SN ·SP was, as expected, obtained with a value c = 0.65.
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Figure 4.1: Averaged ROC-curve of the voxelwise classification obtained by a averagely
well performing training run. c controlled the trade-off between sensitivity
and specificity. c = 0.65 resulted in the largest product of sensitivity and
specificity (SN · SP = 0.4001).

4.2 Classification Performance

Table 4.2 lists the results from cross-validation for each patient. It also lists the fraction

of voxels within the ROI of a patients that are thought by the classifier to represent pseu-

doprogression (positive voxels).

In the group of patients showing pseudoprogression the median percentage of voxels clas-

sified as positive was 61.01%. In the group of patients suffering from recurrent tumor

the median was 40.34%. A Wilcoxon rank-sum test was performed, yielding that the two

groups can be distinguished with a p-value of 0.0104.

Figure 4.2 shows the ROC-curve that was obtain by classifying the patients according

to the percentage of voxels that were classifed as positives within their ROI. The ROC-

curve yielded an AUC of 0.8750. A threshold for the percentage of positive voxels be-

tween 53.96% and 51.07% resulted in the largest product of sensitvity and specificity

(SN · SP = 0.6563) concerning the classification of the single patients. Table 4.3 shows

the confusion matrix for a classifier with threshold of (53.96% + 51.07%)/2 = 52.52%.

The correspondig sensitivity and specificity amounted to SN = 0.75 and SP = 0.875

respectively.

Figure 4.3 shows two examples of patients, one with recurrent tumor and one with pseu-

doprogression. It shows the T1-weighted image of the two patients and how the voxels
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within the ROI were classified.

Table 4.2: Results from leave-one-out cross-validation. Each time one patient showing
pseudoprogression was left out in the training process. The resulting classifier
was tested with the data of the left out patient. It was also tested with data
from one randomly selected patient showing recurrent tumor. The results of the
testing is shown in this table. The group denoted as positive refers to patients
showing pseudoprogression. The negative group refers to patients suffering
from recurrent tumor.
Since there cannot be true positive and false negative voxels within the ROI
of a patient showing recurrent tumor, no sensitivity is specified. The same is
true for specificity in patients showing pseudoprogression. There cannot be
true negative and false positive voxels. Positive voxels are the voxels that are
believed by the OC-SVM to represent pseudoprogression.

actual group sensitivity specificity
fraction of positive
voxels within ROI

Patient 1 negative - 0.5926 40.74%
Patient 2 negative - 0.5345 46.55%
Patient 3 negative - 0.4202 57.98%
Patient 4 negative - 0.7651 23.49%
Patient 5 negative - 0.4893 51.07%
Patient 6 negative - 0.6921 30.79%
Patient 7 negative - 0.9509 4.91%
Patient 8 negative - 0.6005 39.95%
Patient 9 positive 0.4205 - 42.05%
Patient 10 positive 0.9518 - 95.18%
Patient 11 positive 0.4369 - 43.69%
Patient 12 positive 0.7723 - 77.23%
Patient 13 positive 0.7340 - 73.40%
Patient 14 positive 0.5396 - 53.96%
Patient 15 positive 0.5558 - 55.58%
Patient 16 positive 0.6644 - 66.44%
Mean 0.6344 0.6306
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AUC = 0.8750

Figure 4.2: The ROC-curve was obtained by classifying the single patients according to
the percentage of voxels that were classified as positves within the ROI. The
black dot indicates the point were the patients were classified with the maximal
product of sensitivity and specificity (SN · SP = 0.6563). It corresponds to a
threshold between 53.96% and 51.07%.

Table 4.3: The confusion matrix resulting from classifying the patients according to the
fraction of voxels that were classified as positives within the ROI. All patients
with a percentage of positive voxels larger than 52.52% were predicted to show
pseudoprogression. All patients with a percentage of positive voxels lower than
52.52% were predicted to show recurrent tumor.

actual class
pseudoprogression recurrent tumor

predicted class
pseudoprogression 6 1 7
recurrent tumor 2 7 9

8 8 16
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(a) (b)

(c) (d)

Figure 4.3: The color of the voxels within the ROI indicates the class to which they were
thought to belong. Red regions indicate voxels that are classified as positives
by the OC-SVM. Blue regions indicate voxels that are classified as negatives.
(a) shows the contrast-enhanced T1-weighted image of a patient with tumor
recurrence. (b) shows the same image as in (a) but with the colored ROI. The
majority of the voxels within the ROI are classified to represent the negative
class (blue). (c) shows the contrast-enhanced T1-weighted image of a patient
that is thought to show pseudoprogression. (d) shows the same image as in (c)
but with the colored ROI. The majority of the voxels are classified to represent
the positive class (red).
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5 Discussion

5.1 Parameter Selection

There is no general guideline or theory about how to find the best parameter set σ (or

γ), ν and c. The optimal parameters depend on the training data.

