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Abstract

In Software testing it is demanded to uncover errors and corrupted behavior. This
might be achieved by manually testing an implementation which requires a huge effort
of man hours to perform the test cases. The discipline of model-based testing allows
to generate test cases automatically by using paths through a model representing an
implementation.
By using a Constraint Satisfaction Problem-solver or a Satisfiability Modulo Theory-
solver in test case generation provides reasonable variable valuation but makes the time
to generate the test cases highly dependable on the applied solver.
We picked a set of applicable solvers and generated a distinctive set of benchmarks to
compare the solvers. For comparison we used the number of solved constraints and the
time they consumed. The benchmarks represent a comparable input extracted from
an Extended Symbolic Transition System. An Extended Symbolic Transition System
represents a model for model based testing which was introduced as part of the STAte
based system Test and simulatION tool suite at VIRTUAL VEHICLE Research and
Test Center.
The results represent the differences of the applied solvers in their number of solved con-
straints and the time they consumed. These results and the reasons for the differences
are discussed in this work.
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Kurzfassung

Beim Testen von Software wird das Aufdecken von Fehlern und fehlerhaften Verhalten
verlangt. Dies kann durch manuelles Testen einer Implementierung erreicht werden,
was jedoch großen Aufwand an Mannstunden erfordert, das Testen durchzuführen. Die
Disziplin des Modellbasierten Testens erlaubt das automatische Generieren von Test-
fällen mit Hilfe von Pfaden durch ein Modell, das die Implementierung abbildet.
Das Anwenden eines Constraint Satisfaction Problem-Solvers oder eines Satisfiability
Modulo Theory-Solvers zur Testfallgenerierung bietet verwendbare Variablenwerte, ist
jedoch bezüglich Laufzeit zur Generierung der Tests stark abhängig vom angewendeten
Solver.
Wir wählten eine Zusammenstellung von anwendbaren Solvern und generierten eine
ausgeprägte Menge an Benchmark-Tests um die Solver zu vergleichen. Für den Ver-
gleich verwendeten wir die Anzahl der gelösten Constraints und die Laufzeit. Die
Benchmark-Tests repräsentieren eine vergleichbare Eingabe, die aus einem Extended
Symbolic Transition System extrahiert wurde. Ein Extended Symbolic Transition Sys-
tem repräsentiert ein Modell für Modellbasiertes Testen, das als Teil der STAte based
system Test and simulatION Toolkette am VIRTUAL VEHICLE Research and Test
Center eingeführt wurde.
Die Ergebnisse repräsentieren die Unterschiede der angewendeten Solver in Bezug auf
die gelösten Constraints sowie auf die Laufzeit. Diese Ergebnisse und die Ursachen für
deren Unterschiede werden in dieser Arbeit diskutiert.

V





Acknowledgement

The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no 269335 (see Article II.9. of the JU Grant Agree-
ment) and from the Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ) and
the Austrian Research Promotion Agency (FFG).

VII





  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommenen Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Application 3

3 Constraint Satisfaction Problem 5
3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Generate and Test . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 Backtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Backjumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1 Node Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2 Arc Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3 Path Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.4 Bounds Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.5 k-Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Combinations of Search and Propagation . . . . . . . . . . . . . . . . . 12
3.5.1 Forward Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Maintaining Arc Consistency . . . . . . . . . . . . . . . . . . . . 12

3.6 Width of a CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Satisfiability Modulo Theory 15
4.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Conjunctive Normal Form . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 DPLL(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Satisfiability (SAT)-solver . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Stochastic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 DPLL-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Linear Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Non-Linear Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 21

XI



4.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Jeroslow-Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Dynamic Largest Individual Sum . . . . . . . . . . . . . . . . . . 22
4.4.3 Variable State Independent Decaying Sum . . . . . . . . . . . . . 22
4.4.4 Berkmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Theory Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Nelson-Oppen method . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Model-based Theory Combination . . . . . . . . . . . . . . . . . 23

5 Selected Tools 25
5.1 TreeSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Choco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Minion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Savile Row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Microsoft Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 CVC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Test Input 29
6.1 General Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Experimental Results 37
7.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3.1 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Related Work 69

9 Conclusion 71
9.1 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

XII



List of Figures

3.1 Width at an ordered node (41) . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Width of a constraint graph (41) . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Size of industrial Conjunctive Normal Form (CNF) formulas that are
solved by SAT-solvers in a reasonable amount of time, according to the
year (39). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.1 Concept of the test environment . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Results of running tests from the boolean-set . . . . . . . . . . . . . . . 42
7.3 Results of running tests from the +-set . . . . . . . . . . . . . . . . . . . 43
7.4 Results of running tests from the random-set . . . . . . . . . . . . . . . . 44
7.5 Barchart representing the number of solved tests for the ’+’-set catego-

rized in ranges of 400ms with formula length 1 . . . . . . . . . . . . . . 47
7.6 Barchart representing the number of solved tests for the ’+’-set catego-

rized in ranges of 400ms with formula length 2 . . . . . . . . . . . . . . 47
7.7 Barchart representing the number of solved tests for the ’+’-set catego-

rized in ranges of 400ms with formula length 3 . . . . . . . . . . . . . . 48
7.8 Barchart representing the number of solved tests for the ’+’-set catego-

rized in ranges of 400ms with formula length 4 . . . . . . . . . . . . . . 48
7.9 Barchart representing the number of solved tests for the ’+’-set catego-

rized in ranges of 400ms with formula length 5 . . . . . . . . . . . . . . 49
7.10 Barchart representing the number of solved tests for the ’*’-set catego-

rized in ranges of 400ms with formula length 1 . . . . . . . . . . . . . . 49
7.11 Barchart representing the number of solved tests for the ’*’-set catego-

rized in ranges of 400ms with formula length 2 . . . . . . . . . . . . . . 50
7.12 Barchart representing the number of solved tests for the ’*’-set catego-

rized in ranges of 400ms with formula length 3 . . . . . . . . . . . . . . 51
7.13 Barchart representing the number of solved tests for the ’*’-set catego-

rized in ranges of 400ms with formula length 4 . . . . . . . . . . . . . . 51
7.14 Barchart representing the number of solved tests for the ’*’-set catego-

rized in ranges of 400ms with formual length 5 . . . . . . . . . . . . . . 52
7.15 Barchart representing the number of solved tests for the ’+’-set catego-

rized by solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.16 Barchart representing the number of solved tests for the ’-’-set catego-

rized by solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.17 Barchart representing the number of solved tests for the ’*’-set catego-

rized by solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

XIII



7.18 Barchart representing the number of solved tests for the ’/’-set catego-
rized by solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.19 Barchart representing the number of solved tests for the ’%’-set catego-
rized by solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.20 Hypergraph representing CSP 1 . . . . . . . . . . . . . . . . . . . . . . . 58
7.21 Primalgraph representing CSP 1 . . . . . . . . . . . . . . . . . . . . . . 59
7.22 Minimum width ordered constraint graph representing CSP 1 . . . . . . 60
7.23 Hypergraph representing CSP 2 . . . . . . . . . . . . . . . . . . . . . . . 61
7.24 Primalgraph representing CSP 2 . . . . . . . . . . . . . . . . . . . . . . 62
7.25 Minimum width ordered constraint graph representing CSP 2 . . . . . . 63
7.26 Hypergraph representing CSP 3 . . . . . . . . . . . . . . . . . . . . . . . 64
7.27 Primalgraph representing CSP 3 . . . . . . . . . . . . . . . . . . . . . . 64
7.28 Minimum width ordered constraint graph representing CSP 3 . . . . . . 65

XIV



List of Tables

6.1 Logic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Relational operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Results for the test sets featuring time and number of passed tests . . . 45

XV



1 Introduction

In the field of software testing we try to automate as much as possible. In all areas of
software testing it is already usual to run tests automatically instead of hiring lots of
software testers repeatingly executing the same tests. But not only the execution of
tests should be automated, also the creation of the tests is desired to be done automat-
ically.

Several different strategies for test case generation (model-based, mutation-based, speci-
fication-based, etc.) are currently investigated in parallel. These strategies rely on
different approaches to generate test data. These approaches are in general either
based on genetic algorithms, or use a Constraint Satisfaction Problem (CSP)-solver or
a Satisfiability Modulo Theory (SMT)-solver which we investigate in this work.

1.1 Motivation

Test case generation using a CSP-solver or an SMT-solver stands and falls with the
solver. The arithmetics contained in a model for which the test cases can be generated
relies on the possibilities the solvers provide. The solvers have to able to handle the
required inputs and reason about them as well as doing this in a reasonable amount of
time. Considering this we restricted inputs for the solvers to First Order Logic (FOL)-
formulas using arithmetic operations as functions, relational operators as predicates,
and literals of types integer and boolean to create a reasonable input set to compare
the different solvers.
For test case generation based on Extended Symbolic Transition System (ESTS)s a
CSP- or SMT-solver which is able to treat FOL-formulas as CSPs and solves them
in a reasonable time is required. These FOL-formulas in practice represent symbolic
paths which describe a way through an ESTS. An executable test case requires feasible
values. Therefore we need a valuation for the symbols in a symbolic path. The resulting
valuation for a FOL-formula which is processed by a solver represents the test input for
a System Under Test (SUT) which is represented by the ESTS.
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1.2 Contribution

We compared the results of solvers for inputs of FOL structure. These results were
either the time to solve if an input was solved correctly or an error message for the failed
attempt. Using these results assisted us to find a solver which is best applicable for
processing of input structured as a FOL-formula. Further we discussed the differences
in the results and their root causes.

1.3 Outline

The reminder of this thesis is organized as follows: Chapter 2 provides a formal def-
inition of ESTSs and its corresponding paths and traces. In this chapter also the
application of the CSP- and SMT-solvers this work is targeting is introduced. Chapter
3 explains the preliminaries of constraint satisfaction and Chapter 4 explains the pre-
liminaries of SMT which are used in this work.

Chapter 5 introduces the CSP-solvers and SMT-solvers which were applied in this work.
The test inputs for these solvers to compare them and the procedure how these test
inputs were generated is described in Chapter 6.

Chapter 7 shows the experimental results obtained by executing the solvers with the
test inputs. The related work is discussed in Chapter 8. The thesis is concluded with
a summary as well as with an outlook to future work in Chapter 9.
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2 Application

We utilize a CSP- or SMT-solver during test case generation for integration testing.
More precisely we use ESTSs to model a SUT and extract symbolic paths from these
models which we use for test case generation. An ESTS is a behavioral model represent-
ing a component of the SUT. These ESTSs were introduced as part of the STAte based
system Test and simulatION (STATION) tool suite at VIRTUAL VEHICLE Research
and Test Center. As defined in (49) an ESTS is a tuple <S, A, T, L, P, G, q0 > where S
is a set of states, A is a set of attributes, T is a set of transitions, L is a set of labels, P is
a set of signal parameters, G is a set of timing groups, and q0 is the initial configuration.
A symbolic path is a sequence of transitions which is created with respect to an ESTS,
where a transition t ∈ T is defined as (s, l, φ, ρ, p, d, s’). A transition t ∈ T defines a
state change where s represents the linked source state and s’ the target state, l ∈ L is
a label, φ is a guard, ρ is an attribute update funcion, p is the priority of the transition,
and d is its execution duration. The extraction of these symbolic paths from an ESTS is
described in detail in (49). These extracted symbolic paths still contain the symbols of
the attributes and signal parameters which are used in the guards and variable update
functions. A guard represents a FOL formula which can either evaluate to true or false
depending on the valuation of the variables. A guard which evaluates to true enables
a state change. So a valuation which enables the state change is desired. The literals
in these FOL-formulas are the signal parameters and the attributes which are both
either of type integer or boolean. An attribute update function updates the attribute
valuation after a state change within an ESTS. The concatenation of the guards and
attribute update functions from the transitions in an execution path are called path
constraint. A path constraint represents the input for the applied CSP- or SMT-solver
which replies either a satisfiable valuation for the signal parameters or a message that
the current execution path is not satisfiable and can not be applied as a test case for
the SUT.
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3 Constraint Satisfaction Problem

Constraints are present in our everyday life where some are natural e.g. the weather
and some are man made e.g. the balance on everyones bank account. We have to deal
with them permanently solving CSPs. This solving process is shown in how we try to
live well within these constraints e.g. get warm clothes for frozen winter days with an
affordable price that suits the balance on ones bank account.

