
Stefan Kroboth

Fast Regularized Reconstruction for
PatLoc MR Imaging using Total

Generalized Variation and Graphics
Cards

Master’s Thesis

Graz University of Technology

Institute of Medical Engineering
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Rudolf Stollberger

Supervisors:
Dipl-Ing. Dr.techn. Florian Knoll
Univ.-Prof. Dr. Kristian Bredies

Graz, December 2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

PatLoc MR Imaging uses two nonlinear, nonbijective encoding fields in ad-
dition to the conventional three linear gradients for image encoding. This
leads to new ways to perform image encoding. However, iterative recon-
struction of PatLoc data is a computationally challenging task due to the
fact that Fourier encoding does not apply anymore. This work aims at im-
plementing a GPU-accelerated reconstruction framework for PatLoc MR
imaging based on two discretization schemes of the forward model. Fur-
ther, tgv regularization is performed to improve image quality. To improve
convergence, a new method for numerically solving the tgv method is
proposed, called tgv-cg. The reconstruction is evaluated on in-vivo and
phantom data acquired with the PatLoc hardware. It is shown that GPU-
acceleration leads to significantly inproved performance which renders the
investigated methods practical. In addition, tgv improves image quality
even for undersampled data. tgv-cg leads to faster convergence in some
cases which further decreases reconstruction time.

Keywords: Nonlinear Encoding, PatLoc, Image Reconstruction, Total Gen-
eralized Variation, GPU

v

Kurzfassung

Die PatLoc MR Bildgebung nutzt zusätzlich zu den konventionellen lin-
earen Gradienten zwei nichtlineare, nichtbijective Gradientenfelder für die
Bildkodierung. Dieses Konzept ermöglicht neue Wege in der Bildkodierung.
Jedoch bringt es aufgrund der höheren Komplexität auch längere Rekon-
struktionszeiten mit sich. Diese Arbeit hat das Ziel eine GPU beschle-
unigte Rekonstruktion basierend auf zwei Diskretisierungsmodellen des
Vorwärtsmodells zu implementieren. Weiters wurde tgv Regularisierung
implementiert um die Bildqualität zu verbessern. Da tgv in manchen Fällen
sehr langsam konvergiert wird weiters ein neues Konzept für die numer-
ische Lösung des Problems mit dem Namen tgv-cg vorgeschlagen. Die
Rekonstruktion wird an In-Vivo- und Phantom-Daten, die mit der Pat-
Loc Hardware aufgenommen wurde, evaluiert. Es zeigt sich dass die GPU
beschleunigte Implementierung die Bildrekonstruktion stark beschleunigt
und somit die Methode brauchbar macht. Mit der tgv Regularisierung
wird die Bildqualität selbst für unterabgetastete Daten erhöht. In manchen
Fällen verbessert tgv-cg die Konvergenzgeschwindigkeit sehr stark und
verringert somit die Rekonstruktionszeit für regularisierte Rekonstruktion.

Keywords: Nichtlineare Bildkodierung, PatLoc, Bildrekonstruktion, Total
Generalized Variation, GPU

vii

Thanks

First of all I’d like to thank my parents Elisabeth and Erich for their continu-
ing support, both personally and financially. Certainly my girlfriend Conny
deserves thanks for making the tedious work much more bearable.

Many thanks to my supervisor Florian Knoll for introducing me to the
world of science and for giving me opportunities to set foot in the scientific
community. Also for his patient and kind manner which helped a lot to
motivate myself while working on this project.

My second supervisor Kristian Bredies also deserves many thanks because
of his – although being a genious mathematician – capability of talking to
non-mathematicians without causing total confusion and self-doubt.

Thanks to the Freiburg-bunch, a group of very kind, helpful, fun and inter-
esting people who are responsible for turning a two weeks stay in Freibug
into a true experience that I wouldn’t want to miss. Thanks Gerrit Schultz,
Dan Gallichan, Sebastian Littin and his wife Steffi, Chris Cocosco, Maxim
Zaitsev, Frederik Testud, Hans Weber, Anna Welz, Stathis Hadjidemetriou
and many more.

And most importantly I’d like to thank my mind for staying at least par-
tially sane.

ix

Contents

1. Introduction 1

2. Methods 5

2.1. PatLoc Imaging . 5

2.1.1. Local k-Space . 7

2.1.2. Encoding Trajectories 8

2.1.3. Hardware . 9

2.2. GPGPU Programming . 9

2.3. Software and Hardware Environment 11

2.3.1. Environment . 11

2.4. Datasets . 12

2.4.1. Single Shot North West EPI (NW-EPI) 13

2.5. Forward Operators . 14

2.5.1. Encoding Matrix . 15

2.5.2. Nonuniform Fast Fourier Transform (NUFFT) 16

2.6. Reconstruction . 20

2.6.1. Inversion of the Encoding Matrix 20

2.6.2. Total Generalized Variation (TGV) 30

2.6.3. Numerical Solution for TGV 32

2.6.4. TGV - Conjugate Gradient (TGV-CG) 35

2.6.5. Reconstruction Methods 37

2.7. Performance Analysis . 37

xi

Contents

3. Results 39

4. Discussion 53

4.1. Image Quality . 54

4.2. Performance . 55

4.3. Convergence . 57

4.4. Conclusion . 58

A. Usage 63

A.1. Examples . 65

Bibliography 67

xii

List of Figures

1.1. Both curvilinear encoding fields SEMa and SEMb which are a
close approximation to an ideal hyperbolic paraboloid, and
are rotated 45

◦ to each other. This image is taken from [3]
with kind permission from the authors. 2

1.2. Images aquired by reconstructing Cartesian PatLoc data with
a conventional ifft. The reader is assured that these images
do not represent the subjects anatomy. The evaluation of the
diagnostic value of these images is up to the reader. The in-
tensity range has been cropped in order to reduce the dom-
inating effect of the signal accumulation in the center of the
images. 3

2.1. Image shows the design and the insertion of the gradient
coil which creates the nonlinear sems. The image on the
right shows the space available for head imaging. Images
are taken from [5] with friendly permission from the author. . 9

2.2. Dynamic field camera used to measure the encoding fields
up to third order. The setup is build on MR compatible card-
board and involves 16

1H fieldprobes approximatively dis-
tributed on a spheroids’ surface. 13

xiii

List of Figures

2.3. Comparison of fft and the different nufft types. While the
fft transforms from an equispaced grid to another equis-
paced grid, the type 1 nufft transforms from a non-equispaced
grid to a equispaced grid. The type 2 nufft performs the
transformation in the other direction. From a non-equispaced
grid to another non-equispaced grid is done with a type 3
nufft. 17

2.4. Illustration of the nufft 1+2 forward operator F (Eq. 2.9).
First, the image of the object is multiplied with the coil sen-
sitivities of the receive channels, followed by a type 1 nufft,
an inverse fft and a type 2 nufft. This resembles the im-
plementation of a type 3 nufft. Illustration is included from
[11] with kind permission of the authors. 18

2.5. Multiplication of the encoding matrix E with the vector m.
The encoding matrix consists of Nc phase term matrices Φ′ =
e−iφ(x,t) stacked together vertically, each multiplied row-wise
and point wise with the corresponding coil sensitivity cn.
Due to memory limitations, E is not kept in the memory
of the gpu, but each element of E is computed when it is
needed. Illustration also shows how this is implemented on
the gpu. See text for a detailed explanation. 23

2.6. Efficient implementation of summing up all elements of a
vector on the gpu, illustrated for four threads. In each step
the number of threads is reduced by half. As shown here,
the threads T0 and T1 each sum up two elements of vector
tmp0, leading to a new vector tmp0’ half the size of tmp0. This
is repeated until all elements are summed up. This scheme
assures that warps finish as fast as possible. 25

xiv

List of Figures

2.7. More efficient implementation of the principle outlined in
Fig. 2.5. The coil sensitivities are not multiplied element wise
with each row of the corresponding phase term matrix Φ′

but rather multiplied point wise with the vector m, leading
to Nc vectors. This reduces both the number of blocks and
the computational load, because the size of the matrix is re-
duced by Nc and less point wise multiplications are needed
as well as smart prefetching and reusing of already com-
puted elements of Φ′ can be performed. To reduce the num-
ber of blocks even further, each block processes several rows
of the phase term matrix Φ (defined by the hop parameter).
For a detailed explanation see the text. 26

2.8. Implementation of the multiplication of the adjoint encoding
matrix EH with vector p. In contrast to the multiplication of
the encoding matrix with a vector, it is not possible to reduce
the number of blocks needed by Nc because of the transpos-
ing of the phase term matrices Φ′. Therefore it is also not
possible to multiply p with the coil sensitivities cn. But the
multiplication with the adjoint offers other possibilities for
optimization which are explained in the text. 27

2.9. Example plots of an exhaustive search of the parameter space,
whereby in (a) the hop parameter and in (b) the number of
threads is fixed. The execution time is plotted over the re-
maining parameters. Plots show that there are sets of pa-
rameters that should be avoided for good performance. . . . 29

2.10. Denoising of (a) a noisy image with (b) Total Variation and
(c) Total Generalized Variation. tv introduces artificial edges
in areas with smooth transitions of the gray values, known as
staircasing artifact, whereas tgv is capable of reconstructing
the smooth transitions in the image artifact-free. 31

xv

List of Figures

2.11. Development of the regularization parameters α0 and α1 for
α01 = 4 · 10−5, l = 2, r = 2−8 and N = 1000. 34

3.1. Reconstruction of in-vivo human data acquired with a Carte-
sian trajectory and a Turbo Spin Echo (TSE) sequence (Sec-
tion 2.4). The top row shows the image reconstructed with
a conventional CG method (50 iterations) and the encod-
ing matrix operator as well as two detailed views. The sec-
ond row shows the results for the TGV-CG regularized re-
construction. The regularization parameter has been set to
α = 1 · 10−1. TGV-CG required 200 PD iterations. 40

3.2. Reconstruction of in-vivo human data acquired with a Carte-
sian trajectory and a Turbo Spin Echo (TSE) sequence (Sec-
tion 2.4). The top row shows the image reconstructed with
a conventional CG method (50 iterations) and the PatLoc
nufft 1+2 operator as well as two detailed views. The rows
two and three show the results for TGV and TGV-CG reg-
ularized reconstruction, respectively. The regularization pa-
rameter has been set to α = 4 · 10−5 in both cases. TGV re-
quired 2000 PD iterations, whereas TGV-CG required 200 PD
iterations. 41

3.3. Reconstruction of phantom data acquired with a Cartesian
trajectory and a Turbo Spin Echo (TSE) sequence (Section 2.4).
The top row shows the image reconstructed with a conven-
tional CG method (50 iterations) and the encoding matrix op-
erator as well as two detailed views. The second row shows
the results for the TGV-CG regularized reconstruction. The
regularization parameter has been set to α = 1 · 10−1. TGV-
CG required 200 PD iterations. 42

xvi

List of Figures

3.4. Reconstruction of phantom data acquired with a Cartesian
trajectory and a Turbo Spin Echo (TSE) sequence (Section 2.4).
The top row shows the image reconstructed with a conven-
tional CG method (50 iterations) and the PatLoc nufft 1+2

operator as well as two detailed views. The rows two and
three show the results for TGV and TGV-CG regularized re-
construction, respectively. The regularization parameter has
been set to α = 4 · 10−5 in both cases. TGV required 2000 PD
iterations, whereas TGV-CG required 200 PD iterations. . . . 43

