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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
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Abstract

In this thesis a victim detection system for mobile robots in search and rescue
operations is presented. The system uses feature detectors (e.g. faces and
heat) to process the measurements of the robot’s sensors and the detected
features are then tracked over time to generate feature tracks. The tracking is
able to handle false positives as well as false negatives. A rule-based object
fusion algorithm combines nearby feature tracks into detected objects. These
rules ensure that a detected object contains only reasonable features (e.g.
one face per person) and that unspecific features can be shared between
objects (e.g. heat signature). An object classifier analyzes each object and
its feature tracks and assigns the most likely object type. The objects are
then visualized for the human supervisor, who can verify them as true or
false victims. The objects are also published so that the other systems of
the robot can use them. The proposed system was implemented for a robot
using ROS. Finally, the system was evaluated in a RRL-like environment.
The results show that the system is able to dedect objects reliable.
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1 Introduction

This thesis presents a framework for victim detection to be used in the
RoboCup Rescue Robot League1. The Rescue Robot League is an inter-
national competition for urban search and rescue robots and part of the
RoboCup2. Robots of international teams explore a simulated disaster envi-
ronment and try to find objects of interest like victims, QR codes or hazmat
signs. The teams score points for detecting the objects of interest and the
accuracy of the generated map of the arena. There are also penalties for
harming the victims, colliding with the walls of the arena and detecting
false victims. These events could have problematic consequences in a real
search and rescue operation. Another important aspect of the competition
is that each year the rules get more advanced and more tasks and obstacles
are added. The long-term goal of the Rescue Robot League is to develop
robots, which can participate in real search and rescue operations without
problems.

Figure 1.1: The Rescue Arena of the German Open 2014

1http://www.robocup.org/robocup-rescue/
2http://www.robocup.org
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1 Introduction

Figure 1.2: Stepfield
Figure 1.3: Victim Box

The simulated disaster environment (see Figure 1.1) is organized like a maze
that contains difficult terrain to make it harder for the robot to move around.
These standard test methods from the National Institute of Standards and
Technology (NIST) consists of ramps, stairs, stepfields (see Figure 1.2) and
closed doors. Ramps, stairs and stepfields were added over the years to
foster the development of more complex locomotion system. More difficult
obstacles will be added in the future until the robots are good enough to
move around in real disaster areas with collapsed buildings and even unsta-
ble floors. The closed doors act as shortcuts for robots with manipulators
that can open them. The doors also allow the organizers to change the layout
of the arena by opening and closing different doors for each team. Some of
the obstacles can be avoided by smaller robots. This encourages the teams
to build smaller robots.

The Rescue Robot League simulates victims by providing life signs, which
are also called features in this thesis. Supported life signs are:

• Form (doll or mannequin parts)
• Visual (eye charts and hazardous materials labels)
• Thermal (heating pad)
• Motion (waving cloth)
• Sound (random numbers)
• CO2 (bicycle tire cartridges)

Each victim has at least two life signs. A heat source and a visual clue are

2



Figure 1.4: The Wowbagger inside a Rescue Arena

always present. The competition uses multiple ways to make the victim
detection task harder. It places single life signs around the arena that give
a penalty, if wrongly detected as a victim. It uses flashing lights to trick
motion detectors, which use visual images for detecting motion. Finally
victims are hidden inside boxes (see Figure 1.3) to make the task even harder
and to simulate trapped or entombed victims. Those boxes are open on top,
open to the side or with a single access hole in any direction. This makes it
important to also detect those holes so that the robot can move closer and
inspect the inside of the boxes.

The Institute for Software Technology (IST)3of TU Graz has developed a
robot for search and rescue applications, named Wowbagger (see Figure
1.4), to participate in in the Rescue Robot League. The robot has tracks
to move over uneven terrain. It uses a laser scanner to generate a map of
the explored environment and localize the robot in it. The robot also has a
movable sensor head, which has mounted a RGB-D camera and a thermal
camera. The 2 cameras are mainly used for victim detection. Finally the
robot has a computer, which runs all the programs needed to operate the
robot autonomously. The robot’s sensor measurements are transmitted to an
operator and can be visualized. The supervisor monitors the autonomous
robot, but can also manually control the robot with a joypad.

3http://www.ist.tugraz.at/
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1 Introduction

1.1 Motivation

The short-term motivation of the thesis is to develop a victim detection
system that can successfully compete in the Rescue Robot League. The
victim detection system must support multiple sensors and feature detectors
to handle all required life signs and get as many points as possible. It is
also very important that the system works reliable, because finding victims
gives more points in the competition than the other tasks. Moreover false
positives give a time penalty. This means that the system must be able to
handle false measurements.

The long-term motivation is to apply the lessons from the Rescue Robot
League in the real world. The final goal is to use robots in real search
and rescue operations. This requires improvements all across the board.
The terrain in real disaster areas will be even more difficult to navigate.
It may even be unstable and dangerous. The environment will be even
more cluttered with objects, which will make finding the real victims even
harder. Fire, displays and loudspeakers in homes, pets, other searchers
and much more may distract and overwhelm the victim detection system.
Real operations will also require the cooperation of multiple robots and
even the cooperation with human searchers. This can be the simple sharing
of detected features and objects or the efficient organization of all the
searchers.

1.2 Contribution

The main contribution of this thesis is a framework for victim detection
and its evaluation. The framework splits the victim detection task into the
following subtasks:

1. feature detection
2. feature tracking
3. object fusion
4. object classification

4



1.2 Contribution

The framework uses message passing to decouple the feature detection
subtask from the rest of the system. This allows users of the framework
to add new sensors, feature detectors and even new feature types without
modifying the the framework. At runtime the feature detectors can also be
started and stopped independent of the system. The decoupling also allows
the feature detectors to run on different framerates. Each feature detector
can run as fast as the sensor measurements are available.

Tracking features instead of tracking objects also has advantages. One
advantage is that the object fusion and object classification subtasks can
run on a much lower frequency than the feature detectors and the feature
trackers. Another advantage is that the feature trackers discards most false
measurements already before they even reach the object fusion subtask.

The object fusion subtask uses a multi-hypotheses clustering algorithm with
extra rules that define which feature tracks can or can not be combined into
objects. These extra rules prevent an object from having 2 faces, but allow it
to have multiple hands or QR codes.

One important advantage of the system is that nearly everything is data-
driven. The user can define the feature types, the object types and how they
are handled in configuration files.

Finally, the framework supports verification of objects by the user. This
allows the operator of the robot to tell the system that a detected object has a
wrong type or that the system has missed an object. User verification is very
important, because a victim detection system will never work completely
perfect. Another use of user verification is the cooperation of robots and
humans while searching for victims.

5





2 Related Work

This chapter describes earlier work of other authors that influenced the
development of this victim detection system. The first section describes
different feature detection algorithms. Next is an overview of sensor fusion.
The final section describes the tracking of objects over time.

2.1 Feature Detection

The paper [VSA03] gives an overview over different color-based skin de-
tectors. It compares different techniques that decide for each pixel if it
is skin or not based on the color. It also looks at the effect that the used
color space (e.g RGB or HSV) has. Sadly it is very difficult to distinguish
between the skin color of the victims and the wooden RoboCup Rescue
arena. The influence of sunlight and artificial light sources makes it even
harder. Another problem of color-based skin detectors for victim detection
is that the skin can be covered in a layer of ash or dust.

Faces are one of the most important features during victim detection. Over
the years many different algorithms were invented to detect them. [RBK98]
uses neural networks. This thesis uses the detector described in [VJ01] and
[LM02] (see 4.2.2). [ASG07] is an improved version of the algorithm.

A new approach for the victim detection is presented in [TPPB08]. It is based
on hyperspectral imaging in the near infrared spectral domain. The detector
can distinguish between different materials from afar, when the spectra
are analyzed. The paper supports the detection of skin, meat, polyester,
plastics, wood and carton. It can even recognize them under a thin layer of
ash. Another big advantage of this detector is that it can detect undercooled
bodies, which is impossible with thermal imaging.

7



2 Related Work

[LLS08] allows to detect more complex object categories like persons, ve-
hicles and animals. Training data is used to find local features (e.g heads,
arms and wheels) around interest points and to save their appearance from
different directions. The spatial occurrence distribution of each feature is
learned from the positions of the feature instances relative to the object
center. The algorithm then searches for the features in the input images and
each detected feature uses its spatial occurrence distribution to vote for the
object’s position. An object is detected, if enough features vote for the same
location. [JA09] uses the same algorithm to detect persons with a thermal
camera.

The paper [DT05] uses Histograms of Oriented Gradient (HOG) to detect
persons in color images. HOGs are a good way to describe silhouette
contours of objects The algorithm uses a large database of images to learn
the HOG of a standing or walking person and compares the new algorithm
to existing algorithms trained with the same database. [SA11] uses HOGs
to detect persons in the depth image of the Kinect.

The author of [Bur04] gives an overview of the currently available sensors.
He compares them based on size, cost, simplicity and robustness. The author
also implements feature detectors for a camera, a microphone, a pyroelectric
sensor and a thermal camera. Finally he shows that different sensors behave
differently under different environmental conditions.

2.2 Sensor Fusion

[KK07] presents a new way to combine the output of simple feature detec-
tors, which produce a large number of false-positives, to detect victims. A
genetic algorithm learns relevant neighborhood relations in the 2d image
space between features to distinguish between victims and other objects.
This knowledge is then used to identify victims by using Markov Random
Fields during runtime. The main difference to the victim detection system
presented in this thesis is that it only uses the current sensor output. The
proposed victim detection system tracks features over time to increase the
accuracy of the system.

8



2.3 Tracking

In [MSK+
11] the authors combine the output of different sensors over time

to improve the detection rate of victims. The paper uses uses HOGs to detect
people and hazmat signs in camera images. It also uses a thermal camera
to detect areas within the human body temperature range. An extended
Kalman filter is used to update the position and probability of each victim.

The paper [Bur04] uses a fusion method with confidence values. Each feature
has a probability and each sensor has a confidence value. The confidence
values can change dependent on the environmental condition.

Another approach is presented in [HB03]. The main difference to the above
sensor fusion approaches is that it fuses the sensor data before the feature
detection step. The proposed method fuses color and infrared videos to
detect better contours of humans than one sensor alone is able to.

In the paper [FHL06] multiple techniques to fuse the detected objects from
multiple mobile robots are compared. The first technique is a weighted
arithmetic mean. The weight is influenced by the distance between the robot
and the object, the confidence of the robot’s localization and the confidence
of the detection. The second technique is a weight grid. Each detected object
is rendered as a 2-dimensional Gaussian distribution into the grid. The third
technique is a Kalman filter. Finally the paper combines the weight grid
technique with the Kalman filter.

2.3 Tracking

The paper [Rei79] presented an algorithm to track multiple targets. It can
handle the initiating of new targets, false or missing measurements and
even crossing tracks. The algorithm uses multiple competing hypotheses to
assign measurements to tracks and create new tracks. For each measurement
it creates a hypothesis that it is a false measurement, that it belongs to an
existing track and that it creates a new track. The best hypothesis determines
the number of tracks, the measurements assigned to them and the current
position and velocity of each track. The algorithm also presents techniques
to prune hypotheses with a low probability to speed up the tracking. The

9



2 Related Work

Kalman filter [Kal60] is used to predict the movement of tracks, because it
helps with missing measurements and even crossing tracks.