3.1 Basic concepts

A combinatorial problem is modeled as a set of variables, representing the objects the
problem deals with, and a set of constraints representing the relationships among the
objects. Such a combinatorial problem is called a CSP (54).

More formal a CSP P, as defined by Eugene C. Freuder and Alan K. Mackworth in
(26), is a triple P = 〈X, D, C〉 where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉, D is a
corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi → Di, C is a t-tuple
of constraints C = 〈C1, C2, . . . , Ct〉. A constraint Cj is a pair 〈Rsj , Sj〉 where Rsj is a
relation between the variables in Si = scope(Ci). The function scope(Ci) returns the
variables used in Ci what yields Ri as a subset of the Cartesian product of the domains
of the variables in Si.

A solution of a CSP is an assignment of a value to each variable from its domain sat-
isfying the constraints. In their paper Freuder and Mackworth (26) defined a solution
to a CSP P as an n-tuple A = 〈a1, a2, . . . , an〉 where ai ∈ Di and each constraint Cj is
satisfied in that Rsj holds on the projection of A onto the scope Sj.

Constraint Satisfaction is approached by the two basic algorithm groups constraint
propagation (inferential consistency) and search. They can be applied separately but
appear usually in integrated form to process a CSP. A third completely different ap-
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proach is based on unification which origins in logic programming and is applied in one
of the CSP-solvers in this work which is based on the PROLOG programming language.

3.2 Unification

In (51) the authors introduce unification as the basis of most work in automated de-
duction and of the use of logical inference in artificial intelligence. Unification uses a
unifier of two terms which is a substitution that makes the terms identical. Two terms
unify if they have a unifier.
An example for unification is an algorithm for unification of equations which takes as
input two terms and replies either a unifier of the two terms or an error message if
they do not unify. The used algorithms for the substitutions to solve constraints on
boolean variables and linear arithmetic using finite domains are explained in detail in
(32). A pioneering algorithm for satisfying constraints with unification is explained in
(47). Example 1 shows a unification for a simple equation. If such a unification exists
an equation is satisfiable otherwise not.

Example 1 (Unification of a simple equation).
A unifier θ = {x1/s, x2/t} subsitutes for an equation x1 = x2 variable x1 by s and x2

by t where s and t represent a valuation which satisfies the equation. 2

3.3 Search Strategies

The search for a solution to a CSP may be seen as exploring a tree where each node in
the tree (except the root) corresponds to a unique variable assignment and each branch
represents a partial assignment of the CSP. The common systematic search strategies
are usually situated in a backtracking search. These search strategies emerged from
several modified or substrategies of the Backtrack strategy.
In the worst case all search strategies to solve a CSP require exponential search time.
The modified search strategies strongly reduce the probability that the worst case oc-
curs.

3.3.1 Generate and Test

Generate and Test (GT) is an algorithm that generates randomly a valuation for each
variable and consequently if this valuation satisfies all constraints in the CSP a solution
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is found, otherwise another valuation is generated. It is a brute force method which
checks constraints only after a complete assignment of all variables in the CSP. Its
efficiency is poor because of the non-informed generator of the valuation and the late
check for consistency, but it guarantees to find a solution if one exists. In GT in
the worst case each possible complete assignment is generated to find a solution or to
assess that the CSP is not satisfiable. This method is never used in practice but there
exist some modified smarter generators using statistical approaches which improve the
efficiency of GT as explained in (9). GT is usually not applied in practice.

3.3.2 Backtrack

Backtrack is a search method which guarantees to find a solution if a solution exists. It
improves the GT method by incrementally extending partial solutions. This extending
can be applied after checking if a constraint is violated after each assignment of a
variable where all of the constraints are checked whether they are satisfied as soon as
all of the variables they constrain are assigned. If a constraint is violated we have to
backtrack. A very comprehensive introduction on backtrack and its efficiency is given
in (36).

3.3.3 Backjumping

The backtrack search method retreats just one step backwards when encountering a
dead-end. A dead-end occurs if there are no consistent values assignable to the current
variable in the search tree relative to the current partial solution. This is improved by
the backjumping method (46, 28) where the reasons for the dead-end are analyzed and
irrelevant backtrack points can be avoided. This improvement leads to a jump back in
the search tree directly to the root of the violating valuation. As backtrack tends to
rediscover dead-ends repeatedly the backjumping method does not have this tendency.

3.3.4 Heuristics

A heuristic for solving a CSP includes a variable and/or a value selection procedure.
The variable selection procedure should assign a value to that variable which maximally
constrains the rest of the search space. The value selection procedure decides which
value from the domain of a variable is most likely to lead to a satisfied constraint and
should be assigned to the current variable. Current research also comprises constraint
ordering heuristics as explained in (48) where the order in which constraints are solved
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within a CSP may improve efficiency.

For the value selection procedure some common strategies are the min-value strategy
which selects the minimum value, max-value which selects the maximum value, and
mid-value which selects the median value in the remaining domain (1).

Usually value ordering strategies are not as important as variable ordering or variable
selection strategies. Variable selection strategies are dynamic where the next variable
which is valued is selected during runtime related to the chosen heuristic. A variable
ordering is static and gives the variables in an order which defines the selection sequence
as input to the CSP-solver. Variable selection strategies are for example the wdeg and
dom over wdeg (11). The wdeg strategy selects the variable which is mostly involved in
violated constraints which are weighted. The constraints are weighted depending how
often they were violated in the so far arranged search. So applying the wdeg strategy
selects the variables depending on the maximal weight of the constraints where they
occur. The dom over wdeg heuristic involves the domain of the variables in the selec-
tion procedure. In this heuristic the size of the domain (dom) of each variable and the
value of the wdeg are used to calculate a ratio dom

wdeg . The next selected variable in this
strategy is the variable with the minimum ratio.
Further dynamic variable selection heuristics are dom-deg, min-dom, and max-dom.
The dom-deg heuristic is similar to dom over wdeg strategy but uses only a counter of
variable occurrences (deg) in constraints without weighting them. The next selected
variable in the dom-deg heuristic is the variable with the minimum ratio of dom

deg . The
min-dom heuristic chooses the variable with the smallest domain and max-dom chooses
the variable with the largest domain next.

In (22) Rina Dechter shows a classification of the heuristics which are used to improve
backtrack during search. She introduces lookahead schemes and lookback schemes
where variable selection and value ordering appertain to lookahead schemes. Lookback
schemes are e.g. go back to source of failure and constraint recording. Constraint
recording can be applied if a backtracking algorithm encounters a dead-end. The dead-
end rises if the current partial valuation of the variables is consistent but there is no
consistent value in the domain of the next variable. This partial valuation is recorded as
an additional constraint to make sure that this valuation is not revisited during search.
A constraint ordering heuristic applicable on constraint recording is explained in (48).

8



3.4 Constraint Propagation

A comprehensive overview of the roots of constraint propagation and the different algo-
rithms to implement constraint propagation can be found in (40) (This paper of Alan K.
Mackworth was honored in Artificial Intelligence 59, 1-2, 1993 as one of the fifty most
cited papers in the history of Artificial Intelligence). Constraint propagation prunes the
search tree by removing inconsistent valuations from the domains of the variables by
deduced information which is recorded as change to the problem. A constraint is con-
sistent if it reaches a point where nothing new can be deduced. Inconsistent valuations
are detected by running different local and global consistency checks. The consistency
checks which are used in this work are Node Consistency, Arc Consistency, Path Con-
sistency, Bounds Consistency, and k-Consistency. The CSP-solvers applied in this work
use Node Consistency and Arc Consistency. Local consistency checks treat constraint
by constraint within a CSP to achieve local consistency whereas to achieve global con-
sistency any consistent instantiation of a subset of the variables can be extended to a
consistent instantiation of all the variables without encountering any dead-ends.

3.4.1 Node Consistency

Node consistency checks are applied on unary constraints. Local node consistency holds
if for every value in the domain Di for variable xi the unary constraint c(xi) is satisfied.
If domain Di contains values which do not satisfy the constraint c(xi) these values are
removed to gain node consistency. An unary constraint c(xi) is not satisfiable if the
domain Di is empty after applying a node consistency check. Global node consistency
can be achieved if local node consistency holds for all unary constraints. Example 2
shows the application of a node consistency check.

Example 2 (An unary constraint showing the application of the node consistency
check).
variables X = {x1}
domain D1 = {3, 4, 5, 6}
constraint c(x1) represents x1 < 5

The application of node consistency on c removes the values 5, 6 from domain D1 where
the remaining values in D1 = {3, 4} are node consistent.

2
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3.4.2 Arc Consistency

Arc consistency checks are applied on binary constraints. Local arc consistency holds if
the two variables xi and xj which are constrained by the binary constraint c(xi, xj) are
both node consistent and there is at least one value aj in the domain Dj for the variable
xj such that the constraint c(xi, xj) is satisfied if a value ai ∈ Di for variable xi is
assigned to xi. This consistency check is applied in both directions. As explained there
is at least one value for xj for every value in the domain of xi and there is at least one
value for xi for every value in the domain of xj. If there is no value aj ∈ Dj of variable
xj then the currently assigned value to xi has to be pruned. Global arc consistency
holds if local arc consistency holds for all binary constraints in a CSP. Simply enforcing
local consistency for all constraints to achieve global arc consistency is not very efficient
because for every change in the domain of a variable all binary constraints have to be
rechecked to be arc consistent. To achieve global arc consistency huge efforts were made
in developing algorithms AC1, AC2, AC3, AC4, AC6, and AC3.1 which are explained
in detail in (21) their differences are in worst-case time complexity and worst-case space
complexity. Example 3 shows the application of an arc consistency check.

Example 3 (A binary constraint showing the application of the arc consistency check).
variables X = {x1, x2}
domains D1 = D2 = {3, 4, 5, 6}
constraint c(x1, x2) represents x1 < x2

The application of arc consistency on c removes value 6 from domain D1 where the
remaining values in D1 = {3, 4, 5} are arc consistent and removes value 3 from domain
D2 where the remaining values in D2 = {4, 5, 6} are arc consistent. 2

3.4.3 Path Consistency

Local path consistency can extend an arc consistent assignment to any two variables
to a three variables consistency. Thus path consistency checks are applied on binary
constraints which have a relation to a third variable. A constraint c(xi, xj) is path con-
sistent relative to a third variable xk if every valuation ai of xi and aj of xj from their
domains Di and Dj satisfy the constraint c(xi, xj) and there also exists a value ak from
domain Dk for variable xk such that the values in Di and Dk satisfy a constraint c(xi, xk)
and the values aj ∈ Dj and ak ∈ Dk satisfy a constraint c(xj, xk). The assignments are
always expressed in tuples e.g. 〈ai, aj〉. So if no value ak ∈ Dk for xk exists such that
〈ai, ak〉 satisfies c(xi, xk) and 〈aj, ak〉 satisfies c(xj, xk) then we can remove the values
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〈ai, aj〉 which satisfy c(xi, xj) from the domain of xi and xj to achieve path consistency.
If a domain becomes empty the CSP is not satisfiable. Another approach to enforce
path consistency is to add constraints during runtime to the CSP instead of removing
values from the domains. In Example 4 instead of removing value 6 from domain D of
variable x we just can add a constraint c(x) where c(x) represents x 6= 6.
Global path consistency holds if for every three distinct variables xi, xj, xk within a
CSP a constraint c(xi, xj) is path consistent relative to a variable xk. Algorithms for
enforcing path consistency like PC1 and PC2 are similar to those enforcing arc consis-
tency. Path consistency does not basically imply arc consistency. Example 4 shows the
application of a path consistency check.