3.5. Reconstruction of in-vivo human data acquired with a Carte-
sian trajectory and a Turbo Spin Echo (TSE) sequence (Sec-
tion 2.4). The top row shows the image reconstructed with
a conventional CG method (50 iterations) and the encod-
ing matrix operator as well as two detailed views. The sec-
ond row shows the results for the TGV-CG regularized re-
construction. The regularization parameter has been set to
α = 1 · 10−1. TGV-CG required 200 PD iterations. 44

3.6. Reconstruction of in-vivo human data acquired with a ra-
dial trajectory and a Spin Echo (SE) sequence (Section 2.4).
The top row shows the image reconstructed with a conven-
tional CG method (50 iterations) and the PatLoc nufft 1+2

operator as well as two detailed views. The rows two and
three show the results for TGV and TGV-CG regularized re-
construction, respectively. The regularization parameter has
been set to α = 10−6 in both cases. TGV required 2000 PD
iterations, whereas TGV-CG required 200 PD iterations. . . . 45

xvii

List of Figures

3.7. Reconstruction of phantom data acquired with a Cartesian
trajectory and a Turbo Spin Echo (TSE) sequence (Section 2.4).
The top row shows the image reconstructed with a conven-
tional CG method (50 iterations) and the encoding matrix op-
erator as well as two detailed views. The second row shows
the results for the TGV-CG regularized reconstruction. The
regularization parameter has been set to α = 1 · 10−1. TGV-
CG required 200 PD iterations. 46

3.8. Reconstruction of phantom data acquired with a radial tra-
jectory and an Spin Echo (SE) sequence (Section 2.4). The top
row shows the image reconstructed with a conventional CG
method (50 iterations) and the PatLoc nufft 1+2 operator as
well as two detailed views. The rows two and three show
the results for TGV and TGV-CG regularized reconstruction,
respectively. The regularization parameter has been set to
α = 10−6 in both cases. TGV required 2000 PD iterations,
whereas TGV-CG required 200 PD iterations. 47

3.9. Reconstruction of a dataset acquired with a Cartesian sam-
pling pattern with different levels of undersampling indi-
cated by R. 48

3.10. TODO Reconstruction of a dataset acquired with a radial
sampling pattern with different levels of undersampling in-
dicated by R. 49

xviii

List of Figures

3.11. Single-shot NorthWest EPI data (Section 2.4.1) reconstructed
onto a 192× 192 pixel grid with CG (top row) and TGV-CG
(middle row, α = 1.2). For comparison an image acquired
with a conventional EPI sequence using linear gradients and
also reconstructed using TGV-CG (α = 0.9) is shown in the
bottom row. The first column shows the entire image with
the region of interest (area of highest resolution in case of
NW-EPI) labeled with a red rectangle whereas the second
column shows a zoomed version of the ROI. 50

3.12. Speedup of the GPU-accelerated implementation compared
to a sequential Matlab implementation for different recon-
struction sizes. The dataset was simulated with a 256× 256
k-space grid and eight coils. 51

3.13. Illustration of the iterations of the inner cg in tgv-cg reg-
ularized reconstruction. The factor d indicates the value by
which the norm of the operator is divided to speed up con-
vergence. 52

xix

1. Introduction

In the history of magnetic resonance (MR) imaging, the focus in image en-
coding has been on the use of linear gradient fields. Linear gradient fields
exhibit several positive properties, like constant image resolution and field
of view (fov) across the entire image. However, sufficiantly linear gradient
fields are hard to obtain. Further, the switching rate of the gradient fields is
limited due to physiological limitations like peripheral nerve stimulation
(pns). This puts a physiological limit on fast imaging techniques that re-
quire high switching rates of strong gradient fields. Also, there are cases
where constant image resolution is not a necessary property, for instance
when only certain areas of the object need to be resolved.

To relax the constraint of having linear gradient fields, concepts like O-
Space imaging [1] and PatLoc imaging [2] have been introduced recently.
These methods use nonlinear gradient fields in addition to or as replace-
ment of the linear gradients. In PatLoc imaging, which this work is based
on, two nonlinear, nonbijective gradient fields in the form of hyperbolic
paraboloids (Fig. 1.1) are used in conjunction with the standard linear gra-
dients. Due to the nonlinearity of the fields, image resolution becomes a
local property with having low resolution in areas of low gradients like the
saddle points of the fields and high resolution towards the border of the
image. The nonbijectiveness of the fields leads to ambiguities in the encod-
ing which are resolved with use of coil sensitivities similar to sense [4].

1

1. Introduction

Figure 1.1.: Both curvilinear encoding fields SEMa and SEMb which are a close approxi-
mation to an ideal hyperbolic paraboloid, and are rotated 45

◦ to each other.
This image is taken from [3] with kind permission from the authors.

The PatLoc approach aims at the reduction of the maximal dB/dt by mak-
ing the gradient fields more local. This allows higher switching rates of
the gradient fields without peripheral nerve stimulation, therefore reduc-
ing scan time. Furthermore the encoding fields can be designed in a way
to best fit the geometry of the anatomy.

All these properties have to be considered in the reconstruction, rendering
reconstruction techniques used in conventional magnetic resonance imag-
ing with linear gradients, like the inverse discrete Fourier transform (idft) use-
less because conventional Fourier encoding does not apply anymore. This
is illustrated in Fig. 1.2 where PatLoc data aquired with the two nonlinear
PatLoc gradient fields and a Cartesian sampling pattern is reconstructed
with an ifft.

These images show the PatLoc image space, where the image is highly
distorted, leading to signal accumulation in the center of the image.

A lot of thought has been put into reconstruction techniques for PatLoc

2

(a) Reconstruction of one coil (b) Reconstruction of all coils combined
with sum of squares

Figure 1.2.: Images aquired by reconstructing Cartesian PatLoc data with a conventional
ifft. The reader is assured that these images do not represent the subjects
anatomy. The evaluation of the diagnostic value of these images is up to the
reader. The intensity range has been cropped in order to reduce the dominat-
ing effect of the signal accumulation in the center of the images.

imaging [5]. These techniques all suffer from high computational load caus-
ing long reconstruction times. Fortunately theses techniques are well suited
for parallelization using the power of graphics cards (Section 2.2).

This work focuses on the implementation of fast regularized reconstruction
algorithms with use of graphics cards (gpus). Two operators (Section 2.5)
derived from the signal equation of PatLoc imaging (Eq. 2.1) are investi-
gated. These operators are used in (regularized) reconstruction techniques,
namely the conjugate gradient (cg) method [6] and Total Generalized Vari-
ation (tgv) [7, 8, 9, 10, 11] (Section 2.6.2). Further a new approach to nu-
merically solving the optimization problem defined by the tgv model is
introduced in this work: Total Generalized Variation - Conjugate Gradient
(tgv-cg) (Section 2.6.4).

3

2. Methods

2.1. PatLoc Imaging

This section introduces the basics of PatLoc imaging and follows the pre-
sentation in [3, 12]. Only an overview of PatLoc can be given here. For more
detailed insights into PatLoc imaging, the reader is referred to [5] which
also served as an important source for this section.

Schultz et al. [12] have shown that, when neglecting relaxation effects, the
signal s from RF receive channel α can be generalized to include encoding
fields beyond simple linear gradients:

sα(k) =
∫
V

m(x)cα(x)eikTψ(x)dx (2.1)

where α represents the coil index, m(x) is the magnetization at position
x, cα(x) is the RF sensitivity of coil α at position x and ψ(x) is a multidi-
mensional function representing all the gradient encoding fields. k is the
sampling trajectory, describing the net gradient moment of each field.

In the experiments in [3], four fields are used for the encoding (and a z
gradient for slice selection), namely two conventional linear x and y gradi-
ents and two additional curvilinear fields called SEMa and SEMb (Spatial

5

2. Methods

Encoding Magnetic fields). Although this theory works for arbitrary sems,
the PatLoc hardware (Section 2.1.3) is capable of creating two hyperbolic
paraboloids. SEMa and SEMb have the same form, but are rotated by 45

◦

with respect to each other to be orthogonal, as shown in Fig. 1.1.

The samples of k are ordered with respect to time t, therefore the phase
term of Eq. 2.1 can be rewritten as:

kT(t)ψ(x) = kx(t)x + ky(t)y + ka(t)ψa(x) + kb(t)ψb(x) =
L

∑
l=1

kl(t)ψl(x)

(2.2)
where kx(t) and ky(t) are equivalent to the familiar k-space coordinates
in 2D (Fourier encoding) and ka(t) and kb(t) are new k-space coordinates
describing the amount of phase encoding due to the fields SEMa and SEMb

at time t. ka(t) and kb(t) are defined by the currents running through the
windings of the corresponding coils and ψa(x) and ψb(x) are appropriately
scaled versions of the fields SEMa and SEMb.

To summarize, kl(t) are the trajectories, ψl(x) describe the geometry of the
applied magnetic fields and L is the number of fields.

Mathematically, the field information ψ(x) is defined as follows:

ψ(x) =

x
y

x2 − y2

2xy

 (2.3)

Although the current PatLoc hardware is built to drive four gradient coils,
there are cases where more sems are needed for reconstruction but not for
acquiring the data. This is the case when the real trajectory is measured
with use of dynamic field cameras as in [13]. It is necessary to model the

6

2.1. PatLoc Imaging

real trajectory as a set of base functions which are represented as sems and
the corresponding net gradient moment in the reconstruction.

2.1.1. Local k-Space

In conventional MR imaging with linear gradients, the image resolution
and FOV are constant across the object because the spatial derivative of
the accumulated phase is independent of location. This does not apply to
curvilinear sems, therefore the resolution and FOV are not spatially inde-
pendent. This fact led to the introduction of the concept of “local k-space”
in [3] to describe the regions of enhanced or reduced resolution.