Hsu et al. [45] recommend performing a grid search using cross-validation to find the

best parameters. Grid search simply means that various combinations of the parameters

are tried and the one with the best performance is picked. Although this approach is

time consuming it is most reliable and in contrast to some other more sophisticated, but

iterative methods it can be parallelized.

5.1.1 Regularization Parameter ν

In general larger ν lead to smoother decision boundaries, because more outliers are allowed

and more instances of the training data are forced to be used as support vectors (SVs),

which define the boundary. That is why classifiers trained with large ν will probably

perform better, when the optimal decision boundary can be expected to be not convoluted

very much and when only a small training set is available. However large ν also lead to

longer training time [37] and due to the larger number of SVs caused by the larger ν

the evaluation of the classifier on new data also takes longer. Therefore large ν are

not favorable. When the data of one class is very compact and well separable from other

classes, only a small subset of the training data has to be used as SVs and few outliers have

to be allowed to estimate a well fitting region that contains most of the class members. A

low ν will perform well and the model will be more compact, which leads to short training

and evaluation time. However, when the class is highly overlapping with other classes a

large ν will most likely perfom best.

The tests with cross-validation revealed that values of ν = 0.90 to ν = 0.99 performed best

on the available data. ν = 1 was not allowed by the training function of the LIBSVM

package. However it can be assumed that an OC-SVM using ν = 1, would perform

well, too, providing that the originally estimated region is made bigger by the margin

parameter T . An OC-SVM that was trained with ν = 1 is equivalent to a thresholded

Parzen-windows estimate of the underlying density [37]. Therefore using a Parzen window
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estimator instead of an OC-SVM is worth to be considered.

Similar to the K-nearest-neighbor classifier, the Parzen window estimator takes no time

to be trained. The training just involves storing the entire training set. However the

evaluation of the decision value can be time consuming when the training set is very

large. On the contrary, the OC-SVM only stores a subset of training data, the support

vectors. The support vectors are the instances that are sufficient to define the optimal

decision boundary. Hence, when the training data set is very large it makes sense to use

a OC-SVM, because in comparison to the Parzen window estimator the model is more

compact and the evaluation of new data is faster.

When the best performing ν approximates 1, it means that almost all training instances

have to be used as SVs to obtain a good decision boundary. When so many training

instances are necessary to obtain good results, this suggests that training with more data,

i.e. with a larger training data set, would perform considerably better.

5.1.2 Kernel Parameter σ

To get a first estimate of the expected optimal value for σ the histograms in figure 3.3b

were considered. The majorities of the values (values between the 0.05-quantile and 0.95-

quantile) of the single features lie in ranges with sizes of about 0.25 to 1. Thus, kernels

with standard deviations of at least σ = 0.1 to σ = 0.5 could be expected to estimate the

distribution of the data well.

Figure 5.1 shows the product of sensitivity and specificity (SN · SP ) with respect to
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Figure 5.1: The product of sensitivity and specificity (SN · SP ), obtained by cross-
validation, with respect to various values of σ, averaged over 40 training runs,
using the parameters ν = 0.90 and c = 0.65. The black dot indicates the
maximal SN · SP at σ = 0.425.

.
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various values of σ, when ν and c are fixed to ν = 0.90 and c = 0.65. It shows that

very small kernels perform very badly. With kernels of standard deviations lower than

0.15 the classifier is obviously likely to be overfitted. That means, although it classifies

the training data well, it is not able to classify new test data correctly. Hence, a good

estimation of the distribution of the data is not possible with such small kernels. At least

not when the training data set is small.

As shown in figure 5.1 the largest SN ·SP is achieved with the kernel width of σ = 0.425.

Larger σ do not perform significantly worse, but it seems that the more σ is increased,

the more the performance is reduced. These results suggest, that σ = 0.0425 is a robust

choice and that slightly larger or slightly lower σ would not perform significantly worse.

5.1.3 Margin Parameters c and T

c controls the size of the region that is estimated to contain the class on which the OC-

SVM was trained. This is done by reducing the distance of the region defining hyperplane

to the origin in feature space by the margin T (Originally Schölkopf et al. [37] named

the parameter γ. To avoid confusion with the kernel parameter here it is referred to as

T .). c controls the size of T in feature space. Increasing c make the region bigger, such

that more SVs that were originally considered as outliers fall in the region and do not

represent training errors any more. c defines the fraction of outliers that fall into the class

defining region after the modification of the distance of the hyperplane to the origin in

feature space by T .