Example 4 (A binary constraint showing the application of the path consistency
check).
variables X = {x1, x2, x3}
domains D1 = [0..4], D2 = [1..5], D3 = [5..10]
constraint c1(x1, x2) represents x1 < x2

constraint c2(x2, x3) represents x2 < x3

constraint c3(x1, x3) represents x1 < x3

The given CSP is not path consistent because there is no value a2 ∈ D2 for variable x2

where 4 < x2 < 5 if x1 = 4 and x3 = 5. The application of path consistency on c1, c2, c3

removes value 5 from domain D3 where the remaining values in D3 = [6..10] are path
consistent. Another opportunity is to add a further constraint c4(x3) which constrains
x3 to x3 6= 5. 2

3.4.4 Bounds Consistency

The bounds of a variable are the minimum value and the maximum value of its related
domain. A constraint is bound consistent if for any variable in the constraint each of its
bounds can be extended to a tuple satisfying the constraint. In other words the check
for bounds consistency requires that the minimum value and the maximum value of
the domain of a variable can be used to satisfy the constraint where the other variables
are valued with any value within their domain. Bounds consistency is used when the
domain of a variable is large and represents an interval and is achieved by tightening
the bounds of the domain by removing unsupported minimum and maximum values.
Bounds consistency is rather effective in terms of operations to achieve consistency than
applying global arc consistency (21).
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3.4.5 k-Consistency

k-consistency (also called i-consistency) is given if an assignment to k-1 variables satisfies
all constraints using them and choosing an assignment to any k-th variable satisfies all
constraints applying these k variables. k-consistency does not require binary CSPs
which only contain constraints of arity 2. Enforcing k-consistency does not remove
values from a domain of a variable like enforcing arc consistency but adds constraints to
the CSP which rule out values from a domain of a variable. These additional constraints
are called no-goods.
Strong k-consistency is given if we have j-consistency for all 1 ≤ j ≤ k. In other words if
we have a consistent assignment for j-1 variables and this assignment can be extended
to a consistent assignment for j variables for all 1 ≤ j ≤ k. Strong k-consistency has the
characteristic that you never have to backtrack while searching for a CSP solution and
is therefore backtrack-free. On the other hand to enforce strong k-consistency becomes
very quickly very expensive thus k-consistency is very rarely implemented in the popular
CSP-solvers.

3.5 Combinations of Search and Propagation

Typically CSP-solvers use a combination of a search method and constraint propagation.
There are lots of possibilities to combine these methods. Two of the most common
combinations are forward checking and maintaining arc consistency.

3.5.1 Forward Checking

A combination of search and constraint propagation is forward checking. It represents
the fundamental way how systematic constraint solvers work. Forward checking first
guesses an assignment for a variable, then propagates all consequences arisen by this
assignment and continues again with a guessing if no constraint is violated and the CSP
is not satisfied yet. Forward checking guarantees to explore a smaller search tree than
backtracking.

3.5.2 Maintaining Arc Consistency

A combination of constraint propagation and search using global arc consistency is
called Maintaining Arc Consistency (MAC) where arc consistency is embedded in a
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search algorithm. This combination spots dead-ends in a search tree earlier than forward
checking reducing the search effort (10). MAC does not need to check backwards as
well. The difference to forward checking is that forward checking checks each unassigned
variable separately whereas MAC applies global arc consistency.

3.6 Width of a CSP

As Eugene C. Freuder clarified in (27) a valuation for a variable order is backtrack-free
if the level of strong k-consistency exceeds the width of the correspondingly ordered
constraint graph. Arc consistency is defined as strong k-consistency for k = 2 and
strong path consistency is strong k-consistency for k = 3.

The width of a variable order is the maximum width of a node in an ordered con-
straint graph where an ordered constraint graph is an arrangement of nodes into a
fixed linear order. The minimum width of a constraint graph is the minimum width
of all of its orderings. Each node in a constraint graph represents a variable in the
CSP. The width of a node in a constraint graph is the number of connections to past
resp. overlying nodes in the constraint graph. Figure 3.1 shows the width of a node
{x1 = 0, x2 = 3, x3 = 1, x4 = 2, x5 = 1} and the width of the constraint graph 3 which
is the maximum width of a node within the graph. An example to show the different
possible constraint graphs to get the minimum width of the constraint graph out is
shown in Figure 3.2. The minimum width of the CSP in Figure 3.2 is 1 because it is
the minimum width of all possible orderings. The width of the constraint graphs is
denoted below each constraint graph in Figure 3.2 and the width of the nodes is given
right to the nodes.

Algorithm 1 shows the greedy Min-Width algorithm to sort an ordered constraint graph
to a minimum width ordered constraint graph.

Algorithm 1 Min-Width (21)
Input: A graph G = (V,E), V = {v1, . . . , vn}.
Output: A min-width ordering of the nodes d = (v1, . . . , vn).

1: for j = n to 1 by −1 do
2: r ← a node in G with smallest degree.
3: Put r in position j and G← G− r.

(Delete from V node r and from E all its adjacent edges)
4: end for
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Figure 3.1: Width at an ordered node (41)

Figure 3.2: Width of a constraint graph (41)
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4 Satisfiability Modulo Theory

Despite propositional logic applications, which are processed by SAT solvers more ex-
pressive logics like FOL are investigated in computer science and mathematics. Many
applications to investigate satisfiability require not just general FOL satisfiability, but
rather satisfiability with respect to some background theory which interprets certain
predicate and function symbols. The research field concerned with the satisfiability of
formulas with respect to some background theory is called Satisfiability Modulo Theory.

4.1 Basic Concepts

SMT-solvers combine the problem of boolean satisfiability with domains (such as those
studied in convex optimization (12)). They involve investigations in the decision prob-
lem, completeness and incompleteness of logical theories, and the complexity theory
(19). SMT relies on existing decision procedures that know how to reason about a
particular theory, what means that SMT is less generalized than convex optimization
e.g. that the "+"-operator behaves as expected as shown in Example 5.

Example 5 ("+"-operator).
the "+"-operator in linear arithmetic is assumed to behave the way we learn it at ele-
mentary school: we don’t have to specify that ∀x, y. x + y = y + x 2

The major approaches so far for implementing SMT-solvers are usually referred to as
eager, lazy, and DPLL(T) approach (8). The eager approach converts the input formula
in an equisatisfiable propositional formula before checking the satisfiability. This ap-
proach is extensively explained in the papers (45, 52, 50, 14, 15) which were published
in the years 1999-2003. The lazy approach consists in building ad-hoc procedures im-
plementing an inference system specialized on a background theory. This approach
is extensively explained in the papers (2, 20, 5, 3) which were published in the years
2000-2002.
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4.1.1 Conjunctive Normal Form

The input of an SMT-solver is usually preprocessed and transfered in a boolean structure
for which the internal SAT-solver is designed to work with. The most common boolean
structure is the CNF. A formula in CNF is a conjunction of clauses where each clause is
a disjunction of literals. A literal represents an atom in a propositional formula or the
negation of an atom. In the remainder of this work we name literals in propositional
logic formulas also boolean variables. To gain a propositional formula from a FOL
formula which is the input of an SMT-solver an abstraction step is required. This step
abstracts away the functions and predicates of an FOL formula and translates them
into boolean variables. This new formula can be transfered in CNF and processed by a
regular SAT-solver (19).

4.1.2 DPLL(T)

DPLL(T) is the latest approach for implementing SMT-solvers. It is an efficient and
modular approach based on a general DPLL(X) engine where X can be instantiated
with a specialized theory solver T to produce a DPLL(T) system. In other words the
combination of a Davis-Putnam-Logemann-Loveland (DPLL) based SAT-solver and a
theory solver results in a DPLL(T) based SMT-solver. In this approach the SAT-solver
chooses literals from an input which is usually transferred into CNF and assigns a
valuation. The valuation of these literals is crucial for the satisfiability of the boolean
structure. The theory solvers check whether the chosen variables and their valuations
are consistent in the applied theory. The valuation is consistent if the function which
is abstracted by the literal evaluates to the assigned valuation of the literal. Improved
versions of the DPLL(T) invoke the theory solver after a partial assignment of the
SAT-solver instead of waiting for a full assignment. A partial assignment gives the
possibility to derive implications for the SAT-solver after the theory solver finishes. An
Example for such an implication is shown in 6. This implications are also called theory
propagation. For a comprehensive introduction of the DPLL(T) approach we refer the
reader to (44).

Example 6 (Implication of partial assignment).
The abstraction of an input x = z is a boolean variable p. A SAT-solver assigns the
value true to p and invokes the theory solver which in this case is a theory solver for
equality logic with uninterpreted functions.
The theory solver assigns a valuation to x = z which makes p true. A derived implica-
tion for the SAT-solver of this assignment is that another boolean variable q which is
an abstraction of x 6= z must be false. 2
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Figure 4.1: Size of industrial CNF formulas that are solved by SAT-solvers in a reason-
able amount of time, according to the year (39).

4.2 SAT-solver

For SMT-solvers a SAT-solver represents the core which handles propositional formu-
las. SAT-solvers aim to decide whether a propositional logic formula which uses only
boolean variables can be made true by assigning a valuation. This valuation is either
true or false to each of the formulas variables. Modern SMT-solvers use a SAT-solver
which solves formulas in CNF. These modern SAT-solvers can solve formulas in CNF
with hundreds of thousands of variables in a reasonable amount of time of a few hours
(39). Figure 4.1 shows the rise of numbers of variables in a propositional logic formula
in CNF that are regularly solved by SAT-solvers in a reasonable amount of time.

These SAT-solvers can be grouped in two main categories. The first are based on
stochastic search and the second category of SAT-solvers are based on the DPLL pro-
cedure (16).

4.2.1 Stochastic Search

SAT-solvers based on stochastic search are guessing an initial assignment and check
this assignment whether it satisfies the input formula. If this check evaluates to false
the SAT-solver starts to change the valuations of variables according to an internal
heuristic. After each change a check whether the input formula is satisfied follows. The
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heuristic is typically based on counting the number of unsatisfied clauses and chooses
the variable to change which minimizes this number.

4.2.2 DPLL-procedure

DPLL (16) is a procedure which makes decisions about the valuation of a variable,
propagates implications after a decision, and backtracks if a conflict occurs. This pro-
cedure can be applied on boolean variables and therefore seen as a procedure acting on
a binary tree. Each level in the binary tree represents a decision level. The root node
in the binary tree has decision level 1 because the first decision is made there.

Algorithm 2 shows the DPLL-procedure. The main components in this algorithm are
the functions: DECIDE(), BCP(), ANALYZE-CONFLICT(), BACKTRACK(dl).

Algorithm 2 DPLL-SAT (39)
Input: A propositional CNF formula B
Output: "Satisfiable" if the formula is satisfiable and "Unsatisfiable" otherwise

1: function DPLL
2: if BCP() = "conflict" then return "Unsatisfiable";
3: while TRUE do
4: if ¬DECIDE() then return "Satisfiable";
5: else
6: while BCP() = "conflict do
7: backtrack-level := ANALYZE-CONFLICT();
8: if backtrack-level < 0 then return "Unsatisfiable";
9: else

10: BackTrack(backtrack-level);
11: end if
12: end while
13: end if
14: end while
15: end if
16: end function

DECIDE() chooses a so far unassigned variable and a valuation for it. BCP() applies
boolean constraint propagation (unit propagation) until either a conflict is encountered
or no more implications are possible. ANALYZE-CONFLICT() detects unsatisfiabil-
ity of the input formula with the current instantiation of the variables and computes
the backtrack level. The backtrack level is the level in the binary tree where to back-
track to in case of a conflict. Further the ANALYZE-CONFLICT() function adds
new constraints to the input formula during runtime which constrain the search tree
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after a conflicting assignment. BACKTRACK(backtrack − level) jumps to the level
backtrack − level in the binary tree and erases assignments at all higher levels.

SMT-solvers got more and more attention because of the improvements in the perfor-
mance of SAT-solvers based on the DPLL procedure in the last years. This improve-
ments were made by better implementation techniques like the two-watched literal
approach for unit propagation. Further they were made by enhancements on the reduc-
tion of the search space like backjumping, conflict-driven lemma learning, and restarts
as explained in (44).

