
Graz University of Technology

∼ Master’s Thesis ∼

Reconstruction Methods for
Time-Varying Systems

conducted at the

Signal Processing and Speech Communications Laboratory
Graz University of Technology, Austria

by

Matthias Hotz

Supervisor:
DI Dr. Christian Vogel

Assessor:
Assoc. Prof. DI Dr. Klaus Witrisal

Graz, September 5, 2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

Date (Signature)

Zusammenfassung

Reale Signalverarbeitungssysteme weisen zumeist eine Abweichung vom zugrundeliegenden ide-
alen Modell auf und ändern sich aufgrund äußerer Einflüsse oftmals mit der Zeit. Folglich sind
in etlichen Anwendungen Rekonstruktionsmethoden für zeitvariante Systeme notwendig, um die
Abweichung vom idealen Modell zu korrigieren oder verringern. Für lineare zeitvariante (LZV)
Systeme sind bereits etliche Rekonstruktionsmethoden verfügbar. Um diese jedoch in Echtzeit-
systemen oder bei hohen Datenraten einsetzen zu können, ist aufgrund der Leistungsgrenzen der
Hardware Parallelverarbeitung notwendig. Bisher sind noch keine einfachen und systematischen
Methoden für die Parallelverarbeitung mit LZV Systemen verfügbar und werden im ersten Teil
der vorliegenden Arbeit erörtert. Dabei wird eine praxistaugliche und effiziente Methode für
die Parallelisierung von faltungsbasierten LZV Systemen vorgestellt, welche auch als Basis für
komplexere LZV Systeme dient. Die Methode wird anhand des Farrow-Filters und iterativer Kor-
rekturverfahren für Fehlanpassungen bei zeitlich versetzt arbeitenden Analog-Digital-Umsetzern
veranschaulicht. Die Literatur zu nichtlinearen zeitvarianten Systemen ist vergleichsweise über-
schaubar und es wurden bisher nur wenige Rekonstruktionsmethoden vorgestellt. Im zweiten
Teil dieser Arbeit wird ein neuer Ansatz für eine spezielle Klasse von Rekonstruktionsmethoden,
sogenannten Entzerrern, vorgestellt. Dabei wird gezeigt, dass bestimmte nichtlineare zeitvari-
ante Systeme auf ein LZV System zurückgeführt werden können. Diese neue Darstellung des
Systems wird anschließend herangezogen, um zwei Methoden zur Entzerrung abzuleiten und zu
analysieren. Darauffolgend werden Zusammenhänge zu bestehenden Methoden aufgezeigt, die
Berechungskomplexität diskutiert und die Qualität der Entzerrung anhand von Simulationen
verglichen. Dabei stellt sich heraus, dass die hergeleiteten Methoden unter bestimmten Rah-
menbedingungen sehr gute Rekonstruktionsergebnisse erzielen und bei nichtlinearen Systemen,
welche sich verhältnismäßig schnell mit der Zeit ändern, einen wesentlichen Vorteil in Bezug auf
die Berechungskomplexität bieten.

Abstract

Practical signal processing systems deviate in general from the underlying ideal model and of-
ten vary with time because of external influences. Consequently, reconstruction methods for
time-varying systems are desired to compensate or mitigate the deviation from the ideal sys-
tem. For linear time-varying (LTV) systems, various reconstruction methods have already been
established. However, for real-time or high data rate applications, a systematic method for
parallel processing is required, which has not been available yet. This method is addressed in
the first part of this thesis, where a convenient and efficient method for parallel processing with
convolution-based LTV systems is introduced. Furthermore, this result provides the foundation
for parallel processing with more complex structures, which is demonstrated for Farrow filters
and iterative correction structures in the context of mismatch correction for time-interleaved
analog-to-digital converters. In the case of nonlinear time-varying systems, the literature is
rather sparse and only a few reconstruction methods exist. The second part of this thesis is
devoted to the investigation of a novel approach to a particular class of reconstruction methods
for nonlinear time-varying systems, i.e., equalizers. It is shown that a large class of nonlinear
systems can be represented as an LTV system and, based on this perspective, two equalization
methods are derived and analyzed. Furthermore, various relationships between these and exist-
ing methods are highlighted, the computational complexity is discussed, and the equalization
performance is compared by means of a simulation. It is concluded that the derived methods
perform very well under certain conditions and exhibit a serious computational advantage for
nonlinear systems which vary reasonably fast with time.

Acknowledgements

I would like to profoundly thank Verena Frick for the encouragement to pursue an academic
education, for her continuous support, and for enriching my life in countless ways. I am also
deeply grateful to my parents, for their love, dedication and support, and my siblings, especially
my brother Thomas, who guided me into engineering. Furthermore, I appreciatively acknowledge
the Republic of Austria for funding my studies.
I am thankful to Assoc. Prof. DI Dr. Klaus Witrisal for assessing this thesis and I want to
express my sincere gratitude to DI Dr. Christian Vogel, who provided me with a continuous
stream of exciting and challenging ideas, encouraged the scientific orientation of this work, and
supported me within and beyond this thesis.

Matthias Hotz
Graz, September 2012

Contents

1 Introduction 1
1.1 Scientific Contributions . 2

2 Parallel Processing with Linear Time-Varying Filters 3
2.1 Introduction . 3
2.2 SISO to MIMO LTV Filter Transformation . 3
2.3 Application Examples . 8

2.3.1 Farrow Filter . 9
2.3.2 Iterative Correction Structures . 12
2.3.3 Differentiator-Multiplier Cascade . 13

2.4 Implementation and Practical Aspects . 13
2.4.1 Farrow Filter . 14
2.4.2 Differentiator-Multiplier Cascade . 15

2.5 Summary . 16

3 Equalization of Time-Varying Nonlinear Systems 19
3.1 Introduction . 19
3.2 Time-Varying Discrete-Time Volterra Series . 20
3.3 Existing Equalization Methods . 21

3.3.1 P th-Order Inverse . 21
3.3.2 Nonlinear Fixed-Point Iteration . 23

3.4 Transformation of a Volterra System to an LTV System 26
3.5 Iterative Methods for Solving Systems of Linear Equations 27

3.5.1 Richardson Iteration . 27
3.5.2 Jacobi Iteration . 28
3.5.3 Condition for Convergence . 29

3.6 Equalizers based on Iterative Methods . 33
3.6.1 Richardson Equalizer . 33
3.6.2 Jacobi Equalizer . 36
3.6.3 Condition for Convergence . 36

3.7 Simulation Results . 41
3.7.1 Influence of the Input Signal . 42
3.7.2 Comparison of the Equalizers . 43
3.7.3 Optimal Convergence of the Richardson and Jacobi Equalizer 46
3.7.4 Computational Complexity . 47

3.8 Summary . 47

4 Concluding Remarks and Future Research 49

A Direct and Transposed Form LTV FIR Filters 51
A.1 Direct Form LTV FIR Filters . 51
A.2 Transposed Form LTV FIR Filters . 52

Bibliography 55

List of Figures

2.1 SISO LTV filter . 3
2.2 Interchange of a time-varying multiplier and a delay element 4
2.3 SISO LTV filter in multirate respresentation . 5
2.4 MIMO LTV filter for M = 3 . 7
2.5 TI-ADC followed by a SISO correction structure 8
2.6 TI-ADC followed by a MIMO correction structure 9
2.7 MIMO Farrow filter for M = 2 and P = 2 . 10
2.8 MIMO Farrow filter for M = 2 and P = 2 (reorganized) 11
2.9 SISO cascade correction structure . 12
2.10 MIMO cascade correction structure . 12
2.11 DMC with 2 stages . 13
2.12 MIMO DMC with 2 stages for M = 2 . 13
2.13 SISO and MIMO Farrow filter implemented in MathWorks® Simulink® 14
2.14 SISO and MIMO DMC with 2 stages implemented in MathWorks® Simulink® . . 16

3.1 Post-equalization of a nonlinear system . 19
3.2 Volterra system Hn . 20
3.3 Cascade of a nonlinear system Hn and a P th-order inverse G(P)

n 21
3.4 3rd-order inverse G(3)

n . 22
3.5 Nowak-Van-Veen equalizer with three iterations 24
3.6 Exemplary one-dimensional nonlinear fixed-point iteration 25
3.7 Richardson equalizer with three iterations . 34
3.8 Relationship between Richardson and Nowak-Van-Veen equalizer 35
3.9 Jacobi equalizer with three iterations . 35
3.10 Influence of the input signal on the performance of the Richardson equalizer . . . 42
3.11 Equalization of a Volterra system with Q = 1 . 43
3.12 Equalization of a Volterra system with Q = 2, 3, 5, 7 44
3.13 Influence of the first-order Volterra kernel on the equalization performance 45
3.14 Comparison of the Richardson and Jacobi equalizer to the ideal convergence . . . 46

A.1 Time-varying finite impulse response filter of order N in direct form 52
A.2 Time-varying finite impulse response filter of order N in transposed form 52

List of Algorithms

1 P th-order inverse . 22
2 Nowak-Van-Veen equalizer . 24
3 Concept for a realizable equalizer . 33
4 Richardson equalizer . 34
5 Jacobi equalizer . 35
6 Generation of a random Volterra system . 41

List of Abbreviations

ADC Analog-to-digital converter
DMC Differentiator-multiplier cascade
FIR Finite impulse response
IIR Infinite impulse response
LTI Linear time-invariant
LTV Linear time-varying
MIMO Multiple-input multiple-output
SISO Single-input single-output
SNR Signal-to-noise ratio
TI-ADC Time-interleaved analog-to-digital converter

Chapter 1

Introduction

Besides the intended behavior, practical signal processing systems often exhibit some unde-
sired impact on the processed signal as well. For example, communication channels do not
only transfer but also filter the transmitted signal or analog circuits feature slightly nonlinear
characteristics even if they are designed for linear operation. Due to external influences, for
instance, changes in the communication channel or temperature variations, real-world systems
generally vary with time and, therefore, need to be modeled as time-varying systems. Conse-
quently, reconstruction methods for time-varying systems are required, which provide the means
to compensate or correct for the undesired impact on the processed signal. Because of the differ-
ent underlying theory, it is necessary to distinguish between reconstruction methods for linear
time-varying (LTV) systems and nonlinear time-varying systems. For LTV systems, applicable
reconstruction methods are readily available [1–6]. However, for real-time or high data rate
applications, it is often necessary to parallelize operations to overcome the speed limitations
of the hardware or increase the system’s throughput. This necessity provided the impulse to
investigate systematic methods for parallel processing with LTV systems, which is covered in
Chapter 2. Reconstruction methods for nonlinear time-varying systems are seldom discussed in
the literature, probably due to the significant computational complexity of the existing mod-
els for nonlinear systems with memory. However, the continuous advances in semiconductor
technology lead to increasing processing power for digital signal processing systems. This in
turn makes it worthwhile to study such reconstruction methods, which is effectively done in
Chapter 3.
The resulting structures of reconstruction methods for LTV systems are mostly LTV systems
as well [1]. As LTV systems with a demand for parallel processing also emerge in various other
contexts, e.g., biomedical signal processing, audio signal processing, and telecommunications,
it is beneficial to consider a general LTV filter to facilitate the universal applicability of the
results. In Chapter 2, a systematic method for parallel processing is derived for a general
LTV filter and, subsequently, this result is utilized to attain parallel processing with more
involved structures. These are the widely applicable Farrow filter and iterative reconstruction
methods, where the latter is discussed in general and for a particular reconstruction method for
nonuniformly sampled band limited signals, the differentiator-multiplier cascade.
Chapter 3 considers special reconstruction methods, i.e., equalization methods, for a particular
class of time-varying nonlinear systems, i.e., those which can be modeled using a time-varying
discrete-time Volterra series. An overview of existing methods is provided and, subsequently, a

2 Chapter 1 » Introduction

novel perspective on Volterra systems is established. This new system description is utilized to
derive and analyze equalization methods. Finally, simulations are performed to compare their
performance to the existing methods and highlight their particular properties.

1.1 Scientific Contributions

The work on this thesis gave rise to some scientific results, which shall be highlighted below to
distinguish them from previous findings.

Parallel Processing with Linear Time-Varying Filters:

• A systematic approach to parallel processing with linear time-invariant (LTI) systems
has already been established, e.g., in [7], and provides a set of equations, termed design
equations, which describe the structure for parallel processing. For LTV systems, the
fundamental concept for parallel processing was addressed in [8], but it lacks a design
equation. In this thesis, a design equation for systematic parallel processing with LTV
systems is introduced, which is the generalization of the design equations for LTI systems.

• Using the novel design equation, parallel processing with the widely applicable Farrow
filter is presented, where no computational overhead is introduced.

• The necessary structural modifications for parallel processing and utilization of the de-
sign equation is discussed for iterative correction structures, which provides the means for
parallel processing with several reconstruction methods.

• A structure for parallel processing with the differentiator-multiplier cascade is introduced,
which illustrates how the various concepts are combined to attain parallel processing with
more complex structures.

Equalization of Time-Varying Nonlinear Systems:

• It is shown that the post-equalization method presented in [9], which is based on a nonlinear
fixed-point iteration, is in fact a particular P th-order inverse.

• A novel perspective on the Volterra series is established by illustrating that it can be viewed
as an LTV system, which provides a new foundation to derive and analyze equalization
methods.

• Two equalization methods are derived, the Richardson and Jacobi equalizer, where the
former is shown to coincide with the nonlinear Richardson iteration and the latter is
entirely novel. Furthermore, it is demonstrated that the Richardson equalizer can be
regarded as a generalization of the post-equalization method discussed in [9].

• The range of applicability, i.e., the condition for convergence, is established analytically
for the Richardson equalizer.

• The equalization performance of four different methods is compared via simulations to
illustrate their particular characteristics. Furthermore, the computational complexity is
discussed and related to the equalization performance.

Chapter 2

Parallel Processing with Linear Time-Varying Filters

2.1 Introduction

For single-input single-output (SISO) LTI filters, established methods for parallel processing
are readily available and, e.g., are documented in [7]. Therein, a SISO LTI filter is transformed
into a multiple-input multiple-output (MIMO) LTI filter to enable parallel processing, i.e., block
processing of consecutive samples. This transformation is based on a polyphase decomposition
of the SISO LTI filter and the structure of the MIMO LTI filter is described by a set of equations,
which may be regarded as design equations for the MIMO LTI filter. However, this SISO to
MIMO transformation cannot be applied to LTV filters without further consideration due to
the time-varying impulse response. In [8], this issue is essentially addressed, but it might be
overlooked quite easily as it is embedded into a general elaboration on time-varying filters and
filter banks and, furthermore, the discussion therein lacks a convenient design equation as it
is available for the time-invariant case. This motivated the derivation of a SISO to MIMO
transformation which adopts the fundamental concepts in [8], but results in a design equation
which generalizes the one for LTI filters to LTV filters.
This derivation is presented in Section 2.2 and the application of the design equation is ex-
emplified in Section 2.3, where a Farrow filter and correction structures for time-interleaved
analog-to-digital converters (TI-ADCs) are considered. Section 2.4 discusses some implementa-
tion aspects and Section 2.5 concludes the chapter with a summary.

