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Abstract

In this thesis we present a human-inspired visual servoing approach for automatic take-off, hov-

ering, and landing of Micro Aerial Vehicles (MAVs), suitable for indoor and outdoor applications.

Our approach is based on a Position-Based Visual Servoing (PBVS) technique. Therefore, we use

only a monocular camera looking in flight direction as an input sensor. Based on a state-of-the-art

monocular Simultaneous Localization And Mapping (SLAM) approach, we estimate the position

of the MAV in the environment. For the initialization of the map, we extend the algorithm by

exploiting an artificial marker to obtain the correct scale. Additionally, we incorporate a fuzzy

logic design in order to get a robust position control without the need of a mathematical model

of the MAV. We show that this controller tolerates noisy pose estimates without incorporating ad-

ditional sensor measurements. In the experiments, we demonstrate that our approach achieves a

performance comparable to several state-of-the-art approaches for hovering and during trajectory

flights, but without the need for sensor fusion or specific mathematical models. Furthermore, we

demonstrate that even low camera resolutions deliver a pose estimate which can be used for au-

tonomous MAV navigation tasks. Finally, we discuss how to detect system failures and how to

react in indoor as well as outdoor environments. Our approach is useful for a variety of MAV

applications, including the autonomous inspection of power pylons where take-off, hovering, and

landing of MAVs is essential.

Keywords: Visual Servoing, VSLAM, Fuzzy Logic, Micro Aerial Vehicle, Hovering, Take-off,

Landing, Pose Estimation, Inspection.
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Kurzfassung

In dieser Abschlussarbeit präsentieren wir einen vom Menschen inspirierten Visual Servoing

Ansatz für das automatische Starten, Schweben und Landen von kleinen, unbemannten

Flugobjekten, sogenannten Micro Aerial Vehicles (MAVs). Unser Ansatz kann sowohl in

Räumen als auch draußen in freier Natur zum Einsatz kommen. Der Algorithmus beruht

auf der Position-Based Visual Servoing (PBVS) Technik, bei der nur eine einzige Kamera

als Input-Sensor verwendet wird. Mit Hilfe aufgenommener Bilder der Umgebung wird

die Position des MAV anhand einer aktuellen bildbasierten Simultaneous Localization And

Mapping (SLAM) Methode zur gleichzeitigen Lokalisierung und Kartenerstellung berechnet.

Um eine metrische Skalierung zu erhalten, initialisieren wir die Kartenerstellung mittels einem

künstlichen Marker. Des Weiteren haben wir einen Fuzzy-Logic-Regler entworfen, welcher

kein mathematisches Modell des MAV voraussetzt und eine robuste Kontrolle der Position

ermöglicht. Wir zeigen, dass dieser Positionsregler ohne zusätzliche Sensoren mit dem Rauschen

der visuellen Positionsbestimmung umgehen kann. In den Experimenten demonstrieren wir,

dass vergleichbare Ergebnisse zu aktuellen Forschungsansätzen beim Schweben und Abfliegen

von Trajektorien erzielt werden, jedoch ohne Einbindung von zusätzlichen Sensoren oder

spezieller mathematischer Modelle, die auf das MAV zugeschnitten sind. Zusätzlich zeigen wir,

dass bereits mit einer geringen Kameraauflösung die Position bestimmt werden kann und damit

eine autonome Navigation des MAV möglich ist. Außerdem erläutern wir, wie Systemfehler

detektiert werden können und wie diese in Räumen und in freier Natur behandelt werden. Unser

Ansatz ist für eine Vielzahl von Anwendungen nützlich, bei denen das Starten, Schweben

und Landen eine wichtige Rolle spielen – beispielsweise bei der autonomem Inspektion von

Hochspannungsmasten mit einem MAV.

Stichworte: Visual Servoing, VSLAM, Fuzzy-Logic-Regler, Unbemanntes Flugobjekt,

Schweben, Starten, Landen, Posenbestimmung, Inspektion.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

An Unmanned Aerial Vehicle (UAV ) is an airborne machine or robot which is controlled remotely

by a navigator or autonomously by preprogrammed flight plans. In recent years, autonomous

UAVs have become a field of active research. Nowadays there is a wide variation of UAV shapes,

sizes and characteristics. A UAV subclass is the Micro Aerial Vehicle (MAV ), which is restricted

in size and weight. For the autonomous flight of UAVs, automatic take-off and landing are critical

phases. The take-off phase is defined as the start of the UAV from ground or from a starting

platform until the aircraft reaches a certain height. The landing phase describes how the UAV gets

back from the air onto the ground- or landing platform. In this case, it is of particular importance

to touch the ground gently in order to avoid damage of the aircraft. Some types of UAVs, such as

helicopters are capable of hovering, which means holding a constant position in the air. From a

controller point of view hovering is a challenging task because of the unstable system dynamics.

1.1 Motivation

With UAVs becoming popular, a wide field of application has opened. UAVs are used not only

in military applications but also for civil purposes, for instance when it is too dangerous for hu-

mans to perform a certain task. Scenarios where UAVs are employed include chemical accidents,

firefighting missions and explosives defusing [1–3]. Another application is the field of inspection

and surveillance, for example monitoring of oil and gas pipelines, large crowds or power lines and

power pylons [4–6].

1



2 Chapter 1. Introduction

This thesis is part of the PEGASUS project at Graz University of Technologies which aims at the

autonomous inspection of overhead power lines. Today, the inspection of overhead power lines

is performed by an inspector from the ground if the power pylons are easily accessible. In this

case the inspector thoroughly checks the high voltage insulators on the power pylon and inspects

the power lines using binoculars. However, if the power pylons are placed remotely from infras-

tructure, the inspection is performed using helicopters as shown in Figure 1.1. The goal of the

visual inspection is to find failures on the power lines and insulators such as sagging spans, bro-

ken or slack stay wires, broken or chipped insulators or discoloration due to corroded joints [6].

This process is very time consuming, dangerous, expensive and requires expert knowledge of the

inspector.

Inspector

Figure 1.1: Traditionally power line and power pylon inspection is done by a helicopter.

The survey can also be done using camera equipped UAVs which also allow for an autonomous

inspection based on computer vision algorithms. Compared to the traditional inspection process,

this approach has several advantages. Since UAV flights are much more cost effective, an

aerial vehicle can spend more time on the inspection of a particular power pylon. In contrast to

traditional helicopters UAVs can fly closer to the object under inspection to perform a more

sophisticated survey and documentation.

For automatic vision based inspection, several tasks are required [7]. First, continuous pose

estimation is necessary to navigate the UAV during the inspection task. Second, object

identification needs to be performed to find the object under inspection. Finally, when the desired

object is found in the scene, specific algorithms are used to assess different object properties such

as shape and surface condition. All of these tasks are performed using image processing and

computer vision algorithms.

The benefits of computer vision systems are cost reduction, increased processing speed,

reproducible results and the fact that expert knowledge is used as prior information and is no

longer needed during inspection. Due to these advantages, the vision-based inspection with
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autonomous UAVs has the potential to replace the cost intensive conventional inspection.

However, there are several challenges to overcome, like illumination changes, a wide variety of

possible object shapes and sizes as well as the vast number of possible failures.

In general, all autonomous flight applications require sophisticated mechanisms for

automatic take-off, hovering and landing, since these are the critical flight phases. This thesis

presents a robust visual servoing system that can be used for the control of an autonomous UAV

during these phases.

1.2 Project Goals and Contributions

The goal of our work is to develop a system for taking-off, hovering, navigating and landing

an MAV solely based on visual input. The system needs to be capable of handling indoor and

outdoor environments, it needs to operate based on natural features and it needs to be robust

towards measurement and feature uncertainties.

Position Based Visual Servoing. The main contribution of this work is a Position-Based Visual

Servoing (PBVS ) system which allows a fully autonomous and robust control of an MAV , solely

based on visual input data. The image sequences received from a single, monocular camera are

used to determine the position in 3-dimensional space, and this position is used as an input for

the control loop. The camera is mounted on the MAV looking forward rather than on the ground,

which has the benefit that the captured images can also be used for inspection tasks.

Vision Based Pose Determination. An adapted state-of-the-art Visual Simultaneous Localiza-

tion and Mapping (VSLAM ) framework is used to generate a sparse, metrically scaled map of a

local environment. This allows the MAV to localize itself in the region where the take-off and

landing should be performed.

Human Inspired Position Control. The control of the MAV is inspired by the way a human

being would control it. This has several advantages: First, there is no need for a mathematical

description of the controlled system. Second, no model of the MAV physics is required. Finally,

our approach yields a simple and intuitive control design with low implementation complexity and

low computational costs.
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Error Handling. In order to allow for a reliable operation the system implements mechanisms

to deal with various error scenarios such as missing visual input data, pose estimation errors, or

general hardware failures.

In the following, an overview of the field of UAV navigation is presented. This

includes a brief review of the different possible sensor modalities with a focus on visual servoing

systems. Furthermore, mechanisms for pose estimation are discussed and evaluated. Chapter 2

concludes with an introduction to control theory, focusing on fuzzy logic control. The system

components (regarding hardware and software) are discussed in detail in Chapter 3. Chapter 4

presents a detailed description of the implemented mechanisms for pose estimation and control

that are used for autonomous take-off, hovering and landing of the MAV . This chapter also

discusses possible system failures and the suggested countermeasures. The implemented system

is evaluated by a series of experiments, which are presented in Chapter 5, including simulation

results as well as indoor- and outdoor flights. The thesis concludes with a summary and an

outlook to possible future research in Chapter 6.



Chapter 2

Related Work

Contents
2.1 Sensing Techniques for Perception and Control . . . . . . . . . . . . . . . . 5

2.2 Visual Servoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Visual Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A variety of algorithms for perception and control on autonomous aerial vehicles have been pro-

posed. These techniques mainly differ by the available and sensors which are used. We would like

to differentiate between vision-based sensors, and sensors which do not use visual data. These

include Global Positioning System (GPS ) sensors, Inertial Measurement Unit (IMU ) sensors,

compasses, air pressure sensors, and ultrasonic sensors. Furthermore, different sensors can be

fused so that several sensors are combined to a single fused measurement.

2.1 Sensing Techniques for Perception and Control

First, we give an overview of different autonomous flight approaches with different sensing

techniques. In [8] the primary navigation sensor is GPS . The goal in this work is to make a UAV

autonomously hover using a GPS receiver with four antennas. The system is able to estimate the

position at a rate of 10 Hz, resulting in a position accuracy in the range of a few meters. However,

GPS based systems tend to drift over time and the accuracy depends strongly on the number of

available satellites. Moreover, an accuracy in the range of a few meters is not sufficient for the

autonomous survey in the vicinity of obstacles. A combination of GPS and IMU is shown in [9]

for an autonomous flight control system that is able to move along predefined waypoints. The

UAV is controlled by a ground-station connected by a wireless link. The ground-station plans the

5
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flight trajectory and sends the UAV from one GPS waypoint to the next. The presented results

show an acceptable accuracy in the range below one meter while hovering, but for an aircraft

which operates in much higher altitudes where no obstacles can arise than what we aim for. In

the case that the UAV flies near the ground more obstacles are present and a higher precision is

necessary. However, the paper lacks a complete evaluation along a predefined trajectory.

Another possible sensor for autonomous flights is the Laser Range Finder (LRF ) as

used in [10–12]. There, the LRF is used for Simultaneous Localization and Mapping (SLAM ).

In addition to that, the LRF is also used as distance sensor for obstacle avoidance. In case of an

obstacle in the planned path, an on-line path correction is performed. The SLAM approach has

become very popular in the field of robotics, and there are several approaches that combine LRFs

with other sensors such as odometry [13]. The drawback of LRF based SLAM approaches is that

they do not allow a sophisticated object inspection and the time for scanning an entire volume

in an outdoor environment is considerably higher than using cameras. Furthermore, long range

LRFs contradict to the limited payload constraint of UAVs.

Combined color and depth cameras, Red-Green-Blue-Depth (RGB-D ), have success-

fully been used to control a UAV ’s altitude [14]. An RGB-D camera provides a color image,

while for each pixel the depth is estimated using pattern projection of Infrared (IR ) points. This

sensor has become very popular and affordable, thanks to the Microsoft Kinect game controller.

Huang et al. [15] show an autonomous UAV flight in an unknown environment based on such an

RGB-D camera. The approach is additionally able to generate a detailed 3D reconstruction of the

environment. However, the RGB-D camera cannot be used for outdoor application because of the

IR sensor.

Most of the listed sensors either drift over time, yield unsatisfactory accuracy for

MAV navigation or cannot be used in outdoor applications. For sensors with high accuracy, such

as the LRF , the physical dimensions get rather big, which has the effect that they cannot be

employed to MAVs because of a limited payload. From this point of view, vision-based systems

have several advantages: They do not drift over time, are cheap, have small construction size and

thus little weight and have low power consumption. Furthermore, a single sensor is able to detect

motion in six Degrees of Freedom (DoF ), and yields a higher precision compared to low-cost

GPS sensors.



2.2. Visual Servoing 7

The advances in computer vision over the last years opened a wide field of applica-

tions where high accuracy is necessary. Considering the project goals, take-off, hovering and

landing which are introduced in Chapter 1 and the advantages of vision based systems listed

above, visual servoing is preferable for autonomous navigation of UAVs. The next section

presents an more in-depth discussion of visual servoing systems.

2.2 Visual Servoing

Visual servoing techniques use visual input to control the motion of a robot [16, 17]. The input

data can be obtained by a monocular or a multi camera system, mounted on a robot (eye-in-hand)

or by a fixed system (eye-to-hand). Visual servoing is an interdisciplinary combination of

computer vision and control theory. One of the first papers in the field of visual servoing was

published by Hill and Park [18] in 1979. A more recent overview on this topic is given by

Chaumette and Hutchinson [16].

From a mathematical point of view, visual servoing is a general error minimization

problem [3] using visual input. The goal is to minimize the error

e(t) = s∗ − s(t), (2.1)

where s∗ is the desired system state and s(t) is a measured system quantity representing the

current state of the system. Usually,

s(t) = s(m(t),a), (2.2)

which means that the system state is obtained from image measurements m(t) and additionally

depends on a set of parameters a. The motion of the robot is controlled such that the deviation

between the current and desired system state, e(t) is minimized. In general there are two different

types of visual servoing, namely Image-Based Visual Servoing (IBVS ) and Position-Based Visual

Servoing (PBVS ) which are discussed in the following paragraphs.

2.2.1 Image-Based Visual Servoing

The IBVS concept directly uses 2D image information to control the motion of a robot. Therefore,

s(t) is directly based on measurements m(t) taken from the image plane. For this reason s(t)

can be interpreted as image features. The parameter set a consists of intrinsic parameters of the



8 Chapter 2. Related Work

camera(s). The error e(t) can be expressed as the difference between the desired features fd and

currently extracted features fc(t),

e(t) = fd − fc(t). (2.3)

The block diagram in Figure 2.1 visualize this principle. The IBVS concept is a teach by showing

technique, which means that a target image taken from the desired position is required. Using this

image, features are extracted and compared to the current image features to compute the error e(t)

that serves as controller input.

