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Abstract

This thesis examines the valuation problem for Spread Options in market models,
where the volatility process is of Ornstein-Uhlenbeck type. An appropriate formu-
lation of these models in a multidimensional setting requires a matrix subordination
approach, i.e., the Ornstein-Uhlenbeck process is driven by a matrix-valued Lévy
process, whose increments only take values in the cone of positive semidefinite sym-
metric matrices. Such models have gained some popularity in the modelling of
equity markets and, more recently, in commodity and energy markets. The liter-
ature about pricing methods for Spread Options in non-Gaussian setups is sparse;
however, in models where the joint characteristic function of the log-return process
is known in closed form, some techniques based on the fast Fourier transform (FFT)
are available and allow for efficient valuation.

The contribution of this thesis is the following: We compute explicit prices for
Spread Options in the two-dimensional OU-Wishart model. From a computational
point of view, we compare the results obtained by a Monte-Carlo simulation with
those obtained by an FFT method. We investigate the FFT method in detail
and implement it in two different ways in order to deal with any given contract-
characteristics. Realizing the drawbacks of the particular FFT method, which are
revealed by our analyses, we discuss alternative possibilities in order to (possibly)
avoid them. In particular, we comment on the Integration-Along-Cut method and
take first steps for possible applicability (future work required).

From a modelling perspective, we particularly address the issue of specifying the
stationary distribution of the volatility process. Under some simplifying assump-
tions, we formulate a particular specification of the general multivariate IG-OU
type stochastic volatiliy model and derive the joint characteristic function of the
two-dimensional log-return process within our model. Moreover, we examine a first
testing of parameter sensitivities for this special case that we consider.
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Chapter 1

Introduction

Spread Options are derivative contracts, where the payoff is made up of the spread
between two underlying assets and a predetermined strike price. These kind of
derivatives represent a popular instrument for traders in various markets. The vast
majority of these contracts is traded over-the-counter. Therefore, efficient and accu-
rate pricing methods as well as appropriate market modelling are of great interest.

The valuation of exotic options is in many cases limited to Monte-Carlo methods.
Due to the Fundamental Theorem of Asset Pricing, the arbitrage-free price of any
contingent claim can be obtained by computing the discounted expected value of
the payoff at maturity, where the expectation is taken with respect to a risk-neutral
pricing measure. Therefore, by applying Monte-Carlo methods in order to compute
this expectation numerically, it is possible to determine option prices via simula-
tion. However, Monte-Carlo methods require a lot of computation time. In many
situations, particularly, when prices of numerous contracts are required at the same
time, their computational costs are prohibitive and they can hence not be applied.

The famous work of Carr and Madan [27] has introduced the use of the Fast
Fourier transform (FFT) for pricing plain vanilla options by Fourier inversion, in
cases where a closed-form expression of the characteristic function of the underlying
asset price model is available. Their suggestion represents a fast and accurate pricing
technique, thus enjoying great popularity. Hurd and Zhou [51] have extended the
work of Carr and Madan by presenting an FFT method for Spread Option pricing.
The heart of their work is that they derive a representation of the Fourier transform
of the payoff function of a Spread Option in terms of the Gamma function. Option
values can then be computed by a numerical bivariate Fourier inversion. They apply
their method to three kinds of asset models: the two-asset Black-Scholes model (i.e.,
bivariate GBM), a three factor Stochastic Volatility model, as well as the Variance-

1



Gamma model as an example for exponential Lévy models. In principle, however,
their method is applicable to any asset model, where the two-dimensional log-asset
price process shows an analytic joint characteristic function, which, in addition,
satisfies a certain factorization assumption. This approach of Hurd and Zhou [51]
represents the best Spread Option pricing technique we are aware of. Therefore,
we want to examine its performance regarding Ornstein-Uhlenbeck type stochastic
volatility models in this thesis.

It should not be left unmentioned that the very recently suggested lower bound
approximation by Caldana and Fusai [24] is presented to be competitive or even
superior to Hurd and Zhou’s method in some aspects. However, we do not consider
these aspects helpful for our purposes.

The development of appropriate models for financial markets has been the stimulus
for a great amount of literature. The fundamental work of Black and Scholes [20] and
Merton [64] was a milestone in 1973 (see, e.g., the books of Hull [49] or Wilmott [86]
for details). In practice, their model based on geometric Brownian motion (GBM)
is still widespread and commonly used as a reference model, particularly due to the
fact that several explicit results are easily obtainable. However, the shortcomings
of this model are very well known: it is not capable of coping with many features
that are empirically observed in asset return data. Among these so-called stylized
facts are aggregational Gaussianity, fat tails, volatility clustering, leverage effects
and volatility smiles. Therefore, approaches have been advanced and the result-
ing models became more complex. As contrary to the Black-Scholes model, where
volatility is a constant parameter, in so-called Stochastic Volatility (SV) models, the
volatility is assumed to evolve according to a stochastic diffusion process; the asset
price process and the volatility process are driven by two (correlated) Brownian mo-
tions. Among the most popular specifications belonging to this class are the models
proposed by Hull and White [50], Stein and Stein [81], and, foremost, Heston [45].
An alternative approach to describe the features of the market behaviour in a more
realistic way is the introduction of jumps in the dynamics of the asset price. Fa-
mous specifications in this context are the Jump-Diffusion models of Merton [65]
and Kou [58]. The model suggested by Bates [13] combines stochastic modelling of
volatility with jumps in the asset price; it is an extension of Heston’s model, in the
sense that a compound Poisson process is added in the dynamics of the asset price.
Diffusion-based models can cope with many stylized facts, in particular, if param-
eters are fine-tuned in a proper way. Though this flexibility may be appreciated,
research has shown that various of the obtainable properties of diffusion models
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are generic in models based on jump processes. Financial modelling with jump
processes generally gained a lot of popularity during the 1990’s; in particular, the
class of Lévy processes, i.e., stochastic processes with independent and stationary
increments, became the focus of attention. Hence, numerous Lévy-based models
have been proposed and studied in the literature. For a comprehensive survey of
Lévy processes in mathematical finance, see the book of Cont and Tankov [31].

Barndorff-Nielsen and Shephard [6, 7] have suggested a model, which combines
stochastic volatility and jumps in a non-trivial way. In this model (henceforth
termed BNS model), the instantaneous variance is an Ornstein-Uhlenbeck (OU)
type process, which is driven by a subordinator, i.e., a (pure) jump Lévy process
taking only positive values. OU processes are mean-reverting, stationary processes.
There is a "one-to-one correspondence" between the stationary distribution of the
process and its so-called Background Driving Lévy Process (BDLP). Hence, these
processes offer both analytic tractability as well as modelling-flexibility. The BDLP
of the volatility process is also incorporated in the dynamics of the log-asset price.
Consequently, volatility and asset prices jump at the same time, which makes the
model account for the leverage-effect. Naturally, the BNS model is more complex
than, for instance, the model of Bates, where the stochastic component and the jump
component are independent from one another. Thus, sometimes computations may
get quite involved. However, the BNS model is yet an affine stochastic volatility
model in the sense of Keller-Ressel [56], referring to the notion of affine processes
introduced by Duffie, Filipović, and Schachermayer [40]. Hence, it is analytically
tractable and allows very explicit results. The characteristic function of the log-asset
price process is given in closed form in the work of Nicolato and Venardos [68].

It is argued for the preferability of the model of Bates in the book of Cont and
Tankov [31], particularly due to its simplicity and greater flexibility, yet offering
both stochastic volatility and jumps. Furthermore, the BNS model was strongly
criticized for example by Mandelbrot, as part of the discussion of the original pa-
per by Barndorff-Nielsen and Shephard [7]: He saw "little purpose or merit to it",
arguing that a successful model should be parsimonious, while, according to him,
the BNS model would propose a family of building blocks "of staggering and un-
motivated complication". However, considering the fact that the presentation of
the BNS model stimulated a considerable amount of literature (e.g., [43,47,48,68]),
its attractivity from a mathematical point of view can definitely not be denied.
Moreover, OU type SV models have gained some popularity in the modelling of
commodity and energy markets (e.g., [14–16]), since it turned out that they are ca-
pable of describing particularly well the typical features of these markets’ behaviour.
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Spread Options are bivariate contingent claims. Though it might be the simplest
case of only two dimensions, multivariate modelling is required and, in principle,
already brings along all the issues connected to modelling in multiple dimensions.

The BNS model has been generalized to multiple dimensions in the work of
Pigorsch and Stelzer [70], and Muhle-Karbe, Pfaffel, and Stelzer [66]. In the mul-
tivariate case, the volatility process is represented by a matrix-valued process of
Ornstein-Uhlenbeck type, as defined by Barndorff-Nielsen and Stelzer [8]. The
essential point is the use of matrix subordinators (see Barndorff-Nielsen and Pérez-
Abreu [10]) as driving processes. The resulting multivariate Ornstein-Uhlenbeck
type stochastic volatility model incorporates a (non-trivial) stochastic dependence
structure among the underlying assets.

Spread Options can be seen as a "bet" on the correlation between two underly-
ings. Therefore, appropriate modelling of the dependence structure is crucial. The
multivariate OU type SV model appears especially interesting from this perspec-
tive, as well as, in addition, due to the interest in this model with respect to the
commodity and energy markets, where Spread Options are particularly popular.

This thesis is organized as follows. In Chapter 2, we introduce Spread Options; we
start with the properties of these derivative contracts and explain their relevance
in the markets. Then we discuss available pricing methods for Spread Options.
Chapter 3 is dedicated to Lévy processes: We explain the properties of this class
of stochastic processes and discuss the theory, where the chapter about OU type
SV models will be based on. Moreover, we review the most famous market models
and particularly point out their shortcomings, which have led to the development of
those models, which are the focus of this thesis. Then the way is paved for Chapter
4, where we enter the matter of OU type SV modelling. We start with a thorough
discussion of the one-dimensional BNS model and proceed to its generalization
to multiple dimensions, which requires an introduction of the theory of matrix-
subordinators. We examine a concrete specification in the two-dimensional case,
which has been presented in the literature. Furthermore, we address the issue
of prespecifying the stationary distribution of the volatility process in the multi-
dimensional case and, under some simplifying assumptions, we define an own model-
specification in this context. For this model, we derive the joint characteristic
function of the (two-dimensional) log-return process. Chapter 5 contains all our
numerical studies and investigations from a computational perspective. Finally, in
Chapter 6, we conclude and discuss open issues for future work.
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Chapter 2

Spread Options

A Spread Option (of European type) is a derivative contract, where for two under-
lying processes S(1) and S(2), as well as an exercise price (strike) K 6= 0, which is
agreed in the contract, the payoff at maturity T is of the form

(S
(1)
T − S

(2)
T −K)+,

where x+ := max{x, 0}. In other words, at the time of maturity, the difference - the
spread - between two underlyings is compared to a predetermined strike price. One
might interpret this as the right to change one asset against the other, with costs
K. Figure 2.1 illustrates the exercise region (blue-coloured) of a Spread Option,
wheras Figure 2.2 shows the corresponding payoff diagram.

If the strike is set to be K = 0 then the contract is referred to as Exchange
Option. In this case, the famous Margrabe’s formula offers an easy way to evaluate
the option. This method, which has been suggested in Margrabe [63], is based on
the assumption that the underlying asset price processes follow a bivariate geometric
Brownian motion.

Spread Options are traded across many different markets; they are popular for
both hedging and speculative intentions. Famous examples are options on

• Crack Spreads in the commodity markets:
The term Crack Spread refers to the price difference between crude oil and
refined products (such as heating oil, gasoline, or diesel), which are obtained
by "cracking" the crude oil during the refining process. A refiner faces the risk
of stagnation or even decline of prices of finished products on the market, while
prices of the raw material increase. In order to hedge against this risk, Spread
Options are popular instruments. A detailed description of Crack Spreads and
the possibilities of hedging the corresponding risk, including the use of Crack
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Figure 2.1: Exercise region for a Spread option with strike K

Spread Options, can be found in [29].

• Spark Spreads in the energy markets:
The difference between the price that a power producer receives for selling
electricity and the cost of the fuels he needs in order to produce it, is called
Spark Spread. The general relevance of Spark Spread Options in the energy
derivatives market is discussed in Deng and Oren [39], some stochastic mod-
elling approaches for energy-commodity prices, particularly applied on Spark
Spread Options, are presented in Deng [37].

• Credit Spreads in the fixed income markets:
A Credit Spread is the difference in yield between two bonds, which is due
to different credit qualities. Consider a defaultable bond with yield Y ∗ until
maturity T and an identical riskless bond with yield Y during the same period.
A contract having a payoff which depends on the difference Y ∗ − Y is called a
Credit Spread Option. In [41], Credit Spread Options are discussed and a tree
algorithm to price these kind of derivatives is suggested.

• Index Spreads in the equity markets:
The difference between the values of two different stock market indices. Taking
a position in a contract having a payoff that depends on the connection between
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Figure 2.2: Payoff diagram for spot prices S(1) and S(2) of the underlyings and strike K = 5.

whole indices rather than on single shares, corresponds to betting on the large
movements in the markets.

Sometimes, Spread Options are traded on exchanges (e.g., some types of Crack
Spread Options are traded on the New York Mercantile Exchange (NYMEX)).
The vast majority is traded over-the-counter (OTC), though. Due to their wide
applicability indicated above, there is a remarkable demand for this class of options.
However, appropriate pricing is difficult: on the one hand, there is the issue of
postulating an adequate model for the spread between two stochastic processes
with a non-trivial dependence structure, and on the other hand, there is the need
for accurate and efficient techniques in order to determine explicit prices.

2.1 Pricing methods for Spread Options

Carmona and Durrleman [25] provide a comprehensive survey of the available liter-
ature and discuss the theoretical and computational problems associated with the
different approaches. Based on a bivariate log-normal process, as a model for the
two underlying asset prices, several approaches have been presented: For instance,
the approximation formula suggested by Kirk [57] turned out to be very popular in
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practice. A further analytic approximation formula is due to Carmona and Durrle-
man [26]; they derive a family of lower as well as an upper price bound, which can
yield a very tight interval. Venkatramanan and Alexander [85] suggest a method
where they obtain the price of a Spread Option as the sum of the prices of two
compound options, one of which is to exchange vanilla Call Options on the two
underlying assets and the other one is to exchange the corresponding Put Options.
Other methods are, e.g., due to Pearson [69], Deng et al. [38], Borovka et al. [21],
or Bjerksund and Stensland [19].

The available literature on Spread Option valuation for general models, i.e., with-
out the assumption of a bivariate log-normal process, is rather sparse. The ansatz
proposed by Dempster and Hong [36] was the first efficient method applicable to
non-Gaussian models. They extended the Fast Fourier transform technique of Carr
and Madan [27] (see sect. 2.1.2) to a multi-factor setting, providing applicability
for instance to many models of the affine jump-diffusion type. Analogously to the
idea of integrating by Riemann sums, they calculate the Spread Option price by
forming tight upper and lower bounds for the integral over a non-polygonal region
(the exercise region in logarithmic variables is non-linear).

Hurd and Zhou [51] have proposed a more elegant method as an extension of the
logic of Carr and Madan [27]: the core of their procedure is the representation they
derive of the Fourier transform of the Spread Option payoff function in terms of the
complex Gamma function.

Most recently, Caldana and Fusai [24] have generalized the work of Bjerksund
and Stensland [19] by deriving a lower bound approximation for the Spread Option
price, which can be applied for any model, where the joint characteristic function
of the log-returns of the two underlying assets is available in closed form. Basically,
the idea of this approach is the following: Define the event

A :=

ω :
S

(1)
T(

S
(2)
T

)α > ek

E
[(
S

(2)
T

)α]
 ,

and consider the lower bound of the Spread Option payoff(
S

(1)
T − S

(2)
T −K

)+

≥
(
S

(1)
T − S

(2)
T −K

)
1A.

Extending the work of Bjerksund and Stensland [19], who worked in the bivari-
ate GBM setting, Caldana and Fusai [24] suggest how to approximate the exact
Spread Option price by Ck,α

K (0) := e−rTE[(S
(1)
T −S

(2)
T −K)1A] (for a suitable choice

8



of the parameters k and α) for any stock price model, where the joint character-
istic function of (logS

(1)
T , logS

(2)
T ) is available in closed form. In particular, they

give a representation of the approximate Spread Option price Ck,α
K (0) in terms of

a Fourier inversion formula. Their bound has turned out to be very accurate and
easily computable. The authors argue that their method improves upon the one due
to Hurd and Zhou [51] on some points: First, unlike the Hurd and Zhou method,
which is not applicable to Exchange Options (i.e., in the case K = 0), their pro-
cedure also copes with this case. Second, Hurd and Zhou’s technique requires the
assumption that the characteristic function of the log-asset price process Xt factor-
izes as E[eiuXT |X0] = eiuX0E[eiu(XT−X0)]. This assumption rules out mean-reverting
asset models, while there is no issue for Caldana and Fusai’s method regarding such
models. Third, Caldana and Fusai’s technique involves only a univariate Fourier
inversion, rather than a bivariate one, as is the case for Hurd and Zhou’s approach.
This improves the computational speed considerably, considering a single contract.

However, the advantages provided by the Caldana and Fusai method are not
really relevant for our purposes: The asset models considered in this thesis are not
of mean-reverting nature (only the volatility processes are, but this is not an issue).
Moreover, we want to study "real" Spread Options rather than Exchange Options.
The improvement in terms of the computational speed may be true for a single
contract; however, as is also admitted by the authors, considering the valuation of
many contracts, Hurd and Zhou’s method will still be superior. They implement an
interpolation procedure, where the valuation of every further contract only requires
very little time, while the computational cost for Caldana and Fusai’s lower bound
increases linearly in the number of evaluated contracts. Furthermore, even if it has
turned out to be very accurate for a number of asset models, Caldana and Fusai still
propose a procedure to determine price bounds, while Hurd and Zhou aim for the
exact price. For these reasons, we are going to follow the technique suggested by
Hurd and Zhou [51]. Now we want to explain this method in detail and previously
also give a general introduction to transform-based option pricing.

2.1.1 Fourier transform methods for option pricing

Let St = S0e
Xt be the price process of a risky asset. The arbitrage-free pricing

paradigm based on the Fundamental Theorem of Asset Pricing means that the
price at time zero of a claim with terminal payoff f(ST ) is the discounted expected
value of this payoff, where the expectation is taken with respect to an equivalent
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martingale measure, i.e.,

V0 = e−rTEQT [f(ST )] = e−rT
∫ ∞
−∞

f(x)ρT (x)dx,

where ρT denotes the density of the log-returns under the risk-neutral pricing mea-
sure QT . However, in many models, this density ρT is not available; the probability
density of a Lévy processes, for example, is typically not known in closed form. On
the other hand, the characteristic function of the process is in most cases available
in terms of elementary functions. Therefore, one wants to work with representa-
tions, where the distribution of the log-returns appears in terms of its characteristic
function. The concrete idea is the following: If the payoff f(ST ) can be represented
as an integral of the form

∫
g(z)(ST )zdz, and the moment generating function1 ΦXT

of the log-returns is available in closed form, then we can write

V0 = e−rT
∫
g(z)EQT [(ST )z]dz

= e−rT
∫
g(z)EQT [ezXT ](S0)zdz

= e−rT
∫
g(z)ΦXT (z)(S0)zdz.

Hence, the price can be determined by a one-dimensional (numerical) integration.
The desired representation of the payoff can, e.g., be obtained by using the Fourier
transform.

The d-dimensional Fourier transform of a function f is, for v ∈ Rd, defined by

F{f(x)}(v) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eiv>xf(x) dx1 · · · dxd.

The function f can be "recovered" by the corresponding Fourier inversion, which is
given by

f(x) =
1

(2π)d

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−ix>v F{f(x)}(v) dv1 · · · dvd.

2.1.2 Using the Fast Fourier transform for option pricing: The method
of Carr and Madan

In order to explain the idea, we first consider a Call Option on the underlying asset
price St, with maturity T and strike K. Let k := logK, sT := logST , and denote

1We use the moment generating function here for ease of notation; due to the relationship Φ(z) = φ(−iz) to the
characteristic function, the same lines can of course analogously be written in terms of φ.
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the risk-neutral density of the log-asset price by qT . The following strategy is along
the lines of Carr and Madan [27]:

The value of the Call Option at time zero is given by

CT (k) = e−rT
∫ ∞
−∞

(ex − ek)+qT (x)dx = e−rT
∫ ∞
k

(ex − ek)qT (x)dx.

However, the Call price as a function in k is not (square-)integrable, since

lim
k→−∞

CT (k) = lim
k→−∞

e−rT
∫ ∞
k

(ex − ek)qT (x)dx

= e−rT
∫ ∞
−∞

exqT (x)dx

= EQT [e−rTST ]

= S0.

L1-integrability of a function is however a sufficient condition for its Fourier trans-
form to exist. The idea in order to avoid this problem is to modify the Call-pricing
function in terms of choosing some α > 0 and working with the "damped" function

cT (k) := eαkCT (k)

instead. If we now consider the Fourier transform of cT (k), which can be written as

ψT (v) =

∫ ∞
−∞

eivkcT (k)dk

=

∫ ∞
−∞

eivkeαk
(
e−rT

∫ ∞
k

(ex − ek)qT (x)dx

)
dk

=

∫ ∞
−∞

e−rT qT (x)

∫ x

−∞
(ex+αk − e(1+α)k)eivkdk dx

=

∫ ∞
−∞

e−rT qT (x)

(
e(α+1+iv)x

α + iv
− e(α+1+iv)x

α + 1 + iv

)
dx

=
e−rT

(α + iv)(α + 1 + iv)

∫ ∞
−∞

qT (x)e(α+1+iv)xdx

=
e−rT

α2 + α− v2 + iv(2α + 1)

∫ ∞
−∞

ei(−i(α+1)+v)xqT (x)dx

=
e−rTφT (v − i(α + 1))

α2 + α− v2 + iv(2α + 1)
, (2.1)

then we can represent the option price by Fourier inversion of ψT (v) (and undamp-
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ing) as

CT (k) = e−αkcT (k) = e−αk
1

2π

∫ ∞
−∞

e−ivkψT (v)dv

=
exp(−αk)

π

∫ ∞
0

e−ivkψT (v)dv, (2.2)

where we have a closed-form expression of ψT (v) at hand by (2.1). The last equality
holds due to the fact that option prices are real, which means that the imaginary
part must vanish, which in turn is the case if the integrand is odd in its imaginary
part (for any integration limits symmetrical to the origin). On the other hand, its
real part is even, which implies that the integrals over the two half-axes coincide.