[ARS08] combines object detection and tracking to improve victim detection.
It uses a part-based object detector, which uses simple detectors to detect
parts of a person like hands, heads or feet. It then combines the parts to
estimate the position of objects. This makes the detector independent of
the pose of the person. The paper improves the detector by tracking the
parts with a kinematic limb model over multiple images. The kinematic
limb model contains information about the skeleton and the walking cycle
of a person.

The authors of [MBM12] present an advanced tracking algorithm for people
within groups. The algorithm performs detection-track association as a
maximization of a joint likelihood using motion, color appearance and
people detection confidence. Each track learns a classifier from the color
histogram of the assigned detections to evaluate the color appearance. A
Kalman Filter is used to predict the position and velocity on the ground
plane. The Mahalanobis distance between a track and a detection is then
used to calculate the motion likelihood.

[KUS03] compares the Global Nearest Neighbor and the Suboptimal Nearest
Neighbor algorithms for Multiple Target Tracking.

10



3 Problem Formulation

Person Heat Source

Face HeatMotion Heat

Motion Detector Heat DetectorFace Detector

Face 1 Heat 1 Heat 2

Person Heat Source

real Objects

real Features

estimated Objects

estimated Features

Camera Thermal CameraSensors

Feature Detectors

Motion 1

Figure 3.1: An Example of the Problem

In this chapter the victim detection task is formally described. It first de-
scribes the objects and their features. Then it describes the robot’s sensors
and feature detectors. Finally it gives a formal definition of the considered
problem. Figure 3.1 shows an example of the with 2 objects and 4 features

There exist n objects O = {o1, o2, ..., on} in the environment. An object oi
has a position ~posi = (xi, yi, zi)

T and an object type obj type(oi) ∈ OT =
{VICTIM, HEAT SOURCE, FACE, HOLE, ...}. Each object also has a set of
features depended on its object type. A feature f j has a position ~posj =

(xj, yj, zj)
T and a feature type f eature type( f j) ∈ FT = {MOTION, HEAT,

FACE, HOLE, CO2, SOUND, ...}.

The robot has a set of l sensors S = {s1, s2, ..., sl}. The state of the sensor is
determined in the 3d space by its 6d pose (x, y, z, φ, θ, ψ)T. (x, y, z)T denotes

11



3 Problem Formulation

the position and (φ, θ, ψ)T denotes the orientation. Each sensor provides the
data needed to detect a set of feature types. The output of each sensor si is
the measurement zi ∈ <Mi . For instance Mi = width · height for the cameras
used in this thesis. A feature detector Dtype

i : <Mi → { f j| f eature type( f j) =
type} detects a set of features of a feature type type in the measurement zi
of sensor si.

The problem is made harder by the inaccuracy of the feature detectors and
the sensors they use. The accuracy of a feature detector is defined by the
true positive rate and the true negative rate for observing a feature. The true
positive rate is the probability that a feature is detected, if there exists an
object. The true negative rate is the probability that no feature is detected, if
there exists no object.

The first part of the problem is to track the detected features over time. A
feature tracking function T : { f1, f2, ..., fg} → { f m1, f m2, ..., f mh} = f m de-
termines the feature tracks from the features detected by all the sensors until
now. This can be described as the probability distribution P

(
f m|z1:l,1:t, x1:t

)
.

It is the probability of a list of estimated feature tracks f m dependent on
the sensor output z1:l,1:t and the robot movement x1:t. Each estimated track
can be described as f mi = (posi, f eature typei)

T.

The second part of the problem is to use the feature tracks to estimate
the objects located in the environment. An object fusion function F :
{ f m1, f m2, ..., f mh} → {om1, om2, ..., omp} determines the objects from the
feature tracks. This can be described as the probability distribution P

(
om| f m

)
.

It is the probability of a list of estimated objects om dependent on a
list of tracked features f m. Each estimated object can be described as
omi = (posi, obj typei)

T.

The third part of the problem is to assign the correct object type to each
object. A classification function C : { f1, f2, ..., fk} → OT determines the
object’s type from the features belonging to the object.

12



4 Solution

This chapter presents a victim detection system that solves the problem
described in the previous chapter. An overview of the system can be seen
in Figure 4.1. The system consists of multiple processing steps that use the
output of the previous step as input.

Detector

Detector

Detector

Feature
Tracking

Object
Fusion

features feature tracks

Object
Classification

objects

objects
with
type

Sensor

Sensor

sensor
measurements

Figure 4.1: System Overview

The first processing step handles the feature detection. It uses a number
of feature detectors that process the measurements from multiple sensors
to detect features. Currently supported sensors are video cameras, RBG-D
cameras (see 4.1.1) and thermal cameras (see 4.1.2). Feature detectors for
microphones and CO2 sensors are currently under development. A detector
also has to estimate a position in the world coordinate system for each
feature. This strongly depends on the sensor type, as can be seen in section
4.1.1 and 4.1.2.
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The second processing step handles the tracking of features over time. This
step is necessary, because the features received from the last step can be
wrong or inaccurate. Detectors can find features, where no features exist, or
miss real features. A feature’s position can also change from frame to frame
drastically. It is affected by the accuracy of the sensor, the feature detector
and the transformation to the world coordinate system. Viewing direction
is another important factor for cameras. It is impossible to calculate the
true center of an object, because cameras can only estimate the width and
the height, but not the depth of an object. The feature tracking process
combines the features from multiple updates into feature tracks to improve
the accuracy. A multi-hypothesis algorithm is used to assign features to
existing feature tracks or create new ones. The feature track’s probability,
position and radius are updated, if it is assigned a feature. The feature
track’s probability can also decrease, if it is inside the sensor’s field of view
and is not assigned a feature. Finally feature tracks are deleted, if their
probability falls below a threshold. See 4.3 for more details.

The third processing step handles the fusion of feature tracks into objects.
A multi-hypothesis clustering algorithm is used to minimize the distance
between feature tracks belonging to the same object. Extra rules are needed
to handle the special properties of certain feature types. For example an
object can only have one face, but multiple QR codes. Certain feature types
like heat and motion can be shared between multiple objects. See 4.4 for
more details.

The final processing step handles the classification of the objects. Here each
object and its feature tracks are analyzed and assigned the best fitting object
type like victim or heat source. See 4.5 for more details.

It is important for the Rescue Robot League and other applications that a
human user can confirm a detected victim or mark it as wrongly classified.
User verification can also be used to mark objects, after the robot finished
inspecting them, to avoid reporting them again. See 4.6 for more details.

14



4.1 Sensors

4.1 Sensors

This section describes the sensors currently supported and used by the
victim detection system.

4.1.1 RGB-D Camera

(a) Device (b) Color Image (c) Depth Image

Figure 4.2: Kinect

The main sensor of the robot is the Microsoft Kinect1(see Figure 4.2(a)) and
most features are detected with it. It is an RGB-D camera, which means
that it captures RGB color images (see Figure 4.2(b)) and depth images
(see Figure 4.2(c)). The Kinect has an RGB camera, a depth sensor and a
multi-array microphone. The RBG camera captures color images with a
resolution from 640 × 480 pixels up to 1280 × 1024 pixels at a frame rate of
9 Hz to 30 Hz depending on the resolution. The depth sensor consists of
an infrared laser projector combined with an infrared camera. The depth
sensor captures images with a resolution of 640 × 480 pixels and has a
working range of approximately 0.7-6 m.

Transformation using a Depth Image

Converting the feature’s 2d position (x,y) in the color or depth image to a 3d
world position (X,Y,Z) using the Kinect’s depth image consists of multiple

1http://en.wikipedia.org/wiki/Kinect
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steps. First the value of the depth image at the 2d position is converted to
meters. Then the depth and 2d position are used to calculate the 3d position
in the camera coordinate system. Finally the local 3d position is transformed
into the world coordinate system. See the Equations 4.1, 4.2 and 4.3 for more
detail. This method only works correctly inside the working range of the
Kinect’s depth sensor. A second method for features farther away or for
cameras without a depth image can be seen in subsection 4.1.2.

depth =
depth image(x, y)

1000.0
(4.1)

~positioncamera = depth ·

 (x− centerx)/ f ocal length
(y− centery)/ f ocal length

1.0

 (4.2)

~positionworld = trans f ormcamera to world · ~positioncamera (4.3)

4.1.2 Thermal Camera

(a) Device (b) The Thermal Image is
a greyscale image for fast
computation.

(c) The Visible Image is a
color image for humans.

Figure 4.3: thermoIMAGER TIM 160

Another important sensor of the robot is a Micro-Epsilon thermoIMAGER
TIM 1602(see Figure 4.3(a)), which is a compact high speed thermal camera

16



4.1 Sensors

used to detect heat features. The thermal camera captures thermal images
(see Figure 4.3(b)) with a resolution of 160 × 120 pixels at a frame rate of
120 Hz. The thermal image is a 16-bit grayscale image, which is easy to
process by image processing techniques. The Equations 4.4 and 4.5 allow the
simple conversion between temperatures in degree Celsius and the thermal
image. The thermal image is less useful for human supervisors, because the
useful temperature range of 0 ◦C to 100 ◦C looks identically to the human
eye. The device driver publishes a second image (see Figure 4.3(c)) to solve
this problem. This image concentrates on a much smaller temperature range
and maps certain temperatures to certain colors. Blue areas are cold and
yellow or white areas are hot.

value = temperature · 10.0 + 1000.0 (4.4)

temperature =
value− 1000.0

10.0
(4.5)

Transformation using Ray Casting

Converting the feature’s 2d position (x,y) in an image to a 3d world position
(X,Y,Z) without the Kinect’s depth image (see 4.1.1) is much more complex
and inaccurate. This system uses ray casting in combination with an occu-
pancy map (see Figure 4.4(a)) of the area surrounding the robot. Each cell
in the occupancy map represents the probability of occupancy. Low values
mean an obstacle-free area, high values mean an obstacle like a wall and
-1 is an unexplored area. The occupancy map is used and created by the
robot’s mapping system.

The first step is to calculate a ray in the camera coordinate system from the
2d position and transform it into the world coordinate system. See Equations
4.6 and 4.7. Then the start and direction of the ray are projected onto the
occupancy map. The next step is to perform ray casting. The Bresenham’s
line algorithm [Bre65] is used to process all cells the ray travels through. The

2http://www.micro-epsilon.com/temperature-sensors/thermoIMAGER/

thermoIMAGER_160
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(a) Occupancy Map: Black pixels are ob-
stacles, light grey pixels are free areas and
dark grey pixels are unexplored areas.

Ceiling

Floor

Obstacle

(b) Rays can intersect with obstacles, the
floor plane or the ceiling plane.