+

-
Controller

Feature 

extraction

Feature 

extraction

Reference image

fd e(t)

fc(t)

Figure 2.1: The IBVS concept. Features extracted from every taken image are continu-
ously compared to the features of the reference image on the left-hand side.
The difference e(t) serves as input to the controller.

The motion control of the robot is done in such a way that the current features in the image plane

attain the position of the desired features. For this reason, it is necessary to describe how the image

features f(x) change when the position and orientation x of the camera changes. This description

is given by the Jacobian matrix J which is defined as

J(x) =


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xl

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xl

...
...

. . .
...

∂fk(x)
∂x1

∂fk(x)
∂x2

. . . ∂fk(x)
∂xl

 . (2.4)

This matrix consists of k features f1 . . . fk (number of rows) and l velocity parameters x1 . . . xl

(number of columns). Using the Jacobian matrix the system dynamics can be written as

df

dt
= Jẋ = Jv, (2.5)

where v denotes the robot’s velocity.

In recent years, IBVS approaches have become popular in autonomous UAV appli-
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cations. Since the approaches differ in type of aircraft, sensor used modalities, and image

processing techniques, a comparison of different systems is difficult. Moreover, there is no

standardized way for comparing system accuracy.

Azinheira and Rives [19] present a system for an automatic flight along predefined

trajectories, which are indicated by lines on ground. The image features are selected in a way

that enables a decoupling of rotational and translational control. This allows to separate lateral

and longitudinal motion of the UAV . The evaluation of the approach is performed in a simulation

framework and yields an accuracy in the range of several meters. However, no outdoor results

with real-world data are presented. Mejias et al. [4] present a real-time system for UAV control

using the IBVS approach in urban areas. The initialization is performed from a ground station by

manual feature selection while the helicopter is hovering in front of a building. This approach

uses the Lucas-Kanade tracker [20, 21] as a real-time feature tracking algorithm, which provides

a certain robustness against uncertainties in the captured images.

In [22], Goncalves et al. use Euclidean homographies computed between subsequent

images for controlling an aircraft in the approach and landing phase. This system employs

trajectory planing in the image space and performs an interpolation between subsequent

key-frames. The approach is validated using a simulator environment; however, no real-world

experiments were performed.

The major advantage of the IBVS concept is its robustness to coarse camera calibra-

tion as described in [16]. Additionally, no object or scene models are required. The major

disadvantage is that a reference image is required, which makes this approach unsuitable for

unknown environments. The IBVS approach could be used for a UAV during the actual

inspection of an object, where it is necessary to hold the current positions. However, IBVS does

not allow navigation in unknown environments, since a reference image is required.

2.2.2 Position-Based Visual Servoing

In contrast to IBVS , the PBVS concept defines the error e(t) as

e(t) = F d − F c(t), (2.6)

where F d is the desired pose and F c the current pose of the robot. The pose estimation is obtained

from a function of image measurements m(t), and additionally from parameters a which denote
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the intrinsic camera parameters, as well as information of a map or a single 3D-model in the

scene, for instance the size of a Augmented Reality (AR ) marker or a Computer-Aided Design

(CAD )-model. The pose thus can be written in matrix notation as

F c =

[
tc

θu

]
,

F d =

[
td

0

]
, and

e =

[
td − tc

−θu

]
, (2.7)

where both poses consist of a translation vector t and the current pose F c contains additionally a

rotation angle θ and the rotation axis u [16].

As shown in Figure 2.2, PBVS requires two poses, namely the current pose F c and

the desired pose F d. The desired pose and the current pose of the robot are measured in one

and the same coordinate frame. In general, the desired pose of the robot is the reference for the

control law. The 3D pose of the robot is estimated in every frame and represents the feedback

information for the controller.

Pose 

estimation

+
-

Controller

Feature 

extraction

Fd

Fc(t)

e(t)

Figure 2.2: The PBVS concept. On the left-hand side the reference pose F d for the
controller is defined. Features are extracted and the current pose F c(t) is
estimated for every image taken. The error e(t), the difference of the two
poses, serves as input for the controller.

The error from Equation (2.7) is minimized for instance using a single proportional controller

defined by the matrix K, so the system dynamics result to

ẋ = Ke. (2.8)
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Thus, the current pose of the robot is propagated towards the desired pose. The error e(t) of the

current pose as well as the desired pose can be calculated in the Cartesian coordinate frame,

which makes it easier to plan a trajectory for the robot.

The major advantage of PBVS in contrast to IBVS is that it does not require images

representing a goal position. A disadvantage, however, is that PBVS is very sensitive to a good

camera calibration as well as object parametrization. Using a badly calibrated camera will result

in poor pose estimation results and furthermore a performance decrease of the visual servoing

system.

In [23], Sharp et al. show a PBVS approach for automatic landing of a UAV . A

pose estimate is provided using a known landing target. The algorithm operates at 30 Hz, which

ensures real-time capability during autonomous flights. The main part of the work deals with

segmentation and feature extraction of the landing target, while the features are labeled and pose

and speed are estimated with reference to the target. Pose estimation is accurate up to an RMS

error of about 5 cm in translation and 5 degrees in rotation. The authors do not discuss the vision

based control and no autonomous flight experiments are conducted.

Another paper by Saripalli et al. [2] shows a real-time vision based landing algorithm for

helicopters and navigation from an initial pose to a final pose in partially known environments.

The authors also use a landing target for pose estimation. When the target is not within the

camera’s view, GPS -based control is used as a backup system. The approach claims to be a

robust method for autonomous landing within the translational precision of 40 cm distance to the

landing target and 7 degrees rotation variation.

Teulière et al. [5] present a model-based vision system featuring position control for quadrotor

helicopter in indoor environments using a PBVS approach. The camera is mounted on a UAV

looking downwards and the visual data is fused with data from an IMU . The fusion is performed

by an Extended Kalman Filter (EKF ) [24]. The entire calculation runs on a ground-station, and

is split into three parts, including the control scheme of the UAV , visual tracking of the known

3D-models for position estimation, and the fusion of the vision- and IMU - data. The authors

demonstrate the robustness of the position controller for quadrotor helicopters by hovering in

indoor environments within a precision of 15 cm on the x- and y-axis, and 30 cm on the z-axis.

Target or model based approaches have the major disadvantage that a visual target is required for

autonomous flights. The landing task can be done provided that the target is present and visible to

the UAV , which is not the case in unknown environments.
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One of the first PBVS techniques in unstructured environments has been presented by

Blösch et al. [1]. The pose estimation works without any artificial markers, and is based on a

state-of-the-art VSLAM algorithm [25]. For the control task, the Linear Quadratic Gaussian

Control Design with Loop Transfer Recovery (LQG/LTR ) is used. The LQG/LTR controller

provides stabilization of current and desired pose, take-off, hovering, way-points following

and autonomous landing. The camera is mounted on a UAV , looking downwards, and is

directly connected to a ground-station by cable. In this approach the visual data is fused with

the IMU -data to gain additional sensor information. The approach is robust and shows high

precision; when hovering, the maximum absolute error is 11.15 cm.

Achtelik et al. [26] present an algorithm for onboard vision-based UAV control for unknown in-

and outdoor environments. The approach does not need any artificial markers, nor information

about the environment in terms of model parameters. Like Blösch et al. [1], the authors employ

the current state-of-the art framework, Parallel Tracking and Mapping (PTAM ) [25], for

VSLAM . With the help of accelerometers and the air pressure sensor of the UAV , the absolute

scale is estimated to generate a correctly scaled map. A benefit of the approach is that the entire

computation is performed on-board the UAV without the need for a ground-station.

Despite the accurate results, these two systems also show disadvantages. First, a detailed

mathematical model is needed for the design of the LQG/LTR controller. These models are quite

specific to the type of UAV and need precise parameter configuration. The second disadvantage

is that the camera is pointing downwards, meaning that it can only be used for navigation and not

for inspection tasks.

The previous discussion of the PBVS approach implies that this approach is suitable

for controlling a UAV during autonomous flights in unknown environments. One aspect which

is common to all discussed PBVS approaches is the need for an accurate pose estimation. The

desired and current pose are necessary to be able to control the motion of a robot. Therefore, the

quality of the control mainly depends on the accuracy of pose estimation. Hence, the next section

deals with visual pose estimation in detail.

2.3 Visual Pose Estimation

During visual pose estimation a rigid transformation consisting of a rotation R and a translation t

of the camera with respect to a fixed coordinate frame is calculated, as shown in Figure 2.3.

In the computer vision literature, pose estimation is often called extrinsic calibration [27, 28]. The

pose estimation needs a minimum of three known correspondences between the 2D-image, and the
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Figure 2.3: The pose estimation yields the rigid transformation, the 3D rotation R and
the 3D translation t, of the camera with respect to an object coordinate
system.

3D-object, and is called the Perspective-3-Point-Problem (P3P ) [29]. In a mathematical notation,

the pose R, t together with the intrinsic camera calibration matrix K form the projection matrix

P = K
[
R t

]
. (2.9)

The projection matrix P is used to project a 3D-world point X to its corresponding 2D-image

point x as

x = PX. (2.10)

Therefore, to extract a pose from an image, two cases have to be distinguished. The first is used

for uncalibrated cameras, where the projection matrix P has eleven DoF and a minimum of six

points are necessary for the pose estimation. Therefore,

• the pose (rotation R with three DoF , and translation t with three DoF ) and

• the calibration matrix K, which consists of the intrinsic parameters (focal length in x and y

direction, principle point offset in x and y direction, and a skew factor)

are estimated at same time.

The second technique is used for calibrated cameras where K is known a priori. Thus, only the

rotation R and the translation t of the camera are delivered as output. The basis of this approach

is the known scene geometry, where the angle between pairs of 2D-points need to be the same as

the angle between the corresponding 3D-points. Further details and different approaches on pose

estimation can be found in [27, 28].
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We now want to differentiate between pose estimation using a known object, such as artificial

markers and VSLAM approaches which use natural features.

2.3.1 Artificial Markers

Artificial markers are target objects with simple, yet known geometry. When using such markers

it is easy to distinguish the target object from other objects, even in complex environments. If the

complexity of the environment grows, more time is needed to estimate the target’s position. In AR

applications the artificial markers are widely used to determine the position of the camera [30–

32]. AR means that the real world environment is extended with artificial, overlaid information.

Within an image or video, virtual objects or additional text information can be added as shown

in Figure 2.4. Therefore, it is necessary to compute the camera pose and render the virtual object

into the image in real time.

Figure 2.4: AR system with artificial markers. On the left-hand side the camera im-
age is shown and on the right-hand side the augmented view. The view is
extended with text and virtual objects, such as a simple shape and a coordi-
nate frame. The virtual object can be rendered from different views based
on the estimated pose.

One of the first works using 2D markers based on a squared-shaped barcode, which was

also capable of detecting a large number of markers simultaneously, has been introduced by

Rekimoto [30]. However, artificial markers just got popular with the work of Kato et al. [31].

As an outcome of this work the ARToolKit framework was presented, which is related to the

approach of Rekimoto.



2.3. Visual Pose Estimation 15

Nowadays, a lot of libraries for six DoF camera tracking with artificial markers

exist. Wagner and Schmalstieg presented the ARToolKitPlus [32] library, which is optimized and

extends the possible use to devices with limited computational power such as mobile phones.

ARToolKitPlus has several advantages, including that it can be used on different platforms,

that it uses heuristic automatic thresholding which can deal with illumination changes, and

that it improves planar pose estimation using the Robust Planar Pose Tracking algorithm by

Schweighofer and Pinz [33].

The main disadvantage of artificial markers is that the markers have to be placed in

the environment. In cases of large environments or outdoor applications it is not always possible

to place markers in such a way that a pose can be estimated at all times. Therefore, the SLAM

technique which does not need artificial markers for pose estimation is discussed in the following.

2.3.2 Visual Simultaneous Localization and Mapping

For large environments, several approaches use a SLAM technique to track the robot’s posi-

tion [13, 34, 35]. This technique has to answer the following two questions:

• Where am I? Tries to determine the current position of the robot in a map.

• What does the world look like? Tries to create a map from the structure of the environment.

SLAM tries to estimate both, the robot’s location and the structure of the environment in form

of a map simultaneously, which is a chicken-and-egg problem. On the one hand a precise map

is required for good robot localization, but on the other hand for a good map generation accurate

localization is needed. Therefore, the method tries to estimate both at the same time. Either the

sensor delivers 3D-measurement data directly, like RGB-D or LRFs, or the 3D-data has to be

generated from several sensor measurements. For instance, when using a single camera, 3D-world

points have to be to triangulated from a pair of suitable stereo images.

If a camera is used as input sensor, then the approach is called visual SLAM (VSLAM ). Such a

system mainly takes images as input, and provides the robot’s pose and an abstract world repre-

sentation as output. Often probabilistic approaches are used because of the noisy measurements

of the sensors and the possible error accumulation over time. The environment is represented by

features such as edges, corners, and/or planes. The current pose update is always based on the

previous position of the robot.
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Probabilistic approaches. Kalman Filter [36] and Particle Filter [37] are commonly used

as probabilistic approaches to solve the SLAM problem. One of the first real-time monocular

VSLAM approaches was presented by Davison et al. [38], who used a Kalman Filter for the

localization and mapping task. This approach has the advantage that it is simple to implement

and works well in practice under the assumption of linear Gaussian noise. The disadvantage is

that a linear motion model is required and that the approach is limited to Gaussian probability

distributions.

Since real processes almost never have a Gaussian probability distribution, a Particle Filters can

be used to trace multiple hypotheses simultaneously. The probabilistic distribution function is

approximated with a set of samples, which are weighted by their likelihood. Every particle repre-

sents a hypothesis about the position of the robot. The weight of a particle is a quality indicator

for the probability of the state. At the beginning, each particle has the same weight and particles

are uniformly distributed over the map. The particle weights are continuously updated as more

information from sensor readings becomes available, and are propagated to a new location using

a motion model. Based on the weights, a re-sampling of the particles is performed, which means

that particles with small weight are removed and particles with higher weight are duplicated.

The disadvantage of the approach is the growing computational complexity with the number of

particles. Furthermore, it is hard to define the optimum number of particles for a particular system.

A Particle Filter-based approach for the SLAM problem, called FastSLAM is sug-

gested by Montemerlo et al. [34, 35]. FastSLAM recursively estimates the pose of the robot

and landmarks by taking the newest sensor measurements into consideration. Compared to

the standard Kalman Filter, the suggested implementation has a computational complexity of

O(M log(K)), where M denotes the number of particles and K is the number of landmarks.

The authors improved the convergence and accuracy of their approach in cases of linear SLAM

problems.