In order to obtain an explicit price for the Call Option, we are only left with
the evaluation of the integral in (2.2). An easy way for approximating this integral
is to apply the rectangle rule: Fix N , choose a step size η, set vj = η(j − 1) for
j = 1, . . . , N , and use the approximation

CT (k) ≈ exp(−αk)

π

N∑
j=1

e−ivjkψT (vj)η. (2.3)

The Fast Fourier transform (FFT) is an efficient algorithm for computing a discrete
Fourier transform (DFT), i.e., a sum of the form

X(k) =
N∑
j=1

e−i 2π
N

(j−1)(k−1)x(j) for k = 1, . . . , N, (2.4)

for an input vector x = (x1, . . . , xN), and where N is (typically) a power of 2.
The FFT algorithm reduces the number of operations necessary to compute (2.4)
from O(N2) (corresponding to computing all the sums directly) to O(N logN).
Particularly due to the fact that, with respect to (2.3), this would correspond to
obtaining prices for a whole range of N different strike values in a very fast way
(i.e., with just one evaluation of the very efficient FFT), it is appealing to use the
Fast Fourier transform.

The possibility of evaluating discrete Fourier transforms in an efficient way has
been crucial for many applications; FFT algorithms are among the most important
algorithms in various applied fields. There are many different versions of FFT
algorithms available, however, the original2 formulation due to Cooley and Tukey

2In fact, it has been discovered that a similar idea had already been used by Gauss at the beginning of the
nineteenth century, but was not really noticed for a long time (cf. Heidemann et al. [44]).
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[32] is the most common one, which can certainly be seen as a cornerstone in
numerical analysis. The idea of this algorithm is as follows: It is a classical "divide-
and-conquer" procedure. Recall that we want to compute the DFT

X(k) =
N−1∑
n=0

x(j)e−i 2π
N
jk for k = 0, . . . , N − 1, (2.5)

which corresponds to N2 operations. The algorithm is designed for values of N that
are a power of 2. We introduce the notation

w := e−i 2π
N .

Let us now, as an illustrative example, consider the case N = 4. Then we can write
the system of equations given in (2.5) in matrix form as

X(0)

X(1)

X(2)

X(3)

 =


w0 w0 w0 w0

w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9



x(0)

x(1)

x(2)

x(3)

 , (2.6)

where the matrix-vector multiplication corresponds to N2 = 16 operations. By
noting that w0 = 1, w2 = −1, as well the general periodicity of the exponent of w
modulo N , we can write the Fourier matrix in (2.6) in a simplified form as

F4 :=


1 1 1 1

1 w1 w2 w3

1 w2 1 w2

1 w3 w2 w1

 .

The crucial point is now that F4 can be factorized as

F4 =


1 0 1 0

0 1 0 w1

1 0 −1 0

0 1 0 −w1




1 w0 0 0

1 w2 0 0

0 0 1 w0

0 0 w0 w2




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (2.7)

where the last matrix is a permutation matrix, which "resorts" a vector by first
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listing all even components, then followed by all the odd ones, i.e.,
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



x(0)

x(1)

x(2)

x(3)

 =


x(0)

x(2)

x(1)

x(3)

 .

We notice from equation (2.7) that F4 is of the form

F4 =

(
I2 W2

I2 −W2

)(
F2 0

0 F2

)(
permutation

matrix

)
,

where I2 is the (2-dim.) identity matrix, W2 =

(
1 0

0 w1

)
, and F2 =

(
1 w0

w0 w2

)
.

Therefore, we have reduced the number of operations from N2 = 16 to 2
(
N
2

)2
=

N2

2
= 8.
The factorization we just performed on F4, where we split the problem into two

smaller problems of half size, resulting in a reduction of the number of computational
operations, is generally applicable; it yields the recursion

Fn =

(
In/2 Wn/2

In/2 −Wn/2

)(
Fn/2 0

0 Fn/2

)(
permutation

matrix

)
,

whereWn/2 = diag(w0, w1, . . . , wn/2−1). Hence, the problem of a DFT of size N can
be fully reduced to two DFT’s, each of size N/2. Since we assumed that N = 2m,
after m = log2N steps, a DFT of size N can be reduced to N Fourier transforms,
each of size 1. Due to the fact that the Fourier transform of a single number is the
number itself (see equation (2.5) for N = 1), the algorithm terminates trivially. This
means that there is a total of log2N "stages" of computation. Each of them requires
O(N) complex operations. Therefore, the FFT algorithm reduces the number of
operations required to evaluate a DFT from O(N2) to O(N logN).

Let us now get back to the aim of evaluating the option by applying the FFT in
order to compute (2.2): We choose a step size λ in the "strike-world" and consider
the values ku for k along a regularly-spaced grid, which are given by

ku = −b+ λ(u− 1), for u = 1, . . . , N,
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where b = Nλ
2
. Consequently, for u = 1, . . . , N , we get

CT (ku) ≈
exp(−αku)

π

N∑
j=1

e−ivj(−b+λ(u−1))ψT (vj)η,

=
exp(−αku)

π

N∑
j=1

e−iλη(j−1)(u−1)eibvjψT (vj)η.

(2.8)

Thus, if we choose the "Fourier grid" and the "strike grid" such that

λη =
2π

N
,

then we can apply the FFT (cf. (2.4)) on (2.8) and we obtain as a result all the
values CT (ku), for u = 1, . . . , N .

An alternative approach regarding the integrability issue

The approach explained above makes use of a damping factor eαk and works with
the damped Call pricing function cT (k) = eαkCT (k), since the function CT (k) itself
is not in L1. Another way of circumventing the lacking integrability is to work with
time-values instead of damped option prices. This idea is also due to Carr and
Madan [27]. They suggested it, since they noticed that for short maturities and
strike values far from the at-the-money level, the integrand in (2.2) becomes highly
oscillatory, and hence difficult to integrate numerically. We want to explain this
technique here, since we will come back to this idea at a later stage. The particular
strategy is the following:

The time-value of an option is defined as the option price subtracted by the
intrinsic value. It can be interpreted as the premium an investor pays over the
current exersice value of the option. Naturally, the time-value decays exponentially
to zero when approaching maturity. Let now

zT (k) := e−rTEQT
[(
eXT − ek

)+
]
−
(
1− ek

)+

be the time-value of a Call Option as a function in the log-strike k, and denote its
Fourier transform by

ζT (v) := F{zT (k)}(v) =

∫ ∞
−∞

eivkzT (k)dk. (2.9)
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Exploiting the fact that the discounted price process is a QT -martingale, we get

zT (k) = e−rT
∫ ∞
−∞

ρT (x)(ex − ek)1{k≤x} dx− (1− ek)1{k≤0}

= e−rT
∫ ∞
−∞

ρT (x)(ex − ek)(1{k≤x} − 1{k≤0}) dx.

If we plug this representation of zT (k) into (2.9) then we can write3

ζT (v) = e−rT
∫ ∞
−∞

ρT (x)

(∫ x

0

eivk(ex − ek)dk
)
dx

= e−rT
∫ ∞
−∞

ρT (x)

(
(1− ex)
1 + iv

+
iex

(1 + iv)v
− iex+ivx

(1 + iv)v

)
dx

= e−rT
(

1− EQT [ST ]

1 + iv
+

i

(1 + iv)v

(
EQT [ST ])−

∫ ∞
−∞

ρT (x)ei(v−i)xdx

))
=

e−rT

1 + iv
− 1

1 + iv
+

i

(1 + iv)v
− ie−rTφT (v − i)

(1 + iv)v

=
e−rT

1 + iv
+

−v + i

(i− v)(−iv)
− e−rTφT (v − i)

v(v − i)

= e−rT
(

1

1 + iv
− erT

iv
− φT (v − i)

v(v − i)

)
.

With this closed-form expression of the Fourier transform at hand, we can again
proceed as before; we obtain option prices by numerically inverting the Fourier
transform (with possible use of the FFT analogously to above).

2.1.3 The method of Hurd and Zhou for Spread Option pricing

Hurd and Zhou [51] have extended the idea of Carr and Madan, i.e, the application of
the FFT for option-pricing, to two dimensions: they propose an efficient strategy for
the pricing of Spread Options. The core of their work is the following theorem, which
gives a representation of the Fourier transform of the payoff of a Spread Option in
terms of the complex Gamma function. Since we will follow their strategy for our
numerical studies in chapter 5, we also want to explain the proof of this central
result in detail.

Theorem 2.1: Let P (x1, x2) = (ex1 − ex2 − 1)+ be the payoff function of a Spread
Option with strike 1. Then, for any vector of real numbers ε = (ε1, ε2) with ε2 > 0

3In order to ensure the feasibility of all the rearrangements, particularly, of the interchanging of the integration
order, the following technical condition must be assumed: ∃ α > 0 :

∫∞
−∞ ρT (x)e(1+α)xdx < ∞. However, as

contrary to the strategy with the damping factor, we do not need to choose a specific value of α in order to obtain
the option price.
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and ε1 + ε2 < −1 and x = (x1, x2), the payoff function has the representation

P (x) =
1

(2π)2

∫ ∫
R2+iε

eiuxtP̂ (u)d2u, (2.10)

where

P̂ (u) =
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

Here, Γ(z) denotes the complex Gamma function defined for Re(z) > 0 by the
integral Γ(z) =

∫∞
0
e−ttz−1dt.

Proof. Let ε2 > 0 and ε1 + ε2 < −1. Application of the Fourier inversion theorem
on eεxP (x) (the factor eεx ensures that this is in L2(R2)) yields

eεxP (x) = F−1{F{eεxP (x)}(u)}(x)

=
1

2π

∫
R

∫
R
eiux

∫
R

∫
R
e−iuxeεxP (x)du1du2dx1dx2

=
1

2π

∫
R2

eεxei(u+iε)x

∫
R2

e−i(u+iε)xP (x)d2xd2u

=
1

2π
eεx
∫
R2+iε

eiux

∫
R2

e−iuxP (x)d2xd2u

= eεx
(

1

2π

∫
R2+iε

eiuxg(u)d2u

)
.

Therefore,

P (x) =
1

2π

∫
R2+iε

eiuxg(u)d2u,

where

g(u) =

∫
R2

e−iuxP (x)d2x.

The payoff function P (x) = (ex1 − ex2 − 1)+ means that the domain of the integral
can be restricted to {x = (x1, x2) : x1 > 0, ex2 < ex1 − 1}, and the function g can
be hence be written as

g(u) =

∫ ∞
0

e−iu1x1

(∫ log(ex1−1)

−∞
e−iu2x2(ex1 − ex2 − 1)dx2

)
dx1

=

∫ ∞
0

e−iu1x1(ex1 − 1)1−iu2

(
1

−iu2

− 1

1− iu2

)
dx1.
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Substituting e−x1 by z leads to

g(u) =
1

(1− iu2)(−iu2)

∫ 1

0

ziu1

(
1− z
z

)1−iu2 dz

z
.

Using the Beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

which is defined on {a, b ∈ C : Re(a),Re(b) > 0} as

B(a, b) =

∫ 1

0

za−1(1− z)b−1dz,

and the property Γ(z) = (z−1)Γ(z−1) of the Gamma function, the function g can
further be written as

g(u) =
Γ(i(u1 + u2)− 1)Γ(−iu2 + 2)

(1− iu2)(−iu2)Γ(iu1 + 1)

=
Γ(i(u1 + u2)− 1)(−iu2 + 1)(−iu2)Γ(−iu2)

(1− iu2)(−iu2)Γ(iu1 + 1)

=
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

If we assume that the process X has independent and stationary increments (this
asssumption will hold true for all models studied in chapter 4), we can use (2.10)
to obtain the following representation of the price of a Spread Option:

Spr(X0;T ) = E[e−rTP (XT )|F0]

= e−rTE
[

(2π)−2

∫ ∫
R2+iε

eiuXt
T P̂ (u)d2u

∣∣∣∣F0

]
= (2π)−2e−rT

∫ ∫
R2+iε

eiuXt
0E
[
eiu(XT−X0)t

∣∣∣F0

]
P̂ (u)d2u

= (2π)−2e−rT
∫ ∫

R2+iε

eiuXt
0E
[
eiuXt

T

]
P̂ (u)d2u

=
1

(2π)2
e−rT

∫ ∫
R2+iε

eiuXt
0φXT (u)P̂ (u)d2u. (2.11)

For a numerical evaluation of the double integral in 2.11, the authors of [51] suggest
to follow the logic of Carr and Madan (see section 2.1.2) in the following way: In
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the two-dimensional setting it means an approximation of the double integral by
choosing a truncation interval [−ū, ū], as well as a number of steps N (we will always
use powers of 2, which is a convenient choice and ensures that N is even, what will
be assumed implicitly for some rearrangements in the sequel) within this interval,
and evaluating the double sum over the corresponding lattice

Γ = {u(k) = (u1(k1), u2(k2)) | k = (k1, k2) ∈ {0, . . . , N − 1} × {0, . . . , N − 1}},

with ui(ki) = −ū+ kiη, and where η is the step size, resulting from the choice of ū
and N , by η = 2ū/N . The reciprocal lattice is given by

Γ∗ = {x(l) = (x1(l1), x2(l2)) | l = (l1, l2) ∈ {0, . . . , N − 1} × {0, . . . , N − 1}},

with xi(ki) = −x̄+ liη
∗, and where η∗ = 2π/(Nη) = π/ū and x̄ = Nη∗/2.

In particular, under the assumption that the vector of the logarithmic initial values
of the underlying asset is lying on the lattice Γ∗, i.e., that there exists a vector
l∗ = (l∗1, l

∗
2) ∈ {0, . . . , N − 1}2 such that X0 = x(l∗) ∈ Γ∗, for S0 = eX0 , a simple

application of the rectangle method on the double integral in (2.11) yields

Spr(X0;T ) ≈ η2e−rT

(2π)2

N−1∑
k1=0

N−1∑
k2=0

ei(u(k)+iε)x(l∗)tφXT (u(k) + iε)P̂ (u(k) + iε). (2.12)

The exponential function in (2.12) can be written as

ei(u(k)+iε)x(l∗)t = e−εx(l∗)tei(u1(k1)x1(l∗1)+u2(k2)x2(l∗2))

= e−εx(l∗)t · exp (i ((−ū+ k1η)(−x̄+ l∗1η
∗) + (−ū+ k2η)(−x̄+ l∗2η

∗)))

= e−εx(l∗)t · exp(i((−Nη
2

+ k1η)(−π
η

+ l∗1η
∗) + (−Nη

2
+ k2η)(−π

η
+ l∗2η

∗)))

= e−εx(l∗)t · eiπN · e−iπ(k1+k2+l∗1+l∗2) · e
2πi
N

(k1l∗1+k2l∗2)

= e−εx(l∗)t · (−1)iπ(k1+k2+l∗1+l∗2) · e2πikl∗t/N ,

which leads to the representation

Spr(X0;T ) ≈ (−1)l
∗
1+l∗2e−rT

(
ηN

2π

)2

e−εx(l∗)t

[
1

N2

N−1∑
k1,k2=0

e
2πikl∗t
N h(k)

]
, (2.13)

where

h(k) = (−1)k1+k2φXT (u(k) + iε)P̂ (u(k) + iε).
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The term in square brackets on the right hand side of equation (2.13) is now of
a form such that it corresponds exactly to that value of a double inverse discrete
Fourier transform of the function h, which corresponds to l∗. The double inverse
discrete Fourier transform can be efficiently computed by using the FFT algorithm,
and is a standard-routine in all well-known software packages. In MATLAB, for
instance, the function4 ifft2() applied on the N ×N -dimensional input array H,
where H[k1, k2] := h(k) for k = (k1, k2) ∈ {0, . . . , N − 1}2, yields the output array
Y , where, for l = (l1, l2) ∈ {0, . . . , N − 1}2,

Y [l] =
1

N2

N−1∑
k1,k2=0

e
2πiklt

N H[k].

In this way, one gets prices for Spread Options with strike 1 and log-initial val-
ues X(1)

0 , X
(2)
0 lying on Γ∗. The assumption regarding the strike is, in fact, not a

curtailment of generality: For a general strike K ∈ R, we can write

Spr(X0;T ) = E[e−rT (S
(1)
T − S

(2)
T −K)+]

= K · e−rTE[(S
(1)
T /K − S(2)

T /K − 1)+]

= K · e−rTE[(eX
(1)
T − eX

(2)
T − 1)+],

which means that by setting X(1) := log(S(1)/K) and X(2) := log(S(2)/K) instead
of log(S(1)) resp. log(S(2)), i.e., by using "moneyness" instead of the absolute values
of the underlying assets, we can use the pricing procedure for a Spread Option with
strike 1 as described above and simply have to multiply the resulting option price
by K.

The assumption that both of the log-initial values X(1)
0 and X(2)

0 exactly lie on
the lattice in the Fourier-space, is of theoretical nature, though. In practice, if
one wants to use this method for the pricing of arbitrary Spread Option contracts
(as we will do in chapter 5), one has to think about how to deal with any given
set {S(1)

0 , S
(2)
0 , K}. We want to use two different approaches: The first one is to

choose the lattice Γ, i.e., the lattice in the Fourier-space, not just by specifying
any truncation interval and the number of steps, but rather exactly in such a way
that the log-initial values fall on grid points of Γ(∗). In particular, we do this in
the following way: We first fix the number of steps N and the truncation-interval
"roughly" as [−ū0, ū0]. Then, for each of the two assets, we keep stretching the

4One needs to be careful when using these built-in functions: in different software packages, Fourier
transforms are implemented with different parameters. In MATHEMATICA, for example, the function
InverseFourier corresponds to MATLAB’s ifft; however, exact correspondence is only given if one uses the
option InverseFourier[...,FourierParameters->{1,-1}].
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interval until it is exactly of such a length that one of the N points in this interval
matches the log-initial value of the corresponding asset. It means that, in general,
we will get different truncation intervals along the two axes, i.e. [−ū(i), ū(i)], for
i = 1, 2. The following algorithm describes this strategy:

Algorithm 2.1:

FOR i = 1 : 2

ū(i) = ū0;
FOR j = 1 : N

ūtemp := π j−N/2
X

(i)
0

;

IF ūtemp > ū0

ū(i) = ūtemp;
BREAK;

END
END
IF ū(i) == ū0

PRINT "Error: Choose a smaller value for ū0.";
END

END

Proof. Having run this algorithm, for i = 1, 2, there is a j ∈ 1, . . . , N such that

η∗(i) =
π

ū(i)
=

π

π

(
j−N/2
X

(i)
0

) =
X

(i)
0

j −N/2
.

Therefore,

xi(j) = −x̄+ jη∗(i)

= η∗(i)(−N/2 + j)

=
X

(i)
0

(j −N/2)
(j −N/2)

= X
(i)
0 .

For a single Spread Option contract with arbitrary characteristics {S(1)
0 , S

(2)
0 , K}, we

can hence evaluate the price. However, if we want to price a set of different contracts
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(think of a calibration of model parameters, for instance, where one usually needs
to calculate prices for a lot of different options at the same time), we will need to
run the whole selection procedure of the lattice as well as the Fourier inversion for
every single contract. This coincides with an increase in computation time.
Therefore, as an alternative approach, we want to exploit that, in fact, with every
Fourier inversion we get a whole N×N matrix of prices, corresponding to contracts
with characteristics {ex1(l1), ex2(l2), K}, for l = (l1, l2) ∈ {0, . . . , N − 1}2. Given
all those prices, we can approximate any contract with S

(i)
0 ∈ [min{exi(li) : li ∈

{0, . . . , N − 1}},max{exi(li) : li ∈ {0, . . . , N − 1}}], for i = 1, 2.
Figure 2.3 is intended to emphasize that, by interpolating between grid points,

we get a whole surface of prices (by only one (double) Fourier inversion); values
between lattice points are approximated linearly here. For our numerical studies in
chapter 5, in order to get a better fit, we will approximate the values of the contracts
in question by fitting a third-degree polynomial to the values in the neighbourhood,
which is made up of the 3× 3 matrix of the closest lattice points.

Figure 2.3: Surface of Spread Option prices for corresponding log-initial values X(1)
0 and X(2)

0 .
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Chapter 3

Theory of Lévy Processes and
Market Modelling

3.1 Lévy Processes

3.1.1 A review of general theory

Definition 3.1 (Lévy Process): A stochastic process X = (Xt)t≥0 on a probability
space (Ω,F ,P) is called a Lévy process, if it satisfies the following conditions:

1. X0 = 0, P-a.s.

2. The increments are independent:
For any increasing series of times t0, t1, . . . , tn, the random variables Xt0 , Xt1−
Xt0 , . . . , Xtn −Xtn−1 are independent.

3. The increments are stationary:
For any t1, t2, h ≥ 0, it holds that Xt1+h − Xt1

d
= Xt2+h − Xt2. In particular,

the distribution of the increment Xt+h −Xt does not depend on t.