In the case of encoding with linear gradients only, the accumulated phase
φ at location x and time t can be written as a function of the gradient
history:

φ(x, t) = γ

t∫
0

x ·G(t′)dt′ (2.4)

where G(t) is the vector describing the applied linear gradient field at time
t. This can lead to an alternative expression for k(t):

k(t) = ∇φ(x, t) (2.5)

This is an alternative way to describe k-space as the local spatial derivative
of the accumulated phase at location x. When using nonlinear fields, the
local spatial derivative of the phase becomes location dependent as it is
shown in Eq. 2.5. The local k-vector field can therefore be defined as:

kloc(x, t) = ∇φ(x, t) (2.6)

7

2. Methods

2.1.2. Encoding Trajectories

PatLoc MR imaging opens up a myriad of possible encoding trajectories
by using up to four encoding fields, two of them being linear, the other
two hyperbolic paraboloids (Fig. 1.1). Any combination of these fields can
be used for image encoding, with the possibly most interesting and chal-
lenging one being the use of all four fields. Gallichan et. al. [3] introduced
and evaluated several different encoding schemes. The most promising of
the above mentioned publication is 4D-RIO (4-dimensional Radial In/Out),
a 4-dimensional trajectory where both the linear and the nonlinear fields
follow separate radial trajectories. The advantage of this trajectory is that
the saddle point of the nonlinear fields is moved in each encoding step,
hence leading to the effect that the center of the image can be resolved
as well, which is a known problem when using only the nonlinear fields.
However, imaging with multidimensional trajectories is very prone to mis-
calibrations of the sems, exhibiting serious artifacts across the entire im-
age if not calibrated properly. These artifacts due to miscalibrations have
been investigated in detail by the author in [14]. Due to these difficulties
the results of this work focus on 2-dimensional image encoding with two
nonlinear quadratic sems. Results for both Cartesian and radial sampling
patterns are shown in Section 3.

However, depending on the used forward model, the reconstruction algo-
rithm is not limited to two encoding fields. On the contrary, even if imag-
ing is performed with two sems, it might be necessary to reconstruct with
a higher number of encoding fields, for instance if measured trajectories
are modeled as a set of base functions represented as sems and their corre-
sponding net gradient moment (k-vector) [13].

8

2.2. GPGPU Programming

2.1.3. Hardware

PatLoc requires an additional gradient coil capable of producing the two
nonlinear fields (Fig. 1.1). The coil is inserted into the bore of the scanner
and offers enough space for acquiring in-vivo images of the head as shown
in Fig. 2.1.

Figure 2.1.: Image shows the design and the insertion of the gradient coil which creates
the nonlinear sems. The image on the right shows the space available for head
imaging. Images are taken from [5] with friendly permission from the author.

2.2. GPGPU Programming

gpgpu (General Purpose Graphics Processing Unit) programming is a rel-
atively new field in scientific computing where graphics cards (gpus) are
used for general purpose computations. Historically, due to the needs of
computer games, gpus are built to process lots of data in parallel on a set
of massively parallel processors which can run thousands of threads simul-
taneously. The design of gpus follows the simd

1 concept (Single Instruction,
Multiple Data). This basically means that the same operation is performed
on different data in parallel. Therefore data parallelism is essential for max-
imum performance and this property clearly separates it from cpus, which

1There is some controversy around this term when used to describe gpgpu program-
ming, which probably is the reason that led NVIDIA to calling it simt (Single Instruction,
Multiple Threads) instead.

9

2. Methods

are getting more and more parallel themselves but do not exhibit strong
limitations on the computations as gpus do. However, gpu programming
opens up new possiblities to solve problems like matrix algebra, image
processing, simulations or computer graphics applications very fast.

In most cases in gpgpu programming, the clock speed of the processors is
not the limiting part in terms of performance. In contrast to cpus, memory
access is the bottle neck in most applications. Therefore it is essential to
limit memory access as much as possible and to follow memory access
patterns which can be handled well by the hardware, like fetching data in
certain junks.

The programming interface used in this work is NVIDIAs Compute Uni-
fied Device Architecture (cuda) [15], therefore the following information
may not apply to graphics cards of manufacturers other than NVIDIA.

For processing on the gpu, the problem needs to be divided into smaller
subproblems called blocks. Each block consists of several threads. cuda

assures that all threads of a block are executed on the same streamline pro-
cessor. The choice on how to divide the problem into blocks and threads
depends on the character of the problem and most importantly on the
memory needs of the application.

cuda devices offer several types of memory with different properties that
can improve performance significantly if used appropriately. The main
memory, called global memory, is the biggest but also slowest and can be
accessed by all threads in all blocks. Each thread has a local memory and reg-
isters which are very fast to access but also small and can only be accessed
by the corresponding thread. In the middle is the shared memory, which is
accessible by all threads of a block. This is advantageous if passing of data
between threads is needed. If data is needed for all threads of a block, it

10

2.3. Software and Hardware Environment

can be prefetched from the global memory to the shared memory, leading to
more efficient memory access, as the shared memory is significantly faster
than the global memory. Another memory is the texture memory, which is
commonly used in computer graphics for textures, but can also be used as
a fast to access memory for general purpose computations.

2.3. Software and Hardware Environment

The reconstruction algorithms were implemented using Python 2 [16],
Scientific Tools for Python (SciPy) [17], Numerical Python (NumPy) [18]
and PyCUDA [19]. In contrast to pure cuda c [15], Python offers easy-
to-use libraries for improving the user experience. PyCUDA is a wrapper
around cuda functionality which makes it possible to run cuda c code
from Python. cuda c code is written as a Python string and compiled
and executed by PyCUDA. Therefore it is possible to achieve the same
speed as in a pure cuda C implementation, but due to the fact that cuda

code is a string in Python, there is the possibility to modify or even assem-
ble cuda code at runtime which can be advantageous if just-in-time (JIT)
compilation is needed.

2.3.1. Environment

• Intel Core 2 Duo 6600, 2.4GHz, Dual Core
• 8GB RAM
• Ubuntu 10.10

• Matlab (Mathworks Inc., Natick, USA) R2010b (64bit Version)
• NVIDIA GeForce GTX 480 1536MB, 480 Cores, 384bit Memory inter-

face

11

2. Methods

• cuda Toolkit 4.2 [15]
• Python 2.6.6 [16]
• PyCUDA 2012.1 [19]
• scikits.cuda 0.042 [20]
• PyFFT 0.3.6 [21]
• SciPy 0.11.0 [17]
• NumPy 1.6.2 [18]

2.4. Datasets

Fortunately it was possible to acquire a set of datasets measured with the
actual PatLoc hardware shown in Section 2.1.3. Both phantom- and in-vivo-
measurements were performed with the following settings:

1. Cartesian Spin Echo (SE), TR = 50, TE = 5.5
2. Cartesian Gradient Echo (GRE), TR = 300, TE = 12

3. Radial Spin Echo (SE), TR = 500, TE = 12

4. Radial Gradient Echo (GRE), TR = 50, TE = 5.5
5. Cartesian Turbo Spin Echo (TSE) FIXXMEmore?

The slice thickness for each dataset was 5mm. The measurements were
performed with linear gradients only and with nonlinear PatLoc gradients
only. In the course of this work, only the datasets (3) and (5) of the above
list will be investigated, as they exhibited the best tissue contrast in the
reconstructed images. Dataset (3) was acquired with a k-space grid of 410

radial spokes with 256 sample points each. The k-space in (5) was acquired
with 252 phase encoding steps and 256 samples on each readout line.

12

2.4. Datasets

2.4.1. Single Shot North West EPI (NW-EPI)

Single shot North-West Echo Planar Imaging (NW-EPI) is a multidimen-
sional trajectory designed to improve the resolution in the top-left region
of the image by exploiting the spatially varying resolution characteristic
of nonlinear encoding fields [22]. A dynamic field camera [23] is used to
measure the encoding fields up to 3rd order (Fig. 2.2).

Figure 2.2.: Dynamic field camera used to measure the encoding fields up to third order.
The setup is build on MR compatible cardboard and involves 16

1H fieldprobes
approximatively distributed on a spheroids’ surface.

The gradient waveforms of the NW-EPI were computed by solving an op-
timization problem to match the local k-space trajectory in the region of
interest to a target trajectory. The target trajectory in this work was an EPI
sequence covering twice the k-space extent of that achievable in given time
using linear gradients alone. The target trajectory consists of 64 lines with
64 readout points each line for a total time of 41.6ms. The optimization was
solved subject to peak gradient constraints and slew rate constraints. The
image is reconstructed on a pixel grid that is dense enough (e.g. 192× 192)
to ensure that also the high local image resolution in the top-left region of
the image is fully reflected.

13

2. Methods

The estimated trajectories are modeled as a set of base functions (repre-
sented in the reconstruction as sems) and the corresponding net gradient
moment (k vector), leading to a total of 16 fields for the reconstruction.
Because of the limited image quality due to the low k-space resolution and
the fact that the trajectory is prone to Gibbs ringing, regularized recon-
struction proved to be an interesting topic to improve the overall quality of
the images. This was investigated by the author in [24].

2.5. Forward Operators

In conventional Cartesian MR imaging with linear gradients the reconstruc-
tion is performed by using the fast Fourier transform (fft). Reconstructing
PatLoc data would require a four-dimensional fft where only one curved
plane is actually needed and the other data being highly redundant, which
is too time-consuming for practical use. Although the current hardware
is not built to drive more than four fields (and the z gradient for slice
selection), there is a case where even more fields are needed for recon-
struction. This is the case for reconstruction with trajectories measured by
dynamic field cameras as in [13] where 16 base functions used as sems are
not uncommon. It is not possible to handle the computational load in cases
like this. Therefore the reconstruction is interpreted as an inverse problem
which is solved by inversion of the forward operator.

The forward operator can be seen as discretization of the signal equation
for PatLoc imaging Eq. 2.1. The discretization alway resembles an approx-
imation to the actual signal equation and can be implemented in several
ways.

14

2.5. Forward Operators

This section introduces the two forward operators used in this work. The
first is based on the encoding matrix (Section 2.5.1), whereas the second uses
the nonuniform fast Fourier transform (nufft) (Section 2.5.2).

2.5.1. Encoding Matrix

Because of the multidimensional k-vector from Eq. 2.5 which encodes a 2D
object, the Fourier transform can no longer be used for the reconstruction
of the image. Instead, Eq. 2.1 is discretized and rewritten in matrix form:

s = Em (2.7)

with E as the discrete forward operator

E(α,κ),ρ = cα

(
xρ

)
e−iφ(x,t) = cα

(
xρ

)
e−ik(tκ)ψ(xρ) (2.8)

where s is the vector of data samples, m is the vector of magnetization
values which represents the image of the object and E is the encoding
matrix, incorporating both the phase terms resulting from the k-vector and
the field information ψ (x), and the RF coil sensitivity values represented
in Eq. 2.1 by cα(x). Due to the ambiguity of the curvilinear and nonbijective
sems, a generalized form of sense [4, 25] is needed for the reconstruction.

At this point the dimensions are defined as:

Nc Number of coils

Nκ Number of measured data samples

Nρ Number of samples in the reconstructed image (resolution in x ×
resolution in y).

15

2. Methods

This leads to the following dimensions for the matrix and the vectors men-
tioned above:

s NcNκ

E NcNκ × Nρ

m Nρ

Section 2.6.1 illustrates how the encoding matrix E is constructed on the
gpu.