Figure 5.2 plots for a fixed σ = 0.425 and various ν, which value of c yielded in the

maximal product of sensitivity and specificity. It is apparent that larger ν require larger

c. This supports the theory that larger ν result in smaller regions, that are estimated to

contain the training data, because more outliers are allowed. In order that the classifiers

shows good results, the region has to be made bigger by a larger c. The dependence of

the optimal value for c on ν suggests that a better definition of T should be developed.

A definition that somehow takes the value of ν into account would be probably better.

However, there is very little literature on the role of the margin parameter T and there is

no standard definition how to find the optimal T .

The need that c and accordingly T has to be wisely selected in order that the class can be

separated from other classes, raises the question why not to use a two-class SVM. Since

in this case there is a defined second class a two class SVM would be the intuitive choice

for a classifier. Using a two-class SVM no such parameter as c or T would have to be

chosen. This question will be discussed later in section 5.6.

41



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ν

c

σ = 0.425

Figure 5.2: The parameter c that yielded in the best classifier (largest SN ·SP ) for various
ν. The kernel width was fixed to σ = 0.425.
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5.1.4 Limitation

A limitation of this study was that only a small data set was available. The classifier could

not be tested independently from the optimization of parameters of the OC-SVM (σ or

γ, ν and c). Ideally the SVM trained with the parameter set, which was considered to

be optimal, would be tested with an independent test set. That way it would be ensured

that the parameters not only are optimal on the data set that was used for optimization

but also perform well on new data. However, the optimal parameters were determined

using cross-validation which still provides that they represent a robust choice and that

they probably will perform well on completely new data, too.

5.2 The Importance of the Different Features

To evaluate which of the 8 features had the most influence on the result, the SVM was also

trained using only one feature and using all features but one. Table 5.1 lists the p-values,

that indicate how well the two groups of patients could be distinguished by the percentage

of voxels that were classified as positives by a classifier that was trained with only one

feature or all but one feature. It shows that when the OC-SVM is trained only with data

from the CBV-map the two groups can be distinguished with the same p-value (0.0104)

as when all features were used. This suggests that the CBV data is most important for

the classification. However, when all features but CBV are used, the performance is not

heavily reduced. It seems that the other features can compensate the absence of the CBV
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data. This is not surprising since the perfusion maps correlate, because CBF is defined

as [25]

CBF =
CBV

MTT
. (5.1)

Furthermore, a classifier that is trained only with the two features CBF and MTT performs

just as well (p-value = 0.0104) as the classifier trained only with CBV, although the single

features CBF and MTT do not perform well at all.

The FLAIR data seems also to contribute to the decision. When only FLAIR data is used

the p-value is relatively low, although not significant. Additionally, when FLAIR data is

excluded the performance is slightly reduced. These findings are to some extent consistent

with the results of Hu et al. [1]. They also identified the perfusion data as most important

for the classification. Additionally they found that there was a difference in FLAIR data

between the two groups, but it was not significant. However, they stated that the ADC

data showed significant difference between the two groups, but in this study ADC did

not seem to contribute much to the decision. However the protocols of diffusion imaging

possibly could be improved in order to improve the classification by the ADC values.

Table 5.1: The p-values indicate how well the two groups can be distinguished. The p-
values are listed for classifiers that were trained only with the one feature listed
in the same row and for classifiers that were trained with all features except
for the one of the same row. The p-values were obtained by a Wilcoxon rank
sum test applied to the percentages of as positive classified voxels within the
ROI of each patients.

Feature
p-value

only one feature all but one feature
contrast-enhanced T1WI 0.3823 0.0104

T2WI 0.7984 0.0104
FLAIR 0.1049 0.0148
CBV 0.0104 0.0148
CBF 0.5053 0.0207
MTT 0.5053 0.0104
TTP 0.6453 0.0104
ADC 0.5054 0.0104

5.3 Suggestions for Improvements of MRI Protocols

Since this was a retrospective study it was not possible to actively influence the settings

of the MRI protocols that were used to acquire the data. In future the method should be

evaluated in a prospective study, in which the MRI sequences can be properly adjusted

in order to increase the performance. In the following some suggestions for adjustments

of the MRI protocols will be given.
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5.3.1 Flip Angle

The original data set comprised data from 47 patients from different MR-scanners. For

some patients the data from multiple MRI studies was available. However, only the data

from the latest examination was considered. To avoid bias in the analysis of the data,

data from only one scanner was used in the entire study.