SAT-solvers based on DPLL are considered to be better in terms of the number of
formulas which can be solved in a reasonable amount of time. The SMT-solvers applied
in this work use SAT-solvers which are based on the DPLL-procedure.

4.3 Decision Procedures

A decision procedure is an approach to decide whether an input formula is satisfiable.
A satisfiable formula requires at least one assignment to the used variables which let
the formula evaluate to true. An assignment of a variable is a mapping of the variable
to a value in its domain where the domain represents all values which can be assigned
to this variable. Every variable has a related domain. If a formula is satisfied under
each possible assignment the formula is called valid. A formula which is not satisfiable
is named as contradiction. Decision procedures are based on deduction and enumera-
tion but not exclusivly on either deduction or enumeration. An example for a decision
procedure based on enumeration is a truth table for a propositional logic formula. An
example for a deduction based decision procedure is the application of the contradiction
rule. The contradiction rule derives a conclusion by an inference which says that the
propositional logic formula (x ∧ ¬x) always evaluates to false. This evaluation result
can be deduced and no more processing is required.

Decision procedures are different for different theories. The different theories which were
applied in this work are the theories for propositional logic, linear integer arithmetic, and
nonlinear integer arithmetic. The decision procedures for linear and nonlinear integer
arithmetic comprise of the decision procedures for equality and difference arithmetic
as well. The decision procedure which is applied by the SMT-solver depends on the
structure of the input formula. Depending on the SMT-solver these decision procedures
are either selected automatically or manually by the user.
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4.3.1 Propositional Logic

A decision procedure for propositional logic is applied by a SAT-solver which is explained
in Section 4.2. This decision procedure decides whether a formula in propositional logic
is satisfiable.

4.3.2 Linear Integer Arithmetic

A linear integer arithmetic constraint is satisfied if the valuation of each variable in the
constraint is a value from the set of integers and evaluating the constraint to true. A
famous decision procedure for solving linear integer arithmetic constraints is the Branch
and Bound algorithm which was initially used for numerical optimization. An slightly
modification of Branch and Bound can be used as a decision procedure for linear integer
arithmetic constraints. This Branch and Bound algorithm applies a decision procedure
which can handle a relaxed version relaxed(c) of the input CSP c. The relaxed version
omits the requirement that the valuation for the variables must be a value from the
set of integers. An example for such a decision procedure is the Simplex algorithm
which decides if the input constraint is either satisfiable or not. If the valuation for the
satisfied relaxed(c) after applying the Simplex algorithm contains non integer values
the problem is split in two subproblems. This splitting derives from the Branch and
Bound approach. Otherwise the decision procedure returns that the input CSP is
satisfied. The splitting adds a constraint for a non integer valuation of a variable xi

such that xi ≤ bcurrent valuationc to the CSP c. Then a recursive call of the Simplex
algorithm follows with input c. This splitting and the recursive call is repeated until
either a valuation consisting of values from the set of integers is found or the CSP is
not satisfiable. If the CSP is not satisfiable with the additional constraint then the
CSP is augmented with the constraint xi ≥ dcurrent valuatione. Again this splitting
and recursive call is applied until either a satisfying valuation consisting of values from
the set of integers is found or the CSP is not satisfiable. If no valuation consisting of
values from the set of integers can be found the CSP is not satisfiable for linear integer
arithmetic. A full overview is of the Branch and Bound approach is given in (39).
The Simplex algorithm is an algorithm for numerical optimization which can be applied
to solve linear constraints over variables of type real in a modified version. The Simplex
algorithm is based on geometrical research. In geometrical terms each variable of a
CSP corresponds to a dimension and each constraint defines a subspace. A satisfying
valuation can be found in the intersection of these subspaces. An application of the
Simplex algorithm within an SMT-solver is explained in detail in (18). Another newer
approach to solve linear integer arithmetic constraints using the Simplex algorithm is
introduced in (34). As mentioned the Simplex algorithm adds a dimension for each
variable in the CSP. In (34) they introduce an approach where they eliminate a part of
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the search tree if a non integer valuation for a CSP is found by deriving planes within
this geometrical space constructed by the variables which represent the non integer
valuation. Due to the fact that a solution for the Simplex algorithm is an intersection
of subspaces the deriving of planes which represent valuations which do not lead to a
desired solution prune the search space substantial. The approach of adding planes is
called the Cutting Planes approach.

4.3.3 Non-Linear Arithmetic

A non linear arithmetic constraint for integer valuations is not decidable. Therefore a
decision procedure for real valuation can be applied to find a valuation which can facili-
tate the search for an integer valuation. A famous approach is the Cylindrical Algebraic
Decomposition (CAD). This approach works by decomposing Rk into connected compo-
nents such that all of the polynomials from the CSP are invariant regarding their sign.
This is possible because CAD first performs a projection of the polynomials from the
initial problem. Such a projection contains many new polynomials which are derived
from the initial polynomials. These polynomials contain enough information to ensure
that the decomposition is possible. The size of these projection sets depends on the
number of variables. In (35) an improved approach applying CAD is introduced.

4.4 Heuristics

There is a vast number of heuristics known which define the selection order of variables
and values which are assigned next. In SMT-solvers this heuristics are the same as
for SAT-solvers because they consider the boolean abstraction of the input formula
as explained in Section 4.1.1. Some common heuristics are Jeroslow-Wang, Dynamic
Largest Individual Sum (DLIS), Variable State Independent Decaying Sum (VSIDS),
and Berkmin.

4.4.1 Jeroslow-Wang

The Jeroslow-Wang heuristic requires as input a propositional formula in CNF to cal-
culate a value J(l) for every variable l. In (39) the formula to calculate J(l) for each
variable l in a propositional formula B is given as

J(l) = ∑
ω∈B,l∈ω 2−|ω|
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where ω represents a clause and |ω| the length of a clause. In this heuristic the variable
with the maximum value for J(l) is chosen. This heuristic gives higher priority to
variables that appear frequently in short clauses.

4.4.2 Dynamic Largest Individual Sum

In the DLIS heuristic an unassigned variable that satisfies the largest number of cur-
rently unsatisfied clauses is chosen next. To get this number for each variable a list of
references to clauses in which a variable appears has to be kept. The number of unsat-
isfied clauses can be extracted by counting the references of each variable to unsatisfied
clauses. This imposes a large overhead to apply his heuristic.

4.4.3 Variable State Independent Decaying Sum

The VSIDS heuristic is very similar to DLIS but does not regard the question if a clause
is already satisfied for the number of clauses in which a variable appears. The number
of clauses in which a variable appears is kept for each variable and labeled as score.
This score is initially the number of clauses in which a variable appears but is divided
by a constant (e.g. 2) after a variable was chosen. If a conflict occurs and a clause
cannot be satisfied with the current valuation this conflict is added as a new constraint.
This new constraint adds the value 1 to the score of each variable which appears in the
new constraint. Thus variables in these new constraints become more influential than
others.

4.4.4 Berkmin

The Berkmin heuristic is very similar to VSIDS but does not divide the score for each
variable after a variable was chosen. In comparison to VSIDS it only considers unre-
solved conflicts which causes new constraints. In this heuristic a new constraint added
due to a conflict is pushed on a stack. If a variable has to be chosen the first constraint
on this stack which was added because of a still unresolved conflict is chosen and the
variable within this constraint with the highest score is selected. If the stack is empty
the variable with the overall highest score is selected. In this heuristic variables which
appear in recent conflicts have absolute priority.
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4.5 Theory Combination

Decision procedures are limited on specific functions. In practice different theories
can be applied in combination in a single CSP. Therefore also for an SMT-solver
combinations of the decision procedures are required to handle these CSPs. The two
most famous theory combination methods are the Nelson-Oppen method and a model-
based theory combination.

4.5.1 Nelson-Oppen method

The Nelson-Oppen method is explained in (42). It provides a method to combine
theories but with a few restrictions which are:

1. T1, . . . , Tn are quantifier free FOL theories with equality.

2. There is a decision procedure for each of the theories T1, . . . , Tn.

3. The signatures are disjoint, i.e., for all 1 ≤ i < j ≤ n, ∑
i ∩

∑
j = ∅.

4. T1, . . . , Tn are theories that are interpreted over an infinite domain (e.g. linear
arithmetic over R, but not the theory of finite-width bit vectors).

A signature of a theory is a set of function of predicate symbols over which a theory is
defined. A convex theory has for every satisfiable set of literals a model where variables
not implied to be equal have a distinct interpretation.
These restrictions and the algorithm shown in Listing 3 are introduced in (39). The
algorithm is a procedure for combinations of convex theories. The input formula must
be a conjunction of literals. The first step in 3 purifies each literal so that it belongs
to a single theory by replacing the literals with auxiliary variables adding a constraint
which assures that the literal equals the auxiliary variable. This results in a set of pure
expressions F1, . . . , Fn which represent these equality constraints. Only disjunctions of
these pure equality expressions are communicated by the theory solvers.

4.5.2 Model-based Theory Combination

Model-based theory combination is introduced in (17). Their approach minimizes the
number of shared equalities which are explained in Section 4.5.1. This benefits from
the fact that in practice the number of local inconsistencies is much bigger than the
number of inconsistencies across theories. Model-based theory combination does not
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Algorithm 3 NELSON-OPPEN-FOR-CONVEX-THEORIES (39)
Input: A convex formula φ that mixes convex theories
Output: "Satisfiable" if φ is satisfiable, and "Unsatisfiable" otherwise

1: Purification: Purify φ into F1, . . . , Fn.
2: Apply the decision procedure for Ti to Fi. If there exists i such that Fi is unsatisfi-

able in Ti, return "Unsatisfiable".
3: Equality propagation: If there exist i, j such that Fi Ti-implies an equality between

variables of φ that is not Tj implied by Fj , add this equality to Fj and go to step 2.
4: Return "Satisfiable".

share the equalities as the Nelson-Oppen method but maintains for each theory solver
a candidate model of the shared equalities across the theory solvers. This candidate
model propagates the equalities which provides impressive performance improvements
in comparison to the Nelson-Oppen method.
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5 Selected Tools

The tools we used in this work are the TreeSolver (GNU Prolog Constraint Solver 1.3.1)
(61), the Choco 3 Constraint Solver library (60), Minion 0.15 CSP-solver (30), Minion
0.15 in combination with the modelling assistant Savile Row 1.0RC1 (58), Microsoft Z3
SMT-solver 4.3.0 x64 (63), and the Cooperating Validity Checker (CVC)4 SMT-solver
(4). The TreeSolver was the existing CSP-solver which was used during the development
phase of the tool suite STATION in the test case generation phase. This CSP-solver
is restricted to process problems without using integer valuations less than zero. The
Choco CSP-solver is a library for the Java programming language which is also used
for development of STATION. Choco can be fully integrated in a Java project and so a
lack of startup time for an external tool can be avoided. The Minion 0.15 CSP-solver is
an external tool which is one of the fastest available CSP-solvers. Minion 0.15 and the
combination of Minion 0.15 and Savile Row 1.0RC1 are developed at the University of
St Andrews where this work was accomplished supported by the VIRTUAL VEHICLE
Research Center. The Microsoft Z3 SMT-solver is an external tool which has always
been among the best in the SMT competition since it emerged. The CVC4 SMT-solver
is the latest of the SMT-solver- also theorem-prover-family developed in a joint project
of the New York University and the University of Iowa. Both, Z3 and CVC4, support the
SMT-LIB Version 2.0 (7) syntax as input, provide executables for Microsoft Windows
Operating System (OS)s and include nearly all needed built in theories for this analysis.

5.1 TreeSolver

The TreeSolver uses in its core the GNU Prolog 1.3.1 CSP-solver (56). As the name
indicates the core is a free CSP-solver implemented in the Prolog logic programming
language. This core of the CSP-solver is an instance of the Constraint Logic Program-
ming (CLP) scheme introduced in (33). The TreeSolver is delivered as executable for
Microsoft Windows OSs. The applied version only allows usage of positive integer valu-
ations. Another drawback of the TreeSolver was that it only provides a network socket
for communication which restricts the length of the input.
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5.2 Choco

The Choco 3 CSP-solver library is a completely rewritten successor of the Choco 2
version. At the time when this work was prepared the used Choco 3 release was still in
a beta state. Choco is implemented in Java and deployed as a library which makes it
easy to be integrated in a Java development project what this work‘s basic development
language is.