Keyframe-Based approaches. In contrast to the probabilistic approaches described above,

keyframe-based systems require visual input data obtained by a camera and do not estimate the

pose according to probabilistic considerations. Given the visual input data, features are extracted

to generate a map of the environment. Keyframes contain the camera position estimate as well

as the extracted feature points, and are stored whenever the map needs to be extended. The

pose estimate is continuously refined over several keyframes by minimizing the backprojection

error of the extracted feature points according to a cost function. A current state-of-the-art

implementation of a keyframe-based pose estimation from monocular images is the Parallel
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Tracking and Mapping (PTAM ) approach by Klein and Murray [25]. Since a modified PTAM

implementation is used in this work, we discuss the working principle in more detail in Chapter 4.

In this section we have given an overview of methods for pose estimation with a

focus on vision-based approaches. We have presented different methods and pointed out the

advantages and disadvantages of each approach. The second major part of PBVS concepts is the

control of a mobile robot. Therefore, different approaches in controller design are presented in

the next section.

2.4 Control Theory

Control theory is a large area of research, thus we only give a short introduction covering material

necessary to understand our work. Detailed information is given in [39–41]. To control a robot

means to influence its dynamic behavior in a way to reach a desired goal. The desired goal in

control theory is called reference r. In general, there are two ways to modify the dynamic behavior

of a system. The first option, called “Open-loop control” excites the system with a certain input

signal to obtain the desired output without measuring the current output signal. In contrast to that,

“Feedback control” systems measure the current system output and adjust the reference signal

accordingly. In more detail, feedback controllers use the measured system output y to calculate

the difference e to the reference input r. The controller then takes the error e as input and delivers

the system input u to influence the system dynamic, such that the error e is decreasing, as shown

in Figure 2.5.

Controller System

Sensors

+
-

Reference

r

Error

e

System

input

u

System

output

Measured system

output

y

Figure 2.5: The feedback controller. The controller input is the error e, which is the
difference between the reference r and the measured system output y. The
output of the controller is the system input u to influence the system dynam-
ics. The sensors measures the system state and close the feedback-loop.

Feedback control has several advantages in comparison to the open-loop control, including that

unstable system can be controlled, unmeasured influences like friction or specific air resistance

can be handled, and it is not sensitive to model parameter drifts.
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In control theory it is necessary to define the system in mathematical terms. The system charac-

teristics describe the physical quantity of a complex process, such as the temperature behavior of

a heated room. To control the temperature of a room, a mathematical model of the thermody-

namics of the room is needed. In practice it is often hard to describe the physical relations of a

process, as parameters are often unknown and have to be described mathematically based on the

laws of physics or can be estimated experimentally. The dynamics of a system are usually repre-

sented using differential equations. The problem is that real processes are predominantly partial

and nonlinear and cannot be solved with standard linear control theory tools. The basic principles

in control theory can only operate with linear differential equations. Therefore, the most common

representation of a mathematical model is the state-space formulation:

dx

dt
= Ax + bu,

y = cTx + du, (2.11)

where u is the system input and y the system output. Furthermore, x is the state vector, A the

system matrix, b describes how the input influences the system states, cT describes how the

system output depends on the system states, and d represents the direct connection of the input

signal to the output signal.

If no mathematical description is available, experimental system identification is used

to identify the system’s parameters. It measures the system output y based on the system input

u and tries to estimate the transfer function of the system. The transfer function describes the

mathematical relationship between input and output. Therefore, test functions such as a step-,

impulse-, ramp- or sin-function are used as a input, and the response of the system output y is

measured as shown in Figure 2.6. Depending on the output the system can be categorized as

shown in Figure 2.6 into:

• P-system: A stepwise change of the system input u produces a stepwise change of the

system output y. The transfer function thus has a proportional characteristic.

• I-system: A stepwise change of the system input u produce a linear change of the system

output y over time. Thus, this transfer function has an integral characteristic.

• D-system: A stepwise change of the system input u produces a peak change of the system

output y. Therefore, this transfer function has a differential characteristic.
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Figure 2.6: System identification: To identify a system, it is stressed with different
input test functions, such as a step-, impulse-, ramp- or sin-function. By
evaluating the corresponding output signal, the system characteristics can
be estimated.

The stability of a control system is very important, since instability results in unpredictable system

behavior which can have serious practical consequences. A system can be stabilized by means of a

properly designed controller. According to the Bounded Input Bounded Output (BIBO ) criterion,

a system is stable if a bounded input produces a bounded output [39]. Another stability criterion

has been defined by Lyapunov [41]. The Lyapunov stability analyzes the stability of a system near

an equilibrium point xR of the system state. If the dynamical system starts x0 near an equilibrium

point and stays near the point xR over time, then the system is Lyapunov-stable. The criterion is

best illustrated graphically, as shown in Figure 2.7.

In mathematical terms,

‖x(0)− xR‖ < δ (2.12)

‖x(t)− xR‖ < ε, ∀t (2.13)

lim
t→∞
‖x(t)− xR‖ = 0. (2.14)

If Equation (2.12) and (2.13) hold, the system is considered Lyapunov stable and if the harder

constraint Equation (2.14) is fulfilled, the system is asymptotically stable.

So far, we have defined a system and important characteristics in terms of control

theory, which is the basis for successful control such a system.
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xR

x
0

x(t)

δ

ε

x1

x2

Figure 2.7: A system is defined as stable by the Lyapunov criterion [41], if the start
point x0 lies within a distance δ, and over time never gets outside of ε
within the state-space. If and only if the state-space variable x returns to
the equilibrium xR with t → ∞ the system can be considered asymptotic
stable, as depicted by the dotted line.

2.4.1 PID Controller

The most popular and widely used controller in industrial applications is the proportional, integral

and differential (PID ) controller. For a PID controller, the relationship between the input signal

(the error e) and the output (the system input u) is

u(t) = KP e(t) +KI

∫ t

0
e(τ) dτ +KD

de(t)

dt
, (2.15)

where KP is the proportional gain applied to the current error, KI is the integral gain applied to

the control error over time, and KD is the differential gain applied to the derivative of the error.

Figure 2.8 depicts the control loop of a PID controller, where the proportional-, integral- and

differential factors operate in parallel. In the remainder, the single coefficients of equation (2.15)

are discussed in more detail.

Proportional gain KP. The proportional gain KP changes the output u in relation to the error

e in form of a constant multiplication. If KP is too high it could have a bad effect on the stability

of the system: If the control error is high then the change of the output would also be very high,

and the system could turn unstable. The other way round, if the KP term is too small, then a high
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Figure 2.8: Classical structure of a PID controller.

error influences the system for a long time and thus the controller’s sensitivity is too small. A

disturbance to the system would permanently increase the control error.

Integral gain KI. The integral gain KI changes the output of the controller such that the ac-

cumulated error over time is multiplied by a constant value KI . This gain has the benefit that

the error seen over a long time is going towards zero. Therefore, no steady-state errors occur, in

contrast to system which only use a proportional term. The integral gain, however, can produce an

overshoot of the system output if the value is too high.

Differential gain KD. The differential gain KD is used to react on fast changes of the error

over time. Furthermore, it can be used to reduce the overshoot from the integral gain, however,

the differential gain is very sensitive to noise. Large amounts of noise and a high KD value can

make the control system unstable as well.

There are different ways to estimate the gain factors KP , KI , and KD of the PID

controller [39, 40], which are not discussed in details here.

The PID control design has been recently used for UAV control. In [42], a PID

controller is used to stabilize an unstable flying robot on the basis of additional sensors, including

accelerometers, a compass sensor and gyro sensors. The PID controller is only used for attitude

control, which increases the control comfort for a human operator. Others use a PID controller

to control the altitude and attitude of a UAV [43]. In this work, the UAV is able to hover in

an indoor environment, whereas the pose of the UAV is determined by an outside-in tracking

system. In [44], a IBVS approach is presented, where a UAV without additional sensors can

hover in an indoor environment using a PID controller.



22 Chapter 2. Related Work

Employing a PID controller for controlling a UAV has the advantage of a relatively simple

controller design, with the disadvantage that the control design cannot be done without explicit

knowledge about the system. If the system would be known, there exist a variety of methods

which require a lot of intuition and expert knowledge. Moreover, PID controllers are not suitable

for nonlinear systems.

As a common alternative in controller design which does not require a mathematical model of

the plant and can cope with system nonlinearities, the fuzzy control design in discussed in the

following.

2.4.2 Fuzzy Logic Controller

Another control strategy which is very different compared to the classical PID control is called

fuzzy logic control. Fuzzy logic began with the approach of the fuzzy set theory by Zadeh [45]

and found a wide field of applications in control theory. As already mentioned it is often hard to

describe the relationship between complex processes mathematically. Therefore, Zadeh developed

a tool which can handle a complex problem using uncertain, imprecise reasoning, just like human

beings do. The design of the controller is performed in a linguistic way, similar to the way a

human would formulate rules. For example, the process of hovering a UAV can be described as

follows: If the UAV is falling, then increase the thrust, and if the UAV is rising, then lower the

thrust. The process is executed until the UAV is hovering. In this case no mathematical model

of the UAV is necessary to hover. A human, cannot measure the height of the UAV exactly, but

applying fuzziness he is able to make a UAV hover. In the literature, [3, 28, 46], a fuzzy logic

controller is divided into three main parts, namely fuzzification, inference and defuzzification, as

shown in Figure 2.9.
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Figure 2.9: Block diagram of a fuzzy logic controller, with main parts bing the fuzzifi-
cation, inference and defuzzification.
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Fuzzification. The fuzzification does the mapping between the exactly measured values and the

truth values of the fuzzy set. The fuzzy set is defined in form of membership functions, which

give the trueness of a linguistic variable as depicted in Figure 2.10. When looking at the hovering

example, there are three membership functions, namely FALLING, HOVERING and RISING. The

membership functions are defined as triangles or trapezoids because of the easy linear mathemat-

ical description in contrast to nonlinear functions like Gaussian- and Sigmoid-functions.

FALLING HOVERING RISING
1

HEIGHThover

height

μ(x)

x

c
u
rr

e
n
t 

x

0.3

0.6

Figure 2.10: The fuzzification process. Given the current height the truth values of the
memership functions are evaluted.

The mathematical description of fuzzy set A is

A = {(x, µA(x))|x ∈ X}, (2.16)

where x is a sensor measurement or system state, X the whole set of sensor measurements or

system states, and µA(x) is the truth value of a membership function of the fuzzy set. The mem-

bership function is usually normalized between zero and one. An example of a fuzzification is

given in Figure 2.10, where the current UAV height x has a truth value of 0.3 for the HOVERING

and a truth value of 0.6 for the RISING membership function.

Inference. The inference part contains the rule set. The rules are defined in the same way a

human expert would control the process. Therefore, the linguistic formulation is

IF CASE1 THEN EFFECT1,

where CASE1 reflects the input membership variable and its value, and EFFECT1 reflects the

output membership variable and its value. CASE1 can consist of more than one system input.
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The logical operations AND, OR, NOT are used to represent more complex relations as shown in

Figure 2.11.

μ(x)

1

x

x

1

μA

NOT μA μA OR μB μA
AND 
μB

NOT μA

Logical Operations

Figure 2.11: Logical operations AND, OR, NOT of membership functions.

Therefore, it is possible to combine membership functions, like

IF CASE1 AND/OR CASE2 THEN EFFECT1,

where CASE1 could for instance be the UAV ’s height and CASE2 the UAVs speed.

Next, all defined rules are evaluated. This means that we determine how the truth

values of the input cases influence the truth values of the output effects. In our hovering example,

the rules can be defined as

1. IF HEIGHT is FALLING THEN THRUST is BIGGER

2. IF HEIGHT is RISING THEN THRUST is LESS

3. IF HEIGHT is HOVERING THEN THRUST is NEUTRAL

The fuzzification delivers the truth values of the input membership functions and during the in-

ference these values are evaluated rule-by-rule to get the truth value of the output membership

functions, as illustrated in Figure 2.12.

Defuzzification. The last step of the fuzzy logic control is the inverse process of fuzzification.

Here, the output membership function is mapped to a real value for the system input. Several

methods exits:

• Center-of-Area (CoA ) : Calculates the center-of-gravity on the area of the composited

output function and the centroid mapped to the x-axis is chosen as system input.
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Figure 2.12: Inference step of fuzzy logic control where the truth values of the input
membership are evaluated on the basis of the rule set, and the truth value of
the output is estimated for every rule. In the end all outputs are composited
to one single output membership function.

• Center-of-Maximum (CoM ) : The maximum of a membership function is mapped to the

x-axis, and this value is used as system input.

• Mean-of-Maximum (MoM ) : Calculates the mean of all maxima of the membership func-

tions, projects it to the x-axis, and this value is used as system input.

Figure 2.13 shows the different methods described above. On the left-hand side the CoA -, on the

middle the CoM - and on the right-hand side the MoM method is shown, respectively.

The advantage of a fuzzy logic controller is that it is able to control a system in real time while

nonlinear as well as only partially known systems can also be handled. It is easy to maintain the
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Figure 2.13: Different defuzzification methods: On the left-hand side the different CoA ,
in the middle the CoM , and on the right-hand side the MoM -method is
shown, respectively. The projected points are used as system input to con-
trol the system.

controller even it additional information of the process added. Rules can be added or adapted

easily. The disadvantage of the fuzzy logic controller is the fine adjustment which can only be

done experimentally, and there is no common technique to tune precision. As in every control

system, a trade-off between speed and precision has to be found. Due to the advantages of fuzzy

logic controllers mentioned above and the fact that the controller design does not depend on the

specific type of UAV , this type of controller was chosen for the visual servoing system in this

work.

2.4.3 Summary

In this chapter, a detailed overview over different approaches for autonomous navigation of mo-

bile robots have been presented. In detail, we discussed visual servoing systems and presented a

comprehensive literature review. Furthermore, visual pose estimation and an introduction to con-

trol theory were given. In the next chapter, the hardware and software framework of the proposed

system is discussed.
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Before explaining the implementation in detail, we will give an overview of the available hard-

ware and used software. As an introduction the quadrotor helicopter is described. Thereupon,

the characteristics of the used MAV for our human-inspired visual servoing approach are given.

Additionally, we describe the interface between the MAV and the ground-station.

3.1 Hardware

The most important hardware component is the aerial vehicle. In this work, an MAV assembled

by the company Ascending Technologies GmbH (AscTec) 1 is used. The use of such an MAV has

several advantages for the PEGASUS project. With a quadrotor helicopter it is possible to move

in arbitrary directions with a very low speed or to hold the current position. In the following, the

hardware components of the aircraft are described in more detail.

3.1.1 Quadrotor Helicopter Characteristics

As the name suggests, quadrotor helicopters rely on four rotors that generate the thrust to lift the

aircraft. This type of aerial vehicle is classified as rotorcraft in contrast to fixed-wing aircrafts.

1http://www.asctec.de

27
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Quadrotor helicopters are vertical take-off and landing (VTOL ) aerial vehicles like a normal

helicopter, but with the benefit of fixed-pitch blades. Conventional helicopters change the pitch

angle of the blades mechanically which is quite complex and thus expensive. The quadrotor

helicopter has a simpler mechanical construction and the direction can be changed by setting

appropriate rotor speeds.