However, the data of the other scanners was also shortly analyzed. A little worse results

could be expected, because the data sets of those scanners were considerably smaller.

Surprisingly the previously used method did not perform well at all on the data of the

other scanners. The results of the classifier were not significantly better than random

classification.

Hence the MRI protocols used on the other scanners were analyzed and compared to

the protocols of the well performing scanner. Since the perfusion data seemed to be

most important for the decision, especially the protocols for the perfusion imaging were

compared. The most striking difference was the difference in flip angle in the perfusion

weighted imaging protocols. The flip angle of the perfusion protocol from the scanner

that yielded good results (Siemens TimTrio) was set to 60◦, whereas in the other scanners

the flip angle was set to 90◦.

However, a flip angle of 90◦ is is not ideal, when perfusion imaging is applied to areas of

disrupted blood-brain barrier. The calculation of CBV can be distorted by the so called

leakage error, which leads to an underestimation of the CBV. Reducing the flip angle has

shown to reduce the error. Fatterpekar et al. suggest to use a flip angle of 35◦ when

using perfusion imaging for the assessment of the treatment response concerning brain

tumors [2]. Hence, by adjusting the flip angle in the protocols of perfusion imaging the

performance of the classifier could be possibly considerably improved and the method

would probably work on data from the other scanners as well.

5.3.2 Spatial Resolution

Even when slice thickness, spacing between slices and voxel size are in all sequences the

same, it cannot be expected that slices and voxels of the resulting images match exactly,

due to potential motion of the patient during the acquisition. Therefore the images were

registered and spatially transformed (rotated, translated, scaled), such that they matched

as well as possible.

However, in this retrospective study the slices of the different sequences did not match by

definition, because of differing settings concerning slice thickness, spacing between slices

and voxel size. Consequently, after registration, in the reslicing process the intensities

partly had to be interpolated between the slices. The use of interpolated intensities is not

optimal and should be avoided.
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Optimally the spacing between slices would be zero. If that is not possible, then the slice

thickness and spacing between slices should at least match in those sequences where zero

spacing is not possible, such that the amount of interpolation is reduced as far as possible.

Since the ROIs are transferred from the T1-weighted images to the perfusion maps they

should ideally not be modified very much by the resampling process. However in this

study the ROIs were resliced and resampled like the T1-weighted image and therefore

they were partly the result of interpolations. Uncertainties due to the interpolations had

to be accepted. On the contrary, if the slices matched right from the beginning, the ROIs

would actually mark the region they were intended to mark.

Alternatively the ROIs could be marked not before the images were registered and resliced,

but afterwards. However, due to organizational reasons the ROIs were drawn in the

original (not resampled) contrast enhanced T1-weighted image.

5.4 Sampling of Training and Test Data Set

In order to build a good model, as much from the available data as possible should be

used for training. However there were some restrictions for the selection of the training

data.

Care was taken that the data was sampled in a way such that the classifier was not

corrupted by any bias within the data. Such a bias could be characteristics of the hardware

and different MRI protocols. Therefore only data acquired with the same protocols from

one scanner was used. Voxels within the ROI of one patient are likely to show similar

characteristics. To avoid a bias in the training data set the exact same number of voxels

was randomly sampled from each patient that was included in the training of the OC-

SVM. That way it was ensured that the SVM was not misled to take characteristics of

patients with bigger ROIs more into account than the ones from patients with smaller

ROIs.

The data set had to be divided in a training and a test set. The test set should come

from different patients than the training set. Simply dividing the whole data set would

result in a even smaller number of patients available for training. Additionally the test

results would be less representative when the classifier was tested with only a fraction of

the data set. Therefore cross-validation was performed to evaluate the performance of the

classifier.

K-fold cross-validation divides the data set in K groups. The classifier is trained with

data from K−1 groups and evaluated on the remaining group. This is repeated K-times.

Each time a different group is held out. The performance measures of the K runs are

averaged. That way, a larger number of data can be used in each training run and in the

end all data was used for testing. When K is the total number of samples it is called leave-
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one-out cross-validation. It this study each group of voxels came from only one patient.

Hence concerning the patients leave-one-out cross-validation was performed. Leave-one-

out cross-validation is computationally costly. Therefore it is only recommended when

only a small data set is available.

