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Kurzfassung

Immer häufiger wird modelbasierte Entwicklung in industriellen Anwendungen eingesetzt.
Um die Komplexität von modernen Softwaresystemen zu beherrschen, werden diese oft
top-down entwickelt. Ausgehend von einer abstrakten Beschreibung des Systems, dem
Modell, wird dieses so lange mit Details angereichert, bis das Zielsystem, z.B. Quellcode,
Dokumentation oder ein anderes Modell, generiert werden kann.

Modelle sind in diesem Ansatz eine zentrale Datenstruktur und können entweder über
eine universelle Modellierungssprache wie z.B. UML oder SysML, oder eine domänenspezifis-
che Sprache (DSL) beschrieben werden. Eine domänenspezifische Sprache ist eine Sprache
die speziell für eine bestimmte Domäne entwickelt wurde und durch ihren abgegrenzten
Sprachumfang Vorteile gegenüber universellen Sprachen hat. Bei der Entwicklung einer
DSL sind üblicherweise zwei Rollen involviert: Der Anwendungsentwickler, verantwortlich
für die Entwicklung der Sprache und die Editoren und der Domänenexperte, der seine
Expertise dem Entwickler zur Verfügung stellt.

Instanzen dieser Modelle müssen spezielle Anforderungen erfüllen, die z.B. durch den
Entwicklungsprozess, gesetzliche Bestimmungen oder den Zweck des Modells gegeben sind.
Technische Einschränkungen, die solche Anforderungen sicherstellen, sind typischerweise
statisch in das Modellierungswerkzeug implementiert. Nachteile dieser Vorgehensweise sind
unter anderem notwendige Kenntnisse über die Struktur des Modells und der verwendeten
Programmiersprache, sowie die beschränkte Wiederverwendbarkeit.

Den Inhalt dieser Masterarbeit stellt ein Framework dar, das die Erstellung von Ein-
schränkung auf Modelle vereinfachen soll. Einerseits soll es dem Anwendungsentwickler
ermöglichen, Einschränkungen wiederzuverwenden, andererseits sollten diese vom Domänen-
experten ohne Programmierkenntnisse auf die Modelle angewendet werden. Zusätzlich
wird der Modellierer bei der Korrektur unterstützt, sollte das Modell nicht konform zu den
Anforderungen sein.

Das Framework wurde speziell im Hinblick auf Erweiterbarkeit entwickelt. Der Kern
des Frameworks ist die domänenspezifische Sprache ’’Constraint Definition Language’’
(CDL), die verwendet wird, um graphisch oder textuell die Einschränkungen zu festzule-
gen und anzuwenden. Der Anwendungsentwickler kann bestehende Konzepte zur Ein-
schränkungsdefinition im Framework wiederverwenden. In dem entwickelten Prototyp
können Einschränkungen in OCL, EOL und JAVA formuliert werden.

Das Ergebnis dieser Masterarbeit ist ein erweiterbares Framework, das verwendet
werden kann, um Einschränkungen in einem modelbasierten Entwicklungsprozesses zu
definieren. Eine prototypische Entwicklung des Frameworks als Eclipse-Plugin und ein
Fallbeispiel aus der Automotive-Domäne unter Verwendung der Modellierungssprache
EAST-ADL2 zeigt die Durchführbarkeit des Ansatzes.

Schlüsselwörter: Modelbasierte Entwicklung, OCL, EOL, Eclipse, Konsistenz, Ein-
schränkungen, EAST-ADL2
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Abstract

The model-based development paradigm has progressed from scientific research to industrial
use. To handle the complexity of modern software systems, the system under development
is created by refining artefacts along the development process until the main artefact, the
model, can be transformed into the required form, e.g. source code documentation or
another model.

Models along this development process are usually expressed in a general purpose
language, such as UML or SysML, or in a domain-specific language (DSL) that has been
developed to capture the concepts of the domain. The development of such a domain-
specific language is usually carried out by two roles: the Tool Smith who creates the tooling
environment, needed to manipulate the model formulated in the DSL, and the Domain
Expert who provides the expertise of the domain to the Tool Smith.

Instances of these models, expressed in a DSL or in a general purpose language, have
to fulfill certain requirements stemming from different sources such as the development
process, normative regulations or purpose of the model. Constraints to ensure that such
requirements are met, are usually statically implemented using a textual programming
language. These textual constraint languages have certain drawbacks, e.g. in-depth
knowledge of the language’s structure to constrain is needed or the re-usability of the
defined constraints is limited.

In this thesis, a framework is presented, that eases the development of constraints for
both a DSL and a general purpose language, supporting the model-based development
process. Using the framework, the Tool Smith can implement re-usable constraints and
provide them to the Domain Expert, who can assign these constraints without deep
knowledge of the textual constraint language or the structure of the language. The
constraints can be augmented with repair actions that support the Modeler in the process
of fixing the model, if constraints are not fulfilled.

The framework is designed to be extensive, allowing the Tool Smith to integrate
existing approaches to constraint management into the framework. In the prototypical
implementation presented in this thesis, OCL, EOL, and JAVA can all be used as constraint
languages. The core of the framework is the domain-specific language ’’Constraint Definition
Language’’ (CDL), which is used to express the constraints in a graphical and a textual
notation.

The result of this thesis is an extensible framework that can be used to define constraints
along the model-based development process. The feasibility of this approach is shown
using a prototypical implementation of the framework as an Eclipse plugin, and a case
study from the automotive domain using the domain-specific language EAST-ADL2.

Keywords: Model-Based Development, OCL, EOL, Eclipse, Consistency, Constraints,
EAST-ADL2
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Chapter 1

Introduction and Motivation

1.1 Background

The model-based development paradigm has progressed from scientific research to industrial
use. The main objective of this approach, is to use the model of the developed system as
the main development artefact; the real system (source code, documentation or a process
description) is derived, generated or transformed from the model.

Inherent to the model-based development paradigm is the concept of meta-modelling.
Meta-modelling states, that a model has to conform to its language specification, the
meta-model. Based on a general meta-meta-model, the Meta Object Facility (MOF), the
language engineer can create a specialized meta-model that provides all the concepts for
the model of the developed system.

The foundation of meta-modelling provides a powerful mechanism to create domain-
specific languages to capture the specific concepts within different application domains,
instead of using general purpose languages such as SysML or UML. Language workbenches,
such as the popular Eclipse Modelling Framework, facilitates the creation of such languages
and their editors.

A strong focus within the model-based development paradigm lies on the division
of the development process into several abstraction layers. The Object Management
Group (OMG) proposes a four-layered development process, the domain-specific language
EAST-ADL2 is partitioned into four, connected layers. This separation into the different
abstraction levels is essential to tackle the complexity of the developed system, but can be
a source of certain inconsistencies stemming from contradicting descriptions of the elements
within the model.

Besides structural constraints introduced through the development process, the devel-
oped model has to fulfill certain semantical constraints that are derived from the purpose of
the model. Certain domain-specific languages require the alignment to norms, qualitative
regulations or organisational regulations that restrict the content of the model. In the
automotive domain, the model has to conform, among others, to the functional safety
norm ISO26262.

These constraints, both syntactic and semantic, are nowadays often described using
textual programming languages such as the Object Constraint Language (OCL), Eclipse
Epsilon Language (EOL), JAVA, or certain tool-proprietary scripting languages. However,
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20 CHAPTER 1. INTRODUCTION AND MOTIVATION

all of these approaches require a deep knowledge of the programming languages and the
meta-models involved. Besides the industrial approaches, there exists several academic
approaches that facilitate techniques such as model-checking or logical constraint solving.

1.2 Motivation & Goals

The motivation to write this thesis, was to create the Constraint Definition Language
(CDL), a framework that allows the different end-users (Tool Smith, Domain Expert and,
Modeller) to create semantic and syntactic constraints in order to ensure the developed
model fulfills its requirements. Furthermore, the framework should support the Modeller,
when repairing the identified defects of the model.

Consequently, the goals of the CDL framework are the following:

• Provide support for the Modeller to repair the model:
The framework shall support the Modeller in repairing the defects on the model, identified
by the framework. This repair mechanism should facilitate rich GUI elements in order
to query the content of the model. Furthermore, all repair-actions need to be revertable.

• Consider the role of the end-user :
The framework shall provide different views for the different roles of the language-
development process. In that sense, the complexity of the meta-model should be
hidden from the Domain Expert and the Modeller because they may not have in-depth
knowledge of meta-modelling.

• Allow the integration of other constraint-definition approaches:
The framework shall be extensible to integrate other approaches of constraint definition.

• Enable the creation of reusable constraints:
The framework shall allow the creation of constraints that can be reused for different
models and different elements.

1.3 Outline

This thesis is structured as follows:

Chapter 2 gives an overview of the relevant background information: Section 2.1
briefly introduces the concept of model-driven development, Section 2.2 describes the
process of developing a domain-specific language. In Section 2.3, the concepts introduced
in the first two sections are mapped to the technology that was used to implement them.
Section 2.4 introduces the term ’’consistency’’ and discusses the different concepts con-
nected with consistency. In Section 2.5, related approaches to consistency management
are presented and discussed. These lead to the requirements of the CDL framework, which
are stated in Section 2.6. Section 2.7 gives an overview on the case study that is used
throughout the thesis to illustrate the capabilities of the framework.
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In Chapter 3, the Constraint Definition Language (CDL) and the CDL framework
is presented. Section 3.1 and Section 3.2 introduce the ideas of the framework and
give an overview. The subsequent sections describe the activities for every role in detail:
Tool Smith in Section 3.3, Domain Expert in Section 3.4, and Modeller in Section 3.5.
Section 3.6 concludes with a description of the Constraint Definition Language and its
meta-model.

While Chapter 3 shows the functional capabilities of the CDL framework, Chapter
4 shows how those concepts are implemented: Section 4.1 gives an overview of the
different aspects of the implementation, Section 4.2 shows the mapping from the CDL
syntax to their semantic counterparts. The subsequent sections present the three different
plugins that were implemented to provide the functionality described in Chapter 3: Sec-
tion 4.3 describes the part of the framework that executes the constraints, Section 4.4
describes the textual editor and the grammar of the textual representation, and Section
4.5 describes the graphical representation. In Section 4.6, a mechanism to synchronise
both the textual and the graphical representation is presented.

Chapter 5 presents a case study where the CDL framework was used to define con-
straints on the EAST-ADL2 meta-model. Section 5.1 introduces the domain-specific
language EAST-ADL2, Section 5.2 lists the properties implemented in the case study. In
Section 5.3 one Classifier is exemplary presented, Section 5.4 concludes the case study
by comparing the CDL framework to a property checker with similar functionality.

Chapter 6 concludes this thesis: in Section 6.1, the CDL framework is evaluated
with respect to the requirements defined in Section 2.5, Section 6.2 presents an short
summary of the CDL framework and Section 6.3 discusses three conceptual possibilities
to improve the Constraint Definition Language framework.
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Chapter 2

Related Work

2.1 Model-Driven Engineering

’’Model-driven development is simply the notion that we can construct a model of a system
that we can then transform into the real thing’’ [MCF03].

The complexity of today’s software systems is overwhelming. Software systems are
distributed, heterogeneous and highly elaborate. One way to handle this complexity is to
raise the abstraction level of the system under development. There are several examples
where software systems are no longer developed using source code, but are generated. The
data describing such systems is captured in a model, a data structure that specifies the
layout of the inlcuded data. The model is the key artefact. Depending on the tool, it is
usually manipulated using graphical or textual editors.

The Object Management Group (OMG) [Gro12b] provides a conceptual process frame-
work to support this approach, the model-driven architecture (MDA). In MDA, as specified
by the OMG, the system under development starts as a Computational Independent Model
(CIM), and is transformed into the Platform Independent Model (PIM) and further into
the Platform Specific Model (PSM). Transforming the PSM further, leads to the actual
system, the result of the engineering process.

2.1.1 Meta-Modeling

In the model-driven architecture, the model itself is defined using several abstraction layers.
The OMG standard describes a meta-meta-model called Model Object Facility (MOF)
which serves as the meta-model for the (instance-) meta-model. The MOF specification
describes two variants: the Complete Meta Object Facility (CMOF) and the Essential
Meta Object Facility (EMOF). The CMOF is a complete description for all meta-modelling
facilities standardized by the OMG and thus, is quite extensive. EMOF on the other
hand is a standalone subset of the CMOF, providing all concepts necessary to model
object-oriented systems [Gro11].

This approach leads to a four-level structure: the lowest level (M0) represents the
real system that is created/derived/generated using the model under development. This
model is created on the second level (M1) and conforms to its meta-model. In the example
illustrated in Figure 2.1, the real system is (generated) source code, whereas the model is
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an UML model. The UML model itself conforms to its UML meta-model defined in the
third layer (M3). The third layer describes the UML meta-model that is defined using
MOF. In the fourth layer (M3) MOF is defined, it is itself described in MOF.

Another way to look at meta-modeling is, that a model has to conform to its language
specification, the meta-model. When raising the abstraction layer, the meta-model becomes
the model and therefore, has to conform again to its meta-model and so on. In that sense
the meta-model defines which language elements are available for the given model.

Figure 2.1: Overview meta-modelling on the example of the UML, based on the OMG
modelling stack.

Besides MDA, the term ’’Model-Driven Development’’ (MDD) and ’’Model-Driven
Engineering’’ are used. Both denote a development process that focuses on models as
the primary artifacts. These models should then be used as an input for automated
processing steps, such as code generation or verification. An example for such a process is
the development of embedded systems in the automotive domain, where Matlab/Simulink1

are widely used.

2.2 Domain-Specific Languages (DSL)

Based on the foundation of meta-modelling, it is possible to create specialized languages
that cover a (sub-) set of concepts given by a domain. This approach aims to create a
specialized language, that fulfills all the needs of a certain domain instead of using a general
purpose language such as UML or SysML2. Domain-Specific Languages are described by
using an abstract syntax that defines the internal storage of the data and the concrete
syntax that presents the data in a human readable notation [Kle08]. The abstract syntax
can be specified using a meta-model (level M2) or the profiling mechanism of UML3. The
concrete syntax is usually implemented using a textual or graphical notation.