2.5.2. Nonuniform Fast Fourier Transform (NUFFT)

In conventional MR imaging with linear gradients, the discrete Fourier trans-
form (dft) is used for transforming discrete data points measured in the
frequency domain to the image domain. Usually a fast implementation of
the dft, called fast Fourier transform (fft) is used. However, the dft and
the fft require that the sampled data points as well as the points on the
image grid lie on grids with equidistant spacing. If these requirements are
not met, it is necessary to use a nonuniform dft or its fast equivalent, the
nonuniform fast Fourier transform (nufft). The nufft essentially performs
an interpolation on a equidistant grid before applying the fft. Therefore
it can be seen as an approximation to the encoding matrix mentioned in
Section 2.5.1. The quality of the nufft depends on the chosen interpolation
method. Fessler et al. introduced a nufft framework that is optimal in the
min-max sense of minimizing the worst-case approximation error over all
signals of unit norm [26].

There are three types of nufft: type 1 nufft describes the transformation
from a non-equispaced grid to a equispaced grid (known as gridding), type 2

16

2.5. Forward Operators

nufft transforms from a equispaced to a non-equispaced grid (known as
inverse gridding). Transforming from one non-equispaced grid to another
non-equispaced grid is known as the type 3 nufft (Fig. 2.3).

FFT Type 1

NUFFT

Type 2

NUFFT

Type 3

NUFFT

Figure 2.3.: Comparison of fft and the different nufft types. While the fft transforms
from an equispaced grid to another equispaced grid, the type 1 nufft trans-
forms from a non-equispaced grid to a equispaced grid. The type 2 nufft

performs the transformation in the other direction. From a non-equispaced
grid to another non-equispaced grid is done with a type 3 nufft.

Following the presentation in [11], the PatLoc nufft 1+2 Operator essen-
tially requires a type 3 nufft for which at the time of writing no efficient
implementation exists. Therefore the type 3 nufft is built with use of a
type 1 and a type 2 nufft with an additional inverse fft operation, called
nufft 1+2, as illustrated in Fig. 2.4.

The PatLoc nufft 1+2 operator F can be written channelwise as

Fn = NUFFTΦ ◦ FT−1 ◦NUFFT∗−Ψ ◦Mn (2.9)

where NUFFTΦ and NUFFT∗−Ψ are the type 1 and type 2 NUFFT with the
corresponding changes of coordinates Φ and −Ψ, defined by the trajec-
tory and the field geometries, respectively. FT−1 is the conventional inverse
Fourier transform and Mn denotes the point wise multiplication with the

17

2. Methods

Figure 2.4.: Illustration of the nufft 1+2 forward operator F (Eq. 2.9). First, the image
of the object is multiplied with the coil sensitivities of the receive channels,
followed by a type 1 nufft, an inverse fft and a type 2 nufft. This resembles
the implementation of a type 3 nufft. Illustration is included from [11] with
kind permission of the authors.

coil sensitivity cn of receive channel n. For a more detailed presentation of
the PatLoc nufft 1+2 operator please see the above mentioned reference
by Knoll et al. [11].

GPU Implementation

For the implementation presented in this work, the nufft Toolbox by Fessler
et al. [26] was ported to Python and all time-consuming parts were ported
to gpu code with use of PyCUDA. Essentially the most time-consuming
parts can be broken down to a sparse matrix vector multiplication and
Nc + 1 fast Fourier transforms for each evaluation of the PatLoc nufft

operator or its adjoint. The sparse matrix-vector multiplication is based
on undocumented code available in PyCUDA. The sparse operation uses
the coordinate format (each element in a sparse matrix is represented by its
value and the indices of its position within the matrix) and it was necessary
to adapt it in order to be able to handle complex valued data, as this was

18

2.5. Forward Operators

not possible with the code provided by PyCUDA. The code makes heavy
use of the texture memory which is limited in the kind of data it can store.
It was therefore necessary to fool the texture memory into storing two 32bit
floating point values while actually storing a 64bit complex.

The ffts needed in the operator are implemented in two ways based on
different libraries. The faster implementation is based on NVIDIAs cufft

library [15] and the corresponding Python wrapper scikits.cuda [20]. The
disadvantage of cufft is that it stores several intermediate arrays which
has the effect of filling the gpu memory very rapidly in case of big recon-
struction sizes. As the FFTs are oversampled2, this is an issue that needs
consideration. This can be a problem on consumer gpus with less memory
than high-end gpus for technical computing. To overcome this limitation,
a second implementation based on the fft library PyFFT [21] was done.
PyFFT dynamically creates fft kernels based on the size of the problem.
It its significantly slower (about factor 2) than cufft and can only handle
grids with sizes of power of 2. However, it requires less memory and can
therefore handle larger reconstruction sizes on cheaper gpus.

To avoid time-consuming transfers of data between cpu and gpu, all inter-
mediate steps are also implemented as gpu code but will not be mentioned
here in detail, as they are less interesting in terms of performance compared
to the sparse matrix vector multiplication and the ffts.

2Usually four times the actual reconstruction size. For instance, reconstructing on a
512× 512 image grid requires ffts on data of size 2048× 2048.

19

2. Methods

2.6. Reconstruction

In this section iterative reconstruction methods which are applied to the
above mentioned operators are introduced.

2.6.1. Inversion of the Encoding Matrix

Because of the computationally challenging task of inverting E in Eq. 2.7 to
get the desired m-vector, a conjugate gradient method [6] is used instead of
inverting E directly. This also has the benefit of a “built-in” regularization
which prevents overamplification of noise terms as long as the number of
iterations is chosen carefully [12].

Equation 2.7 can now be solved by computing the pseudoinverse of E:

m = E+s = (EHE)−1EHs (2.10)

Rewriting Eq. 2.10 leads to:

EHEm = EHs (2.11)

Equation 2.11 can now be solved using the conjugate gradient method [6]
on the normal equations.

GPU Implementation

The conjugate gradient method requires the application of EH and E to vec-
tors in each iteration. These steps consume the most time in the reconstruc-

20

2.6. Reconstruction

tion due to the size of EH and E. Therefore it is necessary to optimize these
matrix-vector multiplications accordingly for maximum performance.

Several problems arise when implementing these operations. The problems
and their solutions will be discussed in this section.

The main problem is the size of the matrix E and its adjoint, not just be-
cause the size is responsible for the long reconstruction times, but also
because it is not possible to fit the matrices into the memory, particularly
not in gpu RAM, in almost all practical cases. For example, a measure-
ment consisting of 256× 256 k-space data from eight coils, which should
be reconstructed onto a 512 × 512 image grid would require 1 Terabyte
(Nc × Nκ × Nρ × sizeof(complex float)) to keep E in the memory – far too
much for current hardware which is usually limited to around 6-8 Giga-
bytes of RAM on high-end gpus. Therefore it is generally not possible to
precompute E or EHE and it is necessary to compute at least parts of E on
the fly in each iteration.

A first approach in reducing the memory usage would be to precompute
parts of E instead of the full matrix. Well suited for this approach is the
precomputation of the phase term matrix e−iφ(x,t). In the encoding matrix,
the phase term matrix is repeated for each coil, therefore the memory con-
sumption can be reduced by the factor Nc (number of coils). Considering
the example above, the memory consumption would still be at 127 Giga-
bytes – still far to much for current hardware.

The most memory efficient approach is to compute each element of E
whenever it is needed. This approach is also known as matrix-free com-
putation. However, this is very time-consuming because the same compu-
tations have to be performed for each application of the operator or its
adjoint. On the other hand it also allows to utilize the characteristics of

21

2. Methods

the encoding matrix by prefetching data that is to be used several times.
The following will explain how this is done when applying E and EH to a
vector.

Construction of E and Multiplication with a Vector The matrix E can be
seen as a consecutive collocation of Nc equal e−iφ(x,t) matrices, where Nc

denotes the number of coils. Each of these e−iφ(x,t) matrices is multiplied
row by row by its corresponding coil sensitivity cα(x).

When performing the multiplication of E with the vector m, special care
has to be taken considering the characteristics of gpgpu programming us-
ing cuda. In particular the problem has to be divided into blocks which
are further divided into threads. Threads share certain properties within
a block, i.e. the so called shared memory. For details on gpgpu program-
ming see Section 2.2. Choosing parameters like block alignment and the
number of threads per block considerately can lead to a major boost in
performance.

In this case, the scalar product of each row of E with the vector m is com-
puted by one block, therefore the number of blocks equals the number of
rows of E. The number of threads per block is either equal to the number
of columns of E or equal to the maximum number of threads allowed on a
particular graphics card model, depending on which one is lower. In nearly
all practical cases the number of threads per block is equal to the maximum
number of threads.

For the sake of simplicity and to make the explanation of the principle
easier, it is assumed that each block consists of only four threads. The fol-
lowing explanation is supported by Fig. 2.5.

22

2.6. Reconstruction

Figure 2.5.: Multiplication of the encoding matrix E with the vector m. The encoding ma-
trix consists of Nc phase term matrices Φ′ = e−iφ(x,t) stacked together verti-
cally, each multiplied row-wise and point wise with the corresponding coil
sensitivity cn. Due to memory limitations, E is not kept in the memory of
the gpu, but each element of E is computed when it is needed. Illustration also
shows how this is implemented on the gpu. See text for a detailed explanation.

Thread T0 of block B0 takes the first element of E and m and stores the
product of these two elements in the first element of a temporary vector
tmp0 (same length as number of threads per block). Thread T0 then jumps
to the index 4 of the vector m and the first row of the matrix and performs
the same action. This step is repeated until the position of the thread ex-
ceeds the dimensions of m. The other Threads T1 - T3 perform the same
computations, but shifted to the right according to their thread index.

It should be noted that in the actual implementation every element of E is
only constructed when needed by taking the respective values of cn, k and

23

2. Methods

ψ, according to Eq. 2.8.

When all threads of the corresponding block have finished their element
wise multiplication, the temporary vector tmp0 is completely filled with
values which have to be summed up to complete the computation. The
values are now summed up by the first half of the threads (in this exam-
ple T0 and T1). T1 sums up element 0 and element 2, whereas T1 sums up
element 1 and element 3. The threads T2 and T3 are finished at this point.
The results are once again saved in another temporary vector tmp0’ which
is only half as long as tmp0. This step is repeated until all elements of the
initial tmp0 are summed up. This scheme assures that warps3 are finished
as fast as possible, therefore leading to better performance. Figure 2.6 illus-
trates how the elements of tmp0 are summed up.

This principle is the same for every block. Apart from this specific way of
computing the matrix-vector product, no further optimizations have been
implemented. Due to the structure of E it is not possible to prefetch certain
elements of the matrix or the vector to minimize the number of memory
accesses.

This concept works for small datasets which do not hit certain cuda lim-
itations. One of the limitations is that at the time of writing the number
of blocks is limited to 65535 per kernel call, it is therefore essential that
Nκ × Nc ≤ 65535. Assuming that in most measurements with the PatLoc
hardware eight coils are used, the k-space resolution is limited to a total
number of ≈ 8191 points. This could be achieved by a 90× 90 k-space grid,
which is obviously not enough for serious imaging applications. There are

3Warps are a set of threads that are processed at once on the gpu. It should be avoided
to execute warps with less threads than possible because it hinders other threads to run,
therefore leading to situations where threads have to wait to get a slot although processor
cores are free.