5.5 Comparison to Previous Research

This study is strongly related to the work by Hu et al. [1]. They evaluated if it was

possible to differentiate pseudoprogression from tumor recurrence using a one-class SVM

applied to multiparametric MRI data. They used a voxel-based approach similar to the

method as it was described in chapter 3. The data came from 31 patients. The classifier

was trained on data of 8 subjects of the group showing pseudoprogression and the pa-

rameters of the SVM were optimized with data from the same 8 subjects and 7 subjects

showing tumor recurrence. The data of the remaining 16 patients (8 pseudoprogression,

8 recurrent tumor) was used to test the classifier.

When classifying the single voxels of the test set they achieved a area under the ROC-

curve (AUC) of about 0.94. The corresponding ROC-curve was derived for a fixed ν

and γ pair by varying a threshold T . However, they did not specify how they defined

T . They just said that “SVM requires selection of a single threshold to generate a

discrete classifier”. It just can be assumed, that they referred to something like the

margin parameters ρ or T in the decision functions f(x) = sgn (
∑

n αnk(xn, x)− ρ) or

f(x) = sgn (
∑

n αnk(xn, x)− (ρ− T )), respectively.

The ROC-curve in figure 4.1 is somewhat equivalent to the ROC-curve published by Hu

et al. mentioned above. Both ROC-curves are shown for comparison in figure 5.3. It

shows, that the excellent results of Hu et al. were not reproducable. An AUC of 0.94

could not be reproduced. The AUC obtained in this study was only about 0.66.

Hu et al. [1] identified as optimal parameters for the training of the classifier γ = 5 and

ν = 0.06. They identified those parameters by testing the classifier with a data set ob-

tained from the same patients, that were used for training the classiefer. However, they

avoided to use data from voxels that were used for training. Furthermore, for parameter

optimization they did not sample voxels from the entire data of the patients showing re-

current tumor, but they filtered the data of those patients first with a “liberal” OC-SVM

classifier. That is, they excluded all voxels that showed similarity with the data on which

the classifier was trained on.

Under this circumstances it is evident that a low value for the parameter ν will perform

best, because in the data set they used for parameters optimization it can be expected

that the data of patients showing pseudoprogression is well separable from the “filtered”

data of the patients suffering from recurrent tumor. The region containing the training
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Figure 5.3: (a) shows the ROC-curve obtained by Hu et al. [1] by varying a threshold of
the OC-SVM trained with the parameters γ = 5 and ν = 0.06. (b) shows the
equivalent ROC-curve obtained in this study, however different parameters γ
and ν were used (γ = 2.77 or σ = 0.425, ν = 0.9).

data can be made quite large and still show a low rate of outliers in the training data, i.e.

a low value for ν.

The good results of Hu et al. [1] could not be reproduced with the low value of ν = 0.06.

On the contrary, the best results were achieved with large ν (ν = 0.9). This discrepancy

is explainable by the different way of how the data for the parameter optimization was

selected. Hu et al. “filtered” the data of the progression group and they used data from

the same patients, whose data was also used for training. Such an approach is prone

to overfitting. Overfitting describes the effect that a classifier is overly well fitted to the

training data, such that it performs very well on the training data but poorly on new data.

It is surprising that Hu et al. still obtained an AUC of 0.94, when testing the classifier

with the “unfiltered” test data set, which was completely excluded in the training and

optimization process.

In contrast to that, in this study all data from the progression group, without filtering,

was used and the performance was tested by cross-validation. That means that no data

at all of patients that were involved in the training was used for parameter optimization.

The optimal value for the parameter γ was with γ = 2.77 (equivalent to σ = 0.425) in the

same range like the optimal value determined by Hu et al. (γ = 5). The difference of the

value can be explained by different scaling methods applied to the data.

Hu et al. showed that in pseudoprogression patients 91.2% ± 6.3% (n = 8) and in pro-

gression patients 31.6% ± 27.4% (n = 8) of all voxels within the ROI were classified as

positive voxels [1]. They stated, that this is a significant difference with a p-value lower
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than 0.01. Unfortunately the did not declare the exact p-value and which statistical test

they used. To compare the exact p-value a two-sample t-test (also known as Welch-test)

was performed, assuming that the values presented by Hu et al. are the means and stan-

dard deviations of the percentages. However, it is questionable whether the two-sample

t-test is really the appropriate test, because it is not known whether the percentages really

were normally distributed. Additionally the standard deviations are extremely different

which rather suggests to use a rank-sum test [49]. Since no detailed results were presented

by Hu et al. it was not possible to do a rank-sum test. The p-value determined by the

two-sample t-test was 0.0002.