2.2.1 Roles within the DSL Development Process

In the process of creating domain-specific languages, Kleppe [Kle08] and Gronback [Gro09]
describe different roles: the language engineer or Tool Smith and the language user or
Practitioner. In this work the language engineer is called Tool Smith, and the role of the
language user is separated into the Modeller and the Domain Expert.

The Modeller is responsible for creating the instance model using the tools and concepts
provided by the Tool Smith. The Domain Expert is responsible for providing the domain

1http://www.mathworks.de/products/simulink/
2http://www.omgsysml.org/
3http://www.omg.org/technology/documents/profile_catalog.htm
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knowledge to the Tool Smith in order to capture the necessary concepts. In the constraint
definition framework, the Domain Expert is responsible for creating a constraint set to
ensure that the constraints of the domain are obeyed. In this work it is assumed, that the
Domain Expert does not have any technical background in the field of creating model-based
tooling environments. The Tool Smith on the other hand, is an expert in the field of
meta-modelling and responsible for creating the tooling environment for the Modeller to
be able to create the model in the domain-specific language. Within the CDL framework,
the role of the Tool Smith is to create constraints, formulated in a constraint language.

2.3 Technologies

In this section the model-based development concepts are mapped to existing technologies
within the Eclipse Modelling Framework4 (EMF). Eclipse was chosen because it provides a
highly customizable, open source framework to create a model-based tooling environment.
Furthermore, due to the powerful plugin-mechanism, a lot of plugins already ease the
development of a model-driven tooling environment.

2.3.1 Eclipse Modelling Framework

The CDL framework is built on top of the Eclipse Modelling Framework (EMF). EMF
provides several facilities to support the creation of model-based development tools. The
technological foundation is provided by the EMF core framework that includes an imple-
mentation of the EMOF meta-meta-model, as specified by the OMG, called Ecore. Figure
2.2 shows the hierarchical overview of the core components.

The EMF framework is quite elaborate, therefore, this section can only provide the
necessary background information of the framework.

Tooling Facilities

As depicted in Figure 2.3, the traditional way of developing a DSL using EMF is first to
specify the abstract syntax (meta-model, M2) using the Ecore meta-meta model and derive
a generator model (.genmodel file) that serves as input for the Java Emitter Templates5

(JETs). These generate JAVA files or other artefacts such as serialization/deserialization
facilities based on the meta-model. In Figure 2.3, this step is denoted as ’’Develop Domain
Model’’. These JAVA files serve as input for the concrete syntax (editor), which is then
developed either as textual (using a Textual Modelling Framework, TMF, usually Xtext)
or graphical editor (for example with Graphiti or other sub-projects of the Graphical
Modelling Project6, GMP or its synonym Graphical Modelling Framework, GMF).

The instance model (M1) created with these editors serves as the input for either a Model-
To-Text (M2T) creating e.g. JAVA files or a Model-To-Model (M2M) transformation.
Both types can transform the instance model vertically or horizontally.

The concrete syntax, as well as components for persisting the instance model are
provided as Eclipse plugins and can be used by the Modeller.

4http://www.eclipse.org/modeling/emf/
5http://www.eclipse.org/modeling/m2t/?project=jet#jet
6http://www.eclipse.org/modeling/gmp/
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Figure 2.2: Top-Level overview of the Ecore meta-meta-model

Note: There are several frameworks that ease certain steps in this process; an overview
can be found on the EMF homepage7.

Dynamic EMF

In case the facilities to deserialize the instance model, as described in Section 2.3.1 are
not loaded in the current Eclipse instance, EMF provides a dynamic mechanism that
relies on reflection, to access the elements in the model. That mechanism enables the
CDL framework to process domain models even if the creating editor is not loaded or the
meta-model is unknown in the current Eclipse instance.

2.3.2 Textual Constraint Languages

The EMF framework only checks if a model conforms to its meta-model up to a certain
extent. The Cardinality of connectors e.g. is not checked. Furthermore, the conformance
relationship cannot make any statements about the contents of the attributes of the
elements (e.g. that a name is set) or structural characteristics of the instance model.

7http://www.eclipse.org/modeling/
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Figure 2-4 DSL Toolkit development workflow

As always, the use of the toolkit begins with creating a new project to hold
the DSL artifacts. The Amalgam DSL Toolkit download provides a DSL project
type, although it’s possible to begin with a regular Eclipse plug-in project and add

From the Library of Neil Preston

Figure 2.3: Workflow developing a DSL with a graphical representation using EMF [Gro09],
see Section 2.3

To be able to formulate such statements, certain textual constraint languages were
developed. In the prototypical implementation of the CDL framework the following textual
constraint languages are considered: Object Constraint Language (OCL) [Gro12a], Epsilon
Object Language (EOL) [KPP06] or JAVA (used as constraint language).

Object Constraint Language (OCL)

The Object Constraint Language is a textual specification language standardized by the
OMG. The language was developed 1995 as Integrated Business Engineering Language
(IBEL) by IBM and was merged into the UML 1.1 standard in 1997. The current
specification is version 2.3.1 from January 2012.

Conceptually, OCL is a pure specification language [Gro12a] and side-effect free.
Furthermore, OCL follows a descriptive language paradigm. In the first version, the OCL
standard targeted the UML meta-model, whereas the current version is adapted to support
the model-driven architecture paradigm.

OCL’s initial purpose was to add formal specifications to ambiguous, semi-formal UML
models. According to the official language description, OCL can be used as a (1) query
language, (2) to define invariants on classes, types and stereotypes, (3) to define pre- and
postconditions on operations and methods, (4) to describe guards, (5) to specify targets for
messages and actions, (6) to specify constraints on operations and (7) to specify derivation
rules for attributes for any expression over an UML model [Gro12a]. In order to support
querying the model, OCL provides methods from set-theory such as select subset from a
set or collection, iterate over a set or collection or the ’’exists’’ quantifier. The Eclipse
Modeling Framework provides several OCL interpreters.
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OCL in Ecore A rather new approach called OCLinEcore8, presented at the Eclipse
Summit Europe 2010, combines meta-modeling with Ecore and the constraint-capabilities
of OCL in a textual editor, using its own domain specific language. In the textual editor
the Tool Smith creates the meta-model in a textual way and embeds the OCL constraints
with the elements of the model in the same editor. The result is an annotated meta-model.
OCL expression are validated constantly when the Modeller creates the instance-model.

Eclipse Epsilon

The shortcomings of OCL, such as lack a of model-modification, motivated Kolovos et al.
[KPP06] to create a family of textual languages, the Epsilon Object Language (EOL). A
sub-language of EOL, the Epsilon Validation Language (EVL) has the capabilities to define
constraints, as well as fixing actions when the constraint does not hold. The EOL languages
follow an imperative paradigm, in contrast to the declarative OCL. EOL is extensible,
allowing the Tool Smith to embed JAVA classes into the constraint code. Furthermore,
EOL provides easy access to GUI elements such as input-boxes, lists or message boxes in
order to provide visual feedback or interact with the Modeller.

JAVA as a Constraint Language

The use of Eclipse as a language workbench makes it possible to use JAVA as a constraint
language. EMF provides highly elaborate mechanisms to serialize/unserialize, query and
alter any supported model. The only limitation is, that the current Eclipse instance has to
be able to load the persisted model, e.g. the plugin used to create the model has to be
loaded, or the model has to be persisted in XMI9 notation.

2.4 Constraint Management

2.4.1 Consistency

In [HKRS05], consistency is described as lack of contradiction in a system of properly
related artifacts (of the UML model). Lange et al. [LCM+03] defines consistency as
’’soundness of a design’’.

Consistency can be refined into intra-consistency (horizontal consistency) and inter-
consistency (vertical consistency). Intra-consistency is understood to be the consistency
within the model, meaning that elements created with different views have to be consistent
with each other. Inter-consistency describes the consistency along the levels of abstraction.

In [Str05], the term consistency is refined into syntactical and semantic consistency:
Syntactical consistency is understood to be the conformance to the abstract syntax of the
meta-model, whereas semantic consistency is defined as ’’violations that cannot be defined
as conformance violations to the abstract syntax’’ [Str05]. Semantic consistency, therefore,
ensures that the model fulfills its purpose as well as it conforms to the requirements of the
given domain.

8http://wiki.eclipse.org/MDT/OCLinEcore
9http://www.omg.org/spec/XMI/2.1/
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In [LCM+03] the term ’’well-formedness’’ is introduced as a set of ’’soundness restric-
tions’’ that ensure the correct usage of class diagrams (e.g. that every object has to have a
name or that attributes have to be set private). Since the two terms ’’well-formedness’’
and ’’semantic consistency’’ greatly overlap and describe the same concepts, ’’semantic
consistency’’ is used in the remainder of this work.

Using the model-based development paradigm, the conformance relation between the
instance model and its meta-model can be seen as syntactical consistency, where as the
compliance to constraints of the domain can be seen as semantical consistency (Table 2.2
shows such a list of constraints for the application of a Hazard & Risk analysis using the
EAST-ADL2 meta-model).

2.4.2 Completeness

Lange et al. [LCM+03] defines completeness (with respect to the model) as ’’Completeness
of a design is concerned with the fact that the presence of information in some diagrams
requires the presence of other information in another part of the design’’. In that sense
completeness is constantly infringed upon during the development process since not all
elements and their relations can be created at the same time. This is known as temporal
incompleteness [WGN03].

2.4.3 Dealing with Incompleteness / Inconsistency

Nuseibeh et al. [NER00] present a managing framework to deal with inconsistencies
in general artefacts in software development: They claim that constraints defined in
the framework lead to a model / software program that is consistent with respect to
this constraints, but not inconsistency-free (without unreasonable, additional work and
expenses). Furthermore, they state that the constraints often are not stated explicitly.
They emerge from several sources such as the model language, development methods or
processes, local constraints, and application domains.

2.5 Related Approaches to Constraint Management

The evolution of UML as an industrial standard for modelling led to certain efforts trying
to ensure consistency between the different artefacts and abstraction levels. A survey by
Spanoudakis and Zisman [SZ01] in 2001 identified four major approaches to consistency
management, which are presented in Table 2.1. Another survey, an exhaustive literature
review carried out in 2009 [LMT09], confirmed the categories that had been identified.
Lucas et al. analyzed 42 papers on the topic of ’’consistency management’’ and categorized
the different approaches into the four major approaches. Furthermore, the different
papers were evaluated for their practical applicability, extendability and the possibility of
generalising the approach for model-based development.

The authors concluded, that a method for the widespread use of constraint management,
has to fulfill the following three requirements [LMT09]:

1. Include a mechanism to extend the proposal in order to facilitate the managing of new
models and inconsistency problems.
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2. Tackle inconsistency problems related to vertical consistency, since they have been less
frequently studied.

3. Fully integrate all of the features stated in the proposal within a CASE tool. This will
thus permit its use and validation outside the academic scope.

Approach Main Assumptions Positive Features Limitations
Logic-based Models expressed in

some formal language
• Well-defined inconsis-

tency detection pro-
cedures with sound
semantics

• Applicable to arbi-
trary consistency
rules

• First-order logic is
semi-decidable

• Theorem proving is
computationally inef-
ficient

Model
checking

It must be possible to ex-
press or translate models
in the particular state-
oriented language used
by the model checker

• Well-defined inconsis-
tency detection pro-
cedures with sound
semantics

• Not efficient due to
explosion of states

• Only specific kinds of
consistency rules (e.g.
reachability of states)
can be checked

Special
Forms of
Analysis

Models need to be ex-
pressed in a specific com-
mon language (e.g. con-
ceptual graphs, UML,
Petri Nets, XML) or
need to be translated
into it

• Well-defined inconsis-
tency detection pro-
cedures

• Only specific kinds of
consistency rules can
be checked

Human-
based col-
laborative
exploration

Models (or parts of mod-
els) expressed in infor-
mal modelling languages

• Only method for in-
formal models

• Labour intensive and
difficult to use with
large models

Table 2.1: Summary of Different Approaches to the Detection of Inconsistencies (Table
initially from [SZ01] and confirmed in [LMT09])

The remainder of this section presents selected representative work for the all categories,
presented in Table 2.1, and discusses the feasibility of the approaches.

2.5.1 Logic-Based Approaches

Van der Straeten et al. [Str05] present a method where the UML meta-model is formalised
using Descriptive Logic and reasoned upon with a rule-based system. Inconsistencies are
detected automatically, and a set of possible inconsistency resolutions is presented to the
user that then executes the most appropriate of them.
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Ossami et al. [OJS05] present a method where a specification in the formal language
B is created next to the UML model, and consistency rules are defined on the two
representations, allowing reasoning on the B specification.

Malgouyres et al. [MM06] describes an approach where the UML model, as well as
the UML meta-model (based on MOF) are modelled using Constraint Logic Programming
(CLP), enabling the formalisation of identified consistency rules.

Formal approaches, however, rely strongly on a representation of the domain meta-model
in the given formal environment, reducing the practical application for domain-specific
languages. Furthermore, the extendability of such approaches is questionable: none of the
works in the category ’’logic-based approaches’’ was considered extensible in the literature
review.

2.5.2 Model Checking

Model checking approaches, such as [ZLQ06] or [DH04], are suitable to check the consistency
between behavioural views of the model. Both approaches aim to keep UML state diagrams
consistent to their specification, modelled as a UML sequence diagram. To achieve that,
both bahavioural representations are transferred to a formal specification, which serves
as input for a model-checker. The model-checker then executes the specification (usually
the sequence diagram) on the state-machine and creates an error-trace in case the two
representations are not consistent.

The model checking approach seems beneficial for checking the consistency between
state- and sequence diagrams. However, similar to the logical-based approaches, the
mapping between the input model and the formal specification is rather unpractical.

2.5.3 Special Forms of Analysis

This category mainly contains non-formal approaches. Most of them use a specific pro-
gramming language in order to express the constraints they define on the model. The
textual constraint languages presented in Section 2.3.2 also fall into this category.

Nentwich et al. [NEFE03] present an approach to manage consistency between certain
UML modelling artefacts using the tool xlinkit and a XML-based constraint language. In a
subsequent paper [NEF03], identified defects in the model can be repaired using predefined
repair actions (add, delete, and change). One interesting aspect of their approach, is
extensibility: it is possible to constrain generic artefacts (such as JAVA source code)
with their tool. To accomplish this, xlinkit provides the possibility of creating generic
adapters allowing the integration of information from outside the model. Unfortunately,
the approach was never generalised for model-based development and the tool xlinkit is
not available anymore.