Figure 4.4: Ray Casting Overview

iteration stops, if the ray hits an obstacle. Additional tests are performed
to check if the ray hits the user-defined height of the floor or the ceiling.
See Figure 4.4(b). These height tests are needed to produce correct results.
Without the floor plane objects lying on the floor are projected onto the next
obstacle behind them. Without the ceiling plane objects above it and behind
an obstacle are projected onto the the obstacles. After a hit the distance
between the start point of the ray and the intersection is calculated. The
distance is used to calculate the wanted 3d position. See Equation 4.8. The
ray casting can fail, if it hits an unexplored cell or the border of the map.
The algorithm simply does not know if the ray can travel through that cell
or not.

~dircamera =

 (x− centerx)/ f ocal length
(y− centery)/ f ocal length

1.0

 (4.6)

~dirworld = trans f ormcamera to world · ~dircamera (4.7)

~positionworld = ~startworld + ~dirworld · distance (4.8)
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Ceiling

Floor

Obstacle 
with Holes

Objects

(a) The 2d Occupancy Map can not rep-
resent obstacles with holes. Rays hit the
obstacles instead of the objects visible
through holes.

Ceiling

Floor

Obstacle

Moving
Object

(b) The 2d Occupancy Map does not rep-
resent moving objects. Rays hit the obsta-
cles behind moving objects.

Figure 4.5: Ray Casting Problems

This algorithm for calculating the 3d position of a feature has several
disadvantages. The biggest disadvantage is that the occupancy map is a 2d
approximation of the 3d world. It does not contain information about the
height of obstacles. In the real world it is possible to see an object behind
an obstacle, if the obstacle is lower than the assumed ceiling or it has one
or more holes in it. In contrast the algorithm stops, when the ray hits the
first obstacle and returns a false position. See Figure 4.5(a). The second
problem is that moving objects are not represented by the occupancy map.
This means that the ray can’t hit the moving object and continues until it
hits the closest obstacle behind the object. See Figure 4.5(b).

4.2 Feature Detection

This section describes the feature detectors currently supported and used
by the victim detection system.
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Figure 4.6: HSV Color Space[Sha10]

4.2.1 Color Detection

The color detector is the simplest feature detector for the Kinect. It detects
areas of a color similar to the target color in the color image. The most
difficult part of the algorithm is to choose the correct color space. This detec-
tor uses the Hue, Saturation and Value (HSV)3color space (see Figure 4.6).
The Hue defines the color. Saturation and Value define how the brightness.
The target color is mostly defined by a range of hues. The Saturation and
Value can vary greatly to allow for the influence of light sources. This is one
advantage HSV has over RGB. Another advantage is that it is enough to
place a threshold on one axis instead of three to distinguish between two
colors.

The detector converts the Kinect’s color image from the RGB color space
(see Figure 4.7(a)) to the HSV color space (see Figure 4.7(b)). It then creates
a mask, where only pixel that are close enough to the wanted color are
true. Morphological operators [Ser83] are used to improve the result (see
Figure 4.7(c)). The opening operator removes areas too small and the closing
operator merges nearby areas. Then a segmentation algorithm is used to find
all remaining areas in the mask (see Figure 4.7(d)). Finally the 3d positions
of the areas are calculated and they are published as features.

The color detector can be used to detect skin, but it has problems while

3http://en.wikipedia.org/wiki/HSL_and_HSV
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4.2 Feature Detection

(a) The RGB color image from the Kinect. (b) The Hue channel of the color image
transformed into the HSV color space.

(c) All pixels in the wanted hue range are
marked as belonging to a color feature
(white). Then the morphological operators
are used to remove areas too small.

(d) The color feature is marked with a
magenta ellipse.

Figure 4.7: Color Detection

21



4 Solution

used in the Robcup Rescue arena. The color values of the human skin, the
baby dolls and the wooden arena are just too similar. See Figure 4.8.

(a) Skin (b) Baby Doll (c) Wood

Figure 4.8: Closeup comparison of skin, a baby doll and the wooden arena shows that the
color values are very similar dependent on the lighting.

4.2.2 Face Detection

The face detector uses OpenCV’s CascadeClassifier to detect faces in the
Kinect’s color image. The CascadeClassifier is based on [VJ01] and [LM02]. It
is a cascade classifier working with haar-like features for object detection.

Haar-like features are rectangles that are split into multiple rectangles,
which can be white or black. The difference between the sums of the pixel
values inside the white and dark rectangles is calculated and compared to a
threshold. If the difference is above the threshold, the feature exists at the
current location in the image. Haar-like features can be used to describe
many simple features. Features with two rectangles can detect the border
between light and dark areas. Features with three rectangles can detect light
or dark lines. An advantage of haar-like features is that summed area tables
make them very fast to compute.

The idea behind the cascade classifier is to collect a large number of examples
of the wanted object type and find haar-like features that are shared by
most examples. For example the eyes are darker than the area above and
blow them in most faces. Another example would be that the nose is lighter
than the area to the left and right of it. Each haar-like feature is only a
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weak classifier, but by combining many into a cascade of classifiers it is
possible to reliable detect the wanted object. This cascade classifier can
be automatically learned form a large collection of positive and negative
examples. The OpenCV tutorial4contains a learned cascade classifier that is
good enough at detecting the faces of persons and baby dolls, but sometimes
it wrongly detects faces in the wood grain. See Figure 4.9.

(a) Person (b) Baby Doll (c) A pattern in the wood
grain that is repeatedly rec-
ognized as face.

Figure 4.9: Face Detection with detected faces marked with green circles.

In the detection phase, a search window is moved across the input image
and it checks at every location if the classifier detects a face. This is repeated
for different sizes of the search window to find faces at different scales.
Finally the face’s height in meter is calculated with the help of the Kinect’s
depth sensor. The height makes it possible to discard faces that are too large
or too small to belong to a person or a baby doll. It is also an easy way to
distinguish between persons and baby dolls.

4.2.3 Hole Detection

The hole detection algorithm searches the depth image (see Figure 4.10(a))
for holes. First it calculates the gradient (see Figure 4.10(b)) of the depth
image using the Sobel operator. A threshold operator is applied to the
gradient image to create a binary image (see Figure 4.10(c)). Pixels with a

4http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/

cascade_classifier.html
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(a) Depth (b) Gradient

(c) Threshold (d) Detected holes marked with blue el-
lipses.

Figure 4.10: Hole Detection
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4.2 Feature Detection

strong gradient are set to one and other pixels are set to zero. The next step
is to search for areas with a low gradient that are completely surrounded by
pixels with a high gradient. These areas can be holes or extrusions. Then the
depth of an area is compared to the depth of the pixels surrounding it. A real
hole has higher depth values, because it is farther away than the area around
it. Finally the size of the hole is compared to a user defined minimum and
maximum and holes too small or big are discarded. The remaining holes are
marked as features in the color image (see Figure 4.10(d)) and published.

4.2.4 Motion Detection

(a) Pixels, where the difference between
the old and new depth image is greater
than a threshold, are marked as belonging
to a motion feature (white).

(b) Motion features are visualized as a
yellow ellipse.

Figure 4.11: Motion Detection

The motion detection algorithm compares the current depth image with a
previous depth image to detect motion. It calculates the absolute difference
between the old and new depth image and applies a threshold operator to
create a mask. Pixels that are one belong to a motion feature and the rest of
the pixels are zero. The rest of the detector works like the color detector.

The motion detection algorithm uses depth images instead of color images,
because they are much less influenced by changing lighting. A motion
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detector using color images would wrongly detect moving shadows or
changing brightness as motion. The Rescue Robot League uses flashing
lights to trick color-based motion sensors. Displays showing a video are
another error source. The main drawback of using depth images is the small
maximum distance of the depth sensor. A solution would be to use the color
image for pixels with invalid depth values.

The current implementation has one big drawback. It separates the moving
objects from the static background. The problem is that the robot and the
Kinect mounted on it move most of the time while searching for victims.
This causes large parts of the background to be classified as belonging to
a motion feature. The current solution is to only use the motion detection,
if the Kinect is not moving or to inspect suspected victims from closeup.
Another solution would be to use a more complex and slower motion
detection algorithm that works better with a moving camera like [SG99].

4.2.5 QR Code Detection

Image
Scanner

Linear
Scanner

image

Decoder

intensity sample
stream

bar width
stream

text

Figure 4.12: Zbar Pipe Overview

The QR code detector uses the Zbar library. 5 It is an open source bar code
reader that is inspired by laser scanners. A laser scanner moves a laser

5 http://zbar.sourceforge.net
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Standard Test Methods For Response Robots
ASTM International Standards Committee on Homeland Security Applications; 

Operational Equipment; Robots (E54.08.01)

100% avg human vision 50% avg human vision

20% avg human vision

10% avg human vision 

5% average human vision2% average human vision

Y_01_chair
This bar should be 10 cm long. 

This bar should be 4 in long. 
The QR Codes on this page are calibrated in size to percentage of average human 6/6 
(20/20) vision, representing a resolution of 1 arc minute (0.12 mm at 40 cm (16 in)). 

Autonomous Vision Test Chart for use at 40 cm (16 in)

Figure 4.13: QR Code Example Figure 4.14: Detected QR Codes marked with
a cyan circle.

beam back and forth across the bar code and a photodiode measures the
intensity of the light reflected back from the bar code. In a similar manner
Zbar’s image scanner produces a linear stream of intensity samples from a
grayscale image. The linear scanner produces a bar width stream from the
output of the image scanner by using basic 1D signal processing. Finally
the decoder searches the stream of bar widths for recognizable patterns and
converts them into text. Figure 4.12 shows the pipeline of Zbar..

Zbar supports different symbologies, which are the mappings between
messages and barcodes. The decoded text is stored in the feature and is
later processed. Figures 4.13 and 4.14 show a typical example of QR codes
inside the Rescue Arena. It is important to note that some of the QR codes
are very small and need a very good camera to detect and decode.

4.2.6 Heat Detection

The heat detection algorithm searches the thermal image (see Figure 4.15(a))
for areas with temperatures in a specified temperature range. The heat
detector currently works with the temperature range of 25°to 50°Celsius.
The values for the minimum and maximum temperature are converted from
degree Celsius to the same scale as the thermal image for faster comparison.
In the next step a mask is calculated. Pixels inside the temperature range
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are set to one and the other pixels are set to zero. Morphological operators
are used similar to the color detector (see 4.2.1) to remove small areas and
merge nearby areas. The result can be seen in Figure 4.15(b). Finally a
segmentation algorithm is used to find all remaining areas in the mask.
Those areas are marked as heat features in the Visible image (see Figure
4.15(c)) of the thermal camera and published.

(a) Thermal Image (b) All pixels inside the
wanted temperature range
are marked as belonging to
a heat feature (white).

(c) Heat features are
marked with a green ellipse
in the colored thermal
image.

Figure 4.15: Heat Detection

4.3 Feature Tracking

The next step is to track the features over time. Each feature type has its
own feature tracker. See Figure 4.16.