The orientation of the quadrotor helicopter is dynamically defined by three parame-

ters: Roll, pitch and yaw angle as depicted in Figure 3.1.

Y

Z

X

roll

yaw

pitch

center of
gravity

Figure 3.1: Orientation of a quadrotor helicopter body-frame with the angles roll, pitch
and yaw.

With the Center-of-Gravity (CoG ) as origin of the body-frame of the aircraft, the x-axis is defined

in flight direction, z-axis in direction of gravity and y-axis follows from the right-handed system.

The rotating direction of every two rotor pairs is complementary, which means that one pair rotates

clockwise and the other pair anti-clockwise as depicted in Figure 3.2. This gives the aircraft the

possibility to hover in the air, if it can be ensured by proper control that the torque θi of the two

pairs is equal, so

θ1 + θ3 = θ2 + θ4. (3.1)

Assuming identically performing rotors, this requirement results in the necessity of equal rota-

tional speeds ωi.

The quadrotor helicopter can be moved by changing the dynamic parameters roll, pitch, yaw and

thrust as described in Table 3.1. For example, flying in positive x-direction needs a negative pitch

angle whereas roll and pitch are zero. Therefore, the rotation speeds ω2 and ω4 are held constant,

ω1 needs to be decreased and ω3 needs to be increased.

3.1.2 AscTec Pelican

Besides the working principle which is common to all quadrotor helicopters, the MAV used

in this work has some specific features which are described in the following. The key feature
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X

YZ

Figure 3.2: Spin direction of the rotors: The rotorsR1 andR3 rotate clockwise whereas
R2 and R4 rotate counter-clockwise such that the pair-wise sum of torques
is equal as in Equation (3.1).

UAV roll pitch yaw thrust ω1 ω2 ω3 ω4

forward 0 < 0 0 const ↘ const ↗ const
backward 0 > 0 0 const ↗ const ↘ const

right > 0 0 0 const const ↘ const ↗
left < 0 0 0 const const ↗ const ↘

higher 0 0 0 > 0 ↗ ↗ ↗ ↗
lower 0 0 0 < 0 ↘ ↘ ↘ ↘

clockwise rotation 0 0 < 0 const ↘ ↗ ↘ ↗
anti-clockwise rotation 0 0 > 0 const ↗ ↘ ↗ ↘

Table 3.1: Relationship between the dynamic parameters roll, pitch, yaw and thrust
and the resulting movement direction.

of the MAV is its capability to lift a payload of about 500 grams. The flexible modular tower

design enables to carry several sensors or extensions, such as laser scanners or, as in our case,

an industrial camera. The MAV can fly about 20 minutes with one battery charge, where the

maximum speed is 14 m/s. It is equipped with two ARM-7 micro processors. The first, called

Low Level Processor (LLP ) is a proprietary module responsible for hardware management and

IMU sensor data fusion. The second, called High Level Processor (HLP ) can be used for custom

programming. The LLP and the HLP are connected via a high-speed serial interface for data

exchange. The Pelican has several sensors on board, including an IMU (accelerometers, gyro

sensors), magnetic compass, air pressure sensor and GPS .

The MAV is additionally equipped with a dual core Intel Atom 1.6 GHz embedded

computer, which provides additional computing power for the computationally expensive
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vision-based algorithms. The embedded computer has 1 GB DDR2 memory and provides

interfaces like USB 2.0, a serial interface, a microSD card slot and a mini PCI express Wireless

Fidelity (WiFi ) card based on the 802.11n standard for wireless communication.

The Pelican MAV is equipped with the Flight Control Unit (FCU ) “AscTec

Autopilot” that offers three different flight modes:

1. Standard flight mode: The Remote Control (RC ) is used to control the dynamic parameters

roll, pitch, yaw and thrust. This mode uses the attitude controller of the FCU and the

operator is responsible for navigating and for the compensation of position drifts.

2. Height flight mode: Autonomously tries to hold the height of the MAV based on the fused

sensor data. The RC can control the angles roll and pitch for movements in a horizontal

plane and the yaw angle for the orientation of the MAV . The height control is performed by

the FCU , allowing navigation at a constant height.

3. GPS flight mode: Can only be used in outdoor environments when a GPS signal is avail-

able. In this mode, the operator specifies the target position of the MAV via the RC and the

FCU directs the MAV to the desired position.

For the purpose of vision-based navigation and the actual inspection task, the MAV is equipped

with an industrial camera (looking forward) as depicted in Figure 3.3, which is stabilized by a

pan-tilt unit.

Figure 3.3: Asctec Pelican quadrotor helicopter with a stabilized industrial camera as
payload.
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The stabilizer ensures that the camera keeps looking in the flight-direction by compensating the

pitch and roll independent of the actual flight maneuver. The used camera is an IDS uEye industrial

camera with a resolution of 1280× 1024 Pixel (px). The provided frame rate at full resolution is

25.8 Frames Per Second (FPS ) and 60 FPS when the resolution is reduced to 640× 512 px. The

camera is equipped with a Cinegon 1.4/8 industrial wide angle camera lens.

3.2 Software

The onboard computer of the MAV runs Ubuntu Linux 10.04 as basic operating system. On top

of the operating system, we use Robot Operating System (ROS ) [47]. ROS is a framework for

robotic applications released under BSD license. The framework enables the communication of

processes on different systems via message-passing. Thus, a ground-station can send commands

to a robot and the robot delivers the measurement data. ROS provides a hardware abstraction

layer, low-level device control and a variety of commonly used functions. ROS can be used

to split computational independent tasks and distribute them over several workstations known

as nodes. The single nodes are connected peer-to-peer, while a single master coordinates

communication.

The entire system is depicted by a graph; an example is given in Figure 3.4.

/OpenCVCam /image_proc

/camera_info

/image_raw

/image_color

/image_view

/image_rect_color

Figure 3.4: A graph-based system overview. The nodes for capturing an image, remov-
ing lens distortions and displaying the undistorted images can be distributed
over several physical systems. The communication between the nodes is
based on topics, whereas some nodes publish data and others subscribe to
it.

Three nodes are shown: The camera node, the image processing node and the image view node.

Each of them can run on a different system, for instance the robot captures the images, whereas
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the ground-station removes lens distortions and displays the resulting image.

With the support of several programming languages and the variety of readily available

algorithmic packages, ROS is a flexible and powerful platform for mobile robotic applications.

Based on the ROS framework we discuss in the next section how our human-

inspired visual servoing approach is distributed over different systems. Furthermore, we depict

the communication interfaces in detail.

3.3 Communication Interfaces

Before going into detail of our visual servoing approach, we briefly discuss where the several

system parts are running. Our system uses a PBVS technique for visual servoing as already

described in Section 2.2.2. The technique consists of two major parts, namely pose estimation and

control. Our system is distributed over multiple devices as shown in Figure 3.5.

Figure 3.5: Connection interface. The MAV captures the images and streams them via
WiFi to the ground-station. The ground-station computes the current pose
based on the images and controls the MAV using a wireless datalink. The
safety pilot can take over control anytime with the RC .

On the MAV , the camera captures the images and the onboard computer streams them to the

ground-station based on a WiFi 802.11n connection. The pose estimation algorithm as well as

the MAV controller are running on the ground-station, which inturn sends the control commands
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via a serial wireless connection to the MAV . This gives us the advantage that the MAV control

connection is independent of the traffic resulting from streaming images. The safety pilot can

take over control anytime using the RC .

The communication of the individual subsystems is based on the ROS framework,

which has the benefit that each subsystem can be moved individually from the ground-station

to the MAV and vice versa. However, one has to take care of not overloading the system’s

computational capabilities.

3.4 Summary

This chapter described the working principle of a quadrotor helicopter and the characteristics of

the Pelican helicopter used in this work. Furthermore, the software platform ROS which serves

as software base for all implementations was briefly described. The next chapter presents the

suggested approach for automatic take-off, hovering and landing.
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This chapter deals with the details of the proposed system and describes the individual blocks.

Section 4.1 gives a general overview of the system components. In Section 4.2, the method for po-

sition estimation based on the PTAM framework, which is a state-of-the-art mono SLAM method

is described. Moreover, this section discusses the changes and additions to the PTAM framework

implemented in this work. The fuzzy controller and its implementation are discussed in detail

in 4.3. Additionally, the implemented mechanisms for error handling and coping with system fail-

ures are presented in Section 4.4. Finally, a typical take-off, hovering, and landing procedure is

shown in Section 4.5.

4.1 Overview

The presented system uses a vision-based approach for controlling an MAV . The application of

computer vision to UAVs has gained a lot of interest over the past years and offers several advan-

tages over other sensor modalities. As described in Section 2.2, there are different methods for

visual navigation of MAVs. This work implements a PBVS approach, which requires a mecha-

35
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nism for estimating the current pose of the MAV . The reason for choosing a PBVS based approach

is that these are able to navigate within an unknown environment. In contrast, IBVS approaches

are not able to navigate within an unknown environment, since they require target frames for nav-

igation.

The proposed modular system design decouples the pose estimation from the controller block

which allows for an individual exchange of each block for possible future extensions. Moreover,

the encapsulated blocks are easier to handle in terms of maintenance and error analysis. A block

diagram of the overall system is shown in Figure 4.1.

Position

Controller

Attitude

Controller

MAV

Plant

Camera

Mono

SLAM

Image

Figure 4.1: System overview: The system represents a cascaded control loop consisting
of an Attitude Controller (provided by the FCU ) and the actual Position
Controller. The Attitude Control directly affects the rotation speed of the
rotors ωi, whereas the Position Controller affects the pose of the MAV in
terms of the angles roll Φ∗, pitch Θ∗ and yaw Ψ∗ as well as the overall
thrust T ∗. The input to the control loop is the desired position x∗, y∗, z∗.
A camera, mounted on the MAV is used to capture images which are then
processed by a Mono SLAM algorithm to estimate the current pose.

The used MAV has an internal attitude controller which directly controls the rotation speed ωi of

the four rotors. This controller ensures that the MAV maintains a stable behavior regarding the

given angles roll Φ∗, pitch Θ∗ and yaw Ψ∗. The attitude controller is fed by the actual position

controller with the desired angles as well as the desired system thrust T ∗. Hence, the overall

system represents a cascaded control loop. The camera mounted on the MAV is used to capture

images which are then processed by the mono SLAM block to estimate the current pose of the

MAV . The pose estimation therefore works based on the “Inside-Out” principle and estimates the

current position and orientation of the MAV . These estimates are fed into the position controller

to compute the updated actuating variables based on the desired position x∗, y∗, z∗.

After this general system overview, the pose estimation and the position controller as

the two main system components are described in detail in the following sections.
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4.2 Visual Pose Estimation

The suggested PBVS approach to visual servoing requires an estimate of the current pose

(position and orientation) of the MAV . There are several possibilities to obtain a pose

estimate using one or more cameras. These methods can be categorized in model-based and

non-model-based systems, as well as hybrid systems. Marker-based approaches are a sub-class

of model-based approaches, which rely on the detection of known markers in the scene. These

systems suffer from certain limitations, because pose estimation can only be performed when the

known markers are visible and detectable in the scene. In contrast, VSLAM systems create a

map of the environment and perform a localization within that environment on-line. While this

localization is still based on a model, it uses natural rather than artificial features. This implicitly

allows for an autonomous navigation in unknown environments, since the created map can be

extended without prior knowledge about the environment.

The VSLAM technique employed in this work uses a single camera for the pose

estimation task. Compared to stereo camera sets, a mono camera complies better with the limited

payload on MAVs. Moreover, stereo cameras do not provide more accurate results due to the

short camera baseline compared to the distances in the scene, as discussed in [26]. In addition to

the pose estimation and navigation task, the camera is also used for the inspection of power lines

and power pylons in the PEGASUS project.

Based on the images acquired by the camera, we use the Parallel Tracking and Map-

ping (PTAM ) [25] framework by Klein and Murray as state-of-the-art mono SLAM approach.

PTAM is capable of estimating the current camera pose up to the scale. Since the visual

navigation of an MAV also requires the correct scale, we replaced the initialization process of the

PTAM framework. The working principle of the standard PTAM approach is described in the

following. Subsequently, our addition to the PTAM framework which allows the determination

of the scale factor is described.

4.2.1 Parallel Tracking and Mapping

The fundamental idea of the PTAM framework is to make use of the parallel processing

capabilities of modern computer hardware by splitting up the localization and mapping task

into two parallel working threads. This results in several advantages over previously suggested

approaches. First, it provides the possibility that tracking and mapping can be performed in

different intervals. Generating an environment map does not have such a high priority due to the
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limited movement speed, whereas it is vital to have tracking information available in real-time.

Second, the mapping task can be skipped during periods where the camera is stationary or

in already known regions of the environment. In contrast to other systems [35, 38], this has

the advantage that no redundant data filtering needs to be performed. Another property of the

PTAM framework is that it does not utilize any EKF state estimation and hence does not model

measurement uncertainties, which reduces computational complexity. These characteristics make

the PTAM framework well suited for real-time applications.

The map representation within PTAM consists of M environment feature points in

the world coordinate frameW , stored in homogeneous coordinates, i.e.

pWj = [xWj , y
W
j , zWj , 1]T , j ∈ {1 ... M}, (4.1)

and N so called key-frames. Key-frames are environment snapshots at a given point ti in time,

comprising

• the camera pose EWCi ,

• a four level gray-scale image pyramid, and

• the list of visible feature points.

The camera pose EWC is estimated within the map and is robust to scale changes and partial

occlusions. Subsequently, the processes of tracking and mapping are explained in more detail.

Tracking. For every acquired image, PTAM performs several steps to estimate the current

camera pose. The first step is to compute a four level gray-scale image pyramid which is then

used for feature extraction, as shown in Figure 4.2(a). The extracted features points – FAST

(Features from Accelerated Segment Test) corners [48] – on level 0, 1, 2 and 3 are depicted in

red, yellow, green and blue respectively. The reason why FAST corners are used is that they allow

fast processing to enable real-time capabilities, while still hovering a reasonable repeatability.

PTAM then uses a simple motion model to compute a prior estimate of the camera pose.

Using this pose estimate and the camera calibration matrix, previously acquired map feature

points are back-projected into the image. The next step is to compute the distance between the

back-projected feature points and the corresponding image features. Based on the resulting

distance measures, the camera pose is updated iteratively with an M-Estimator [49]. The pose

update and back-projection steps are performed in a two stage coarse-to-fine manner. The coarse
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update uses few feature points on lower resolution images, whereas the fine step improves the

estimate by using many feature points on a higher resolution level.

This implies that the PTAM framework provides a pose estimate EWCi for every

frame Fi, which allows continuous tracking of the camera pose over time. The pose estimate

consists of the current coordinates [x, y, z] as well as the orientation [Φ,Θ,Ψ] in a 4 × 4 matrix

representation. The provided matrix is a member of the Lie group SE(3) [50] which guarantees

smooth camera pose tracking.