4. X is stochastically continuous:
∀ε > 0 : lim

h→0
P [|Xt+h −Xt| ≥ ε] = 0.

The requirement of stochastic continuity means that the probability of a discon-
tinuity in the trajectory, at a given concrete time t, equals zero, i.e., jumps only
occur randomly. Brownian motion is the only Lévy process having indeed continu-
ous sample paths.

The distribution of the increments of a Lévy process cannot be chosen arbitrarily;
there are constraints on feasible choices, in particular, the distribution of Xt has to
be infinitely divisible. The formal statement is given below in Proposition 3.1.
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Definition 3.2 (Infinite divisibility): A probability distribution µ is called infinitely
divisible if for any n ∈ N, n ≥ 2, there exist independent and identically distributed
random variables Y1, . . . , Yn such that the distribution of the sum Y1 + . . . + Yn is
given by µ.

Proposition 3.1 (Infinite divisibility and Lévy processes (cf. [31], Prop. 3.1)): Let
X = (Xt)t≥0 be a Lévy process. Then for any given time t, the distribution of Xt is
infinitely divisible. Conversely, for any given infinitely divisible distribution µ there
exists a Lévy process X such that the distribution of X1 is given by µ.

Two cornerstones of the theory of Lévy processes are the so-called Lévy-Khintchine
formula (see Theorem 3.2), which describes the distributional properties of a Lévy
process by giving a representation of its characteristic function, and the Lévy-Itō
decomposition (see Theorem 3.1), which gives indication of the structure of the
trajectories of the process.

Definition 3.3 (Lévy measure): For a Lévy process X = (Xt)t≥0 with jumps ∆Xt =

Xt −Xt−, its Lévy measure ν is defined as

ν(A) := E[#{t ∈ (0, 1] : 0 6= ∆Xt ∈ A}], ∀A ∈ B(R).

Definition 3.4 (Poisson random measure): Let (Ω,F ,P) be a propability space and
define MN(R× [0,∞)) := {µ : µ is a measure on R× [0,∞); µ(A× I) ∈ N, ∀A ∈
B(R), ∀I ∈ B([0,∞))}. A mapping N : Ω → MN(R × [0,∞)) is called a Poisson
random measure if

1. ∀A ∈ B(R), ∀I ∈ B([0,∞)):
N(A× I) is a Poisson random variable with parameter ν(A) · λ(I)

(λ denoting the Lebesgue measure, ν(A) <∞).

2. ∀A1 × I1, A2 × I2 ∈ B(R)× B([0,∞)) with A1 × I1 ∩ A2 × I2 = ∅:

• N(A1 × I1) and N(A2 × I2) are independent,

• N(A1 × I1 ∪ A2 × I2) = N(A1 × I1) +N(A2 × I2).

Definition 3.5 (Compensated Poisson random measure): Let N be a Poisson ran-
dom measure. Then its compensated measure Ñ is defined as

Ñ(A× I) := N(A× I)− ν(A) · λ(I).

Theorem 3.1 (Lévy-Itō decomposition; cf. [3], Prop. 3.7): Let X = (Xt)t≥0 be a
Lévy process on Rd. Then there exists a vector γ ∈ Rd, a d-dimensional Brownian
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motion BA with covariance matrix A, and an independent Poisson random measure
N on Rd\{0} × B(R+) such that, for each t ≥ 0,

Xt = γt+BA
t +

∫
|x|<1

xÑ(dx, [0, t]) +

∫
|x|≥1

xN(dx, [0, t]). (3.1)

Theorem 3.2 (Lévy-Khintchine representation; cf. [77], Thm 8.1): Let µ be an
infinitely divisible distribution on Rd. Then, for z ∈ Rd, the characteristic function
of µ is given by φ(z) = eψ(z), where

ψ(z) = −1

2
〈z, Az〉+ i〈γ, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}

)
ν(dx), (3.2)

for a vector γ ∈ Rd, a symmetric positive-semidefinite d×d matrix A, and a measure
ν on Rd satisfying

ν({0}) = 0 and
∫
Rd

(
|x|2 ∧ 1

)
ν(dx) <∞. (3.3)

The function ψ(z) is called the characteristic exponent of µ and its representation
in (3.2) by γ,A, and ν is unique.

Conversely, for any vector γ ∈ Rd, symmetric positive-semidefinite d× d matrix
A, and measure ν satisfying (3.3), there exists an infinitely divisible distribution µ
whose characteristic exponent is given by (3.2).

Corollary 3.1: For a real-valued Lévy process X = (Xt)t≥0, the characteristic
function is given by

φXt(z) = E[eizXt ] = etψ(z), z ∈ R,

where

ψ(z) = −1

2
az2 + iγz +

∫ ∞
−∞

(
eizx − 1− izx1{|x|≤1}

)
ν(dx),

for a ≥ 0, γ ∈ R, and a Lévy measure ν.

From the Lévy-Itō decomposition (3.1) we see that any Lévy process X is, in fact, a
combination of a Brownian motion with drift and a sum of (possibly infinitely many)
independent compound Poisson processes. The drift vector γ and the covariance
matrix A of the Brownian motion describe the continuous part of the process. The
jump component of X is described by the two other terms in (3.1), which are
characterized by the Lévy measure ν of X: the first integral, describing the small
jumps, can be interpreted as a superposition of independent compensated Poisson
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processes, while the second integral, describing the large jumps of X, is a compound
Poisson process. The number of jumps with an absolute value greater than one is
finite, which we particularly know from (3.3). The triplet [γ,A, ν] consisting of the
linear drift, the Gaussian covariance matrix and the Lévy measure, respectively,
which uniquely determines the distribution of a Lévy process, is called characteristic
triplet or Lévy triplet of X. If the Brownian component is zero, we call X a Lévy
jump process, if the drift term is zero as well, X is called a Lévy pure jump process.

In addition to infinite divisibility, another property classifying probability distribu-
tions and, in further consequence, Lévy processes, is represented by the concept of
selfdecomposability. Selfdecomposable distributions will play a crucial role when we
investigate OU type SV models, due to the fact that the class of selfdecomposable
distributions and the class of stationary distributions of OU processes (which are
driven by general Lévy processes) coincide. However, let us proceed step by step.

Definition 3.6 (Selfdecomposability): Let µ be a probability measure on R and
denote its characteristic function by φµ. Then µ is said to be selfdecomposable or
to belong to Lévy’s class L, if for all t ∈ R and all c ∈ (0, 1) there exists a probability
measure µc on R, with corresponding characteristic function φµc, such that

φµ(t) = φµ(ct)φµc(t). (3.4)

Remark: Selfdecomposability in terms of random variables means that given a ran-
dom variable X, for any c ∈ (0, 1) there exists a random variable Xc, independent
of X, such that

X
d
= cX +Xc.

Remark: A Lévy process corresponding to a selfdecomposable distribution is called
a selfdecomposable process.

Selfdecomposability is a stronger concept than infinite divisibility. More specifically,
one important relation can be formulated as follows:

Proposition 3.2 (cf. [77], Prop. 15.5): All probability measures µ ∈ L are infinitely
divisible, i.e., for any n ≥ 1 there exists a characteristic function φn such that

φ(t) = (φn(t))n ∀t ∈ R.

Furthermore, for any c ∈ (0, 1), µc in (3.4) is uniquely determined and infinitely
divisible.
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The converse statement, that is a necessary and sufficient condition for a probability
measure to be selfdecomposable, is given in the next proposition.

Proposition 3.3: A probability measure µ on R is selfdecomposable, if and only if
it is infinitely divisible with Lévy triplet [γ,A, ν], where γ ∈ R, A ≥ 0, and the Lévy
measure ν is of the form

ν(dx) =
k(x)

|x|
dx,

for a nonnegative function k(x), which is increasing on (−∞, 0) and decreasing on
(0,∞).

For a proof of Proposition 3.2 and Proposition 3.3, and a comprehensive discussion
of the concept of selfdecomposability of probability measures in general, see the
book of Sato [77]. Further interesting remarks on the class L and its relevance in
various contexts are explained by Jurek [53]. One critical characteristic of the class
L is given in the subsequent theorem, which is due to Jurek and Vervaat [54]: the
relation between selfdecomposability and Lévy processes.

Theorem 3.3: A random variable X has law in L if and only if X has a represen-
tation of the form

X =

∫ ∞
0

e−tdZt,

where Z = (Zt)t≥0 is a Lévy process.
In this case, the resp. Lévy measures ν and ρ of X and Z1 are related by

ν(dx) =

∫ ∞
0

ρ(etdx)dt.

We call Z the background driving Lévy process or, in short, the BDLP correspond-
ing to X.

We now also formulate the above relation in terms of the corresponding Lévy den-
sities (cf. [6]), since we will use it in this form at a later stage, that is in the context
of constructing Ornstein-Uhlenbeck processes.

Proposition 3.4: Suppose that the Lévy density f corresponding to ν is differen-
tiable. Then the Lévy measure ρ has a density g, and f and g are related by

g(x) = −f(x)− xf ′(x). (3.5)
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Using the notation

ν+(x) := ν([x,∞)) =

∫ ∞
x

f(y)dy (3.6)

for the upper tail integral of the Lévy density, in Barndorff-Nielsen [5] it is derived
from the above formulae that

ν+(x) = xg(x).

The inverse function of ν+, denoted by ν−1, is given by

ν−1(x) = inf{y > 0 : ν+(y) ≤ x}. (3.7)

3.1.2 Increasing Lévy processes: Subordinators

A Lévy process taking values only in the positive half-plane is called a subordinator.
The non-negativeness implies that sample paths of such a process are increasing,
as is formally stated in Proposition 3.5. The terminology refers to the use of this
class of Lévy processes as random models for time evolution in order to time-change
other (independent) Lévy processes; the theoretical basis of this technique is given
in Theorem 3.4. A process modified in such a way is called subordinate to the
original one.

Proposition 3.5 (cf. [31], Prop. 3.10): Let X = (Xt)t≥0 be a Lévy process on R.
The following conditions are equivalent:

(i) Xt ≥ 0 a.s. for some t > 0.

(ii) Xt ≥ 0 a.s. for all t > 0.

(iii) Sample paths of X are a.s. non-decreasing:

s ≤ t⇒ Xs ≤ Xt a.s.

(iv) The process X has a non-negative drift, no diffusion component, and only
positive jumps of finite variation. In other words, the characteristic triplet
[γ,A, ν] of X satisfies γ ≥ 0, A = 0, and ν((−∞, 0]) = 0,

∫∞
0

(x∧1)ν(dx) <∞.

Theorem 3.4 (Subordination of a Lévy process; cf. [31], Thm. 4.2): Fix a proba-
bility space (Ω,F ,P). Let X = (Xt)t≥0 be a Lévy process on Rd with characteristic
exponent ψ(u), characterized by the triplet [γ,A, ν]. Moreover, let S = (St)t≥0 be
a subordinator with Laplace exponent l(u) and triplet [b, 0, ρ]. Then the process
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Y = (Yt)t≥0 defined by Yt(ω) := XSt(ω)(ω), for all ω ∈ Ω, is again a Lévy process.
Its characteristic function is given by

φYt(u) = E[eiuYt ] = etl(ψ(u)).

This means that the characteristic exponent of Y is obtained by composition of the
Laplace exponent of S with the characteristic exponent of X. The characteristic
triplet [γY , AY , νY ] of Y is given by

γY = bγ +

∫ ∞
0

ρ(ds)

∫
|x|≤1

xpXs (dx),

AY = bA,

νY (B) = bν(B) +

∫ ∞
0

pXs (B)ρ(ds), ∀B ∈ B(Rd),

where pXt denotes the probability distribution of X.

In the book of Bertoin [18], a comprehensive chapter is dedicated to the theory
of subordinators. We refer to this work for a thorough discussion of this class of
Lévy processes from a theoretical viewpoint. Our special interest in subordinators is
due to their importance as building blocks for Lévy-based models in mathematical
finance. In particular, we will use them as driving processes for the Stochastic
Volatility models considered in chapter 4.

3.1.3 Selected examples of Lévy processes

The two fundamental members of the class of Lévy processes are Brownian motion
and the Poisson process. We have seen that any Lévy process can be represented
as a superposition of a Brownian motion and (possibly infinitely many) Poisson
processes. We now want to briefly present two examples of special Lévy processes,
namely, the inverse Gaussian process and the normal inverse Gaussian process. We
will consider these processes later on as driving processes in different models. In
order to be able to study them, we first devote our attention to some theory about
the occurring distributions in this context.
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The inverse Gaussian distribution

The inverse Gaussian (IG) distribution is a two-parametric distribution family. The
density function of the IG(δ, γ) distribution, for δ > 0, γ ≥ 0, is given by1

fIG(x; δ, γ) =
δ√
2π

exp(δγ)x−3/2 exp

(
−1

2
(δ2x−1 + b2x)

)
, x > 0.

It is a special case of the generalized inverse Gaussian distribution familyGIG(λ, δ, γ),
corresponding to λ = −1

2
. Regarding the moments, the mean is given by δ/γ, the

variance by δ/γ3. The characteristic function of the IG(δ, γ) law is of the form

φIG(u) = exp
(
−δ
(√
−2iu+ γ2 − γ

))
. (3.8)

A scaling property satisfied by the inverse Gaussian distribution is as follows: Let
X ∼ IG(δ, γ). Then, for c > 0, cX ∼ IG(

√
cδ, γ/

√
c).

The inverse Gaussian law is well known as the distribution of first passage times
of Brownian motions. The particular relation (in our notation) can be formulated
as follows: Let W = (Bt + γt)t≥0 be a standard Brownian motion with drift. Then
the time τ (δ,γ) := inf{t > 0 : Wt = δ}, i.e. the random time when W reaches the
positive level δ for the first time, has an IG(δ, γ) distribution.

Literature on the inverse Gaussian distribution can, for instance, be found in terms
of the book of Chhikara and Leroy Folks [28], or the work of Seshadri [80].

The normal inverse Gaussian distribution

The normal inverse Gaussian (NIG) distribution is defined as a normal variance-
mean mixture taking the IG law as mixing distribution. In particular, let σ2 ∼
IG(δ,

√
α2 − β2) and ε ∼ N(0, 1), independent of σ2. Let X be a random variable

such that the conditional distribution of X given σ2 is the normal distribution, with
E[X|σ2] = µ+ βσ2 and Var[X|σ2] = σ2. We take X = µ+ βσ2 + εσ. Then X is an
NIG(α, β, δ, µ) distributed random variable and its density function is given by

fNIG(x;α, β, δ, µ) =
αδ

π

K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

exp{δ
√
α2 − β2 + β(x− µ)},

where Kλ denotes the modified Bessel function2 of the third kind and order λ.
The parameter assumptions are 0 ≤ |β| ≤ α, µ ∈ R and δ > 0. Apart from the

1An alternative parameterization (often) found in the literature, is given by IG(µ, λ) for µ = δ/γ, λ = δ2.
2For a comprehensive survey of Bessel functions and its properties, see Abramowitz and Stegun [1].
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location-scale parameters µ and δ, the parameters α and β are responsible for the
concrete rate of the decay of the tails ("tail-heaviness") and the degree of asymmetry,
respectively. In general, the NIG distribution is skewed. Only the choice β = 0

corresponds to a symmetric density function around µ. The larger the value of |β|,
the more distinct is the skewness. Regarding the asymptotic behaviour, we call the
NIG distribution semi-heavy tailed; for x → ±∞ and a constant c, the specific
relation is given by

fNIG(x;α, β, δ, µ) ∼ c|x|−3/2 exp(−α|x|+ βx).

In particular, the tails tend to zero much slower than it is the case for the normal
distribution.

In fact, the NIG distribution is a special case of the class of generalized hyperbolic
(GH) distributions. The density function of the GH law is defined by

fGH(x;λ, α, β, δ, µ) = a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2

)/2 ·

·Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp (β(x− µ)) ,

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − β2)

.

Specifically, for λ = −1/2, we have

fNIG(x;α, β, δ, µ) = fGH(x;−1/2, α, β, δ, µ).

The dissertation of Prause [72] is an extensive work on generalized hyperbolic distri-
butions. It comprises the analysis of the probability-theoretical properties, as well
as approaches for parameter estimation and models based on the GH law in the
context of financial derivative pricing and risk measures. We refer to the deriva-
tion of the moment generating function of the GH distribution carried out therein
(Lemma 1.13). Using the well-known relations K1/2(z) =

√
π/2z−1/2 exp(−z) and

Kλ(z) = K−λ(z) for the modified Bessel function (listed, e.g., in Schoutens [78]),
we then easily get the corresponding result for the NIG distribution: The moment
generating function (mgf) of the NIG distribution is given by

Φ(u;α, β, δ, µ) = exp
(
δ
(√

α2 − β2 −
√
α2 − (β + u)2

)
+ µu

)
.
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Let X(1) ∼ NIG(α, β, δ1, µ1) and X(2) ∼ NIG(α, β, δ2, µ2) be two independent
random variables, and define X := X(1) +X(2). Then

ΦX(u) = E[euX ] =
(
E[euX

(1)

]
)(

E[euX
(2)

]
)

= (ΦX(1)(u)) (ΦX(2)(u))

= e

(
δ1(
√
α2−β2−

√
α2−(β+u)2)+µ1u

)
e

(
δ2(
√
α2−β2−

√
α2−(β+u)2)+µ2u

)

= exp
(

(δ1 + δ2)
(√

α2 − β2 −
√
α2 − (β + u)2

)
+ (µ1 + µ2)u

)
,

which corresponds to the mgf of an NIG(α, β, δ1 +δ2, µ1 +µ2) distribution. The mgf
characterizes a distribution uniquely. Therefore, we may conclude that the NIG
distribution family is closed under convolution; in particular,

NIG(α, β, δ1, µ1) ∗NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2). (3.9)

The inverse Gaussian process

The inverse Gaussian process with parameters δ and γ is defined as the process X =

(Xt)t≥0 such that the increments are independent and inverse Gaussian distributed;
in particular, Xt+h − Xt ∼ IG(δh, γ). Equivalently, we can define the process
"directly" as a "first-hitting-time process" by

Xt := inf{s > 0 : Bs + γs ≥ δt},

where B = (Bt)t≥0 is a standard Brownian motion. The IG(δ, γ) process is a
subordinator; its Lévy triplet is given by [b, 0, νIG], with drift component

b =
δ

γ
(2N(γ)− 1),

where N(·) denotes the Normal distribution function, and the Lévy measure

νIG(dx) = (2π)−1/2δx−3/2 exp

(
−1

2
γ2x

)
1{x>0}dx.

The normal inverse Gaussian process

A normal inverse Gaussian process X = (Xt)t≥0 is a Lévy process with NIG dis-
tributed increments. Property (3.9) of the NIG distribution implies that for an
NIG process X it holds

Xt+s −Xt ∼ NIG(α, β, δs, µs).

Hence, in particular, Xt has an NIG(α, β, δt, µt) distribution.
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An NIG process can be obtained by using an IG subordinator for the time evolu-
tion of a Brownian motion. Therefore, it is quite easy to simulate such processes
(cf. [31], Algorithm 6.12).

The NIG process is a pure jump process. In Barndorff-Nielsen [4], the Lévy-
Khintchine formula is derived; the Lévy triplet is given by [γ, 0, ν], where

γ =
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx,

ν(dx) =
δα

π

exp(βx)K1(α|x|)
|x|

dx.

From a theoretical point of view, a detailed discussion of the NIG distribution
and NIG processes can be found in the work of Barndorff-Nielsen [4, 5], where
these processes were also introduced originally. Numerous authors have discovered
the potential of the NIG law to fit financial data and suggest its application for
various modelling approaches; amongst others, Lillestøl [59] has used the NIG

distribution in the context of risk analysis, Albrecher and Predota [2] have proposed
NIG processes to price Asian Options and Asmussen et al. [74] have studied the
pricing of further exotic options on the basis of NIG models.

3.2 Processes of Ornstein-Uhlenbeck type

3.2.1 Gaussian Ornstein-Uhlenbeck processes

The Gaussian Ornstein-Uhlenbeck (OU) process is the unique (up to indistinguisha-
bility) solution of the SDEdXt = κ(θ −Xt)dt+ σdBt,

X0 = x0.

In order to calculate the explicit solution, we first set Yt = Xt − θ. This does
not have an impact on the differential, since dYt = dXt, but gives us a simplified
expression for the SDE: dYt = −κYtdt+ σdBt,

Y0 = y0.
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As a next step, we set Zt := eκtYt. Using the product rule then gives

dZt = κeκtYtdt+ eκtdYt + d(eκt)dYt

= eκt(κYtdt− κYtdt+ σdBt)

= σeκtdBt,

and integration yields

Zt − Z0 = σ

∫ t

0

eκsdBs.

Changing back the substituted variables gives

Yt = e−κtY0 + σe−κt
∫ t

0

eκsdBs,

and finally

Xt = Yt + θ = θ + e−κt(X0 − θ) + σe−κt
∫ t

0

eκsdBs.

This representation of the process as an Itō-integral with respect to a Brownian
motion reveals that X = (Xt)t≥0 has continuous trajectories. Moreover, X is
a Gaussian process, i.e., for any finite set of points in time t1, ..., tn, the vector
(Xt1 , ..., Xtn) has a multivariate normal distribution. Because of these features and
its mean-reversion property, the Gaussian OU process has proved attractive for var-
ious applications. One famous example is the approach chosen by Vasicek [84] in
order to model the term structure of interest rates.