The most important task of the feature tracker is to assign features to feature
tracks. A feature track is a collection of features that the tracker believes
to be the same feature measured at different times. Each feature can be
assigned to an existing feature track or it can create a new one. There are
number of features · (number of feature tracks + 1) possibilities and the
tracker creates a hypothesis for each one. Each hypothesis has a score that
allows the tracker to compare them with each other. Equation 4.9 shows
how to calculate the score for assigning a feature to a track. In this case a
lower score is better, because the goal is to minimize the distance between
the features and their assigned feature tracks. The score of a new track has a
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Feature Tracking

Face Tracker

Heat Tracker

QR Code Tracker

Face
Features

Heat
Features

QR Code
Features

Face
Feature
Tracks

Heat
Feature
Tracks

QR Code
Feature
Tracks

Figure 4.16: Feature Tracking Overview

default value of 1.5, which was determined by experiments with the victim
simulator (see Section 5.6). The user can customize the value for each feature
type. QR Codes and similar feature types are handled a little different. As
mentioned above (see Section 4.2.5) they store additional data as a text. Only
features with the same text as a feature track can be assigned to it.

score =
d( ~postrack, ~pos f eature)

radiustrack + radius f eature
(4.9)

The next step is to find the best hypothesis. Other hypotheses, which share
the feature or the feature track with the best hypothesis, are discarded.
Depended on the hypothesis the feature is assigned to an existing feature
track or initializes a new feature track. See Section 4.3.1 on how to update the
position and radius of the track. Finding and processing the best hypothesis
is repeated until there are no hypotheses left.

After that the feature tracks, which are visible to the current sensor, update
their probability. This requires extra data form the sensor and a visibility
test, which depends on the sensor type. The simple visibility test for cameras
checks, if the feature tracks are inside the view frustum of the camera. A
more complex visibility test uses ray casting similar to 4.1.2. This prevents
the deletion of feature tracks hidden behind a wall. Other sensors like
microphones use a sphere instead of a view frustum. Visible feature tracks,
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Algorithm 1 Feature Tracking
Input: set of detected features F
Input: set of existing feature tracks T
Output: set of updated feature tracks T

1: for all feature f ∈ F do
2: for all feature track t ∈ T do
3: create a hypothesis ht, f that f is t
4: end for
5: create a hypothesis ht+1, f that f is a new track
6: end for
7: for all feature f ∈ F do
8: find best hypothesis h
9: mark other hypotheses with the same feature as invalid

10: mark other hypotheses with the same track as invalid
11: if h is a new track hypothesis then
12: create a new feature track from h
13: else
14: update an existing feature track with h
15: end if
16: end for
17: for all feature track t ∈ T do
18: if t is visible to the sensor’s visibility test then
19: update probability of t
20: end if
21: end for
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which were assigned a feature, increase their probability. Visible feature
tracks, which were assigned no feature, decrease their probability. See 4.3.2
on how to increase or decrease the probability. Finally feature tracks with
a low probability are deleted. See Algorithm 1 for the pseudo code of the
feature tracker and Figure 4.17 shows a detailed example.

4.3.1 Position and Radius of a Feature Track

The victim detection system supports multiple algorithms for updating the
position and radius of feature tracks. There exists a trade-off between speed,
memory and accuracy. Another reason for multiple algorithms is that some
specialize in static objects and others in moving objects.

Static Data

The simplest algorithm initializes the position and radius at the creation of
the feature track and never changes them. This algorithm is mostly used for
user verification (see 4.6).

Arithmetic Mean of the Position and Radius

The standard algorithm sums up the positions and radii of all the assigned
features and returns the average of both. See Equations 4.10 and 4.11. The
algorithm is very fast, but it needs to check for arithmetic overflows. To save
memory each track stores the sum of all past positions in one variable. If
the tracker runs long enough the sum can become too large for the variable
and cause an arithmetic overflows without the check.

~posaverage =

N
∑

i=1
~posi

N
(4.10)
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T1

T2

T3

T4

F4
F2

F3

F1

T5

(a) The example contains 5 existing fea-
ture tracks (T1, T2, T3, T4 and T5) and 4

features (F1, F2, F3 and F4).

F1 F2 F3 F4

T1 h1,1 h1,2 h1,3 h1,4
T2 h2,1 h2,2 h2,3 h2,4
T3 h3,1 h3,2 h3,3 h3,4
T4 h4,1 h4,2 h4,3 h4,4
T5 h5,1 h5,2 h5,3 h5,4

New h6,1 h6,2 h6,3 h6,4
(b) All possible hypotheses (h1,1 to h6,4)
are generated for the tracking. The best
hypothesis h1,4 (green) is found and the
feature F4 is assigned to the track T1.
Incompatible hypotheses are marked as
invalid (gray).

F1 F2 F3 F4

T1 h1,1 h1,2 h1,3 h1,4
T2 h2,1 h2,2 h2,3 h2,4
T3 h3,1 h3,2 h3,3 h3,4
T4 h4,1 h4,2 h4,3 h4,4
T5 h5,1 h5,2 h5,3 h5,4

New h6,1 h6,2 h6,3 h6,4
(c) The process is repeated for the other
best hypotheses (h2,2, h3,1 and h6,3). F2 is
assigned to T2 and F1 is assigned to T3.
F3 creates a new track T6, because it is
too far away from T4 and T5.

T6

T1

T2

T3

T4T5

T1

T2
T3

(d) The positions of the feature tracks T1,
T2 and T3 are updated. Finally a new fea-
ture track T6 is created.

Figure 4.17: Feature Tracking Example
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radiusaverage =

N
∑

i=1
radiusi

N
(4.11)

Kalman Filter for static Objects

The final algorithm uses a Kalman filter [Kal60] to get closer to the real
position with each measurement. It is much slower, needs more memory
and this implementation assumes that the object is completely static. The
matrices P0, A and H are initialized to the identity matrix and the covariance
Qk of the process noise is a zero matrix. The state vector ~x0 is initialized
with the position and radius of the first feature. See Equation 4.12.

~x0 =


x
y
z

radius

 (4.12)

The Prediction Step predicts the prior state estimate ~x−k and the prior
estimate covariance P−k based on the state transition model A. Here the filter
assumes that the objects are static and predicts that nothing changes.

~x−k = A~xk−1 = I~xk−1 = ~xk−1 (4.13)

P−k = APk−1AT + Q = Pk−1 (4.14)

The Correction Step uses the measurement ~zk to correct the the prior state
estimate ~x−k from the Prediction Step. The Klaman Gain Kk decreases with
each update, which means that the influence of each measurement also
decreases with each update.

Kk = P−k HT(HP−k HT + R)−1 = P−k (P−k + R)−1 (4.15)
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~xk = ~x−k + Kk(~zk − H~x−k ) = ~x−k + Kk(~zk −~x−k ) (4.16)

Pk = (I − KkH)P−k = (I − Kk)P−k (4.17)

4.3.2 Probability of a Feature Track

Calculating the probability of the feature tracks is one of the most important
tasks of the whole victim detection system. The system supports multiple
algorithms and an easy way to switch between them at system start. This
makes testing and comparing the different algorithms much easier.

Static Probability

The simplest algorithm initializes the probability at the creation of the
feature track and never changes it. It is mostly used for user verification
(see 4.6).

Detection Rate

The next algorithm calculates an approximation of the probability that the
feature is detected, if the sensor should be able to see it. See Equation 4.18.
The term N f eatures is the number of times a feature was assigned to the
feature track. The term Nvisible is the number of times the feature track was
visible to the sensor determined by the visibility test. The quality of the
approximation depends on the accuracy of the visibility test used by the
feature tracker. The downside of this algorithm is that the magnitude of
Nvisible determines how fast the probability changes. If the object has been
seen for a long time and Nvisible is very high, then it may take too long to
adapt to changes.

P =
N f eatures

Nvisible
(4.18)
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Sensor Probability

The standard algorithm (see Equation 4.19) uses the update formula from
[HWB+

13]. The term P( f |zt) (see Equation 4.20) is the probability that a
feature track exists given the current measurement. The term PSeen is the
probability that a feature track exists, if a feature was detected. The term
PUnseen is the probability that a feature track exists, if no feature was detected
in the current update. Both values depend on the sensor and feature detector.
The term P( f |z1:t−1) is the probability that this feature track exists from the
previous update.

P( f |z1:t) =

[
1 +

1− P( f |zt)

P( f |zt)
· 1− P( f |z1:t−1)

P( f |z1:t−1)

]−1

(4.19)

P( f |zt) =

{
PSeen if feature is detected
PUnseen if feature is not detected

(4.20)

The probability of the feature track starts at 0.5 and increases if a feature is
assigned and decreases if no feature is assigned to a visible feature track.
The rate of change is fastest around 0.5 and slows down the closer the
probability gets to 0 or 1. An advantage over the previous algorithm is that
the rate of change does not slow down with the number of times a feature
was detected.

4.4 Object Fusion

Now it is time to fuse the feature tracks into objects. The victim detection
systems creates hypotheses for all possible combinations of the existing
feature tracks. Each hypothesis has a score that is used to compare them.
The first feature tracker creates a hypothesis for each of its feature tracks that
states that the feature track creates a new object. The next feature tracker
creates 1 hypothesis for each of its feature tracks and each hypothesis
of the previous feature tracker. These hypotheses state that the previous
hypothesis is true and that the new hypothesis’s feature track is part of the
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object. See Equation 4.21 on how to calculate the score. The feature tracker
also creates 1 hypothesis for each hypothesis of the previous feature tracker
that states that the object contains no feature track of the current feature
type. See Equation 4.22. Finally the feature tracker creates a hypothesis for
each of its feature tracks that states that the feature track creates a new
object. See Equation 4.23. Nt is the number of previous trackers. The term
penaltyno feature · Nt is needed so that the order of feature trackers does not
influence the final score. These steps are repeated for the remaining feature
trackers.

score f eature = scoreold + d( ~posold, ~pos f eature) (4.21)

scoreno feature = scoreold + penaltyno feature (4.22)

scorenew object = penaltynew object + penaltyno feature · Nt (4.23)

The next task is to find the best hypothesis and create an object from it.
The algorithm loops over all the current hypotheses to find the hypothesis
with the lowest score. Remember that a lower score means that the feature
tracks are closer together. Then an object is created from the feature tracks
contained in the hypothesis. See 4.4.1 on how to calculate the position and
the radius of the object and see 4.4.2 on how to calculate the probability of
the object. Finally all hypotheses, which share one or more feature tracks
with the best hypothesis, are marked as invalid. This task is repeated until
no valid hypotheses remain.

The object fusion algorithm (see 2) above is only the basic version. Some
feature or object types need special rules to work properly. For example the
heat and motion detectors often detect only one feature, if a group of objects
is close enough together. The algorithm must allow multiple objects to share
these feature tracks to produce the correct classifications later. The user
defines, which feature types can be shared. This makes the validation of
the hypotheses more difficult. Sharing a feature track, which can be shared,
with the best hypothesis does not make a hypothesis invalid any longer. On
the other hand each hypothesis needs at least one feature track, which is
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Heat 2
Heat 1

Face 1

Hole 1

(a) The feature tracks of 2 objects. One of
the objects is a victim and the other ob-
ject is a heated hole, which could contain
another victim.