Mapping. Using a monocular camera makes an initialization step necessary. Before any tracking

or mapping can be performed, at least two key-frames are necessary to build an initial map. In the

PTAM framework, this is achieved by a stereo-initialization which requires the user to translate

the camera. Tracking feature points during the translation allows to compute the baseline using a

homography estimation. The standard initialization assumes a baseline length of l = 10 cm and

has the disadvantage that the scale factor is unknown. The result of the initialization is a map

consisting of two key-frames which can then be extended by new key-frames as the camera moves

in the scene. Extension of the map is performed by adding new key-frames, which is subjected to

the following three criteria:

• Good tracking quality: The quality of the pose estimation is assessed for every new frame

based on the number of successful feature observations. If the tracking quality is too low,

the current frame disqualifies as new key-frame.

• Temporal distance between key-frames: A new key-frame can only be obtained every 20

frames.

• Spatial distance between key-frames: A new key-frame can only be obtained if the spatial

distance to every captured key-frame is above a certain threshold.

The last requirement implies that no new key-frames are added in case of a stationary camera

pose, which avoids a common SLAM problem of corrupt maps if the camera position does

not change. The spatial distance threshold depends on the length of the baseline during the

initialization process. A longer baseline provides a higher accuracy regarding the triangulation of

feature points and hence yields a more accurate map, however it typically results in a map with

less initial feature points.

As soon as key-frames are inserted that contain feature points which are not yet triangulated in

the map, a triangulation is performed to compute the world-coordinates of these features. The
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triangulation is based on correspondences which are established by an epipolar search of the

feature points in the associated neighboring key-frames. By inserting the newly triangulated

feature points, the map is extended as the camera moves in the scene.

The PTAM framework uses a two-step map optimization technique, the so called

global and local bundle-adjustment. With every newly added key-frame, a local

bundle-adjustment is performed to refine the feature points in the map as well as the camera pose

estimates for the k neighboring key-frames. During time periods where no new key-frames are

added, global bundle-adjustment is performed to refine all map feature points and the camera

pose estimates of all key-frames. Depending on the size of the map, the global bundle-adjustment

requires a lot of computational time, since its complexity follows O(N2M) [25]. However, due

to the parallel processing of the tracking and mapping tasks, this does not affect the real-time

capability.

An example of a scene with the corresponding map is shown in Figure 4.2. Fig-

ure 4.2(a) shows the scene with the extracted feature points, whereas the corresponding map is

shown in Figure 4.2(b). The map comprises the estimated camera poses for the key-frames and

the triangulated feature points.

(a) PTAM image frame with feature points. (b) Corresponding PTAM environment map.

Figure 4.2: Exemplary scene from the standard PTAM framework. The left-hand side
(a) shows a scene with extracted feature points. Figure (b) depicts the cor-
responding map and shows the estimated camera positions for some key-
frames.
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4.2.2 Scale Factor Determination

In the standard implementation, the PTAM approach only yields the camera pose estimate up to a

scale factor. The reason for this issue is sketched in Figure 4.3.

Baseline 1

Baseline 2

Figure 4.3: PTAM initialization: PTAM estimates a 3×3 homography matrix between
the key-frames taken during initialization. Since this homography is not
unique with respect to the translation t respectively t′ along the baseline
and the length of the baseline is unknown, PTAM assumes a fixed baseline
length and scales the environment accordingly. This results in an unknown
scale factor.

During initialization, PTAM uses tracked point correspondences to estimate a 3× 3 homography

H between the first two key-frames. The resulting homography is related to a rotation R and a

translation t along the baseline,

H = R + tn, (4.2)

where n represents the directional vector between the two camera positions EWC1
and EWC2

. How-

ever, the homography between the two key-frames is not unique with respect to the translation

t. While the rotation matrix R between EWC1
,EWC2

and EWC′
1
,EWC′

2
remains the same, the trans-

lation vectors t and t′ (the baselines) differ. Since the total depth in the scene and the length

of the baseline are unknown, PTAM assumes a fixed baseline length and scales the environment

accordingly.
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For navigating an MAV in an unknown environment, the scale factor is of vital importance. In

order to determine the scale, we modify the initialization process by adding a-priori information

in form of a known target (marker) to the scene. This means that during initialization the system

relies on a model-based pose estimation technique. However, the model is only required during the

acquisition of the first two key-frames. Afterwards, the target can be removed from the scene, and

pose estimation solely relies on extracted natural features. The modified initialization utilizes the

ARToolKitPlus [32] framework to obtain the metrical camera pose from the first two key-frames

during initialization. This process is depicted in Figure 4.4. Since the dimensions of the target are

known, the camera pose including the scale factor are estimated.

Baseline

Figure 4.4: Given the two key-frames from initialization, the camera pose in the world
coordinate frameW can be estimated using the ARToolKitPlus [32] frame-
work. This allows the determination of the metric baseline between the two
camera positions.

Given the camera pose EWC1
estimated from the first key-frame and the pose EWC2

estimated from

the second key-frame, the rigid transformation EC2
C1

can be computed as

EC2
C1

=
(
EWC2

)−1
EWC1

. (4.3)

With (
EWC2

)−1
= EC2

W , (4.4)
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Equation (4.3) becomes

EC2
C1

= EC2
WEWC1

= [R | t] . (4.5)

Given the known translation t between the two camera positions, PTAM yields correctly scaled

camera pose estimates and a correctly scaled map. With the correct scale it is now possible to

localize the MAV in unknown environments based on visual input. However, for navigation not

only the pose of the MAV is necessary, but a controller is needed. In the next section the control

design is discussed.

4.3 Control

The controller design needs to take the equipment used and the characteristics of the target MAV

into account. As discussed in Chapter 2, there is a lot of ongoing research regarding the control

of MAVs. Most controller approaches require a mathematical model describing the system

dynamics. The quadrotor helicopter used in this work has a built-in, proprietary attitude controller

which makes it even more difficult to find a mathematical description of the system. For this

reason, the suggested approach comprises a controller that does not need a mathematical system

description. We use a human inspired fuzzy logic control, since this offers several advantages.

First, a fuzzy controller does not require a detailed mathematical model of the MAV . Second, the

controller design is not limited to a special MAV type and can be adapted easily if the system

configuration changes. Third, in contrast to traditional approaches with PID -controllers where the

proportional, differential and integral factors are often difficult to estimate without a mathematical

model of the plant, the design of a fuzzy logic controller is very intuitive. As a result, the rule-set

obtained during the design is easily maintainable because rules can easily be added, changed

or removed. Finally, fuzzy logic controllers can deal with nonlinear and unstable systems like

MAVs and are very fast because the implementation is based on a simple look–up–table.

In the following, the initialization of the system and the design of the position

controller is discussed, and the controller blocks are described in detail.

4.3.1 Coordinate Frame Initialization

Given the initialization of the pose estimation algorithm as described previously, the coordinate

frame of the artificial marker defines the origin for the movement of the MAV . The origin can

be redefined for MAV navigation in order to be independent from the marker position in the

environment. This means that after finishing PTAM ’s initialization, the operator can move the
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MAV to the desired position Qinit and can define this pose as the new origin for navigation. Since

the modified PTAM framework already delivers the initial camera pose estimate Cinit in the world

coordinate frameW , EQinit

Cinit
is still needed to determine Qinit. This is depicted in Figure 4.5.

Figure 4.5: Relationship between the initial MAV position Qinit and the world coordi-
nate frameW . The operator can define an arbitrary position as coordinate
frame origin for the motion controller.

The unknown transformation EQinit

Cinit
depends on where and how the camera is mounted on the

MAV and can be obtained by a calibration step. Since we are using a pan–tilt unit, the attitude

is corrected in a way that the camera is always parallel to the ground. Therefore, we are able to

directly use the camera position as Qinit with the additional need to rotate the coordinate frame of

the camera such that the z-axis of the camera faces into the direction of the MAV ’s x-axis. Thus,

this rigid transformation is constant, meaning

EQinit

Cinit
= EQcurrent

Ccurrent
. (4.6)

The resulting pose of the MAV can hence be computed as

EWQinit
= EWCinit

(
EQinit

Cinit

)−1
. (4.7)

When the aircraft changes its position from Qinit to Qcurrent after initialization, it is necessary

to compute the updated position with respect to the previously defined coordinate origin. The

transformation EQinit

Qcurrent
can be computed based on the current camera pose estimate EWCcurrent
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and the rigid transformations obtained in the initialization step as

EQinit

Qcurrent
= EQinit

Cinit

(
EWCinit

)−1
EWCcurrent

(
EQcurrent

Ccurrent

)−1
. (4.8)

By inserting equations (4.4) and (4.6), this can be written as

EQinit

Qcurrent
= EQinit

Cinit
ECinit
W EWCcurrent

ECinit
Qinit

. (4.9)

The relations between the corresponding coordinates frames after the aircraft has moved are shown

in Figure 4.6.

Figure 4.6: The current position of the MAV relative to the defined coordinate origin
Qinit is estimated. The transformation EQinit

Qcurrent
can be computed based

on the current camera pose estimate and the transformations obtained dur-
ing the initialization step.

With this coordinate transformation it is possible to estimate the current MAV position relative

to the initial position Qinit by means of the visual pose estimation. The MAV can then be moved

within this coordinate frame by setting a desired position. The initialization requires user interac-

tion with the advantage that the coordinate origin can be chosen arbitrarily. This allows a more

convenient control during flight.

4.3.2 Position Control

The position controller is a so called Multiple Input Multiple Output (MIMO )-system. The inputs

are the desired position (x∗, y∗, z∗) and the estimated current pose (x, y, z,Ψ) of the MAV . The
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outputs of the controller are the desired angles (Φ∗,Θ∗,Ψ∗) and the thrust T ∗. Following from the

quadrotor helicopter physics and the chosen body coordinate frame, the x-coordinate is controlled

by the pitch angle Θ, the y-coordinate by the roll angle Φ and the z-coordinate by thrust the T ,

yielding a controller structure shown in Figure 4.7. The x-, y- and z-controller have the same

internal structure and are based on a PID fuzzy logic controller. Due to the inertia of the aircraft

the yaw angle Ψ changes slowly, therefore a simple proportional control can be used to keep the

MAV ’s orientation.

PID-Fuzzy

x

PID-Fuzzy

y

PID-Fuzzy

z

P-Controller

yaw

x*

y*

z*

x

y

z

Ψ Ψ*

Θ*

Φ*

T*

Unmanned Aerial

Vehicle

PTAM

x*,y*,z*

x,y,z,Ψ

Φ*,Θ*,Ψ*,T*Position Controller

Im
a
g
e

Figure 4.7: The position controller inputs are the desired position (x∗, y∗, z∗), the cur-
rent position (x, y, z) and the angle yaw Ψ which represents the orientation
of the MAV . The output of the controller are the desired angles roll Φ∗,
pitch Θ∗, yaw Ψ∗ and thrust T ∗. The position controller contains of inde-
pendent three PID fuzzy logic controllers and a proportional controller to
maintain the orientation of the MAV .

To be able to control the position in the way we describe it, we use the attitude controller of FCU

which is a part of the Pelican quadrotor helicopter. The attitude controller selects the rotational

speeds of each single rotor such that the desired angles roll Φ∗, pitch Θ∗ and yaw Ψ∗ are justified.

As depicted in Figure 4.7, the position controller consists of four independent controls, namely

the x-, y-, z- and yaw- control. However, there is no preference which angle should be controlled

first; all are controlled simultaneously.

4.3.3 PID Fuzzy Logic Control

The structure of the sub-block PID fuzzy logic control of the position control is shown in Fig-

ure 4.8 for the x-coordinate. The controllers for the y- and z-coordinate are implemented identi-

cally.
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Figure 4.8: PID fuzzy logic block diagram: The x-position error ex is calculated based
on the desired x∗-position and the current x-position from the feedback-
control. The fuzzy logic control has two inputs: the position error ex and
the change of the position error ∆ex. The output of the fuzzy logic con-
troller is the change in pitch angle ∆Θ which is integrated over time and
send to the quadrotor helicopter.

Each controller block is a so called Multiple Input Single Output (MISO )-system. Based on the

desired position x∗ and the current position x, the error ex and the error change ∆ex can be

calculated. Thus, two variables serve as controller input, whereas the output is the desired pitch

angle Θ∗. The error change

∆ex[n] = ex[n]− ex[n− 1], (4.10)

where ex[n] is the error at the current time n and ex[n− 1] is the error at the time n− 1, is defined

as the variation of the position error after one time-step. Equation (4.10) is an approximation of

the error derivative. The desired pitch angle Θ∗ is obtained by integrating the relative change of

the pitch angle over time, i.e.

Θ[n]∗ = Θ[n− 1]∗ + ∆Θ[n]. (4.11)

The integration part is necessary to compensate MAV drifts along the roll angle. Moreover, the

temporal integration of the fuzzy logic output enables to cope with external influences such as

wind, battery drain or turbulences.

A typical fuzzy logic controller consists of three blocks, namely fuzzification, infer-

ence and defuzzification as already introduced in Section 2.4.2.

It has two inputs and a single output variable. First, the input and output variables have

to be fuzzificated, meaning that the measured values are mapped to the truth values of the fuzzy set.

The membership functions of the input error ex consist of the linguistic variables

BIG NEG, NEG, CENTER, POS and BIG POS as shown in Figure 4.9.
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1
BIG_NEG BIG_POSNEG POS

CENTER

Figure 4.9: Fuzzification of the input error ex: The BIG NEG, NEG, CENTER, POS
and BIG POS are the membership functions to estimate the truth of the
fuzzy set in the case of the input error ex. The width of the membership
functions are constrained by emax, which is determined experimentally.

The truth value µ(ex) is normalized between zero and one, and the width of the linguistic

variables depends on the user-defined maximum value emax of the error. emax is tuned during

test flights to get a good flight behavior. The major advantage of fuzzy logic is that the design of

the membership functions can be chosen intuitively. Therefore, ε can be chosen in a way that it

defines the noise level of the pose estimation.

The membership functions for the second input, the error change ∆ex, consist of

three linguistic variables, namely NEG, CENTER and POS as shown in Figure 4.10.

1NEG POS

C EN       TER

Figure 4.10: Fuzzification of the second input, the error change ∆ex: Three member-
ship functions NEG, CENTER and POS are used, whereas ∆emax is again
determined during experiments.
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The membership functions are again normalized between zero and one, whereas the width

depends on the factor ∆emax. This factor is used to get the controller’s desired damping. The

error change ∆ex is near to the noise level and therefore only three membership functions are

used. The NEG and POS linguistic variables are used to damp the system in case the posi-

tion error is small but the MAV is currently too fast. Thus, the overshoot is kept as low as possible.

As a last step of the fuzzification the linguistic output of the fuzzy controller is

designed as depicted in Figure 4.11.

1
BIG_NEG BIG_POSNEG POS

CENTER

Figure 4.11: Fuzzification of the incremental pitch output ∆Θ. ∆Θ consists of five
membership functions to map the fuzziness to real exact values of ∆Θ for
the control of the x-position of the MAV .

Therefore, five different membership functions are used for the output ∆Θ. Again, the width of

the membership functions is tuned with the factor ∆Θmax, determined during the test flights.