2.2 SISO to MIMO LTV Filter Transformation

In the following, the transformation of a SISO LTV filter to a MIMO LTV filter is derived. The
SISO LTV filter is shown in Figure 2.1, where x[n] is the input signal and y[n] is the output
signal. The output of this filter can be described by the convolution of the input signal with the

hn[k]x[n] y[n]

Figure 2.1: SISO LTV filter.

4 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

λn
z−1 ⇔ z−1

λn−1

Figure 2.2: Interchange of a time-varying multiplier λn, where n denotes the time dependence, and a delay
element denoted by z−1, which delays the signal by one sample [8].

time-varying impulse response hn[k], i.e.,

y[n] =
∞∑

k=−∞
hn[k]x[n− k] . (2.1)

Since the conventional z-transform is not defined for a time-varying filter, it is redefined here as
the z-transform of the filter “frozen” at time instant n [8], i.e.,

Hn(z) =
∞∑

k=−∞
z−khn[k] . (2.2)

In the context of time-varying filters, it is important to recognize that delay elements and
time-varying multipliers may not be interchanged without further consideration as in the time-
invariant case, but the time dependency needs to be taken into account as well [8], which is
illustrated in Figure 2.2. In order to keep the underlying structure transparent in the z-domain,
a refined notation is introduced for the remainder of this chapter. In particular, it is defined that
the order of terms in equations in the z-domain corresponds to the structure of the underlying
filter, i.e., a delay preceding a filter is written to its left, whereas a delay following a filter is
written to its right. This implies that delay elements, LTV filters and time-varying multipliers do
not commute under multiplication in the z-domain, but the rule in Figure 2.2 must be respected
instead. Furthermore, this concept of notation is extended to the z-transform of filters, where
finite impulse response (FIR) filters with the delay chain at the input (direct form) are denoted
by writing the z to the left, as done in (2.2), and FIR filters with the delay chain at the output
(transposed form) are denoted by writing the z to the right [8].

A linear M -periodically time-varying filter may be represented as a maximally decimated M -
channel filter bank by processing M subsequent samples in parallel using the corresponding
impulse responses and time-interleaving the results using decimators and expanders [10]. The
same concept may as well be applied to a SISO LTV filter as depicted in Figure 2.3. Therein, the
filters are followed by a decimator, hence a polyphase decomposition may be applied to reduce
the number of arithmetic operations per unit time [10]. In order to keep the derivation as simple
as possible, the interchange of time-varying multipliers and delay elements is avoided during
polyphase decomposition by assuming Hn(z) to be a direct form FIR filter, cf. Appendix A.
However, the method below is nonetheless applicable to FIR filters in transposed form and even
to infinite impulse response (IIR) filters, if they permit an appropriate polyphase decomposi-
tion [10]. Given this assumption, the M -fold polyphase decomposition of Hn(z) in (2.2) is given
by [8]

Hn(z) =
M−1∑
l=0

z−lH̃(l)
n (zM) , (2.3)

Section 2.2 » SISO to MIMO LTV Filter Transformation 5

x[n]
Hn(z)

v0[n] yM y0[m] xM y[n]

z−1 z

Hn−1(z)
v1[n] yM y1[m] xM

z−1 z

Hn−M+1(z)
vM−1[n] yM yM−1[m] xM

...
...

...

Figure 2.3: SISO LTV filter in multirate respresentation (cf. [10]).

where the polyphase components are

H̃(l)
n (zM) =

∞∑
k=−∞

z−Mkhn[Mk + l] . (2.4)

In order to apply the polyphase decomposition to Figure 2.3, the output of the filter Hn−k(z)
in channel k is identified as

Vk(z) = X(z)z−kHn−k(z) ,

for k = 0, . . . ,M − 1. Applying the polyphase decomposition in (2.3) gives

Vk(z) =
M−1∑
l=0

X(z)z−(k+l)H̃
(l)
n−k(zM) , (2.5)

where z−k and z−l were combined as both precede the filters H̃(l)
n−k(zM). In order to move the

M -fold decimator in front of the filters H̃(l)
n−k(zM) (cf. Nobel identity 1 in [10]), it is applied to

Vk(z). Decimation is described in the z-domain by [10]

Yk(z) =
[
Vk(z)

]
↓M

= 1
M

M−1∑
i=0

Vk(z1/MW i
M) , (2.6)

where WM = e−2π/M , i.e., the Mth root of unity. However, using (2.5) in (2.6) is not straight-
forward, as (2.6) is only capable of describing the implications in the z-domain and obscures
the impact on the time-domain.1 Besides retaining only every Mth sample and discarding the
ones in between, which is well described by (2.6), the decimator further changes the time index
from n before the decimator to m after the decimator (cf. Figure 2.3), where n = Mm, i.e., one
time step in m corresponds toM time steps in n. Therefore, theM -fold decimation of H̃(l)

n (zM)

1 Note that the z-domain is nonetheless better suited for the derivation as it provides a straightforward insight
into the filter structure, which is not that explicitly visible in the time domain description.

6 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

leads to the polyphase components

H
(l)
Mm(z) =

∞∑
k=−∞

z−kh(l)
Mm[k] (2.7)

with the corresponding impulse responses

h
(l)
Mm[k] = hMm[Mk + l] ,

where the change in the time index (n→ Mm) and extraction of every Mth sample (zM → z)
is respected. Considering these particularities, (2.5) may be used in (2.6), and in conjunction
with (2.7) this results in

Yk(z) = 1
M

M−1∑
i=0

M−1∑
l=0

X(z1/MW i
M)
(

z1/MW i
M

)−(k+l)
H

(l)
Mm−k(z) .

Rearranging the sums yields

Yk(z) =
M−1∑
l=0

[
1
M

M−1∑
i=0

X(z1/MW i
M)
(

z1/MW i
M

)−(k+l)
]
H

(l)
Mm−k(z) ,

where the term in square brackets, by comparison to (2.6), can be identified as the M -fold
decimation of the time-shifted input signal X(z), thus

Yk(z) =
M−1∑
l=0

[
X(z)z−(k+l)

]
↓M
H

(l)
Mm−k(z) . (2.8)

This equation specifies the output signal yk[m] = y[Mm − k] of channel k as the sum of time-
shifted and decimated versions of the input signal filtered by polyphase components. In a MIMO
LTV filter, the input x[n] is provided in blocks of M samples, thus the channel input signals are
identified as

xi[m] = x[Mm− i] , (2.9)

with the corresponding z-transform

Xi(z) =
[
X(z)z−i

]
↓M

,

for the channels i = 0, . . . ,M − 1. In order to map the channel inputs to the time-shifted
and decimated input signals in (2.8), the delay z−(k+l) in (2.8) is considered, which is between
z−2(M−1) and z0 due to the range of k and l. By comparison to the definition of Xi(z), it is
observed that

k + l ≤M − 1 ⇒ [X(z)z−(k+l)]↓M = Xk+l(z)
k + l > M − 1 ⇒ [X(z)z−(k+l)]↓M = [X(z)z−(k+l−M)z−M]↓M = Xk+l−M (z)z−1 .

Section 2.2 » SISO to MIMO LTV Filter Transformation 7

x0[m]
H

(0)
3m(z)

y0[m]

z−1 H
(1)
3m−2(z)

z−1 H
(2)
3m−1(z)

x1[m]
H

(0)
3m−1(z)

y1[m]

H
(1)
3m(z)

z−1 H
(2)
3m−2(z)

x2[m]
H

(0)
3m−2(z)

y2[m]

H
(1)
3m−1(z)

H
(2)
3m(z)

Figure 2.4: MIMO LTV filter for M = 3 described by (2.10).

Consequently, (2.8) can be expressed in terms of the channel input signals Xi(z) as

Yk(z) =
M−1∑
l=0

X((k+l))M
(z)z−b(k+l)/McH

(l)
Mm−k(z) , (2.10)

for k = 0, . . . ,M − 1, where b·c denotes the floor function and ((k + l))M = (k + l) mod M
denotes the modulo operation, yielding a value beween 0 and M − 1 (cf. [11]). Equation (2.10)
specifies the output of channel k, i.e., Yk(z), in terms of the channel input signals Xi(z) and,
therefore, can be regarded as the design equation for the structure of the MIMO LTV filter.
Indeed, (2.10) is the generalization of the design equations for LTI filters in [7] to LTV filters.2

The MIMO LTV filter described by (2.10) is shown in Figure 2.4 for M = 3. It should be
pointed out that the MIMO structure comprises exactly M times the multipliers and adders
of the SISO LTV filter and, therefore, exhibits the same number of arithmetic operations per
unit time as the SISO LTV filter due to the parallel processing of M samples. This implies
that the transformation does not introduce any additional computational effort on a per-sample
basis. Furthermore, due to the polyphase decomposition, the individual subfilters in the MIMO
structure comprise only 1/Mth of the SISO LTV filter coefficients and as the transformation
places at maximum M − 1 adders between the subfilters and the channel outputs, the critical
path [7] is reduced as well if the order of the SISO LTV filter is at least M .3 Finally, in the

2 Note that the design equation in [7] is put in a more extensive way without the use of a floor and modulo
operation. However, it was found that the formulation in (2.10) is more convenient, as one can create a table
comprising k, l, ((k + l))M , and b(k + l)/Mc, from which the structure is directly obtained.

3 As in the derivation, a direct form implementation of the FIR filters is assumed.

8 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

ADC0

ADCk

ADCM−1

y0[m]

yk[m]

yM−1[m]

ϕ = 2πM−1
M

ϕ = 2π k
M

ϕ = 2π 0
M

f = 1
MT

f = 1
MT

f = 1
MT

x(t) SISO
Correction
Structure

x̂[n]y[n]

Figure 2.5: TI-ADC (cf. [15]) followed by a SISO correction structure.

special case of a linear and M -periodically time-varying SISO filter, i.e., Hn(z) = Hn−M (z), the
filters in (2.10) become time-invariant, i.e., H(l)

Mm−k(z) = H
(l)
k (z) [8, 10].

As a concluding remark, note that the delay chain at the output in Figure 2.3 is acausal and,
therefore, not realizable. However, this is easily overcome by adding a delay z−M+1 at the
output, which translates to the obvious fact that an output block is obtained as soon as a
complete input block is available.

2.3 Application Examples

The correction of errors in TI-ADCs shall serve here as a basis for practical examples. Aimed
at high data rate applications, TI-ADCs [12] comprise M parallel channel ADCs working at
the rate 1/(MT), which are time-interleaved to yield samples of the input signal at the rate
1/T , where T denotes the sampling period. Mismatches between the channel ADCs and clock
skew significantly degrade the performance [13–15] and various correction methods were already
proposed [1, 3, 4, 16–18]. These approaches require the data stream at the full rate 1/T , i.e.,
the samples of the M channel ADCs are time-interleaved and, subsequently, fed into a SISO
correction structure as shown in Figure 2.5, where the time-interleaving of samples is visualized
via a commutator [10]. However, in order to mitigate the requirements on the speed of the
hardware, it is desirable to have MIMO correction structures, which accept the direct output of
the channel ADCs and work at the M -times lower rate 1/(MT) as illustrated in Figure 2.6.
Many digital correction structures are linear filters and the design of the TI-ADC suggests an
underlying M -periodicity, but as those structures are mostly adapted, e.g., to the influence of
temperature and voltage variations or aging effects, they can be regarded as general LTV filters.
Therefore, parallel processing may be obtained by applying the SISO to MIMO transformation
discussed in Section 2.2. In this context, note that parallel processing of M samples is the most
obvious choice for an M channel TI-ADC, but the degree of parallelism is not linked to the
number of channels.
The design equation (2.10) can be readily applied to correction structures based on adapted
FIR filters, e.g., explicitly designed correction filters [1]. Focusing on more involved examples,

Section 2.3 »Application Examples 9

ADC0

ADCk

ADCM−1

y0[m]

yk[m]

yM−1[m]

ϕ = 2πM−1
M

ϕ = 2π k
M

ϕ = 2π 0
M

f = 1
MT

f = 1
MT

f = 1
MT

x̂0[m]

x̂k[m]

x̂M−1[m]

x(t) MIMO
Correction
Structure

x̂[n]

...

...

...

...

Figure 2.6: TI-ADC followed by a MIMO correction structure. Note that the sampling progression dur-
ing one iteration begins at ADCM−1 and ends at ADC0 for consistence with the previously
introduced notation.

the SISO to MIMO transformation is discussed below for the widely applicable Farrow filter,
followed by a general view of iterative correction structures and a specific realization thereof,
the differentiator-multiplier cascade.

2.3.1 Farrow Filter

Farrow filters [19] are FIR filters with a parameter λn, where the variation of the impulse
response coefficients hn[k] with respect to λn is approximated with polynomials of degree P ,
i.e.,

hn[k] =
P∑
p=0

bp[k]λpn . (2.11)

Therein, the subscript n denotes the dependence on the time index n and bp[k], for p = 0, . . . , P ,
are the coefficients of the polynomial for the coefficient hn[k] of the impulse response. It can be
shown that the z-transform of (2.11) evaluates to

Hn(z) =
P∑
p=0

Bp(z)λpn , (2.12)

where

Bp(z) =
∞∑

k=−∞
z−kbp[k] .

A Farrow filter with input x[n] and output y[n] can be regarded as an LTV filter as depicted in
Figure 2.1. Hence, a corresponding M -channel MIMO Farrow filter is described by the design
equation (2.10), if the polyphase components H(l)

Mm(z) defined in (2.7) of the Farrow filter are
known. To arrive at this polyphase decomposition, the decomposition of the time-invariant

10 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

H
(0)
2m(z)

H
(1)
2m−1(z)

H
(0)
2m−1(z)

H
(1)
2m(z)

x0[m]
B

(0)
0 (z)

y0[m]

B
(0)
1 (z)

λ2m

B
(0)
2 (z)

λ2
2m

z−1 B
(1)
0 (z)

B
(1)
1 (z)

λ2m−1

B
(1)
2 (z)

λ2
2m−1

x1[m]
B

(0)
0 (z)

y1[m]

B
(0)
1 (z)

λ2m−1

B
(0)
2 (z)

λ2
2m−1

B
(1)
0 (z)

B
(1)
1 (z)

λ2m

B
(1)
2 (z)

λ2
2m

Figure 2.7: MIMO Farrow filter for M = 2 and P = 2.

polynomial filters Bp(z) [10] is considered first, i.e.,

Bp(z) =
M−1∑
l=0

z−lB(l)
p (zM) , (2.13)

where the polyphase components are

B(l)
p =

∞∑
m=−∞

z−mb(l)
p [m]

with the corresponding impulse responses

b(l)
p [m] = bp[Mm+ l] . (2.14)

Section 2.3 »Application Examples 11

x0[m]
B

(0)
0 (z)

y0[m]

B
(1)
0 (z) λ2m

B
(0)
1 (z)

B
(1)
1 (z) λ2m

B
(0)
2 (z)

z−1 B
(1)
2 (z)

B
(1)
2 (z)

B
(0)
2 (z)

B
(1)
1 (z) λ2m−1

B
(0)
1 (z)

B
(1)
0 (z) λ2m−1

x1[m]
B

(0)
0 (z)

y1[m]

Figure 2.8: MIMO Farrow filter for M = 2 and P = 2, reorganized to reduce the number of time-varying
multipliers.