24

2.6. Reconstruction

Figure 2.6.: Efficient implementation of summing up all elements of a vector on the gpu,
illustrated for four threads. In each step the number of threads is reduced by
half. As shown here, the threads T0 and T1 each sum up two elements of vector
tmp0, leading to a new vector tmp0’ half the size of tmp0. This is repeated until
all elements are summed up. This scheme assures that warps finish as fast as
possible.

two ways to overcome this limitation. First of all it is not necessary to mul-
tiply each of the consecutive phase term matrices with the corresponding
coil sensitivity, but instead the m vector is multiplied by the coil sensitiv-
ity vectors of each coil, leading to Nc vectors m(x)cα(x). As illustrated in
Fig. 2.7, this decreases the number of blocks by a factor of Nc. Additionally,
due to the fact that each coil sensitivity vector does not need to be mul-
tiplied with each row of the phase term matrix e−iφ(x,t) and each element
of the phase term matrix has to be computed only once, there is less com-
putational load resulting in a performance boost. Unfortunately, there still
is a limitation to Nκ ≤ 65535. To overcome this limitation completely, the
algorithm has to be made more “serial” which is achieved by processing
several rows of the matrix per block as also shown in Fig. 2.7. The num-
ber of rows each block “jumps” in the reconstruction is defined by the hop
parameter.

Consumer graphics cards exhibit another limitation, namely that kernel
calls are aborted if they consume too much time. Therefore it is possible

25

2. Methods

to divide the problem into subproblems where several kernel calls are per-
formed on different parts of the data, hence loosing some of the parallelism
of the implementation.

Figure 2.7.: More efficient implementation of the principle outlined in Fig. 2.5. The coil
sensitivities are not multiplied element wise with each row of the correspond-
ing phase term matrix Φ′ but rather multiplied point wise with the vector m,
leading to Nc vectors. This reduces both the number of blocks and the com-
putational load, because the size of the matrix is reduced by Nc and less point
wise multiplications are needed as well as smart prefetching and reusing of
already computed elements of Φ′ can be performed. To reduce the number
of blocks even further, each block processes several rows of the phase term
matrix Φ (defined by the hop parameter). For a detailed explanation see the
text.

Construction of EH and Multiplication with a Vector The basic princi-
ples for the matrix vector product EH p are the same as for Em, with the
difference that E is transposed. Due to the structure of EH it is possible

26

2.6. Reconstruction

to implement prefetching routines to minimize the number of memory ac-
cesses.

As already explained, E consists of Nc matrices e−iφ(x,t) which are row by
row multiplied by the corresponding coil sensitivity. Transposing E leads to
a structure where each row consists of several equal values. For example,
each row needs only Nc values of the coil sensitivity matrix. A similar
setting applies for the transposed e−iφ(x,t) term. In each row of EH one
column of e−iφ(x,t) is repeated Nc times. Figure 2.8 illustrates the process.

Figure 2.8.: Implementation of the multiplication of the adjoint encoding matrix EH with
vector p. In contrast to the multiplication of the encoding matrix with a vector,
it is not possible to reduce the number of blocks needed by Nc because of the
transposing of the phase term matrices Φ′. Therefore it is also not possible to
multiply p with the coil sensitivities cn. But the multiplication with the adjoint
offers other possibilities for optimization which are explained in the text.

The cuda algorithm takes advantage of these properties by prefetching all

27

2. Methods

needed values only once, thereby providing an extremely effective solution
for this computationally intensive task.

Further the prefetched coil sensitivity values are stored in the shared mem-
ory. The shared memory is a very fast part of the GPU memory which is
accessible by all threads of a block. Since each value of the coil sensitivity
is needed by several threads, the memory access times are reduced.

Similar to the multiplication of E with a vector, the limitation on the num-
ber of blocks is an issue that has to be addressed accordingly. Again, each
block processes several rows consecutively if the number of rows exceeds
the maximum number of blocks, as illustrated in Fig. 2.8.

Choice of Parameters

The illustrated implementation and cuda itself offer various parameters
which need to be tuned in order to achieve maximum performance. This
leads to the issue of finding parameter sets that work well with the given
data. The fact that the parameters depend on the datasets, especially the
size of the datasets, makes the optimization even more difficult.

One of most obvious parameters that needs to be chosen is the number
of threads per block. Although a high number of threads is desirable, too
many threads can lead to a drop in performance as it can cause memory
issues, which has the effect that threads have to wait for their execution.
Further, NVIDIAs consumer graphics cards limit the execution time of one
kernel. Therefore the kernel execution has to be subdivided into subprob-
lems which are executed one after the other. This is represented by the
divisor parameter in the implementation. However, dividing the problem
has the effect of serializing a problem which actually could be run in par-
allel. Hence performance drops if the problem is divided into too many

28

2.6. Reconstruction

subproblems. Similar effects can be observed for the hop parameter, which
defines how far a block “jumps” when processing several rows of the ma-
trix. A low hop value means that each block has to process many rows in
each call, again turning a parallel problem into a more serial one, causing
a performance drop.

To assess how important these issues are, an exhaustive search was per-
formed for several different datasets. Figure 2.9 shows two plots for an ex-
ample dataset. In Fig. 2.9(a) the hop parameter was fixed and the execution
time is plotted depending on the divisor and threads parameters, whereas
in Fig. 2.9(b) the threads parameter was fixed.

(a) hop parameter fixed (b) threads fixed

Figure 2.9.: Example plots of an exhaustive search of the parameter space, whereby in (a)
the hop parameter and in (b) the number of threads is fixed. The execution
time is plotted over the remaining parameters. Plots show that there are sets
of parameters that should be avoided for good performance.

It turned out that it is actually harder to find a bad set of parameters rather
than finding a good one. A low divisor parameter definitely leads to better
performance as long as it is high enough to not cause problems with exe-
cution itself. The hop value can be chosen as high as possible, only limited
by the maximum number of blocks. For the threads parameter, 512 is a good

29

2. Methods

choice for all datasets investigated.

2.6.2. Total Generalized Variation (TGV)

In this chapter the regularization technique known as Total Generalized Vari-
ation (tgv) as introduced in Section 1 will be explained in detail.

Inverse problems are often expressed as minimization problems in the form
of

min
u
‖F (u)− g‖2

2 +R(u) (2.12)

where ‖F (u)− g‖2
2 is known as the data fidelity term, consisting of the for-

ward operator F , the noisy data g and a norm ‖ · ‖. R is the regularization
term, which can be defined in many ways, one of the easiest being

R(u) = α‖u‖2
2 (2.13)

where α is the regularization parameter. Although fast to compute, it heav-
ily penalizes outliers, a property that can be disadvantageous in many
cases. A better choice is Total Variation (tv) as regularization termR, which
was introduced in [27] for image denoising:

R(u) = TV(u) =
∫

Ω
|∇u|dx (2.14)

If the reconstructed image consists of piece-wise constant areas, tv regular-
ization leads to good results as it preserves edges and corners. However, tv

is not capable of handling smooth areas where it leads to additional edges,
known as staircasing artifacts (Fig. 2.10(b)).

To overcome the disadvantages of Total Variation, higher order derivatives
can be incorporated into the image model, as it is done in the concept of

30

2.6. Reconstruction

(a) Noisy image (b) tv (c) tgv

Figure 2.10.: Denoising of (a) a noisy image with (b) Total Variation and (c) Total General-
ized Variation. tv introduces artificial edges in areas with smooth transitions
of the gray values, known as staircasing artifact, whereas tgv is capable of
reconstructing the smooth transitions in the image artifact-free.

Total Generalized Variation (tgv) which was first introduced by Bredies et
al. in [7]. The second-order Total Generalized Variation is defined as

R(u) = TGV2
α(u) =

= min
v

α1

∫
Ω
|∇u− v|dx + α0

∫
Ω

∣∣∣∣12 (∇v +∇vT
)∣∣∣∣dx (2.15)

where 1
2

(
∇v +∇vT) denotes the symmetrized derivative which is also de-

noted as ε(v) and α0 and α1 are the regularization parameters. The tgv

regularization was recently successfully applied to MR image reconstruc-
tion of undersampled data by Knoll et al. in [8, 10]. It also proved to lead
to significant improvements in PatLoc imaging for undersampled data in
[11].

Figure 2.10 illustrates the differences between Total Variation and Total
Generalized Variation in case of denoising a noisy image (Fig. 2.10(a)). Total
Variation (Fig. 2.10(b) clearly exhibits a staircasing artifact by introducing
additional edges which are not part of the underlying noise-free image.

31

2. Methods

Total Generalized Variation on the other hand is able to reconstruct the
smooth transitions without introducing artifacts (Fig. 2.10(c)).

2.6.3. Numerical Solution for TGV

To solve the inverse problem regularized with tgv, many numerical algo-
rithms for solving convex-concave saddle point problems can be used. In
this work, the primal-dual ascent-descent method with primal extragradi-
ent introduced in [28] by Chambolle and Pock is used.

As shown in chapter 3 of [9], the algorithm is implemented as follows:

1. Choose τp > 0, τd > 0 such that

τdτp
1
2

(√
(‖F‖2 − 1)2 + 32 + ‖F‖2 + 17

)
≤ 1

2. Choose (u0, p0) ∈ U × V, (v0, w0, λ0) ∈ V ×W ×Λ and set ū0 = u0,
p̄0 = p0.

3. For n = 0, 1, 2, . . . iterate according to

vn+1 = Pα0

(
vn + τp (∇ūn − p̄n)

)
wn+1 = Pα1

(
wn + τpε (p̄n)

)
λn+1 =

λn+τp(F ūn−g)
1+τp

un+1 = un + τd
(
∇ ◦ vn+1 −F ∗λn+1)

pn+1 = pn + τd
(
vn+1 +∇ ◦ wn+1)

ūn+1 = 2un+1 − un

p̄n+1 = 2pn+1 − pn

4. Return uN for some large N.

To be in accordance with the Matlab reference implementation from [11],
the parameters τp and τd are set to 0.0625 and 0.125, respectively.

32

2.6. Reconstruction

Estimation of ‖F‖

The norm of the operator F is an important factor for the convergence
speed. The algorithm shown in Section 2.6.3 assumes that ‖F‖ ≤ 1. Since
this is not the case for the operators investigated in this work, each applica-
tion of F or F ∗ needs to be normalized by ‖F‖ to meet this constraint.

Usually a good estimate can be obtained with the following iterative algo-
rithm:

1. Choose u0 =~0 or u0 = F ∗g where g is the data.
2. For i = 0, 1, 2, . . . iterate according to

ui+1 =
F ∗Fui√
|〈ui, ui〉|

3. Return ‖F‖est =
√
|〈uN, uN〉| for N = 10 which usually is sufficiently

high.