However, there are many fields - including volatility modelling - where the be-
haviour of the Gaussian OU process does not make it a convenient modelling-
instrument. BM is the only Lévy process having continuous sample paths (a.s.).
Therefore, we now want to generalize the "classical" version of an OU process stud-
ied above, by substituting the BM as driving noise by a general Lévy process. This
approach will, in further consequence, enable us to prescribe certain characteristics
of the process, such as positivity or the marginal distribution.
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3.2.2 General Ornstein-Uhlenbeck processes

Definition 3.7 (Ornstein-Uhlenbeck process): Let Y = (Yt)t≥0 be the solution of
the SDE dYt = −λYtdt+ dZt,

Y0 = y0,
(3.10)

where Z = (Zt)t≥0 is a Lévy process. Then Y is called an OU process driven by Z;
in turn, Z is termed the Background Driving Lévy process (BDLP) corresponding
to the process Y .

Proceeding with the same strategy as above in the Gaussian case, we obtain the
explicit solution

Yt = e−λtY0 + e−λt
∫ t

0

eλsdZs. (3.11)

Having the intention to model volatility, one’s particular interest is in stochastic
processes having sample paths with values in the positive half-plane. From (3.11) it
is clear that Yt is (a.s.) a strictly positive process, given that we choose y0 > 0 and
take a subordinator for Z. That is exactly the approach of the Barndorff-Nielsen
and Shephard model, which will be investigated in detail in chapter 4.

The following two propositions deal with important distributional properties of OU
processes.

Proposition 3.6 (cf. [31], Prop. 15.1): Let L = (Lt)t≥0 be a Lévy process with
characteristic triplet [γ,A, ν]. The distribution of Yt, defined by equation (3.10), is
infinitely divisible for every t and has characteristic triplet [γYt , A

Y
t , ν

Y
t ] with

AYt =
A

2λ

(
1− e−2λt

)
,

γYt =
γ

λ

(
1− e−λt

)
+ Y0e

−λt,

νYt (B) =

∫ eλt

1

ν(ξB)
dξ

λξ
∀B ∈ B(R),

where ξB is a shorthand notation for {ξx : x ∈ B}.

Proposition 3.7 (cf. [31], Prop. 15.4): Let L = (Lt)t≥0 be a Lévy process with
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characteristic triplet [γ,A, ν]. If

E [log(1 + |L1|)] =

∫
|x|≥1

log |x|ν(dx) <∞ (3.12)

then the OU process Y defined in (3.10) has a stationary distribution µ which is
selfdecomposable, has characteristic exponent

ψY (u) = lim
t→+∞

ψYt (u) = lim
t→+∞

∫ t

0

ψ(ueλ(s−t))ds,

and Lévy triplet [γY , AY , νY ] with γY = γ
λ
, AY = A

2λ
, and

νY (B) =

∫ ∞
1

ν (ξB)
dξ

λξ
∀B ∈ B(R).

Conversely, for every selfdecomposable distribution µ there exists a Lévy process L
such that µ is the stationary distribution of the OU process driven by L.

In other words, Proposition 3.7 contains two important informations: First, (3.12) is
a necessary and sufficient condition for the defining SDE of the OU process to have
a stationary solution. Second, Lévy’s class L of all selfdecomposable probability
measures can, in this context, also be seen as the class of all stationary distributions
of OU processes. If we specify an arbitrary selfdecomposable law µ, we can hence
always construct an OU process having stationary distribution µ.

3.3 Market modelling

3.3.1 The Black-Scholes model

By far the most famous market model, is the model suggested by Black and Scholes
[20] and Merton [64]. For the formulation of this model and, in particular, the
derivation of the associated Black-Scholes formulae for the pricing of European Call
and Put Options, Merton and Scholes also received the Nobel Prize for Economic
Sciences in 1997 (Black had passed away in 1995) [82]. Their model consists of
a risk-free bond with price process S0 = (S0

t )0≤t≤T , where S0
t = ert for a riskless

interest rate r, and a risky asset whose price dynamics are modelled as

dSt = St(µdt+ σdBt), (3.13)

with a deterministic drift µ ∈ R, volatility of the asset price σ > 0, a given initial
asset price S0 > 0, and where B = (Bt)0≤t≤T is a standard Brownian motion. The
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explicit solution of the stochastic differential equation (3.13) is given by

St = S0 exp

((
µ− σ2

2

)
t+ σBt

)
, 0 ≤ t ≤ T.

There is most probably no textbook on mathematical finance, which does not con-
tain a detailed chapter about the Black-Scholes model. We are hence not going
into any further detail about the properties of this model. We only want to sketch
its very well-known shortcomings, which have motivated the development of the
market models discussed in the sequel. Logarithmic returns in the Black-Scholes
model are normally-distributed; the distribution of real return data, however, shows
a certain skewness, as well as tails that are much heavier than those of a Gaussian
distribution. Moreover, the model cannot describe the so-called leverage-effect ; this
term refers to the empirically observed phenomenon that large downward move-
ments in asset prices coincide with upward moves in volatility. Considering the
implied volatility curve as a function in strike (that value σ, which is the unique
solution resulting from equating the Black-Scholes price of a liquidly-traded vanilla
option with its market price, is called "implied volatility"), one observes volatility
smiles and smirks, that is implied volatility is not constant as a function in all other
parameters, which should be the case, however, if the model described the market
correctly. The observation that there are periods of high volatiliy alternating with
periods of low volatility, or, as Mandelbrot [61] put it, "large changes tend to be
followed by large changes - of either sign - and small changes tend to be followed
by small changes", is referred to as volatility clustering. The Black-Scholes model,
having a constant volatility parameter, naturally does not offer this feature either.

Considering the just explained examples of so-called stylized facts (i.e., empirical
properties of asset returns), which the Black-Scholes model cannot properly cope
with, the model has gradually been altered in various ways. One approach has
been to add jumps to the asset price process. The resulting Jump-Diffusion models,
however, are still not capable of dealing with, for instance, the leverage effect or
volatility clustering. The point is that in the Black-Scholes model, as well as in
these Jump-Diffusion models of the type3

dSt = St−(µdt+ σdBt + dJt), (3.14)

with a Brownian motion B and a Compound Poisson process J (independent of B),
such as, e.g., the models of Merton (see [65]) or Kou (see [58]), the volatility σ of
the asset price process S = (St)t≥0 is assumed to be constant. Now we move on

3The notation St− denotes the left-sided limit at time t.
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to models where a stochastic process σ = (σt)t≥0 is introduced in order to model
the diffusion coefficient itself as a (positive) stochastic process. The process σ can
then be interpreted as the instantaneous volatility of the underlying asset, i.e., σt
represents the volatility of the returns over the infinitesimal interval (t, t+ dt).

3.3.2 Stochastic Volatility models

A general (solely diffusion-based) Stochastic Volatility model is of the form

dSt = St(µdt+ σtdBt), (3.15)

and is determined by the specific choice of the process σ. Note, however, that σ is
latent; only the price process S can be observed on the market, volatility itself is
not empirically observable.

The Heston model

The most common diffusion-based Stochastic Volatility model is the model intro-
duced by Heston [45], where σ is chosen as a Cox-Ingersoll-Ross (CIR) process.
This choice guarantees for positiveness and entails the feature of mean-reversion,
which particularly ensures that the model-volatility does not tend to infinity in the
long run. The CIR process (also called square root process) was introduced in Cox
et al. [33] in the context of the study of term structures of interest rates. They
actually modelled the short rate via these dynamics. The CIR process Y = (Yt)t≥0

is defined as satisfying the SDEdYt = κ(θ − Yt)dt+ σ
√
YtdBt,

Y0 = y0,
(3.16)

where B = (Bt)t≥0 is a standard Brownian motion, σ > 0, κ > 0, θ > 0, and y0 > 0.
Under these positivity-assumptions for all parameters and a positive starting value,
the process stays nonnegative. It can be shown that Y almost surely never touches
zero, if the parameters are chosen such that 2κθ ≥ σ2. A main characteristic of
the CIR process is the mean-reverting drift term. If Yt > θ it pulls the process
downwards, whereas if Yt < θ we have a positive drift. Consequently, the solution
will oscillate around the value of θ. We therefore interpret θ as the long-term mean
and κ as the rate of the mean-reversion.
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The model of Heston defines the dynamics of the price process as

dSt = St(µdt+
√
VtdBt), (3.17)

where the volatility process satisfies the SDE

dVt = κ(θ − Vt)dt+ σ
√
VtdB

V
t . (3.18)

As already mentioned before, we interpret V as the instantaneous variance process.
In general, the Brownian motion B driving the asset price process and the BM BV

driving the volatility process, are correlated in the sense of the relation

BV
t = ρBt +

√
1− ρ2Wt,

where W is a BM independent of B. We can see ρ ∈ [−1, 1] as instantaneous
correlation coefficient, since the differential of the quadratic covariation is given by

d[B,BV ]t = d[B, ρB +
√

1− ρ2W ]t = d([B, ρB]t + [B,
√

1− ρ2W ]t)

= d(ρ[B,B]t +
√

1− ρ2[B,W ]t) = ρdt.

Choosing a negative value for ρ incorporates a leverage-effect in the model. More-
over, the model accounts for volatility clustering and long-term volatility smiles
and skews. However, the short-term behaviour of implied volatiliy has turned out
not to be modelled in a realistic way. This issue has been tackled by additionally
introducing jumps in stochastic volatiliy models.

The Bates model

Bates [13] has proposed to add an independendent jump component to the price-
dynamics of the Heston model. In particular, the Bates model in its original for-
mulation is defined via

dSt = St(µdt+
√
VtdBt + dJt),

dVt = κ(θ − Vt)dt+ σ
√
VtdB

V
t ,

where J = (Jt)0≤t≤T is a compound Poisson process with log-normally distributed
jump sizes (anything else defined as in the model of Heston). The jump-size distri-
bution can also be varied. In any case, the Bates model does have the capability to
generate appropriate implied-volatility patterns even for short maturities.
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An alternative approach to combine stochastic volatility modelling and jumps, is
to introduce jumps in the evolution of volatility. Positive Ornstein-Uhlenbeck pro-
cesses, i.e. OU processes driven by subordinators, have been considered to model
volatility in this context. In this way, volatility and jumps are not independent in
the model, but rather combined in a non-trivial way. Hence, the model gets more
sophisticated offering a more realistic structure, especially from a qualitative point
of view. In particular, it provides the possibility to make an a priori choice of the
stationary distribution of the volatility process. Moreover, such models turn out to
be of very tractable nature and allow many explicit calculations. We are now going
to examine models of this type in detail in the subsequent chapter.
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Chapter 4

Ornstein-Uhlenbeck Type Stochastic
Volatility Models

4.1 The Barndorff-Nielsen and Shephard Model

The Barndorff-Nielsen and Shephard model (henceforth BNS model) is a continuous
time market model consisting of a risk-free asset S0 with price process S0

t = ert,
where r denotes the constant risk-free interest rate, and a stock S = (St)0≤t≤T , with
St = eXt and where the logarithmic asset price process X = (Xt)0≤t≤T satisfies

dXt = (µ+ βσ2
t )dt+ σtdWt + ρdZλt. (4.1)

The volatility process σ2 is defined as a process of Ornstein-Uhlenbeck type, i.e., σ2
t

satisfies

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0. (4.2)

For the parameters we assume µ, β ∈ R, λ > 0 and ρ ≤ 0. W = (Wt)0≤t≤T is a
standard Brownian motion and Z = (Zλt)0≤t≤T is a Lévy subordinator, independent
from W . We assume further that Z has no deterministic drift term. We denote the
density of its Lévy measure by w(x). The cumulant transform κ(θ) = logE[eθZ1 ] is
then of the form

κ(θ) =

∫
R+

(eθx − 1)w(x)dx. (4.3)

The process S lives on a probabibility space (Ω,A,P), with a filtration F =

(Ft)0≤t≤T satisfying the usual hypotheses. In particular, we take F to be the usual
augmentation of the filtration generated by the pair (W,Z).
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We obtain the dynamics of the asset price process simply by application of Itō’s
Lemma. Setting f(x) = ex yields

dSt = St−

(
dXt +

1

2
d[X]t

)
.

The differential of the quadratic variation process of X is given by

d[X]t =(µ+ βσ2
t )

2dtdt+ σ2
t d[W,W ]t + ρ2d[Z,Z]λt

+ 2σt(µ+ βσ2
t )dtdWt + 2ρ(µ+ βσ2

t )dtdZλt + 2ρσtdWtdZλt

=σ2
t dt+ ρ2d[Z,Z]λt.

Hence, we have

dXt +
1

2
d[X]t =

(
µ+

(
β + 1

2

)
σ2
t

)
dt+ σtdWt + ρdZλt + 1

2
ρ2d[Z,Z]λt

=
(
µ+

(
β + 1

2

)
σ2
t

)
dt+ σtdWt + (eρdZλt − 1),

where the second step follows from looking at the terms ρdZλt + 1
2
ρ2(dZλt)

2 as the
first two elements of the power series representation of eρdZλt , subtracted by the
element e0 = 1. This works, since the product of three or more differential forms of
a Lévy process, i.e. (dZλt)

n for n ≥ 3, equals zero due to the stochastic continuity
of the process. Expanding the last expression by ±λκ(ρ) yields the representation

dXt +
1

2
d[X]t =

(
µ+ λκ(ρ) +

(
β + 1

2

)
σ2
t

)︸ ︷︷ ︸
=:bt

dt+ (eρdZλt − 1− λκ(ρ)dt)︸ ︷︷ ︸
=:dMt

+σtdWt.

Now we can write the dynamics of the asset price in the BNS model in the form

dSt = St−(btdt+ σtdWt + dMt).

Since Z is a subordinator, i.e., increasing only in terms of jumps, forM = (Mt)0≤t≤T

we get the representation

Mt =
∑

0≤s≤t

(eρ∆Zλs − 1)− λκ(ρ)t. (4.4)

Moreover, M = (Mt)0≤t≤T is a martingale: By application of the Lévy-Khintchin
formula (given in (3.2)) and the power series representation of the exponential func-
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tion, we get

E[eρdZλt ] = ed(λt)
∫
R+ (eρx−1)w(x)dx

=
∞∑
n=0

(λdt · κ(ρ))n

n!

= 1 + λκ(ρ)dt,

since (dt)n = 0 for n ≥ 2. Hence, E[dMt] = 0.

The term βσ2
t in the drift of the log-price, i.e., the introduction of dependence

between the drift of the asset price and the volatility, is due to the fact that in
practice investors usually require a premium for the risk they take in comparison
to alternatively invest in riskless assets. Therefore, we want the drift to depend on
the volatility level.

Most authors choose the modified timing λt for the BDLP of the volatility pro-
cess. The reason for this choice is the intention to decouple the marginal distribution
and the autocorrelation structure: the marginal distribution of σ2

t is not affected by
the particular value of λ.

By means of the term ρZλt in the log-price process, a leverage-effect is incorpo-
rated in the model. Without this term, i.e., in the case where ρ = 0, there are jumps
in the volatility, the sample paths of the asset price are continuous, though. Since
Z is a subordinator, i.e., only exhibits positive jumps, for ρ 6= 0 (recall our general
assumption ρ ≤ 0), each jump in the volatility coincides with a downwards jump of
the log-asset price of proportional size. The capability of a market model to account
for this stylized-fact is a highly appreciated feature. Extensive investigations of the
financial markets’ behaviour have led to a broad consensus in the literature that
the arrival of some kind of negative information on the market triggers both, a fall
in stock prices as well as an increase in volatility (see, e.g., Nelson [67], Cont [30],
or Bouchaud et al. [22]). Therefore, in the sequel, we will always assume ρ < 0.
However, it should not be left unmentioned that in the work of Benth [14] the BNS
model in the no-leverage case is used as a part of their modelling approach for
commodity spot prices. They propose this model and outline the feasibility of their
choice in this context with an empirical study in terms of UK gas spot prices.

A possible extension of the model described above is to use a superposition of
OU processes for the volatility. In particular, for n independent OU processes σ2

j
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and weights wj such that
∑n

j=1wj = 1, we define the volatility process as

σ2(t) =
n∑
j=1

wjσ
2
j (t).

The BDLPs of the different processes σ2
j are not necessarily identically distributed.

Theoretical aspects of superpositions of OU processes are extensively studied in [9],
whereas the idea of adopting those results in the BNS model is considered in [6]
and [7]. The intention behind this idea is to gain more flexibility in the modelling of
the volatility, since in this way one could use some components σ2

j to represent the
variation over short periods, whereas other components could account for long-term
movements.

4.1.1 Moment generating function

Theorem 4.1: The moment generating function of the log-asset price process under
the BNS model as defined by (4.1) and (4.2) is given by

ΦXt(z) = exp

(
z(X0 + µt) +

(z2 + 2βz)(1− e−λt)σ2
t

2λ
+ λ

∫ t

0

κ(f(s, z))ds

)
,

where f is defined as the deterministic function

f(s, z) = ρz +
(z2 + 2βz)(1− e−λ(t−s))

2λ
.

For a proof of this result see [68, pg. 450], where the more general conditional
Laplace transform at time T given the information at time 0 ≤ t ≤ T , i.e., E[ezXT |Ft]
for z ∈ C, together with the corresponding strip of regularity, is derived. The
salient point of this derivation is the application of the so-called key formula, which
represents the result that for a subordinator Z with cumulant transform κ and a
left-continuos function f : R+ → C such that Re(f) ≤ 0, it holds that

E
[
exp

(∫ t

0

f(s)dZλs

)]
= exp

(
λ

∫ t

0

κ(f(s))ds

)
.

4.1.2 Equivalent martingale measures

In the original work of Barndorff-Nielsen and Shephard [7], it is shown that the
market model described above does not allow arbitrage. Using the Esscher trans-
formation technique, the existence of an equivalent martingale measure (EMM)
under which the asset price process is a local martingale is verified. The model
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specification, in particular, the combination of jumps and stochastic components,
however brings along the matter of an incomplete market model. In other words,
there exist infinitely many EMMs, under which the BNS model is free of arbitrage.
Therefore, we want to present the result of [7] in terms of the more general results,
which are due to Nicolato and Venardos [68], who derive the entire set of EMMs.
Additionally, they describe subclasses of this set, whose members preserve the struc-
ture of the model; that is under such an EMM the log-returns are again described
by a BNS model, even if the parameters are possibly different and stationary dis-
tributions might change. For the proofs we refer to their work. The notation in
Theorem 4.2 is adopted from Jacod and Shiryaev [52] and is to be understood in
the sense that on the basis of expression (4.4) we write

Mt =

∫
[0,t]×R

(eρx − 1)(µZ − νZ)(ds, dx)

= (eρx − 1) ? (µZ − νZ)t,

where µZ is the random measure associated with the jumps of Z and

νZ(ω, dt, dx) = λw(x)dxdt

is its compensator. Further, for a semimartingale X and a predictable X-integrable
process H, the stochastic integral is denoted by H •X.

The first theorem characterizes the set of equivalent martingale measures for the
BNS model, which we denote byM.

Theorem 4.2 ( [68], pg. 452): Let Q ∈ M. Then the density process Lt = dQ
dP |Ft

is given by the Doléans-Dade exponential process

Lt = E (ψ •W + (Y − 1) ? (µZ − νZ))t

= E
(∫ t

0

ψsdWs +

∫ t

0

∫
R+

(Y (s, x)− 1)(µZ − νZ)(dx, ds)

)
,

(4.5)

where ψ = (ψt)0≤t≤T is a predictable process and Y = Y (ω, t, x) is a strictly positive
predictable function such that∫ t

0

ds

∫
R+

(√
Y (s, x)− 1

)2

w(x)dx < +∞, P− a.s.

The function Y and the process ψ are linked by

µ+
(
β + 1

2

)
σ2
t + σtψt + λ

∫
R+

Y (t, x)(eρx − 1)w(x)dx− r = 0,
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dP⊗ dt almost surely.

An interpretation of (4.5) could be given in the sense that ψ and Y −1 can be seen as
the risk-premia associated with the diffusion component and the jump component
of the model, respectively. For any Q ∈ M, the discounted price process is a
Q-martingale and the model under Q is hence free of arbitrage. However, under
Q, the BDLP Z is neither necessarily again a Lévy process, nor does it have to
be independent of WQ. Therefore, the next theorem characterizes the subset of
M, which contains those EMMs, under which the structure of the BNS model is
preserved. We denote this set byM′ and use the following definitions:

Y ′ :=
{
y : R+ → R+

∣∣∣∣∫
R+

(
√
y(x)− 1)2w(x)dx < +∞

}
,

and for y ∈ Y ′ we set

wy(x) = y(x)w(x). (4.6)

We further define

κy(θ) =

∫
R+

(eθx − 1)wy(x)dx for Re(θ) < 0, (4.7)

which exists, since from the definitions above it follows that
∫
R+(1∧x)wy(x)dx <∞.

Theorem 4.3 ( [68], pg. 453): Let y ∈ Y ′. Then the process

ψt = σ−1
t

(
r − µ−

(
β +

1

2

)
σ2
t − λκy(ρ)

)
,

where κy is given in (4.7), is a.s. square integrable, i.e.,

P
(∫ T

0

ψ2
sds <∞

)
= 1

and Ly = (Lyt )0≤t≤T , where

Lyt = E(ψ •W + (y − 1) ? (µZ − νZ))t,

is a density process. The probability measure defined by

dQy = LyTdP
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is an EMM and the dynamics of X under Qy are given by

dXt =

(
r − λκy(ρ)− 1

2
σ2
t

)
dt+ σtdW

y
t + ρdZλt (4.8)

dσ2
t = −λσ2

t dt+ dZλt, (4.9)

where W y
t = Wt −

∫ t
0
ψsds is a Qy-Brownian motion and Zλt is a Qy-Lévy process.

Z1 has Lévy density wy(x) and cumulant transform κy(θ) given by (4.6) and (4.7)
respectively, and the processes W y and Z are independent under Qy. Hence, Qy ∈
M′.
Conversely, for any Q ∈ M′, there exists a function y ∈ Y ′ such that Q coincides
with Qy.