Using (2.13) in (2.12) gives

Hn(z) =
M−1∑
l=0

z−l
P∑
p=0

B(l)
p (zM)λpn , (2.15)

where no delays and time-varying multipliers were interchanged as λpn follows the polynomial
filters. A comparison of (2.15) to the polyphase decomposition in (2.3) identifies H̃(l)

n (zM) for
the Farrow filter as

H̃(l)
n (zM) =

P∑
p=0

B(l)
p (zM)λpn .

The particularities of decimating a time-varying filter as discussed in Section 2.2 apply here as
well, but as only the multipliers λpn are time-varying, it is sufficient to take care of their time
indices. Consequently, the polyphase components after decimation are given by

H
(l)
Mm(z) =

P∑
p=0

B(l)
p (z)λpMm . (2.16)

12 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

y[n]
Hn(z) Hn(z) Hn(z)

x̂[n]

Figure 2.9: SISO cascade correction structure.

y0[m] x̂0[m]

y1[m] x̂1[m]

y2[m] x̂2[m]
MIMO
Hn(z)

MIMO
Hn(z)

MIMO
Hn(z)

Figure 2.10: MIMO cascade correction structure, where the MIMO equivalent of Hn(z) is illustrated in
Figure 2.4.

Concluding, using H(l)
Mm(z) in (2.16) in the design equation (2.10) yields the description of an

M -channel MIMO Farrow filter. The resulting structure is shown in Figure 2.7 for M = 2 and
P = 2. This figure is an exact graphical analogon of the design equation (2.10) with H(l)

Mm(z)
as defined in (2.16). However, this structure may be reorganized to reduce the number of
time-varying multipliers, which is illustrated in Figure 2.8. It is important to observe that the
reorganized MIMO Farrow filter exhibits the same number of additions as well as time-invariant
and time-varying multiplications per unit time as the the SISO Farrow filter and, therefore, the
transformation does not introduce any additional computational effort on a per-sample basis.
Analogous to the direct form SISO LTV filter discussed in Section 2.2, it can be shown that the
the critical path [7] is reduced if all polynomial filters of the SISO Farrow filter are at least of
order M and implemented in direct form.

2.3.2 Iterative Correction Structures

Correction structures based on iterative methods comprising a cascade of correction stages are
recent and efficient strategies for the correction of mismatch errors in TI-ADCs [4, 5, 18]. Here,
only the fundamental structure of those approaches shall be considered, which is depicted in
Figure 2.9, where Hn(z) is a direct form FIR LTV filter. Note that the notation is adapted
to [4], i.e., the input signal to the correction structure is denoted y[n], which is the output of the
TI-ADC and itself the sampled analog input signal x(t) impaired by mismatches and clock skew,
and the output signal is denoted x̂[n], being the reconstructed signal approximating the ideal
output x[n] = x(nT) (cf. Figure 2.5). Once the polyphase decomposition of Hn(z) described
by (2.7) is known, the design equation (2.10) provides the structure of the MIMO representation
of Hn(z). Therewith, the filters only need to be connected accordingly to obtain the MIMO
system as illustrated in Figure 2.10 for M = 3.

Section 2.4 » Implementation and Practical Aspects 13

Stage 1

Stage 2

y[n]
−Hd(z)

rn
−Hd(z)

rn x̂[n]

−1
2H

2
d(z)

r2
n

Figure 2.11: DMC with 2 stages.

y0[m] x̂0[m]

y1[m] x̂1[m]
MIMO
Farrow
Stage 1

MIMO
Farrow
Stage 2

Figure 2.12: MIMO DMC with 2 stages for M = 2, where the MIMO Farrow filters are illustrated in
Figure 2.8.

2.3.3 Differentiator-Multiplier Cascade

The differentiator-multiplier cascade (DMC) introduced in [16] is an iterative correction struc-
ture for timing mismatch correction based on a Taylor series expansion. Again, only its structure
shall be considered and serve as a particular example of an iterative correction structure. Fur-
thermore, the notation of Section 2.3.2 is adopted, which is used in [16] as well.
A DMC with two stages is illustrated in Figure 2.11, where Hd(z) is an ideal first-order discrete-
time differentiator, i.e., its output is the first derivative of its input, and rn is the time-varying
sampling time error in fractions of the sampling period T . The structure of the stages can be
identified as Farrow filters with λn = rn and

• P = 1, B0(z) = 0, B1(z) = −Hd(z) for stage 1, and

• P = 2, B0(z) = 0, B1(z) = −Hd(z), B2(z) = −H2
d(z)/2 for stage 2.

Consequently, the polyphase decomposition of the stages is given by (2.16). The stages them-
selves are connected according to Figure 2.9, whose MIMO respresentation was discussed in
Section 2.3.2. Concluding, a 2-channel MIMO DMC with 2 stages is shown in Figure 2.12,
whose MIMO stages are depicted in Figure 2.8.

2.4 Implementation and Practical Aspects

The theoretical results for the Farrow filter and DMC discussed in Section 2.3 were verified by
a simulation in MathWorks® Simulink®. In the following, these simulations shall be discussed
briefly, as they provide an insight into some issues which arise in practical implementations.

14 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

y

1

B2

Digital

Filter

B1

Digital

Filter

B0

Digital

Filter

lambda_n

2

x

1

(a) SISO Farrow filter for P = 2.

y_1

2

y_0

1

z
-1

B21_2

Digital

Filter

B21_1

Digital

Filter

B20_2

Digital

Filter

B20_1

Digital

Filter

B11_2

Digital

Filter

B11_1

Digital

Filter

B10_2

Digital

Filter

B10_1

Digital

Filter

B01_2

Digital

Filter

B01_1

Digital

Filter

B00_2

Digital

Filter

B00_1

Digital

Filter

lambda_2m-1

4

lambda_2m

3

x_1

2

x_0

1

(b) MIMO Farrow filter for M = 2 and P = 2.

Figure 2.13: SISO and MIMO Farrow filter implemented as a subsystem in MathWorks® Simulink®.

2.4.1 Farrow Filter

The implementation of the SISO and MIMO Farrow filter is fairly straightforward in Simulink®,
which is visible in Figure 2.13. The filter order of the polynomial filters bi[m], with i = 0, 1, 2, is
chosen as N = 32 and the input signal x[n], the parameters λn as well as the filter coefficients
bi[k] are drawn from a uniform distribution on the open interval (−1, 1). The sequences x[n] and
λn need to be decomposed into two subsequences for the MIMO Farrow filter with M = 2, e.g.,
the input signal vector x for the Simulink® model, which is generated in Matlab®, is split into
x(1:2:end) for x1[n] and x(2:2:end) for x0[n], where it should be observed that x0[n] comprises
the more recent samples in the input blocks compared to x1[n], cf. (2.9). In contrary, when the
impulse responses of the polynomial filters are decomposed into their polyphase components,
the temporal ordering with respect to the polyphase index is just the opposite, e.g., the impulse
response vector b0 for b0[m] is decomposed into b0(1:2:end) for b(0)

0 [m] and b0(2:2:end) for

Section 2.4 » Implementation and Practical Aspects 15

b
(1)
0 [m], cf. (2.14). The equivalence of the output of the SISO and MIMO Farrow Simulink®

model is determined by analyzing the error, i.e., the difference of the outputs, in terms of a
signal-to-noise ratio (SNR). If the output of the SISO Farrow filter is denoted by ySISO[n] and
the output signal of the MIMO Farrow filter, which results from time-interleaving the output
signals y0[m] and y1[m], is denoted by yMIMO[n], then

SNR = 10 · log
(∑N−1

n=0 |ySISO[n]|2∑N−1
n=0 |e[n]|2

)
,

where the error signal e[n] is defined as

e[n] = ySISO[n]− yMIMO[n]

and the number of samples is set to N = 212. The resulting SNR is about 312 dB, which
represents an extremely minor deviation of the outputs and can be attributed to numerical
issues due to the simulation with finite precision. Consequently, the output signals are equal
and demonstrate the correctness of the SISO to MIMO transformation.

2.4.2 Differentiator-Multiplier Cascade

The SISO and MIMO DMC with 2 stages were implemented in Simulink® using the SISO and
MIMO Farrow filter model of Section 2.4.1, respectively, and they are depicted in Figure 2.14.
Instead of comparing the output of these models, they are compared to the output of the imple-
mentation of Tertinek and Vogel4, which they provide alongside their paper on the DMC [16]
and is called “reference implementation” in the discussion below. Following the exemplary sim-
ulation of Tertinek and Vogel [16],5 a white noise signal, band limited to 0.7 times the Nyquist
frequency, is sampled to form the input signal. The standard deviation of the zero-mean normally
distributed timing jitter is chosen to 0.01T , where T is the ideal sampling period, and the first-
order differentiator is designed using the Parks-McClellan algorithm [11] (firpm in Matlab®)
with a filter order N = 32.6 To replicate the behavior of the reference implementation, the
impulse response of the second-order differentiator utilized in the second stage is obtained by
convolving the impulse response of the first-order differentiator with itself. Note that this in-
creases its filter order to 2N = 64 and, consequently, the output of the first-order differentiator
used in the second stage needs to be delayed by N/2 = 16 samples, as otherwise the output
of the two differentiators would be misaligned. One may have questioned the additional delays
in Figure 2.14, which are not present in the structures in Section 2.3.3. In order to motivate
their insertion, the differentiators need to be considered. In Section 2.3.3, they are assumed
to be ideal and, therefore, do not delay the signal. However, ideal differentiators are acausal
and, consequently, not realizable. A practical implementation of a differentiator does not only
differentiate but also delay the signal. Thus, the delay introduced by the subfilters in the stages
needs to be considered when their output is multiplied with the time-varying parameter rn and

4 http://userver.ftw.at/~vogel/Code/DMC.m

5 http://userver.ftw.at/~vogel/Code/Demo.m

6 The reason for using a band limited input signal originates from the issue of designing a first-order FIR
differentiator with an integer delay. More information on this issue is provided in Section VIII of [16].

http://userver.ftw.at/~vogel/Code/DMC.m
http://userver.ftw.at/~vogel/Code/Demo.m

16 Chapter 2 » Parallel Processing with Linear Time-Varying Filters

y

siso_dmc_y

x_hat

siso_dmc_xhat

r_n

siso_dmc_rn

SISO Farrow Stage 2

SISO
Farrow
Filter

x

λ
n

y

SISO Farrow Stage 1

SISO
Farrow
Filter

x

λ
n

y

z
-32

z
-16

z
-32

z
-16

(a) SISO DMC utilizing the SISO Farrow filter in Figure 2.13a.

y_1

mimo_dmc_y1

y_0

mimo_dmc_y0

x_hat_1

mimo_dmc_xhat1

x_hat_0

mimo_dmc_xhat0

r_2m-1

mimo_dmc_r_2m1

r_2m

mimo_dmc_r_2m
MIMO Farrow Stage 2

MIMO
Farrow
Filter

x
0

x
1

λ
2m

λ
2m-1

y
0

y
1

MIMO Farrow Stage 1

MIMO
Farrow
Filter

x
0

x
1

λ
2m

λ
2m-1

y
0

y
1

z
-16

z
-16

z
-16

z
-16

z
-8

z
-8

z
-8

z
-8

(b) MIMO DMC for M = 2 utilizing the MIMO Farrow filter in Figure 2.13b.

Figure 2.14: SISO and MIMO DMC with 2 stages implemented in MathWorks® Simulink®.

when this result is added to the input signal, cf. [16]. In case of the MIMO DMC, the delay
must be implemented with block processing in mind. Assuming the signal in a channel should
be delayed by D samples, then it suffices to delay all channel signals by D/M samples if D
is a multiple of M , i.e., D mod M ≡ 0. However, if D mod M 6= 0, the channels need to be
“cross-connected” to realize the delay, i.e., to delay the signal in channel i by D samples involves
delaying it by b(i + D)/Mc samples and connecting it to the channel (i + D) mod M of the
subsequent structure. Fortunately, the former is the case for the MIMO DMC discussed here,
hence it amounts to simply inserting the corresponding delays as visible in Figure 2.14b.
The equivalence of the output of the SISO and MIMO DMC Simulink® model with respect
to the reference implementation is analyzed analogously to Section 2.4.1, i.e., their SNR with
respect to the reference output is considered. For both, the SISO and MIMO DMC, the resulting
SNR is about 321dB. Again, this extremely minor deviation of the outputs can be attributed to
numerical issues and, consequently, the output signals are equal and demonstrate the correctness
of the SISO and MIMO DMC model.

2.5 Summary

In this chapter, a systematic approach for parallel processing with SISO LTV filters was intro-
duced by means of a transformation to a MIMO LTV filter using multirate theory and polyphase
decomposition. The structure of the MIMO LTV filter is described by a design equation for an

Section 2.5 » Summary 17

arbitrary degree M of parallelism using the polyphase decomposition of the SISO LTV filter. It
was shown that the transformation does not introduce any additional computational effort, as
the number of arithmetic operations per sample is not affected, and under certain conditions,
it even reduces the critical path. Compared to the design equation for parallel processing with
LTI filters described in [7], the proposed design equation is its generalization to LTV filters. The
practical application and benefit of the transformation was discussed for a Farrow filter, a general
iterative correction structure, and a differentiator-multiplier cascade, and it was demonstrated
that even for these complex structures, the invariance of the computational effort per sample
with respect to the transformation can be preserved. Finally, the verification of the method
via simulation was discussed and important aspects regarding practical implementations were
highlighted.

Chapter 3

Equalization of Time-Varying Nonlinear Systems

3.1 Introduction

The equalization of nonlinear systems, i.e., cancelling the impact a nonlinear system has on its
input signal, is required in many applications, e.g., amplifier predistortion [20–23], nonlinear
echo cancellation [24–27] and channel equalization [28–30]. In this work, it is assumed that the
nonlinearity can be modeled by a Volterra series [31–34], which is a commonly used approximator
for weak nonlinearities, i.e., continuous nonlinearities with fading memory [35,36]. As real-world
nonlinear systems often vary with time, e.g., due to environmental influences like temperature
variations or changes in the channel, the Volterra series is assumed to be time-varying. The
fast-paced and continuous advances in semiconductor technology initiated a shift of most signal
processing tasks into the digital domain [37]. This fact is respected in the following by considering
discrete-time equalizers, where the term equalizer refers to any system that cancels the impact
of a nonlinear system. An equalizer may be placed in front of a nonlinear system, which is
commonly known as predistortion, or behind it, which is termed post-equalization and illustrated
in Figure 3.1. Due to the origin of the proposed equalizers, this work devotes itself to post-
equalization methods and, for convenience, the term equalizer is used to refer to post-equalization
in the remainder of this text.
In the following, this chapter continues in Section 3.2 by introducing the time-varying discrete-
time Volterra series and defining the employed notation. Subsequently, Section 3.3 provides
an overview of existing equalization methods and discusses two particular ones in more detail,
which are later on used for a comparison. The derivation and theoretical treatment of the
proposed equalization structures is covered in Section 3.4, 3.5, and 3.6, in which a novel view on
the Volterra series is established and, subsequently, utilized to derive and analyze equalization
structures. These theoretical findings are put into operation in Section 3.7 by means of a
simulation in MathWorks® Matlab®, where the proposed equalizers are compared to existing
methods. Finally, Section 3.8 concludes the chapter with a summary.

x[n] Nonlinear
System Equalizer

x̂[n]y[n]

Figure 3.1: Post-equalization of a nonlinear system, in which x̂[n] is a reconstruction of x[n].