Heat Sources

1 2

Faces

1 X 1 X 1
Holes

1 X 1 X 1 X 1 X 1 X 1

(b) All the created hypotheses, which are
all possible combinations of feature tracks.
The color shows the feature type. The
number shows the id of the feature track.
A hypothesis with an X means that the ob-
ject candidate doesn’t have a feature track
of this type.

Heat Sources

1 2

Faces

1 X 1 X 1
Holes

1 X 1 X 1 X 1 X 1 X 1

Object 1

(c) The best hypothesis, which is shown
by the green arrows, is selected and
turned into an object. Invalid hypotheses,
which share one or more feature tracks
with the best hypothesis, are marked as
invalid (grey).

Heat Sources

1 2

Faces

1 X 1 X 1
Holes

1 X 1 X 1 X 1 X 1 X 1

Object 1 Object 2

(d) The process is repeated for the 2.object.
Afterwards the algorithm is finished, be-
cause all hypotheses are used or invalid.

Figure 4.18: Object Fusion Example
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Algorithm 2 Object Fusion
Input: set of feature tracks F
Input: set of feature types T
Output: set of objects O

1: create empty set of hypotheses H
2: for all feature type t ∈ T do
3: for all hypothesis h ∈ H do
4: create a hypothesis that no track of type t fits h (use Equation 4.23

for the score)
5: for all feature track f ∈ F of type t do
6: create a hypothesis that t fits h (use Equation 4.21 for the score)
7: end for
8: end for
9: for all feature track f ∈ F of type t do

10: create a hypothesis that f is a new object (use Equation 4.23 for the
score)

11: end for
12: end for
13: repeat
14: find best hypothesis h ∈ H
15: remove hypotheses incompatible with h
16: create an object o from h
17: add object o to O
18: until no hypothesis is left
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1 2

2 3 3 X X

3 X X X X X X

X

3

Figure 4.19: Hypotheses of 3 QR Codes per Object

not shared with an existing object, to be valid. This rule is needed to avoid
the creation of too many objects.

Another special rule for certain feature types is that more than one feature
track of the same type can belong to the same object. The RoboCup Rescue
arena contains sheets with multiple QR codes (see Figure 4.13). Each QR
code must be detected as a feature track, but the whole sheet must be the
object. The algorithm creates hypotheses for all possible combinations of N
feature tracks and M feature tracks per objects. Hypotheses that have the
same feature tracks in a different sequence are avoided. See Figure 4.19.

The final special rule is that some feature types can not be mixed with other
feature types inside an object. Currently QR codes will always have their
own objects. This makes the handling of QR codes in the Rescue Robot
League much simpler. An object can also only contain one user verification
feature.

4.4.1 Position and Radius of an Object

The victim detection system supports multiple algorithms for calculating
the position and the radius of an object from its feature tracks.
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Circumscribed Sphere

The first algorithm creates a circumscribed sphere around all the feature
tracks of the object. The object’s position is the mean of all feature tracks.
The object’s radius is so large that all feature tracks are completely inside
the sphere. This algorithm has problems with feature tracks that can be very
large like heat or sound. It is even worse with large feature tracks that are
shared between multiple objects. The large feature track’s position is often
far away from the object’s true position.

Weighted Arithmetic Mean

The second algorithm calculates a weighted arithmetic mean of the position
and the radius of the feature tracks. The weight is user defined for each
feature type. See Equations 4.24 and 4.25. The user can customize the
weights for each environment or application. One possibility is to set the
weights to reflect the accuracy of the feature detectors. Small and accurate
feature types like faces and holes would have a higher weight than others.
Another possibility is to set each weight to the possibility of the feature
track.

~pos =

N
∑

i=1
weighti · ~posi

N
∑

i=1
weighti

(4.24)

radius =

N
∑

i=1
weighti · radiusi

N
∑

i=1
weighti

(4.25)
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Inverse Radius

The third algorithm also uses a weighted arithmetic mean to calculate the
position and the radius of the object. It uses the inverse radius as the weight.
See Equations 4.24, 4.25 and 4.26. Small feature tracks have a larger influence
than large ones. This avoids the problem of the first algorithm.

weighti =
1

radiusi
(4.26)

4.4.2 Probability of an Object

Calculating an object’s probability from its feature tracks’ probabilities is
another task that strongly affects the behavior of the whole victim detection
system. Once again the system supports multiple algorithms to choose
from.

Weighted Arithmetic Mean

The first algorithm calculates the arithmetic mean of the feature tracks’
probabilities. This has the disadvantage that adding new feature tracks can
lower the object’s probability instead of increasing it.

Maximum

The second algorithm loops over all the object’s feature tracks and finds
the maximum probability. Adding a feature track will never lower the
probability, it has the disadvantage that only the feature track with the
highest probability is important and all others are ignored. Having more
feature tracks should increase the object’s probability.
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Combination of all Probabilities

The third algorithm combines the probabilities of the feature tracks so that
having more of them increases the object’s probability. It starts with P0 = 0
and rest0 = 1 and uses the Equations 4.27 and 4.28 to update the probability
for each feature track. The algorithm solves the problems of the previous
algorithms.

Pi = Pi-1 + resti-1 ∗ P( f eaturei) (4.27)

resti = resti-1 ∗ (1− P( f eaturei)) (4.28)

4.5 Object Classification

The final task of the victim detection system is to assign each object an
object type. For each object the algorithm iterates over the object types and
calculates their scores. See Equations 4.29 and 4.30. The term probabilityi is
the probability (see 4.3.2) of the ith feature track of the object. It only uses
the feature track with the highest probability, if there are multiple feature
tracks of the same type. The term weighti is the feature type’s weight of the
ith feature track. It is defined by the user for each object type. Positive values
mean that having a feature track of this type increases the probability of the
object being of this object type. Negative values mean that having a feature
track of this type decreases the probability of the object being of this object
type. The object type with the highest score is assigned to the object. It is
important to note that the object types and their weights are user-defined
for each application. An example for search and rescue operations can be
seen in Table 4.1.

score =

N
∑

i=1
weighti · probabilityi

weighttotal
(4.29)
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Feature Types
Object Types Face Heat Hole Motion QR Verified V. False V.
Face 1.0 -2.0 -2.0 0.0 0.0 -5.0 -5.0
Heat Source -2.0 1.0 -2.0 0.0 0.0 -5.0 -5.0
Heated Hole -2.0 1.0 1.0 0.0 0.0 -5.0 -5.0
Hole -2.0 -2.0 1.0 0.0 0.0 -5.0 -5.0
Victim 1.0 1.0 0.0 1.0 0.0 -5.0 -5.0
QR Code 0.0 0.0 0.0 0.0 1.0 -5.0 -5.0
Verified Victim 0.0 0.0 0.0 0.0 0.0 1.0 -5.0
False Victim 0.0 0.0 0.0 0.0 0.0 -5.0 1.0

Table 4.1: Weights of each Object Type

weighttotal =
N

∑
i=1

{
weighti weighti > 0
0 weighti ≤ 0

(4.30)

4.6 User Verification

The user verification of victims is an important task of the victim detection
system. The user can confirm a detected victim or mark it as wrongly
classified by creating verification features of user-defined types. The current
system use Verified Victim and False Victim. They are managed by the
feature tracker similar to normal features, but there exist a few differences.
The first difference is that each verification feature creates a new feature track
and can not be assigned to an existing one. The probability, the position
and the radius of a verification feature are set by the user during the
initialization and never change. This means that user verification currently
only works for nonmoving objects. The probability of a verification feature
is 1, because a verification feature should only be created, if the user is
absolutely sure about it. During the object fusion the verification features
are treated like a normal features, except that each object can only have one
of it. Multiple verification features would conflict with each other during
object classification. The object classifier treats verification features like
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normal features and everything depends on the user-defined object types.
Currently the Verified Victim feature makes sure that the object is assigned
the Verified Victim object type. The False Victim feature makes sure that
the object is assigned the False Victim object type. The probability of 1 and
the positive or negative weights with a large magnitude ensure that the
verification features dominate the object classification. The user can delete
verification feature, if an error was made.
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This chapter describes the implementation of the framework presented in
the last chapter. The Victim Detection System is written in the programming
language C++ and uses the Robot Operating System1(ROS). ROS was first
presented in [QCG+

09]. It is a set of drivers, software libraries and tools that
make developing for robots easier and faster. The idea behind ROS is to split
large applications into multiple smaller nodes. Each node solves a specific
task and can be reused by other applications. The nodes communicate by
message passing. A node can publish a message on a topic or subscribe to
a topic and wait for published messages. Each topic only allows messages
of a certain message type. The message passing decouples the nodes from
each other and allows the programmer to replace a node with another one
that solves the same task. ROS even allows the nodes to run on different
computers and correctly sends the messages over the network. ROS uses
RViz2to visualize important 2d and 3d data. It can display maps, robot
models, laser scans, point clouds, images and much more. ROS nodes can
publish markers3to display basic 3d shapes inside RViz.

The Victim Detection System also uses the Open Source Computer Vision
Library4(OpenCV). The library has more than 2500 optimized algorithms
for computer vision and machine learning. It can load, convert and save
images, detect edges and objects, apply morphological operators and much
more.

1http://www.ros.org
2http://wiki.ros.org/rviz
3http://wiki.ros.org/rviz/DisplayTypes/Marker
4http://www.opencv.org
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Figure 5.1: Example of the GUI of Rviz

5.1 ROS Node raycasting map

The ROS node raycasting map provides 2 services5. Both of those services
involve casting rays through the OccupancyGrid6. The OccupancyGrid is
created and published by the ROS package gmapping7. Figure 5.2 shows
the occupancy map with drawn rays, start points (blue) and intersection
points (red). The node also uses markers to visualize the rays in RViz. The
markers are bright green arrows that point from the rays’ start points to the
intersection points. See Figure 5.3.

The first service is called raycasting and it returns the 3d position of the in-
tersection between the ray and the occupancy map. The service also returns
the distance between the start of the ray and the intersection point. Finally
it returns the type of intersection. The algorithm can detect if the ray hits an

5http://wiki.ros.org/roscpp/Overview/Services
6http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html
7http://wiki.ros.org/gmapping
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5.2 ROS Package image to world position

Figure 5.2: ROS node raycasting map: The
blue circle is the sensor. The red
circles are the positions where the
green rays hit an obstacles or the
floor.

Figure 5.3: Green rays in RViz

obstacle, the floor, the ceiling, an unexplored cell or the border of the map.
The service is mainly used by the class TransformationWithRaycasting of
the ROS package image to world position. See Section 4.1.2 and 5.2.

The second service is called is visible and it checks if an observer can see
a 3d position or if it is occluded by an obstacle. The service tries to cast a
ray from the observer to the target and returns true, if the ray reaches the
target without intersection. The service is mainly used by the ROS node
object tracking to determine the visibility of feature tracks. See Section 4.3
and 5.5.1.

5.2 ROS Package image to world position

The ROS package image to world position implements the algorithms de-
scribed in Section 4.1.1 and 4.1.2 to transform a 2d position (x,y) in an image
to a 3d world position (X,Y,Z). The class diagram can be seen in Figure
5.4.