An investigation of the class of EMMs for the BNS model, in the sense of a discussion
of several optimal martingale measures, is carried out by Hubalek and Sgarra [47].
Specifically, they apply the Esscher martingale transform on some popular concrete
specifications, such as, e.g., the Γ-OU or the IG-OU BNS model. We want to
mention a particular result of their work, in order to exemplarily emphasize the
simplifications resulting from the model where the BDLP does not appear in the
dynamics of the asset-price: They show that in the no-leverage case, existence of the
resp. measures assumed, the minimal martingale measure1 coincides with both the
Esscher martingale transform for the exponential process eX as well as the Esscher
martingale transform for the linear process X̃, where S = S0e

X = S0E(X̃). In the
general case, all these measures are different.

4.1.3 Popular specifications

Strictly speaking, the BNS model corresponds to a class of models, where the actual
model is characterized by the particular choice of the BDLP. We now want to present
some concrete examples, which are prevalently used in the literature.

In terms of constructing the model, Proposition 3.7 shows that there are two
different ways we can pursue: First, we can specify the model by postulating the
characteristics of the BDLP. The second possibility is to choose a parametric form
for the one-dimensional marginal distribution of the OU process and work out the
characteristics of the BDLP implicitly specified thereby. This approach is, e.g,
described in [6] for the generalized inverse Gaussian distribution family, where the
inverse Gaussian, the positive hyperbolic, the reciprocal gamma, or the gamma

1The minimal martingale measure P̂ is defined as the unique equivalent local martingale measure, for a continuous
adapted process X, with the property that local P-martingales strongly orthogonal to the P-martingale part of X
are also local P̂-martingales (cf., e.g., Schweizer [79]).

47



distribution are prominent special cases thereof.
In case that the IG(δ, γ)-law is chosen for σ2(t), the upper tail integral ν+(x)

(as defined in (3.6)) is given by

ν+(x) =
δ√
2π
x−

1
2 e−

1
2
γ2x.

The BDLP of an IG-OU process can be represented as the sum of two independent
Lévy processes. In particular, we can write Z = Z(1) + Z(2), where Z(1) is an
IG( δ

2
, γ)-process, and Z(2) is the compound Poisson process

Z
(2)
t =

1

γ

Nt∑
n=1

x2
n, (4.10)

with a Poisson process N = (Ns)s≥0 having intensity δγ/2 and a sequence (xn)n≥0

of independent standard normally distributed random variables, which are indepen-
dent of Nt. Because of Z(1) being an IG-process, also Z is not a process of finite
activity. The Lévy measure of the positive real axis (ν+(0) in our notation) equals
+∞ and the IG-OU process hence jumps infinitely often in every finite time interval.
The IG-OU BNS model without leverage, i.e., the BNS model where the stationary
distribution of the variance process is the inverse Gaussian distribution and ρ = 0,
is particularly interesting in that the log-returns in this model are approximately
normal inverse Gaussian distributed (cf. [68]). We mentioned the ability of this
distribution to fit financial return data, which has been observed in the literature,
in section 3.1.3.

For the Γ(β, α)-law as marginal distribution of the OU process, the corresponding
tail integral is given by

ν+(x) = βe−αx,

where the inverse function can be computed anlytically and is given by

ν−1(x) = max

{
0,− 1

α
log

(
x

β

)}
. (4.11)

The BDLP Z of a Γ(β, α)-OU process is a compound Poisson process, i.e.,

Zt =
Nt∑
n=1

xn,

where N = (Ns)s≥0 is a Poisson process with intensity β and (xn)n≥0 is a sequence
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of indepent Γ(1, α)-distributed random variables, independent of Nt. Consequently,
the number of jumps of the Γ-OU process is finite in finite time intervals. If the
Γ-OU process is used as volatility process in the BNS model, then log returns are
approximately distributed according to a variance-gamma law.

For the NIG(α, β, 0, δ)-OU process, the BDLP is derived in [5] to be repre-
sentable as Z = Z(1) +Z(2) +Z(3). For ρ = β/α, the part Z(1) is a NIG(α, β, 0, (1−
ρ)δ)-process. The second part, Z(2), is of the form

Z
(2)
t =

1

2α(1− ρ2)
1
2

Nt∑
n=1

(x2
n − x̃2

n),

where Nt is a Poisson process with intensity [((1 − ρ)/(1 + ρ))
1
2 δα]−1 and (xn)n≥0

and (x̃n)n≥0 are sequences of independent standard normally distributed random
variables, independent of Nt. The process Z(3) is characterized in terms of its
Laplace transform, given by

E[eθZ
(3)
t ] = exp

(
tρδ

(
β

(
α− β
α + β

) 1
2

− (θ + β)

(
α− θ − β
α + θ + β

) 1
2

))
.

4.1.4 Simulation

In order to simulate from the variance process in the BNS model, i.e., from the
process σ2 defined by

σ2
t = e−λtσ2

0 + e−λt
∫ λt

0

esdZs, (4.12)

the most natural way would be to simulate from the BDLP and then approximate
the corresponding integral. However, since Z is a jump process, this might not be
the most accurate way. We therefore want to investigate alternative strategies. One
other approach is the use of infinite series representations. The particular result for
the integral in (4.12) we take from [6], where for a deterministic function f it is
given by ∫ t

0

f(s)dZ(s)
d
=
∞∑
i=1

ν−1
(ai
t

)
f(rit), (4.13)

with (ri)i≥0 being a sequence of indepent random variables, uniformly distributed on
[0, 1], and (ai)i≥0 being a (increasing) sequence of random variables, corresponding
to the arrival times of a Poisson process with intensity 1. The two sequences are
further assumed to be independent of one another. The representation in (4.13) is
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obtained as an immediate consequence of their previously proven result that, given
the sequences (ri)i≥0 and (ai)i≥0 as above, a Lévy process Z is representable in law
on the unit interval as

{Zs : 0 ≤ s ≤ 1} d
= {Z̃s : 0 ≤ s ≤ 1}, (4.14)

where

Z̃s =
∞∑
i=1

ν−1(ai)1[0,s](ri).

A general survey of various methods of generating series representations of Lévy
processes is presented by Rosiński [76]. The results above are based on the work
of Marcus [62] and Rosiński [75], where these techniques have generally been intro-
duced.

In case of the Γ-OU process (Γ(β, α) marginal law), we have seen that it is possible
to analytically invert the upper tail mass function. By combining (4.11) with (4.13)
and defining a Poisson process N = (Ns)s≥0 with intensity βλt (E[Ns] = βλts) and
arrival times b1 < b2 < . . . , we thus obtain

e−λt
∫ λt

0

esdZs
d
= e−λt

∞∑
i=1

ν−1
( ai
λt

)
eriλt

= e−λt
∞∑
i=1

max

{
0,− 1

α
log

(
ai
βλt

)}
eriλt

= − 1

α
e−λt

∞∑
i=1

1(0,1)

(
ai
βλt

)
log

(
ai
βλt

)
eriλt

= +
1

α
e−λt

∞∑
i=1

1(0,1)(bi) log(b−1
i )eriλt

=
1

α
e−λt

N(1)∑
i=1

log(b−1
i )eriλt.

A sample path of a Γ-OU process with parameter values β = 10, α = 100, λ = 10

and an initial volatility level of σ2
0 = 0.08, where we use 500 discrete time points for

simulation in the interval [0, 1], is given in Figure 4.1.
Since we adopted the BDLP in the dynamics of the asset price, we also need to

simulate the BDLP itself. The BDLP of the Γ-OU process is a compound Poisson
process (cf., e.g., Cont and Tankov [31]). Using (4.14) we proceed as above to
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Figure 4.1: Γ-OU process

simplify the infinite series representation of the process:

Zs
d
=
∞∑
i=1

ν−1(ai)1[0,s](ri)

=
∞∑
i=1

1(0,1)

(
ai
β

)(
− 1

α
log

(
ai
β

))
1[0,s](ri)

=
1

α

N(1)∑
i=1

log(c−1
i )1[0,s](ri),

where N now is a Poisson process with intensity β and arrival times c1 < c2 < . . . .
The cumulant function of the BDLP Z, which we need for the risk free dynamics

of the log-asset price process X, given in (4.8) as

dXt =

(
r − λκ(ρ)− 1

2
σ2
t

)
dt+ σtdWt + ρdZλt,

is given by

κ(θ) = logE[eθZ1 ] =
βθ

α− θ
, Re(θ) < α.

If we then simulate the increments of a standard Brownian motion and use, for
instance, an Euler-Maruyama scheme for X, we can finally simulate trajectories of
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the asset price.
A sample path simulated with this strategy, together with the volatility process

and its BDLP, is given in Figure 4.2. We use the parameter values from [68],
where the Γ-OU BNS model is calibrated to a data set of Call Options on the S&P
500 index. Their obtained values are β = 1.0071, α = 116.01, λ = 1.6787, ρ =

−4.4617, σ2
0 = 0.0658832. Further, we take a risk free interest rate of r = 0.5538%,

an initial asset price of S0 = 100, and use 500 time steps of size 0.002 for simulation
in the interval [0, 1].

Figure 4.2: Γ-OU BNS model

For the IG-OU process, the series in (4.13) converges slowly, since the decay of
ν−1(x) for x → ∞ is only of quadratic order in this case (cf. [6]). A more efficient
way to simulate from the IG-OU process has thus been suggested by Valdivieso,
Schoutens, and Tuerlinckx [83], who make use of a special path rejection technique.
Based on the decomposition of the BDLP given above, that is into an IG-process
and a compound Poisson process as in (4.10), and using an Euler discretization
scheme, they derive the following recursive scheme for simulation of an IG(δ, γ)-
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OU process:

σ2(k∆) = e−λ∆

σ2((k − 1)∆) + JM(∆) +

N(λ∆)∑
j=1

eTjYj

 .

The process JM is defined by

JM(t) = 2
M∑
j=1

min


(

δλT

2bjΓ
(

1
2

))2

,
ejv

2
j

γ2

 eλTuj1{Tuj≤t},

which converges a.s. and uniformly to the process J = (Jt)0≤t≤T with

Jt =

∫ λt

0

esdZ(1)
s ,

for M → ∞. In practice, values of M around 25000 are reasonable choices for the
truncation of the series (cf. Schoutens [78], pg. 111 & 116). The sequence (ej)j≥0

consists of i.i.d Exp(1) random variables, (uj)j≥0 and (vj)j≥0 are sequences of i.i.d
uniform([0, 1]) random variables, and b1 < b2 < . . . are arrival times of a Poisson
process with intensity 1. Mutual independence of the sequences is further assumed.
Figure 4.3 shows a sample path of an IG-OU process, simulated with this method.
The parameter values are chosen to be δ = 10, γ = 20, λ = 0.3, σ2

0 = 0.5, and
M = 25000.

Figure 4.3: IG-OU process
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Proceeding as above for the Γ-OU BNS model, we construct trajectories of the asset
price also in the IG-OU BNS model. The cumulant function of the BDLP in case
of the IG(δ, γ)-OU process is given by

κ(θ) =
δθ√
γ2 − 2θ

, Re(θ) <
γ2

2
. (4.15)

Again we use calibration results obtained in [68], where the parameters are given as
δ = 0.0872, γ = 11.98, λ = 2.4958, σ2

0 = 0.0642622, ρ = −4.7039. The initial asset
price is chosen to be S0 = 100, the risk free interest rate is 0.5538%. We simulate
50 sample paths over the interval [0, 1], with a step size of 0.002, corresponding to
500 discrete time points. The resulting picture is given in Figure 4.4.

Figure 4.4: IG-OU BNS model

4.2 Multi-dimensional SV models of OU type

In the fundamental paper of Barndorff-Nielsen and Shephard [7], section 6.5 is
dedicated to a first indication of the possible structure of a multivariate extension
of their model. It includes their suggestion of a factor approach for the integrated
covariance in terms of their model structure. This approach has subsequently been
followed by Hubalek and Nicolato [46]. However, a very elegant structure for a
multivariate generalization of the BNS model has been proposed by Pigorsch and
Stelzer [70]. We are now going to follow their approach and investigate their model,

54



particularly in the context of (Spread) Option pricing, in the remainder of this
thesis.

An even more general set-up, namely the supOU Stochastic Volatility model,
has been introduced in Barndorff-Nielsen and Stelzer [12]. This model is based
on describing the volatility by a positive semidefinite supOU process, as defined
and studied in Barndorff-Nielsen and Stelzer [11] as a multivariate extension of the
theory of superpositions of univariate OU processes, which have been introduced
in Barndorff-Nielsen [9]. The property, which makes the supOU model appealing
for financial modelling, is its feature of producing long-range dependence effects in
the volatility and in logarithmic returns. This behaviour, which is usually observed
in financial return data, cannot be reproduced by the model, which uses only one
positive semidefinite OU type process. Furthermore, in [12] a discussion of the
possibility of factor modelling within their framework is included and the model of
Hubalek and Nicolato [46] is finally explained to be a special case thereof.

4.2.1 Notation

We mainly adopt the notation used in [8]. By Mm,n(K) we denote the set of all
K-valued (m× n)-matrices. We abbreviatory write Mn in case m = n and K = R.
We denote the subspace of Mn of all symmetric matrices by Sn, the cone of all
posititve semidefinite symmetric matrices by S+

n , and the open cone of all positive
definite symmetric matrices by S++

n . For the identity matrix in Rn×n we write In.
σ(·) denotes the spectrum of an operator, being the set of eigenvalues for a matrix
A ∈Mn(R).

The addition of two sets A,B ⊆ R is defined by A+B := {a+ b : a ∈ A, b ∈ B}.
The Kronecker product of two matrices A ∈ Mm,n, B ∈ Mp,r is denoted by A⊗ B.
It is defined as the matrix C, where Cij = aij · B, i.e., every element of A is
multiplied by the matrix B. This means that C ∈ Mmp,nr. Further, 〈x, y〉 := x>y,
being the Euclidean scalar product on Rn. On Mn(R) we use the scalar product
〈A,B〉 := tr(A>B) and on Rn×Mn we define 〈(x1, Y1), (x2, Y2)〉 := x>1 x2+tr(Y >1 Y2).
We use the superscript asterisk to indicate adjoints of operators or matrices. For a
linear operator A : V → W , where V,W are vector spaces, the adjoint operator A∗

is the unique linear operator such that 〈Ax, y〉W = 〈x,A∗y〉V for all x ∈ V, y ∈ W .
For a matrix A ∈ Mm,n(C), one gets the adjoint matrix A∗ by taking the complex
conjugate of each entry and transposing the matrix.

Let X, Y be two stochastic processes with values in Md,m and Mn,p, respectively.
Let L be an Mm,n-valued semimartingale. Then

∫ t
0
XtdLtYt stands for the (d × p)
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random matrix, where the element in the i-th row and j-th column is given by∑m
k=1

∑n
l=1

∫ t
0
X ik
s Y

lj
s dL

kl
s .

4.2.2 The general multi-dimensional OU type SV model

As already mentioned above, the model we deal with has in principle been intro-
duced by Pigorsch and Stelzer [70]. However, they define the model with jumps
only occurring in the volatility process. We want to formulate the model in the
sense of Muhle-Karbe, Pfaffel, and Stelzer [66], who also include a jump component
in the asset price process itself, in order to make allowance for a leverage effect in
the model.

Aiming for the model formulation, we first address some of the theory, where the
model is based on. The crucial point of the model is the use of matrix subordinators
for the construction of the volatiliy process. The concept of matrix subordinators
has first been considered in Barndorff-Nielsen and Pérez-Abreu [10].

Definition 4.1: An Sd-valued Lévy process L = (Lt)t∈R+ is called matrix subordi-
nator, if for its increments it holds that Lt − Ls ∈ S+

d a.s. for all t ≥ s.

For a matrix subordinator L, we consider the characteristic function φL1(Z) =

E[ei tr(ZL1)], where Z ∈Md(R). In terms of the Lévy-Khintchine representation, the
characteristic exponent is of the form

ψL(Z) = i tr(γLZ) +

∫
S+d

(ei tr(XZ) − 1)κL(dX),

with a drift matrix γL ∈ S+
d and a Lévy measure κL on Sd, which satisfies the

conditions κL(Sd\S+
d ) = 0 and

∫
{‖X‖≤1} ‖X‖κL(dX) <∞.

We also consider the cumulant transform ΘL, which is, for Z ∈ Md(C), defined
by

ΘL(Z) = ψL(−iZ) = tr(γLZ) +

∫
S+d

(etr(XZ) − 1)κL(dX).

Analogously to the univariate BNS model, the volatility process will be defined
as a process of Ornstein-Uhlenbeck type. However, in the multivariate case we are
dealing with matrix-valued OU type processes. Such processes have been introduced
by Barndorff-Nielsen and Stelzer [8], in the light of the general study of processes
of finite variation, which take values in the space of positive semidefinite matrices.

The crucial idea of generalising OU processes to matrix valued processes, is to
identify Md(R) with Rd2 . In this context, we will use a vectorisation operator
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denoted by vec: Md(R) → Rd2 , which is the bijective linear operator that stacks
the columns of a matrix below one another.

Definition 4.2: Let L = (Lt)t∈R be a Lévy process with values in Md(R) and let
A : Md(R)→Md(R) be a linear operator. A solution of the SDE

dXt = AXtdt+ dLt (4.16)

is called a (matrix-valued) process of Ornstein-Uhlenbeck type.

For some given value X0, it can be shown that (4.16) has a unique solution, which
is - analoguesly to the univariate case - given by

Xt = eAtX0 +

∫ t

0

eA(t−s)dLs.

Moreover, the two conditions E[log+ ‖L1‖] <∞ and σ(A) ∈ (−∞, 0)+iR guarantee
that the unique stationary solution of (4.16) is given by

Xt =

∫ t

−∞
eA(t−s)dLs.

With the intention of constructing a process, which is suitable for modelling the
stochastic evolution of a covariance matrix, we are interested in positive semidef-
inite Ornstein-Uhlenbeck processes. Therefore, we need to make use of matrix
subordinators as driving Lévy processes. Then, for an initial matrix X0 ∈ S+

d and
for a linear operator A, which satisifies the condition eAt(S+

d ) ⊆ S+
d for all t ∈ R+,

(Xt)t∈R+ only takes values in S+
d . In other words, the condition on A means that

we are now searching for linear operators A such that the exponential operator eAt

preserves positive semidefiniteness for all t ∈ R+. A sufficient condition for ensuring
this is given in [8] (Proposition 4.4), as follows:

Proposition 4.1: Assume the operator A : Md(R) → Md(R) is representable as
X 7→ AX + XA∗ for some A ∈ Md(R). Then eAt has the representation X 7→
eAtXeA

∗t and eAt(S+
d ) = S+

d for all t ∈ R.

Remark: The operator A associated with the matrix A can be represented as

vec−1 ◦((A⊗ I) + (I ⊗ A)) ◦ vec .

The above results are combined in the subsequent theorem, which will in further
consequence enable us to formulate the model.
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Theorem 4.4: Let L = (Lt)t∈R be a matrix subordinator satisfying E[log+ ‖L1‖] <
∞ and A ∈ Md such that σ(A) ⊂ (−∞, 0) + iR. Then the stochastic differential
equation of Ornstein-Uhlenbeck type

dXt = (AXt +XtA
∗)dt+ dLt (4.17)

has a unique stationary solution, given by

Xt =

∫ t

−∞
eA(t−s)dLse

A∗(t−s).

Moreover, Xt ∈ S+
d for all t ∈ R. For a given initial value X0, the unique strong

solution of (4.17) satisfies

Xt = eAtX0e
A∗t +

∫ t

0

eA(t−s)dLse
A∗(t−s).

Remark: Applying the vectorization operator on Xt, we get the representation

vec(Xt) =

∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)d vec(Ls).

Equipped with the theory introduced above, we are now able to formulate the
model along the lines of Muhle-Karbe, Pfaffel, and Stelzer [66]. Let L be a ma-
trix subordinator and let W be a Rd-valued Brownian motion, independent of L.
The multivariate stochastic volatility model of OU type is defined via the following
dynamics of the logarithmic asset returns and the volatility, respectively:

dYt = (µ+ β(Σt))dt+ Σ
1
2
t dWt + ρ(dLt), (4.18)

dΣt = (AΣt + ΣtA
>)dt+ dLt, (4.19)

with initial values Y0 ∈ Rd, Σ0 ∈ S+
d , and parameters µ ∈ Rd and A ∈ Md(R)

such that 0 /∈ σ(A) + σ(A). The risk premium and the leverage term are modeled
using the linear operators β, ρ : Md(R) → Rd. A common way of specifying these
operators is to choose coefficients β1, . . . , βd ∈ R and ρ1, . . . , ρd ∈ R for the diagonal
elements of the argument, i.e.,

β(X) =


β1X11

...
βdXdd

 , ρ(X) =


ρ1X11

...
ρdXdd

 , ∀X ∈Md(R).

In this case, we call β and ρ diagonal. If β and ρ are taken to be diagonal and
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also A is chosen as a diagonal matrix, then the model for each asset is equivalent
in distribution to a univariate BNS model.

Since, in the formulation of the model, the square root of a positive semidefinite OU
process is used, we want to mention a general result for such square root processes,
in order to explicitly address its unique existence and finite variation property. This
result is due to Barndorff-Nielsen and Stelzer [8] (Proposition 6.7).