Increasing the step width by modifying ‖F‖est In some cases it can be
advantageous to increase the step width by decreasing the estimated norm
in the algorithm by a factor d to speed up convergence. However, this has
to be done with care, considering the fact that setting this value too high
can lead to oscillating effects in the reconstruction, resulting in useless im-
ages. For the cases investigated in this work if not noted otherwise, setting
d = 1000 improves convergence significantly while still preventing oscilla-
tions.

33

2. Methods

Regularization parameters α0 and α1

In accordance with the implementation from [11], the regularization pa-
rameters α0 and α1 are not set directly, but instead depend on the current
iteration. The regularization parameters are reduced exponentially in each
iteration, hence the parameters to set are α10 and α00. The latter is usually
set to l · α10 where l = 2. The parameters α00 and α10 are then multiplied
by a reduction factor r, usually 2−8, leading to α01 and α11, respectively. In
each iteration k of a total of N iterations, the current α0 and α1 are acquired
by

α0 = exp
(

k
N

log α01 +
N − k

N
log α00

)
(2.16)

α1 = exp
(

k
N

log α11 +
N − k

N
log α10

)
(2.17)

Figure 2.11 illustrates the adaptive regularization parameters.

Figure 2.11.: Development of the regularization parameters α0 and α1 for α01 = 4 · 10−5,
l = 2, r = 2−8 and N = 1000.

34

2.6. Reconstruction

GPU Implementation

The operations mentioned in the algorithm of Section 2.6.3 are executed on
the GPU. From a performance point of view this is not essential as these
operations are rather fast compared to the evaluation of the operators F
and F ∗. However, mixing gpu and cpu code requires the movement of data
between both architectures, resulting in a significant performance drop.

Since pixels can mostly be handled individually, all the operations are well
suited for parallel execution.

2.6.4. TGV - Conjugate Gradient (TGV-CG)

tgv-cg is a modification of the numerical algorithm used to solve the tgv

regularized inverse problem shown in Section 2.6.3. This leads to the loss
of the variable λ but instead requires evaluating the equation

un+1 = (id + τdF ∗F)−1
(

un + τd

(
∇ ◦ vn+1 +F ∗g

))
(2.18)

for the update of u. The inversion of (id + τdF ∗F) is due to the size of the
operator F computationally too challenging. Therefore it is solved with an
additional conjugate gradient method in each tgv iteration, hence giving
the method the name tgv-cg.

The algorithm is implemented the following way:

1. Choose τp > 0, τd > 0 such that τdτp
1
2

(
17 +

√
33
)
≤ 1

2. Choose (u0, p0) ∈ U ×V, (v0, w0) ∈ V ×W and set ū0 = u0, p̄0 = p0.
3. For n = 0, 1, 2, . . . iterate according to

vn+1 = Pα0

(
vn + τp (∇ūn − p̄n)

)

35

2. Methods

wn+1 = Pα1

(
wn + τpε (p̄n)

)
un+1 = (id + τdF ∗F)−1 (un + τd

(
∇ ◦ vn+1 +F ∗g

))
pn+1 = pn + τd

(
vn+1 +∇ ◦ wn+1)

ūn+1 = 2un+1 − un

p̄n+1 = 2pn+1 − pn

4. Return uN for some large N.

This modification is expected to converge faster than tgv with the primal-
dual algorithm. However, for the reconstruction time, the iterations of the
conjugate gradient method have to be considered in addition to the num-
ber of iterations N, because the operators F and F ∗ have to be applied
in each cg iteration. Therefore it may result in increased reconstruction
time compared to solving the problem with the primal-dual algorithm. In
Chapter 3 it will be shown that it depends on the problem and especially
on the chosen operator whether this method is advantageous compared to
the primal-dual implementation or not.

It proved well to set τd and τp depending on ‖F‖est (Section 2.6.3). Choos-
ing

τp =
1
‖F‖ (2.19)

leads to
τd =

1

τp
1
2

(
17 +

√
33
) (2.20)

in order to meet the constraint

τdτp
1
2

(
17 +

√
33
)
≤ 1 (2.21)

36

2.7. Performance Analysis

GPU Implementation

Most of the operations shown in the algorithm above are equal to the
ones in Section 2.6.3. Additionally a conjugate gradient method was imple-
mented taking care of the requirements of Eq. 2.18. However, in principle
the implementation of the cg method follows standard implementations.

2.6.5. Reconstruction Methods

The numerical solution of tgv (Section 2.6.3) and tgv-cg (Section 2.6.4) as
well as the conjugate gradient method have been applied to data with use
of the encoding matrix operator (Section 2.5.1) and the PatLoc nufft 1+2

(2.5.2) operator. This effectively leads to the following methods:

• Encoding Matrix cg

• Encoding Matrix tgv

• Encoding Matrix tgv-cg

• PatLoc nufft 1+2 cg

• PatLoc nufft 1+2 tgv

• PatLoc nufft 1+2 tgv-cg

These methods are analyzed in Section 3.

2.7. Performance Analysis

For the evaluation of the performance, the execution time of the gpu code
based on the encoding matrix (Section 2.5.1) was compared to a Mat-
lab implementation provided by the Department of Radiology, Medical

37

2. Methods

Physics of the University Hospital Freiburg, Germany. The code based on
the nufft 1+2 (Section 2.5.2) was also compared to a Matlab implemen-
tation by Florian Knoll from the Institute of Medical Engineering, Graz,
Austria.

The time measurements were performed in Python by the time module.
To avoid parallel execution of the time measurement and the computations
on the gpu, care has been taken to appropriately synchronize between cpu

and gpu code before calling time-measurement functions. The Matlab so-
lutions use tic and toc.

The time has been measured per iteration which is sufficient because the
gpu based implementations converge at the same speed as the corren-
sponding cpu based implementation.

38

3. Results

The image quality has been assessed with several datasets acquired for this
work (Section 2.4). A Cartesian sampling pattern was used as well as a
radial sampling pattern for both in-vivo and phantom data.

In Figs. 3.1 (in-vivo) and 3.3 (phantom) the reconstructions for the Cartesian
sampling pattern using the encoding matrix forward operator are shown.
The same dataset has also been reconstructed with the PatLoc nufft 1+2

operator as shown in Figs. 3.2 and 3.4.

The second dataset was acquired using a radial trajectory. Figures 3.5 and
3.7 show the reconstructions using the encoding matrix operator for both
the in-vivo data as well as the phantom data. The datasets have also been
reconstructed with the PatLoc nufft 1+2 operator in Figs. 3.6 and 3.8.

cg and tgv reconstructions for undersampled Cartesian data (Fig. 3.9) and
undersampled radial data (Fig. 3.10) are shown as well.

Further, a dataset acquired with the NorthWest EPI (Section 2.4.1) trajectory
(Fig. 3.11) was used to assess the performance of the algorithm on multi-
dimensional trajectories.

Finally, plots depicting the speedup (Fig. 3.12) and a plot showing the con-
vergence of the inner cg of tgv-cg (Fig. 3.13).

39

3. Results

Figure 3.1.: Reconstruction of in-vivo human data acquired with a Cartesian trajectory and
a Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the image
reconstructed with a conventional CG method (50 iterations) and the encoding
matrix operator as well as two detailed views. The second row shows the re-
sults for the TGV-CG regularized reconstruction. The regularization parameter
has been set to α = 1 · 10−1. TGV-CG required 200 PD iterations.

40

Figure 3.2.: Reconstruction of in-vivo human data acquired with a Cartesian trajectory
and a Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the
image reconstructed with a conventional CG method (50 iterations) and the
PatLoc nufft 1+2 operator as well as two detailed views. The rows two and
three show the results for TGV and TGV-CG regularized reconstruction, re-
spectively. The regularization parameter has been set to α = 4 · 10−5 in both
cases. TGV required 2000 PD iterations, whereas TGV-CG required 200 PD
iterations.

41

3. Results

Figure 3.3.: Reconstruction of phantom data acquired with a Cartesian trajectory and a
Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the image
reconstructed with a conventional CG method (50 iterations) and the encoding
matrix operator as well as two detailed views. The second row shows the re-
sults for the TGV-CG regularized reconstruction. The regularization parameter
has been set to α = 1 · 10−1. TGV-CG required 200 PD iterations.

42

Figure 3.4.: Reconstruction of phantom data acquired with a Cartesian trajectory and a
Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the image
reconstructed with a conventional CG method (50 iterations) and the PatLoc
nufft 1+2 operator as well as two detailed views. The rows two and three
show the results for TGV and TGV-CG regularized reconstruction, respec-
tively. The regularization parameter has been set to α = 4 · 10−5 in both cases.
TGV required 2000 PD iterations, whereas TGV-CG required 200 PD iterations.

43

3. Results

Figure 3.5.: Reconstruction of in-vivo human data acquired with a Cartesian trajectory and
a Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the image
reconstructed with a conventional CG method (50 iterations) and the encoding
matrix operator as well as two detailed views. The second row shows the re-
sults for the TGV-CG regularized reconstruction. The regularization parameter
has been set to α = 1 · 10−1. TGV-CG required 200 PD iterations.

44

Figure 3.6.: Reconstruction of in-vivo human data acquired with a radial trajectory and
a Spin Echo (SE) sequence (Section 2.4). The top row shows the image re-
constructed with a conventional CG method (50 iterations) and the PatLoc
nufft 1+2 operator as well as two detailed views. The rows two and three
show the results for TGV and TGV-CG regularized reconstruction, respec-
tively. The regularization parameter has been set to α = 10−6 in both cases.
TGV required 2000 PD iterations, whereas TGV-CG required 200 PD iterations.

45

3. Results

Figure 3.7.: Reconstruction of phantom data acquired with a Cartesian trajectory and a
Turbo Spin Echo (TSE) sequence (Section 2.4). The top row shows the image
reconstructed with a conventional CG method (50 iterations) and the encoding
matrix operator as well as two detailed views. The second row shows the re-
sults for the TGV-CG regularized reconstruction. The regularization parameter
has been set to α = 1 · 10−1. TGV-CG required 200 PD iterations.

46

Figure 3.8.: Reconstruction of phantom data acquired with a radial trajectory and an Spin
Echo (SE) sequence (Section 2.4). The top row shows the image reconstructed
with a conventional CG method (50 iterations) and the PatLoc nufft 1+2 op-
erator as well as two detailed views. The rows two and three show the results
for TGV and TGV-CG regularized reconstruction, respectively. The regulariza-
tion parameter has been set to α = 10−6 in both cases. TGV required 2000 PD
iterations, whereas TGV-CG required 200 PD iterations.

47

3. Results

(a) CG, R = 1 (b) TGV, R = 1

(c) CG, R = 2 (d) TGV, R = 2

(e) CG, R = 4 (f) TGV, R = 4

Figure 3.9.: Reconstruction of a dataset acquired with a Cartesian sampling pattern with
different levels of undersampling indicated by R.

48

(a) CG, R = 1 (b) TGV, R = 1

(c) CG, R = 8 (d) TGV, R = 8

(e) CG, R = 16 (f) TGV, R = 16

Figure 3.10.: TODO Reconstruction of a dataset acquired with a radial sampling pattern
with different levels of undersampling indicated by R.