5.3 Minion

The Minion CSP-solver is a stand-alone CSP-solver developed at the University of St
Andrews where this work was realized. Minion is very fast and scales very well as the
problem size increases. Minion processes models created in its own syntax delivered as
input text file or via input stream. In this work we used the 32-bit version which is avail-
able to download as executable for Microsoft Windows OS and a 64-bit version which
is not officially available as executeable for Microsoft Windows OS. In the remainder
of this work we label the 32-bit version of Minion as Minion32, the 64-bit version of
Minion as Minion64, and if not differentiating we use simply Minion.

5.3.1 Savile Row

Savile Row is a modeling assistant for Constraint Programming (CP) which is a stand-
alone application developed at the University of St Andrews. Savile Row processes
input files in the Essence’ modeling language which is a high-level language for users to
specify a CSP and translates the input to the input of a CSP-solver. The translation
applies some reformulations to improve the Essence’ input. The CSP-solver used in
this work in combination with Savile Row was Minion32 where Savile Row exports a
file which is a proper input file for the Minion CSP-solver.

5.4 Microsoft Z3

Z3 4.3.0 is a stand-alone SMT-solver developed at Microsoft Research and is available
as open source. Z3 supports processing of inputs written in different syntax formats.
The format chosen in this work was the SMT-LIB Version 2.0 syntax which is an actual
standard and is supported by several SMT-solvers. The input for Z3 is delivered in
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a text file. Z3 is available as executable for Microsoft Windows OS in a 32-bit and a
64-bit version. In this work we chose the 64-bit version.

5.5 CVC4

CVC4 1.2 is the latest version of a stand-alone SMT-solver developed in a joint project
of the New York University and the University of Iowa and is available as open source.
It supports processing of inputs written in the SMT-LIB Version 2.0 syntax. It is a
completely rewritten successor of CVC3. CVC4 is available as executable for Microsoft
Windows OS in a 32-bit version.
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6 Test Input

For testing input formulas in FOL were generated using variables of type integer and
formulas in propositional logic were generated using variables of type boolean. These
formulas represent a constraint path in an ESTS. To get a meaningful set of test inputs
to analyze the differences of the applied CSP-solvers and SMT-solvers, formulas of
different length using the currently supported operators and data types of ESTSs were
generated.

6.1 General Test Structure

The structure of test inputs using boolean variables is a formula in propositional logic
consisting of nested subformulas which are connected by a logical AND-operator or a logi-
cal OR-operator, acting as logical connective, listed in Table 6.1. Subformulas again can
have subformulas. These subformulas have a simple structure where each subformula
starts with either another subformula, a variable, or a boolean value b ∈ {True, False}
followed by a logical connective, repeats this as often as the set length admits, and ends
either with a subformula, a variable, or a value b. The logic NOT operator from Table
6.1 is randomly applied to variables, subformulas, or the entire generated formula. The
length is a parameter set by the user, who generates the test inputs.

The test inputs using integer variables we used to run on the different solvers are
quantifier free FOL formulas. The structures and semantics of FOL are explained in
detail in (31, 13). A term t used in these FOL formulas is either a constant, a variable,
or a binary function which again take terms as arguments. This term t evaluates to
a valuation v(t) where v(t) ∈ Z. The binary functions used as a term t are listed in
Table 6.2 which contains the arithmetic operators supported by an ESTS. A list of the
predicates which are used in the FOL formulas is shown in Table 6.3. These predicates
are binary relational operators and applied on terms. A predicate evaluates to a literal
which is either True or False. A FOL formula representing a generated test input is a
literal or the application of a logical connective from Table 6.1 to a formula or formulas.
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name Logic AND Logic OR Logic NOT
symbol && || !

Table 6.1: Logic operators

name addition subtraction multiplication division modulo
symbol + − ∗ / %

Table 6.2: Arithmetic operators

6.2 Test Generation

To test different data types of variables we decided to split the generation of test in-
puts using boolean variables and the generation of test inputs using integer variables.
The generation of test inputs using boolean values was led by setting the length for
the generated propositional formulas where the length represents the number of logi-
cal connectives from Table 6.1. The nesting of subformulas was decided randomly. In
the remainder of this work we label the set of test inputs using Boolean variables as
boolean-set.

For the generation of the test input for integer variables we decided to group the gener-
ated FOL formulas by their arithmetic operators. We generated a set of FOL formulas
for each operator in Table 6.2 and another set using all operators appearing randomly.
In the remainder of this work we label this six sets as +-set, --set, *-set, /-set, %-set,
and random-set corresponding to the arithmetic operators they contain in their FOL
formulas. The general grammar used for randomly created FOL formulas is represented
in Listing 6.1. The selection of the operators, the construction of identifiers, the build-
ing of constants, and the generation for the non-terminals: formula, literal, predicate,
function, and term was performed randomly. These non-terminals are introduced and
explained in Section 6.1. Only the recursion depth for the non-terminals was set to
a max. value to constrain the length of the generated FOL formulas. The used path
to produce the FOL-formulas can be found in Listing 6.1 to reproduce the FOL formulas.

In Definition 1 the length of a generated FOL-formula for the different sets except the
random-set is defined. The expressions used in Definition 1 correspond to the expres-
sions used in Listing 6.1. Consider that in Definition 1 the variable n provides an input
to define the resulting number of boolean operators within an FOL-formula created
during its generation. The function length(n) in Equation 6.1 returns the number of
used terms, the number of arithmetic operators, the number of relational operators, and
the number of boolean operators of a generated formula. Since length(n) depends on
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name equal not equal greater than less than greater than or
equal

less than or
equal

symbol == ! = > < >= <=

Table 6.3: Relational operators

the same parameter as used for the generation of the FOL-formulas, it is not applicable
in general. However, it reflects the number of expressions created by the generation
algorithm shown in Algorithm 4. For this reason it provides a comparable measure for
the SMT- and CSP benchmark.

1 formula : literal
2 | predicate
3
4 literal : formula boolean predicate
5 | not formula boolean predicate
6
7 predicate : function relational function
8 | not function relational function
9
10 function : function arithmetic function
11 | term
12
13 term : identifier
14 | constant
15
16 arithmetic : + | - | * | / | %
17 relational : == | != | > | < | >= | <=
18 boolean : && | ||
19 not : !
20 identifier : (’a’..’z’|’A’..’Z’|’_’)(’a’..’z’|
21 ’A’..’Z’|’_ ’| ’0 ’.. ’9 ’)*
22 constant : ( ’0 ’.. ’9 ’)+| ’ - ’( ’1 ’.. ’9 ’)( ’0 ’.. ’9 ’)+

Listing 6.1: FOL formula symmetric arithmetic structure

Definition 1.
The function length(n) returns the length of a generated formula f, where the length
consists of a number of terms, arithmetic operators, relational operators, and boolean
operators n. 2
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length(n) :=



terms = 2(n+ 1)2

arithmetic operators = 2(n+ 1)2 − 2(n+ 1)
relational operators = n+ 1
boolean operators = n

(6.1)

An algorithm to show the creation of the FOL-formulas for the random-set is shown in
Algorithm 4. To apply this algorithm for non random structured formulas the number of
desired boolean operations n is assigned to variable literal_recursion and the function
GET_RANDOM_INTEGER() returns the value of literal_recursion after each call.
The complexity of this algorithm is in the worst case O((literal_recursion + 1) ∗ 2 ∗
(function_recursion+ 1)). Due to the fact that the max. value for literal_recurion
and function_recursion are the same the resulting complexity is simplified
O(max_value2).

Listing 6.2 shows the grammar of a FOL formula using only the +-operator. The rela-
tional and boolean operators, the construction of identifiers, and selection of constants
were performed randomly. The length of the generated FOL formulas is constrained
with a max. value for recursion depth. This structure was used for every single arith-
metic operator to generate the test inputs containing only one arithmetic operator in
one test input.

To ensure differences in the structure of the generated FOL formulas we decided to lead
the generation to create at the level of arithmetic operators a symmetric structure, a
more degenerated structure, and a randomly mixed structure of both. The symmetric
structure is obtained by running the recursive calls in line 10 of Listing 6.1 of function
at the left and the right of arithmetic equally often. In contrast Listing 6.3 shows in
line 10 another method which enforces a degenerated structure of the generated FOL
formula. The differences to Listing 6.1 and the affected parts are highlighted in Listing
6.3. The randomly mixed structure generation decided randomly during generation
which structure to use and was also able to change during the generation time. This
resulted in a mix of the symmetric and the degenerated structure for one test input.
To express the structures in the FOL formulas we used parentheses to enclose related
operations.
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1 formula : literal
2 | predicate
3
4 literal : formula boolean predicate
5 | not formula boolean predicate
6
7 predicate : function relational function
8 | not function relational function
9
10 function : function arithmetic function
11 | term
12
13 term : identifier
14 | constant
15
16 arithmetic : +
17 relational : == | != | > | < | >= | <=
18 boolean : && | ||
19 not : !
20 identifier : (’a’..’z’|’A’..’Z’|’_’)(’a’..’z’|
21 ’A’..’Z’|’_ ’| ’0 ’.. ’9 ’)*
22 constant : ( ’0 ’.. ’9 ’)+| ’ - ’( ’1 ’.. ’9 ’)( ’0 ’.. ’9 ’)+

Listing 6.2: FOL formula using only +-operator

The differences in the structure which is either symmetric or degenerated is impor-
tant for arithmetic operators like the --operator, the /-operator, and the %-operator
which are not associative. In Example 7 a FOL formula is shown, which represents
the symmetric structure whereas Example 8 shows a FOL formula which represents
the degenerated structure. In the remainder of this work we label the FOL formulas
depending on their generated structure as degenerated FOL formula, symmetric FOL
formula, and random FOL formula.
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1 formula : connective
2 | literal
3
4 connective : formula boolean literal
5 | not formula boolean literal
6
7 literal : function relational function
8 | not function relational function
9

10 function : function arithmetic term
11
12 term : identifier
13 | constant
14
15 arithmetic : /
16 relational : == | != | > | < | >= | <=
17 boolean : && | ||
18 not : !
19 identifier : (’a’..’z’|’A’..’Z’|’_’)(’a’..’z’|
20 ’A’..’Z’|’_ ’| ’0 ’.. ’9 ’)*
21 constant : ( ’0 ’.. ’9 ’)+| ’ - ’( ’1 ’.. ’9 ’)( ’0 ’.. ’9 ’)+

Listing 6.3: FOL formula using only /-operator

Example 7 (Symmetric structure of a generated FOL formula using only the --operator).
((x_5207− 2071)− (x_4618− 9979) >= (x_3470− x_7218)− (x_9032−−7407)) ||
!((x_4840− 939)− (x_3470− x_7218)! = (x_9032−−7407)− (x_759− x_2398)) 2

Example 8 (Degenerated structure of a generated FOL formula using only the --operator).
((((x_5207− 2071)− x_4618)− 9979) >= (((x_3470− x_7218)− x_9032)−−7407)) ||
!((((x_4840− 939)− x_3470)− x_7218)! = (((x_9032−−7407)− x_759)− x_2398))

2
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Algorithm 4 CREATE random FOL-FORMULA
Input: A random integer value in range of 0 to literal_recursion
Output: A FOL-formula

1: function CREATE_FORMULA(literal_recursion)
2: literal = CREATE_PREDICATE();
3: if literal_recursion > 0 then
4: return literal += logical connective +

CREATE_FORMULA(literal_recursion− 1);
5: else
6: return literal;
7: end if
8: end function
9:

10: function CREATE_PREDICATE
11: return CREATE_FUNCTION(GET_RANDOM_INTEGER()) +

relational operator +
CREATE_FUNCTION(GET_RANDOM_INTEGER());