Proposition 4.2: Let (Xt)t∈R+ be an S+
d -valued process of Ornstein-Uhlenbeck type

driven by a matrix subordinator L with drift γ ∈ S+
d and associated Poisson random

measure µ. Then the unique positive square root Yt =
√
Xt is of finite variation and

has the following representation:

dYt = X−1
t− (AXt− +Xt−A

∗ + γ)dt+

∫
S+d \{0}

(√
Xt− + x−

√
Xt−

)
µ(dt, dx)

= Y−1
t− (AY 2

t− + Y 2
t−A

∗ + γ)dt+

∫
S+d \{0}

(√
Y 2
t− + x− Yt−

)
µ(dt, dx),

provided that the process Xt is locally bounded within S++
d or the integrals∫ t

0

X−1
s−(AXs− +Xs−A

∗ + γ)ds and
∫ t

0

∫
S+d \{0}

(√
Xs− + x−

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R. Here, Xt− is the linear operator Z 7→
√
Xt−Z + Z

√
Xt−

and Yt− is the mapping Z 7→ Yt−Z + ZYt−.

Particularly the application of transform-based methods in the context of option
pricing, as we will do in chapter 5, requires the characteristic function of the asset
price. For the multivariate OU type SV model, we may use the following result,
computed in [66] (Theorem 2.5).

Theorem 4.5: For every (y, z) ∈ Rd ×Md(R) and t ∈ R+, the joint characteristic
function of (Yt,Σt) is given by

E[exp(i〈(y, z), (Yt,Σt)〉)]

= exp

{
iy>(Y0 + µt) + i tr(Σ0e

A>tzeAt)

+ i tr

(
Σ0

(
eA
>tA−∗

(
β∗(y) +

i

2
yy>

)
eAt −A−∗

(
β∗(y) +

i

2
yy>

)))
+

∫ t

0

ψL

(
eA
>szeAs + ρ∗(y) + eA

>sA−∗
(
β∗(y) +

i

2
yy>

)
eAs −A−∗

(
β∗(y) +

i

2
yy>

))
ds

}
,

where A−∗ := (A∗)−1 denotes the inverse of the adjoint of A : X 7→ AX + XA>,
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that is, the inverse of A∗ : X 7→ A>X +XA.

In the remainder of this subsection, we want to study some theoretical properties
of the model. All of the three subsequent results are due to [66]; the proofs can be
found therein.

The first theorem deals with the regularity of the moment generating function.
We will use this result in section 4.2.3, where we derive the moment generating
function for the concrete specification of the two-dimensional OU Wishart model
along the lines of [66]. This will particularly enable us to apply the method intro-
duced in section 2.1.3 in order to price Spread Options, what will be done within
the context of our numerical investigations in chapter 5.

Theorem 4.6: Suppose the matrix subordinator L satisfies∫
{‖X‖≥1}

etr(RX)κL(dX) <∞ for all R ∈Md(R) with ‖R‖ < ε,

for some ε > 0. Then the moment generating function ΦYt of Yt is analytic on the
open convex set

Sθ := {y ∈ Cd : ‖Re(y)‖ < θ},

where

θ := − ‖ρ‖
(e2‖A‖t + 1)‖A−1‖

− ‖β‖+
√

∆ > 0

with

∆ :=

(
‖ρ‖

(e2‖A‖t + 1)‖A−1‖
+ ‖β‖

)2

+
2ε

(e2‖A‖t + 1)‖A−1‖
.

Moreover,

ΦYt(y) = exp

(
y>(Y0 + µt) + tr(Σ0Hy(t)) +

∫ t

0

ΘL(Hy(s) + ρ∗(y))ds

)
for all y ∈ Sθ, where

Hy(s) := eA
>sA−∗

(
β∗(y) +

1

2
yy>

)
eAs −A−∗

(
β∗(y) +

1

2
yy>

)
. (4.20)

In accordance with the Fundamental Theorem of Asset Pricing, we need to address
the question of equivalent martingale measures. First, we study the conditions
under which the discounted price process in the multivariate OU type SV model
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is a martingale. The second theorem gives a characterization of the class of those
equivalent martingale measures, which preserve the structure of the model, i.e.,
under which L remains a Lévy process independent of W .

Theorem 4.7: The discounted price process (e−rtSt)t∈[0,T ] is a martingale if and
only if, for i = 1, . . . , d, ∫

{‖X‖>1}
eρ
i(X)κL(dX) <∞,

and

βi(X) = −1

2
Xii, X ∈ S+

d ,

µi = r −
∫
S+d

(eρ
i(X) − 1)κL(dX).

Theorem 4.8: Let Λ(t) : X 7→ eAtXeA
>t −X. Let y : S+

d → (0,∞) such that

(i)
∫
S+d

(
√
y(X)− 1)2κL(dX) <∞,

(ii)
∫
{‖X‖>1} e

ρi(X)κyL(dX) <∞, i = 1, . . . , d,

where κyL(B) :=
∫
B
y(X)κL(dX) for B ∈ Λ(S+

d ). Define the Rd-valued process
(ψt)t∈[0,T ] as

ψt = −Σ
− 1

2
t

µ+ β(Σt) +
1

2


Σ11
t
...

Σdd
t

+


∫
S+d

(eρ
1(X) − 1)κyL(dX)

...∫
S+d

(eρ
d(X) − 1)κyL(dX)

− r


1
...
1


 .

Then Z = E(
∫
ψdW + (y − 1) ∗ (µL − νL)) is a density process, and the probability

measure Q defined by dQ
dP = ZT is an equivalent martingale measure. Moreover, WQ

withWQ
t := Wt−

∫ t
0
ψsds is a Q-standard Brownian motion, and L is an independent

driftless Q-matrix subordinator with Lévy measure κyL. The Q-dynamics of (Y,Σ)

are given by

dY i
t =

(
r −

∫
S+d

(eρ
i(X) − 1)κyL(dX)− 1

2
Σii
t

)
dt+

(
Σ

1
2
t dW

Q
t

)i
+ ρi(dLt), i = 1, . . . , d,

dΣt = (γL + AΣt + ΣtA
>)dt+ dLt.
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4.2.3 The two-dimensional OU-Wishart model

Now we want to discuss a concrete specification of the general model introduced
above, which has been considered in [66]. In chapter 5, we will use this two-
dimensional specification to model the logarithmic returns of the underlying assets
of Spread Options and determine the corresponding option value. However, before
we define the model, we want to comment on the most important aspects about the
Wishart distribution.

The Wishart distribution, denoted by Wd(n,Σ), is a probability distribution of
a positive-semidefinite (d×d) random matrix. The parameter n ∈ N represents the
degrees of freedom, while Σ ∈ S+

d is the scale matrix of the distribution. Let X
be a (d×n) matrix, where the columns are independently drawn from multivariate
standard normal distributions, i.e., X(i) ∼ N(0, Id). Then (XX>) ∼ Wd(n, Id).
Since, in general, any vector Y ∼ N(µ,Σ) can be written in the form Y = µ+CZ,
where Z ∼ N(0, Id) and CC> = Σ (using, e.g., Cholesky decomposition), we can
get aWd(n,Σ) distribution by considering the matrixM = (CXX>C>). Assuming
n > d − 1 and Σ is invertible, the probability density function of a matrix M ∼
Wd(n,Σ) is given by

f(Z, n,Σ) =
(det(Z))

n−d−1
2 e−

1
2

tr(ZΣ−1)

2
nd
2 π

d(d−1)
4 (det(Σ))

n
2
∏d

i=1 Γ
(
n+1−i

2

) .
The moment generating function is the mapping

Z 7→ det (Id − 2ZΣ)−
n
2 , (4.21)

where Z is any symmetric matrix of real numbers (cf., e.g., [42]).

The two-dimensional OU-Wishart model is (already in terms of a risk-neutral pricing
measure Q) defined via the dynamics
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(
dY 1

t

dY 2
t

)
=

((
µ1

µ2

)
− 1

2

(
Σ11
t

Σ22
t

))
dt+

(
Σ11
t Σ12

t

Σ12
t Σ22

t

) 1
2
(
dW 1

t

dW 2
t

)
+

(
ρ1dL

11
t + ρ12dL

12
t

ρ2dL
22
t + ρ21dL

12
t

)
(4.22)(

dΣ11
t dΣ12

t

dΣ12
t dΣ22

t

)
=

((
γ1 0

0 γ2

)
+

(
2a1Σ11

t (a1 + a2)Σ12
t

(a1 + a2)Σ12
t 2a2Σ22

t

))
dt+

(
dL11

t dL12
t

dL12
t dL22

t

)
(4.23)

with initial values

Y0 =

(
0

0

)
,

(
Σ11

0 Σ12
0

Σ12
0 Σ22

0

)
∈ S++

2 .

For the parameters, we assume γ1, γ2 ≥ 0, a1, a2 < 0, and ρ1, ρ2, ρ12, ρ21 ∈ R. The
BDLP L is taken to be a compound Poisson process with intensity λ and where for
the jump-size distribution we choose a W2(2,Θ)-law with dispersion matrix

Θ =

(
Θ11 Θ12

Θ12 Θ22

)
∈ S+

2 .

The drift vector µ =

(
µ1

µ2

)
, which ensures risk neutrality, results from Theorem

4.7. It is given by

µ1 = r −
∫
S+d

(eρ
1X11+ρ12X12 − 1)κL(dX)

= r − λ

(∫
S+d

eρ
1X11+ρ12X12

f(X)dX −
∫
S+d

f(X)dX

)
,

µ2 = r −
∫
S+d

(eρ
2X22+ρ21X12 − 1)κL(dX)

= r − λ

(∫
S+d

eρ
2X22+ρ21X12

f(X)dX −
∫
S+d

f(X)dX

)
,

where the Lévy measure of the BDLP, κL, in our case is given by λ times the density
f of the Wishart distribution. Regarding µ1, the second integral equals 1 (being
the integral of the density over the whole domain), and for the first integral we use
the expression for the moment generating function of the Wishart distibution given
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in (4.21). Hence, we can write

µ1 = r − λ
(
det (I2 − 2 ( ρ1 ρ120 0 ) Θ)−1 − 1

)
= r − λ 2ρ1Θ11 + 2ρ12Θ12

1− 2ρ1Θ11 − 2ρ12Θ12

.

Analogously, we obtain

µ2 = r − λ 2ρ2Θ22 + 2ρ21Θ12

1− 2ρ2Θ22 − 2ρ21Θ12

.

An interesting observation is the following link between the two-dimensional OU-
Wishart model and the Γ-OU BNS model. Let ρ be diagonal, i.e., ρ12 = ρ21 = 0 in
(4.22). Recall from the definition above that a matrixM = Θ

1
2XX>Θ

1
2 isWd(n,Θ)-

distributed, if the entries of the (d× n) matrix X are i.i.d standard normal. In our
case, where d = n = 2, this means that (XX>)11 as well as (XX>)22 are sums
of the squares of two standard normally distributed random variables, i.e., they
both have a chi-squared distribution with two degrees of freedom. The probability
density function of the χ2

n-distribution is given by

fn(x) =


x
n
2−1e−

x
2

2
n
2 Γ(n

2
)
, x > 0

0 x ≤ 0
which for n = 2 means f2(x) =

 e−
x
2

2
, x > 0

0 x ≤ 0
.

Since this corresponds to the probability density of an exponential distribution with
parameter 2, it means that a χ2

2-distrution is equal to an Exp(2) distribution. In
other words, the jump size distribution of Lii is an exponential distribution. Con-
sequently, Lii is a compound Poisson process with exponentially distributed jumps.
The sum of n independent Exp(λ) distributed random variables is Gamma(n, λ)-
distributed. Hence, the model for each asset is equivalent in distribution to a Γ-OU
BNS model.

The joint moment generating function of (Y 1, Y 2) is derived in [66] and given by

ΦYt
(y) = E[ey

>Yt ]

= exp

(
y>µt+ tr(Σ0Hy(t)) +

∫ t

0

tr(γLHy(s))ds+ λ

∫ t

0

1

det(I2 − 2(Hy(s) + ρ∗(y))Θ)
ds− λt

)
,

(4.24)

where A =
(
a1 0
0 a2

)
, γL =

(
γ1 0
0 γ2

)
, ρ∗(y) = ( ρ1y1 ρ12y1

ρ21y2 ρ2y2 ) and the function Hy is
defined as in (4.20).

Assuming a1 = a2 =: a, the integrations in the exponent in formula (4.24) can be
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performed analytically after some simplifications of the occurring integrands. In
particular, applying the rule det(A+B) = det(A) + det(B) + tr(A) tr(B)− tr(AB),
which is valid for (2 × 2) matrices A,B, the determinant in the denominator of
the second integral can be simplified sufficiently. However, this does not seem to
be possible unless the mean reversion speeds a1 and a2 are assumed to be equal.
Just to give a very rough indication of the occurring technical issue in this case, if
a1 6= a2 one faces difficulties in getting rid of the matrix exponentials eAs in Hy(s),
which otherwise can be written as easI2, which in turn renders it possible to find
a "sufficiently nice" expression for the respective denominator. The closed-form
expression of the joint moment generating function of (Y 1, Y 2), in case that the two
mean reversion speeds in the volatility process are assumed to coincide, is given by

ΦYt(y) = exp

{
y1µ1t+ y2µ2t+

e2at − 1

4a
tr

(
Σ0

(
y2

1 − y1 y1y2

y1y2 y2
2 − y2

))

+
1

4a

(
γ1(y2

1 − y1) + γ2(y2
2 − y2)

)( 1

2a
(e2at − 1)− t

)
+

λ

2ab0

[
b1

∆

(
arctan

(
2b2 + b1

∆

)
− arctan

(
2b2e

2at + b1

∆

))
+

1

2
ln

(
b0 + b1 + b2

b2e4at + b1e2at + b0

)]
+
λ

b0

t− λt
}
,

where

b0 := 1 + 4 det(B − C) + 2 tr(B − C),

b1 := −8 det(B) + 4 tr(B) tr(C)− 4 tr(BC)− 2 tr(B),

b2 := 4 det(B),

∆ :=
√

4b0b2 − b2
1,

B :=
1

4a

(
y2

1 − y1 y1y2

y1y2 y2
2 − y2

)
Θ,

C :=

(
ρ1y1 ρ12y1

ρ21y2 ρ2y2

)
Θ.

In order to evaluate the moment generating function in a model, where Y1 and Y2

are not assumed to have equal speeds of mean reversion, one has to apply numerical
integration methods. However, in the light of our context of transform-based option
pricing, we want to emphasize that this will bring a further approximated dimension
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in the pricing model and hence lead to adding up approximation errors.

4.2.4 A two-dimensional IG-OU model

In section 4.2.3, we investigated a special case of the general multivariate OU type
SV model by specifying the BDLP as a CPP with Wishart-distributed jumps. This
case turned out to be rather amenable; a closed-form expression for the moment
generating function had already been presented in the literature.

Analogously to the one-dimensional BNS model (cf. sect. 4.1.3), as a next step,
instead of specifying the details of the BDLP in advance, we would now like to
prespecify the invariant distribution of the volatility process. In particular, we are
interested in the inverse Gaussian distribution. The inverse Gaussian law on a
symmetric cone is defined and investigated in the work of Bernadac [17]. In order
to define this probability distribution in a way easier to handle, a generalization of
the Bessel function is previously introduced as follows:

Definition 4.3: For A,B ∈ S++
n (R) and λ ∈ R, we define the function K(·) by

K(λ,A,B) :=
1

2n
(detA)

λ
2 (detB)−

λ
2

×
∫
S++
n (R)

exp

{
tr

(
−1

2

(
AX +BX−1

))}
(det(X))

1
2
λ(n+1) dX.

Definition 4.4: The inverse Gaussian probability distribution on S++
n (R) is defined

by

µλ,A,B(dX) =
(detA)

λ
2 (detB)−

λ
2

2nK(λ,A,B)
(detX)λ−

n+1
2

× exp

{
tr

(
−1

2
(AX +BX−1)

)}
1S++

n (R)(X)dX,

where A,B ∈ S++
n (R) and λ ∈ R.

Proposition 4.3 ( [17], pg. 234): The Laplace transform of the inverse Gaussian
probability distribution on S++

n (R) is given by

Lµλ,A,B(Z) :=

∫
etr(−ZX)µλ,A,B(dX)

=
K(λ,A+ 2Z,B)

K(λ,A,B)

(
det(In + 2A−1Z)

)−λ
2 ,

(4.25)

where Z ∈ S++
n (R).
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In the very general setting, now two questions arise: First, if we indeed prespecify
the invariant distribution of the volatility process, what does the particular BDLP
look like? And second, how can we use (4.25) in order to perform transform-based
option pricing?

The adaptation of the concept of operator selfdecomposability to the matrix-
valued setting2, which will be needed in order to address the questions raised above,
as well as the general result regarding the link between the stationary distribution
of an OU type process and the specification of its BDLP, we take from the work of
Pigorsch and Stelzer [71, Thm. 4.9].

Definition 4.5: Let Q : Sd → Sd be a linear operator. A probability distribution µ
on Sd is called operator selfdecomposable with respect to the operator Q if there
exists a probability distribution νt on Sd such that µ = (eQtµ) ∗ νt for all t ∈ R+.

Theorem 4.9: Let A : Sd → Sd be a linear operator such that there is an A ∈
Md(R) with σ(A) ⊂ (−∞, 0) + iR satisfying AX = AX + XA> for all X ∈ S+

d .
Furthermore, let µ be an operator selfdecomposable (with respect to A) distribution
on S+

d such that its characteristic function is of the form

µ̂(Z) = exp

(
i tr(γµZ) +

∫
Sd

(
ei tr(XZ) − 1

)
νµ(dX)

)
, Z ∈ Sd,

where γµ ∈ S+
d and νµ is a Lévy measure on Sd satisfying

νµ
(
Sd\S+

d

)
= 0 and

∫
‖X‖≤1

‖X‖νµ(dX) <∞.

Let ψ(Z) = log
(∫

S+d
ei tr(XZ)µ(dX)

)
, Z ∈ Sd, be its cumulant transform (logarithm

of the characteristic function µ̂). Assume that −Aγµ − γµA> ∈ S+
d , that ψ(Z) is

differentiable for all Z 6= 0 with derivative Dψ(Z) and that

ψL : Z 7→

−Dψ(Z)(A>Z + ZA), for Z ∈ Sd\{0},

0, for Z = 0,

is continuous at zero. Then µ̂L : Z 7→ exp(ψL(Z)) is the characteristic funtion of
an infinitely divisible distribution µL on S+

d .
Let L be a matrix subordinator with characteristic function µ̂L at time one. Then

the positive semidefnite Ornstein-Uhlenbeck type process dΣt = AΣtdt+ dLt driven
by L has stationary distribution µ.

2Operator selfdecomposable distributions, a subclass of the class of infinitely divisible distributions, are exten-
sively studied in the book of Jurek and Mason [55].
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In case of the IG distribution on S++
n (R), however, the characteristic function is not

available in closed form; combining (4.3) with the result from Theorem 4.9, does not
straightforwardly yield a suitable representation for applying tranform-based option
pricing methods. Future work will be needed to surmount the technical hurdles in
order to find such a representation in this case.

Therefore, at this stage, we want to put aside the model, where the invariant
distribution of the variance process is specified as an IG law on S++

n (R); in turn,
we define a different multivariate model of IG-OU type in the following way:

The logarithmic return process Y = (Y (1), Y (2)) of the underlying assets and the
resp. variance process Σ = (Σ(1),Σ(2)) satisfy(

dY
(1)
t

dY
(2)
t

)
=

(
r − λ1κ(ρ1)− 1

2
Σ

(1)
t

r − λ2κ(ρ2)− 1
2
Σ

(2)
t

)
dt+ Σt

1
2

(
dW

(1)
t

dW
(2)
t

)
+

(
ρ1dZλ1t

ρ2dZλ2t

)
, (4.26)(

dΣ
(1)
t 0

0 dΣ
(2)
t

)
=

(
−λ1Σ

(1)
t 0

0 −λ2Σ
(2)
t

)
dt+

(
dZλ1t 0

0 dZλ2t

)
. (4.27)

W (1) and W (2) are two independent Brownian motions and the (one-dimensional)
variance processes Σ(1) and Σ(2) are taken to be IG(δ, γ)-OU processes, both driven
by one and the same BDLP Z. However, λ1 and λ2 may be chosen differently, which
means that the timing of the BDLPs as well as the mean reversion speeds of the
two processes differ. Recall from section 4.1 that the value of λi does not affect the
marginal distribution of Σ

(i)
t .

As we have seen in section 4.1.3, the BDLP of an IG(δ, γ)-OU process can be rep-
resented as the sum of an IG( δ

2
, γ) process and an independent compound Poisson

process of the form (4.10). We denote this decomposition by

Z = Z(IG) + Z(CPP ). (4.28)

We further want to write the BDLP Z in (4.27) in the form

dZt = d dt+ dZ̃t,

where Z̃ is a martingale; we will need this kind of representation in the sequel, when
we derive the characteristic function of the log-returns in our model.
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A Lévy process L has the decomposition

Lt =

∫ t

0

∫ ∞
0

zν(dz)dt+

∫ t

0

∫ ∞
0

z (N(dz, dt)− ν(dz)dt) , (4.29)

where the second integral on the right-hand side is a martingale. In this representa-
tion, N denotes a Poisson random measure and ν is the Lévy measure of L. Loosely
speaking, in (4.29) we split the process by writing its compensated version as one
part and its expectation as a separate second part.

Let us first have a look at the part Z(IG) in (4.28): The Lévy measure of an IG(a, b)

process is given by

ν(dx) =
a√
2π
x−

3
2 e−

1
2
b2x1{x>0}dx,

and the corresponding integral ∫ ∞
0

zν(dz) =
a

b
.

Consequently, we get from (4.29) that, for i = 1, 2, we can write

dZ
(IG)
λit

=
λiδ

2γ
dt+ dZ̃

(IG)
λit

, (4.30)

where Z̃(IG) is a martingale.