49

3. Results

Figure 3.11.: Single-shot NorthWest EPI data (Section 2.4.1) reconstructed onto a 192× 192
pixel grid with CG (top row) and TGV-CG (middle row, α = 1.2). For compar-
ison an image acquired with a conventional EPI sequence using linear gradi-
ents and also reconstructed using TGV-CG (α = 0.9) is shown in the bottom
row. The first column shows the entire image with the region of interest (area
of highest resolution in case of NW-EPI) labeled with a red rectangle whereas
the second column shows a zoomed version of the ROI.

50

(a) Speedup of the encoding matrix operator.

(b) Speedup of the PatLoc nufft 1+2 operator.

Figure 3.12.: Speedup of the GPU-accelerated implementation compared to a sequential
Matlab implementation for different reconstruction sizes. The dataset was
simulated with a 256× 256 k-space grid and eight coils.

51

3. Results

cg tgv tgv-cg

Operator pd cg

Encoding Matrix ≈ 50 >> 60000 ≈ 300 ≈ 2200

PatLoc nufft 1+2 ≈ 50 ≈ 2000 ≈ 200 ≈ 4000

Table 3.1.: Iterations needed for each forward operator and reconstruction method.

Figure 3.13.: Illustration of the iterations of the inner cg in tgv-cg regularized reconstruc-
tion. The factor d indicates the value by which the norm of the operator is
divided to speed up convergence.

52

4. Discussion

Using linear gradients for image encoding in MR imaging has important
properties like constant field of view (fov) and constant image resolution.
However, generalizing image encoding to arbitrarily shaped fields like in
PatLoc imaging proved to be an interesting concept for new imaging tech-
niques. One challenge of getting non-linear encoding schemes accepted for
clinical use is overcoming the computationally demanding reconstruction.
One approach to solve this are direct reconstruction concepts which are
mostly tailored to a specific trajectory [12, 29]. These concepts are faster,
but exhibit stronger artifacts, particularly due to the missing regulariza-
tion. Other ideas of reducing the complexity of the reconstruction – like
when using the PatLoc nufft 1+2 operator [11] – often involve interpola-
tion which may not be desirable. The most general way to reconstruct is by
brute-force inversion of the encoding matrix with iterative methods. Since
this is also the most time-consuming way, a gpu-accelerated implementa-
tion is necessary to make the method practical and to eventually get it
accepted in clinical practice. The aim of this work was the implementation
of gpu-accelerated image reconstruction for PatLoc MR imaging, both regu-
larized (tgv (Section 2.6.2) and tgv-cg (Section 2.6.4)) and not regularized
(conjugate gradient (cg) method). This chapter will discuss the findings
concerning image quality (Section 4.1), performance of the gpu-accelerated
implementation (Section 4.2), the convergence of the implemented tech-
niques (Section 4.3) and finally a conclusion will be drawn (Section 4.4).

53

4. Discussion

4.1. Image Quality

In all of the shown images in Section 3 tgv and tgv-cg led to significantly
better image quality compared to the images reconstructed with a conju-
gate gradient method. Due to reasons explained in Section 4.3, no results
for tgv in combination with the encoding matrix are shown.

In case of the Cartesian sampling pattern (Figs. 3.1, 3.2, 3.3 and 3.4) the
reconstruction exhibits strong streaking artifacts originating from the cen-
ter of the image which is in PatLoc imaging the area of lowest resolution.
The explanation of these artifacts lies in the point spread function (psf) in the
center. These artifacts can also be observed in the images shown in Fig. 1.2,
however, due to the reparameterization performed in the reconstruction,
the streaking artifacts are split up causing eight streaks instead of four.
Further, miscalibration of the gradient fields during imaging is indicated
by the bright spot in the center. This could also partially contribute to these
artifacts. Nevertheless, in all cases tgv and tgv-cg are capable of reducing
the effects of the psf. Some of the streaks are even removed completely,
while others remain still visible, possibly due to the miscalibration. Even
the highly corrupted center shows better quality when tgv regularization
is performed. However, it is still a region that cannot be trusted as tgv

does not increase resolution in this area but rather reduces the effects of
this region on the rest of the image. Another positive effect is the removal
of Gibbs ringing which can be observed in the second zoom in each of
the figures. This effect is particularly well depicted in the phantom images
(Figs. 3.3, 3.4) where strong Gibbs ringing can be observed at the edges of
the tubes.

In imaging with a radial trajectory (Figs. 3.5, 3.6, 3.7 and 3.8) the effects
of the psf do not result in streaking artifacts. However, the center still re-

54

4.2. Performance

sults in ringing artifacts which are reduced by tgv and tgv-cg. Due to the
unfortunately low contrast in in-vivo images, the regularization parame-
ter had to be chosen lower than in case of the Cartesian sampling pattern
in order to not loose the image features. The phantom images (Figs. 3.7,
3.8) still show strong Gibbs ringing artifacts which can be overcome by tgv

regularization.

As expected, the differences in image quality between the reconstructions
using the PatLoc nufft 1+2 operator and the encoding matrix are mini-
mal.

Even for undersampled data as shown in Fig. 3.9 (Cartesian) and Fig. 3.10

(radial) tgv is capable of reducing the undersampling artifacts, leading to
improved image quality compared to reconstructions with the conjugate
gradient method. However, for a high undersampling factor of R = 4 the
undersampling artifacts still corrupt the image (Fig. 3.10(f)).

The single-shot NorthWest EPI sequence exhibits strong artifacts within the
object as well as outside. Figure 3.11 shows the image reconstructed with
cg, tgv-cg and an image acquired with a conventional EPI sequence using
linear gradients. The area of interest is illustrated with a red rectangle. A
zoomed view of the area of interest can be seen in the right column. tgv

is capable of reducing the artifacts significantly. To illustrate the higher
resolution of the NW-EPI sequence a reference image acquired with linear
gradients is shown as well.

4.2. Performance

For the performance analysis, the gpu implementation was compared to
already existing Matlab solutions as mentioned in Section 2.7. The hard-

55

4. Discussion

ware used for the evaluation is presented in Section 2.3. In this section
only a rough overview of the performance is given, as detailed compar-
isons tend to compare hardware architectures rather than illustrating the
practical benefit of the implementation. Therefore the comparison is lim-
ited to one representative dataset which was simulated with a 256× 256
k-space grid for eight coils. As depicted in Fig. 3.12, the speedup of the gpu

implementation was compared to the given Matlab implementations for
different reconstruction grids. A comparison of the different reconstruction
methods was not necessary, as the most time-consuming parts are the ap-
plication of the forward operator and its adjoint which are the same for all
methods.

Figure 3.12(a) displays the results for the encoding matrix as forward op-
erator. It exhibits a negative trend where the practical cases (reconstruction
grid ranging from 256× 256 to 512× 512) correspond to a speedup of ap-
proximately 260 to 270. The negative trend can be explained by the fact
that due to the size of the encoding matrix and the cuda related limita-
tions which have to be overcome (Section 2.5.1) the implementation has to
be made more and more sequential the bigger the reconstruction size is.
Still, the speedup is high enough to make this method practical in the re-
search context as this corresponds to about 27 seconds for one iteration on
the gpu compared to approximately 2 hours on the cpu for a reconstruction
size of 512× 512.

The performance in Fig. 3.12(b) shows a more positive trend for the PatLoc
nufft 1+2 operator. However, the speedup is much lower than for the en-
coding matrix which is due to the fact that the implementation mostly con-
sists of ffts and sparse matrix vector multiplications. For these parts very
fast implementations on the cpu exist whereas the available gpu libraries
still have room for improvement and are under heavy development. Nev-
ertheless, for bigger reconstruction sizes the gpu implementation shows its

56

4.3. Convergence

potential as can be seen from the positive trend, such that a speedup of
≈ 75 can be expected. For a reconstruction grid of 512 × 512 this corre-
sponds to a reconstruction time of ≈ 0.27 seconds on the gpu for one iter-
ation in contrast to ≈ 20 seconds for reconstructing on the cpu. The graph
also illustrates the difference between cg and tgv on a per iteration basis.
This emphasizes that the differences of different reconstruction methods
(taking aside the number of iterations needed) have a minimal impact on
the performance.

4.3. Convergence

Because of the similar reconstruction times for different reconstruction
methods (Section 4.2) when compared on a per iteration basis, the con-
vergence properties of the methods are the dominating factor in terms of
overall speed.

Table 3.1 gives an overview of the number of iterations needed for each
reconstruction method applied with one of the discussed forward opera-
tors. As can be seen from this table, cg is the fastest method because 50
iterations usually suffice. However, the actual number of iterations might
differ according to the needed degree of regularization.

The number of iterations also indicates when tgv-cg should be favoured
over tgv. For instance, in case of the encoding matrix operator, tgv does not
converge in reasonable time as even after 60000 iterations no convergence
can be observed, even for a very conservative regularization parameter α.
tgv-cg on the other hand only needs 300 PD iterations. However, one has to
consider the iterations of the inner cg method for solving the linear system.
This corresponds to approximately 2200 iterations in total.

57

4. Discussion

In case of the PatLoc nufft 1+2 operator the tgv-cg method again con-
verges faster (fewer pd iterations), however, taking into account the inner
cg method which involves the time-consuming application of the forward
operator and its adjoint, it actually needs twice as long as conventional
tgv.

The actual number of iterations of the inner cg depends on different factors,
for instance the trajectory or the reconstruction size. But most importantly,
the factor d used to speed up convergence (Section 2.6.3) plays a major role
as illustrated in Fig. 3.13. The lower this factor is set, the faster the inner cg

method converges. However, for some datasets it is necessary to speed up
convergence with this factor to keep the number of iterations low. This is a
tradeoff that has to be considered when choosing these parameters.

4.4. Conclusion

This work has shown that a significant speedup can be achieved with use
of a gpu based implementation compared to a sequential algorithm. This
even renders methods based on the brute-force inversion of the encoding
matrix practical in a research and clinical context. However, in a clinical
setting, reconstruction techniques using regularization such as tgv or tgv-
cg, which require significantly more iterations than cg, profit from faster
discretization methods of the signal equations like the PatLoc nufft 1+2

operator. This could even be improved by a direct implementation of the
type 3 nufft on the gpu. This topic will be investigated in future work.
Another topic of future investigations will be the use of more sophisticated
solvers for convex-concave saddle point problems which are expected to
lead to faster convergence and therefore to a faster tgv regularized recon-
struction.

58

4.4. Conclusion

The regularization techniques tgv and tgv-cg exhibit significantly better
image quality compared to reconstructions acquired with use of cg. The
results in [11] could be confirmed for new in-vivo data. Even for highly
undersampled data a good image quality could be obtained.

tgv-cg proved to be a good choice for regularized reconstruction in certain
situations. With this new method it is possible to speed up convergence
significantly when the encoding matrix is used as forward operator. In
this case the convergence can be improved tremendously compared to the
conventional primal-dual algorithm (Section 2.6.3). The method has been
successfully applied to in-vivo data from a current research project which
investigates multi-dimensional single-shot trajectories using non-linear en-
coding fields and a dynamic field camera (Section 2.4.1) and showed im-
pressive results in terms of speed and image quality.