20 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

x[n] Hn y[n]

Figure 3.2: Volterra system Hn.

3.2 Time-Varying Discrete-Time Volterra Series

The time-varying discrete-time Volterra series depicted in Figure 3.2, for convenience referred
to as Volterra system in the remainder, which produces the output sample y[n] given the input
signal x[n] can be defined at time instant n as [6]

y[n] = Hn{x[n]} , (3.1)

in which the time-varying Volterra system operator Hn is given by

Hn{x[n]} =
∞∑
p=1

Hp,n{x[n]} (3.2)

and the time-varying pth-order Volterra operators Hp,n are

Hp,n{x[n]} =
∑

k1,...,kp∈Z
hp,n[k1, . . . , kp]

p∏
i=1

x[n− ki] , (3.3)

with hp,n being the time-varying Volterra kernels.1 The subscript n denotes the time dependence
and it shall be pointed out that the time dependence of the Volterra kernels hp,n is the only
difference to the time-invariant Volterra series [31,32,34].
The notation in (3.1) to (3.3) suites some situations very well, but sometimes it is unnecessarily
bulky. However, especially to accomplish a more homogeneous notation with the concepts
introduced later, an alternative notation is established, which describes the Volterra system via
a vector function. Therefore, an input vector x ∈ RZ comprising the samples of the input signal
x[n], i.e.,

x = (. . . , x[n− 1], x[n], x[n+ 1], . . .)T , (3.4)

and an output vector y ∈ RZ comprising the samples of the output signal y[n], i.e.,

y = (. . . , y[n− 1], y[n], y[n+ 1], . . .)T , (3.5)

is defined, where RZ denotes the vector space of bi-infinite real-valued sequences [9]. The
Volterra system function H : RZ → RZ relates the input vector to the output vector, i.e.,

y = H(x) , (3.6)

1 Note that in the most general form, the Volterra series includes a term of order 0, i.e., a time-varying offset h0,n.
To simplify the discussion, it is common to require that the offset is compensated separately and, therefore,
it is assumed that h0,n = 0 [38]. Furthermore, implementation-relevant kernel reorganizations, e.g., kernel
symmetrization or triangularization, are not considered. The interested reader is referred to [31,33].

Section 3.3 » Existing Equalization Methods 21

Vn

x[n]
Hn G

(P)
n

x̂[n]y[n]

Figure 3.3: Cascade of the nonlinear system Hn and the P th-order inverse G(P)
n . Vn denotes the Volterra

system representing the cascade of Hn and G(P)
n .

and is defined as

H(x) =
∞∑
p=1
Hp(x) , (3.7)

in which Hp : RZ → RZ are the pth-order Volterra functions. The vector function Hp can be
defined in terms of the time-varying pth-order Volterra operators in (3.3), i.e.,

Hp(x) = (. . . , Hp,n−1{x}, Hp,n{x}, Hp,n+1{x}, . . .)T , (3.8)

where x is used as an alternative notation for the signal x[n] passed to Hp,n. At first sight,
the vector respresentation may take some getting used to, but it is essential to the concepts
discussed later on. It is important to observe that if one considers the row for time instant n
in the vector notation, it is equivalent to the definition in (3.1) to (3.3), which is utilized in the
remainder if the time-dependence has to be made explicit, e.g., in block diagrams.

3.3 Existing Equalization Methods

The equalization of Volterra systems has been considered for quite some time and a common
approach is the P th-order inverse introduced in [39], which allows the construction of an in-
verse system based on the knowledge of the Volterra system. Another method that utilizes
the knowledge of the Volterra system to generate an inverse system is the reformulation as a
fixed-point problem, which is subsequently solved using a nonlinear fixed-point iteration [9]. In
case a desired response signal is available, adaptive Volterra filters are applicable [38], or, if the
input signal stems from a finite symbol set, nonlinear decision feedback [40] or a method based
on root-finding [41] may be used.
As the P th-order inverse and nonlinear fixed-point iteration provide an inverse system given the
Volterra system, they are similar in spirit to the equalizers introduced below and, therefore, are
suited for a comparison. In the following, a concise overview of these two methods is provided to
outline their fundamental properties. More detailed information can be found in the references
given in the text.

3.3.1 P th-Order Inverse

The time-invariant P th-order inverse was introduced by Schetzen in [39] and is extended to
the time-varying case in [6]. In this approach, the Volterra system H is equalized by another
Volterra system G(P), called the P th-order inverse, as illustrated in Figure 3.3. Therefore, the

22 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

G
(1)
n

G
(2)
n

G
(3)
n

y[n]
G1,n −H2,n G1,n −H2,n G1,n

x̂[n]

−H3,n

Figure 3.4: 3rd-order inverse G(3)
n based on (3.12).

Algorithm 1 P th-order inverse

1. Calculate the inverse filter G1,n for the first-order Volterra operator H1,n

2. Generate the P th-order inverse G(P)
n via

G(P)
n {y[n]} = G1,n

{
y[n]−

P∑
p=2

Hp,n{G(P−1)
n {y[n]}}

}
(3.10)

3. Apply the P th-order inverse G(P)
n to the signal y[n] to obtain the reconstruction x̂[n]

input y to the equalizer G(P) is given by (3.6) and the reconstruction x̂ of x is

x̂ = G(P)(y) .

Alternatively, x̂ may be considered as the response of a Volterra system V to the input x, where
V comprises the cascade of H and G(P), i.e.,

x̂ = V(x) = G(P)(H(x)) .

The P th-order inverse is defined in terms of the cascade system V by requiring that its first-
order Volterra function V1 forwards the input signal and the outputs of the pth-order Volterra
functions Vp, for p = 2, . . . , P , are zero, i.e.,

Vp(x) =
{

x , if p = 1
0 , if 2 ≤ p ≤ P .

(3.9)

Therefore, it is required that the first-order Volterra function H1 is invertible, i.e., it possesses
an inverse G1 = H−1

1 , such that

V1(x) = G1(H1(x)) = x . (3.11)

Using the constraints in (3.9), one can recursively find expressions for G(P) as a function of G1

and Hp, for p = 2, . . . , P , as discussed in [6, 39]. It is important to observe that a P th-order
inverse is not unique, as the pth-order Volterra functions Vp, for p > P , are not constrained
by (3.9). This is utilized in [42] to derive a recursive relation to synthesize a P th-order inverse,

Section 3.3 » Existing Equalization Methods 23

which results in a structure that is less complex compared to the P th-order inverse of Schetzen.
In particular, this recursive relation is given by [6, 42]

G(P)(y) = G1
(
y−

P∑
p=2
Hp(G(P−1)(y))

)
(3.12)

and G(1) = G1. The resulting equalizer is explained in Algorithm 1 and a block diagram of a
3rd-order inverse is illustrated in Figure 3.4. A similar recursive relation is presented in [43],
which coincides with (3.12), except that the pth-order Volterra functions, for p > P , are utilized
as well, i.e.,

G(P)(y) = G1
(
y−

∞∑
p=2
Hp(G(P−1)(y))

)
. (3.13)

Therefore, from a structural viewpoint this is more complex than the P th-order inverse in (3.12),
but it will provide interesting insights later on in the text.

The implications of the requirement in (3.11) are rather extensive and are probably more obvious
in the operator notation, i.e.,

V1,n{x[n]} = G1,n{H1,n{x[n]}} = x[n] . (3.14)

Therefore, the first-order Volterra operator H1,n has to possess an inverse H−1
1,n at every time

instant n. In the time-varying case, the inverse H−1
1,n cannot be obtained by simply inverting

the filter H1,n, because it depends on the first-order Volterra operators at other time instants
as well. This issue is out of scope for this discussion and treated, e.g., in [1, 2]. However, it
shall be pointed out that, in general, the exact inverse does not exist and, therefore, has to be
approximated [6]. On the one hand, this implies additional computational complexity due to the
filter design, and on the other hand, (3.9) will only be satisfied approximately due to deviation
from the exact inverse H−1

1,n. Furthermore, if two Volterra systems with nonzero kernels up to
order Q and S, respectively, are cascaded, the Volterra system representing the cascade of those
two systems is of order QS [42]. This implies that for any P th-order inverse, where P is finite,
the cascade exhibits residual Volterra functions of order p > P , which introduce new higher-
order distortions that may become as severe such that the equalizer even increases the overall
distortion [44, 45]. Finally, assuming that an inverse H−1 for the Volterra system H exists, the
P th-order inverse is only an approximator for H−1 if the functional series represented by the
Volterra series G(P), for P → ∞, converges, which may only hold for a limited range of input
amplitudes [39,44,46].

3.3.2 Nonlinear Fixed-Point Iteration

The equalization of Volterra systems using a fixed-point approach was pioneered in [47, 48], is
discussed thoroughly in [9] and the time-varying case is touched in [6]. In order to pose the
equalization problem as a fixed-point problem, a fixed-point equation has to be established.

24 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

y[n]
−H2,n G1,n −H2,n G1,n −H2,n G1,n

x[n](3)

−H3,n −H3,n −H3,n

−H∞,n −H∞,n −H∞,n

...
...

...

x̂[n]

Figure 3.5: Nowak-Van-Veen equalizer with three iterations using the initial approximation x[n](0) = y[n].

Algorithm 2 Nowak-Van-Veen equalizer

1. Calculate the inverse filter G1,n for the first-order Volterra operator H1,n

2. Choose the number R of iterations according to the required equalization performance

3. Iterate the following step for r = 0, 1, . . . , R− 1:
a) Calculate a new approximation x[n](r+1) of the solution x[n] using

x[n](r+1) = G1,n
{
y[n]−

∞∑
p=2

Hp,n{x[n](r)}
}

(3.15)

4. Use x[n](R) as the reconstruction x̂[n] of the input sample x[n]

Adding the term x−Hn(x) to both sides of (3.6) yields

x = x + y−H(x) , (3.16)

and if the left hand side is defined as a vector function T (x), i.e.,

T (x) = x + y−H(x) ,

then (3.16) can be expressed as

x = T (x) . (3.17)

Equations of this kind are called fixed-point equation and any x that satisfies this equation is
called a fixed point. Consequently, a fixed-point of (3.16) is also a solution to (3.6). A fixed
point may be found by successive approximation using a fixed-point iteration [49, 50], i.e.,

x(r+1) = T (x(r)) , (3.18)

in which r denotes the iteration index and, if the iteration converges as intended,

lim
r→∞

x(r) = x .

Section 3.3 » Existing Equalization Methods 25

x

T (x)

0 1

1

x

T (x) = x2

Figure 3.6: Exemplary one-dimensional nonlinear fixed-point iteration x(r+1) = T (x(r)), in which T (x) =
x2. According to (3.21), T (·) is a contractive mapping on the interval [0, 1) and, indeed, the
iteration converges to the fixed point x = 0, cf. the dashed trajectory. In contrast, on the
interval [1,∞), the mapping T (·) is not contractive and the iteration diverges for any initial
value x(0) that differs from the fixed point x = 1, cf. the dotted trajectory.

In the particular case of (3.16), the fixed-point iteration is given by

x(r+1) = x(r) + y−H(x(r)) (3.19)

and is called nonlinear Richardson iteration [49]. The approach pursued in (3.16) is just one
particular way to obtain a fixed-point equation of the form (3.17). For example, if the first-order
Volterra function H1 possesses an inverse G1 = H−1

1 , as it is required in (3.11), one can use (3.7)
in (3.6) to obtain

H1(x) = y−
∞∑
p=2
Hp(x)

and apply G1, which yields

x = G1
(
y−

∞∑
p=2
Hp(x)

)
.

Therefore, the corresponding fixed-point iteration is given by

x(r+1) = G1
(
y−

∞∑
p=2
Hp(x(r))

)
, (3.20)

which was derived by Nowak and Van Veen in [9]. The resulting equalizer, in the remainder
referred to as Nowak-Van-Veen equalizer, is explained in Algorithm 2 and a block diagram of an
equalizer based on 3 iterations is illustrated in Figure 3.5. It is remarkable that the fixed-point
iteration in (3.20) has the same structure as the P th-order inverse in (3.13). Indeed, assuming

26 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

that the initial approximation is chosen as x(0) = y, the P th iteration x(P) of (3.20) provides
the same approximation to the solution x as the application of the P th-order inverse defined
in (3.13).
Fixed-point iterations as described by (3.18) only converge to a fixed-point x if T satisfies certain
conditions. In particular, these conditions are described by the Banach fixed-point theorem [50],
which requires that T is a contractive mapping, i.e.,

‖T (x1)− T (x2)‖ ≤ α‖x1 − x2‖ , (3.21)

where ‖·‖ denotes a vector norm [9], α ∈ [0, 1), and x1,x2 ∈ RZ. For an intuitive understanding
of this requirement, a very simple example is illustrated in Figure 3.6. However, in practice it
is rather difficult to show that (3.21) is fulfilled, which is addressed in [9].

3.4 Transformation of a Volterra System to an LTV System

In the following, a new perspective on Volterra systems shall be introduced, i.e., it is shown that
such a nonlinear time-varying system may be regarded as an LTV system. The Volterra system
defined in (3.1) to (3.3) may be written as

y[n] =
∞∑
p=1

∑
k1,...,kp∈Z

hp,n[k1, . . . , kp]
p∏
i=1

x[n− ki] ,

which permits the rearrangement

y[n] =
∑
k1∈Z

(
h1,n[k1] +

∞∑
p=2

∑
k2,...,kp∈Z

hp,n[k1, . . . , kp]
p∏
i=2

x[n− ki]
)
x[n− k1] .

The term in parenthesis may be regarded as a time-varying impulse response gx,n[k1], i.e.,

gx,n[k1] = h1,n[k1] +
∞∑
p=2

∑
k2,...,kp∈Z

hp,n[k1, . . . , kp]
p∏
i=2

x[n− ki] , (3.22)

in which the subscript n denotes the time dependence and the subscript x denotes the depen-
dence on the input signal x[n]. Using (3.22), the output signal y[n] can be characterized by a
convolution of the input signal x[n] with gx,n[k1], i.e.,

y[n] =
∑
k1∈Z

gx,n[k1]x[n− k1] .