12: end function
13:
14: function CREATE_FUNCTION(function_recursion)
15: function = get_variable();
16: \\ get_variable() either returns an integer value or a variable name
17: if function_recursion > 0 then
18: return function += arithmetic operator +

CREATE_FUNCTION(function_recursion− 1);
19: else
20: return function;
21: end if
22: end function
23:
24: function GET_RANDOM_INTEGER
25: return a random integer value > 0;
26: end function
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7 Experimental Results

7.1 Environment

The results in this work were obtained by using a certain environment of hardware and
software tools. The device used as hardware environment had following specifications:

• Dell Precision M4500 Mobile Workstation
• Intel Core i7 Q740 1.73 GHz Quad-Core
• 8GB RAM DDR3
• Seagate Harddisk 500GB, 7200RPM, 16MB Cache

An overview of the software tools which were used in this work aside from the CSP-
and SMT-solvers is given in the following list:

• Windows 7 Professional 64-bit
• Eclipse 3.7.2 IDE
• JavaSE 6
• Dumont parser (25)
• JUnit 4.8.2
• Dataram Ramdisk 4.1
• jython 2.5.2
• jregex 1.2

7.2 Setup

The initial point of running the experiments is a set of FOL formulas as explained in
Chapter 6. In total we generated a set of 4760 formulas which are distributed as follows:
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+-set . . . . . . . . . 900
--set . . . . . . . . . 900
*-set . . . . . . . . . 648
/-set . . . . . . . . . 900
%-set . . . . . . . . . 890
boolean-set. . . 180
random-set. . . 342
total . . . . . . . . . 4760

Every single formula of these 4760 formulas was preprocessed and transferred as input
to the applied solvers. The preprocessing was started by bringing the formula in a tree
structured object called Simple Node by an external parser tool called Dumont Parser.
A Simple Node represents a binary tree with a constant or a variable as leaf nodes and
operators as the remaining nodes. The domain for the variables in each FOL formula
was set to [-10000..10000] and for the propositional logic formulas the domain of the
values was set to {True, False} in this step.

The next stage contains the compilers which take a Simple Node as input and transfer
it to a proper input of the different solvers where for each solver except the SMT-solvers
a unique compiler was used. The SMT-solvers use a common compiler which translates
the Simple Node to the SMT-LIB Version 2.0 syntax.

The input for the solvers is delivered in different ways. As Minion, Savile Row, and
CVC4 read from a standard input stream, in Choco you use the API to form proper in-
put. The GNU Prolog solver uses the TreeSolver (61) which is a simple server offering a
socket connection to connect to the GNU Prolog solver. This allows to send constraints
in a tree structure to the TreeSolver which replies either a solution or an error message.
Z3 requires a RamDisk to circumvent weaknesses in its standard input stream parser.
The tool Dataram Ramdisk 4.1 (57) provided us the necessary features to write files to
a certain space in RAM to avoid delays of writing data to the hard disk and reading
the data from there.

Each solver was limited with a maximum time to solve of 20 seconds. We appointed
this limit after running some tests which showed up that the density of the time to
solve gets very wide scattered above this limit what may affect the results of this work
slightly. However, this makes a solver not more useful in terms of test case generation
which should finish within a certain time.
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To verify the results of the different solvers we had to parse the results and then trans-
fered them to a Jython interpreter. With this interpreter we checked if the model is
indeed a model which satisfies the FOL-formula given as input. We recorded the result
which was either True for a satisfying model, or False for a not satisfying model or if
the time to solve exceeded the time limit. The tests were launched within the Eclipse
IDE using the JUnit library. The recorded time in the results was the time JUnit timed.

A graphical overview representing the procedure of the preprocessing, the compilation
and the verification is provided in Figure 7.1.

7.3 Results and Evaluation

The results of this work show the number of satisfied FOL-formulas plus the ones
which were correctly identified as unsatisfiable and the time consumption for each of
the chosen solvers. In the evaluation section we discuss the main reasons which caused
the differences of the obtained results.

7.3.1 Test results

The experimental results were obtained by running all the generated formulas as ex-
plained in Chapter 6 as test inputs. We grouped these results corresponding to their
test set.

In the provided charts representing the results (Fig. 7.2, 7.3, 7.4) the upper limit of
the time axis is 20000ms. A test run which is interrupted if the time to solve exceeds
20000ms and a test where the check if the returned model satisfies the test input fails
are both represented as points at 20000ms in the charts.

The first test set we executed was the boolean-set. The results in Figure 7.2 show
that the used test set which includes propositional formulas can be solved easily by
each solver. An information we obtained by these results though is that we figured
out the start up time for each solver. The start up time is the time to solve of the
used environment without the time just the solver consumed for processing a solution.
This start up time includes the preprocessing and compilation time as well as the time
to verify the result. This start up time increases correspondingly to the length of the
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test formula. This information can be obtained because the time which just the solver
consumed for processing a solution is very small for these test formulas. Except from
the TreeSolver all solvers finish all tests correctly.

Further results were obtained by running the +-set. This set is considerably larger than
the boolean-set and it contains also some easier tests which do not pose a challenge for
the solvers and finish as fast as the tests in the boolean-set. As stated in Chapter 6
the formulas increase in length and therefore in complexity and so there are tests in
this set which none of the solvers is able to solve within the provided time. Most of
the tests (95.7%) are satisfied correctly by the SMT-solver Z3 followed by CVC4, then
the both versions of Minion, then Savile Row with Minion, then Choco and at last the
TreeSolver. The results for the +-set are shown as a chart in Figure 7.3.

The results for the --set are very similar to the results of the +-set with the same order
of the solvers corresponding to the satisfied tests. For the *-set Minion64 satisfied more
tests than CVC4 and Minion32 but still less than Z3. The test inputs from the *-set
take more time to solve than the tests for the +-set and the --set.
Moreover the results for the /-set show that Z3 is again the solver which satisfies most
formulas of all solvers. The differences to the other solvers are rather big in the results
of the /-set in comparison to the previous sets. Z3 is followed by Minion64, then Min-
ion32, Savile Row, CVC4, the TreeSolver, and at last Choco which only satisfies 1.6%
of the tests of the /-set.
The results obtained by the %-set are similar to those obtained by the /-set.

Finally we obtained the results for the random-set. These results provide a reflection
of the already obtained results where we figured out that Choco can be very fast but
does not satisfy a lot of formulas in comparison to other solvers. Further we figured out
that the TreeSolver satisfies only a small number of formulas within the 20 seconds time
limit. Again for the random-set the Z3 solver satisfies the most formulas followed by
Minion64, then Minion32, Savile Row with Minion32, CVC4, Choco, and the TreeSolver.
The results for the random-set are shown in Figure 7.4.

The overall results are shown in Table 7.1. The table shows the results for each single
test set as well as the overall result. It shows the time to solve for each solver which it
consumed to run the depicted test set, the number of passed tests, and the percentage
of how many tests passed of all given tests. The charts (Fig. 7.2, 7.3, 7.4) representing
the results for each test set do not differentiate a failing result where the time to solve
either exceeded 20 seconds or the check of the returned model failed. In Table 7.1 the
time needed to solve the CSPs is shown. The results shown at the bottom right of
this table show that Z3 is not only the solver which passed the most tests it also is
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Figure 7.2: Results of running tests from the boolean-set
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Figure 7.3: Results of running tests from the +-set
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Figure 7.4: Results of running tests from the random-set

44



boolean-set +-set --set *-set
180 formulas 900 formulas 900 formulas 648 formulas

time pass % time pass % time pass % time pass %
Z3 30.4 180 100.0 383.4 861 95.7 321.9 861 95.7 1716.0 569 87.8
Minion64 19.6 180 100.0 1803.5 813 90.3 1882.6 811 90.1 3216.3 459 70.8
Minion32 31.9 180 100.0 1872.2 813 90.3 1921.9 811 90.1 746.6 341 52.6
CVC4 39.3 180 100.0 1377.9 830 92.2 1294.7 827 91.9 638.6 418 64.5
Savile Row 131.0 180 100.0 3705.8 759 84.3 3649.3 760 84.4 8684.0 204 31.5
Choco3 25.0 180 100.0 6542.2 557 61.9 6426.5 570 63.3 3896.2 340 52.5
TreeSolver 101.9 140 77.8 1239.9 208 23.1 1040.5 213 23.7 2724.0 105 16.2

/-set %-set random-set all
900 formulas 890 formulas 342 formulas 4760 formulas

time pass % time pass % time pass % time pass %
Z3 3363.0 673 74.8 2240.3 667 74.9 801.4 279 81.6 8856.4 4090 85.9
Minion64 5813.6 565 62.8 6807.2 532 59.8 2884.9 197 57.6 22425.0 3557 74.7
Minion32 6807.7 522 58.0 9029.3 398 44.7 2238.4 161 47.1 22648.0 3226 67.8
CVC4 1441.3 201 22.3 1198.7 314 35.3 627.0 96 28.1 6617.5 2866 60.2
Savile Row 6373.8 314 34.9 10002.3 450 50.6 4043.0 113 33.0 36589.2 2780 58.4
Choco3 15102.7 14 1.6 14745.7 78 8.8 3108.6 97 28.4 49846.9 1836 38.6
TreeSolver 3462.1 141 15.7 628.8 83 9.3 1097.2 11 3.2 10294.4 901 18.9

Table 7.1: Results for the test sets featuring time and number of passed tests

the second fastest of all applied solvers. CVC4 was the fasted solver which was more
than 7 times faster than the slowest which was Choco but CVC4 is only fourth in the
ranking of passed tests where Choco is sixth. Minion64 passed the second most tests
which were more than Minion32 but both consumed nearly the same time to solve. The
fewest of all tests with only 18.9% of 4790 tests the TreeSolver passed.

These results obtained with the +-set, --set, *-set, /-set, and the %-set provide additional
information by dividing them in groups concerning their length. All of these sets contain
FOL-formulas divided in 5 lengths. These lengths of the formulas in the +-set and --set
are as defined in Definition 1:

• length 1 = length(1)

• length 2 = length(3)

• length 3 = length(7)

• length 4 = length(15)

• length 5 = length(31)
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For the formulas in the *-set, /-set, and %-set the lengths are:

• length 1 = length(1)

• length 2 = length(2)

• length 3 = length(3)

• length 4 = length(4)

• length 5 = length(5)

The length for the +-set and --set formulas is considerably longer than the others. We
decided the different lengths for the formulas due to some sample tests during the gen-
eration phase of the formulas. To generate formulas of different lengths was required
because longer formulas for the *-set, /-set, and %-set are not solvable by any of the
applied solvers within the 20 seconds limit. The formulas for the +-set and --set are
longer because they are rather easy to solve in comparison to the other sets. Therefore
we decided to genereate longer formulas for the +-set and --set to identify differences
to make them harder to solve.

As visible in Figure 7.5 most of the tests in the +-set with length 1 are solved by Z3,
CVC4, and Minio64 within the first 400ms. Solving formulas of length 2 shows a similar
distribution in Figure 7.6 to Figure 1 except from Savile Row which takes longer to solve
a couple of tests but the total number of solved tests by Savile Row is still high.

Figure 7.7 shows that Z3, CVC4, and Minion perform very similar even for longer input
formulas whereas for the other solvers the number of solved tests decreases. In Figure
7.8 for CVC4 the number of solved tests in the first category decreases vastly. The
results for longest formulas of length 5 from the +-set are shown in Figure 7.9. In this
chart also Z3 and Minion tend to get slower. They still solve most of the tests within
the first 2 seconds but not as seen before below 400ms. These resulting charts are very
similar for the --set.