It offers different levels of complexity by giving the user the ability to adjust
all parameters used in reconstruction while also providing sane defaults.
This framework can easily be merged into existing scanner software due
to its command line interface, which could eventually lead to a one-button
solution.

59

Appendix

61

Appendix A.

Usage

This section describes the basic usage of the command line interface for
the reconstruction algorithms. For a more detailed explanation, especially
on installation, the reader is referred to the README file provided with the
source code. All possible parameters of the command line interface can be
seen in the help page (plcli --help).

The data needs to be passed to the algorithm in form of a Matlab file
which consists of the following struct:

• S.a res: number of readout points
• S.b res: number of phase encoding steps
• S.nC: number of coils
• S.reconSize: reconstruction size
• S.numSEM: number of sems
• S.SEM: stack of encoding fields
• S.SEM pat a: nonlinear encoding field A (nufft 1+2 only)
• S.SEM pat b: nonlinear encoding field B (nufft 1+2 only)
• S.k: sampling trajectory

63

Appendix A. Usage

• S.traj pat a: trajectory for nonlinear encoding field A (nufft 1+2

only)
• S.traj pat b: trajectory for nonlinear encoding field B (nufft 1+2

only)
• S.Cmat: RF coil sensitivities
• S.recondata: measured data

First the user has to choose one of the following reconstruction methods:

• --cg: cg method using the encoding matrix as forward operator
• --nufftcg: cg method using the PatLoc nufft 1+2 forward operator
• --tgv: tgv regularized reconstruction using the encoding matrix
• --tgvnufft: tgv regularized reconstruction using the PatLoc nufft

1+2 operator
• --tgvcg: tgv-cg reconstruction using the encoding matrix
• --tgvnufftcg: tgv-cg reconstruction using the PatLoc nufft 1+2 op-

erator

Other important parameters are:

• -i, --iters: number of iterations
• -ii, --inner-iters: number of iterations of the inner cg (tgv-cg

only)
• -a, --alpha: regularization parameter (tgv and tgv-cg only)
• -r, --reconsize: reconstruction size (if provided, value passed in

data file is ignored)
• --norm-div: factor to speed up convergence
• -o, --out: output directory (defaults to results if not provided)
• -si, --save-images: save all intermediate images
• -sm, --save-matlab: save all intermediate results as .mat files

64

A.1. Examples

A.1. Examples

Here, some examples are shown to illustrate the usage of the command
line interface.

1. Reconstructing a dataset data.mat on an image grid of the size 512×
512 with the conjugate gradient method (60 iterations). Save all inter-
mediate images:

plcli --cg -r 512 -i 60 -si data.mat

2. Reconstructing a dataset data.mat with tgv (PatLoc nufft 1+2 op-
erator), reconstruction size of 256, 2000 primal-dual iterations, speed
up convergence with a norm-div parameter of 1000, regularization
parameter alpha of 10−4.

plcli --tgvnufft -r 256 -i 2000 --norm-div 1000 -a 1e-4 data.mat

3. Same as 2., but using tgv-cg instead of tgv and without norm-div

parameter. In each primal-dual iteration 20 cg iterations should be
performed.

plcli --tgvnufftcg -r 256 -i 2000 -ii 20 -a 1e-4 data.mat

65

Bibliography

[1] J.P. Stockmann, P.A. Ciris, G. Galiana, L. Tam, and R.T. Constable. “O-
space imaging: Highly efficient parallel imaging using second-order
nonlinear fields as encoding gradients with no phase encoding.” In:
Magn. Reson. Med. 64.2 (2010), pp. 447–456 (cit. on p. 1).

[2] J. Hennig, A. M. Welz, G. Schultz, J. Korvink, Z. Liu, O. Speck, and M.
Zaitsev. “Parallel imaging in non-bijective, curvilinear magnetic field
gradients: a concept study.” In: Magn. Reson. Mater. Phy. 21 (2008),
pp. 5–14 (cit. on p. 1).

[3] D. Gallichan, C. A. Cocosco, A. Dewdney, G. Schultz, A. Welz, J.
Hennig, and M. Zaitsev. “Simultaneously driven linear and nonlinear
spatial encoding fields in MRI.” In: Magn. Reson. Med. 65.3 (2011),
pp. 702–714 (cit. on pp. 2, 5, 7, 8).

[4] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger.
“SENSE: Sensitivity encoding for fast MRI.” In: Magn. Reson. Med.
42.5 (1999), pp. 952–962 (cit. on pp. 1, 15).

[5] G. Schultz. “Magnetic Resonance Imaging with Nonlinear Gradient
Fields: Signal Encoding and Image Reconstruction.” PhD thesis. Uni-
versity of Freiburg, Germany, 2012 (cit. on pp. 3, 5, 9).

67

Bibliography

[6] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for
Solving Linear Systems.” In: J. Res. Nat. Bur. Stand. 49.6 (1952), pp. 409–
436 (cit. on pp. 3, 20).

[7] K. Bredies, K. Kunisch, and T. Pock. “Total generalized variation.” In:
SIAM J. Imag. Sci. 3.3 (2010), pp. 492–526 (cit. on pp. 3, 31).

[8] F. Knoll, K. Bredies, T. Pock, and R. Stollberger. “Second Order To-
tal Generalized Variation (TGV) for MRI.” In: Magn. Reson. Med. 65

(2011), pp. 480–491 (cit. on pp. 3, 31).

[9] K. Bredies. “Recovering piecewise smooth multichannel images by
minimization of convex functionals with total generalized variation.”
In: submitted for publication (2012) (cit. on pp. 3, 32).

[10] F. Knoll. “Constrained MR Image Reconstruction of Undersampled
Data from Multiple Coils.” PhD thesis. Graz University of Technol-
ogy, Austria, 2011 (cit. on pp. 3, 31).

[11] F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig,
and R. Stollberger. “Reconstruction of undersampled radial PatLoc
imaging using total generalized variation.” In: Magn. Reson. Med.
(2012) (cit. on pp. 3, 17, 18, 31, 32, 34, 53, 59).

[12] G. Schultz, P. Ullmann, H. Lehr, A. M. Welz, J. Hennig, and M. Za-
itsev. “Reconstruction of MRI data encoded with arbitrarily shaped,
curvilinear, nonbijective magnetic fields.” In: Magn. Reson. Med. 64.5
(2010), pp. 1390–1403 (cit. on pp. 5, 20, 53).

[13] K. J. Layton, D. Gallichan, F. Testud, C. A. Cocosco, A. M. Welz, C.
Barmet, K. Pruessmann, and M. Zaitsev. “Region-specific trajectory
design for single-shot imaging using linear and nonlinear magnetic
encoding fields.” In: Proc. Intl. Soc. Mag. Reson. Med. 2012. Melbourne,
Australia, 2012 (cit. on pp. 6, 8, 14).

68

Bibliography

[14] S. Kroboth, D. Gallichan, F. Knoll, C. A. Cocosco, G. Schultz, and M.
Zaitsev. “Effect of miscalibrations of gradient fields and coil sensitiv-
ities in PatLoc imaging.” In: ESMRMB Congress 2012. Lisbon, Portu-
gal, 2012 (cit. on p. 8).

[15] NVIDIA Corporation. CUDA Toolkit 4.2. url: www.nvidia.com/getcuda
(cit. on pp. 10–12, 19).

[16] Python Software Foundation. Python programming language 2.6. url:
www.python.org (cit. on pp. 11, 12).

[17] The SciPy Community. Scientific tools for Python. url: www.scipy.org
(cit. on pp. 11, 12).

[18] The SciPy Community. Numerical Python. url: numpy.scipy.org (cit.
on pp. 11, 12).

[19] A. Klöckner. PyCUDA 2012.1. url: mathema.tician.de/software/
pycuda (cit. on pp. 11, 12).

[20] L. Givon. CUDA SciKit. url: lebedov.github.com/scikits.cuda/
(cit. on pp. 12, 19).

[21] B. Opanchuk. FFT for PyCUDA and PyOpenCL. url: packages.python.
org/pyfft (cit. on pp. 12, 19).

[22] K.J. Layton, D. Gallichan, Testud. F., C.A. Cocosco, A.M. Welz, C.
Barmet, K.P. Pruessmann, J. Hennig, and Zaitsev M. “Single shot
trajectory design for region-specific imaging using linear and non-
linear magnetic encoding fields.” In: Magn. Reson. Med. (2012). doi:
10.1002/mrm.24494 (cit. on p. 13).

[23] B.J. Wilm, C. Barmet, M. Pavan, and K.P. Pruessmann. “Higher order
reconstruction for MRI in the presence of spatiotemporal field per-
turbations.” In: Magn. Reson. Med. 65.6 (2011), pp. 1690–1701 (cit. on
p. 13).

69

www.nvidia.com/getcuda
www.python.org
www.scipy.org
numpy.scipy.org
mathema.tician.de/software/pycuda
mathema.tician.de/software/pycuda
lebedov.github.com/scikits.cuda/
packages.python.org/pyfft
packages.python.org/pyfft
http://dx.doi.org/10.1002/mrm.24494

Bibliography

[24] S. Kroboth, F. Testud, K. Bredies, K.J. Layton, D. Gallichan, C.A. Co-
cosco, G. Schultz, F. Knoll, C. Barmet, K.P. Pruessmann, M. Zaitsev,
and R. Stollberger. “Image Reconstruction of Single-Shot North West
EPI Data acquired with PatLoc Gradients using Magnetic Field Mon-
itoring and Total Generalized Variation - Conjugate Gradient.” In:
submitted to ISMRM (2013) (cit. on p. 14).

[25] K.P. Pruessmann, M. Weiger, P. Börnert, and P. Boesiger. “Advances
in sensitivity encoding with arbitrary k-space trajectories.” In: Magn.
Reson. Med. 46.4 (2001), pp. 638–651 (cit. on p. 15).

[26] J. Fessler and B. Sutton. “Nonuniform Fast Fourier Transforms Using
Min-Max Interpolation.” In: IEEE Trans. Signal Process. 51.2 (2003),
pp. 560–574 (cit. on pp. 16, 18).

[27] L. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based
noise removal algorithms.” In: Physica D 60 (1992), pp. 259–268 (cit.
on p. 30).

[28] A. Chambolle and T. Pock. “A first-oder primal-dual algorithm for
convex problems with applications to imaging.” In: J. Math. Imaging
Vision 40 (2011), pp. 120–145 (cit. on p. 32).

[29] G. Schultz, H. Weber, D. Gallichan, W.R.T. Witschey, A.M. Welz, C.A.
Cocosco, J. Hennig, and M. Zaitsev. “Radial Imaging with Multipo-
lar Magnetic Encoding Fields.” In: IEEE Trans. Med. Imag. 30 (2011),
pp. 2134–2145 (cit. on p. 53).

70