Another example for this category is provided by Wagner et al. [WGN03]. They present
a framework that tackles inconsistency using a graph-based notation, incremental checking
and an extensible mechanism to provide (user-defined) repair actions. Furthermore, the
different roles in the development process are taken into account; they separate between
the Administrator and the Modeller. However, using a graph-grammar implies that only
horizontal consistency can be checked, since the elements to define the rules have to come
from the domain meta-model.
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As presented in Section 2.7, Mader et al. also follow this approach: in their work
certain constraints that indicate the correct application of a Hazard & Risk Analysis are
identified. In contrast to other works presented in this section, Mader et al. do not ensure
consistency with other artefacts, they solely ensure that the regulative requirements of
the ISO26262 are met. However, they implemented the rules hard coded into their editor,
and for this particular method, not being able to adapt the constraints throughout the
development cycle or use the rules for a different method.

2.5.4 Human-based Collaborative Exploration

In the original work from Spanoudakis and Zisman [SZ01] several approaches were presented
that facilitate structured inspection that allows the identification of inconsistencies on
the model. However, since models nowadays are more complex and distributed, the
applicability of this approach is questionable.

The human-based collaboration on the other hand, has a high relevance when it comes
to choose actions to repair the model when a defect is identified. In [NEF03], [Str05] and
[WGN03] repair actions are presented to the Modeller where he needs to evaluate the most
relevant solution to the defect.

2.5.5 Summary

All the investigated works solve subparts of the challenges connected with consistency and
completeness issues in model-based development. Certain approaches just work on the
UML model, others require a transformation into a formal environment to be processed
further. Others cannot be generalised for use in a model-based environment, apart from
the UML model.

2.6 Requirements for the CDL Framework

Based on the literature research from Section 2.5, a mechanism should be implemented
that fulfills the following requirements:

RQ1 The constraint mechanism shall be based on MOF in order to be applicable to all
models, no assumption should be made on the editor creating the model.

RQ2 The constraint mechanism shall be extensible to support models from different
abstraction levels in order to support vertical consistency checking.

RQ3 The constraint mechanism shall be able to integrate existing consistency approaches,
such as those presented in Section 2.5 in order to reuse existing effort.

RQ4 The constraint mechanism shall support the processing of information from outside
the model in order to allow the definition of semantic constraints.

RQ5 The constraint mechanism shall be implemented using an open-source modeling tool
in order to be validated by others as well.

RQ6 The constraint mechanism shall support the Modeller in repairing his instance model.
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The realization of these requirements as well as an evaluation of the CDL framework
based on theses requirements is described in the subsequent chapters.

2.7 Case Study ’’Functional Safety’’

Figure 2.4: Overview EAST-ADL2 package structure [EAS10]

To show the capabilities of the framework described throughout this thesis, constraints
from Mader et al. [MGL+11] and [MAL+11] were implemented in the Constraint Definition
Language. In this work the authors describe a tool supported method for Hazard Analysis
according to ISO26262 [ISO09], a functional safety regulation from the automotive industry.
The authors define certain rules that indicate the correct application of the method and
present a tool prototype that enforces these rules and offers repair actions to the Modeller
once a rule is violated.

The domain meta-model used for the examples in this thesis is EAST-ADL2 (top-level
package structure illustrated in Figure 2.4), provided as a plug-in to the Papyrus editor10.

In Chapter 5 the complete case study is presented. All properties from Mader et al.
are implemented, showing the capabilities of the framework in a real-world example.

2.7.1 Constraints Used throughout the Thesis

The examples, that illustrate the capabilities of the CDL framework throughout this
thesis, use one of the properties presented in Table 2.2. The element constrained by

10www.papyrusuml.org/
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Figure 2.5: All examples throughout this thesis use the element ’’HazardousEvent’’ from
the EAST-ADL2 meta-model

these properties, is ’’HazardousEvent’’ from the package Dependability in the EAST-ADL2
meta-model (see Figure 2.5).

ID Model Element Property
10 HazardousEvent Every HazardousEvent is associated with a Hazard
11a HazardousEvent Every HazardousEvent is associated with an Use Case
12 HazardousEvent Every HazardousEvent that has an ASIL greater than QM is

associated with a SafetyGoal

Table 2.2: Example properties, used throughout the thesis [MGL+11]

2.8 Definitions
In order to avoid confusion with the different instance- and meta-models the meta-model
of the domain (EAST-ADL2) is called domain meta-model and the instance model is
called domain instance model throughout this work.

In the remainder of this thesis, the following terms denote a concept from the Constraint
Definition Language, and therefore, start with a captial letter: Classifier, Precondtion,
Action, Criterion, Constraint Group and Assignment.



Chapter 3

Defining Constraints Using CDL

3.1 Introduction

In this chapter, the Constraint Definition Language Framework (CDL) is presented from
each of the different user group’s perspectives. The main purpose of this chapter is to show
what can be done with the framework and not how it is implemented.

The remainder of this chapter is structured as follows: in Section 3.2, the overall
framework is described conceptually, the subsequent sections Tool Smith Role, Domain
Expert Role and Modeller Role illustrate the concepts and activities for the different end
users of the CDL framework. Section 3.6 discusses the language structure of the CDL
language, as perceived by the end user.

3.2 Overview CDL Framework Design

Domain-Meta-

Model

Domain-Instance-

Model

CDL Constraint

Constraint 

Criterion

Precondition

Correcting 

Action

used to define

executed on

conforms to

Figure 3.1: Relationship of constraints and the domain meta- and instance models

The CDL framework’s objective is to provide an extensible platform to create constraints
in order to ensure consistency (horizontal and vertical constraints as well as semantical and
syntactical constraints, c.f. Section 2.4). It is technically based on the Eclipse Modelling
Framework (EMF). The CDL framework connects an Ecore based domain meta-model
and its domain instance model with different interpreters of the constraint languages.

The framework does not make any assumptions on the editor (textual or graphical)
that the Modeller or the Domain Expert work with. The CDL framework uses the domain
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meta-model to define constraints, that are executed on the domain instance model. The
relationship between the elements of the framework and the imported models is depicted
in Figure 3.1.

Figure 3.2: Overview of the CDL framework; activities and artefacts are annotated with
the different roles

One key-aspect novel with the CDL framework is the separation of the different roles
in the development process of a domain-specific language, as depicted in Figure 3.2: The
Tool Smith imports the required models (domain meta-model and domain instance model)
and creates reusable Classifiers containing three parts, namely Precondition, Criterion and
Actions (c.f. Section 3.3.1 and 3.3.2). Each different part can be written in a different
textual constraint language. A Classifier representing an atomic constraint concept, is
combined logically by the Domain Expert and assigned to elements from the domain
meta-model (c.f. Section 3.4.1 and 3.4.2). Finally, the Modeller executes the constraints
that identify defects on his domain instance model, which are repaired using the Actions
included in the Classifier.

Throughout, there is the option to use JAVA or EOL to create Actions. The Tool
Smith can use rich GUI elements to provide feedback or link to documentation that helps
the Modeller to repair the model. Moreover, the Tool Smith can use data from outside the
model in his constraints. It’s possible to use a database or web service as input, as well as
using values from outside the model to repair the model once one Criterion does not hold.

Furthermore, the framework aims to enable reuse of the defined constraint code. To
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achieve this goal, the framework provides certain mechanisms to automatically add the
context / enclosing packages to constraint expression enabling the expression to be defined
without a context. Additionally, the option to define macros lets the Tool Smith write
shorter constraint code and enables reuse of the code in different models.

3.3 Tool Smith View
The Tool Smith is responsible for building the foundation for the activities of the Domain
Expert and the Modeller. In that role, the Tool Smith has to import the required domain
models and implement the textual constraint expressions inside the different Classifiers,
c.f. Section 3.3.2.

In the remainder of this work, a textual constraint expression is a boolean constraint,
implemented using one of the supported constraint languages (in the prototypical imple-
mentation: EOL, OCL or JAVA).

3.3.1 Model Import

The first activity in the Tool Smith role is to import the domain instance model and the
corresponding domain meta-model. The only limitation is that the domain-meta model
has to be Ecore-based and the EMF subsystem has to be able to load the domain instance
model.

When importing models, the Tool Smith has two possibilities: (1) importing the model
using an Ecore file, or (2) importing a meta-model using an URI. In the first case the domain
instance model has to be provided in the XMI format since the EMF subsystem cannot
otherwise resolve the model. In the more common second case, the domain meta-model is
already loaded or known in the current Eclipse instance (for example in the case of UML),
and therefore the domain instance model can be persisted in the way the plugin intends.

To illustrate the concept consider the following example: A plugin created by the
textual modeling framework Xtext1 persists its model in the textual form, specified by
the grammar of the textual language. If the Xtext plugin is loaded inside the current
Eclipse instance, the Tool Smith can import the domain meta-model using the URI of
the Xtext model and imports the textual representation of the domain instance model.
If the plugin is not loaded, the Tool Smith has to import the domain meta-model using
the Xtext-generated Ecore file and convert the textual notion of the model into its XMI
representation. An example for a model import for the EAST-ADL2 meta-model is shown
in Listing 3.1.

3.3.2 Classifier

The Tool Smith is responsible for providing the elements that the Domain Expert uses
to constrain their domain meta-model. In the CDL framework these elements are called
’’Classifiers’’. A Classifier represents an atomic constraint concept, e.g. ensures that a given
attribute is set to a specific value. Classifiers are logically grouped and assigned to the
corresponding elements of the domain meta-model by the Domain Expert. When executed,
all instances of the given meta-class are read and serve as an input to the Classifier.

1http://www.eclipse.org/Xtext/
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1 c l a s s i f i e r model : RecuperationModel {
2 i s f i l e based
3 package : e a s t a d l
4 model f i l e :

’ p lat form : / r e s o u r c e / RecuperationUseCase /model/ recuperat ion_use_case . uml ’
5 metamodel f i l e :

’ p lat form : / r e s o u r c e / RecuperationUseCase / inc lude / e a s t a d l . e co re ’
6 }

Listing 3.1: Import of EAST-ADL2 models

-name : String
-description : String
-severity : Severity

Classifier

Precondition Criterion
-autoaction : bool

Action

+bool execute(EObject object)
+save(EObject object)

<<Interface>>
LanguageEntity

JAVAEntity OCLEntity EOLEntity
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Figure 3.3: Conceptual Overview ’’Classifier’’, a Classifier consists of the three parts: an
optional Precondition, a Criterion and an arbitrary number of Actions. Every part contains
a textual constraint expression, called ’’LanguageEntity’’.

As illustrated in Figure 3.3, Classifiers consist of three parts: (1) An optional Precondi-
tion, (2) a mandatory Criterion and (3) zero or more Actions. Every one of these parts
contain one LanguageEntity that represents a textual constraint expression. Furthermore,
the Tool Smith can provide a Classifier as a dependency, that needs to evaluate to true
prior to executing Actions. This dependency can be used to ensure that the current object
is in the right state to execute the Action. The Precondition and the Criterion can be
written in EOL, OCL or JAVA, the Action can be written in EOL or JAVA in the current
prototypical implementation.

In the CDL framework the textual constraint expression is either a statement imple-
mented inline as a text, or the expression links to a file written in the corresponding
constraint language and the name of the invariant. In that way existing source-code files
can be reused. An exemplary implementation for property 12 of Table 2.2, can be found in
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Listing 3.2.
In the following subsection the different subparts, Precondition, Criterion and Action

of the Classifier are explained.
1 c l a s s i f i e r : AssociatedWithSafetyGoal {
2 model : RecuperationModel
3 d e s c r i p t i o n : ’ Checks i f the HazardousEvent i s a s s o c i a t e d with a

SafetyGoal ’
4 s e v e r i t y : ERROR
5

6 precond i t i on : {
7 language : OCL
8 f i l e : ’ p lat form : / r e s o u r c e / RecuperationUseCase / o c l / c o n s t r a i n t s . o c l ’
9 i n v a r i a n t : ’ As soc ia t edPrecond i t i on ’

10 }
11 c r i t e r i o n : {
12 language : OCL
13 cond i t i on :
14 ’ inv : dependab i l i t y : : s a f e ty r equ i r ement : : SafetyGoal . a l l I n s t a n c e s ( )
15 −>e x i s t s ( goa l : $PACKAGE_REQUIREMENTS: : SafetyGoal | goa l . derivedFrom
16 −>e x i s t s ( event : dependab i l i t y : : HazardousEvent | event = s e l f ) ) ’
17 }
18 ac t i on : {
19 name : ’ S e l e c t SafetyGoal ’
20 d e s c r i p t i o n : ’ S e l e c t s a SafetyGoal from the l i s t o f p o s s i b l e

SafetyGoals ’ {
21 language : EOL
22 cond i t i on : ’ do {
23 var sa f e ty_goa l s = SafetyGoal . a l l I n s t a n c e s ( ) . c o l l e c t (
24 goa l : SafetyGoal | goa l . name) ;
25

26 var name = System . user . choose (
27 "Which SafetyGoal should be a s s o c i a t e d ? " , s a f e ty_goa l s ) ;
28 var goa l = SafetyGoal . a l l I n s t a n c e s ( ) . s e l e c t (
29 goa l : SafetyGoal | goa l . name = name) . f i r s t ( ) ;
30 goa l . derivedFrom . add ( s e l f ) ;
31 } ’
32 }
33 }
34 }

Listing 3.2: Example implementation of property 12 in Table 2.2 with Precondition,
Criterion and Action

Preconditions

When applied to an element in the domain instance model, a Classifier can yield to three
different results: (1) true, (2) false and (3) inconclusive. True and false are the results
of the Criterion, inconclusive indicates that the Precondition did not hold. Due to that
mechanism, the Tool Smith can use the Criterion to express the core constraint of the
Classifier, ensuring that the element is already in the correct state. Furthermore, the usage
of ’’inconclusive’’ adds the expressiveness to state that the element is in the wrong state
instead of stating that the constraint does not hold. Thus, the usage of Preconditions
enables the framework to deal with temporal inconsistencies correctly.
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Consider the previously mentioned example: in one instance of ’’HazardousEvent’’
the attribute ’’ASIL’’ is not set. There are two potential outcomes: the Classifier could
evaluate to false or the Classifier could evaluate to inconclusive since the element is not in
the correct state. Through the use of the Precondition, the Tool Smith can implement the
outcome that fits best in situations like these. As a result, the use of Preconditions results
in cleaner Criterion code and less Action code.