The results with length 1 in the *-set are shown in 7.10. In these results the CSP-solvers
Choco and Minion are slightly faster than the SMT-solvers Z3 and CVC4. In Figure
7.11 the results for formulas of length 2 show that Minion32 only solves a few tests
whereas Minion64 still is the best solver even for longer formulas. In this case Minin32
is not slower than other solvers like Z3. For Z3 a trend that it needs more time to solve
for these formulas is identifiable. Minion32 only solves a few tests in the first 400ms.
We will explain the reasons for this behavior in Section 7.3.2.
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Figure 7.5: Barchart representing the number of solved tests for the ’+’-set categorized
in ranges of 400ms with formula length 1

choco cvc4 minion32 minion64 savileRow treesolver z3

0..0.4 0.4..0.8 0.8..1.2 1.2..1.6 1.6..2

time range in sec

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

n
u

m
b

er
 o

f 
so

lv
ed

 t
es

ts
 (

to
ta

l:
 1

60
)

Figure 7.6: Barchart representing the number of solved tests for the ’+’-set categorized
in ranges of 400ms with formula length 2
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Figure 7.7: Barchart representing the number of solved tests for the ’+’-set categorized
in ranges of 400ms with formula length 3
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Figure 7.8: Barchart representing the number of solved tests for the ’+’-set categorized
in ranges of 400ms with formula length 4
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Figure 7.9: Barchart representing the number of solved tests for the ’+’-set categorized
in ranges of 400ms with formula length 5
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Figure 7.10: Barchart representing the number of solved tests for the ’*’-set categorized
in ranges of 400ms with formula length 1
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Figure 7.11: Barchart representing the number of solved tests for the ’*’-set categorized
in ranges of 400ms with formula length 2

In Figures 7.12 and 7.13 the number of solved tests is very similar but the SMT-solvers
solve more tests than the other solvers. Figure 7.14 shows that the *-set only contains
33 formulas of length 5. From these 33 test Z3 as the best solver only solves 11 in the
first 400ms.

In Figure 7.15 we can see the number of solved tests from the +-set in comparison to
the total number of tests which is shown in category total. The other categories group
the solvers and show the number of solved tests for the different lengths of formulas.
This chart shows that Z3 and Minion keep very stable related to the number of solved
tests if the length of the formula increases.

Similar to Figure 7.15 in Figure 7.16 the number solved tests for the --set keeps stable
for Z3 and Minion and decreases vastly for the other solvers. The small number of
solved tests for the TreeSolver is caused by the formulas containing constant values less
than zero or requiring a variable valuation less than zero.

For the *-set the number of generated formulas gets smaller for longer formulas. Figure
7.17 shows that Z3 solved most of the tests followed by Minion64. In these results the
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Figure 7.12: Barchart representing the number of solved tests for the ’*’-set categorized
in ranges of 400ms with formula length 3
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Figure 7.13: Barchart representing the number of solved tests for the ’*’-set categorized
in ranges of 400ms with formula length 4
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Figure 7.14: Barchart representing the number of solved tests for the ’*’-set categorized
in ranges of 400ms with formual length 5
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Figure 7.15: Barchart representing the number of solved tests for the ’+’-set categorized
by solver
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Figure 7.16: Barchart representing the number of solved tests for the ’-’-set categorized
by solver

number of solved tests by Savile Row for longer formulas is higher than the number of
solved tests by Minion32 which uses our provided input models.

The number of tests for the different lengths varies again for the /-set. For these input
formulas CVC4 performs quite weak. Minion tends to perform better for longer input
formulas than Z3 for the /-set as shown in Figure 7.18.

Figure 7.19 shows the results for the %-set. These results again reveal Z3 as the best in
terms of the number of solved tests followed by Minion64.

7.3.2 Evaluation

The results show considerable differences in time to solve as well as the number of passed
tests. For the tests in this work the SMT-solvers were faster than all used CSP-solvers
but the SMT-solvers have considerably differences in the number of passed tests as well.
The CSP-solvers have huge differences in both, the time to solve and the number of
passed tests.
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Figure 7.17: Barchart representing the number of solved tests for the ’*’-set categorized
by solver
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Figure 7.18: Barchart representing the number of solved tests for the ’/’-set categorized
by solver
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Figure 7.19: Barchart representing the number of solved tests for the ’%’-set categorized
by solver

The differences – as discussed in Chapter 3 and 4 – in the results of the SMT-solvers
origin in the supported theories of the SMT-solver and in the heuristics used by the
internal SAT-solver. As introduced in Chapter 4 the SMT-solvers use different theories
related to the constraint to solve. In case of running the boolean-set both SMT-solvers
consumed nearly the same time to solve which reflects mainly the startup time of the
solvers. In this case the differences are hardly affected by the internal SAT-solvers or
theory solvers in both SMT-solvers. These small differences are also caused by different
parser implementations for the SMT-LIB Version 2.0 input and by different conversion
implementations to convert the test input in CNF. The SMT-solvers CVC4 and Z3
are both based on a DPLL(T) architecture as explained in 4. Both SMT-solvers use
for linear arithmetic a Simplex-based solver (23) which is integrated as theory solver in
the solvers as explained in 4. The differences in the results of linear arithmetic based
formulas are rather small in comparison to the results of formulas containing non-linear
arithmetic. These small differences origin in different backtracking, different presimpli-
fication, and different theory propagation implementations. The differences get much
clearer if formulas contain non-linear arithmetic because CVC4 in the used version does
not support non-linear arithmetic neither for integer nor for reals. Z3 selects the needed
theory automatically what is very handy for the user. In case of non-linear arithmetic
it uses the capability of non-linear real arithmetic, which is decidable, to solve formu-
las in non-linear integer arithmetic. CVC4 immediately recognizes input which cannot
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be solved like multiplications or divisions requiring non-linear real arithmetic and ter-
minates delivering an error message. Due to these facts CVC4 is the fastest of the
solvers as shown in 7.1 in the overall result. CVC4 does not solve formulas containing
non-linear arithmetic. Because of weaker performance in the for this analysis essential
theory solvers and the SAT-solver (MiniSAT (24)) as identifiable in Figure 7.2, CVC4
does not solve the same number of formulas as Z3 does.

The differences of the CSP-solvers origin in the different technologies they are based
on and in their implementations. The TreeSolver uses unification and the propagation
technique of arc consistency explained in Section 3.4.2 for solving constraints. The
weaknesses of the TreeSolver are the support of a finite domain for variables in a max.
range of [0..integer_max], where integer_max is the maximum supported positive inte-
ger value (here 232), and that the communication via the socket constrains the length
of the input. The start up time of the TreeSolver which acts as a server and the ar-
rangement of the communication are of no consequence in the results of this work. An
advantage of the TreeSolver is that it answers very fast for formulas it is not able to
solve.
The applied version of the Choco 3 CSP-solver was the beta version, which was avail-
able at that time. This version of Choco 3 was the only CSP-solver in this work which
provided a Java API to use it as a library. Due to this fact Choco 3 has no additional
start up time as the other solvers which are standalone tools have. Thus the Choco 3
CSP-solver performs very good for formulas of the boolean-set but has weaknesses in
propagation of arithmetic constraints. Especially when solving formulas with solutions
containing negative valuations Choco 3 caused occasionally memory overflows or did
not finish within the 20 seconds time limit.
The chain using the conversion of the formula to an input for the Savile Row modelling
assistant and Minion32 had the longest start up time caused by the fact that 2 stan-
dalone tools have to be started for solving a formula and an additional input delivering
process from Savile Row to Minion32 was required. The advantage of this chain was
that the input of Savile Row is nearly equal to the input of the Dumont parser but
the boolean operators use different symbols. After substituting these boolean symbols
the formula could be delivered as input to Savile Row which translates it automatically
in the desired input language of the CSP-solver, in our case Minion32. During this
translation Savile Row applies some reformulations to improve the model of the given
input formula. One popular reformulation it does is Common Subexpression Elimi-
nation (CSE) where equally appearing expressions are replaced with a single variable
everywhere it appears. This improves constraint propagation but the reformulation
process to improve the model is rather time consuming in comparison to the resulting
improvement of the time needed to solve for the generated formulas used in this work.
This affects the results in a way that several tests do not finish within the 20 seconds
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time limit because Savile Row consumes too much time translating the input formula
in a proper input for Minion32.
Minion is a well established CSP-solver which has small weaknesses in propagation of
arithmetic constraints but is at its core a very fast CSP-solver as shown in this empir-
ical evaluation (37). In our results Minion was the fastest CSP-solver and passed the
most tests. The Minion32 CSP-solver was slightly slower than Minion64 but passed
not as many tests as Minion64 did. Apart from the extension of the supported inte-
ger range in Minion64 the differences of the two versions come from omitting a static
range check for the input formula. This range check detects in Minion32 whether an
integer overflow in one of the results or intermediate results might be possible. This
range check uses the upper and lower limits of the domains of the variables. Because
we limited even for auxiliary variables these upper and lower limits of their domain to
the min. and max. values of a 32-bit integer the max. value that could ever occur is a
multiplication of two 32-bit integers what results at the maximum in a 64-bit integer for
an intermediate result. This check consumes time and causes the difference in the num-
ber of passing tests which led to the differences in the results of Minion32 and Minion64.

The differences of the SMT-solvers to the CSP-solvers in the results can be reduced by
changing the used heuristic of the variable ordering in a test input. In this work we used
a static variable ordering which was arranged by the order in the given input formula
without considering any variable ordering heuristic. The SMT-solvers use internal dy-
namic heuristics to chose the order of variables for valuation dynamically as explained
in Chapter 4. There are also several dynamic variable ordering heuristics available for
CSP-solvers but they are heavily dependent on the test input. A better heuristic is a
static variable ordering preprocessed by the constraints of the input formula using the
width of an ordered constraint graph to get the order. To illustrate this improvement
by the ordering using the width of an ordered constraint graph we picked out three
examples of a CSP as shown in Listings 7.1, 7.2, and 7.3.

Listing 7.1 represents a CSP 1 where in line 1 one of the 4760 FOL formulas we generated
in this work is shown. The constraints established by this formula are indicated with a
c followed by a number and a colon in this CSP. The lines 2 and 3 in Listing 7.1 show
some simplifications of the formula. If this simplifications would not be applied there
were more constraints due to the negation included in the formula. The CSP 1 contains
variables x1..x5 which are expected to be valued for the result while solving this CSP
and some auxiliary variables aux1..aux3 which are not pertinent to the delivered result.
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Figure 7.20: Hypergraph representing CSP 1

1 !((( x1 - x2) >= (x3 - x4)) || ((x1 % x2) > x5)) =
2 !(( x1 - x2) >= (x3 - x4)) && !(( x1 % x2) > x5) =
3 (x1 - x2) < (x3 - x4) && (x1 % x2) <= x5
4
5 c1: x1 % x2 = aux1
6 c2: aux1 <= x5
7 c3: x1 - x2 = aux3
8 c4: aux3 < aux2
9 c5: x3 - x4 = aux2

Listing 7.1: Constraints in CSP 1

In Figure 7.20 a hypergraph representing CSP 1 in Listing 7.1 is shown. Each subset
of nodes in this hypergraph represents one of the constraints c1..c5 from Listing 7.1.
This figure lets us discern a structure in the CSP 1. Ordering the variables concerning
this structure already provides a good order in sense of a fast solvable CSP. To valuate
a good ordering and make the recognition of a good ordering computable we created a
primal graph as shown in Figure 7.21 of CSP 1.

From this primal graph we derived an ordering using the Min-Width algorithm as shown
in Listing 1. The output of this algorithm applied on CSP 1 is shown in Figure 7.22
which represents a minimum width ordered constraint graph.

As explained in Section 3.6 the width of the minimum width ordered constraint graph in
Figure 7.22 is the max. number of edges leading upwards from a node in the graph. In
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Figure 7.21: Primalgraph representing CSP 1

this graph the width is 2. This is the lowest possible width resulting from the application
of the Min-Width algorithm. From this graph we derive a static order of variables x2,
x1, x4, x3, x5. In this order the CSP-solver valuates the variables. For CSP 1 we
used Minion64 to compare different orders by executing the CSP-solver with CSP 1
and all possible permutations of the variables and identified that there is no faster but
several much slower orders for this CSP. The time to solve using the order derived by
the minimum width ordered constraint graph was 64ms using 5 search nodes whereas in
the worst case Minion64 does not solve the CSP 1 within 20 minutes and was terminated
manually. A variable ordering showing the worst case is e.g. x5,x4,x3,x1,x2.