Once the inputs and the outputs are fuzzificated, the rule-set of the inference block is

designed. The truth values are now combined logically with an AND operator. The entire rule-set

is defined in a way an expert would control the pitch Θ of the MAV to control the x-position as

shown in Table 4.1. There, the membership functions of the input error ex are defined row-wise

and the membership functions of the input ∆ex column-wise. The two input membership

functions are combined with a logical AND operation to get the appropriate membership function

of the output ∆Θ. Table 4.1 can be read in a linguistic way such as:

IF ex is BIG NEG AND ∆ex is NEG THEN ∆Θ is BIG POS,

in other words if the position error is large and negative, and the velocity error is also negative
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∆ex\ex BIG NEG NEG CENTER POS BIG POS
NEG BIG POS POS POS CENTER CENTER

CENTER POS POS CENTER NEG NEG
POS CENTER CENTER NEG NEG BIG NEG

Table 4.1: The table shows the fuzzy logic rules to control the incremental pitch angle
∆Θ of the MAV . In the first row and column the two inputs ex and ∆ex of
the controller are defined with their membership functions. The intersection
cell of the corresponding membership function of the inputs ex and ∆ex is
the corresponding output membership function ∆Θ.

then the desired output is large positive. Based on the five membership functions of the first

input ex and three of the second input ∆ex, fifteen rules exist to control the x-position of the MAV .

Finally, the last block of the fuzzy logic control is the defuzzification. Therefore, the

truth values of the output membership functions are mapped to a real value for the system input.

In case of the x-position controller the value of the pitch angle is calculated. We use the CoA

method as discussed in Section 2.4.2 for defuzzification, where the center-of-gravity of the area

of the composited output function is mapped to the x-axis and chosen as system input.

Now it is possible to evaluate the measured values of the inputs (x-position error ex

and error change ∆ex) and calculate the truth of the membership functions. Based on the defined

rules the output membership function can be calculated, and fuzzificated to a real value, which

is the final output of the fuzzy system. As already mentioned, fuzzy logic control can be used

for real-time applications because the whole controller is implemented as a look-up table as

depicted in Figure 4.12. The x-axis is the input of the position error ex and the y-axis represents

the input of the change of the position error ∆ex. Based on the surface it is possible to retrieve

the fuzzy logic output ∆Θ for every combination of the inputs. An arbitrary discretization of the

surface can be chosen; however, the smaller the steps are, the more accurate is the resulting

controller. Due to the fact that the membership functions are chosen symmetrically, the surface is

symmetrical as well.

To conclude, we have discussed all parts of the position controller as well as the

PID -fuzzy logic control for the x-position control of the MAV . The same structure and fuzzy

logic rules are used for the y-position and the z-position control, with the inputs being the

position error ei and the change of the position error ∆ei, where i is the index for either x, y or z.

Therefore, the angles roll Φ and pitch Θ as well as the thrust T for height control are determined.
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x-Axisy-Axis

z-Axis

Figure 4.12: Fuzzy logic surface: The x-axis is the input of the position error ex and
y-axis is the input of the change of the position error ∆ex; the z-axis is the
fuzzy logic output ∆Θ used to control the x-position of the MAV .

To fully control the entire position, the yaw angle Ψ of the MAV has to be adjusted as well. This

controller is described in the next section.

4.3.4 Yaw Control

For the yaw angle Ψ a simple proportional controller is used. The rotation of the MAV around

the z-axis is very slow due to inertia. Therefore, a proportional controller can be applied without

causing a large overshoot. Based on the initial pose’s yaw Ψinit, the current yaw angle Ψ[n] is

measured. The yaw controller is designed such that the yaw error

eΨ[n] = Ψinit −Ψ[n] (4.12)

is minimized. Thus, we try to keep the initial yaw constant. Theoretically, the initial yaw angle

can be set to an arbitrary value any time. In this case the control error eΨ[n] is equal to the current

yaw Ψ[n] angle and with the proportional gain value KP the desired yaw Ψ∗(n) angle, which is

sent as a control command to the MAV , can be calculated as

Ψ∗[n] = KP eΨ(n). (4.13)

By setting Ψinit = 0, the yaw controller makes sure that the MAV looks towards the known

environment and thus a pose can be estimated during take-off and landing procedures.
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Before we discuss a typical take-off, hovering, and landing procedure we show next how to deal

with system failures.

4.4 Dealing with System Failures

In this section we analyze possible system failures and how to detect and react to these errors.

The first step is to detect the errors and then handle them appropriately. Additionally, we have to

distinguish between in- and outdoor flights.

4.4.1 Detecting Failures

In the following we discuss how to detect connection errors and pose tracking errors.

Furthermore, we picture some possible error scenarios and their influence on our system.

When a connection error occurs, it is impossible to determine if the connection is

broken or if the hardware is defective. Both cases have the same effect of no images reaching the

ground-station. It no images are received, the pose estimation does not deliver an updated pose

of the MAV . This error is detected easily, however small delays can appear due to the wireless

connection link. If no pose is received within a predefined time interval this is interpreted as

connection error. On the other hand, problems can occur if the wireless MAV control connection

fails, namely the Xbee-datalink. The rate of the control commands received by the MAV drops

down rapidly. This is automatically detected by the FCU .

The pose estimation algorithm can lose track of the environment. This can have

different reasons such as the MAV making too fast movements or rather big rotations around

the z-axis. These movements cause new views of the camera which are not yet in the map.

Furthermore, large illumination changes can cause problems, as well as too homogeneous regions

resulting in too few features for pose estimation. These errors are easy to detect because our

pose estimation framework automatically detects those cases. If this happens repeatedly over a

predefine time, a pose tracking error is triggered.

The pose estimation algorithm calculates a pose based on the features extracted from

the image. It can happened that similar features are detected over different scales in the

image-pyramid, which has the effect of the pose getting invalid. This kind of problem is not

as easy to detect as the already discussed failures. However, an invalid pose estimate is very
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dangerous because the controller gets a completely incorrect input, which in the worst case can

cause the MAV to crash. Therefore, additional knowledge is necessary to identify such failures.

First, scale changes are monitored using the physical characteristics of the MAV ,

namely the maximum speed. Therefore, the pose is estimated for every frame and labeled with

its current time stamp. With this information the speed vi of the MAV between two consecutive

frames can be computed and compared to the maximal speed vmax. If vi > vmax then the last

pose estimate is invalid and the frame is dropped. Then, the next frame is evaluated again. After a

predefined time of no valid pose estimations, we trigger a pose tracking error.

Second, for outdoor flights we additionally use the GPS signal to verify pose estima-

tion. Thus, during the initialization step, the actual GPS position and the yaw Ψ provided by the

compass sensor are stored as reference data. The yaw angle Ψ is defined such that it is zero

when the MAV is aligned to the north pole. Based on the reference GPS position a local tangent

plane to the Earth’s surface is estimated, and the current MAV position is calculated with respect

to the initialization point. Therefore, we use a local Earth-Centered, Earth-Fixed (ECEF ) [51]

coordinate representation of the GPS signal. This representation shows a good accuracy,

especially in the case of small position changes compared to the reference position. Based on the

reference yaw, the visual pose coordinate system is rotated into the reference GPS system where

the current pose estimation is checked for validity. Tacking the uncertainty of the reference and

the current GPS position into account, the visual pose estimation is roughly verified.

4.4.2 Handling Failures

We distinguish between indoor and outdoor failure handling. Outdoors we have the possibility to

use additional sensor information such as GPS to react to system failures.

If a system failure occurs during an indoor flight, the operator gets an audio-

feedback and the MAV lands autonomously. During the landing procedure, the fuzzy PID

integration values are sent to the MAV to hold the x − y- position. To lose height, the integrated

thrust for hovering is slightly reduced. However, if the control connection is broken, the MAV

control is given back to the FCU . Therefore, during all flight experiments we use the height

flight mode. This mode tries to hold the MAV in the current height autonomously, using the

air-pressure sensor and IMU data. However, these sensors drift significantly over time so in

general the safety pilot need to take over control.
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If system failures occur during outdoor flights, we use the possibility of autonomous

GPS navigation. In this case the control is switched to GPS position hold, where the

internal FCU tries to hold the current position of the MAV . The operator gets a visual

as well as an audio-feedback that an error has occurred and he can take over control

using the RC to land the MAV . This is only possible outdoors where a valid GPS

signal is available. If no GPS signal is available, then the FCU automatically switches

back to the height flight mode and the safety pilot has to take over control in order to land the MAV .

During testing and tuning the position controller we used some kind of a fishing rod

as shown in Figure 4.13, to ensure that the MAV cannot escape. Moreover, this also enables an

emergency shutdown, where all rotors are switched off and the MAV falls into the rod without

damaging it.

Figure 4.13: Safety feature for testing and tuning the position controller. The fishing rod
is a back-up in case of an emergency shutdown.

4.5 A Typical Take-Off, Hovering, and Landing Procedure

After discussing possible system failures and the implemented countermeasures, this section

describes how the position controller operates during a sequence of automatic take-off, hovering

and landing. As already mentioned, the controller needs an environment map which is created

by means of operator interaction. This means that MAV camera needs to be translated by the

operator in order to build the initial map in the surroundings of the take-off position. The map

is then extended during the later flight. After initialization, the new origin for the controller is
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defined by the operator within the previously built map. The new origin is at the same time the

first waypoint after take-off where the MAV holds its position. A typical command would be to

rise 2 meters and hold position there.

A typical take-off, hovering and landing sequence can be described by a state ma-

chine as depicted in Figure 4.14. After the definition of the new origin, the MAV is placed on

Figure 4.14: Statemachine for automatic take-off, hovering, visual waypoint navigation
and landing.

the ground with engines turned off. This corresponds to the state off in Figure 4.14. When the

engines are turned on, the MAV transitions to the state starting up and increases the thrust step

by step, until the point is reached when the MAV almost takes off. The state transition to the

taking off state is triggered by an operator interaction. Since the camera mounted on the MAV is

facing forward, there is the possibility that the camera pose cannot be estimated when the MAV is

placed on ground. In order to overcome this problem, the thrust is further increased such that the

MAV takes-off and flies to a maximum height of h = 2 m. If no valid pose estimate is obtained

during take-off, the transition from taking-off to landing is performed. As soon as a valid pose

estimate is available, the state transition from taking-off to waypoint navigation is performed and

the MAV flies to the first waypoint. If no further waypoints are specified, the MAV holds the

position at the previously defined waypoint. New waypoints are defined relative to the origin

and can be added at any time by the operator, which enables us to fly arbitrary trajectories in

the environment as long as the pose can be estimated. The MAV can land anywhere in the
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environment after a particular waypoint-based trajectory flight if the structure of the ground floor

permits it. When the landing procedure is triggered, the thrust value is reduced such that the

MAV slowly reduces height and lands safely on the ground.

When a failure is detected, the MAV switches to the failure handling state and

countermeasures are performed as discussed in detail in the previous chapter.

4.6 Summary

In this chapter we have given an overview of our human-inspired visual servoing approach for

automatic take-off, landing and hovering of MAV . We discussed the pose estimation algorithm and

the control design, which does not need a detailed mathematical model of the MAV . Finally, we

have discussed how to detect and handle system failures appropriately and as well how to switch

between different operation modes based on a state machine representation. In the next chapter,

we will present the conducted experiments and give an in-depth discussion of the obtained results.
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Several experiments in a simulation environment as well as indoors and outdoors have been per-

formed. A simulation framework [52] is used to evaluate the robustness of the controller to pose

estimation noise and to evaluate how the controller parameters influence the MAV dynamics. The

precision of hovering and flight trajectories are evaluated in indoor and outdoor environments and

compared to other state-of-the-art approaches. The ground-truth for some of the indoor experi-

ments has been established by an off-the-self outside–in tracking system. Evaluation is performed

on a ground-station with an Intel Core i5 2.66 GHz processor running Linux.

5.1 Parameter Setup

Table 5.1 shows the parametrization of the position controller for the conducted experiments.

As already discussed in the previous chapter, the PID -Fuzzy controllers for x, y, and

z have the same structure and only differ in the parametrization. The parameters were

fitted to the requirements of the simulator, respectively the control interface of the

57
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parameters
Controller

PID-Fuzzy x PID-Fuzzy y PID-Fuzzy z
emax 3.4 3.4 1.2
ε 0.005 0.005 0.005

∆emax 0.06 0.06 0.03
∆Θmax 1300 - -
∆Φmax - 1300 -
∆Tmax - - 450

Θ∗max ±650 - -
Φ∗max - ±650 -
T ∗max - - ±600

Table 5.1: Controller parametrization: Input fuzzification parameters and dynamic
range of the controller outputs. Each controller output is bound to a given
maximum value (·)∗max, given a dynamic range of ±2048.

MAV , regarding the dynamic range of the inputs. The output of each controller block

is bound to a maximum output value (·)∗max for safety reasons. The proportional yaw

controller, described in Equation (4.13), is parameterized with KP = −1000. The cho-

sen parameters have been found by empirical means during several simulation runs and test flights.

Using this configuration, the performance of the controller was first evaluated in a

simulator which has the benefit of a fully controlled environment that allows for a comfortable

analysis of the behavior and the sensitivity to certain input factors.

5.2 Simulator

We use a simulation framework [52] to evaluate the robustness of our position controller to pose

estimation noise. The simulator configuration is shown in the block diagram of Figure 5.1. The

dynamics of the MAV are encapsulated in a black–box manner and can be influenced by control-

ling roll, pitch, yaw and thrust. The simulator yields the current position and orientation of the

MAV . For evaluating the robustness against pose estimation errors, uniformly distributed noise is

added to the position estimate.

Simulation noise. Noise generation for the simulator experiments is based on a two–state ran-

dom process. This allows us to define the noise level as well as the frequency to closely simulate

perceptual noise. While the amplitude follows a uniform distribution U(−x̂, x̂), the frequency is

determined by a Bernoulli experiment [53]. For each pose, a Bernoulli trial with the outcome PF
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Position

Controller

Quadrotor Helicopter

Simulator

Noise

+

Figure 5.1: Simulator overview. The simulator yields the position and orientation of the
quadrotor helicopter which is then artificially corrupted by additive noise.
The controller influences the dynamics of the simulated MAV by setting
the roll, pitch and yaw angle as well as the thrust.

is performed. Based on this outcome, it is decided whether a new noise level should be generated.

This results in a definition for the noise vector

u[n] =

U(−x̂, x̂) PF 6 pF or n = 0

u[n− 1] else.
(5.1)

Changing the parameter pF allows to set the frequency for generating noise levels. For example,

a value of pF = 0.9 means that a new noise level is chosen in 90% of all computed positions. The

amplitude of the noise can be determined by means of the parameter x̂. The noise is added to the

position x[n] computed by the simulation engine, resulting in

x̃[n] = x[n] + u[n]. (5.2)

The corrupted position x̃[n] serves as the feedback input for the position controller.