Additionally, the Precondition plays an important role when grouping Classifiers
logically into Constraint Groups. If the Classifiers are assigned using the implies- or
or-conjunction the statement of the Constraint Group would be impaired if the Criterion
also has to check the state of the element. With the use of Preconditions the Constraint
Group is not evaluated any further and the information is presented to the Modeller, once
an inconclusive result is detected.

Constraint Criterion

The Criterion is the determining entity of the Classifier. In the Criterion, the constraint
the Classifier expresses, should be implemented. The Criterion should not check if the
state of the element is correct, this should be done in the Precondition. It should also be
noted, that the Criterion is the logical expression that will be evaluated when the Classifier
is logically assigned in a Constraint Group, the Precondition is a needed prerequisite, but
does not influence the logical outcome of a Constraint Group.

Within a Constraint Group, the Criterion is evaluated using short-circuit evaluation,
resulting in less computational steps, once a Criterion does not hold. That means that
Actions are only displayed for the first Classifier within a Constraint Group that contributes
to a false result.

Actions

Once the Criterion (in a single Classifier or inside a Constraint Group) evaluates to false,
the Modeller can choose from a list of given Actions. These Actions are provided by the
Tool Smith and should support the Modeller in changing the domain instance model in
such a way, that the Criterion holds again. Furthermore, the framework provides the
possibility of defining Actions as ’’autoaction’’, meaning that the expression embedded in
the Action is executed right after the Criterion evaluates to false (either as single Classifier
or when the Criterion contributes to a Constraint Group evaluating to false).

Due to the use of the extensible languages JAVA and EOL, the framework provides
flexibility to the Tool Smith. Eligible Actions can facilitate GUI-elements, information
from outside the model, or elements from within the tooling environment (for example
opening help to support the Modeller).

Actions are executed within their own EditingDomain inside the CDL framework. The
purpose of an EditingDomain2 is to track changes on the model, allowing the Modeller to
undo Actions. The EditingDomain is destroyed and newly created every time the Modeller
applies the constraints to the domain instance model. That means, that the Modeller can
undo all Actions until he checks the domain instance model again.

2http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/edit/domain/EditingDomain.html
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3.3.3 Macro Engine

Figure 3.4: Schematic overview of the Macro Engine, the three different listings show the
information added by the Macro Engine.

The Macro Engine serves two purposes, as illustrated in Figure 3.4: (1) append the
enclosing context and package to constraint expression and (2) replace macros with their
given values.

Certain constraint languages, for example OCL and EOL, need the enclosing package
and context to define the constraints. Therefore, when defining constraints they are always
valid for just one given context. In order to let the same constraint be reused in other
contexts, it has to be context-independent formulated. The example provided in Figure
3.4 shows that the first expression is defined context-independent. When executed, this
expression is enhanced with the assigned context and enclosing package in order to be a
valid expression for the corresponding constraint language interpreter.

Furthermore, the framework provides the possibility of creating textual macros. Macros
are textual labels starting with a $-sign and are replaced with the corresponding value
before the constraint expression is compiled in the interpreter. They are defined by the
Tool Smith in the replacement section. Listing 3.3 shows such a definition of a macro.

1 replacement :
2 {
3 v a r i a b l e : $PACKAGE_CONSTRAINTS text : ’ d ependab i l i t y : : s a f e t y c o n s t r a i n t s ’
4 v a r i a b l e : $PACKAGE_REQUIREMENTS text : ’ d ependab i l i t y : : s a f e ty r equ i r ement ’
5 }

Listing 3.3: Sample replacement definition

Moreover, the framework provides two predefined macros, namely $CONTEXT$ and
$PACKAGE$. $CONTEXT$ provides the name of the current EClass (as string) the
Classifier is assigned to, $PACKAGE$ is replaced by the enclosing package of the assigned
EClass (encoded in the representation of the given constraint language). Table 3.1 shows
exemplary replacements in different constraint languages .

3.4 Domain Expert View

A Domain Expert is responsible for creating a constraint set based on the Classifiers
provided by the Tool Smith. The Classifiers can be combined into Constraint Groups
using propositional logic. Finally, the Constraint Groups or single Classifiers are assigned
to certain elements in the domain meta-model.
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Language $CONTEXT$ $PACKAGE$
EOL SafetyGoal dependability::safetyrequirement
OCL SafetyGoal dependability::safetyrequirement
JAVA SafetyGoal dependability.safetyrequirement

Table 3.1: Example replacements for the EAST-ADL2 element SafetyGoal in the different
constraint languages

-class : EClass
Assignment

-name : String
-description : String
-severity : Severity

Classifier

ConstraintGroup

ClassifierReference

-not : bool
Expression

-conjunction : Conjunction
LogicalExpression

ClassInvariant

-attribute : EAttribute
Attribute

-reference : EReference
Reference
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2
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1
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classifier
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Figure 3.5: Simplified structural overview of Constraint Groups and Assignments

In the following section Constraint Groups and the assignments from Constraint Groups
and / or single Classifier to elements from the domain meta-model are discussed.

3.4.1 Constraint Groups

A Constraint Group is a set of logically connected Classifiers. The Classifiers can be
connected using conjunctions from propositional calculus (AND, OR, NOT, IMPLIES). A
structural overview of Constraint Groups is illustrated in the right part of Figure 4.10.
The concept of Constraint Groups supplements and enables reusable Classifiers. Classifiers
should therefore be formulated in such a way, that they only cover the atomic information
given by the constraint. These atomic Classifiers are then combined into Constraint
Groups, allowing the construction of more complex constraints using Classifiers.

Another aspect novel to the concept of Constraint Groups is the possibility of utilising
the advantages of the different constraint languages inside the Classifiers. Constraint
Groups combine the different textual constraint expressions, potentially even when written
in different languages together into one boolean expression.

The usage of Constraint Groups is also beneficial when when considering the usage of
Preconditions in order to establish that the element is in the correct state. Using plain
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OCL or EOL, an elaborate constraint is the conjunction of different boolean expressions
resulting either in true or false. The use of Preconditions within the conjuncted Classifiers
however also allows the Constraint Group to evaluate to inconclusive, resulting in less false
negative messages for the Modeller. If one Classifier within a Constraint Group evaluated
to inconclusive, a message is presented to the Modeller and the rest of the group is not
evaluated anymore.

In order to demonstrate the concept of Constraint Groups, recall property 12 in
Table 2.2: If the Classifier was implemented using plain OCL, the expression could
be formulated as one single invariant. This invariant would only be applicable to one
particular element, the HazardousEvent. However, if the Criterion is split into two
Classifiers ’’ASILGreaterThenQM’’, ’’AssociatedWithSafetyGoal’’ that are connected using
an implies-conjunction, both Classifiers can be reused in other contexts without duplicating
constraint code. Furthermore, the constraint code in both Classifiers is easier to read and
understand, since each Classifier contains just the atomic constraint concept.

Constraint Group Structure

As illustrated in Figure 4.10, CDL Constraint Groups are built in a composite pattern
[GHJV95] fashion using the meta-class Expression and the derived ClassifierReference and
LogicalExpression. A LogicalExpression contains two Expressions and a logical conjunction.
The depth of the composite logical expression is not limited, allowing the Domain Expert
to create elaborate Constraint Groups. The ClassifierReference represents a link to an
existing Classifier.

In the textual representation, Constraint Groups are displayed using brackets to denote
the coherence, in the graphical representation the Classifiers are represented by a rectangle
and the conjunctions are represented by circles. Both representations have the same
meaning. Figure 3.6 shows an example for the graphical representation, Listing 3.4 shows
the equivalent textual representation.

Figure 3.6: Graphical representation of a Constraint Group

1 c o n s t r a i n t group : CG_HazardousEvent
2 {
3 (ASILGreaterThanQM IMPLIES AssociatedWithSafetyGoal )
4 }

Listing 3.4: Textual representation of a Constraint Group
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Evaluation of the Constraint Groups

The Constraint Groups are logically evaluated in a short-circuit fashion. That means that
once the result of a Constraint Groups is known, the rest of the group is not evaluated
anymore. Short-circuit evaluation is used for performance reasons since the rest of the
expression does not contribute to the result of a logical expression and therefore does not
need to be evaluated. One shortcoming of this approach is that it is possible for a Classifier
to evaluate to inconclusive but this result would not be identified.

3.4.2 Assignments

The last activity in the role of the Domain Expert is to assign the defined Constraint
Groups or Classifiers to elements of the domain meta-model. The constraints can be
assigned to every EClass in the domain meta-model. Syntactically, there are three ways to
assign them: (1) as an invariant (constraint covers the whole EClass ), (2) to an attribute
of the meta-class (Meta-element: EAttribute) and (3) to a reference of a meta-class (Meta-
element: EReference). As illustrated in Figure 4.10, every category can have zero or more
assignments to Classifiers or Constraint Groups.

This distinction is of an informal nature, the Tool Smith always creates Classifiers
for an instance of a domain meta-class. The distinction should be used to assign the
constraints to the element of the domain meta-class they actually constrain, in order to
provide a better overview of which elements are constrained by which Constraint Group or
Classifier. An Assignment represents a reference between a Classifier / Constraint Group
and the assigned EClass.

Listing 3.5 shows the textual representation of an Assignment (element Hazardou-
sEvent from property 12, Table 2.2), whereas Figure 3.7 once again shows the graphical
representation.

Figure 3.7: Graphical representation of the Assignment to the meta-class ’’HazardousEv-
ent’’, domain meta-model EAST-ADL2 (property 12, Table 2.2)
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1 ass ignment element : e a s t a d l . d ependab i l i t y . HazardousEvent
2 {
3 i n v a r i a n t group : CG_HazardousEvent
4 r e f e r e n c e : hazard c l a s s i f i e r : HasHazard
5 r e f e r e n c e : ope ra t i ona lS i tuat i onUseCase c l a s s i f i e r : HasUsecase
6 }

Listing 3.5: Textual representation of the Assignment for the element ’’HazardousEvent’’
(property 12, Table 2.2)

3.5 Modeller View

The Modeller is responsible for creating a consistent domain instance model. With respect
to the CDL framework, the main activity is to execute the constraints provided by the
Domain Expert on his domain instance model. Once the constraints have been executed
the CDL framework provides a view where all the elements are listed where the Criterion
did not hold. The Modeller can now choose one of the Actions to repair the defects on his
domain instance model.

The remainder of the section presents in detail the activity of executing constraints on
the domain instance model.

3.5.1 Execution of the CDL Constraints

1. Read Assignments
In the first step, the CDL Execution Engine iterates through all defined Assignments in
order to determine which Classifiers and elements from the domain instance model are
needed to execute the constraint. The instances of the assigned EClasses are temporarily
buffered.

2. Create Logical Expressions
In the second step, the composite structure of the Constraint Groups is created.

3. Compile textual constraint expressions with their Classifiers
In the third step all interpreters needed for the constraint languages are created.
Moreover, all Classifiers are compiled and stored within their position in the logical
expressions.

4. Execute Constraints Instance Objects
The next step is to iterate through all elements and execute the Constraint Groups and
the Classifiers. If the Classifiers are combined using a Constraint Group the evaluation
for the given element stops once the result of the Constraint Group is determined
(short-circuit evaluation).

5. Present Result
If the Constraint Group or Classifier evaluates to false, the element and the corresponding
constraint are presented to the Modeller in an Eclipse view (Problem View). An example
of this view is show in Figure 3.8.
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6. Choose Action
Once a constraint evaluates to false and the Tool Smith provides an Action for the
Classifier, the Modeller can choose this Action from the Problem View. This Action is
then executed and should either repair the defect or provide help to the Modeller to
repair the defect on his own. An example selection of the Action provided is illustrated
in Figure 3.8.

7. Undo Action
If the Modeller realises that the executed Action altered the model in an unwanted
way, the CDL framework provides a dedicated view where all Actions are presented,
allowing the Modeller to undo changes to the model.

Figure 3.8: Screenshot of the CDL framework Problem View

All Actions are executed within an EditingDomain that is valid until the constraints are
executed again on the domain instance model. That means that Actions can simply be
undone until the Modeller checks his domain instance model again.

Whereas this section presents a conceptual overview of the activities needed to create
and execute CDL constraints, Section 4.3 further describes their technical details.

3.6 Constraint Definition Language (CDL)
The core of the framework is a domain-specific language called ’’Constraint Definition
Language’’ (CDL). The CDL serves as bridge between different constraint languages and
the elements in the domain meta-model. The abstract syntax of CDL is illustrated in Figure
3.9. It is closely connected to the textual syntax since all elements from the meta-model
map to the corresponding element in the textual representation (c.f. Section 4.4 for an
overview of the CDL grammar and Appendix A for the complete CDL grammar).

The graphical representation covers a smaller subset of functions provided by the CDL
meta-model, mainly the functionality needed by the Domain Expert (right hand side in
Figure 3.9). This decision was made because the Tool Smith provides his functionality
using the textual constraint languages. Thus, there is no need to create a graphical
representation for that. The Domain Expert on the other hand should preferably just work
with the graphical representation, since it is closer to the craft of modelling.

Table 3.2 shows the mapping between the functionality, roles and the elements in the
CDL meta-model . The column ’’Graphical Notation’’ denotes whether there is a graphical
representation for the given element.
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Functionality Role Elements in CDL Meta-Model Graphical
Notation

Import Models Tool Smith DefinedModel, FileMetamodel, URIMeta-
model

No

Create Classi-
fiers

Tool Smith Classifier, ExtensibleClassifier, Opera-
tionBody, Action

No

Create Macros Tool Smith Substitute, Replacement No
Create Con-
straint Groups

Domain Expert ConstraintGroup, ReferenceClassifier, Log-
icalExpression, Conjunction, BooleanEx-
pression

Yes

Assign Con-
straints

Domain Expert Assignment, ClassInvariant, Reference, At-
tribute, ReferenceClassifier, Constraint-
Group

Yes

Table 3.2: Elements of the CDL meta-model mapped to roles and functionalities



Chapter 4

CDL Framework Implementation

4.1 Introduction

This chapter describes the technical realization of the CDL framework. It describes how
the functionality presented in Chapter 3 is implemented in the CDL framework. The
CDL framework is implemented using three Eclipse plugins: (1) CDL Execution Engine
to execute the constraint on the model, (2) Textual editor or Xtext editor to create the
CDL instance model textually, and (3) Graphical editor or Graphiti editor to edit the CDL
instance model graphically.