The base class Transformation contains the code that is shared between
both subclasses. It uses a tf::TransformListener8to get the transformation from
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Transformation

TransformationWithDepth TransformationWithRaycasting

CameraMotionDetector
+isMoving(): bool

1

2

Figure 5.4: Class Diagram of tedusar image to world position

the camera coordinate system to the world coordinate system. The class
also contains the functions to calculate a 3d position from a 2d position and
a known depth in the camera coordinate system or the world coordinate
system.

The subclass TransformationWithDepth uses the depth image of the Kinect
to calculate the 3d position. See Section 4.1.1. The class uses the ROS
package image transport9to subscribe to the depth image. It also uses the
ROS package cv bridge10, which converts between ROS Image messages and
OpenCV images.

The subclass TransformationWithRaycasting uses raycastng to calculate
the 3d position. The class calculates the position and direction of the ray
from the 2d position and the transformation between the local and global
coordinate systems. It then uses the raycasting service of the ROS node
raycasting map. See Section 4.1.2 and 5.1.

The ROS nodes feature detection kinect and feature detection thermal
use the class CameraMotionDetector to disable the feature detectors, if
the camera moves too much. The class transforms the same local point to
the world coordinate system each update and calculates how much the

8http://wiki.ros.org/tf
9http://wiki.ros.org/image_transport

10http://wiki.ros.org/cv_bridge
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5.3 ROS Node feature detection kinect

Detector
+update()

FaceDetector
+update()

HoleDetector
+update()

MotionDetector
+update()

QrDetector
+update()

Camera

1

1..*

Transformation

1

1

Figure 5.5: Class Diagram of the ROS Node
feature detection kinect

Figure 5.6: Features detected with
the Kinect. The color of
the ellipse determines
the feature type.

point has moved since the last update. It then divides the distance by the
elapsed time to get the speed of the point. The function isMoving() returns
true, if the calculated speed is higher than the allowed maximum. For better
results the function continues to return true for a certain duration, even
after the camera has stopped moving.

5.3 ROS Node feature detection kinect

The ROS Node feature detection kinect implements the feature detection
algorithms for the Kinect from Section 4.1.1. The class diagram can be
seen in Figure 5.5. The Camera class subscribes to the camera info, color
image and depth image topics of the Kinect. It also reads the launch file to
determine, which feature detectors are started and what their parameters
are. The node has multiple classes for feature detection:

• ColorDetector (see Section 4.2.1)
• FaceDetector (see Section 4.2.2)
• HoleDetector (see Section 4.2.3)
• MotionDetector (see Section 4.2.4)
• QrDetector (see Section 4.2.5)
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name Name of the detected feature. Some
feature detectors can run multiple times
with different parameters to detect
different features.

type Name of the feature detector.
frame rate Number of times the feature detector runs

per second.
use scaling Use images at a lower resolution to speed

up the detection?
probability seen Sensor probabilities used to calculate the

probability of a feature track. See Section
4.3.2.probability unseen

Table 5.1: Parameters shared by all Feature Detectors

The Table 5.1 shows the parameters that are shared by all feature detec-
tors. The node uses the class TransformationWithDepth from the package
image to world position to calculate the 3d position of each feature.

5.4 ROS Node feature detection thermal

The ROS Node feature detection thermal is very simlar to the previous
node. It implements the feature detection algorithms for the thermal camera
from Section 4.1.2. The class diagram can be seen in Figure 5.7. The Ther-
malCamera class subscribes to the camera info, color image and thermal
image topics of the thermal camera. It also reads the launch file to deter-
mine, which feature detectors are started and what their parameters are. The
HeatDetector class (see Section 4.2.6) is used to detect areas inside a specific
temperature range. The node uses the class TransformationWithRaycasting
from the package image to world position to calculate the 3d position of
each feature.
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Detector
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TemperatureRangeDetector
+update()

ThermalCamera

TransformationWithRaycasting

1
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Figure 5.7: Class Diagram of the ROS Node
feature detection thermal

Figure 5.8: Features detected with the Ther-
mal Camera

5.5 ROS Node object tracking

The ROS Node object tracking implements the feature tracking, object fu-
sion and object classification algorithms from Section 4.3, Section 4.4 and
Section 4.5. It subscribes to the features published by the feature detection
nodes. Many important parameters to customize the behavior of the al-
gorithms can be set in the launch file. At the end it publishes the created
feature tracks and objects.

5.5.1 Feature Tracking

This subsection describes the implementation of the feature tracking algo-
rithm from Section 4.3. See Figure 5.9 for the class diagram. There exists one
FeatureTracker for each feature type the user wants to track. The number of
them and their parameters can be defined in the launch file. Each Feature-
Tracker also contains a list of FeatureTracks of its type and is responsible
for creating, updating and deleting them. The class FeatureTrack contains
most of the data needed for tracking. Most of it is stored in its Score and
TrackData. Both of those classes and their subclasses use the Strategy Pat-
tern, which is one of the Design Patterns included in [GHJV94]. It allows the
user to select one of the algorithms presented in 4.3.1 and 4.3.2 to update
the position, the radius and the probability of the FeatureTrack. Different
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FeatureTrack FeatureTracker

TrackData

StaticData TrackDataAveraging TrackDataKalman

Score

TrackDataDynamicKalman

StaticScore ScoreAsDetectionRate ScoreFromSensorProbability

1

1

10..*

Figure 5.9: Class Diagram of the Feature Tracking Task

classes also allow the different algorithms to store different data. Finally the
FeatureTracks are published by the FeatureTrackers.

5.5.2 Object Fusion

PossibleObject

Hypothesis

ObjectFusion

FeatureTrack

Object

0..*

1

0..*

1

1..*

1 1

1

1..*

1
1

FeatureTracker1 1..*
1

0..*

Figure 5.10: Class Diagram of the Object Fusion

This subsection describes the implementation of the object fusion algorithm
from Section 4.4. See Figure 5.10 for the class diagram. The class Object-
Fusion is responsible for creating the Objects from the FeatureTracks. It
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uses the FeatureTrackers to access all the FeatureTracks. The classes Possi-
bleObject and Hypothesis are used to create all possible combinations of
FeatureTracks and find the best ones.

The class Object is responsible for calculating the position, the radius and
the probability of the object from the feature tracks. It implements the algo-
rithms presented in 4.4.1 and 4.4.2. The algorithm to be used can be selected
in the launch file. The Strategy Pattern is not used, because the algorithms
are simpler and there is no need to store additional data. The Objects are
published by the class ObjectFusion after the object classification.

5.5.3 Object Classification

ObjectType

ObjectClassifier

FeatureTrack

Object

1

1..*

1

1..*

ObjectFusion
1

0..*

11

Figure 5.11: Class Diagram of the Object Classification Task

This subsection describes the implementation of the object classification
algorithm from Section 4.5. See Figure 5.11 for the class diagram. The
class ObjectClassifier loads the ObjectTypes from the launch file. It also
decides, which ObjectType is assigned to each Object. The class does this
by calculating how well each ObjectType fits the Object and assigning the
one with the highest score. The Equations 4.29 and 4.30 show how the score
is calculated from the probability of the object’s FeatureTracks. The weight
of each feature type is defined by the ObjectType.
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Figure 5.12: The colored spheres are the Markers in RViz. The color shows the feature or
object type. The robot and the laser scan can also be seen.

54



5.6 ROS Node victim simulation

Figure 5.13: Namespaces in RViz can be used to toggle the visibility of each feature and
object type.

5.5.4 Visualization

The node uses markers to visualize the feature tracks and objects. The
markers are published and can be seen in RViz (see Figure 5.12). The
markers use a sphere as the shape and the position and the radius are set
by the feature track or the object. A namespace (see Figure 5.13) groups
all the markers of the same feature or object type and it can be used to
toggle the visibility of them. The color of the marker is a little more complex.
The base color is set by the feature type or object type. It is modified by
the probability of the feature track or object. See Equations 5.1 and 5.2.
The variable start is set to 0.25 to ensure that feature tracks and objects of
different types can still be distinguished at low probabilities. All markers
with low probabilities would look black without it.

f actor = start + (1.0− start) · probability (5.1)

colormarker = colorbase · f actor (5.2)

5.6 ROS Node victim simulation

The ROS node victim simulation (see Figure 5.15) can be used to test the
victim detection system without requiring an arena, a robot, victims and
feature detectors. It is also ideal to repeatedly test special cases that are hard
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Figure 5.14: Class Diagram of the ROS Node
victim simulation

Figure 5.15: The victim simulator allows the
user to place objects (cyan dots)
with simulated features (red,
green or yellow circles) and move
the robot (filled blue circle) with
its view frustum (red quarter
circle).

or slow to reproduce. The node does this by simulating the arena, the robot
and the objects. The simulation is run in 2d to keep it fast and simple. More
complex tests should be run in the real world.

See Figure 5.14 for the class diagram. The class SimWorld subscribes the
OccupancyGrid, which can be loaded from an image, and uses it as the 2d
world of the simulation. The launch file defines one or more instances of
the class SimRobot. Each robot has a position, an orientation, a radius, a
view distance and a view angle. The user can move and rotate the selected
robot and switch to other robots. The class SimFeatureType has a name, a
color and the sensor-dependent data needed for the feature tracking. The
class SimObjectType consists mainly out of a list of SimFeatureTypes, their
probabilities of detection and their radii. The SimTypeMgr loads the feature
types and object types from the launch file and manages them. SimObjects
are also loaded from the launch file or can be placed anywhere in the world
by the user. Each update they randomly place their features around them
to simulate noise. They also use the feature’s probability to determine if it
was detected. Each robot determines if the features are inside its field of
view defined by the view distance and the view angle. It also performs a
simple 2d raycast to determine if a feature is occluded by the map. Finally
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all visible SimFeatures are published as feature messages.
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6 Evaluation

In this chapter multiple tests to evaluate the victim detection system and its
feature detectors are described. Each test is divided into the stages setup,
testing and evaluation. In the setup stage the scene of the test is configured.
The walls, the ramps, other parts of the arena and the objects are placed
in the needed configuration. Then the robot is moved to the start location.
Finally the positions of all objects relative to the start location are measured
and recorded. This data serves as the ground truth in the evaluation.

At the start of the testing stage the heating pads and the robot are switched
on and the victim detection system is started. During the test the feature
detectors save the input images with marked features for each update.
This allows the evaluator the count the number of detected features (true
positives) TP, falsely detected features (false positives) FP and missing
features (false negatives) FN for each feature detector. The number of true
negatives TN is the number of input images without any feature. The
number of negatives N is the sum of the true negatives TN and the false
positives FP. The number of positives P is the sum of the true positives TP
and the false negatives FN. The object tracker saves all the received features
into files. The robot can stand still or move around until the end of the test.
At the end the object tracker saves all the feature tracks and objects into
files. The evaluator can make screen shots of the feature track and object
visualization in RViz.