Based on this setup, the simulator experiments are split into two main parts. First,

the performance of the system is evaluated in a hovering scenario. The second experiment

demonstrates the flight along a predefined trajectory. Both types of experiments are conducted

with and without noise to assess the robustness against pose estimation errors.
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5.2.1 Hovering

In the experimental scenario, the MAV starts at position x = [0 0 0]T with a target position of

x∗ = [0.5 0.5 0.5]T , where the MAV hovers for a period of τ = 30 s. As performance metric, the

Root Mean Square (RMS ) error of the absolute position is computed as

RMS =

√
1

N

∑
n∈N
‖εn‖2, (5.3)

where εn denotes the position error vector at time step n. The RMS error is computed separately

for the height z, the horizontal xy plane as well as in all three dimensions. In order to ignore the

transient behavior while the MAV approaches the desired position, the RMS computation starts

in the steady state.

The results for a hovering experiment with noise-free position estimates is shown in

Figure 5.2 for the x, y and z coordinate over time. Additionally, Figure 5.2(d) shows the

3D representation of the flight trajectory. Note the almost linear path from the starting

position to the desired hovering position, which is possible due to the independent control

of x, y and z. The steady state is reached after about 10 seconds. Since the controller for

the x and y position operate in the same way and the simulation environment provides

ideal conditions, the resulting trajectory for x and y are equal. In contrast to that,

the z coordinate shows a different behavior: The design of the thrust controller was done

in a way that overshoots are avoided since this is critical during start and especially during landing.

The results regarding RMS - and maximum error are summarized in Table 5.2. For

this simulation setup, the RMS error is bound to about 1 cm with a maximum error of 1.5 cm.

error [m] z xy xyz

RMS 0.0030 0.0098 0.0103
max 0.0033 0.0137 0.0141

Table 5.2: Evaluation of hovering precision without noise. The RMS - as well as the
maximum error are evaluated for the height z, the horizontal xy-plane as
well as in all three dimensions.

The same type of experiment was performed with additive noise as described above. The noise

parameters are chosen as pF = 0.4 and x̂ = 0.04 m. This means that there is a 40% chance of
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(d) 3D representation of the hover-trajectory

Figure 5.2: Hovering experiment without noise. After the approach phase, the MAV
hovers at position x∗ = [0.5 0.5 0.5]T . Figures (a)-(c) show the temporal
evolution of the x, y and z coordinate whereas Figure (d) shows the spatial
representation in 3D space.

changing the noise level from one position update to the next. The resulting trajectories for x, y

and z direction as well as the 3D trajectory are shown in Figure 5.3.
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(d) 3D representation of the hover-trajectory

Figure 5.3: Hovering experiment with noise. After the approach phase, the MAV hov-
ers at position x∗ = [0.5 0.5 0.5]T . Figures (a)-(c) show the temporal
evolution of the x, y and z coordinate whereas Figure (d) shows the spatial
representation in 3D space.

The red curve in Figure 5.3 represents the actual position of the MAV , whereas the blue curve

represents the noisy position estimate provided as controller input. The noisy position estimate

causes a greater deviation between the desired and the actual position compared to the noiseless

case. This is also indicated by the computed RMS - and maximum error as shown in Table 5.3.
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error [m] z xy xyz

RMS 0.0185 0.0215 0.0284
max 0.0536 0.0482 0.0609

Table 5.3: Evaluation of hovering precision with noise. The RMS - as well as the
maximum error are evaluated in different spaces: height z, horizontal xy-
plane and 3D space xyz.

The RMS error is bound to 3 cm with a maximum error of about 6 cm. Note that the RMS error

depicted in Table 5.3 is smaller than the chosen noise level of x̂ = 4 cm.
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Figure 5.4: Impact of noise frequency: The RMS error decreases for increased noise
frequency due to integrating controller behavior.

To further investigate the impact of the noise frequency, the RMS error for xyz was calculated

for varying values of pF . Low values of pF lead to a slow variation of the noise level, whereas a

high value leads to rapidly changing noise levels. The results of this analysis are summarized in

Figure 5.4, where x̂ = 0.04 m. For increasing frequency, the RMS error decreases due to the

integrating controller behavior.

Finally, Figure 5.5 shows the resulting RMS error for xyz if both, the noise ampli-

tude x̂ and the parameter pF are varied. For this purpose, the MAV was hovering at the desired

position and the RMS error was estimated over a period of τ = 30 s for every combination of the

noise parameters. Intuitively, the RMS error increases with increasing x̂, whereas the integrating

controller can cope with high frequency noise, regardless of the actual noise level.

The simulations indicate that the controller design shows good robustness to noisy

position estimates. In practice, the noise level depends on the distance between camera and

feature points in the scene. For noise levels in the range of a few centimeters, the controller
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Figure 5.5: Noise evaluation: The RMS error decreases for increased noise frequency
and increases with higher noise amplitude x̂.

can hold a given position with satisfying accuracy. In addition to the hovering experiment, the

simulator was also used to analyze the performance while flying along a predefined trajectory.

5.2.2 Trajectory Flight

For this experiment, we define a square trajectory for the MAV . Starting from ground, the MAV

flies along four waypoints, building a 1×1 m square in the horizontal plane, where every waypoint

is approached in intervals of 30 seconds. The simulation is carried out for the noiseless case as

well as for a noise level of x̂ = 0.04 m and pF = 0.4. The resulting trajectories are presented in

Figure 5.6. The red curves in Figure 5.6 represent the trajectory of the MAV for the noiseless case,

whereas the blue curve represents the trajectory when the position is corrupted by noise. Figure

5.6(a) - 5.6(c) show the projection of the trajectory onto the xz, yz and xy plane, respectively, and

Figure 5.6(d) depicts the trajectory in 3D space. Whereas the trajectory of the MAV fits almost

perfect to the desired trajectory for the noiseless case, there are slight deviations to the ideal path

in presence of noise.

For the RMS error estimation, the path was sampled equidistantly along the trajectory in 0.5 mm

steps. The resulting RMS error and the maximum error are presented in Table 5.4. The RMS
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(d) 3D representation

Figure 5.6: MAV trajectory along a predefined path for the noiseless (red) and noisy
case (blue). Every 30 s, the MAV approaches the next waypoint.

error [m] without noise with noise
RMS 0.0085 0.0264
max 0.0499 0.0826

Table 5.4: Performance for the trajectory flight. The RMS - and maximum error for
xyz are evaluated by sampling along the trajectory in 0.5 mm steps.
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error is well below 3 cm for the noisy case and bound to a maximum of about 8 cm. This confirms

the results from the hovering simulation and indicates that the controller design is suitable for

operating with a noisy pose estimation.

The simulation results show that the design of the controller is robust to noisy pose

estimates under realistic assumptions. In the next step, the performance of the controller is

evaluated in an indoor– as well as outdoor–flight scenario using the Pelican quadrotor helicopter.

As a tool for pose estimation, a real-time capable VSLAM approach is applied. This is discussed

in the next section.

5.3 Visual SLAM for Pose Estimation

After having shown the robustness of the controller in a simulator, it is now moved to the

Pelican quadrotor helicopter. There, a pose estimate has to be determined visually. Natural

features present in the scene are used to create a sparse map of the environment in order

to determine the location of the camera by applying the VSLAM algorithm of Klein and

Murray [25] already described in Chapter 4. Their approach has been adapted to deliver a

metrically correct map with known scale. This is achieved by modifying the initialization

step: An artificial marker with known dimensions is used during the pose determination of

the first two keyframes. Thereby the baseline between the first two cameras corresponds

to the true metric distance between the first two keyframes and allows for a metrically

correct initialization of the map. Moreover, the MAV is currently carried around by hand

to expand the map in the local region where the MAV is going to take-off and land again.

This ensures a proper pose estimate during take-off and is depicted in Figure 5.7. Addition-

ally, the manually created initial map is extended online while the MAV explores the environment.

The quality of the map is very important in terms of pose estimation accuracy and thus a robust

control of the MAV . The accuracy not only depends on the number of features but also on their

distribution over the image. The more uniformly the features are distributed over the image, the

better the pose estimate. Another important quantity is the number of keyframes. Whereas too

little keyframes result in a rather inaccurate pose estimate, the time needed to administer the

entire map rises with an increasing number of keyframes. Furthermore, the distance between

camera and detected world features has an impact on the accuracy of the estimated pose. In

general one could say that the farther away the features are from the camera, the poorer the pose

estimate gets.
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(a) Keyframe 1 (b) Keyframe 2 (c) Keyframe 3

(d) Map front-view (e) Map side-view (f) Map top-view

(g) View 1 (h) View 2 (i) View 3

Figure 5.7: VSLAM map extraction and pose estimation. Based on the keyframes de-
picted in Figures (a)–(c) a sparse map of the environment is estimated. Fig-
ures (d)–(f) show different views of the created map, and Figures (g)–(i)
represent the re-detected map features in the current views of the MAV ,
which are then used to estimate the pose.



68 Chapter 5. Experiments and Results

We have discussed how to determine a pose for real world experiments using a

VSLAM approach, and we also mentioned some limitations this approach has towards a robust

control of the MAV during take-off, landing and hovering. Now we are first going to analyze

the performance of our approach in an indoor environment. Outdoor experiments will then be

discussed afterwards.

5.4 Indoor Control

Indoors, we evaluate the precision of hovering as well as of trajectory-flights. Therefore, we

compare the visual pose estimate to ground-truth data acquired from an off-the-self outside-in

tracking system. Due to the limited amount of data that can be transferred from the MAV down to

the ground-station via a wireless data link, we also evaluate the influence of reducing the camera’s

resolution from 640× 512 px to 320× 256 px. Additionally, we analyze the controller’s reaction

to inaccuracies of the pose estimate resulting from continually increasing the distance between the

camera and detected world features. However, the last experiment is done without comparison to

ground-truth as the tracking volume of the reference system is limited to 2× 2× 2 m in our case,

which is not sufficient to evaluate larger distances to the scene.

5.4.1 Comparison to Ground-Truth

First, we evaluate the accuracy of the vision-based pose estimate by comparison to ground-truth

data. We use an outside-in tracking system from A.R.Tracking1 delivering the high precision

ground-truth of ±1 mm. The system uses three IR -cameras to determine the exact location of a

tracking target mounted on the MAV as depicted in Figure 5.8. For evaluation, the lower camera

resolution of 320 × 256 px is used to determine inaccuracies in the worst case scenario. A map

consisting of 53 keyframes and about 1000 map points is initially created and used for visual pose

estimation. The mean distance of the 3D feature points to the MAV is approximately 3.5 m.

Hovering experiment. During this experiment the MAV is supposed to hover at a target

position x∗ = [0.0 0.0 1.5]T for a period of τ = 30 s. The results for this experiment are shown

in Figure 5.9 for x, y and z coordinates respectively. The values are plotted over time after having

reached the steady state position. Additionally, Figure 5.9(d) shows the hovering trajectory in 3D

space. The blue curve represents the visually determined position used as controller input, while

1http://www.ar-tracking.de
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Figure 5.8: Tracking target used for pose estimation to acquire ground-truth using an
outside-in tracking system.

error [m]
320× 256 px ground-truth

z xy xyz z xy xyz

RMS 0.0875 0.1413 0.1662 0.0825 0.1302 0.1541
max 0.1994 0.2711 0.3088 0.1802 0.2240 0.2652

Table 5.5: Hovering evaluation for the 320×256 px camera resolution and the ground-
truth based on outside-in tracking. The RMS error of z as well as the error
of the xy plane and the error in xyz space are evaluated.

the red curve marks the ground-truth and thus the true position.

The results regarding RMS - and maximum error for this experiment are summarized in Table 5.5.

The RMS error is bound to about 9 cm in height for the case where the position has been

estimated visually, and to about 8 cm when looking at the ground-truth RMS error. Similar results

can be observed when comparing the RMS error in the xy plane and in 3D space. Thus, the

RMS error between visually determined positions and ground-truth positions is more or less the

same, in other words the visually estimated position deviates only about±1 cm from ground-truth.

Compared to the simulated experiments, the RMS error is significantly higher. This

is due to the fact that the simulator uses a simple dynamic model of the MAV while the true

system is rather complex. Furthermore, in a real world environment, several disturbances occur,

for example turbulences. These depend on the room’s geometry and are thus not taken into

account in the simulation.

Trajectory flight experiment. In this experiment the MAV has to fly along a predefined trajec-

tory consisting of four waypoints, resulting in a 0.5 × 0.5 m square in the horizontal plane at a
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(d) 3D representation of the hover-trajectory

Figure 5.9: Hovering experiment based on an outside-in tracking ground-truth. The
MAV hovers at position x∗ = [0.0 0.0 1.5]T . Figures (a)-(c) show the
temporal evolution of the x, y and z coordinate of the visual position (blue)
as well as the MAV position based on the outside-in tracking (red), whereas
Figure (d) shows the trajectory in 3D space.
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flying height of 1.5 m. The results of this experiment are depicted in Figure 5.10.
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(d) 3D representation of the trajectory flight

Figure 5.10: MAV trajectory flight along a predefined 0.5× 0.5 m square path. Figures
(a)-(c) show the temporal evolution of the x, y and z coordinate. Figure (d)
shows the spatial representation of the trajectory in 3D space. The RMS
error of the ground-truth to the predefined trajectory is 8.5 cm in 3D space.



72 Chapter 5. Experiments and Results

Figures 5.10(a)–5.10(c) show the position of the MAV in x, y and z coordinate over time.

Additionally, in Figure 5.10(d) the 3D space trajectory is depicted. The red curve shows the

visually estimated position, the blue curve the ground-truth position and the black curve the

manually defined path which the MAV should follow. Comparing the red and blue curve in the

x-position plot of Figure 5.10(a) - which corresponds to the distance between MAV and map

features - one can observe that the further away the MAV moves, the more inaccurate the visually

estimated x-position gets compared to its true position.

Additionally, an RMS error evaluation has been performed, where the path has been

subsampled equidistantly along the predefined trajectory in 0.5 mm steps. The ground-truth RMS

error is 8.5 cm with a maximum error of 21.4 cm in 3D space, whereas the visually estimated

position RMS error is 9.5 cm with a maximum error of 21.3 cm. Thus, during this experiment we

could show that the visually acquired position estimate compared to ground-truth data is good

enough to successfully control an MAV . Moreover, we could show that the distance between the

MAV and the map influences the accuracy of the pose estimate.

5.4.2 Distance Evaluation

During the trajectory flight experiment we could observe that the visually acquired position es-

timate gets less accurate compared to ground-truth with increasing distance between MAV and

map. Thus, further evaluate the robustness of our controller with respect to such inaccuracies of

the visually estimated position by increasing this distance step by step as shown in Figure 5.11.

Figure 5.11: Three different distances to the scene, 3.5, 5.0 and 6.5 m, are evaluated.
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distance [m]
320× 256 px 640× 512 px

z xy xyz z xy xyz

3.5 0.0626 0.1232 0.1394 0.0753 0.1218 0.1437
5.0 0.0520 0.1175 0.1287 0.0453 0.1138 0.1226
6.5 0.0554 0.1102 0.1234 0.0601 0.1516 0.1636

Table 5.6: The hovering RMS error, averaged over three flights, is evaluated based
on different resolutions and distances to the natural features. The average
RMS error of z as well as the average RMS error of the xy plane and the
average RMS error in the three dimensional xyz space are presented.