Therefore, the Volterra system defined in (3.1) to (3.3) can be viewed as an LTV system with
the impulse response gx,n[k1] in (3.22), which is not only time-dependent, but depends on the
input signal x[n] as well. This transition of perspective permits the description of the Volterra
system as a matrix equation

Axx = y , (3.23)

Section 3.5 » Iterative Methods for Solving Systems of Linear Equations 27

in which x is the input vector and y the output vector as defined in (3.4) and (3.5), respectively,
and the infinite coefficient matrix Ax is given by

Ax =

.
...

... . . .
· · · gx,n−1[1] gx,n−1[0] gx,n−1[−1] · · ·
· · · gx,n[1] gx,n[0] gx,n[−1] · · ·
· · · gx,n+1[1] gx,n+1[0] gx,n+1[−1] · · ·
.

...
... . . .

,

where the subscript x denotes the dependence on the input vector. If the element in row i and
column j of Ax is denoted by aij,x, the coefficient matrix is alternatively defined by

aij,x = gx,i[i− j] , (3.24)

where i, j ∈ Z. Concluding, (3.23) is a different way to describe the Volterra system in (3.6) and,
even more important, it provides a new foundation to derive and analyze equalizers. Finding the
system’s input vector x corresponds to the equalization task and, assuming that the coefficient
matrix Ax is known, x is found by solving the system of linear equations in (3.23), which is
discussed in a vast amount of literature. However, the dependence of the coefficient matrix
Ax on the input vector x, which is unknown to the equalizer, complicates the matters. In the
following, Ax is assumed to be known in Section 3.5, which permits the use of iterative methods
to solve (3.23), cf. [4]. Based on this insight, the algorithms are modified in Section 3.6 to obtain
realizable equalizers.

3.5 Iterative Methods for Solving Systems of Linear Equations

In this section, it is assumed that the coefficient matrix Ax and the output vector y are known
and that the input vector x should be found by solving the system of linear equations in (3.23).
For real-time capability of the targeted equalizers, the underlying algorithms are required to
operate on a per-sample basis, whereas block processing is not considered here. Many methods
to solve systems of linear equations exist, but this requirement significantly reduces the number
of applicable ones, because it requires the underlying algorithm to operate row by row. Some
iterative methods feature this property and are well established in the literature [49, 51–53]. In
the following, the (linear) Richardson iteration and the Jacobi iteration shall be considered. Note
that although this is a sensible selection, other iterative methods with this property do exist,
e.g., the Richardson and Jacobi iteration with the inclusion of a relaxation parameter [51, 53].
However, a more complex iterative method will lead to a more complex structure of the resulting
equalizer and, therefore, the selection of the method is also limited by practical considerations.

3.5.1 Richardson Iteration

The fundamental principle of iterative methods to solve systems of linear equations is similar
to the method discussed in Section 3.3.2, i.e., the problem is stated as a fixed-point equation
and, subsequently, solved by successive approximation. For the Richardson iteration, x−Axx

28 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

is added to both sides of (3.23), which results in

x = (I−Ax)x + y , (3.25)

where I denotes the unit matrix. Therefore, the corresponding fixed-point iteration is given by

x(r+1) = (I−Ax)x(r) + y (3.26)

and called the Richardson iteration [49]. A single iteration step may be performed row by row,
i.e.,

x[i](r+1) =
∑
j∈Z

(δij − aij,x)x[j](r) + y[i] ,

in which δij is the Kronecker delta, i.e.,

δij =
{

1 , if i = j

0 , if i 6= j .

With (3.24), this iteration can be expressed in terms of the time-varying impulse response
gx,n[k1], i.e.,

x[n](r+1) = x[n](r) + y[n]−
∑
k1∈Z

gx,n[k1]x[n− k1](r) . (3.27)

Under the assumption that this fixed-point iteration converges as intended, which is investigated
later on, it will provide the solution

lim
r→∞

x[n](r) = x[n] . (3.28)

Note that if gx,n[k1] is causal, i.e., gx,n[k1] = 0 for all k1 < 0, the reconstruction of x[n] in (3.27)
only depends on the reconstruction of previous samples, i.e., x[k] with k < n, and, therefore,
is indeed realizable and real-time capable. Furthermore, this implies that one may use the
reconstruction x̂[k] of the previous samples instead of the approximation x[k](r) to improve the
convergence [6]. However, this leads to a more complex structure of the equalizers and is omitted
here to facilitate clarity.

3.5.2 Jacobi Iteration

The Jacobi iteration is a particular splitting method [53], i.e., a method based on a matrix
splitting

Ax = Ux −Vx .

For the Jacobi iteration, the matrix Ux comprises the diagonal elements of Ax, i.e.,

uij,x = δijaij,x , (3.29)

Section 3.5 » Iterative Methods for Solving Systems of Linear Equations 29

and Vx comprises the negated off-diagonal elements of Ax, i.e.,

vij,x = (δij − 1)aij,x , (3.30)

with i, j ∈ Z. Utilization of this splitting in (3.23) results in

Uxx = Vxx + y

and, assuming that Ux is invertible, i.e., det(Ux) 6= 0, this is equivalent to

x = U−1
x Vxx + U−1

x y , (3.31)

in which U−1
x denotes the inverse matrix of Ux. Consequently, the corresponding fixed-point

iteration is given by

x(r+1) = U−1
x Vxx(r) + U−1

x y (3.32)

and called the Jacobi iteration [51]. A single step of the Jacobi iteration may be performed row
by row [51], i.e.,

x[i](r+1) = 1
aii,x

(
y[i]−

∑
j∈Z\i

aij,xx[j](r)
)
,

and, using (3.24), it can be expressed in terms of the time-varying impulse response gx,n[k1] as

x[n](r+1) = 1
gx,n[0]

(
y[i]−

∑
k1∈Z\0

gx,n[k1]x[n− k1](r)
)
. (3.33)

If this fixed-point iteration converges as intended, it will provide the solution in (3.28).

3.5.3 Condition for Convergence

The application of iterative methods like the Richardson and Jacobi iteration is only reason-
able if it can be guaranteed that the iteration converges and that it indeed converges to a
solution of (3.23). Preliminary to the analysis of the convergence it shall be pointed out that
the Richardson and Jacobi iteration share the same fundamental structure of the fixed-point
equation, i.e.,

x = Mxx + cx , (3.34)

and the corresponding fixed-point iteration, i.e.,

x(r+1) = Mxx(r) + cx . (3.35)

This is verified by comparing these equations to (3.25) and (3.26) for the Richardson iteration,
and (3.31) and (3.32) for the Jacobi iteration. The condition for convergence is derived for the
iteration in (3.35) by following the proof provided in [51]. Subsequently, this result is adapted
to the special case of the Richardson and Jacobi iteration. With x being a solution to (3.34),

30 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

the error of the approximation x(r) in iteration r can be defined as

e(r) = x− x(r) .

Subtracting (3.35) from (3.34) results in

e(r+1) = Mxe(r) (3.36)

and unfolding the recursion yields

e(r+1) = Mxe(r) = M2
xe(r−1) = . . . = Mr+1

x e(0) .

Convergence to the solution x of (3.23) is achieved if the error e(r) eventually decays to zero,
i.e.,

lim
r→∞

e(r) = 0 .

Consequently, a necessary condition for convergence for an arbitrary initial error e(0) is given by

lim
r→∞

Mr
x = 0 . (3.37)

A matrix Mx that fulfills (3.37) is called a convergent matrix and satisfies

‖Mx‖ < 1 , (3.38)

in which ‖·‖ is any matrix norm [51]. In order to find a condition for convergence in terms of the
matrix elements, the matrix norm induced by the maximum norm is chosen to evaluate (3.38),
because of its beneficial property of row-by-row evaluation. Therefore, the maximum norm of
some vector x is defined first [51], i.e.,

‖x‖∞ = max
n∈Z
|x[n]| . (3.39)

The matrix norm ‖·‖∞ induced by the maximum norm is given by [51],

‖Mx‖∞ = max
i∈Z

∑
j∈Z
|mij,x| , (3.40)

in which mij,x are the elements of Mx. Using (3.40) in (3.38) states that a fixed-point iteration
defined by (3.35) converges to a solution x of the system of linear equations in (3.23) if the
iteration matrix Mx satisfies

max
i∈Z

∑
j∈Z
|mij,x| < 1 . (3.41)

In the following, this result is discussed for the Richardson and Jacobi iteration.

Section 3.5 » Iterative Methods for Solving Systems of Linear Equations 31

3.5.3.1 Richardson Iteration

In case of the Richardson iteration, the iteration matrix Mx amounts to

Mx = I−Ax , (3.42)

and the coefficient vector cx is given by

cx = y , (3.43)

which is verified by comparing (3.26) to (3.35). With (3.42), the condition for convergence
in (3.41) results in

max
i∈Z

∑
j∈Z
|δij − aij,x| < 1 .

Instead of evaluating the maximum, this restriction may as well be imposed on all rows i and,
using (3.24), this leads to the condition2

∑
k1∈Z
|δ[k1]− gx,n[k1]| < 1 , (3.44)

which must be fulfilled at all time instants n ∈ Z and where δ[k1] is the unit impulse sequence [11],
i.e.,

δ[k1] =
{

1 , if k1 = 0
0 , if k1 6= 0 .

The definition of gx,n[k1] in (3.22) and the triangle inequality can be used to find an upper bound
for the left hand side in (3.44) that depends only on the Volterra kernels and the maximum
amplitude ‖x‖∞ of the input signal x[n]. Therefore, consider the summand for k1 = 0, where
the application of the triangle inequality and the upper bound of the input yields

|1− gx,n[0]| ≤ |1− h1,n[0]|+
∞∑
p=2

∑
k2,...,kp∈Z

|hp,n[0, k2, . . . , kp]| · ‖x‖p−1
∞ .

Note that equality is only obtained if h1,n[0] = 1. Using this upper bound in (3.44), applying the
triangle inequality and the upper bound on the input on all summands for k1 6= 0, and adding
|h1,n[0]| to both sides of the inequality results in

∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ < 1 + |h1,n[0]| − |1− h1,n[0]| .

It can be observed that for h1,n[0] ≤ 0, the right hand side is zero and the inequality cannot
be fulfilled. If h1,n[0] is between zero and one, the right hand side is equal to 2h1,n[0], and
if h1,n[0] is greater than one, the right hand side is always 2. In summary, the condition for
convergence for the Ricardson iteration in terms of the Volterra kernels hp,n and the maximum

2 Note that this corresponds to the "‘weakly time-varying"’-property defined in [4].

32 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

input amplitude ‖x‖∞ is given by

∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ < 2 min(h1,n[0], 1) , (3.45)

in which min(·, ·) denotes the minimum value of its two arguments. Note that the inequality
cannot be fulfilled for h1,n[0] ≤ 0 and h1,n[0] ≥ 2, as the left hand side is lower bounded by zero
and |h1,n[0]| is a summand on the left hand side as well.

3.5.3.2 Jacobi Iteration

In case of the Jacobi iteration, the iteration matrix Mx amounts to

Mx = U−1
x Vx , (3.46)

and the coefficient vector cx is given by

cx = U−1
x y , (3.47)

which is verified by comparing (3.32) to (3.35). With (3.46), (3.29) and (3.30), the condition for
convergence in (3.41) evolves as [51]

max
i∈Z

∑
j∈Z\i

∣∣∣∣aij,xaii,x

∣∣∣∣ < 1 .

With (3.24), this condition may be restated in terms of the time-varying impulse response
gx,n[k1], i.e., ∑

k1∈Z\0
|gx,n[k1]| < |gx,n[0]| , (3.48)

which must be fulfilled at all time instants n ∈ Z. It should be pointed out that (3.48) requires
that gx,n[0] 6= 0 and that it is less restrictive compared to (3.44), because it represents a relative
constraint, whereas (3.44) imposes a restriction on the absolute values. In order to find a
condition that depends only on the Volterra kernels and the maximum amplitude ‖x‖∞ of the
input, the coefficient at time lag zero of the first-order Volterra kernel is assumed to be greater
than or equal to zero, i.e., h1,n[0] ≥ 0, which implies

|gx,n[0]| ≥ h1,n[0]−
∞∑
p=2

∑
k2,...,kp∈Z

|hp,n[0, k2, . . . , kp]| · ‖x‖p−1
∞ .

Using this result in (3.48), applying the triangle inequality and the upper bound on the input
to the left hand side, and adding h1,n[0] to both sides of the inequality yields

∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ < 2h1,n[0] . (3.49)

Section 3.6 » Equalizers based on Iterative Methods 33

Algorithm 3 Concept for a realizable equalizer

1. Use the initial approximation x̃(0) = y

2. Iterate the following steps for r = 0, 1, 2, . . . until convergence:
a) Calculate an approximation Mx̃(r) for the iteration matrix Mx using x̃(r)

b) Calculate an approximation cx̃(r) for the coefficient vector cx using x̃(r)

c) Calculate a new approximation x̃(r+1) of the solution x by means of

x̃(r+1) = Mx̃(r) x̃(r) + cx̃(r) (3.50)

A comparison of (3.49) to (3.45) reveals that the condition for convergence for the Jacobi
iteration is indeed less restrictive compared to the one for the Richardson iteration, as it only
requires h1,n[0] > 0 instead of 0 < h1,n[0] < 2.

3.6 Equalizers based on Iterative Methods

In Section 3.5, two algorithms were introduced that allow the reconstruction of the input x
from y and Ax as long as certain conditions are fulfilled. However, a realizable equalizer cannot
generate the coefficient matrix Ax defined by (3.24), because the time-varying impulse responses
gx,n[k1] in (3.22) require the knowledge of the input x. Indeed, if the input is known, then
equalization is trivial anyway. An ad-hoc solution to attain realizability would be to use y as
an approximation for x, construct a coefficient matrix Ay, and use it as a substitute for Ax

in the fixed-point iteration. As a consequence, a different system of linear equations would be
solved, whose solution is in general different from x. Consequently, such an attempt is not
meaningful. However, if Ay is used for one iteration and the obtained approximation is closer
to x compared to y, then it may be used to derive a better approximation for Ax. This thought
leads to the equalization concept shown in Algorithm 3, which represents a realizable equalizer.
Indeed, it is possible to find conditions for which convergence to the solution x is guaranteed,
but the associated proofs are quite involved. Hence, before these conditions are investigated,
the algorithm above shall be adapted for the Richardson and Jacobi iteration.

3.6.1 Richardson Equalizer

In accordance with (3.42) and (3.43), the iteration matrix Mx̃(r) and the coefficient vector cx̃(r)

based on the approximation x̃(r) are defined as

Mx̃(r) = I−Ax̃(r) (3.51)

and

cx̃(r) = y , (3.52)

34 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

y[n]
−Hn

x̃[n](1)

−Hn

x̃[n](2)

−Hn

x̃[n](3)

x̂[n]

Figure 3.7: Richardson equalizer with three iterations using the initial approximation x̃[n](0) = y[n].