In this study the two groups showed a significant difference concerning the percentages

of positive voxels with a p-value of 0.0104. Wilcoxon rank-sum test (equivalent to Mann-

Whitney U-test) was used as statistical test, because it could not be assumed that the

percentages followed a normal distribution, due to the small number of patients [49]. A

p-value of 0.0104 suggests that the difference in percentage of positive voxels between the

two groups was less significant compared to the results of Hu et al.

Taken together the excellent results of Hu et al. could not be reproduced. The reason

could be the fact that different MRI protocols were used. Especially improvements in

the protocol of perfusion imaging may lead to better results. Furthermore, a more well-

considered choice of patients may also yield in better results. For example data from very

small lesions could be excluded.

5.6 Alternative Methods

Commonly SVMs are used as binary classifiers trained on both positive and negative sam-

ples. For the problem of assessing the treatment response of glioblastoma multiforme the

two classes were defined to be voxels of pseudoprogression and voxels of recurrent tumor,

respectively. However, the one-class SVM was chosen as classifier, because it was impos-

sible to identify the single voxels of recurrent tumor, that should represent the second

(negative) class, within the contrast-enhanced lesion. Volumes of pseudoprogression were

thought to be more homogeneous, which makes the voxels representing pseudoprogres-

sion more definable. Therefore the data from patients with recurrent tumor was entirely

excluded from the training. Using a one-class SVM it was possible to train only on data

from patients with pseudoprogression, which represented the (positive) class.

5.6.1 Two-class SVM

Nevertheless, using the conventional two-class SVM still should be considered. Therefore

two-class SVM was also shortly tried to test its use as classifier. After a rough search for
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the best parameters ν and σ the training and testing of the two-class SVM did not reveal

considerably worse results compared to the results presented in chapter 4. Interestingly

the best parameters for the two-class SVM were quite the same as used for the training of

the one-class SVM previously. The fact that the parameters ν = 0.9 and σ = 0.5 yielded

the best results using the two-class SVM supports the choice of optimal parameters for

the one-class SVM.

Using a two-class SVM instead of a OC-SVM would be advantageous considering that only

two parameters had to be optimized. It would not be necessary to determine the margin

parameter T . A two-class SVM determines automatically the hyperplane in feature space

that optimally lies between the two groups. Hence a parameter such as T that shifts the

hyperplane is not needed.

5.6.2 Histogram-based Method

Emblem et al. [8] proposed a histogram based approach using an SVM for glioma grading.

Using histogram “signatures” as feature vectors would be a promising approach for the

problem of differentiating pseudoprogression and tumor progression, too. Especially mul-

tidimensional histograms would allow to combine different MRI sequences and parameter

maps and also to take the distribution of those combined intensities into account. Simi-

lar approaches already were used in image classification [50]. However multidimensional

histograms can become very large. When n is the number of bins of the histogram of one

parameter alone, then the size of a multidimensional histogram is np, where p is the num-

ber of parameters that are combined in the multidimensional histogram. Hence, a feature

vector representing such a multidimensional histogram would have the length of np. When

the feature vector is big the curse of dimensionality takes effect. The curse of dimension-

ality is the phenomenon that, when the input space of the feature vector becomes larger,

a larger number of training samples are needed to achieve significance [43, 32]. Since the

number of patients is limited using multidimensional histograms as feature vectors will

not be feasible.

However, since CBV seems to be most important for distinguishing pseudoprogression

from tumor progression, using only the histograms of normalized CBV intensities within

a ROI as proposed by Emblem et al. [8] may also work well for treatment assessment of

glioblastoma multiforme.

5.7 Conclusion

A drawback of this study was the small number of subjects. With a bigger number of

subjects the results could be generalized with a higher significance. Furthermore, short-
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comings of the MRI protocols could not be corrected because it was a retrospective study.

In a prospective study the MRI protocols could be improved in order to increase the per-

formance of the here presented method.

The selection of the ROIs in the contrast-enhanced T1-weighted image is highly operator-

dependent. Therefore the influence of the selection of the ROIs should be investigated.

However, the classification of the single patients is not dependent on single voxels, which

suggests that variations of the ROIs do not have very heavy effects on the decision.

Nevertheless the issue should be of concern and an automatic segmentation should be

considered.

Taken together, the here presented approach to assess the treatment response of glioblas-

toma multiforme shows potential. SVMs have proven to be suitable for the classification

of voxels characterized by multiparametric MRI data.