As depicted in Figure 4.1, the Xtext and the Graphiti editor take the domain meta-model
as input to define the constraints for the domain instance model. The two synchronised
editors manipulate one and the same CDL instance model. The CDL instance model and the
domain instance model then serves as input to the CDL Execution Engine. The execution
engine delegates the textual constraint expression to the corresponding interpreters, collects
the result and presents it to the user. The user can execute assigned Actions and alter the
domain instance model in this way.

The remainder of this chapter is structured as follows: Section 4.2 provides an overview
of the different aspects, syntax and semantics of the Constraint Definition Language.
Section 4.3 describes in detail the sequence of constraint execution on the domain instance
model, Section 4.4 explains the role of the textual modelling framework Xtext and the
grammar of the textual representation. Section 4.5 gives an overview of the graphical editor
framework Graphiti and the implementation of the graphical representation using Graphiti
and in Section 4.6 the synchronisation between the two representations is described.

4.2 Syntax & Semantics

When developing a domain-specific language, the model is the main artefact. However,
the result of the development process is usually not the model, but an artefact derived
from it (source code, documentation, etc.). In the case of the CDL framework, the purpose
of the model is to make a statement on how well the domain-instance model obeys the
specified constraints.

The distinction between the syntax and the semantics of the CDL in the framework is
the following: the textual and the graphical editor manipulate the CDL instance model.

49
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Figure 4.1: Workflow of defining and executing constraints

The CDL Execution Engine uses the CDL instance model as input and executes it on
the domain instance model (semantics). In order to provide a better overview on how
the different parts of the framework are conceptually connected, Table 4.1 provides an
overview of the mapping between the syntax elements and their corresponding elements
from the execution engine.

4.3 The CDL Execution Engine

The CDL Execution Engine is responsible for executing the CDL instance model on the
domain instance model, and shows which elements do not fulfill the specified constraints.
Furthermore, the execution engine executes the Actions in every case a constraint does
not hold. It is the only plugin inside the CDL framework that alters the domain instance
model.

4.3.1 GUI Elements

The CDL Execution Engine contributes a toolbar entry, as well as two views: the ’’Problem
View’’ and the ’’Action Log View’’ to the Eclipse GUI. The toolbar entry contains the
button to start the constraint execution on the domain instance model. In the ’’Problem
View’’ all error-, warning- and information messages are presented. In case there is an
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Syntax Elements Semantics Elements

Graphical Element Textual Rule(Top-
Level Rule) Elements of the CDL Execution Engine

DefinedModel
ResourceLoader, responsible for reading
the elements from the domain instance
model

Replacement
No direct counterpart, is used before cre-
ating the ExecutableEntity from the tex-
tual constraint expression

Classifier

ClassifierExpressionExecutor containing
instances of ExecutableEntity (in the
given constraint language) for every sub-
part (Precondition, Criterion and Ac-
tions)

ConstraintGroup LogicalExpressionExecutor, arranged in
a composite fashion

Assignment

No direct counterpart, in the class Con-
tainer, entry class of the execution en-
gine, all objects from the domain instance
model are read, stored and the constraints
are executed

Table 4.1: Top-Level mapping from CDL syntax elements to their semantic counterparts

Action assigned in the Classifier, the Modeller can execute it from the context menu of the
corresponding message. The ’’Action Log View’’ contains all Actions that were executed on
the domain instance model since the constraints were executed the last time. To undo an
Action, the Modeller calls the corresponding entry from the context menu in the ’’Action
Log View’’.

4.3.2 Structural Overview

The application structure of the CDL Exection Engine, as illustrated in Figure 4.2, revolves
around five main classes and interfaces: (1) ExecutableEntity, (2) AbstractEntityFactory,
(3) LanguageRegistry, (4) ExecuableExpression, and (5) ExpressionFactory.

The abstract class ExecutableEntity provides the necessary methods to execute, save
and undo one LanguageEntity (constraint code inside sub-elements of the Classifier) on the
domain instance model. Furthermore, the class ensures that the concrete execute method
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Overview Execution Engine

JAVAEntityFactoryOCLEntityFactory EOLEntityFactory

+create(String, EnvironmentVariables) : ExecutableEntity
+create(String, String, EnvironmentVariables) : ExecutableEntity

<<Interface>>
AbtractEntityFactory

+getFactoryFor(QueryLanguages) : AbtractEntityFactory
+create(LanguageEntity, EnvironmentVariables) : ExecutableEntity

LanguageRegistry

+save(EObject) : void
+createPackageLabel(List<String>) : String
+executeWithoutTransactionalEditingDomain(EObject) : boolean
+executeInTransactionalEditingDomain(EObject) : boolean
+canUndo() : boolean
+undo() : void

ExecutableEntity

JAVAExecutableEntity EOLExecutableEntityOCLExecutableEntity

+ClassifierExpressionExecutor(ReferenceClassifier, EnvironmentVariables)
+execute(EClassifier, EObject, String) : ClassifierReturn

ClassifierExpressionExecutor

+execute(EClassifier, EObject, String) : ClassifierReturn

<<Interface>>
ExecuteableExpression

+LogicalExpressionExecuter(LogicalExpression, EnvironmentVariables)
+execute(EClassifier, EObject, String) : ClassifierReturn

LogicalExpressionExecuter

+create(Expression, EnvironmentVariables) : ExecuteableExpression
ExpressionFactory

+readDefinedModels() : void
+cleanup() : void
+execute() : void
+Container(ResourceResolver)

Container

+getAllElementsOfType(EClassifier) : Collection<EObject>
+getAllElements() : Collection<EObject>
+getModel() : Object
+getPackageName() : String

<<Interface>>
ObjectSelector

XMIObjectSelector

 
 

 
 
 

createscreatescreates

1
-left

1 -right

Figure 4.2: Structural overview of CDL Execution Engine

(implemented in the different constraint languages interpreter) is always called from within
an EditingDomain. The creation of an ExecutableEntity is implemented in the concrete
constraint language factories, derived from AbstractEntityFactory. Within these factories,
all language-specific create functions are encapsulated. Moreover, these factories ensure
the application of the replacement rules.

The remaining two classes, ExecuableExpression and ExpressionFactory, are used to
create and execute the composite object tree (an example is illustrated in Figure 4.4) that
represents the Constraint Groups.
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4.3.3 Constraints Execution

The entry point of the execution engine is the class Container and its execute method. It
is called when the button in the Eclipse toolbar is pressed. The process of executing the
constraints is implemented as follows (refer to Section 3.5.1 for a conceptual overview and
Figure 4.3 for an exemplary execution).

Note: In the following sequence a Constraint Groups is assigned. In case a single
Classifier is assigned (step 5), the combination of the results is omitted.

Exemplary Execuction

Read all instances of
"HazardousEvent" from
domain instance model

Instances of "HazardousEvent"

Create binary object tree

Object tree
(LogicalExpressionExecutors)

Compile classifiers

Compiled classifiers
(ASILGreaterThanQM,

AssociatedWithSafetyGoal,
HasHazard and HasUsecase)

Execute classifiers

Combine classifier results

Results of classifiers

Present result to modeler

Constraint
result

Domain instance model

Constraint does not hold

Constraint inconclusive

One precondition
inconclusive

Constraint holds
Result of constraint

CG_HazardousEvent

Assignment
(CG_HazardousEvent as

Invariant to
HazardousEvent)

[no]

[yes]

[false] [true]

Figure 4.3: Exemplary execution of constraints with artefacts. For this example, properties
10, 11a and 12 from Table 2.2, are combined in one Constraint Group and assigned to the
EClass ’’HazardousEvent’’.

1. Gather elements from the domain instance model:
To gather the objects from the domain instance model, first the type of the model
elements (EClasses from the domain meta-model) have to be determined. Therefore,
the Execution Engine iterates through all Assignments and gathers the instances of the
associated types using the abstraction provided by ObjectSelector.
The result of this step is a map that associates the meta-class from the Assignment to
its instances from the domain instance model.

2. Create Composite Object Structure:
The Classifiers are assigned either as a single Classifier, or as a Constraint Group. The
logical expression inside the Constraint Group is syntactically represented as a binary
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Binary Object Tree

logicalExpression = AND

: LogicalExpressionExecuter

logicalExpression = IMPLIES

: LogicalExpressionExecuter

referenceClassifier = HasUsecase

: ClassifierExpressionExecutor

referenceClassifier = ASILGreaterThanQM

: ClassifierExpressionExecutor

referenceClassifier = AssociatedWithSafetyGoal

: ClassifierExpressionExecutor

1

1

1

1
rightleft

1

1

right

1

1
left

Figure 4.4: Composite object structure for the Constraint Group (((ASILGreaterThanQM
IMPLIES AssociatedWithSafetyGoal) AND HasHazard) AND HasUsecase)

tree: the Classifiers are the leaves and the conjunctions are the inner nodes. Based
on this composite tree, the corresponding object tree (illustrated in Figure 4.4) with
instances of the abstract class ExecutableExpression is created for every Constraint
Group. The creation of the actual Classifier is described in step three. Figure 4.2 shows
the relationship between the classes, that are involved in the creation of the executable
expressions.
The result of this step is a binary tree representing the arrangement of the Classifiers
inside the Constraint Group.

3. Create ClassifierExpressionExecutors:
A Classifier is a concept from the CDL language syntax, the corresponding semantics
element is an instance of the class ClassifierExpressionExecutor. To create it, the
different instances of LanguageEntity from the sub-elements (Precondition, Criterion
and Actions) of the ClassifierExpressionExecutor, and the surrounding environment is
passed to the LanguageRegistry. The returned objects are stored within the Classifier-
ExpressionExecutor.
The result of this step are instances of the class ClassifierExpressionExecutor for every
Classifier in the CDL instance model.

4. Execute the Classifiers on the elements:
Once the object object tree is created, the execute method of the root executor (Logical-
ExpressionExecutor or ClassifierExpressionExecutor) is called and propagated through
the binary tree. Within the executors, first the execute-method of ExecutableEntity
for the Precondition is called and, if true, the ExecutableEntity for the Criterion is
evaluated. This is done for each instance of the given meta-class in the domain instance
model (is in the example the meta-class ’’HazardousEvent’’, Figure 4.2). Every executor
returns an object of the class ClassifierReturn that contains the result of the executor
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(true, false or inconclusive) and holds references to the instances of ExecutableEntity
that represent the Actions, if the Criterion in ClassifierExpressionExecutor evaluates
to false.
The result of this step is an object of the class ClassifierReturn for every ClassifierEx-
pressionExecutor involved in the Constraint Group.

5. Combine results:
The results of the executors are logically assigned, starting from the leaves (ClassifierEx-
pressionExecutor) using the enclosing logical executors until the root element is reached.
Thus, the ClassifierReturn for the root element holds the result of the whole Constraint
Group for the given object of the domain instance model, as well as references to the
instances of ExecutableEntity for the Actions if there are any.
The result of this step is the evaluation outcome for every Constraint Group.

6. Present result to Modeller:
If the root element executes to false (or inconclusive within a Constraint Group), a
message containing the name of the Classifier, the name of the Constraint Group,
the domain instance element and the severity is displayed in the ’’Problem View’’.
Furthermore, the context menu is filled with instances of ExecutableEntity for every
message.

7. Apply Actions:
Actions are accessible from the context menu in the ’’Problem View’’ (Figure 3.8).
The corresponding Action is created when the Criterion inside the ClassifierExpres-
sionExecutor evaluates to false. When executed, every Action is wrapped into a
RecodingCommand1, an element from the EMF Model Transaction Workbench. The
RecordingCommand combined with an EditingDomain provides the functionality to
undo changes to the model. Once an Action is applied, a corresponding entry is created
in the ’’Action Log View’’ enabling the Modeller to undo the Action. The log view is
cleared every time the Modeller executes the constraints, because the model is loaded
again and otherwise the references inside the log view would no longer be valid.

4.3.4 Constraint Language Plugins

The CDL framework connects the domain models with the corresponding constraint code.
The different plugins for the constraint languages are therefore responsible for compiling and
executing the constraints on the domain instance model. In the prototypical implementation
of the framework, three constraint languages are supported: EOL, OCL and JAVA. OCL
and the EOL are both supported by open source project plugins, the JAVA compiler is
part of the JAVA Software Developer Kit (SDK).

The OCL plugin (org.eclipse.ocl) provides an easy-to-use interface for compiling the
constraint code and executes it directly in the given EMF representation of the domain
instance model. The EOL plugin on the other hand, uses a different internal representation
of the data, and therefore needs a mapping between the EMF data and the interfaces
used by the EOL interpreter. EOL provides such a mapping (InMemoryEmfModel) that

1http://download.eclipse.org/modeling/emf/transAction/javadoc/workspace/1.5.0/ org/eclipse/emf/-
transAction/RecordingCommand.html
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was used in the implementation of the CDL framework. Constraints written in JAVA
are compiled using the the JAVA SDK compiler and operate directly on the EMF data
structures. The Tool Smith has to ensure that all required libraries are on the classpath.

The parsing capabilities of the different interpreters are further used in the textual
editor to check the syntax of the textual constraint expressions. The integration of the
syntax checks into the Xtext framework is explained in Section 4.4.3.

4.4 CDL Textual Representation

Xtext is a framework that supports textual modelling: based on an Extended Backus-Naur
Form (EBNF) grammar, a text editor is generated that supports certain comfort features,
such as auto-completion or validation of the syntax. Editors generated by Xtext are
deployed using an Eclipse plugin. Compared to other editor frameworks, Xtext provides
the unique feature to generate an Ecore meta-model based from the EBNF grammar, the
instance model is created using the abstract syntax tree (AST) of the text. The input
text is transformed to an instance of this meta-model. Thus, the framework allows the
developer to use the source code created by such an editor as an instance of the created
meta-model.

4.4.1 Overview Xtext Framework

• You can use well-known and easy-to-use tools and techniques for manipulation,
such as text editors, regular expressions, or stream editors.

• You can use the same tools for version control as you use for source code. Com-
paring and merging is performed in a syntax the developer is familiar with.