Finally, the recorded data is evaluated with the help of a Matlab1script.
It uses the previously counted N, TP, FP, TN and FN to calculate the

detection rates of the feature detectors. The true positive rate PTP (see
Equation 6.1) is the probability that a detected feature is really a feature. The
false positive rate PFP (see Equation 6.4) is the probability that a detected

1www.mathworks.com/products/matlab/
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6 Evaluation

feature is not a feature. The true negative rate PTN (see Equation 6.3) is the
probability that there is no feature, if no feature was detected. Test that have
zero negatives are marked with a ∗, because PTN would be infinite. The
false negative rate PFN (see Equation 6.2) is the probability that there is a
feature, if no feature was detected.

PTP =
TP
P

=
TP

TP + FN
(6.1)

PFN = 1− PTP (6.2)

PTN =
TN
N

=
TN

FP + TN
(6.3)

PFP = 1− PTN (6.4)

Then the matlab script Automatically assigns the recorded features to the
objects recorded in the setup stage. Features, that are too far away from all
the objects, are outliers. It calculates the standard derivation of the position
and the radius for each cluster of features. It combines the values of each
cluster to calculate σX, σY, σZ and σradius for each feature detector. The noise
of the position is very important, because it determines how reliable features
can be assigned to feature tracks. A low noise means that different objects
can be closer together without causing problems.

In the next step the evaluator compares the calculated and measured posi-
tions of the objects. It is important to note that the measured positions are
also inaccurate, because it is difficult to use a measuring tape in the large
arena. Another difficulty is that the calculated position of an object depends
on the view direction and factors.

Finally, the evaluator compares the detected feature tracks and objects at
the end of the test with the real objects. The evaluator counts the number of
detected feature tracks and objects Ncorrect, the number of false feature tracks
and objects N f alse, the number of feature tracks and objects not detected
Nmissing and the number of objects with a wrong object type Nwrong type. The

60



6.1 Test Under Ideal Conditions

evaluator also compares the measured and calculated position of the real
objects, which were detected, to find out how accurate the positions are.

6.1 Test Under Ideal Conditions

(a) Color Image (b) Thermal Image

Figure 6.1: Scene of the 1.Test

In this test of the evaluation analyzes the performance of the feature de-
tectors and the victim detection system under ideal conditions. The robot
and its sensor head are not moving and have a closeup view of 2 objects.
The first object is a victim that consists out of a baby doll and a heating pad
inside a hole. The second object is a QR code sheet with a big and a small
QR code. See Figure 6.1. The Kinect runs for 228 cycles and the thermal
camera runs for 505 cycles.

The Table 6.1 shows the detection rates of the feature detectors. The face, heat
and hole detectors never missed a feature or produced a false feature. The
heat detector detected a person moving outside the arena, which explains
why it detected more features than expected at first. The QR code detector
did not detect all features, but it also never detected a false feature. An
interesting fact is that it detected the smaller QR code more often than the
larger one. A possible reason for this is the algorithm of the Zbar library
that handles QR code detection at different scales.
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Detector P N TP FP TN FN PTP PTN
Face 228 0 228 0 0 0 1 ∗
Heat 526 0 526 0 0 0 1 ∗
Hole 228 0 228 0 0 0 1 ∗
QR Code (big) 228 0 140 0 0 88 0.614 ∗
QR Code (small) 228 0 194 0 0 34 0.8509 ∗

Table 6.1: Detection Rates of the 1.Test

Detector σX σY σZ σradius
Face 0.0018686 m 0.0019379 m 0.0013968 m 0.00070899 m
Heat 0.0014698 m 0.0013266 m 0.0049055 m 0.00318 m
Hole 0.0015146 m 0.0015270 m 0.0011861 m 0.00054422 m
QR Code 0.0017155 m 0.001303 m 0.00085959 m 0.00035556 m

Table 6.2: Standard Deviation of Position and Radius of the 1.Test

The Table 6.2 shows the standard deviation of the positions and the radii for
each detector. The standard deviation of the position is small compared to
the typical distance between features, which makes feature tracking much
easier. An interesting fact is that there is no big difference between detectors
using the depth image or raycasting for the calculation of the position.

The Tables 6.3 and 6.4 show that the victim detection system correctly
detected all feature tracks and objects.

Tracks Ncorrect N f alse Nmissing
Face 1 0 0

Heat 1 0 0

Hole 1 0 0

QR Code (big) 1 0 0

QR Code (small) 1 0 0

Table 6.3: Feature Tracks of the 1.Test
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6.2 Long Distance Test

Objects Ncorrect N f alse Nmissing Nwrong type
Face 0 0 0 0

Heat Source 0 0 0 0

Heated Hole 0 0 0 0

Hole 0 0 0 0

Person 1 0 0 0

QR Code 1 0 0 0

Table 6.4: Objects of the 1.Test

6.2 Long Distance Test

(a) Color Image (b) Thermal Image

Figure 6.2: Scene of the 2.Test

The long distance test of the evaluation analyzes the performance of the
feature detectors and the victim detection system under more difficult
conditions. It will show that the detection system still works but with lower
detection rates. The robot and its sensor head are still not moving. The robot
can see 5 objects, which are farther away than in the previous test. The first
object is a victim sitting on the floor that consists out of a baby doll and a
heating pad. The second object is a hole with a heating pad. The third object
is a simple hole. The fourth object is a QR code sheet facing the camera.
The fifth object is a QR code sheet perpendicular to the viewing direction of
the camera. See Figure 6.2. The Kinect runs for 279 turns and the thermal
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Detector P N TP FP TN FN PTP PTN
Face 279 0 76 0 0 203 0.2724 ∗
Heat 1160 0 1160 0 0 0 1 ∗
Hole 558 1 557 1 0 1 0.9982 0

QR Code (big) 279 0 29 0 0 250 0.104 ∗
QR Code (side) 279 0 0 0 0 279 0 ∗
QR Code (small) 558 0 0 0 0 558 0 ∗

Table 6.5: Detection Rates of the 2.Test

Detector σX σY σZ σradius
Face 0.0071628 m 0.0025864 m 0.0031929 m 0.00054819 m
Heat 0.0036037 m 0.0037221 m 0.0038086 m 0.0016632 m
Hole 0.0106716 m 0.0070939 m 0.0054066 m 0.0046165 m
QR Code 0.0175356 m 0.0044963 m 0.0055691 m 0.00095211 m

Table 6.6: Standard Deviation of Position and Radius of the 2.Test

camera runs for 580 turns.

The Table 6.5 shows the detection rates of the feature detectors. The face
detector didn’t produce any false features, but it missed the doll much
more often, because of the higher distance. The heat and hole detectors
still worked as reliable as before. Finally the detection rates of the QR code
detector decreased dramatically. It never detected the smaller QR codes or
the big one perpendicular to the viewing direction of the camera. Even the
big QR code facing the camera was rarely detected. On the positive side the
QR detector never produced a false feature.

The Table 6.6 shows the standard deviation of the positions and the radii
for each detector. The values have increased somewhat compared to the
previous test.

The Table 6.7 shows the difference between the calculated positions and
the manually measured position of the objects. The coordination system is
defined so that the x-axis points towards the objects, the y-axis points to
the left and the z-axis points upwards. The biggest error is the X-coordinate
of the simulated person sitting on the floor. The reason for that is that the
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6.2 Long Distance Test

Position Error
Objects X Y Z Distance
Heated Hole -0.00598 m -0.076099 m -0.03187 0.083 m
Hole -0.0546 m 0.024668 m 0.077851 0.098 m
Person -0.17339 m 0.0867551 m 0.068359 0.206 m
QR Code Sheet -0.04138 m 0.075086 m 0.067158 0.109 m

Table 6.7: Position Error of the 2.Test

Tracks Ncorrect N f alse Nmissing
Face 1 0 0

Heat 2 0 0

Hole 2 0 0

QR Code 1 0 3

Table 6.8: Feature Tracks of the 2.Test

heat detector uses raycasting to project the position of the heat source on
the ground behind the doll. The false position of the heat source influences
the position of the object enough to drastically increase the error.

The Tables 6.8 and 6.9 show that the victim detection system nearly detected
all feature tracks and objects correctly. It only missed 3 QR code tracks and
1 QR Code object. The 2.Table also shows that all detected objects have the
correct type.

Objects Ncorrect N f alse Nmissing Nwrong type
Face 0 0 0 0

Heat Source 0 0 0 0

Heated Hole 1 0 0 0

Hole 1 0 0 0

Person 1 0 0 0

QR Code Sheet 1 0 1 0

Table 6.9: Objects of the 2.Test
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6.3 Moving Robot Test

Figure 6.3: Objects of the 3.Test

The moving robot test of the evaluation analyzes the performance of the
feature detectors and the victim detection system while the robot explores
the whole arena. The robot drives from one location to another and then
observes the objects from the new location for a few seconds. The arena
contains the same objects as in the previous test and a few more. The extra
objects are 2 QR codes, 1 victim, 1 face, which is a baby doll without heating
pad and 2 holes. See Figure 6.3. The Kinect runs for 533 turns and the
thermal camera runs for 1899 turns.

The Table 6.10 shows the detection rates of the feature detectors. The face
detector detected faces more often compared to the previous test, but also
produced more false positives. The improved detection rates is most likely
caused by seeing the objects from different positions. These false faces are
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6.3 Moving Robot Test

Detector P N TP FP TN FN PTP PTN
Face 292 241 180 59 182 112 0.6164 0.755

Heat 1536 363 978 129 234 558 0.6367 0.6446

Hole 480 53 283 47 6 197 0.5896 0.113

QR Code (big) 321 212 220 0 212 101 0.6854 1

Table 6.10: Detection Rates of the 3.Test

Detector σX σY σZ σradius
Face 0.066356 m 0.044867 m 0.032872 m 0.0029309 m
Heat 0.047901 m 0.021553 m 0.024331 m 0.028772 m
Hole 0.021715 m 0.021705 m 0.028039 m 0.0058677 m
QR Code 0.029344 m 0.019791 m 0.014583 m 0.0023371 m

Table 6.11: Standard Deviation of Position and Radius of the 3.Test

not detected at random positions, but repeatedly at the same ones. The heat
detector had worse detection rates than before. It detected a heating pad
through a hole and incorrectly projected the position on the wall with the
hole. This is a known problem (see Figure 4.5(a)) and a solution is already
planned (see Section 7.1). The second problem was that it didn’t detect the
last heading pad. The most likely reason is that its automatically switched
off after 30 min. The QR code detector did never detect the small features,
but it also never detected a false feature.

The Table 6.11 shows the standard deviation of the estimated positions
and the estimated radii for each detector. The values have increased again
somewhat compared to the previous test.

The Table 6.12 shows the difference between the calculated positions and
the manually measured position of the objects. The movement of the robot
and the different viewing directions only caused an increase of about 30%
in the average distance between the calculated positions and the manually
measured position.