Although the results of this study were not as good as the results presented by Hu et al. [1]

they were still convincing. The two groups of patients were well distinguishable, which

suggests that the approach may be of value in clinical practice. Improvements of the MRI

protocols of perfusion imaging, may lead to a more accurate estimation of CBV, which

can be expected to improve the performance of the classifier considerably.
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7 Appendix

Attached to this thesis a package is provided, that includes the code of all scripts, functions

and all software packages that were used for this study. To run the scripts and functions

MATLAB R© is required. The following MATLAB toolboxes are needed: Statistics Toolbox

and Bioinformatics Toolbox. The MRIcron converting tool dcm2nii, the spm8 package

and the LIBSVM package for MATLAB R© are provided with the attached package.

The script run all runs all functions and scripts in the order as they were intended to

be run. Table 7.2 lists all functions and scripts that are included in the package. It also

lists the dependencies of the functions to each other and which software packages and

MATLAB toolboxes are required to run those functions.

In the following the most important functions and scripts and how the data should be

provided to the functions are described.

7.1 Converting DICOM Files

The DICOM files were converted to NIfTI using the converting tool dcm2nii fromMRIcron,

which is part of the MRIcron software package [51]. The MATLAB function

convertIMA2NII (input_dir, output_dir) creates batch-files to run dcm2nii for convert-

ing all DICOM files in a given directory, providing that the files are organized in a defined

manner.

All DICOM files have to end on the extension ‘ima’. The DICOM files of one series have

to be in one folder with a name that describes the series. All series folders that correspond

to one patient or examination have to be in one folder with a folder name that is unique

and is of the form ‘Patient_ID ’, where ID is a unique identifier, consisting of numbers

or letters but no special characters.

input_dir is the directory containing all those patient folders. In the directory output_dir

new patient folders with the same names as in the input directory are created. All con-

verted NIfTI images of one patient/examination are written to the corresponding patient

folder in the output directory. The NIfTI files get the names ‘Patient_ID seriesfoldername’,

where seriesfoldername is the name of the folder where the DICOM files of the series were

stored.

VOI-files (MRIcron format that defines volumes of interest, has the extension voi) that
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Table 7.1: The here listed 10 series have to be in the folder of each patient. The corre-
sponding NIfTI files of the series are identified by their file names. The below
listed strings must be or must not be in the name, in oder that the files are
identified correctly.

Series Description must be in name must not be in name
1 contrast-enhanced T1WI T1

2 T2WI T2_TSE

3 FLAIR T2_TIRM

4 CBV-map CBV

5 CBF-map CBF

6 MTT-map MTT

7 TTP-map TTP

8 ADC-map ADC

9 1st time point of perfusion imaging PERF CBV, CBF, MTT or TTP
10 1st image of diffusion imaging DIFF or TRACE ADC

were saved with the DICOM files are copied to the corresponding patient folder as well.

While converting the data from DICOM to NIfTI the data is anonymized.

7.2 Registration

The MATLAB function registerEstimate(input_dir) does the registration estimation us-

ing the spm8 package. The registration is done in the given input directory input_dir.

input_dir should contain folders that each correspond to one patient/examination like

they are created by the function convertIMA2NII. For each folder it does the registration

of the NIfTI images that are stored in it.

The function searches for a NIfTI-file, which name starts with Patient and contains the

string T1. This file is set to be the reference file in the registration process. Furthermore

in table 7.1 all series are listed that should be stored in the folder as NIfTI files. The series

are identified by the name of the NIfTI files. Table 7.1 also lists the strings that should

be part of the file name such that the NIfTI files can be assigned to the corresponding

series. All relevant NIfTI files have to start with the string Patient. The function regis-

terEstimate modifies the transformation matrices of the NIfTI files such that they are all

registered to the T1-weighted image.

7.3 Reslicing and Resampling

The function resliceResample(input_dir, interpolation) does the reslicing and resam-

pling according to the transformation matrices stored in the NIfTI headers. input_dir is

the input directory in which the folders for each patient/examination are located, which
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contain the NIfTI files that are to be resliced and resampled. In each folder it searches

for the NIfTI file which name starts with Patient and contains the string CBV. It takes

this file as reference image, which defines the space the other images are resampled to.

Furthermore the function converts all VOI-files that are located in the folder to NIfTI for-

mat (*.nii) using the function mricronVoi2Nii. Subsequently all NIfTI files whose names

start with the string Patient are resliced and resampled to the space of the reference im-

age using the spm8 package [46]. Excluded from this resampling process are the first time

point of the perfusion imaging (containing the string PERF but not CBV, CBF, MTT or TTP

in its name) and the first image of the diffusion imaging (containing the strings DIFF or

TRACE but not ADC in its name). Note that all images, including the VOI-files, should be

aligned to the T1-weighted image in order that the resampling shows meaningful results,

like it is done by the function registerEstimate.