• It is impossible to break the model such that it cannot be reopened in the editor
again.

• Models can be fixed using the same tools, even if they have become incompatible
with a new version of the Ecore model.

Xtext targets easy to use and naturally feeling languages. It focuses on the lexical
aspects of a language a bit more than on the semantic ones. As a consequence, a
referenced Ecore model can contain more concepts than are actually covered by the
Xtext grammar. As a result, not everything that is possibly expressed in the EMF
model can be serialized back into a textual representation with regards to the grammar.
So if you want to use Xtext to serialize your models as described above, it is good to
have a couple of things in mind:

• Prefer optional rule calls (cardinality ? or * ) to mandatory ones (cardinality + or
default), such that missing references will not obstruct serialization.

206

Figure 4.5: Overview Xtext of Framework2

Editors created by Xtext are highly customisable: the framework allows the importation
of other Ecore based meta-models and processes them as part of the language. Furthermore,
it is possible to adapt the validation of the input text, as used to check the syntax of
textual constraint expressions that are declared inline (refer to Section 4.4.3). Moreover,

2http://www.eclipse.org/Xtext/documentation/
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the framework provides the functionality to limit the scope of elements in the language, as
well as the possibility of customising content assists. An example where that is necessary, is
the importation of built-in Eclipse meta-models (such as Ecore or UML), that are referred
to with their corresponding URIs. The contents of such meta-models are not included
automatically by the Xtext linker, therefore the content is provided using the content
assists.

The Xtext framework is built using several tools from the Eclipse Modelling Framework,
such as the Eclipse Workflow Engine (MWE) or a built in parser generator (though the
usage of antlr3 is recommended but due to incompatible licences not included). The usage
of EMF technologies enables the integration of other projects, such as EMF Validation or
the Graphical Modelling Framework (GMF).

4.4.2 CDL Grammar

Defining the EBNF grammar is the starting point for creating a textual editor using Xtext.
The complete CDL language is provided in Appendix A, in this section an overview of
the most important rules is given. The CDL meta-model is generated from the EBNF
grammar. Thus, all rules can be directly mapped to elements of the CDL meta-model.

Note: The following chapter and the appendix use a syntax tree notation created by
Xtext. On the left side, the name of the rule is given, literals are denoted with a white
background, whereas rules are denoted using a grey background. Within the running text
rules are underlined.

Top-Level Grammar Elements

Figure 4.6: Top-level elements of the CDL grammar

The top-level element in the grammar is the rule Model, as illustrated in Figure 4.6,
and contains five main rules: (1) DefinedModel to import the domain meta- and instance
models, (2) Replacement to define macros, (3) Classifier to define Classifiers and embed
or refer constraint code, (4) ConstraintGroup to logically assign the Classifiers and (5)
Assignment to connect the Constraint Groups or Classifiers to the domain meta-model.

Import Models Grammar Elements

In order to import an existing meta-model, the following rules are needed: DefinedModel,
MetaModel and the derived rules FileMetaModel and UriMetamodel. In Figure 4.7 the rules
to import a Ecore file are shown. In the rule FileMetaModel, the content of ’’metamodel
file’’ is assigned to a special variable in the Xtext framework, namely importURI. This
allocation causes the framework to import the content of the file (supposed to be an Ecore

3http://www.antlr.org/
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Figure 4.7: Syntax elements to import a given Ecore based meta-model

file) and provide the elements as references. In the case of an URI-based meta-model this
resolution is done using an implemented routine in the content assist functionality.

Macro Definitions Grammar Elements

Figure 4.8: Syntax elements used for macro definitions

To provide textual macros three rules are needed, as illustrated in Figure 4.8: Replacement,
Substitute and VariableName. Replacement holds a list of Substitute rules containing a
mapping from a VariableName (a string starting with $) to an arbitrary text.

Classifiers Grammar Elements

Figure 4.9: Syntax elements used to define a Classifier

Figure 4.9 shows an overview on the syntactical elements needed to define a Classifier.
Besides an unique name, a Classifier can hold a reference to a defined model in order to
provide syntactical support for the Domain Expert. As illustrated in the syntax graph,
the rule ExtensibleClassifier shows that both the Precondition and the Criterion, contain
a LanguageEntity that represents a constraint code implemented inline or a reference to
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a file with the constraint code. The rule Action, on the other hand, defines a name, a
description, and the field ’’autoaction’’ in addition to the LanguageEntity, therefore it is
implemented using a different rule (c.f. Appendix A for all syntax elements).

Constraint Groups Grammar Elements

Figure 4.10: Syntax elements used to define a Constraint Group

As illustrated in Figure 4.10, the syntactical element ConstraintGroup is the combi-
nation of three Expressions, whereas a Conjunction is also an expression. The check as
to whether the Expression is a Conjunction is done in the validation routine. Moreover,
since LogicalExpression follows Expression, the syntax allows the Domain Expert to nest
an arbitrary number of logical expression within an Expression.

The list titled ’’not executable expressions’’ allows the storage of Classifiers from
the graphical representation that are not yet connected and are neither needed in the
meta-model nor the textual representation. This enables the domain-expert to store a draft
(unconnected), and therefore not executable, Constraint Group in the CDL instance model.

Assignments Grammar Elements

Figure 4.11: Syntax elements used to define assignments

The last element in this syntax description is the rule Assignment (illustrated in Figure
4.11). The Assignment connects an element from the domain meta-model (referred to as a
QualifiedName in ’’assignment element’’) through one of its sub elements (ClassInvariant,
Attribute or Reference) to a Classifier or a Constraint Group, shown in the example for a
ClassInvariant in the syntax tree.
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4.4.3 Validation

Validation within the Xtext framework is understood to be a syntactical check of the text
inside the editor. Checks ensuring that the input text conforms to the CDL meta-model
come as a side product to the generated EBNF parser. Furthermore, the framework allows
the customisation of the validation routine enabling the developer to create checks that go
further than the conformance relationship. The interface provided by Xtext is easy to use
and only requires the addition of the annotation ’’@Check’’ to a method that receives an
element of the CDL meta-model as a parameter.

Within the CDL textual editor, these checks are used to syntactically check the
inline implemented constraint code. The implemented constraint code is passed to the
corresponding interpreters and is parsed inside the interpreters. In the prototypical
implementation the checks are hard coded for each constraint language, in a further release
the check should be a member of the class ExecutableEntity. If the syntax check fails, a
message and a marker is presented to the Tool Smith, as shown in Figure 4.12. If the Tool
Smith uses context-dependent macros that cannot be resolved because the Classifier has
not been assigned yet, the syntax checker shows a warning indicating that the constraint
code cannot be checked.

Figure 4.12: Example indication of a syntax error

4.5 Graphical Representation of the CDL

In the CDL framework, Graphiti is used to implement the graphical representation of the
Constraint Definition Language. Eclipse Graphiti is a framework that enables the creation
of graphical editors based on EMF models. Graphiti is built on top of the Graphical
Editing Framework4 (GEF) and its subproject Draw2D5. The main objective of Graphiti is
to ease the development of graphical editors due to the high complexity of GEF. In order
to achieve its objective, Graphiti provides several helper-classes that ease the creation of
elements and interfaces to add functionality to the editor.

4.5.1 Graphiti Framework Overview

Graphiti Data Concept

As illustrated in Figure 4.13, Graphiti connects the elements from the CDL instance model
to a graphical representation using a two-layered structure: Pictogram Elements serve as
hierarchical connectors between the business objects and their graphical representation,

4http://www.eclipse.org/gef/
5http://www.eclipse.org/gef/draw2d/
7http://www.slideshare.net/michaelwenz/short-talk-on-graphiti-at-eclipsecon-2010
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Figure 4.13: Overview of Graphiti data structure, an example of the business object
’’Constraint Group’’ (image based on Graphiti documentation7).

called Graphical Algorithms in Graphiti. Hierarchical means in that context, that there is
an element of the type ContainerShape that holds a list of all its sub-elements (Shapes for
graphical elements, Anchors for connectors or another ContainerShapes for subgroups).

The framework persists the diagrams as instances of the Graphiti meta-model, business
objects are implemented as references to the CDL instance model.

Structural Overview

The implementation of the CDL graphical editor follows the example implementation in
the tutorial8. Every feature of a graphical element (create, add, delete, remove, update,
move, layout, resize, direct edit, custom feature, and create connection) is implemented in
a separate class. In the framework, a custom feature is one that does not fall into the other
categories, in the CDL framework a custom feature is used to, for example auto-layout
certain elements in the graphical editor. As illustrated in Figure 4.14, the features are
managed by the class CDLFeatureProvider. The class has a method for every possible
feature of the graphical editor and returns the corresponding instance of the feature, based
on the business object provided in the parameter (member of the different contexts). In case
there is no implementation of the feature, the provider returns a default implementation.

Furthermore, Graphiti allows to customise the tool palette and the context menus that
are provided for the graphical elements. The functionality is implemented in the class
CDLToolingBehaviourProvider and is also aligned with the exemplary implementation
from the Graphiti tutorial. The CDL framework customises the default behaviour by
adding all EClasses from the domain meta-model in order to add them as Assignments.
Moreover, the tooling palette contains all Classifiers and Constraint Groups from the CDL
instance model in order to define Constraints Groups graphically. Figure 4.15 shows an
example of the tooling palette using the EAST-ADL2 meta-model.

8http://www.eclipse.org/graphiti/documentation/



62 CHAPTER 4. CDL FRAMEWORK IMPLEMENTATION

+
C

D
L

D
iagram

T
ypeP

rovider()
+

getA
vailableT

oolB
ehaviorP

roviders() : IT
oolB

ehaviorP
rovider []

C
D
L
D
iagram

T
yp
eP
rovid

er
+

C
D

L
F

eatureP
rovider(ID

iagram
T

ypeP
rovider)

+
getD

eleteF
eature(ID

eleteC
ontext) : ID

eleteF
eature

+
getC

reateF
eatures() : IC

reateF
eature []

+
getA

ddF
eature(IA

ddC
ontext) : IA

ddF
eature

+
getL

ayoutF
eature(IL

ayoutC
ontext) : IL

ayoutF
eature

+
getR

esizeS
hapeF

eature(IR
esizeS

hapeC
ontext) : IR

esizeS
hapeF

eature
+

getU
pdateF

eature(IU
pdateC

ontext) : IU
pdateF

eature
+

getD
irectE

ditingF
eature(ID

irectE
ditingC

ontext) : ID
irectE

ditingF
eature

+
getC

ustom
F

eatures(IC
ustom

C
ontext) : IC

ustom
F

eature []
+

getM
oveS

hapeF
eature(IM

oveS
hapeC

ontext) : IM
oveS

hapeF
eature

+
getC

reateC
onnectionF

eatures() : IC
reateC

onnectionF
eature []

C
D
L
F
eatu

reP
rovid

er

+
C

D
L

T
oolB

ehaviourP
rovider(ID

iagram
T

ypeP
rovider)

+
getC

ontextB
uttonP

ad(IP
ictogram

E
lem

entC
ontext) : IC

ontextB
uttonP

a...
+

getP
alette() : IP

aletteC
om

partm
entE

ntry []
+

getC
ontextM

enu(IC
ustom

C
ontext) : IC

ontextM
enuE

ntry []

C
D
L
T
oolB

eh
aviou

rP
rovid

er

+
A

ddE
C

lassF
eature(IF

eatureP
rovider)

+
canA

dd(IA
ddC

ontext) : boolean
+

add(IA
ddC

ontext) : P
ictogram

E
lem

ent

A
d
d
E
C
lassF

eatu
re

+
C

reateE
C

lassF
eature(IF

eatureP
rovider, E

C
lass)

+
canC

reate(IC
reateC

ontext) : boolean
+

create(IC
reateC

ontext) : O
bject []

C
reateE

C
lassF

eatu
re

+
D

eleteE
C

lassF
eature(IF

eatureP
rovider)

+
canD

elete(ID
eleteC

ontext) : boolean
+

delete(ID
eleteC

ontext) : void

D
eleteE

C
lassF

eatu
re

+
L

ayoutE
C

lassF
eature(IF

eatureP
rovider)

+
canL

ayout(IL
ayoutC

ontext) : boolean

L
ayou

tE
C
lassF

eatu
re

+
M

oveE
C

lassF
eature(IF

eatureP
rovider)

+
canM

oveS
hape(IM

oveS
hapeC

ontext) : bool...

M
oveE

C
lassF

eatu
re

+
U

pdateE
C

lassF
eature(IF

eatureP
rovider)

+
canU

pdate(IU
pdateC

ontext) : boolean
+

updateN
eeded(IU

pdateC
ontext) : IR

eason
+

update(IU
pdateC

ontext) : boolean

U
p
d
ateE

C
lassF

eatu
re

Figure
4.14:

O
verview

ofthe
G

raphitiim
plem

entation
structure

(elem
ents

for
feature

’’A
ssignm

ent’’show
n,others

om
itted)



4.5. GRAPHICAL REPRESENTATION OF THE CDL 63

Figure 4.15: Tooling palette with constraints for the EAST-ADL2 meta-model

4.5.2 Auto Layout

The graphical editor makes it possible to automatically lay out the elements within the
diagram. This feature supports the Domain Expert in laying out the diagram, especially in
situations where elements are automatically inserted due to synchronization (c.f. Section
4.6).

Autolayout

Map children
coordinate to nodes

Remove circular
connections

Apply layout algorithm Map nodes to diagram
elements

Nodes & Edges Nodes & Edges Nodes & Edges

Elements layoutet

containerShape :
ContainerShape

User pressed "Autolayout"

containerShape :
ContainerShape

Figure 4.16: Auto-layout of diagram elements

Figure 4.16 presents the sequence of the auto layout feature: first, the CDL framework
transforms the coordinates of the diagram elements (children elements of the given container
shape) into generic Nodes and Edges (part of the EMF framework). In the next step,
circular references are deleted, since most of the layout algorithms do not work properly
otherwise. Based on this generic representation, all available layout algorithms (e.g. from
ZEST9) can be applied. The prototypical CDL framework uses a directed-graph algorithm
as the default algorithm. In the last step, the coordinates of the generic representation are
transferred back to the diagram elements.