For a compound Poisson process, the Lévy measure is given by

ν(dz) = θf(z)dz,

where θ denotes the intensity of the corresponding Poisson process and f denotes the
density of the jump-size distribution. In our case (see section 4.1.3), the intensity
of Z(CPP) is given by δγ

2
, and the jumps, being squares of independent standard

normally distributed random variables, each follow a chi-squared distribution with
one degree of freedom. The expected value of a chi-squared distributed random
variable is its degree of freedom. Hence,∫ ∞

0

zν(dz) =
1

γ

δγ

2
=
δ

2
,
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and, for i = 1, 2, we get the representation

dZ
(CPP)
λit

=
λiδ

2
dt+ Z̃

(CPP)
λit

, (4.31)

with a martingale Z̃(CPP).

Combining (4.30) and (4.31), we can now write

dZλ1t =
λ1δ

2γ
(1 + γ) dt+ dZ̃λ1t,

dZλ2t =
λ1δ

2γ
(1 + γ) dt+ dZ̃λ2t,

where Z̃ = Z̃(IG) + Z̃(CPP) is a martingale. We adopt this notation in the definition
of the model and reformulate it as follows:

dY
(1)
t =

(
r − λ1κ(ρ1)− 1

2
Σ

(1)
t

)
dt+

√
Σ

(1)
t dW

(1)
t + ρ1dZλ1t,

dY
(2)
t =

(
r − λ2κ(ρ2)− 1

2
Σ

(2)
t

)
dt+

√
Σ

(2)
t dW

(2)
t + ρ2dZλ2t,

dΣ
(1)
t =

(
−λ1Σ

(1)
t +

λ1δ

2γ
(1 + γ)

)
dt+ dZ̃λ1t,

dΣ
(2)
t =

(
−λ2Σ

(2)
t +

λ2δ

2γ
(1 + γ)

)
dt+ dZ̃λ2t.

(4.32)

Remark: From an economic point of view, this model can be advocated in the sense
that it should be interpreted as offering two assets whose usual fluctuations behave
differently, but which are both affected by the same shocks in the market.

Remark: In (4.32) we have given the dynamics of all the individual processes of
the model. However, when we initially formulate this model in (4.26) and (4.27),
we have deliberately written also the volatility process in matrix notation (even if
the non-diagonal elements are zero), in order to emphasize that this model should
still be seen as a special case of the general multivariate OU type SV model (4.18)
- (4.19), and thus inherits all the properties derived in the general setting.

Now that we have formulated the model and we set about deriving the joint char-
acteristic function of (Y (1), Y (2)), we want to exploit that the model is an affine
stochastic volatility model in the sense of Keller-Ressel [56]. In order to add clarity
and due to the general importance of affine models in mathematical finance, at this
stage, we want to undertake at least a very short excursus in the theory of affine
models.
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We start with the class of affine processes, which has originally been defined
by Duffie, Filipović, and Schachermayer [40, Def. 2.1] in terms of a rather general
formulation, using, for a state space D, the semigroup (Pt)t≥0 of operators applied
to functions f in the set of bounded Borel-measurable functions bB(D), which can
be associated to a time-homogeneous Markov process X = (Xt)t≥0, by setting

Ptf(x) = E[f(Xt)|Xt = x], ∀x ∈ D.

We want to use a slightly modified formulation of this definition according to [56],
since it fits better in the present context. Compared with the original definition
in [40], here stochastic continuity is already part of the definition.

Definition 4.6: Let X = (Xt,Px)t≥0,x∈D be a stochastically continuous, time-
homogeneous Markov process with state space D = Rm

+ × Rn and where Px de-
notes the distribution of X with initial value x, i.e., X0 = x, Px-almost surely.
Then X is called an affine process, if its characteristic function is an exponentially-
affine function of the state vector. This means that on iRd there exist functions
φ : R+ × iRd → C and ψ : R+ × iRd → Cd such that

Ex
[
e〈Xt,u〉

]
= eφ(t,u)+〈x,ψ(t,u)〉,

for all x ∈ D, and for all (t, u) ∈ R+ × iRd.

A Stochastic Volatility model with asset price process X = (Xt)0≤t≤T and volatility
process V = (Vt)0≤t≤T is then called an affine Stochastic Volatility model, if the
joint process (X, V ) satisfies the following two assumptions:

(i) (X, V ) is a stochastically continuous, time-homogeneous Markov process.

(ii) The moment generating function Φt(u,w) of (Xt, Vt) is of particular affine
form: There exist functions C(t, u, w) and D(t, u, w) such that

Φt(u,w) := E[exp(uXt + wVt)|X0, V0] = euX0+C(t,u,w)+V0D(t,u,w).

The functions C(·) and D(·) can be obtained as solutions of a system of ordinary
differential equations of the (generalized) Riccati type.

It is shown in [56] that the one-dimensional BNS model belongs to this class. The
multivariate generalization of the BNS model is explained to be an affine stochastic
volatility model in the work of Cuchiero, Filipović, Mayerhofer, and Teichmann [34],
which is dedicated to affine processes on positive semidefinite matrices. Moreover,
almost all other relevant stochastic volatility models in the literature, as, e.g., the
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models of Heston and Bates (see sect. 3.3.2), fall in the class of affine stochastic
volatility models (cf. [56]), as well as popular term structure models are usually of
the affine type (cf. Cuchiero, Filipović and Teichmann [35]). In general, it can be
said that an affine structure of a model offers plenty of analytic tractability and
statistical flexibility; due to this fact, these kind of models are predominantly used
in the finance literature.

Let us now get back to our model. Equipped with the knowledge of the theory
mentioned above, in order to derive the joint characteristic function of (Y (1), Y (2))

from (4.32), we define

f(~y,~v, t, ~u) := φYT |Ft(~u) = EQ [ei~uYT | ~y = Yt, ~v = Σt

]
= ei~u~y+C(T−t)+~v ~D(T−t). (4.33)

We use the notation with arrows on top to emphasize vectors here. We want to
apply Itō’s Lemma on (4.33), so we first have a look at all the quadratic covariations
between the occuring processes (recall that quadratic covariation is symmetric):

d[y(1), y(1)] = Σ
(1)
t dt+ ρ2

1d[Z]λ1t,

d[y(2), y(2)] = Σ
(2)
t dt+ ρ2

2d[Z]λ2t,

d[y(1), y(2)] = 0,

d[v(1), v(1)] = d[Z̃]λ1t,

d[v(2), v(2)] = d[Z̃]λ2t,

d[v(1), v(2)] = 0,

d[y(1), v(1)] = ρ1d[Z, Z̃]λ1t,

d[y(2), v(2)] = ρ2d[Z, Z̃]λ2t,

d[y(1), v(2)] = 0,

d[y(2), v(1)] = 0.
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Itō’s Lemma then yields

df =
∂f

∂t
dt+

∂f

∂y(1)

((
r − λ1κ(ρ1)− 1

2
v(1)
)
dt+

√
v(1)dW

(1)
t + ρ1dZλ1t

)
+

∂f

∂y(2)

((
r − λ2κ(ρ2)− 1

2
v(2)
)
dt+

√
v(2)dW

(2)
t + ρ2dZλ2t

)
+

∂f

∂v(1)

((
−λ1v

(1) +
λ1δ

2γ
(1 + γ)

)
dt+ dZ̃λ1t

)
+

∂f

∂v(2)

((
−λ2v

(2) +
λ2δ

2γ
(1 + γ)

)
dt+ dZ̃λ2t

)
+

1

2

∂2f

∂y(1)2

(
v(1)dt+ ρ2

1d[Z]λ1t
)

+
1

2

∂2f

∂y(2)2

(
v(2)dt+ ρ2

2d[Z]λ2t
)

+
1

2
2

∂2f

∂y(1)∂y(2)
· 0

+
1

2

∂2f

∂v(1)2d[Z̃]λ1t +
1

2

∂2f

∂v(2)2d[Z̃]λ2t

+
1

2
2

∂2f

∂y(1)∂v(1)
ρ1d[Z̃, Z]λ1t +

1

2
2

∂2f

∂y(2)∂v(2)
ρ2d[Z̃, Z]λ2t,

and, setting the drift term equal to zero, we obtain

0 =
∂f

∂t
+

∂f

∂y(1)

(
r − λ1κ(ρ1)− 1

2
v(1)
)

+
∂f

∂y(2)

(
r − λ2κ(ρ2)− 1

2
v(2)
)

+
∂f

∂v(1)

(
−λ1v

(1) +
λ1δ

2γ
(1 + γ)

)
+

∂f

∂v(2)

(
−λ2v

(2) +
λ2δ

2γ
(1 + γ)

)
+

1

2

∂2f

∂y(1)2v
(1) +

1

2

∂2f

∂y(2)2v
(2)

=− C ′ − ~v ~D′ + iu(1)
(
r − λ1κ(ρ1)− 1

2
v(1)
)

+ iu(2)
(
r − λ2κ(ρ2)− 1

2
v(2)
)

+D(1)

(
−λ1v

(1) +
λ1δ

2γ
(1 + γ)

)
+D(2)

(
−λ2v

(2) +
λ2δ

2γ
(1 + γ)

)
+

1

2
iu(1)2

v(1) +
1

2
iu(2)2

v(2).

By rearranging, we get

C ′ + ~v ~D′ =

(
−1

2
iu(1) − λ1D

(1) − 1

2
u(1)2

)
v(1)

+

(
−1

2
iu(2) − λ2D

(2) − 1

2
u(2)2

)
v(2)

+ iu(1) (r − λ1κ(ρ1)) + iu(2) (r − λ2κ(ρ2))

+
λ1δ

2γ
(1 + γ)D(1) +

λ2δ

2γ
(1 + γ)D(2),

(4.34)
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and, by comparing coefficients, we finally obtain

D(1)′ = −1

2
iu(1) − λ1D

(1) − 1

2
u(1)2

, D(1)′(0) = 0,

D(2)′ = −1

2
iu(2) − λ2D

(2) − 1

2
u(2)2

, D(2)′(0) = 0,

C ′ = iu(1) (r − λ1κ(ρ1)) + iu(2) (r − λ2κ(ρ2))

+
λ1δ

2γ
(1 + γ)D(1) +

λ2δ

2γ
(1 + γ)D(2), C(0) = 0.

This is a system of ordinary linear differential equations, where the solution is given
by:

D(1)(x) =
e−λ1x

(
1− eλ1x

)
u(1)(i + u(1))

2λ1

, (4.35)

D(2)(x) =
e−λ2x

(
1− eλ2x

)
u(2)(i + u(2))

2λ2

, (4.36)

C(x) = iu(1)x (r − λ1κ(ρ1)) + iu(2)x (r − λ2κ(ρ2))

− δ(1 + γ)u(1)(i + u(1))(λ1x+ e−λ1x − 1)

4λ1γ

− δ(1 + γ)u(2)(i + u(2))(λ2x+ e−λ2x − 1)

4λ2γ
.

(4.37)

The cumulant function κ(θ) of the BDLP of Σ(1) and Σ(2) is (see (4.15)) given by

κ(θ) =
δθ√
γ2 − 2θ

.

Putting together the results obtained above, we can now formulate the following
proposition:

Proposition 4.4: The conditional joint characteristic function of (Y (1), Y (2)), at
time T , given the information at time t ≤ T , i.e. Yt = ~y and Σt = ~v, in the model
(4.26) - (4.27), is given by

φYT |Ft(~u) = ei~u~y+C(T−t)+~v ~D(T−t),

where the functions C(·), D(1)(·), and D(2)(·) are given by (4.35) - (4.37).

Remark: In principle, another interesting approach to model the dependence be-
tween the two underlying assets would be to use a correlated Brownian motion,
i.e., a two-dimensional BM W = (W (1),W (2)) such that dW (1)

t dW
(2)
t = %dt, for

% ∈ (−1, 1). However, when following the strategy as above, it turns out that this
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would correspond to abandoning the affine structure of the BNS model. The point
is that in this case the quadratic covariation of the log-returns of the two underlying

assets is d[Y (1), Y (2)]t = %

√
Σ

(1)
t

√
Σ

(2)
t dt. If we, for instance, added this kind of

correlation in the model (4.32) above, then in equation (4.34) we would have an ad-
ditional term %

√
v(1)
√
v(2), and we would hence not obtain a system of Riccati-type

linear differential equations. It does not seem to be possible to circumvent this issue
without using a somehow artificial way of specifying the model.
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Chapter 5

Computational Studies

Let S(1)
0 = 100 and S

(2)
0 = 95 be the resp. values of two assets at time zero. We

investigate a Spread Option on these two assets, where the option has a maturity
of one year, i.e. T = 1.

5.1 The two-dimensional OU-Wishart model from sect. 4.2.3

For our numerical studies we take the parameter values from [66]. For their calibra-
tion of the two-dimensional OU-Wishart model they consider the foreign exchange
market: They calibrate the model on the prices of Call Options on the mutual ex-
change rates between EUR, USD, and GBP on April 29, 2010. Due to the fact that,
on the one hand, multi-asset options are mainly traded over-the-counter, as well as,
on the other hand, a Call Option on some exchange rate can be seen as a Spread
Option on two other ones, this represents a convenient and reasonable approach.
The particular values that we use are:
r = 0.676, λ = 0.901, a = −3.008, γ1 = 0.034, γ2 = 0.00,

ρ1 = −5.364, ρ12 = 0.679, ρ21 = 0.896, ρ2 = −0.661

Θ =

(
0.011 0.023

0.023 0.067

)
,Σ0 =

(
0.019 0.013

0.013 0.018

)
.

5.1.1 Pricing by Simulation

Table 5.1 shows the option prices that we have obtained as a result of a Monte-Carlo
simulation for a range of strike prices, that is from 2.0−4.0 and from 6.0−8.0 with
steps of size 0.5, whereas for the "most relevant" interval between 4.0 and 6.0

we observe prices for a strike-step-size of 0.2. We have used an Euler-Maruyama
discretization scheme for the time-interval with 256 points, which approximately
corresponds to "daily monitoring" (there are averagely 251 trading days a year).
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The number of replications of the simulation that we have run for each strike price
is 1 million. In order to enhance the efficiency of our simulation, we have adopted a
control variate for the purpose of variance reduction; in particular, we exploit that
our discounted asset price processes are martingales, which means that the spread
between the two underlying assets itself serves perfectly well as a control variate.

Table 5.1: MC Simulation results

STRIKE OPTION VALUE CONFIDENCE INTERVAL

2.0 6.7029 [6.6937, 6.7120]

2.5 6.4014 [6.3923, 6.4105]

3.0 6.0976 [6.0887, 6.1066]

3.5 5.8099 [5.8010, 5.8188]

4.0 5.5372 [5.5284, 5.5461]

4.2 5.4148 [5.4060, 5.4236]

4.4 5.3089 [5.3001, 5.3177]

4.6 5.1996 [5.1908, 5.2084]

4.8 5.0974 [5.0886, 5.1061]

5.0 4.9883 [4.9796, 4.9971]

5.2 4.8865 [4.8778, 4.8952]

5.4 4.7938 [4.7850, 4.8025]

5.6 4.6846 [4.6760, 4.6933]

5.8 4.5870 [4.5783, 4.5957]

6.0 4.4846 [4.4760, 4.4933]

6.5 4.2487 [4.2401, 4.2574]

7.0 4.0167 [4.0081, 4.0252]

7.5 3.7989 [3.7903, 3.8075]

8.0 3.5832 [3.5746, 3.5917]

In Table 5.2, we illustrate the variance reduction in our simulation that we obtain by
the usage of the control variate; we compare the resp. confidence intervals with and
without using the control variate, for a range of strikes, and observe the narrowing
of the intervals due to this variance reduction technique.

Table 5.2: Effect of control variate
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STRIKE CI WITHOUT CV CI WITH CV

4.0 [5.5188, 5.5486] [5.5284, 5.5461]

4.2 [5.4000, 5.4294] [5.4060, 5.4236]

4.4 [5.2893, 5.3185] [5.3001, 5.3177]

4.6 [5.1887, 5.2176] [5.1908, 5.2084]

4.8 [5.0758, 5.1044] [5.0886, 5.1061]

5.0 [4.9717, 5.0001] [4.9796, 4.9971]

Table 5.3 illustrates the impact of the choice of the number of discrete time points
N in the interval [0, 1]. We notice that in some instances - see, e.g., the case where
the strike price is set to be K = 4.0 (which was the most extreme case we observed)
- the confidence interval can be shifted by increasing N . This means that the
discretization error is rather big in this case. In most cases, however, the results
turn out to be rather stable in the sense that an increase of N does not have a
remarkable impact.

Table 5.3: Impact of discretization

STRIKE: 4.0 STRIKE: 4.5 STRIKE: 5.0

N CI (with CV) N CI (with CV) N CI (with CV)

256 [5.5284, 5.5461] 256 [5.2433, 5.2608] 256 [4.9796, 4.9971]

512 [5.5070, 5.5247] 512 [5.2440, 5.2615] 512 [4.9798, 4.9973]

1024 [5.2423, 5.2599]

Now we want to use the results of the Monte-Carlo simulation as benchmark values
for a comparison with the results obtained by the FFT method.

5.1.2 Pricing by the FFT Method

Table 5.4 shows the option prices that we obtain by the two different implementa-
tions of the FFT method described in chapter 2, i.e., the method where, for each
strike, we choose the grid according to Algorithm 2.1 and the method where we run
the Fourier inversion once and use third-degree polynomials in order to interpolate
between grid points. We choose the truncation interval as [−ū, ū] = [−40, 40] and
the number of grid points on each axis in the resp. interval as N = 256. For the
grid-selection algorithm we start with the interval [−ū0, ū0] = [−40, 40]. Column
"MC" contains the resp. Monte-Carlo estimators.
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Table 5.4: Comparison of FFT method(s) and MC simulation
[−ū, ū] = [−40, 40], N = 256, ū0 = 40, ε = [−3, 1]

STRIKE MC FFT
(grid selection)

FFT
(interpolation)

3.0 6.0976 6.0233 6.1845

3.5 5.8099 5.7339 5.7261

4.0 5.5372 5.4529 5.5234

4.2 5.4148 5.3429 5.3395

4.4 5.3089 5.2342 5.3159

4.6 5.1996 5.1330 5.1560

4.8 5.0974 5.0211 5.0336

5.0 4.9883 4.9159 4.8673

5.2 4.8865 4.8135 4.8820

5.4 4.7938 4.7112 4.8253

5.6 4.6846 4.6114 4.7764

5.8 4.5870 4.5197 4.7489

6.0 4.4846 4.4150 4.5048

6.5 4.2487 4.1774 4.2482

7.0 4.0167 3.9486 3.9700

By looking at Table 5.4, we notice that the values obtained by the two different
FFT implementations differ notably. We observe that the results of the interpolation
procedure between grid points may match the results of the Monte-Carlo simulation
extremely well in some cases (e.g., K = 6.5); however, this only happens if we "are
lucky". If we take a look at those values where the interpolation is based on, we
notice that they represent quite a big range of prices. In this case, we cannot
consider the interpolation method as satisfactorily reliable. Table 5.5 shows some
results of our investigation of the impact of the choices of the parameters ū and
N , i.e., of the truncation interval and the number of grid points in this interval,
respectively. The matrices given in the resp. columns show the prices obtained for
the grid points in the "neighbourhood" of that point which corresponds to the actual
option characteristics (i.e. the values log(S

(1)
0 /K) on the x-axis, and log(S

(2)
0 /K)

on the y-axis).

Table 5.5: Investigation of approximation method
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ū = 40

N = 256

ū = 80

N = 1024

ū = 120

N = 1024 5.5131 2.4594 0.9293

11.0005 6.2077 2.7988

18.0754 12.2256 6.9644


4.0320 2.6247 1.6334

6.2075 4.2882 2.7983

8.9644 6.5778 4.5560


4.6968 3.5967 2.6885

6.2153 4.8904 3.7493

7.9934 6.4609 5.0896



We notice that, for the interpolation method, the truncation [−40, 40] is too small
to yield reliable results. Stretching the truncation interval, we shall of course also
increase the number of points N , since otherwise the discretization error will get big.
For the truncation interval [−120, 120] and N = 1024, we observe that the prices of
options corresponding to "neighbouring" lattice points are reasonably close to each
other. Therefore, an interpolation makes sense. Table 5.6 outlines the reliability of
the results by comparing them with the results of the method where we choose the
grid for each given strike: the prices obtained by the two different implemenations
are rather close.

Table 5.6: Comparison of FFT method(s) and MC simulation
[−ū, ū] = [−120, 120], N = 1024, ū0 = 120, ε = [−3, 1]

STRIKE MC FFT
(grid selection)

FFT
(interpolation)

3.0 6.0976 6.0229 6.0221

3.5 5.8099 5.7326 5.7386

4.0 5.5372 5.4599 5.4610

4.2 5.4148 5.3418 5.3537

4.4 5.3089 5.2342 5.2369

4.6 5.1996 5.1270 5.1280

4.8 5.0974 5.0285 5.0290

5.0 4.9883 4.9165 4.9225

5.2 4.8865 4.8206 4.8207

5.4 4.7938 4.7116 4.7325

5.6 4.6846 4.6113 4.6179

5.8 4.5870 4.5185 4.5240

6.0 4.4846 4.4149 4.4366

6.5 4.2487 4.1773 4.2068

7.0 4.0167 3.9485 3.9481
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As opposed to the interpolation method, if we compare the results of Table 5.4
and Table 5.6 regarding the method with the grid selection, we notice that the
resp. results are very close to each other. Therefore, we may be confident that
for this method the truncation interval [−40, 40], with 256 steps therein, is already
sufficient.

Now we want to compare the computational time that is required to obtain option
prices by the different methods. We have implemented all of the procedures in
MATLAB and run them on a standard PC. Table 5.7 shows the time that elapsed
on the CPU in the resp. case, while running the FFT method (with gridselection)
for a single contract for various numbers N of discrete points within the trunca-
tion interval, in comparison with the required time for a Monte-Carlo simulation
consisting of n = 1000000 replications and N discrete time points.