Listing 7.2 shows a CSP 2 established from the FOL formula in line 1. This CSP con-
tains 5 variables x1..x5 relevant for the result and 5 auxiliary variables aux1..aux5.
Please note that >= indicates the greater or equal symbol whereas => indicates an impli-
cation which was used in the generation phase of the input models of the CSP-solvers
and SMT-solvers to handle the hierachical structured input from the Simple Node.

1 ((x1 >= x2 - 5840) && (x3 - -4163 == x4 * x5))
2
3 c1: aux2 <= x1 => aux1
4 c2: x2 - 5840 = aux2
5 c3: aux1 && aux3
6 c4: aux4 = aux5 => aux3
7 c5: x3 - 4163 = aux4
8 c6: x4 * x5 = aux5

Listing 7.2: Constraints in CSP 2

This CSP 2 from Listing 7.2 is represented as a hypergraph in Figure 7.23. This hyper-
graph does not let us discern a structure as clear as the hypergraph in Figure 7.20 but
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Figure 7.22: Minimum width ordered constraint graph representing CSP 1
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Figure 7.23: Hypergraph representing CSP 2

provides an overview of the structure of the CSP.

To show the process of creating a minimum width ordered constraint graph of CSP 2
we created a primalgraph which is shown in Figure 7.24. A minimum width ordered
constraint graph compatible with this primalgraph is shown in Figure 7.25. The width
of this constraint graph is 2. From this graph we derived a static variable ordering
x5, x4, x1, x3, x2 for the input of Minion64. Using this order the CSP could be
solved within 58ms. Running Minion64 with the test input of CSP 2 with all possible
permutations of the variable orderings yielded several orderings. These orderings were
solved in a similar time as the one with the ordering we found from the minimum width
ordered constraint graph. Also several orderings which did not finish within 20 minutes
were found. These not finishing orderings were terminated manually (e.g. x4, x3, x1,
x2, x5).

Another example to show the impact of a static variable ordering on the time to solve
for Minion is shown in Listing 7.3. The CSP 3 in this listing contains the relevant
variables x1..x4 and four auxiliary variables aux1..aux4. A hypergraph of CSP 3 is
shown in Figure 7.26 and represents the structure of the CSP. The CSP 3 illustrated
as a primalgraph is shown in Figure 7.27. From this primalgraph a derived minimum
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Figure 7.24: Primalgraph representing CSP 2

width ordered constraint graph is shown in Figure 7.28. This minimum width ordered
constraint graph has a width of 2.

1 -8803 == (x1 + x2 * x3 - x4)
2
3 c1: x2 * x3 = aux4
4 c2: aux4 - x4 = aux3
5 c3: x1 + aux3 = aux2
6 c4: aux2 = -8803 => aux1

Listing 7.3: Constraints in CSP 3

From this minimum width ordered constraint graph we extracted a static variable or-
dering for CSP 3 of x2, x3, x4, x1. With this ordering Minion64 takes 67ms as time
to solve CSP 3. Running all possible permutations yields several bad variable orderings
which take several minutes to solve CSP 3. An example for a bad ordering is x1, x3,
x4, x2.

As shown in Section 7.3.1 the length of the input formula has impact on the time to
solve but for linear arithmetic less than for non-linear arithmetic. The different solvers
provide their own implementations of constraints which the user can apply. A simple
example for a CSP which contains two additions is shown in Example 9. This example
shows that an implementation of a constraint applicable to solve additions with an arity
only allowing one addition at a time requires auxiliary variables to create a CSP which
contains nested additions. The domain of the added auxiliary variable in this Example
has to be set to the possible min. and max. values of the intermediate result so that
adding an auxiliary variable has no bearing on the solution.
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Figure 7.25: Minimum width ordered constraint graph representing CSP 2
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Figure 7.26: Hypergraph representing CSP 3

Figure 7.27: Primalgraph representing CSP 3
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Figure 7.28: Minimum width ordered constraint graph representing CSP 3
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Example 9 (Adding an auxiliary variable to create a CSP including 2 additions.).
Input formula x1 + x2 + x3 < 100 represented as CSP:

X = {x1, x2, x3, aux1}
D = {Dx1 , Dx2 , Dx3 , Daux1} where Dx1 = Dx2 = Dx3 = [−100..100] and Daux1 = [−200..200]
C = {c1, c2} where c1 := x1 + x2 = aux1 and c2 := aux1 + x2 < 100 2

Adding auxiliary variables extends the search space depending on the applied operation.
As shown in 9 for an addition the domain for the auxiliary variable is considerably
larger than for the other decision variables. For a multiplication as shown in Example
10 the domain for auxiliary variables can grow exponentially what justifies the results
for the *-set. This causes several failing tests for the solvers like Minion32 and Choco
which support integer valuations in a range of [−231..231]. These solvers check possible
overflows before processing the CSP and terminate if an overflow can occur.

Example 10 ( Adding an auxiliary variable to create a CSP including 2 multiplica-
tions).
Input formula x1 ∗ x2 ∗ x3 < 100 represented as CSP:

X = {x1, x2, x3, aux1}
D = {Dx1 , Dx2 , Dx3 , Daux1} where Dx1 = Dx2 = Dx3 = [−100..100] and Daux1 = [−10000..10000]
C = {c1, c2} where c1 := x1 ∗ x2 = aux1 and c2 := aux1 ∗ x2 < 100 2

The insertion of auxiliary variables and their domains has a huge impact on the time
to solve. The second impact which causes longer time to solve for longer formulas is
the propagation capability of the solvers. For CSP-solvers each arithmetic operation
requires an individual propagation implementation to reduce the search space ideal.
The SMT-solvers require a theory propagation as well. All have the applied solvers
showed weaknesses for the propagation of arithmetic operations.

7.4 Discussion

The results in this work were obtained by running different CSP-solvers and SMT-
solvers without any optimizations or changes in the settings. Applying the solvers in
that manner yields clearly Microsoft’s Z3 SMT-solver as the best choice. With the
additional effort of structuring the CSPs applying the Min-Width algorithm and estab-
lishing a static variable ordering with this might enhance the results for the CSP-solvers.
Further some improvements in the propagation algorithms of the constraints used in
this work are required to possibly beat the Z3 SMT-solver in the number of solved tests
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applied in this work whereas the TreeSolver which does not support negative integers
and with its client-server architecture can not challenge the other solvers in any way.

These results were obtained with a domain of [−10000..10000] for the variables in FOL-
formulas applying arithmetic operations. We compared these results with some sample
executions using different domain settings and obtained insights for these tests with
different domain settings. This insights showed that the domain settings have signifi-
cant impact on the time to solve for all solvers. The smaller the domain the shorter
is the time to solve. With smaller domains also the differences between the solvers get
tighter. On the other hand the time to solve for larger domains gets significantly higher.
Executing a sample of FOL-formulas with different domain sizes yielded very similar
results faster. Therefore we decided to run all the tests in this work with the same
domain. The domain of [−10000..10000] emerged as the best in terms of expressiveness
and also in terms of passable time to solve.

Further we figured out that the length of the inputs we used has a greater impact on
formulas using non linear operations than on linear arithmetic. As shown in Figure
7.3 the time to solve is represented by a steadily increasing line. The most impact on
this increasing line has the preprocessing as shown in 7.2. For non linear operations
the explosion of the search space has the most impact on the time to solve. Constraint
propagation has a huge impact on the time to solve as well. An improvement of the
results in this work requires a combination of a suitable variable ordering heuristic and
improvements in the propagation capability of the solvers.
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8 Related Work

The two groups of solvers, the CSP-solvers and the SMT-solvers, underly two different
communities. Both communities have established a challenge to compare their solvers
on different benchmark CSPs.

The former Constraint Solver Competition (59) which was held until 2009 was held four
times and was then replaced by the MiniZinc Challenge (53). The benchmark library
for the constraint challenges is published in (29). The MiniZinc Challenge requires a
CSP-solver to be able to read input in MiniZinc (43) syntax. Another empirical evalua-
tion on CSP-solvers is shown in (38) where among others also Choco and Minion were
applied. In this empirical evaluation report the benchmark results for standard CSPs
like the n-Queens problem are shown.
The SMT community established the SMT-COMP (6) which is a competition to com-
pare SMT-solvers. They use benchmarks grouped by the different theories and com-
binations of them, because not all solvers support all theories. The benchmarks are
provided by the SMT-LIB initiative (62). These benchmarks are provided in the SMT-
LIB Version 2.0 syntax which is used in this work as well.
In the paper (35) the authors show experimental results on applying non-linear arith-
metic benchmarks on different SMT-solvers. They also used Z3 and the predecessor of
CVC4 which was CVC3 in their experiments.

In (64) the authors show an application of Minion for test case generation. They gen-
erate test inputs for different implementations which are applied to exclude a possible
different behavior of the implementations using the same inputs. In the section ex-
plaining their experimental results they also mention the fact that different variable
orderings have a huge impact on the time to solve or on the time to generate a test case
respectively.

The SMT-solver Z3 from Microsoft was applied in their test case generator Pex which
is explained in (55). Pex is a commercial tool which can be applied on implementations
based on the .NET framework. The test case generation is used for monitored execution
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traces to produce new test inputs which exercise different program behavior. To reason
about these execution traces and to find a valuation for this execution trace the SMT-
solver is required.
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9 Conclusion

Model-based test case generators stand and fall with the applied CSP- or SMT-solver.
The present available solvers feature differences in the support of constraints they are
made for to handle as well as differences in their approaches to solve the constraints.
These different approaches cause huge differences in the time to solve.

In this work we defined a set of benchmarks to compare the applied solvers. Further
we discussed the achieved results and did some investigations in the causes for the dif-
ferences. These investigations comprised not only the differences between the applied
CSP-solvers and the SMT-solvers. Also the differences of the CSP-solvers to the SMT-
solvers were analyzed.

These results and the investigations of the differences provide enough information to
ease the decision which solver is best suitable for test case generation. However, these
test cases are restricted to the structure introduced in this work.

9.1 Open Problems

The application of the increment (++) and decrement (−−) operators be it pre- or post-
increment or -decrement is not defined yet for CSPs. Using these operators requires
a static variable ordering in the input of the solvers which is based on the occurrence
of the variables in the CSP. Another approach might be the insertion of additional
constraints. Both of this ideas require auxiliary variables in the input of the solvers for
the variable applied in the increment or decrement operation. These auxiliary variables
have to point to the proper appearance of the original variable in the result. This states
an important open problem for test case generation.
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9.2 Future Work

The achieved results showed rather clear differences especially in time to solve. To prove
our results another test with the application of the Min-Width algorithm for variable
ordering for the best CSP-solver might be interesting.

For test case generation the support of real values by the solver provides a considerable
improvement of the scope of usage. Just a handful CSP- and SMT-solvers currently
support real values. An analysis of the applicability of these solvers for test case gener-
ation including real values could show if it is worth to extend the scope of usage of a
test case generator.

Further an interesting approach might give the inclusion of constraint optimization
techniques. By means of constraint optimization it is possible to guide the variable
valution process. This can be used to assign values near the upper and lower boundaries
of their domain to the variables. Either to assign several different values for one variable
while keeping the valuation of other variables unchanged is possible with constraint
optimization techniques.
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Abbreviations

CSP Constraint Satisfaction Problem

SMT Satisfiability Modulo Theory

SAT Satisfiability

CP Constraint Programming

GT Generate and Test

FOL First Order Logic

STATION STAte based system Test and simulatION

OS Operating System

CVC Cooperating Validity Checker

ESTS Extended Symbolic Transition System

CNF Conjunctive Normal Form

CLP Constraint Logic Programming

CSE Common Subexpression Elimination

SUT System Under Test

MAC Maintaining Arc Consistency

DPLL Davis-Putnam-Logemann-Loveland

DLIS Dynamic Largest Individual Sum

VSIDS Variable State Independent Decaying Sum

CAD Cylindrical Algebraic Decomposition
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