9http://www.eclipse.org/gef/zest/
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In the CDL framework, the auto layout function can be applied to the whole diagram or
to a single Constraint Group. Figure 4.17 shows an example of where a Constraint Group
was updated by the synchronising feature and afterwards the directed graph algorithm is
applied.

Figure 4.17: Autolayout of a Constraint Group

4.6 Synchronisation

When providing several views of the same model, it is crucial that all views provide an
up-to-date view. To achieve that, the textual and the graphical editors are synchronised
through the usage of the same CDL instance model. The Xtext editor is synchronised
with the CDL instance model (built-in feature), whereas the graphical editors needs to be
updated every time the editor is activated (gets the focus) inside the Eclipse platform.

The update-sequence consists of the following steps: iterate through all graphical
elements and check if the business objects are still valid. If the business object has been
deleted, the graphical element has to be deleted, since the textual representation is up-
to-date. The next step is to iterate through all elements in the CDL instance model and
check if the graphical representation (labels, sub-elements, connections, etc.) are still
up-to-date. In cases where the element has been updated in the textual representation,
the Graphiti editor indicates that through a red, dashed border around the element. The
Domain Expert then has the option to update the element by pressing a button in the
corresponding context menu. Then, the content from the textual representation is read
and the graphical element is updated accordingly. As a last step, the Domain Expert has
the option to auto layout the elements (c.f. Section 4.5.2) that were updated to enhance
the readability of the diagram. Figure 4.18 shows such a graphical element that needs to
be updated.

Figure 4.18: Example of a graphical element that needs to be updated
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The diagram is updated every time the graphical editor gets the focus. In the pro-
totypical implementation, the Domain Expert does not have to actively initialize the
synchronization. An exception to this rule is unsaved changes inside one of the editors. In
that case a message is shown to the Domain Expert, allowing him to decide which unsaved
changes to keep.
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Chapter 5

Case Study

In order to demonstrate the capabilities of the CDL framework, a set of constraints
from the automotive domain was implemented. As briefly described in Section 2.7, the
constraints were defined in [MGL+11] and [MAL+11] by Mader et. al. The meta-model
used throughout their work is the EAST-ADL2 [EAS10] meta-model, provided as a plug-in
to the Papyrus UML editor.

The remainder of this chapter is structured as follows: In Section 5.1 the domain meta-
model of EAST-ADL2 is briefly introduced, Section 5.2 presents the list of properties that
were implemented in the case study. Section 5.3 shows implementation of one illustrative
Classifier and Section 5.4 presents the results of the case study.

5.1 Modelling in EAST-ADL2

6

IntroductionII

Figure 2. EAST-ADL abstraction levels and model organization.

The features in the “TechnicalFeatureModel” at the vehicle level represent the content  
and properties of the vehicle from top-level perspective without exposing the realization.  
It is possible to manage the content of each vehicle and entire product lines in a syste-
matic manner. 

A complete representation of the electronic functionality in an abstract form is  
modeled in the Functional Analysis Architecture (FAA). One or more entities (analysis 
functions) of the FAA can be combined and reused to realize features. The FAA captures 
the principal interfaces and behavior of the vehicle’s subsystems. It allows validation and  
verification of the integrated system or its subsystems on a high level of abstraction. 
Critical issues for understanding or analysis can thus be considered, without the risk of 
them being obscured by implementation details.

The implementation-oriented aspects are introduced while defining the Functional Design  
Architecture (FDA). The features are realized here in a function architecture that takes 
into account efficiency, legacy and reuse, COTS availability, hardware allocation, etc. 
The function structure is such that one or more functions can be subsequently realized 
by an AUTOSAR software component (SW-C). The external interfaces of such compo-
nents correspond to the interfaces of the realized functions.

The representation of the implementation, the software architecture, is not defined by 
EAST-ADL but by AUTOSAR. However, traceability is supported from implementation 
level elements (AUTOSAR) to vehicle level elements. 
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Figure 5.1: Top-Level structure of EAST-ADL21

1http://www.atesst.org/
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EAST-ADL2 is a domain-specific language to model embedded systems within the
automotive domain. The language focuses solely on structural / architectural aspects and
does not cover behavioural aspects. Depicted in Figure 5.1, EAST-ADL is organized into
four layers, representing the different abstraction levels within the development process.

The domain-specific language aims to support the whole development process by
enabling traceability between the different artefacts on the different abstraction levels. At
the implementation level, EAST-ADL2 is strongly aligned with the AUTOSAR2 standard
and also connected with MATLAB/Simulink.

5.2 Implemented Properties
Throughout the work of Mader et al., the EAST-ADL2 meta-model was used as a foundation
to carry out a functional safety analysis, according to ISO26262 [ISO09] and derive the
required work products. The system under development is a hybrid power train. To
accomplish this, the meta-model was enhanced with safety-relevant stereotypes. Along
with the safety analysis, certain properties were identified, that do not ensure the correct
application of the safety analysis, but indicate that all the statical characteristics (semantical
and syntactical consistency) are met.

The list of implemented properties and the proposed Actions in the scope of the CDL
framework are presented in Table 5.1. A detailed description of the involved Classifiers,
can be found in Report [Kra12].

ID Meta Class Property Definition Proposed Action

0 Item A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

0a Item At least one VehicleFeature
has been defined

Choose one existing VehicleFeature
and assign it to the Item

1 Item At least one Hazard has
been identified

Choose one existing Hazard and con-
nect it to the Item

2 Item At least one FeatureFlaw
has been identified

Choose one existing FeatureFlaw as-
sign it to the Item

0b VehicleFeature A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

0c VehicleFeature Associated with at least one
Item

Choose one existing Item and assign
it to the VehicleFeature

23 VehicleFeature A Requirement is satisfied Assign the VehicleFeature to one
given Requirement

21 Requirement An ID is defined Query the user to input a new ID

22 Requirement A requirements text is de-
fined

Query the Modeller to input a new
text for the Requirement

2http://www.autosar.org
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ID Meta Class Property Definition Proposed Action

24 Requirement Is satisfied No action, Modeller has to repair the
property

26 Mode A condition has been de-
fined

Query the Modeller to input a new
condition for the Mode

3 FeatureFlaw At least one Hazard is iden-
tified

Choose one existing Hazard that will
be assigned to the FeatureFlaw

4 FeatureFlaw Associated with at least one
Item

Choose one existing Item and assign
it to the element

5 FeatureFlaw A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

6 Hazard At least one FeatureFlaw is
associated

Choose one existing FeatureFlaw
and assign it to the Hazard

7 Hazard At least one Item is associ-
ated

Choose one existing Item and assign
it to the element

8 Hazard At least one HazardousEv-
ent has been identified

Choose one existing HazardousEvent
and assign it to the Hazard

9 Hazard A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

10 HazardousEvent At least one Hazard is asso-
ciated

Choose one existing Hazard and as-
sign it to the HazardousEvent

11 HazardousEvent At least one UseCase is as-
sociated

Choose one existing UseCase and as-
sign it to the HazardousEvent

12a HazardousEvent
At least one SafetyGoal is
associated if ASIL greater
than QM

Choose an existing SafetyGoal and
assign it to the HazardousEvent

13 HazardousEvent Associated with at least one
OperationalSituation

Choose one existing OperationalSitu-
ation and assign it to the Hazardou-
sEvent

14 HazardousEvent
ASIL has been correctly de-
rived from Controllability,
Severity and Exposure

Set the ASIL of the HazardousEvent
to the calculated value

17 HazardousEvent Classification assumptions
have been defined

Query the Modeller to input a new
text for the classification of the Haz-
ardousEvent

25 HazardousEvent Associated with at least one
Mode

Chooses one existing Mode and as-
sign it to the HazardousEvent

15 SafetyGoal A HazardousEvent is asso-
ciated

Choose one existing HazardousEvent
and assign it to the SafetyGoal

16 SafetyGoal A safe state is defined Query the Modeller to input a new
safe state for the SafetyGoal



70 CHAPTER 5. CASE STUDY

ID Meta Class Property Definition Proposed Action

18 SafetyGoal
The ASIL has been cor-
rectly derived from associ-
ated HazardousEvents

Set the ASIL of SafetyGoal the to
the derived value

20 OperationalSituation A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

28 SafetyGoal At least one safety require-
ment is derived

Choose one existing Requirement
and assign it to the SafetyGoal

30 QualityRequirement

Is allocated to at least
one AnalysisFunctionPro-
totype, if it is a safety re-
quirement

Choose one existing AnalysisFunc-
tionPrototype and assign it to the
QualityRequirement

32 Environment An environmentModel is
defined

Choose one existing FunctionProto-
type and assign it to the Environ-
ment

34 AnalysisLevel A functionalAnalysisArchi-
tecture has been defined

Choose one existing FunctionalAnal-
ysisArchitecture and assign it to the
AnalysisLevel

39 FunctionFlowPort

Has at most one Function-
Connector to a Function-
FlowPort of type out or in-
out associated, if type in

No action, Modeller has to repair the
property

40 FunctionPort A type is defined Choose one existing EADatatype
and assign it to the element

40c FunctionPort A complementary descrip-
tion has been defined

Query Modeller to input a new de-
scription for the element or set a
default description

40b FunctionConnector Connector is connected to
two FunctionPorts

Query Modeller to input a new de-
scription for the element or set a
default description

41 AnalysisFunction-
Prototype A type is defined Choose one existing EADatatype

and assign it to the element

42 AnalysisFunction-
Prototype

Has a complementary de-
scription

Query Modeller to input a new de-
scription for the element or set a
default description

42a AnalysisFunction-
Prototype

An ErrorModelPrototype
is defined for every
AnalysisFunction-
Prototype

Choose one existing ErrorModel-
Prototype and assign it to the
AnalysisFunctionPrototype

42b AnalysisFunction-
Type

An ErrorModelType is de-
fined for every Analysis-
FunctionType

Choose one existing ErrorModel-
Type and assign it to the Analysis-
FunctionType
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ID Meta Class Property Definition Proposed Action

48 FaultInPort
Has only one FaultFailure-
PropagationLink to a Fail-
ureOutPort associated

No action, Modeller has to repair the
property

51 FaultFailurePort A functionTarget_path is
defined

Choose one existing FunctionProto-
type and assign it to the FaultFail-
urePort

51a FaultFailurePort A type is defined Choose one existing EADatatype
and assign it to the element

52a FailureOutPort Has a complementary de-
scription

Query Modeller to input a new de-
scription for the element or set a
default description

53 ErrorModel-
Prototype A type is defined Choose one existing EADatatype

and assign it to the element

54 ErrorModel-
Prototype A functionTarget is defined

Choose one existing FunctionProto-
type and assign it to the ErrorMod-
elPrototype

55 ErrorBehavior An externalFailure is de-
fined

Choose one existing FailureOutPort
and assign it to the ErrorBehavior

57 ErrorBehavior An owner is defined
Choose one existing ErrorModel-
Type and assign it to the ErrorBe-
havior

58 InternalFault-
Prototype

Has a complementary de-
scription

Query Modeller to input a new de-
scription for the element or set a
default description

59 InternalFault-
Prototype

Is owned by at least one
ErrorBehavior

Choose one existing ErrorBehavior
and assign it to the InternalFault-
Prototype

60 VehicleFeature
Every function is allocated
to at least one Analysis-
FunctionPrototype

Choose one existing AnalysisFunc-
tionPrototype and assign it to the
VehicleFeatureAllocated

63 EABoolean A note is defined Query the Modeller to input a new
text for the note

64 RangeableDatatype A note is defined Query the Modeller to input a new
text for the note

65 EAFloat The lower threshold is de-
fined

No action, Modeller has to repair the
property

66 EAFloat The upper threshold is de-
fined

No action, Modeller has to repair the
property

Table 5.1: Implemented properties and proposed Actions in
CDL, properties from [MGL+11] and [MAL+11]
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5.3 In-Depth Example: ’’A Requirement is satisfied’’ on
VehicleFeature

To demonstrate the capabilities of the framework, the property 23 ’’A Requirement is
satisfied’’ for the EAST-ADL2, element ’’VehicleFeature’’ is presented in detail here. The
property describes that an instance of the class VehicleFeature has to have a realize-
relationship to an instance of the class Requirement. In the EAST-ADL2 meta-model,
this connection is implemented as follows: Satisfy contains a realization-connector that
connects two UML classes with each other. These two UML classes are contained in
an instance of the class Requirement and an other class VehicleFeature. The relation is
schematically depicted in Figure 5.2.

Satisfy

Realization

Class

VehicleFeature Requirement

base_Class

base_Class

client

supplier

base_Realization

Figure 5.2: Relation of the class VehicleFeature with the class Requirement

The Criterion to fulfill this property is presented in Listing 5.1. To check this property,
all instances of the class Satisfy, that contain a Realization, as well as all instances of
Requirement that contain a Class, are stored temporarily. In the next step, the EOL
functions exists and includes are used to check if there is one Realization that fulfills the
Criterion.

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // Property ID 23 − Vehic l eFeature −− A Requirement i s s a t i s f i e d
3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 c l a s s i f i e r : Veh i c l eFea tur eSa t i s f i e sRequ i r ement
5 {
6 model : RecuperationModel
7 d e s c r i p t i o n : " Checks property 23 , ’A Requirement i s s a t i s f i e d ’ "
8 s e v e r i t y : WARNING
9

10 c r i t e r i o n :
11 {
12 language : EOL
13 cond i t i on : " check {
14 var s a t i s f y = S a t i s f y . a l l I n s t a n c e s ( ) . s e l e c t (
15 s | s . base_Real i zat ion . i s D e f i n e d ( ) ) ;
16

17 var requi rements = Requirement . a l l I n s t a n c e s ( ) . s e l e c t (
18 r | r . base_Class . i s D e f i n e d ( ) ) ;
19

20 var s a t i s f i e s = s a t i s f y . s e l e c t (
21 c | requ i rements . e x i s t s (
22 r | c . base_Real i zat ion . s u p p l i e r . i n c l u d e s ( r . base_Class )
23 and c . base_Real i zat ion . c l i e n t . i n c l u d e s ( s e l f . base_Class ) ) ) ;
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24

25

26 re turn not s a t i s f i e s . isEmpty ( ) ;
27 } "
28 }

Listing 5.1: Implementation of property 23 from Table 5.1: declaration of the Classifier
and Criterion

The corresponding Action of the Classifier presents a list of all requirements to the
Modeller and lets him choose one that is further connected to the current VehicleFeature,
as presented in Listing 5.2. Line 6 to 30 is the code to retrieve a list of all instances of
one type, transform it to a list of strings, and present it to the user to select one. In a
further release of the CDL framework, this code should be encapsulated into a CDL library
function, since it was used slightly modified in several Classifiers. From line 31 on, the base
Realization- and Satisfy classes are created and connected to the corresponding elements.