Algorithm 4 Richardson equalizer

1. Use the initial approximation x̃[n](0) = y[n]

2. Choose the number R of iterations according to the required equalization performance

3. Iterate the following step for r = 0, 1, . . . , R− 1:
a) Calculate a new approximation x̃[n](r+1) of the solution x[n] using (3.55)

4. Use x̃[n](R) as the reconstruction x̂[n] of the input sample x[n]

respectively. The coefficient matrix Ax̃(r) is specified in terms of its elements as

aij,x̃(r) = gx̃(r),i[i− j] , (3.53)

where i, j ∈ Z and the time-varying impulse response gx̃(r),n[k1] based on the approximation x̃(r)

is given by

gx̃(r),n[k1] = h1,n[k1] +
∞∑
p=2

∑
k2,...,kp∈Z

hp,n[k1, . . . , kp]
p∏
i=2

x̃[n− ki](r) . (3.54)

In order to obtain a representation of (3.50) in terms of the impulse response gx̃(r),n[k1], it
is observed that the only difference to (3.26) is the substitution of Ax by Ax̃(r) , hence the
fixed-point iteration is obtained in analogy to (3.27) as

x̃[n](r+1) = x̃[n](r) + y[n]−
∑
k1∈Z

gx̃(r),n[k1]x̃[n− k1](r) .

Finally, using (3.54), this equation can be rewritten as

x̃[n](r+1) = x̃[n](r) + y[n]−Hn{x̃[n](r)} , (3.55)

which is called Richardson equalizer. The corresponding equalization procedure can be described
as in Algorithm 4 and a Richardson equalizer based on three iterations is depicted in Figure 3.7.
It shall be pointed out that the Richardson equalizer coincides with the nonlinear Richardson
iteration in (3.19). Furthermore, an interesting relationship to the Nowak-Van-Veen equalizer
can be observed. Therefore, consider that an exact inverse G1,n for the first-order Volterra
operator H1,n as defined in (3.14) exists and a Volterra system H̆n is defined as

H̆n{x[n]} = G1,n{Hn{x[n]}} . (3.56)

Section 3.6 » Equalizers based on Iterative Methods 35

x[n]
Hn

Nowak-Van-Veen
Equalizer

x̂1[n]y[n]

H̆n

x[n]
Hn G1,n

Richardson
Equalizer

x̂2[n]y[n]

Figure 3.8: The application of the Richardson equalizer to the Volterra system H̆n{x[n]} defined in (3.56)
produces the same equalization result as the application of the Nowak-Van-Veen equalizer to
the Volterra system Hn, i.e., x̂1[n] ≡ x̂2[n].

y[n] −gx̃(0),n[k1]
(k1 6= 0)

−gx̃(1),n[k1]
(k1 6= 0)

−gx̃(2),n[k1]
(k1 6= 0)

x̃[n](3)

x̂[n]

1/gx̃(0),n[0] 1/gx̃(1),n[0] 1/gx̃(2),n[0]

Figure 3.9: Jacobi equalizer with three iterations using the initial approximation x̃[n](0) = y[n].

Algorithm 5 Jacobi equalizer

1. Use the initial approximation x̃[n](0) = y[n]

2. Choose the number R of iterations according to the required equalization performance

3. Iterate the following steps for r = 0, 1, . . . , R− 1:
a) Calculate the impulse response gx̃(r),n[k1] in (3.54) using x̃[n](r)

b) Calculate a new approximation x̃[n](r+1) of the solution x[n] using (3.59)

4. Use x̃[n](R) as the reconstruction x̂[n] of the input sample x[n]

If this Volterra system is equalized using the Richardson equalizer, i.e.,

x̃[n](r+1) = x̃[n](r) +G1,n{y[n]} −G1,n{Hn{x̃[n](r)}}

= G1,n
{
y[n]−

∞∑
p=2

Hp,n{x̃[n](r)}
}
,

and its output compared to (3.15), it turns out that the equalization result is identical to the
Nowak-Van-Veen equalizer applied to the output of the Volterra system Hn, cf. Figure 3.8.
Consequently, the Richardson equalizer may be regarded as a generalization of the Nowak-Van-
Veen equalizer, because the latter amounts to the application of the Richardson equalizer to a
modified Volterra system H̆n.

36 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

3.6.2 Jacobi Equalizer

In accordance with (3.46) and (3.47), the iteration matrix Mx̃(r) and the coefficient vector cx̃(r)

based on the approximation x̃(r) are defined as

Mx̃(r) = U−1
x̃(r)Vx̃(r) (3.57)

and

cx̃(r) = U−1
x̃(r)y , (3.58)

where Ux̃(r) and Vx̃(r) are defined in terms of Ax̃(r) in the same fashion as Ux and Vx are
defined for Ax in (3.29) and (3.30), respectively. The fixed-point iteration in terms of the
impulse response gx̃,n[k1] is found in analogy to (3.33) as

x̃[n](r+1) = 1
gx̃(r),n[0]

(
y[i]−

∑
k1∈Z\0

gx̃(r),n[k1]x̃[n− k1](r)
)
, (3.59)

which is called Jacobi equalizer. The corresponding equalization procedure can be described as
in Algorithm 5 and a Jacobi equalizer based on three iterations is depicted in Figure 3.9.

3.6.3 Condition for Convergence

In the following, the condition for convergence is investigated. First, the general equalizer
in (3.50) shall be considered and, subsequently, the result is discussed in the light of the Richard-
son equalizer, whereas the Jacobi equalizer will not be treated here. The analysis of convergence
is inspired by the approach pursued in Section 3.5.3, i.e., based on the solution x of (3.34), the
error of the approximation x̃(r) in iteration r, i.e.,

ẽ(r) = x− x̃(r) , (3.60)

is investigated. Subtracting (3.50) from (3.34) results in

ẽ(r+1) = Mxẽ(r) + (Mx −Mx̃(r))x̃(r) + cx − cx̃(r) .

If the error of the approximation Mx̃(r) with respect to Mx is defined as

Mx̃(r) = Mx −Mx̃(r) (3.61)

and the error of the approximation cx̃(r) with respect to cx is specified by

cx̃(r) = cx − cx̃(r) , (3.62)

the error ẽ(r+1) renders

ẽ(r+1) = Mxẽ(r) + Mx̃(r) x̃(r) + cx̃(r) . (3.63)

Section 3.6 » Equalizers based on Iterative Methods 37

It is worthwhile to compare this result to the error in (3.36) of the original iteration, where it can
be observed that the recursive relation has the same fundamental structure, but two additional
terms emerged due to the deviation of Mx̃(r) and cx̃(r) from Mx and cx, respectively. For x̃(r)

to converge to x, the error ẽ(r) eventually has to decay to zero, i.e.,

lim
r→∞

ẽ(r) = 0 ,

or, equivalently, its vector norm has to be strictly monotonically decreasing, i.e.,

‖ẽ(r+1)‖ < ‖ẽ(r)‖ , (3.64)

for all r ≥ 0. Using (3.63) and the triangle inequality for vector norms [51] in (3.64) leads to
the condition

‖Mxẽ(r)‖+ ‖Mx̃(r) x̃(r)‖+ ‖cx̃(r)‖ < ‖ẽ(r)‖ .

For induced matrix norms, the inequality

‖Ax‖ ≤ ‖A‖ · ‖x‖ (3.65)

holds [51], which leads to the condition

‖Mx‖ · ‖ẽ(r)‖+ ‖Mx̃(r)‖ · ‖x̃(r)‖+ ‖cx̃(r)‖ < ‖ẽ(r)‖ . (3.66)

It is interesting to compare this result to the condition for convergence in (3.38) for the original
iteration, where it can be observed that the constraint on the contractiveness of Mx is tightened
so that it can compensate for any influence due to Mx̃(r) and cx̃(r) . The condition in (3.66) is
on a rather high level of abstraction and does not represent an immediately applicable criterion.
In order to arrive at a practically useful formulation, (3.66) is investigated below in more detail
for the Richardson equalizer.

3.6.3.1 Richardson Equalizer

In the following, the condition for convergence in (3.66) shall be utilized to find a constraint in
terms of the kernels hp,n of the Volterra system and the maximum input amplitude ‖x‖∞, i.e., a
condition that can be immediately verified. Therefore, Mx̃(r) and cx̃(r) are investigated for the
Richardson equalizer, i.e., using (3.42) and (3.51) in (3.61) provides

Mx̃(r) = Ax̃(r) −Ax

and using (3.43) and (3.52) in (3.62) results in

cx̃(r) = 0 .

In conjunction with (3.42), the condition for convergence in (3.66) renders

‖I−Ax‖ · ‖ẽ(r)‖+ ‖Ax̃(r) −Ax‖ · ‖x̃(r)‖ < ‖ẽ(r)‖ . (3.67)

38 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

It is not possible to utilize bounds on ‖ẽ(r)‖ to simplify (3.67), as its lower bound is zero and,
therewith, the condition renders meaningless. Thus, the goal pursued in the following is to
extract the factor ‖ẽ(r)‖ from ‖Ax̃(r) −Ax‖ so that it cancels in (3.67). The analysis is based
on the maximum norm because of its beneficial properties, which are discussed in Section 3.5.3.
The matrix norm induced by the maximum norm defined in (3.40) yields

‖Ax̃(r) −Ax‖∞ = max
i∈Z

∑
j∈Z
|aij,x̃(r) − aij,x|

and, with (3.24) and (3.53), this may be expressed in terms of the impulse responses as

‖Ax̃(r) −Ax‖∞ = max
n∈Z

∑
k1∈Z
|gx̃(r),n[k1]− gx,n[k1]| . (3.68)

In order to find an upper bound for ‖Ax̃(r) − Ax‖∞, the expression |gx̃(r),n[k1] − gx,n[k1]| is
investigated by utilizing (3.22), (3.54), and the triangle inequality, which results in

|gx̃(r),n[k1]− gx,n[k1]| ≤
∞∑
p=2

∑
k2,...,kp∈Z

|hp,n[k1, . . . , kp]| · γx̃(r),x,n[p, k2, . . . , kp] , (3.69)

where

γx̃(r),x,n[p, k2, . . . , kp] =
∣∣∣∣ p∏
i=2

x̃[n− ki](r) −
p∏
i=2

x[n− ki]
∣∣∣∣ .

Using (3.60), γx̃(r),x,n may be rewritten as

γx̃(r),x,n[p, k2, . . . , kp] =
∣∣∣∣ p∏
i=2

(
x[n− ki]− ẽ[n− ki](r)

)
−

p∏
i=2

x[n− ki]
∣∣∣∣ . (3.70)

It can be observed that the first product in (3.70), if expanded, contains a factor that cancels with
the second product. In order to find an upper bound for the remaining terms, it is highlighted
that (3.39) enables the upper bound

∣∣∣∣ p∏
i=2

(
x[n− ki]− ẽ[n− ki](r)

) ∣∣∣∣ ≤ (‖x‖∞ + ‖ẽ(r)‖∞
)p−1

,

and the binomial theorem gives

(
‖x‖∞ + ‖ẽ(r)‖∞

)p−1
= ‖x‖p−1

∞ +
p−2∑
ν=1

(
p− 1
ν

)
‖x‖p−1−ν

∞ · ‖ẽ(r)‖ν∞ + ‖ẽ(r)‖p−1
∞ .

The term ‖x‖p−1
∞ corresponds to the upper bound of the term that cancels with the second

product in (3.70). Therefore, if the upper bound is utilized only for the remaining terms,
γx̃(r),x,n is upper bounded by

γx̃(r),x,n[p, k2, . . . , kp] ≤ ‖ẽ(r)‖∞

[
‖ẽ(r)‖p−2

∞ +
p−2∑
ν=1

(
p− 1
ν

)
‖x‖p−1−ν

∞ · ‖ẽ(r)‖ν−1
∞

]
. (3.71)

Section 3.6 » Equalizers based on Iterative Methods 39

If the iteration converges, it fulfills (3.64) and, with (3.60), the error can be upper bounded by

‖ẽ(r)‖∞ ≤ ‖ẽ(0)‖∞ = ‖x− x̃(0)‖∞ , (3.72)

for r ≥ 0. It may seem dubious to employ an inequality in a derivation, whose resulting condition
should ensure that the utilized inequality actually holds. However, the resulting condition for
convergence indeed ensures that (3.64) is fulfilled, which is shown below by induction. Assuming
that the iteration is initialized with x̃(0) = y, using (3.23) and (3.42) in (3.72) leads to the upper
bound

‖ẽ(r)‖∞ ≤ ‖x− y‖∞ = ‖x−Axx‖∞ = ‖(I−Ax)x‖∞ = ‖Mxx‖∞ .

The right hand side may again be upper bounded using the property (3.65) of induced matrix
norms, which gives

‖ẽ(r)‖∞ ≤ ‖Mx‖∞ · ‖x‖∞ .

If the iteration converges, it fulfills (3.38), as it represents a weaker constraint compared to (3.66),
and, therewith, the upper bound

‖ẽ(r)‖∞ < ‖x‖∞ (3.73)

is obtained, which holds for all r ≥ 0 if x̃(0) = y. Using this result in (3.71) yields

γx̃(r),x,n[p, k2, . . . , kp] < ‖ẽ(r)‖∞ · ‖x‖p−2
∞

[
1 +

p−2∑
ν=1

(
p− 1
ν

)]
.

Recalling that the term in square brackets emerged from the expansion of an expression (a+b)p−1

and the subtraction of one term, it is evident that the expression in square brackets corresponds
to the number of terms after expansion reduced by one. The recursive expansion

(a+ b)p−1 = a(a+ b)p−2 + b(a+ b)p−2

demonstrates that the full expansion results in 2p−1 terms. Consequently, the term in square
brackets is 2p−1 − 1 and

γx̃(r),x,n[p, k2, . . . , kp] < ‖ẽ(r)‖∞ · ‖x‖p−2
∞ (2p−1 − 1) . (3.74)

Finally, using (3.69) and (3.74) in (3.68) results in the upper bound

‖Ax̃(r) −Ax‖∞ < ‖ẽ(r)‖∞ ·max
n∈Z

∞∑
p=2

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−2
∞ (2p−1 − 1) , (3.75)

where, again, it is assumed that x̃(0) = y. Before utilizing this result in (3.67), an upper bound
for ‖x̃(r)‖ is derived using (3.60), the triangle inequality and (3.73), i.e.,

‖x̃(r)‖∞ = ‖x− ẽ(r)‖∞ ≤ ‖x‖∞ + ‖ẽ(r)‖∞ < 2‖x‖∞ . (3.76)

40 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

The result in (3.45) provides an upper bound for ‖I−Ax‖∞, i.e.,

‖I−Ax‖∞ ≤ 1− 2 min(h1,n[0], 1) +
∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ .

Using this upper bound with (3.75) and (3.76) in (3.67), a sufficient condition for convergence
for the Richardson equalizer is given by

∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ (2p − 1) < 2 min(h1,n[0], 1) , (3.77)

which has to hold for all n ∈ Z and requires the initialization x̃(0) = y. A comparison of this
result to the condition for convergence in (3.45) for the original iteration reveals that the kernels
are weighted by the additional factor 2p − 1, hence the constraints on the Volterra kernels of
order 2 and higher are tightened in order to guarantee convergence. Due to the use of (3.73)
and (3.76) in the derivation, the upper bound is not tight, meaning that it is not a necessary
condition to guarantee convergence in the worst case. This can be attributed to the fact that
the upper bound for ‖ẽ(r)‖∞ in (3.73), which is accurate for Volterra systems that are close to
the bound in (3.45), is somewhat imprecise for Volterra systems that fulfill (3.77). Furthermore,
due to the many parameters involved, the worst case is highly improbable, which implies that
the condition for convergence in (3.77) is quite conservative with respect to practical scenarios.
Finally, it is noteworthy that (3.77) is particularly simple to evaluate compared to the conditions
reported for the Nowak-Van-Veen equalizer [9] and the P th-order inverse [46].

In order to establish the completeness of the derivation, it is shown that the condition in (3.77)
ensures that (3.64) holds. Therefore, (3.77) is multiplied by ‖ẽ(r)‖∞, divided by 2 min(h1,n[0], 1),
and considered for the worst case, i.e.,

η‖ẽ(r)‖∞ < ‖ẽ(r)‖∞ , (3.78)

where the factor η is given by

η = max
n∈Z

1
2 min(h1,n[0], 1)

∞∑
p=1

∑
k1,...,kp∈Z

|hp,n[k1, . . . , kp]| · ‖x‖p−1
∞ (2p − 1) .

For r = 0, (3.72) is an equality and, therefore, does not depend on the validity of (3.64).
Consequently, (3.78) ensures that

‖ẽ(1)‖∞ < η‖ẽ(0)‖∞ < ‖ẽ(0)‖∞ , (3.79)

where the left inequality is indeed strict, as the derivation utilizes two upper bounds that are
not tight. This establishes the basis for an induction, which ensures that (3.72) holds for r = 1
as well and implicates that ‖ẽ(2)‖∞ is less than η‖ẽ(1)‖∞. Consequently, this also applies to
subsequent iterations, which proves the induction step

‖ẽ(r+1)‖∞ < η‖ẽ(r)‖∞ . (3.80)

Section 3.7 » Simulation Results 41

Algorithm 6 Generation of a random Volterra system
Require: The maximum input amplitude is limited to one, i.e., ‖x‖∞ ≤ 1
1: procedure GenerateVolterraSystem(N, Q, K)
2: for n = 0 to N − 1 do
3: Sample h1,n[0] from a specified uniform distribution
4: c← 2 min(h1,n[0], 1)− h1,n[0]
5: for k1 = 1 to K do
6: Sample h1,n[k1] from U(0, s), where s = c/(QK)
7: end for
8: c← c−

∑K
k1=1 h1,n[k1]

9: for p = 2 to Q do
10: for k1, . . . , kp = 0 to K do
11: Sample hp,n[k1, . . . , kp] from U(0, s), where s = c/((Q+1−p)(2p−1)(K+1)p)
12: end for
13: c← c−

∑K
k1,...,kp=0 hp,n[k1, . . . , kp](2p − 1)

14: end for
15: end for
16: end procedure

As (3.77) ensures η < 1, this proves that (3.64) holds if the condition in (3.77) is fulfilled. The
result in (3.80) provides another insight if the recursive relation is unfolded, i.e., after R > 0
iterations the error is upper bounded by

‖ẽ(R)‖∞ < ηR‖ẽ(0)‖∞ . (3.81)

Consequently, in a logarithmic measure the Richardson equalizer guarantees a linear increase of
equalization performance with respect to the number of iterations, which is also observed in the
simulation results in the following section.

3.7 Simulation Results

The performance of the derived equalization methods, i.e., the Richardson and Jacobi equalizer,
was analyzed and compared to the P th-order inverse and the Nowak-Van-Veen equalizer by
means of a simulation in MathWorks® Matlab®. The performance of the equalizers is quantified
using a signal-to-noise ratio (SNR), in particular

SNR = 10 · log
(∑N−1

n=0 |x[n]|2∑N−1
n=0 |x[n]− x̂[n]|2

)
,

in which x[n] is the input signal to the Volterra system, x̂[n] is the output signal of the respective
equalizer, and N is the number of samples. In order to guarantee convergence of the Richardson
equalizer, the investigation is limited to Volterra systems that fulfill the condition in (3.77).
Furthermore, only causal Volterra systems are considered, i.e.,

hp,n[k1, . . . , kp] = 0 , ∀k1, . . . , kp < 0 ∧ ∀p ∈ N .

42 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

Number of Iterations R

SN
R

in
dB

WC: No equalization
WC: Richardson equalizer
AC: No equalization
AC: Richardson equalizer

(a) Q = 1

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

Number of Iterations R

SN
R

in
dB

WC: No equalization
WC: Richardson equalizer
AC: No equalization
AC: Richardson equalizer

(b) Q = 2

Figure 3.10: Equalization of a Volterra system with K = 4 and h1,n[0] ∼ U(0.95, 1.05), where the equaliza-
tion performance is shown with respect to the number of iterations R for two different maximum
orders Q. In both simulations, the same Volterra system is applied to two different input sig-
nals, which are generated as x[n] = 1 (worst case, “WC”) and x[n] ∼ U(−1, 1) (average case,
“AC”), to highlight the influence of the input signal.

The memory depth K, i.e.,

K = inf
{
k ∈ N : hp,n[k1, . . . , kp] = 0 , ∀k1, . . . , kp > k ∧ ∀p ∈ N ∧ ∀n ∈ Z

}
,

of the Volterra system is set to K = 4 for all simulations, whereas its maximum order Q, i.e.,

Q = inf
{
q ∈ N : hp,n[k1, . . . , kp] = 0 , ∀p > q ∧ ∀n, k1, . . . , kp ∈ Z

}
,

is varied. The equalization performance decreases as the Volterra system comes closer to the
bound given by the condition for convergence in (3.77), which is implied by (3.81). In order
to investigate bad cases in terms of equalization performance, the utilized Volterra systems
are generated in a way that they are close to the bound in (3.77). Therefore, the coefficient
h1,n[0] is sampled from some uniform distribution and the remaining difference to the upper
bound is distributed among the other coefficients as described by Algorithm 6,3 in which U(a, b)
denotes a uniform distribution on the open interval (a, b). For all simulations, the input signal
x[n] comprises N = 512 samples, which are either independently sampled from U(−1, 1) or
clamped to one. Consequently, the input amplitude is limited to one and, therefore, fulfills the
requirement for Algorithm 6.

3.7.1 Influence of the Input Signal

Prior to the comparison of the equalizers, the influence of the input signal is demonstrated,
which provides the background knowledge for the interpretation and discussion of the subsequent
simulations. Figure 3.10 depicts the equalization performance of the Richardson equalizer for

3 Depending on Q, this algorithm achieves a factor η in the range 0.8 < η < 0.9, cf. Section 3.6.3.1.

Section 3.7 » Simulation Results 43

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(a) L = 13

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(b) L = 38

Figure 3.11: Equalization of a Volterra system with K = 4, Q = 1, and h1,n[0] ∼ U(0.95, 1.05), where the
equalization performance is shown with respect to the number of iterations R for two different
filter orders L of the inverse filter G1,n. The samples of the input signal are x[n] ∼ U(−1, 1).

different input signals, where the other equalization methods are omitted, as they exhibit a
similar behavior. The input signal comprising the samples x[n] = 1 corresponds to the worst
case with respect to equalization performance, because all coefficients of the Volterra system are
positive and, therefore, the left hand side of (3.77) is attained exactly. In contrast, the input
signal comprising independent and identically distributed samples x[n] ∼ U(−1, 1) represents
a more realistic stimulation, where the left hand side of (3.77) reflects the actual situation
only rather imprecisely. This fact can be observed in the equalization performance, where the
reconstruction of the latter input signal, called average case, is significantly better in terms of the
observed SNR. Furthermore, the probability of the worst case drops considerably if the maximum
order of the Volterra system is increased and, therefore, the equalization performance in the
average case increases as well. This can be recognized by comparing Figure 3.10a and 3.10b,
where it is evident that for K = 4 and Q = 2 the worst case is already highly improbable and the
average equalization performance is much better compared to the worst case. Finally, it shall be
pointed out that the equalization performance of the Richardson equalizer increases linearly with
the number of iterations, which was already motivated theoretically in Section 3.6.3.1. In order
to investigate the equalization performance for realistic situations, the input signal comprising
the samples x[n] ∼ U(−1, 1) is utilized in the subsequent simulations.

3.7.2 Comparison of the Equalizers

In this section, the four equalization methods are compared for different maximum orders Q of
the Volterra system and different the numbers of iterations R of the equalizers, where the order
of the P th-order inverse is chosen to P = R so that the resulting structure exhibits the same
number of reconstruction stages, i.e., stages in which the approximation error is reduced. As
discussed in Section 3.3.1 and 3.3.2, the P th-order inverse and the Nowak-Van-Veen equalizer
require an inverse filter G1,n for the first-order Volterra operator H1,n. However, the exact

44 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

275

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(a) Q = 2 (L = 28)

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

275

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(b) Q = 3 (L = 21)

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

275

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(c) Q = 5 (L = 19)

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

275

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(d) Q = 7 (L = 17)

Figure 3.12: Equalization of a Volterra system with K = 4 and h1,n[0] ∼ U(0.95, 1.05), where the equaliza-
tion performance is shown with respect to the number of iterations R for different maximum
orders Q. The samples of the input signal are x[n] ∼ U(−1, 1) and the filter order L of the
inverse filter G1,n for the P th-order inverse and Nowak-Van-Veen equalizer is chosen to provide
roughly the same approximation accuracy in the different simulations.

inverse filter H−1
1,n is not known for the randomly generated first-order kernel and, therefore, the

inverse filter G1,n needs to be designed at every time instant n. This is achieved by stating
the design problem as discussed in [1] and performing an optimization in the Chebychev sense
(minimax approximation) using CVX, a package for solving convex optimization problems in
Matlab® [54, 55]. The accuracy of the inverse filter G1,n depends on its filter order L, which is
evident in Figure 3.11, where a Volterra system comprising only a first-order kernel is equalized.
For Volterra systems with Q = 1, the equalization performance of the P th-order inverse and
the Nowak-Van-Veen equalizer is entirely determined by the accuracy of G1,n and independent
of the number of iterations R, as in this particular case (3.10) and (3.15) amount to x[n](r+1) =
G1,n{y[n]}. In contrast, the Richardson and Jacobi equalizer do not require an inverse filter for

Section 3.7 » Simulation Results 45

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(a) h1,n[k1] = δ[k1]

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

Number of Iterations R

SN
R

in
dB

No equalization
Richardson equalizer
Jacobi equalizer
Pth-order inverse
Nowak-Van-Veen eq.

(b) h1,n[0] ∼ U(0.8, 1.2)

Figure 3.13: Equalization of a Volterra system with K = 4 and Q = 5, where the equalization performance
is shown with respect to the number of iterations R for different first-order Volterra kernels.
The samples of the input signal are x[n] ∼ U(−1, 1). In (a), the first-order Volterra kernel is
set to the unit impulse sequence, i.e., line 3 in Algorithm 6 is replaced by h1,n[k1] = δ[k1] and
lines 5-7 are skipped, and in (b), h1,n[0] is sampled from U(0.8, 1.2).

the first-order Volterra operator, rather they implement the inverse filter using the underlying
fixed-point iteration, where the equalization performance increases with every iteration.
In Figure 3.12, the performance of the equalizers is demonstrated for several different maximum
orders Q of the Volterra system. The Nowak-Van-Veen equalizer outperforms the other methods
for a small number of iterations, but its performance is ultimately limited by the accuracy of
the inverse filter G1,n. It can be recognized that its equalization performance increases with
an increasing maximum order Q of the Volterra system. This is explained by the fact that
the conditions for convergence of the underlying nonlinear fixed-point iteration improve and
resembles the situation discussed in Section 3.7.1. Similarly, the performance of the P th-order
inverse is limited by the accuracy of G1,n as well, but it performs rather poorly if its order
P is less than the maximum order Q of the Volterra system. For P ≥ Q, its equalization
performance improves considerably, as then one or more of the reconstruction stages exhibit the
same structure as the ones of the Nowak-Van-Veen equalizer. The equalization performance of
the Richardson and Jacobi equalizer increases exceptionally well with increasing maximum order
Q. In part, this can be attributed to the fact that the worst case for convergence becomes more
and more improbable and, therefore, the performance improves, cf. Section 3.7.1. However,
due to the generation of the Volterra system via Algorithm 6, another important aspect of these
equalization methods is revealed. In particular, the coefficients h1,n[k1] of the first-order Volterra
kernel, for k1 6= 0, become smaller compared to h1,n[0] and, therefore, the first-order Volterra
operator becomes easier to invert. This fact is illustrated by the decreasing filter order L of
G1,n and also contributes to the improvement of the performance of the Richardson and Jacobi
equalizer. Finally, it can be observed in Figure 3.12 that the SNR at the output of the Volterra
system (entitled “No equalization”) increases with the maximum order Q. The weighting factor
2p − 1 in the condition for convergence in (3.77) restricts kernels of order p ≥ 2 more severly

46 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

Number of Iterations R

SN
R

in
dB

No equalization
Richardson iteration
Richardson equalizer
Jacobi iteration
Jacobi equalizer

Figure 3.14: Comparison of the equalization performance of the Richardson and Jacobi equalizer to their
respective ideal convergence behavior defined by the Richardson and Jacobi iteration for a
Volterra system with K = 4, Q = 2, and h1,n[0] ∼ U(0.95, 1.05). The samples of the input
signal are x[n] ∼ U(−1, 1).

and, therefore, allows less overall distortion as the maximum order Q increases.
The influence of the first-order Volterra operator is investigated further in Figure 3.13. Therein,
Figure 3.13a illustrates that if the first-order Volterra kernel coincides with the unit impulse
sequence, the Richardson equalizer is equivalent to the Nowak-Van-Veen equalizer, which was
shown analytically in Section 3.6.1. Considering the results in Figure 3.12 as well, this implies
that the Richardson equalizer approaches the equalization performance of the Nowak-Van-Veen
equalizer if the first-order Volterra operator approaches the identity function, i.e., H1,n{x[n]} =
x[n]. Furthermore, it is observed that the Jacobi equalizer outperforms the Nowak-Van-Veen
equalizer if it is not burdened with the inversion of the first-order Volterra operator. In the
contrary situation, where h1,n[0] varies rather severely, the Richardson equalizer turns out to be
inferior to the other equalizers, which are immune to this variation as illustrated in Figure 3.13b.
This can be traced back to the particular convergence properties of the underlying Richardson
iteration, which is highlighted in the following section.