Furthermore, we evaluate how a higher resolution of the camera affects the results. For the higher

resolution of 640 × 512 px a map consisting of 64 keyframes and 2800 map points has been

created, which is depicted in Figure 5.7. For the smaller resolution of 320 × 256 px the map

consists of 51 keyframes and 1200 map points.

For all distances, namely 3.5 m, 5.0 m and 6.5 m and the two different image resolu-

tions, we performed three hovering experiments and calculated the average RMS - and maximum

error after the system reached the steady state at the desired position x∗ = [0.0 0.0 1.5]T . The

results are summarized in Table 5.6. For all experiments performed it seems that the distance does

not affect the accuracy of the estimated position. However, we showed that this is the case when

comparing to ground-truth. Thus, we had a closer look on the estimated position trajectories for

the two different resolutions as depicted in Figure 5.12.

It can be observed for both resolutions that the higher the distance to the map gets, the nosier

is the visual position estimate. The reason why there probably is no difference in accuracy

between the two resolutions is that we had to compress the higher resolution image, whereas

for the smaller image the raw image data could be transmitted. Thus, the compressed image

suffers from compression artifacts which in turn affect the quality of the pose estimation process.

Additionally, the trajectory is of course influenced by the controller, so a direct comparison of the

pose estimates is difficult.

Finally, we compare our results to a related approach of Achtelik et al. [26]. We

therefore picked the best of our hovering experiments and compared them to their results, as

presented in Table 5.7. Best performance is achieved for both resolutions at a distance of 5.0 m,

which is approximately in the middle of the room. We think that this is the best trial because the

fewest turbulences occur. Achtelik et al. perform better than our approach in terms of keeping the

correct height, which is due to fact that they use a camera looking down to the floor, whereas in
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(b) 5.0m distance, 320× 256 px
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(c) 6.5m distance, 320× 256 px
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(d) 3.5m distance, 640× 512 px
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(e) 5.0m distance, 640× 512 px
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(f) 6.5m distance, 640× 512 px

Figure 5.12: Indoor hovering evaluation for different scene depths and camera resolu-
tions: with a desired hovering postion at x∗ = [0.0 0.0 1.5]T . Figures
(a)-(c) show the hovering trajectory for a 320× 256 px camera resolution,
whereas Figures (d)-(f) show the hovering trajectory for a 640 × 512 px
camera resolution in 3D space.

our case the camera does not. However, comparing the xy-error we outperform their approach

with an RMS error of 6.7 cm compared to 12 cm. Unluckily, further comparison in the xyz-plane

or regarding the maximum errors is not possible due to the missing evaluation in [26].

5.4.3 Trajectory Flights

A rather small trajectory flight of 0.5×0.5 m has already been evaluated and compared to ground-

truth. Here, we evaluated another two trajectory flights, where we traveled a longer distance and

evaluated the controller’s behavior when using different image resolutions.
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approach distance [m]
RMS error [m] max error [m]

z xy xyz z xy xyz

ours, 320× 256 px
3.5 0.0492 0.0947 0.1067 0.0984 0.1559 0.1620
5.0 0.0512 0.0903 0.1038 0.1411 0.2067 0.2107
6.5 0.0462 0.0914 0.1024 0.1147 0.1851 0.1865

ours, 640× 512 px
3.5 0.0918 0.0953 0.1324 0.2408 0.1839 0.2767
5.0 0.0485 0.0672 0.0828 0.1294 0.1259 0.1646
6.5 0.0639 0.1318 0.1465 0.1868 0.2645 0.2647

Achtelik et al.[26] 1.4 0.01 0.12 − − − −

Table 5.7: Indoor hovering evaluation of the RMS and maximum error over different
scene depths and camera resolutions. The RMS - as well as the maximum
error are evaluated in height z, xy-plane and the 3D space.
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(d) 3D representation of the trajectory flight

Figure 5.13: MAV trajectory along a predefined 1.0×1.0 m square path. Figures (a)-(c)
show the temporal evolution of the x, y and z coordinate. Figure (d) shows
the spatial representation of the trajectory in 3D space.
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approach x y z xyz

our 320× 256 PTAM 0.0704 0.1109 0.0663 0.1471
our 640× 512 PTAM 0.0768 0.1104 0.0708 0.1520

Blösch et al. [1] 0.0995 0.0748 0.0423 −

Table 5.8: Performance for the trajectory flight. The RMS - and maximum error for
xyz are evaluated by sampling along the trajectory in 0.5 mm steps.

The experiments have been conducted with the same maps used during the distance evaluation.

Figure 5.13 shows the trajectory flight using the 320× 256 px camera resolution. The predefined

path in the height of 1.5 m above ground followed a 1.0 × 1.0 m square which results in a total

length of 4.0 m to travel. Figures 5.13(a)–5.13(c) show the temporal evolution of the flight path

for the x-, y- and z-position, respectively. The black curve again marks the requested path. The

3D trajectory in space is depicted by Figure 5.13(d). The RMS error for this experiment is

15.06 cm in 3D space and is calculated by equidistantly sampling the predefined path in 0.5 mm

steps.

The results for a camera resolution of 640 × 512 px are shown in Figure 5.14. In

this experiment we even followed a 2.0 × 2.0 m square flight path which results in a total path

length of 8.0 m. The temporal evolution for the positions of x, y and z are again shown in

Figure 5.14(a)–5.14(c), whereas the 3D trajectory is shown in Figure 5.14(d). The calculated

RMS error is 14.71 cm in 3D space. To be able to compare our trajectory flights with others, we

evaluated the RMS error for each coordinate separately. The results are depicted in Table 5.8 and

are comparable to those of Blösch et al. [1]. However, our system does not rely on a textured

ground plane therefore, we use the discriminative scene geometry naturally present. Additionally,

our ground-station is not connected physically to the MAV which is important in terms of

autonomous inspection tasks. Furthermore, our approach does not require a mathematical model

of the MAV for control design in comparison to [1].
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(d) 3D representation of the trajectory flight

Figure 5.14: MAV trajectory along a predefined 2.0×2.0 m square path. Figures (a)-(c)
show the temporal evolution of the x, y and z coordinate. Figure (d) shows
the spatial representation of the trajectory in 3D space.

5.5 Outdoor Control

After having evaluated several experiments for indoor environments we want to demonstrate the

applicability to an outdoor environment as well. We used the lower resolution of 320 × 256 px,

which allows real-time transmission of the images with 30 FPS without compression, and created

a map consisting of 46 keyframes and 560 map points. We hovered at a target position x∗ =

[0.0 0.0 1.5]T for a period of τ = 30 s in front of a building with little associated texture, as

depicted in Figure 5.15.
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Figure 5.15: Outdoor evaluation scene in front of a building. Note that in this experiment
only little texture is available for the pose estimation.

approach distance [m]
RMS error [m] max error [m]

z xy xyz z xy xyz

ours, 320× 256 px 10.0 0.0643 0.1495 0.1627 0.2189 0.2716 0.3471
Achtelik et al.[26] 3.3 0.11 0.44 − − − −

Table 5.9: Performance of the outdoor hovering. The RMS - and maximum error for z,
xy-plane and in 3D space xyz are shown and compared with the approach
of Achtelik et al. [26].

The distance to the building was approximately 10 m, and the experiment took place on a day

with good wind conditions. The resulting x-, y-, and z-positions are visualized in Figure 5.16(a)–

5.16(c), whereas the 3D trajectory can be seen in Figure 5.16(d). The results are summarized

and compared to those of Achtelik et al. [26] in Table 5.9. As can be seen from the results, we

clearly outperform their approach in an outdoor setting with an RMS error of 15 cm compared to

44 cm in the xy-plane. However, we also want to note that it is difficult to compare the results as

the experiment took place outdoors and the results highly depend on the scene and on the wind

conditions.
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(d) 3D representation of the outdoor hover-trajectory

Figure 5.16: Outdoor hovering experiment: The MAV hovers at position
x∗ = [0.0 0.0 1.5]T . Figures (a)-(c) show the temporal evolution
of the x, y and z coordinate whereas Figure (d) shows the trajectory in 3D
space.

5.6 A Typical Take-Off, Hovering, and Landing Example

This section shows a typical example for autonomous take-off, hovering and landing of an MAV as

performed many times. Figure 5.17 illustrates four different states, including drift compensation

which is needed to overcome the typical offsets in the dynamic range of the input. In other words,
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the integration subsystems of the controller automatically estimate the best parameters for efficient

control.
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(d) 3D representation

Figure 5.17: MAV trajectory during take-off (green), drift compensation (magenta),
hovering (blue) and landing (red).

During take-off, marked by the green trajectory, the almost linear behavior is clearly visible. The
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magenta curve marks the drift compensation, whereas the blue curve shows the MAV hovering

trajectory at a desired height of 1.2 m. Finally, the red trajectory shows the landing of the MAV ,

where tracking is lost shortly before reaching the floor. Nevertheless, safe landing was always

possible within a radius of about 0.5 m compared to the commanded hovering position, such as

depicted in Figure 5.17.

To support this example, a video showing the previously described behavior is available online2.

5.7 Discussion

During indoor and outdoor hovering, as well as several trajectory flights, we have shown that our

approach is suitable for the tasks of automatic take-off, hovering, and landing of MAVs. We

only use visual input to determine a pose and are even capable of dealing with quite noisy pose

estimates. We evaluated our approach in terms of accuracy by comparison to ground-truth data,

and conducted several experiments, including different distances and camera resolutions. During

all experiments we were able to autonomously take-off, perform the desired task of hovering or

following a predefined path, and then land again within a range of approximately 0.5 m from the

desired landing location. Additionally, our approach is able to detect system failures and react

accordingly. For example, when no valid pose estimate is available, the MAV starts the automatic

landing procedure or switches to GPS position hold mode in outdoor flights.

The benefit of the presented approach is that no mathematical model of the MAV is

required. Thus, we are flexible in terms of the configuration setup, since the controller is not

optimized to a specific payload. Additionally, the system is robust to noisy pose estimates and

shows comparable performance to other state-of-the-art systems that combine several sensor

modalities. One drawback that is inherent to all vision-based servoing systems is that the

approach is limited to structured scenes and that the performance depends on the illumination

conditions. We plan to tackle this issue in future work by using a High Dynamic Range (HDR )

camera that can deal with lighting variations.

2http://aerial.icg.tugraz.at
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In this work we have presented a human-inspired visual servoing approach for automatic take-off,

hovering, and landing of MAVs which is suitable for outdoor as well as for indoor applications. A

monocular camera is used as an input sensor to robustly control the MAV . To conclude, we give a

summary of our contributions and an outlook to future work.

6.1 Conclusion

We have shown that we are able to robustly control an MAV in indoor as well as in outdoor

environments based on visually detected natural features. During a flight, the pose of the MAV is

estimated using a camera which looks forwards. To keep track of the camera, the environment

is sparsely reconstructed. In contrast to a camera facing the floor, we look at the typically well

structured scene and are thus able to estimate a pose soon after take-off.

During trajectory-flights we have shown that our approach is able to estimate a pose

over several scales. Moreover, the visual pose estimation can handle partial occlusions in form

of moving objects within the scene if enough static map features are still visible in the image.

Furthermore, we showed that even a low camera resolution delivers a pose estimate accurate

enough for autonomous navigation tasks.

83



84 Chapter 6. Summary

Our approach is based on a PBVS technique which has the major advantage that the

pose estimation and the controller are independent and can be replaced easily. We have shown

that the fuzzy logic controller yields good precision comparable to other state-of-the-art

approaches, not only for hovering tasks but as well for trajectory flights, without using

a mathematical model of the MAV . Furthermore, we have demonstrated that our fuzzy

logic controller is robust to noisy pose estimates, even without incorporating other sensor

measurements. Additionally, we discussed how to detect system failures and how to react

in indoor as well as in outdoor environments. Our system is realized as a ROS -node,

which has the benefit that individual parts of our system can be distributed over several computers.

The presented system shows a robust behavior in in- and outdoor experiments and

thus forms a reliable basis for the autonomous inspection of overhead power lines and power

pylons targeted in the PEGASUS project, where autonomous take-off and landing are essential.

Since no mathematical model of the MAV is required for the controller, the proposed system can

be extended by further sensors to assist the inspection task.

6.2 Future Work

Our implementation for autonomous navigation of MAVs is solely based on visual input.

However, most MAVs have additional sensors like GPS , air-pressure, compass and IMU which

can also be used for pose estimation. Therefore, these sensor data and the visual data can be fused

to achieve more precise pose estimates.

Another interesting topic for further research is learning the boundaries of the mem-

bership functions of the fuzzy logic. For example, based on the mean distance to natural features,

the ε value which defines the noise level could be updated automatically.

Due to the bottleneck of the wireless connection and the low computational power

available to the quadrotor helicopter, the tracking and mapping tasks of the visual SLAM

approach can be split apart, such that tracking is performed directly on the MAV and mapping

can be done on a more powerful ground-station. A lower resolution image could then be streamed

down to the ground-station and used as a preview, whereas higher resolution images of newly

added keyframes could be transferred to the ground-station to extend the map. Then, the new map

can be transmitted back to the MAV for pose tracking.
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Another interesting extension of this work would be to combine our system with a

path planing algorithm. For this purpose, the next waypoint within a planned path is approached

autonomously using our framework. The path planing requires the sparse map to represent

obstacles, for example by means of a safety distance in order to avoid collisions. This is

especially important for the inspection of power lines and pylons in the PEGASUS project to

avoid an electric flash-over.





Appendix A

Acronyms

AR Augmented Reality

AscTec Ascending Technologies GmbH

BIBO Bounded Input Bounded Output

CAD Computer-Aided Design

CMOS Complementary Metal Oxide Semiconductor

CoA Center-of-Area

CoG Center-of-Gravity

CoM Center-of-Maximum

ECEF Earth-Centered, Earth-Fixed

EKF Extended Kalman Filter

FAST Features from Accelerated Segment Test

FCU Flight Control Unit

FFG Austrian Research Promotion Agency

FPS Frames Per Second

GPS Global Positioning System

HDR High Dynamic Range

HLP High Level Processor

IBVS Image-Based Visual Servoing

IMU Inertial Measurement Unit

IR Infrared

LLP Low Level Processor

LQG/LTR Linear Quadratic Gaussian Control Design with Loop Transfer Recovery

LRF Laser Range Finder

87



88 Chapter A. Acronyms

MAV Micro Aerial Vehicle

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MoM Mean-of-Maximum

PBVS Position-Based Visual Servoing

PID proportional, integral and differential

PTAM Parallel Tracking and Mapping

P3P Perspective-3-Point-Problem

px Pixel

RC Remote Control

RGB-D Red-Green-Blue-Depth

RMS Root Mean Square

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

VTOL vertical take-off and landing

VSLAM Visual Simultaneous Localization and Mapping

WiFi Wireless Fidelity
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