The resliced and resampled images are written to new files in the same folder. A prefix

‘r’ is added at the beginning of the name.

interpolation defines the interpolation method by which the images are sampled. When

interpolation is set to 0 nearest neighbor interpolation is used. 1 is set for trilinear in-

terpolation and 2 is set for 2nd degree b-spline interpolation.

In the end all images that are not resliced and resampled can be deleted with the function

clearNoneResampled(input_dir). input_dir is the same directory as used in the func-

tion reslice. It deletes all NIfTI files that start with the string Patient, without the prefix

r, except for the file containing the string CBV in its name. Since the reference image was

not resliced it does not have the prefix r it its name.

7.4 Loading the Data into MATLAB R©

The function data = loadData(input_dir) loads the data of the images within the ROI

into MATLAB. input_dir is again the directory containing folders that each correspond

to one patient/examination and contain all relevant NIfTI files.

The function masks the images with the masks stored in the ROI defining NIfTI files,

that were converted from the VOI-files and resampled in the previous step by the func-

tion resliceResample. The name of those ROI defining NIfTI files should be of the form

r*_voi.nii, where * denotes an arbitrary string (The string _voi is added to the origi-

nal name by the function mricronVoi2Nii when converting a VOI-file to NIfTI.). There

should be exactly two of such files and one of them should contain additionally the string

nawm. The mask of this file is assumed to mark the ROI in the normal appearing white

matter. The other file is thought to mark the contrast-enhanced lesion.

Again, it is important that the file names contain the strings as described in table 7.1.

Additionally the name of the CBV-file has to start with the string Patient and all other
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relevant files have to start with the string rPatient. That way the files should be uniquely

identifiable.

The output data is a cell array. Each cell of the array contains the data of one pa-

tient/examination. It contains an N × 8 matrix, where N is the number of voxels within

the ROI marking the contrast-enhanced lesion and each of the 8 columns corresponds to

one image/series. The columns correspond to the series 1-8 listed in table 7.1 and are

organized in the same order as in table 7.1. The values of the ouput variable data are

normalized by the mean of the intensities within the nawm-ROI.

7.5 Train and Test the OC-SVM

The MATLAB script train and test oc svm trains and tests the OC-SVM. The training

is done using the LIBSVM-package [48]. First the data has to be loaded with the function

loadData. The data of the group on which the OC-SVM is trained has to be loaded to the

variable data_a and the data of the other group has to be loaded to the variable data_b.

Several parameters (σ, ν, etc.) are set within in the script. For further information look

at the script.

The script writes the averaged perfomance measures obtain by cross-validation to a csv-

file. The columns of the csv-file correspond to the following parameters and performance

measures: σ, γ, ν, c, voxel-wise sensitivity, voxel-wise specificity, voxel-wise SN · SP ,

p-value.

The classification results of the last run, that is the last parameter set and the last repeat,

can be observed in the variable performance_measures. In columns 1-3 of the matrix

performance_measures the voxelwise accuracy, sensitivity and specificity of the single

patients are stored. The fourth column stores the fraction of the as positives classified

voxels within the ROI of each patient.
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Table 7.2: MATLAB files that are included in the provided software package and depen-
dencies to each other.

MATLAB Files called functions / required packages

clearNoneResampled

convertIMA2NII dcm2nii (MRIcron software package)
crossValidation getConfusionMat

myClassifyLibSVM

getConfusionMat

getMasks spm8 software package
loadData getMasks

loadMaskedData

normalization

sortSequencesByNames

loadMaskedData spm8 package
mricronVoi2Nii

myClassifyLibSVM Statistics toolbox
normMatInDim

normMatInDim

normalization

registerEstimate spm8 software package
registerEstimateCreateJobfile

registerEstimateCreateJobfile

resliceResample spm8 software package
reslicingCreateJobfile

mricronVoi2Nii

reslicingCreateJobfile

run_all convertIMA2NII

registerEstimate

resliceResample

clearNoneResampled

loadData

train_and_test_oc_svm

sampleTrainingSet Bioinformatics toolbox
Statistics toolbox

scaleFeatures Statistics toolbox
sortSequencesByNames

trainOcSvm LIBSVM package (Version 3.17)
train_and_test_oc_svm Statistics toolbox

scaleFeatures

sampleTrainingSet

trainOcSvm

crossValidation
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