The Tables 6.13 and 6.14 show that the victim detection system detected
most feature tracks and objects correctly. The face detector detected 4 false
faces often enough to create feature tracks. See Figure 6.4. The hole detector
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Position Error
Objects X Y Z Distance
Face 1 0.108 m -0.012 m -0.124 m 0.165 m
Heated Hole 1 -0.006 m -0.076 m -0.032 m 0.083 m
Hole 1 -0.055 m 0.025 m 0.078 m 0.098 m
Person 1 -0.173 m 0.087 m 0.068 m 0.206 m
Person 2 0.102 m 0.131 m -0.006 m 0.166 m
QR Code Sheet 1 0.2m -0.076 m -0.022 m 0.215 m
QR Code Sheet 2 -0.041 m 0.075 m 0.067 m 0.109 m
QR Code Sheet 3 0.164 m 0.079 m -0.004 m 0.182 m
QR Code Sheet 4 0.112 m 0.222 m -0.039 m 0.252 m
QR Code Sheet 5 -0.02 m 0.15 m 0.042 m 0.157 m

Table 6.12: Position Error of the 3.Test

Tracks Ncorrect N f alse Nmissing
Face 3 4 1

Heat 3 1 1

Hole 4 3 3

QR Code (big) 5 0 0

QR Code (small) 0 0 5

Table 6.13: Feature Tracks of the 3.Test

Objects Ncorrect N f alse Nmissing Nwrong type
Face 1 0 0 0

Heat Source 0 1 0 0

Heated Hole 1 0 0 0

Hole 2 1 2 0

Person 2 3 1 0

QR Code Sheet 5 0 0 0

Table 6.14: Objects of the 3.Test

68



6.4 View Angle Test

missed 3 holes and detected 3 wrong holes, because there is always a trade
off between detecting too many and too few holes. The heat detector saw the
fourth heating pad through a hole in the wall, but the ray casting projected
the heat source onto the wall, because the occupancy map can not handle
holes in obstacles (see Figure 4.5(a)). This created a heat feature at the wrong
location. The system also missed the last victim, because it could not detect
the face, the heat source or the hole for unknown reasons. It is possible that
the heating pad had turned itself off after 30 minutes and that it had cooled
off enough to be no longer recognized as heat source. Another idea is that
the shadow across the face cast by the hole prevented the feature detector
from recognizing it as a face. On the positive side all detected objects have
the correct object type.

(a) Eye Chart as Face (b) Face in the Wood Grain

Figure 6.4: False Features of the 3.Test

6.4 View Angle Test

In this test the robot watches multiple features on a wall that is 1 meter
away. The wall is rotated so that each subtest sees the wall under a different
view angle. The view angle is defined for this test as the angle between the
wall and the view direction of the robot’s sensors. In the first test the wall
is perpendicular (90°) to the view direction of the sensors. In the following
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90° 75° 60° 45°
Face 0.74 0.70 0.72 0.66

Heat 1.00 1.00 1.00 1.00

Hole 0.88 0.99 0.63 0.01

QR Code 0.74 0 .70 0.72 0.00

Table 6.15: Detection Rates dependent on the View Angle

tests the view angle is reduced to 75°, 60°and finally 45°. The goal of this
test is to determine the influence of the view angle on the feature detection.
The true positive detection rate dependent on the view angle is calculated
for each sensor and shown in Table 6.15. The detection rate of the face
detector is nearly constant around 0.70. The heat detector always found
the heat source independent of the view angle. The detection rate of the
hole detector drops to zero around 45°. It is interesting that the maximum
detection rate is at 75°. The most likely explanation is that the baby doll
blocks most of the hole in frontal views. The detection rate of the QR Code
detector is nearly constant around 0.70 until it drops to zero at 45°. This test
shows that it is not only important that the sensors cover all surfaces, but
also that the view angle is important for certain feature detectors. The result
must be considered while designing the movement pattern of the robot’s
sensors.
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7 Conclusion

This thesis presented a framework for victim detection that can be used by
rescue robots with multiple sensors of different types. The related research
chapter has shown existing algorithms for feature detection, tracking, sensor
fusion and other topics. Next the thesis presented a problem definition
for victim detection. Then it showed an overview of how the framework
and its subsystems work. The approach combines feature detection, feature
tracking, object fusion, object classification and user verification. The thesis
showed how existing and new algorithms can be used to solve those tasks.
The different sensors and feature detectors were explained. It showed how
the features are assigned to existing feature tracks, which track features
over time, or create new ones. Then how feature tracks are combined into
objects and how a simple object classifier assigns object types to objects
are explained. The last section of the solution chapter showed how user
verification affects all the subsystems of the framework. Next implemen-
tation details concerning C++, ROS and OpenCV are explained. Finally, it
an evaluation of the performance of the framework with multiple tests is
presented.

The evaluation showed that the framework is able to provide good results
in different scenarios. It can easily handle feature trackers with a low true
positive rate, which means that the detector detects a feature only every
few updates. Over time those features detected at a low frequency create
feature tracks and slowly increase the feature track’s probability. It can
also handle false features that are randomly detected without creating
false victims. Those false positives rarely create feature tracks, because a
minimum number of features is needed at the same location to create a
feature rack. The framework only has problems with false features that are
repeatedly detected at the same location. In this case the framework creates
feature tracks and can’t distinguish between true and false ones. In this case
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the responsible feature detector should be improved. The evaluation has
also shown that the victim detection framework produces positions that are
accurate enough for search and rescue operations.

7.1 Future Work

Now possible ways to improve the victim detection system in the future are
discussed.

The simplest way to improve the victim detection system is to add new
sensors and feature detectors. New feature types can be added without
changing the code of the existing system by adapting the launch file of the
ROS node object tracking. CO2 and sound detectors [ILMS14] are currently
developed in the lab. The CO2 detector uses a CO2 sensor and reacts to
changes in the CO2 level in the environment. It can detect nearby breathing
victims and other CO2 sources. The sound detector uses microphones to
detect spoken words. Both detectors have the problem that the location
of the feature is much harder to determine than with the camera-based
detectors presented in this thesis.

The feature tracker is another part of the system that can be improved.
Currently it uses a greedy algorithm that makes the locally optimal choice
for each received feature, but does not find the optimal solution. This can
lead to problems, when multiple objects are close together. A solution would
be to use an algorithm that searches all possible combinations and finds
the the optimal solution. Another improvement would be to implement
the full tracking algorithm from [Rei79]. It is similar to to how the object
fusion works in this thesis, but keeps the hypotheses between updates.
This allows new features to change the feature assignment of early updates
by changing the probabilities of the competing hypotheses. This feature
tracking algorithm would be much slower, but better adapted to moving
objects.

Another possible addition is a better algorithm for calculating the positions
of moving feature tracks. A Kalman filter with a system matrices that
supports moving objects would be a possible implementation that uses the
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past movement to predict the future movement. This makes it possible to
correctly track moving objects that are temporary occluded.

The raycaster is another area that can be improved greatly. Currently it uses a
2d approximation of the environment and it has many problems as discussed
in 4.1.2. A solution would would be to replace the 2d approximation with
a 3d approximation of the environment. On the one hand the raycasting
would be slower, because the they rays would have to travel through a 3d
map instead of a 2d map. On the other hand the 3d map could handle
obstacles of different heights and even holes in obstacles. It even has the
advantage that ROS already has a library for 3D occupancy grid mapping.
It is called OctoMap1and described in [HWB+

13]. The victim detection
system would need another ROS node called raycasting octomap. The node
would provide the same service as the existing ROS node raycasting map
and internally use the 3d Octomap instead of the 2d OccupancyGrid. The
user could decide which node to start and the rest of the victim detection
system would work the same.

1http://wiki.ros.org/octomap
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[LLS08] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust ob-
ject detection with interleaved categorization and segmentation.
International journal of computer vision, 77(1-3):259–289, 2008.

76



Bibliography

[LM02] Rainer Lienhart and Jochen Maydt. An extended set of haar-like
features for rapid object detection. In Image Processing. 2002.
Proceedings. 2002 International Conference on, volume 1, pages
I–900. IEEE, 2002.

[MBM12] Matteo Munaro, Filippo Basso, and Emanuele Menegatti. Track-
ing people within groups with rgb-d data. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 2101–2107. IEEE, 2012.

[MSK+
11] Johannes Meyer, Paul Schnitzspan, Stefan Kohlbrecher, Karen

Petersen, Mykhaylo Andriluka, Oliver Schwahn, Uwe Klingauf,
Stefan Roth, Bernt Schiele, and Oskar von Stryk. A semantic
world model for urban search and rescue based on heteroge-
neous sensors. In RoboCup 2010: Robot Soccer World Cup XIV,
pages 180–193. Springer, 2011.

[QCG+
09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully

Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an
open-source robot operating system. In ICRA workshop on open
source software, volume 3, 2009.

[RBK98] Henry A Rowley, Shumeet Baluja, and Takeo Kanade. Neural
network-based face detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(1):23–38, 1998.

[Rei79] Donald B Reid. An algorithm for tracking multiple targets.
Automatic Control, IEEE Transactions on, 24(6):843–854, 1979.

[SA11] Luciano Spinello and Kai Oliver Arras. People detection in rgb-
d data. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 3838–3843. IEEE, 2011.

[Ser83] Jean Serra. Image analysis and mathematical morphology. Academic
Press, Inc., 1983.

[SG99] Chris Stauffer and W Eric L Grimson. Adaptive background
mixture models for real-time tracking. In Computer Vision and
Pattern Recognition, 1999. IEEE Computer Society Conference on.,
volume 2. IEEE, 1999.

77



Bibliography

[Sha10] SharkD. The hsv color model mapped to a cylin-
der. http://en.wikipedia.org/wiki/File:HSV_color_solid_

cylinder_alpha_lowgamma.png, 2010.

[TPPB08] Marina Trierscheid, Johannes Pellenz, Dietrich Paulus, and Dirk
Balthasar. Hyperspectral imaging or victim detection with res-
cue robots. In Safety, Security and Rescue Robotics, 2008. SSRR
2008. IEEE International Workshop on, pages 7–12. IEEE, 2008.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. In Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–511. IEEE,
2001.

[VSA03] Vladimir Vezhnevets, Vassili Sazonov, and Alla Andreeva. A
survey on pixel-based skin color detection techniques. In Proc.
Graphicon, volume 3, pages 85–92. Moscow, Russia, 2003.

78

http://en.wikipedia.org/wiki/File:HSV_color_solid_cylinder_alpha_lowgamma.png
http://en.wikipedia.org/wiki/File:HSV_color_solid_cylinder_alpha_lowgamma.png

	Abstract
	Introduction
	Motivation
	Contribution

	Related Work
	Feature Detection
	Sensor Fusion
	Tracking

	Problem Formulation
	Solution
	Sensors
	RGB-D Camera
	Thermal Camera

	Feature Detection
	Color Detection
	Face Detection
	Hole Detection
	Motion Detection
	QR Code Detection
	Heat Detection

	Feature Tracking
	Position and Radius of a Feature Track
	Probability of a Feature Track

	Object Fusion
	Position and Radius of an Object
	Probability of an Object

	Object Classification
	User Verification

	Implementation
	ROS Node raycasting_map
	ROS Package image_to_world_position
	ROS Node feature_detection_kinect
	ROS Node feature_detection_thermal
	ROS Node object_tracking
	Feature Tracking
	Object Fusion
	Object Classification
	Visualization

	ROS Node victim_simulation

	Evaluation
	Test Under Ideal Conditions
	Long Distance Test
	Moving Robot Test
	View Angle Test

	Conclusion
	Future Work

	Bibliography