Table 5.7: Elapsed CPU time for the different methods

Method Time

FFT: N = 28 ∼ 17 sec.
FFT: N = 29 ∼ 68 sec.
FFT: N = 210 ∼ 4.5 min.
MC: n = 106, N = 28 ∼ 6 h.
MC: n = 106, N = 29 ∼ 11.7 h.
MC: n = 106, N = 210 ∼ 23 h.

We notice that, regarding computation times, there is by no means a discussion
about the outstanding performance of the FFT method. In many situations, such
as, e.g., the calibration of a market model, the long time that is required to price
options via simulation is not acceptable. The FFT method yields the option price
within about 17 seconds. Since, in such situations, one needs the prices for a large
number of contracts, the FFT method where we interpolate between grid points is
usually favourable. We found out above that this methods requires a larger trun-
cation interval (say [−120, 120]), coinciding with a higher number of necessary grid
points (say 1024), in order to yield the "same" results as in the case where we choose
the grid for each contract. Therefore, in fact, 17 seconds face 4.5 minutes regarding
a single contract. On the other hand, we should emphasize once again that the
interpolation method means that we only have to run the Fourier inversion once
(yielding prices for a whole set of different contracts simultaneously) and then, by
interpolation, we obtain prices for any new contract within very little time. This is
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the reason why the FFT method with interpolation is usually unchallenged by other
methods, when it comes to simultaneously pricing many contracts. However, in our
case, we have observed that we need to use many more discrete points N to obtain
close results with the interpolation method. Then, after we have run the Fourier
inversion once (which takes for around 4.5 minutes, as mentioned above), the inter-
polation (with a third degree polynomial) for every further contract yet (averagely)
takes another 20 seconds. Therefore, we are still in favour of our method with the
grid selection, even regarding the pricing of a high number of contracts.

Our hitherto investigations within this chapter have shown the behaviour of the
FFT method: we have illustrated for which parameter choices regarding truncation
and discretization we may expect reliable results, and we have outlined the great
advantage in terms of the computational speed. However, if we compare the result-
ing option prices with those obtained by the Monte-Carlo method, the variation is
not negligible. It might be the case that, due to the jumps in the trajectories, some
simulation results change a bit if one uses higher numbers of discrete points. We
already indicated this above, where we considered some examples (cf. Table 5.3).
However, we have seen that with 1024 points, together with one million replications,
it already takes almost one day to evaluate a single contract. Hence, it gets tedious
to further increase the number of discretization points. In any case, regarding the
FFT method, there is one parameter left that we have not investigated so far: the
vector ε = [ε1, ε2], which is used to circumvent the issue with the integrability of the
payoff function.

On the choice of ε

We can see ε as the extension to two dimensions of what Carr and Madan [27]
call the damping factor α, as described in section 2.1.2. In theory, this is only a
technical finesse. In practice, however, recall that the modified function is subject
to the numerical two-dimensional Fourier inversion. The only condition that we
have required was ε1 + ε2 < −1, where ε1, ε2 ∈ R with ε2 > 0. It seems evident that
a reasonable choice of ε is neither obvious, nor is it a negligible issue. Particularly
in the two-dimensional case, the choice of ε is, in fact, a crucial part of the pricing
model. Table 5.8 shows some selected examples, outlining the strong impact of this
parameter.

Table 5.8: Investigation of the sensitivity of the model to changes in ε.
Method with grid selection; ū = [−40, 40], N = 256,K = 5
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EPSILON
ε = [ε1, ε2]

OPTION PRICE

[−3, 1] 4.9159

[−3.1, 1.79] 4.9567

[−3.5, 1] 4.9166

[−5, 1] 4.9164

[−10, 8] 4.7750

[−7, 3] 3.8877

[−9, 4] 8.4779

[−8, 1] 17190

[−30, 1] 2618685340536278 · 1018

We observe that, apparently, there is a region of "indeed feasible" choices; the
possible impact of ε in general is worrying, though. For all the numerical results
shown so far, i.e. before Table 5.8, we have always assumed ε = [−3, 1]. Hurd and
Zhou [51] have shown that there is an upper bound on P̂ if one chooses some ε2 > 0

and sets ε1 = −1− 2ε2. However, this represented our only reference point and we
cannot present a motivation for our choice apart from empirical convenience. Hurd
and Zhou neither tell us about their specific choices for ε for their numerical studies.
However, if we examplarily consider their results for Spread Option prices within the
two-factor GBM model (see [51], pg. 151), for a strike of 2.0, they obtain a relative
error of magnitude 10−8 using a polynomial with a degree of 8 for interpolation,
while the magnitude of our relative error, for the same model and parameter values,
interpolating with a third-degree polynomial, is 10−4 for ε = [−3, 1]. Moreover, the
choice ε = [−3, 1] seemed to be reasonable for all of our further checkings as well.
That there is no straightforward way which leads to an objectively superior choice
of ε is also indicated in the work of Hurd and Zhou, where they mention that "the
selection of suitable values for ε,N , and η" when implementing this kind of FFT
approximation "is a somewhat subtle issue whose details depend on the asset model
in question".

Even in the one-dimensional case, the particular choice of the damping parameter
α is not at all a crystal-clear issue. Most authors use values that have empirically
turned out to be convenient, or they apply rules of thumb: Carr and Madan [27]
suggest to derive an upper bound on α from the condition E

[
Sα+1
T

]
< ∞ and

then take one fourth of this upper bound. Other authors suggest ad-hoc choices;
Raible [73], for example, considers the value α = 25 as the best choice for the
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models he studies. A rigorous investigation of the issue of an appropriate choice
of α has been presented by Lord and Kahl [60]: they address the problem that, as
they formulate it in particular, "by changing α, the integrand can become either
strongly peaked when getting close to the poles of the integrand, or highly oscillatory
when reaching the maximum allowed α", by formulating an optimality criterion
and solving the resulting optimization problem. In particular, they both suggest
an optimal choice of α depending on the payoff as well as a payoff-independent
alternative of choosing the damping parameter.

In the case of Spread Options, i.e., in the case of two dimensions, the method
of Lord and Kahl cannot be applied directly. We face a two-dimensional vector ε
instead of the one-dimensional α, which renders it more complicated to formulate
an appropriate optimization problem. For a satisfactory degree of reliability of the
pricing method it would be necessary, though, to pose some optimality criterion on
ε. This would be a way to detach the model from any empirically motivated ad-hoc
decisions and add confidence about the results. However, we do not consider this
as a scope of this thesis and hence do not try to follow this path here.

Since, as described above, the impact of the choice of ε does not indeed allow
holistic satisfaction with the method, we now want to check alternative approaches
for applicability in the context of Spread Options, with the intention to possibly
avoid the concept of multiplying the payoff in order to ensure integrability.

The method with time-values

In section 2.1.2 we described the idea of Carr and Madan [27] to use the time-value
of an option, i.e., to subtract the intrinsic value from the option price, in order to
avoid the damping factor but ensure integrability of the modified option price as
a function in strike. However, this idea is unfortunately not extendable to Spread
Options: What Hurd and Zhou have suggested as an extension of the Carr and
Madan method to the case of Spread Options, as we described in detail in section
2.1.3, is that they have found a representation of the modified (multiplied by a
factor which ensures integrability) payoff function (not option price as function in
strike) by Fourier inversion; the (discounted) expected value then corresponds to a
representation of the option price which contains the joint characteristic function
of the underlying assets.

The idea with subtracting the intrinsic value only makes sense if one considers the
option price as a function in strike and wants to circumvent the problem that this
option pricing function is not (square-)integrable. This works perfectly well in the
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one-dimensional case: they’ve worked out the details for a Call Option, where they
obtain a closed-form expression for the Fourier transform of the option’s time-value,
which contains the characteristic function of the underlying asset. Consequently,
Fourier inversion yields the desired representation.

However, considering Spread Options, the problem with this strategy is that
the strike is still (as for a vanilla option) one-dimensional, whereas now one faces
two asset-price processes and the density depends on both assets. Following an
analogous strategy as for a Call Option, i.e., to start with the option’s time-value as
a function in strike and proceed with rearranging its Fourier transform, hence does
not render it possible to obtain a closed-form expression of the Fourier transform of
the time-value, which contains the joint characteristic function of the two underlying
assets.

The Integration-Along-Cut method

As we have seen, the FFT method has its drawbacks; particularly, we are not glad
about the fact that there is no general effective procedure available in order to choose
the damping parameter (which can also be seen as choosing the line of integration).
A different approach, which does not make use of the FFT and where there is no
need for a damping parameter, has been suggested in the book of Boyarchenko and
Levendorskĭı [23]. Their method, which they call the Integration-Along-Cut (IAC)
method, allows for an effective control of the computational error and, moreover, in
many cases they even observe advantages with respect to the FFT method in terms
of the computational speed when pricing single options. We therefore want to take
a closer look at the IAC method and check its applicability for our purposes. We
do not want to go into full detail in terms of technicalities but rather comment on
the crucial aspects. For details see [23].

The method is presented for a market model where the log-asset price is assumed
to follow a CGMY(c,−λ−, λ+, ν) (the authors prefer the less common term KoBoL
in their original work, which is an acronym for Koponen, Boyarchenko, Levendorskĭı)
process of order ν ∈ (0, 1). The skewness parameters are assumed to satisfy λ− <
−1 < 0 < λ+. Consider a European Put Option with strike price K = 1, maturity
T , and spot price of the asset given by S0 = ex. The Fourier transform of the payoff
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is given by

P̂ (ξ) =

∫ ∞
−∞

e−ixξ(1− ex)+dx

=
1

(−iξ)(−iξ + 1)
.

It is well-defined in the half-plane Im(ξ) > 0 and, having two poles in ξ = 0

and ξ = −i, it admits a meromorphic extension into the complex plane. We set
κ := λ+ − λ−, χ+ := λ+/κ, χ− := −λ−/κ, τ := T − t, cν := c · Γ(−ν), U := κ(x +

τµ), V := −κντcν , ρ := 1/κ, and σ1 = σ/κ, where σ ∈ (0, λ+). Then they show
that the price of a Put Option at time t can be written as

f(x, t) = R1

∫ +∞+iσ1

−∞+iσ1

exp[iUξ − V ((χ− − iξ)ν + (χ+ + iξ)ν)]

−iξ(−iξ + ρ)
dξ, (5.1)

where

R1 =
exp(−τr + V (χν− + χν+))

2πκ
.

The integral in (5.1) can now be computed by applying the IAC method.
In principle, the idea of the method is the following: Usually, one knows the

strip of regularity of the characteristic function of the log-asset price process. In
particular, the characteristic function is analytic on the whole complex plane except
for the discontinuities along two cuts of the type (−i∞, iζ−] and [iζ+, i∞). What
Boyarchenko and Levendorskĭı now propose is, instead of considering an integral of
the type

∫ +∞+iω

−∞+iω
f(x)dx, where f is, in essence, a combination of the characteristic

function of the log-asset price process and the Fourier transform of the payoff func-
tion, to apply Cauchy’s integral theorem and transform the contour of integration
to one of the cuts. The shifting of the integration contour is exemplarily sketched
in Figure 5.1.

By Cauchy’s theorem, we know that the integral over any closed path equals
zero, i.e.,∮

C

f(x)dx =

∫
Cω

f(x)dx+

∫
CR

f(x)dx+

∫
Cε

f(x)dx+

∫
Cλ−

f(x)dx = 0.

As R := |x| → +∞, the integral
∫
CR
f(x)dx → 0, and as ε → 0, the integral
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Figure 5.1: Contour shift

CR

Cε

Cω

Cλ−

[iλ−,−i∞)

λ

ω

∫
Cε
f(x)dx→ 0. Therefore, we can write∫

Im(x)=ω

f(x)dx =

∫ iλ−−0

−i∞−0

f(x)dx+

∫ −i∞+0

iλ−+0

f(x)dx.

Let us now get back to the particular case of the CGMY process, where we "stopped"
at (5.1):

In the case U ≥ 0, the contour of integration is shifted to the cut in the upper
half-plane (the cuts result from the strip of analyticity of the characteristic function
of a CGMY process). The choice of the cut is due to the intention that iUξ be
negative at the cut, i.e., exp(iUξ) shall not grow to infinity. By setting aν :=

cos(νπ), bν := sin(νπ) and performing some rearranging steps, including variable
substitutions, the option price can be written as

f(x, t) = 2R1e
−Uχ+I(ν, U, V, χ+, χ+ + ρ), (5.2)

where

I(ν, u, v, ρ1, ρ2) :=

∫ ∞
0

e−zu sin(vbνz
ν)

(z + ρ1)(z + ρ2)
exp(−v[(1 + z)ν + aνz

ν ])dz. (5.3)

The integral (5.3) can be evaluated using any numerical integration prodecure,
yielding the option price as a result of (5.2), for the case U ≥ 0.
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In the case U < 0, the contour of integration is shifted to the cut in the lower
half-plane. This transformation means that one has to take into account the two
poles ξ = 0 and ξ = −i. The residue theorem can then be used to express the
integral in terms of the new contour, and by rearranging and changing variables
one can obtain the representation

f(x, t) = exp(−τr)− exp(x) + 2R1e
Uχ−I(ν,−U, V, χ−, χ− − ρ),

with the function I as defined in (5.3).

Now we have seen how the IAC technique works and that it is very well suited for the
pricing of vanilla options in the CGMY model. It is also applicable in many other
situations, and the performance of the method is particularly good if the option is
close to maturity. However, the method is not generally applicable to any model;
for example, Lord and Kahl [60] mention some cases where problems arise. Let
us now take a look at our situation of Spread Options in the two-dimensional OU
type SV model (where the OU Wishart model is a special case thereof). Theorem
4.6 gives information about the regularity of the moment-generating function in the
multi-dimensional OU type SV model. The strip of analyticity of the characteristic
function is consequently given by

Sφθ := {y ∈ Cd : ‖ Im(y)‖ < θ},

with θ as defined in the theorem. As a consequence of Theorem 2.1, equation (2.11)
gives the price of a Spread Option as

Spr(X0;T ) =
1

(2π)2
e−rT

∫ ∫
R2+iε

eiuXt
0φXT (u)P̂ (u)d2u,

where

P̂ (u) =
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

The Gamma function has poles of first order in all non-positive integers. Therefore,
shifting the contour of integration to the cuts means that we cross infinitely many
poles. A straightforward application of the residue theorem is thus not possible and
the IAC method is in further consequence not easily applicable.

There are generalizations of the residue theorem, which deal with infinite num-
bers of isolated singularities; roughly speaking, the real axis is "closed at infinity" by
a semi-circle. Carefulness is required in this case, though, and some more work will
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be necessary in order to succeed in working out the full details for Spread Options
in the two-dimensional OU type SV model. However, particularly the potential of
the method in terms of error control makes it appealing; hence, this should be an
interesting subject for future work.

5.1.3 Comments on the Behaviour of the Market Model

So far in this section, we have studied the pricing of Spread Options in the two-
dimensional OU-Wishart model. By investigating the different pricing techniques,
we have also seen the resulting option prices within this model. The parame-
ter values we used stem from the literature. The two-dimensional OU-Wishart
model includes numerous parameters; recall that a matrix-valued compound Pois-
son process is used as driving process, involving already four different parameters
(λ,Θ11,Θ12,Θ22), which in turn brings along four leverage parameters (ρ1, ρ12, ρ21, ρ2).
The plethora of parameters together with their mutual influences, do not allow for
a revealing investigation of the particular impact of most of the model parameters;
in many cases, the interconnections are too complicated to make it meaningful to
study the variation in single parameters. The only two parameters we want to
investigate are the mean reversion speed a of the volatility process, as well as the
intensity λ of the driving CPP: Figure 5.2 and Figure 5.3 show the results of varying
the resp. parameter values:

We observe the parameter a in the interval [−10,−0.5], where we notice an
exponential increase in option prices with growing values for a. Varying the intensity
λ of the CPP between 0.1 and 2.0, we observe that the option price decreases approx.
linearly. The range of obtained prices lies within one unit, though.
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Figure 5.2: Option values for varying a

Figure 5.3: Option values for varying λ

5.2 The two-dimensional IG-OU model from sect. 4.2.4

Compared to the OU-Wishart model, the two-dimensional model of IG-OU type, as
we formulated it in section 4.2.4, is not so complicated: in this model we consider two
one-dimensional volatility processes, which means that there are fewer parameters
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involved. The significance of the single parameters is hence clearer. However, for a
rigorous survey of the model, it would be necessary to calibrate it to market prices;
this is beyond the scope of this thesis, though. We orientate ourselves towards the
parameter values obtained by Nicolato and Venardos [68] for their calibration of
the one-dimensional BNS model and observe our model in terms of its sensitivity
to changes in the parameters. Let us emphasize that we do not investigate the
obtained absolute prices; such a discussion would not be feasible due to the lack of
an appropriate calibration. The following investigations should rather be seen as a
first testing in order to gain some understanding of the model behaviour.

Figure 5.4 illustrates the impact of the initial volatility level; increasing volatility
results in increasing option prices.

Figure 5.4: Option prices for varying Σ
(1)
0 and Σ

(2)
0 .

S
(1)
0 = 100;S

(2)
0 = 95;K = 4;T = 1; r = 0.00676; ρ1 = −0.7039; ρ2 = −4.7039;λ1 = 2.4958;λ2 =

4.4958; γ = 11.98; δ = 0.0872;

Figure 5.5 shows the impact of the mean reversion speeds of the volatility processes,
i.e., the way λ1 and λ2 influence the resulting option prices. We notice that increas-
ing λ1 coincides with a slow increase in option prices, while increasing λ2 goes along
with a much faster decrease in prices.

Figure 5.6 gives indication of the model sensitivity to variation in the leverage
parameters (recall that leverage parameters are assumed to be negative). We notice
that option prices increase for decreasing ρ1, while prices decrease for decreasing ρ2.
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Figure 5.5: Option prices for varying λ1 and λ2.
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Figure 5.6: Option prices for varying ρ1 and ρ2.
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Chapter 6

Conclusion

In this thesis, we have discussed the pricing of Spread Options in multivariate
Ornstein-Uhlenbeck type stochastic volatility models, which are driven by matrix
subordinators. On the one hand, this included an investigation of different pricing
techniques: we ran Monte-Carlo simulations and we compared the results with those
obtained by an FFT method, which had been developed by Hurd and Zhou [51].
On the other hand, we examined different specifications of the market model, both
from a qualitative and a quantitative point of view.

Regarding the pricing techniques, we analyzed the FFT method in detail, which
revealed its advantages and weaknesses. We compared two possible ways of deal-
ing with the issue of applying the method to any given set of spot prices of the
underlying assets and strike price; we presented an algorithm to choose the lattice
for approximation in an appropriate way for any particular contract on the one
hand, and we implemented an interpolation procedure on the other hand. The
computational speed of the FFT method is outstanding. The short computation
time required to calculate option prices makes it appealing, particularly in cases
where many contracts are involved. The main shortcoming of the method, which
gives us some cause for concern, is the sensitivity to that parameter vector, which
is used to modify the payoff function in order to ensure integrability and, in further
consequence, existence of its Fourier transform. We observed that the impact of
the particular choice of this parameter vector can be very strong; a sensible choice
is hence an absolute necessity. However, there are no routines available to find an
objectively superior choice. One has to make an ad-hoc decision, solely based on
empirical convenience. We consider this as a clear drawback of this method. There-
fore, we also studied alternative approaches for applicability; particularly, the IAC
method appears to have potential, which represents an interesting starting point for
future work.
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In terms of the multivariate Ornstein-Uhlenbeck type stochastic volatility model,
we first surveyed the literature about this model. We started with the one-dimensional
BNS model (Barndorff-Nielsen and Shephard [6,7]) and discussed the necessary the-
ory in order to be able to finally formulate the multivariate extension along the lines
of Muhle-Karbe, Pfaffel, and Stelzer [66]. We took a particular specification of this
model (which has also been presented in their work), namely, the two-dimensional
OU-Wishart model and computed explicit prices for Spread Options. From a mod-
elling point of view, we particularly addressed the issue of prespecifying the invariant
distribution of the volatility process in the multi-dimensional case. Considering the
inverse Gaussian distribution on a positive semidefinite cone, this is still an open
issue in the very general case. However, under some simplifying assumptions, we
formulated a model as a special case: we took two one-dimensional volatility pro-
cesses with stationary distribution of the inverse Gaussian type, both driven by
one and the same BDLP. We derived the joint characteristic function of the (two-
dimensional) log-return process and finally also examined a first testing of parameter
sensitivities. Moreover, as a part of our modelling attempts, we noticed that using
two correlated Brownian motions would break the affine structure of the model.

In the course of the development of this thesis, various questions have arisen. As
already mentioned above, the details of the correspondence between the BDLP and
the stationary distribution of an Ornstein-Uhlenbeck process need to be extended
to the multi-dimensional case: It would be an interesting advancement to be able to
prespecify a (matrix-valued) IG-law for the volatility process and work out the full
details for the BDLP, making it possible to simulate from it. On the other hand,
succeeding in deriving the joint characteristic function of the log-return process in
this model would enable us to apply transform-based option pricing methods.

As a further step, a calibration to market prices of the multivariate IG-OU model
will be necessary. For the special case that we considered, given an appropriate data
set, we would already have the tools to do so by applying the FFT method and using
the characteristic function, which we successfully derived. It would be especially
interesting to calibrate the model on energy derivatives, since in the modelling of
energy markets, stochastic volatility models with jumps have attracted particular
attention.

Finally, enhancement of the computational methods will be necessary in order
to deal with the numerical issues raised above. From a mathematical point of view,
further development of the rather elegant IAC method seems particularly attractive.
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