1 ac t i on :
2 {
3 name : " AssignVehicleFeatureToRequirement "
4 d e s c r i p t i o n : " Ass igns the Vehic l eFeature to one g iven Requirement "
5 {
6 language : EOL
7 cond i t i on :
8 " do {
9 var requi rements = Requirement . a l l I n s t a n c e s ( ) ;

10 var requirementNames : Set ;
11

12 f o r ( requirement in requi rements )
13 {
14 i f ( requirement . name <> ’ ’ )
15 requirementNames . add ( requirement . name) ;
16 e l s e
17 requirementNames . add ( ’Anonym Requirement ’ ) ;
18 }
19

20 var newRequirementName = System . user . choose
21 ( ’ Which Requirement should be connected to $CONTEXT$? ’ ,
22 requirementNames ) ;
23

24 i f ( not newRequirementName . i s D e f i n e d ( ) )
25 re turn ;
26

27 var newRequirement = requirements . s e l e c t
28 ( requirement : Requirement |
29 requirement . name = newRequirementName ) . f i r s t ( ) ;
30

31 var r e a l i z a t i o n = new uml : : R e a l i z a t i o n ;
32 r e a l i z a t i o n . name = ’From_ ’ . concat ( s e l f . name)
33 . concat ( ’_to_ ’ )
34 . concat ( newRequirementName ) ;
35

36 r e a l i z a t i o n . s u p p l i e r = new Set ;
37 r e a l i z a t i o n . c l i e n t = new Set ;
38

39 r e a l i z a t i o n . c l i e n t . add ( s e l f . base_Class ) ;
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40 r e a l i z a t i o n . s u p p l i e r . add ( newRequirement . base_Class ) ;
41

42 var s a t i f i e s = new S a t i s f y ;
43 s a t i f i e s . base_Real i zat ion = r e a l i z a t i o n ;
44 } "
45

46 }
47 }

Listing 5.2: Action for property 20 from Table 5.1: query the user for an existing requirement
and assign it to VehicleFeature.

5.4 Results

Category CDL Framwork Property Checker

Decoupling
+ Decoupled from the gener-

ating editor
− Integrated into the Pa-

pyrus editor, applicable for
EAST-ADL2 models

Execution Per-
formance

− ~2 seconds on the develop-
ment machine

+ ~200 ms on the develop-
ment machine

Development
Time

+ The case study was imple-
mented in 25 man hours

Not applicable

Extensibility + Extensible due to the use of
JAVA and EOL

Not applicable

Development
of Constraints

+ Testable directly on the in-
stance model − Recompiling the plugin

Table 5.2: Comparison of the different prototypes to check
constraints on the EAST-ADL2 meta-model

In order to make a statement on the benefits of the CDL framework, the results of this
case study are compared to the prototypical implementation of the property checker of
Mader et al. A comparison of the different prototypes can be found in Table 5.2.

One strength of the CDL framework is the separation between the model editor and
the definition of the constraints. In the property checker from Mader et al., changing the
properties would lead to a redeployment of the plugin, in the CDL framework change can
be easily made using the provided editors.

A drawback of the CDL framework is the execution performance: the CDL framework
has to read the entire domain instance model every time the constraints are executed.
Other approaches, intended to be used with the model editor, can directly operate on the
already loaded instance model. On the development machine, the whole case study (69
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properties, 46 classifier, 390 objects to check, 2300 lines of CDL code) took around two
seconds for every execution. The property checker of Mader et al., in comparison, took
around 200ms to check the properties. The overhead of the CDL framework can be roughly
divided into reading the instance model ( 80%) and executing the Classifiers ( 20%).

A positive aspect of the CDL framework is the integration of different, specialised
constraint languages. EOL or OCL allows the definition of constraints more productively
due to the use of built-in set theory operators, such as exists or for all. This results in less
time to create the constraints, it took 25 man-hours to implement the case study.

Another aspect in favor of the CDL framework is, that in contrast to the property
checker of Mader et al., constraints can be directly developed on the current instance
model. The plugin does not have to be compiled and deployed every time the constraints
change. Furthermore, the graphical representation is a beneficial tool to gain an overview
of the constraints, as depicted in Figure 5.3.

5.4.1 Lesson Learned

The approach of directly checking textual constraint expressions that are declared inline,
scales up to a certain number of Classifiers. In the case of the EAST-ADL2 meta-model,
there should be a separate file for each abstraction level, to keep the number of Classifiers
that need to be syntactically checked smaller.
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Chapter 6

Conclusion and Future Work

6.1 Evaluation with Respect to the Requirements

In Section 2.6, were defined; which were based on the literature research that was conducted.
In this section, the compliance of the CDL framework to the defined requirements is
presented.

RQ1: The constraint mechanism shall be based on MOF in order to be appli-
cable to all models, no assumption should be made on the editor creating the
model. The CDL framework is based on Ecore, the implementation of EMOF in Eclipse.
Therefore, the framework can be used to constrain all domain instance models that are
defined using an domain meta-model that was defined using Ecore. Furthermore, the CDL
framework does not make any assumptions of the editor used to create the domain instance
model (c.f. Section 3.2).

RQ2: The constraint mechanism shall be extensible to support models from
different abstraction levels in order to support vertical consistency checking.
Due to the usage of JAVA and EOL as constraint languages, models from different
abstraction levels can be used as input data to define the constraints (c.f. Section 3.2).

In the case study presented in this thesis, vertical consistency of different artefacts
within the EAST-ADL2 meta-model was shown (c.f. Section 5.3).

RQ3: The constraint mechanism shall be able to integrate existing consistency
approaches, such as those presented in Section 2.5 in order to reuse existing
effort. In the prototypical implementation of the CDL framework, three different con-
straint languages, namely OCL, EOL and JAVA, were implemented. To integrated another
constraint languages or constraint-defining approaches, the Tool Smith has to implement
the well-defined interfaces that are used by the CDL Execution Engine and the Xtext
editor (c.f. Section 4.3.4).

RQ4: The constraint mechanism shall support the processing of information
from outside the model in order to allow the definition of semantic constraints.
The CDL framework can use data from outside the model, such as the result of an

77
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interactive query or data from a database, to define constraints. The use of JAVA and
EOL as constraint language does not restrict the Tool Smith to information from the model
(c.f. 3.2).

RQ5: The constraint mechanism shall be implemented using an open-source
modeling tool in order to be validated by others as well. The CDL framework
was implemented as an Eclipse plugin, using other open-source plugins such as Xtext or
Graphiti (c.f. Section 2.3).

RQ6: The constraint mechanism shall support the Modeller in repairing his
instance model. With the possiblity of augmenting constraints with Actions, the Tool
Smith can provide repair mechanisms to the Modeller. These Actions can query data from
the user, open documentation or repair the model using predefined functionality. All the
changes of the model can be undone since they are executed within an EMF EditingDomain
(c.f. Section 3.3.2).

6.2 Summary

The CDL framework provides an extensible way to define constraints in a model-based
development environment. As a novel feature, the framework takes the different roles in
the development process into consideration. The framework is designed for three roles: the
Tool Smith creates the classifiers since he has the knowledge of the domain meta-model; the
Domain Expert combines the classifier into constraint groups and assigns them to elements
in the meta-model; and the Modeller applies the constraints on the domain instance model
and executes the corresponding Actions when constraints are violated.

Another novel feature of the CDL framework is a reduced language, both textual and
graphical, to assign constraints to elements in the domain meta-model, in this way allowing
the Domain Expert and the Modeller to define constraints without requiring deep knowledge
of the underlying meta-model. The Tool Smith on the other hand, has the possibility of
reusing constraints due to mechanisms such as macros and context-independent Classifiers.

The feasibility of this approach has been shown by implementing a subset of properties
from [MGL+11]. The implemented constraints utilize the strength of the different constraint
languages and allow interactive fixing Actions.

6.3 Future Work

The CDL framework does not make any assumption on the editor creating the model.
However, in the Eclipse platform the creating editors provide functionality that is already
implemented in the CDL framework, such as maintaining the EditionDomain or the
resource management. Furthermore, the case study showed that in bigger models, 80% of
the execution time is used to read the instance model.

In order to keep the decoupled nature of the CDL framework but eliminate this perfor-
mance overhead, an extension point could be provided by the CDL Execution Engine that
model-creating editors can use to share their models with the CDL framework. In that
sense, the framework would still be decoupled, but the need to read the complete model
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each time would be removed.

Further potential for improvements was identified during the case study: certain func-
tionality, such as querying the Modeller for the correct element or creating an element
with a default value, was often used. Therefore, besides the possibility of defining textual
macros, the CDL framework should provide a ’’standard’’ library of such reusable and
parametrized commands.

A more implementation-oriented improvement would be to decouple the integration of
the different constraint languages completely and provide them using a package-based
extension mechanism. E.g. there could be an OCL or an EOL jar file that includes
everything needed to provide the functionality. These packages would then be registered
in the CDL framework and loaded at runtime. This mechanism would allow complete
independence of the CDL framework and the constraint language interpreters.
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Figure A.1: Syntax tree for the CDL EBNF grammar



Bibliography

[DH04] Karsten Diethers and Michaela Huhn. Vooduu: Verification of Object-Oriented
Designs Using UPPAAL. In Kurt Jensen and Andreas Podelski, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume
2988 of Lecture Notes in Computer Science, pages 139--143. Springer Berlin /
Heidelberg, 2004. 10.1007/978-3-540-24730-2_10.

[EAS10] EAST-ADL Domain Model Specification, 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995.

[Gro09] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley, Upper Saddle River, NJ, 2009.

[Gro11] Object Management Group. Meta Object Facility, 2011.

[Gro12a] Object Management Group. Object Constraint Language (OCL), 2012.

[Gro12b] Object Management Group. The Architecture of Choice for a Changing World,
2012.

[HKRS05] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio, and Jean Sourrouille. Consis-
tency Problems in UML-Based Software Development. In Nuno Jardim Nunes,
Bran Selic, Alberto Rodrigues da Silva, and Ambrosio Toval Alvarez, edi-
tors, UML Modeling Languages and Applications, volume 3297 of Lecture
Notes in Computer Science, pages 1--12. Springer Berlin / Heidelberg, 2005.
10.1007/978-3-540-31797-5_1.

[ISO09] Road vehicles - Functional safety - Part 3: Concept phase, 2009.

[Kle08] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[KPP06] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Object
Language (EOL). In Arend Rensink and Jos Warmer, editors, Model Driven
Architecture – Foundations and Applications, volume 4066 of Lecture Notes
in Computer Science, pages 128--142. Springer Berlin / Heidelberg, 2006.
10.1007/11787044_11.

83



84 BIBLIOGRAPHY

[Kra12] Markus Krallinger. Contraints for a Functional Safety Analysis in CDL.
Master Project at the Institute for Technical Informatics, Graz University of
Technology, May 2012.

[LCM+03] C. Lange, M. R. V. Chaudron, J. Muskens, L. J. Somers, and H. M. Dortmans.
An empirical investigation in quantifying inconsistency and incompleteness
of uml designs. In Incompleteness of UML Designs”, Proc. Workshop on
Consistency Problems in UML-based Software Development, 6 th International
Conference on Unified Modeling Language, UML 2003, 2003.

[LMT09] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A systematic review
of UML model consistency management. Inf. Softw. Technol., 51:1631--1645,
December 2009.

[MAL+11] Roland Mader, Eric Armengaud, Andrea Leitner, Christian Kreiner, Quentin
Bourrouilh, Gerhard Grießnig, Christian Steger, and Reinhold Weiß. Computer-
Aided PHA, FTA and FMEA for Automotive Embedded Systems. In Francesco
Flammini, Sandro Bologna, and Valeria Vittorini, editors, Computer Safety,
Reliability, and Security, volume 6894 of Lecture Notes in Computer Science,
pages 113--127. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-24270-
0_9.

[MCF03] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest Editors’
Introduction: Model-Driven Development. IEEE Software, 20:14--18, 2003.

[MGL+11] R. Mader, G. Griessnig, A. Leitner, C. Kreiner, Q. Bourrouilh, E. Armengaud,
C. Steger, and R. Weiss. A Computer-Aided Approach to Preliminary Hazard
Analysis for Automotive Embedded Systems. In Engineering of Computer Based
Systems (ECBS), 2011 18th IEEE International Conference and Workshops
on, pages 169 --178, April 2011.

[MM06] H. Malgouyres and G. Motet. A UML model consistency verification approach
based on meta-modeling formalization. In Proceedings of the 2006 ACM
symposium on Applied computing, SAC ’06, pages 1804--1809, New York, NY,
USA, 2006. ACM.

[NEF03] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with
repair actions. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 455 -- 464, May 2003.

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst
Ellmer. Flexible Consistency Checking. ACM Trans. Softw. Eng. Methodol.,
12:28--63, January 2003.

[NER00] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency in software
development. Computer, 33(4):24 --29, April 2000.

[OJS05] Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, and Jeanine Souquières.
Consistency in UML and B Multi-view Specifications. In Judi Romijn, Graeme



BIBLIOGRAPHY 85

Smith, and Jaco van de Pol, editors, IFM, volume 3771 of Lecture Notes in
Computer Science, pages 386--405. Springer, 2005.

[Str05] Ragnhild Van Der Straeten. Inconsistency Management in Model-Driven
Engineering. PhD thesis, Vrije Universiteit Brussel, 2005.

[SZ01] George Spanoudakis and Andrea Zisman. Inconsistency management in software
engineering: Survey and open research issues. In in Handbook of Software
Engineering and Knowledge Engineering, pages 329--380. World Scientific,
2001.

[WGN03] Robert Wagner, Holger Giese, and Ulrich Nickel. A Plug-In for Flexible and
Incremental Consistency Management. Technical report, 2003.

[ZLQ06] Xiangpeng Zhao, Quan Long, and Zongyan Qiu. Model Checking Dynamic
UML Consistency, 2006.