3.7.3 Optimal Convergence of the Richardson and Jacobi Equalizer

As discussed in Section 3.6, the Richardson and Jacobi equalizer rely on an approximation
Ax̃(r) of the coefficient matrix Ax, which is improved in every iteration step if the condition
for convergence is fulfilled. Consequently, if the initial approximation x̃(0) = y is close to the
solution x, these equalizers will exhibit approximately the same performance as the Richardson
and Jacobi iteration, respectively, which use the exact coefficient matrix and, therefore, exhibit
the optimal convergence behavior. The requirement of a decent initial approximation translates
to a high SNR at the output of the Volterra system. In order to compare the convergence
behavior of the Richardson and Jacobi equalizer to the optimal convergence in a bad case, a
situation with a low SNR at the output of the Volterra system is considered. As visible in
Figure 3.12, the lowest SNR at the output of the Volterra system is observed for Q = 2, which is

Section 3.8 » Summary 47

about 17dB.4 Therefore, the equalization performance of the Richardson and Jacobi equalizer
is compared to the Richardson and Jacobi iteration for Q = 2 in Figure 3.14. This simulation
reveals that the condition for convergence in (3.77) assures a sufficiently high SNR at the output
of the Volterra system to enable a nearly optimal convergence behavior of the Richardson and
Jacobi equalizer.

3.7.4 Computational Complexity

The preceding discussion was focused on the comparison of the equalization performance of
the different methods, whereas the computational complexity was neglected. However, in a
practical implementation this is a significant decision criterion. A serious drawback of the
P th-order inverse and the Nowak-Van-Veen equalizer is the requirement of the inverse filter
G1,n. This implies the need of a computationally costly filter design whenever the first-order
Volterra operator H1,n changes. If the Volterra system varies only slowly with time this may be
managable, but if the Volterra system varies reasonably fast, the frequent filter design probably
becomes infeasible. Regarding the equalization structure itself, the P th-order inverse exhibits
the least computational complexity due to the truncated Volterra systems in the reconstruction
stages. However, the price paid is a rather poor performance if its order P is less than the
maximum order Q of the Volterra system, and if its performance becomes competitive, i.e., for
P ≥ Q, the computational advantage over the other methods vanishes. The Nowak-Van-Veen,
Richardson, and Jacobi equalizer exhibit approximately the same complexity, but the latter
requires a division in every reconstruction stage. Altough a division by zero is prevented by the
condition for convergence for the Jacobi iteration in (3.49) anyway,5 the realization of a divider
is considerably more complex than the realization of a multiplier.

3.8 Summary

This chapter opened with the introduction of the time-varying Volterra series and an overview
of existing equalization methods, where the latter covered the P th-order inverse and nonlinear
fixed-point iteration in more detail. Subsequently, it was shown that a time-varying Volterra
series may be transformed to a linear time-varying system, whose impulse response depends on
the time index as well as on the input signal. This novel perspective was utilized to derive two
equalization methods, the Richardson equalizer and the Jacobi equalizer, where the structure of
the former was shown to coincide with the nonlinear Richardson iteration. For the Richardson
equalizer, the condition for convergence was investigated and resulted in particularly simple and
easily evaluable expression based on the Volterra kernels and the input amplitude range. Finally,
the Richardson and Jacobi equalizer were simulated under different conditions and compared to
a particular P th-order inverse and nonlinear fixed-point iteration. It was highlighted that the
key advantage of the Richardson and Jacobi equalizer is the absence of the inverse filter for the
first-order Volterra operator, which is a fundamental requirement of the existing methods that

4 Note that the Richardson and Jacobi equalizer is equivalent to the Richardson and Jacobi iteration, respectively,
if the maximum order of the Volterra system is Q = 1, cf. (3.22) and (3.54).

5 Note that the condition for convergence for the Jacobi equalizer may only be more restrictive.

48 Chapter 3 » Equalization of Time-Varying Nonlinear Systems

limits their performance and adds significant computational complexity if the Volterra system
varies reasonably fast with time. Furthermore, it was demonstrated that the Richardson and
Jacobi equalizer perform particularly well if the first-order Volterra operator is close to the
identity function, and if it coincides with the identity function, the Jacobi equalizer outperforms
all other methods.

Chapter 4

Concluding Remarks and Future Research

In this thesis, two particular aspects of reconstruction methods for time-varying systems were
investigated, i.e., parallel processing with LTV filters and equalization methods for time-varying
Volterra systems. Regarding the former issue, a design equation was introduced, which is a
convenient tool to achieve parallel processing with LTV systems. It is readily applicable to
convolution-based LTV systems and provides the basis for parallel processing with more complex
systems, which was demonstrated for the Farrow filter and iterative correction structures. As
this method does not introduce any additional computational effort and even reduces the critical
path under certain conditions, it can be regarded as optimal. Concerning the latter issue, a
novel view on time-varying Volterra systems was established to derive and analyze equalization
methods, which resulted in the Richardson and Jacobi equalizer, where the former coincides
with the nonlinear Richardson iteration and the latter is entirely novel. For the Richardson
equalizer, the range of applicability, i.e., the condition for convergence, was derived analytically,
where the resulting criterion is simple to evaluate for a given time-varying Volterra system. A
comparison of these equalizers to existing methods demonstrated that they perform very well
under certain conditions and provide a computational advantage if the Volterra system varies
reasonably fast with time. Concluding, it is hoped that the results developed in this thesis prove
to be a valuable contribution to reconstruction methods for time-varying systems and help to
tackle future challenges in engineering.

Future Research

The approach towards Volterra system equalization introduced in Chapter 3 exhibits a serious
potential for research and only some of the emerging questions could be addressed in this thesis.
Therefore, an overview of future research shall be provided below.

• Due to the absence of the inverse filter, the Richardson and Jacobi equalizer may exhibit
a significant advantage over the existing methods if they are utilized in conjunction with
identification methods. Therefore, it would be interesting to investigate on identification
and the sensitivity of the methods to identification errors.

• As mentioned in Section 3.5.1, the convergence behavior may be improved by using the
final reconstruction x̂[n− ki] = x̃[n− ki](R) of previous samples, i.e., ki > 0, instead of the
intermediate reconstruction results x̃[n− ki](r), cf. [6]. Besides improved convergence, this

50 Chapter 4 » Concluding Remarks and Future Research

may as well be beneficial in practical implementations, because some results can be reused
in the reconstruction stages, in particular those subsets of the products that involve only
previous reconstruction results.

• The condition for convergence, which was derived by considering the worst case, showed to
be rather conservative with respect to the average behavior. Consequently, the derivation
of a condition for convergence and rate of convergence in the mean would provide further
insight. Furthermore, the analysis could be complemented by corresponding derivations
for the Jacobi equalizer.

• On the basis of simulations, it was discovered that the Richardson and Jacobi equalizer are
also suited for predistortion. Consequently, the theoretical investigation on the application
for predistortion and the corresponding analysis of the condition for convergence would
open up a new field of application.

• Last but not least, potential applications should be investigated. This could include, e.g.,
the linearization of an analog front end and amplifier predistortion.

Appendix A

Direct and Transposed Form LTV FIR Filters

In the following, the motivation for focusing on direct form LTV FIR filters in Chapter 2 shall
be highlighted. Therefore, direct form and transposed form LTV FIR filters are introduced and
their polyphase decomposition is discussed.

A.1 Direct Form LTV FIR Filters

An LTV FIR filter of order N implemented in direct form is depicted in Figure A.1 and its
output is characterized by

y[n] =
N∑
k=0

hn[k]x[n− k] .

According to the notation defined in Chapter 2, its z-transform at time instant n is given by1

Hn(z) =
∞∑

k=−∞
z−khn[k] .

Following the concept of polyphase decomposition [10], the impulse response is split into M
subsequences, i.e.,

Hn(z) =
M−1∑
m=0

 ∞∑
l=−∞

z−Ml−mhn[Ml +m]

 .

Instead of using delayed subsequences, the input signal may be delayed, which results in

Hn(z) =
M−1∑
m=0

z−m
 ∞∑
l=−∞

z−Mlhn[Ml +m]

 .

A comparison of this result with (2.3) explains the origin of the polyphase decomposition for
direct form LTV FIR filters.

1 Note that hn[k] = 0 for k < 0 and k > N .

52 Chapter A »Direct and Transposed Form LTV FIR Filters

x[n]
z−1 z−1 z−1

hn[0] hn[1] hn[N]
y[n]

Figure A.1: Time-varying finite impulse response filter of order N in direct form.

x[n]

hn[N] hn[N − 1] hn[0]

z−1 z−1 z−1
y[n]

Figure A.2: Time-varying finite impulse response filter of order N in transposed form.

A.2 Transposed Form LTV FIR Filters

An LTV FIR filter of order N implemented in transposed form is depicted in Figure A.2 and its
output is characterized by

y[n] =
N∑
k=0

hn−k[k]x[n− k] .

Again, following the notation defined in Chapter 2, its z-transform at time instant n is given by

Hn(z) =
∞∑

k=−∞
hn[k]z−k ,

and splitting into M subsequences results in

Hn(z) =
M−1∑
m=0

 ∞∑
l=−∞

hn[Ml +m]z−Ml−m

 .

Instead of using delayed subsequences, the output signal of the filter may be delayed, i.e.,

Hn(z) =
M−1∑
m=0

 ∞∑
l=−∞

hn[Ml +m]z−Ml

 z−m .

If it is required to delay the input signals instead, as it is the case for the derivation in Chap-
ter 2, the delay and the time-varying multipliers need to be interchanged according to the rule
described in Figure 2.2, which results in

Hn(z) =
M−1∑
m=0

z−m
 ∞∑
l=−∞

hn−m[Ml +m]z−Ml

 . (A.1)

The reason to choose the direct form LTV FIR filter for the derivation in Chapter 2 was to
avoid the additional mathematical complexity due to these time index changes. However, if a

Section A.2 »Transposed Form LTV FIR Filters 53

design equation for transposed form LTV FIR filters is required, one can follow the derivation
in Chapter 2 using (A.1) as the starting point of the polyphase decomposition.

Bibliography

[1] C. Vogel, M. Hotz, S. Saleem, K. Hausmair, and M. Soudan, “A review on low-complexity
structures and algorithms for the correction of mismatch errors in time-interleaved ADCs,”
Proc. IEEE Int. Northeast Workshop Circuits and Systems (NEWCAS) Conf., Jun. 2012
(invited paper).

[2] M. Soudan and C. Vogel, “Low complexity least-squares filter design for the correction
of linear time-varying systems,” in Proc. 20th European Conf. Circuit Theory and Design
(ECCTD), Aug. 2011, pp. 665–668.

[3] H. Johansson and P. Löwenborg, “A least-squares filter design technique for the compen-
sation of frequency response mismatch errors in time-interleaved A/D converters,” IEEE
Trans. Circuits and Systems II: Express Briefs, vol. 55, no. 11, pp. 1154–1158, Nov. 2008.

[4] M. Soudan and C. Vogel, “Correction structures for linear weakly time-varying systems,”
IEEE Trans. Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp. 1–10, 2012.

[5] K. M. Tsui and S. C. Chan, “Iterative correction of frequency response mismatches in time-
interleaved ADCs: A novel framework and case study in ofdm systems,” in Proc. 2010 Int.
Conf. Green Circuits and Systems (ICGCS), Jun. 2010, pp. 253–258.

[6] M. Soudan, “Low complexity correction structures for time-varying systems,” Ph.D. disser-
tation, Graz University of Technology, Austria, Sep. 2011.

[7] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. Wiley,
1999.

[8] S.-M. Phoong and P. P. Vaidyanathan, “Time-varying filters and filter banks: some basic
principles,” IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 2971–2987, Dec. 1996.

[9] R. D. Nowak and B. D. Van Veen, “Volterra filter equalization: a fixed point approach,”
IEEE Trans. Signal Processing, vol. 45, no. 2, pp. 377–388, Feb. 1997.

[10] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice Hall, 1993.

[11] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Prentice
Hall, 2009.

[12] W. C. Black and D. A. Hodges, “Time interleaved converter arrays,” IEEE J. Solid-State
Circuits, vol. 15, no. 6, pp. 1022–1029, Dec. 1980.

56 BIBLIOGRAPHY

[13] N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit anal-
ysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits
and Systems I: Fundamental Theory and Applications, vol. 48, no. 3, pp. 261–271, Mar.
2001.

[14] T.-H. Tsai, P. Hurst, and S. Lewis, “Bandwidth mismatch and its correction in time-
interleaved analog-to-digital converters,” IEEE Trans. Circuits and Systems II: Express
Briefs, vol. 53, no. 10, pp. 1133–1137, Oct. 2006.

[15] C. Vogel, “Modeling, identification, and compensation of channel mismatch errors in time-
interleaved analog-to-digital converters,” Ph.D. dissertation, Graz University of Technology,
Austria, Jul. 2005.

[16] S. Tertinek and C. Vogel, “Reconstruction of nonuniformly sampled bandlimited signals
using a differentiator–multiplier cascade,” IEEE Trans. Circuits and Systems I: Regular
Papers, vol. 55, no. 8, pp. 2273–2286, Sep. 2008.

[17] S. Saleem and C. Vogel, “Adaptive compensation of frequency response mismatches in high-
resolution time-interleaved ADCs using a low-resolution ADC and a time-varying filter,” in
Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2010), Jun. 2010, pp. 561–564.

[18] K. M. Tsui and S. C. Chan, “A versatile iterative framework for the reconstruction of
bandlimited signals from their nonuniform samples,” J. Signal Processing Systems, vol. 62,
no. 3, pp. 459–468, Mar. 2011.

[19] C. W. Farrow, “A continuously variable digital delay element,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS 1988), vol. 3, Jun. 1988, pp. 2641–2645.

[20] S. Afsardoost, T. Eriksson, and C. Fager, “Digital predistortion using a vector-switched
model,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 4, pp. 1166–1174,
Apr. 2012.

[21] J. Liszewski, B. Schubert, W. Keusgen, and A. Kortke, “Low-complexity FPGA implemen-
tation of Volterra predistorters for power amplifiers,” in Proc. IEEE Topical Conf. Power
Amplifiers for Wireless and Radio Applications (PAWR), Jan. 2011, pp. 41–44.

[22] Z. Peng, Z. Qin, and W. Siliang, “A novel adaptive digital predistortion for RF power
amplifier linearization based on simplified Volterra series,” in Proc. Int. Symp. Microwave,
Antenna, Propagation and EMC Technologies for Wireless Communications, Aug. 2007,
pp. 327–331.

[23] G. Lazzarin, S. Pupolin, and A. Sarti, “Nonlinearity compensation in digital radio systems,”
IEEE Trans. Communications, vol. 42, no. 234, pp. 988–999, Feb./Mar./Apr. 1994.

[24] A. Stenger, L. Trautmann, and R. Rabenstein, “Nonlinear acoustic echo cancellation with
2nd order adaptive Volterra filters,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, vol. 2, Mar. 1999, pp. 877–880.

BIBLIOGRAPHY 57

[25] A. Guerin, G. Faucon, and R. Le Bouquin-Jeannes, “Nonlinear acoustic echo cancellation
based on Volterra filters,” IEEE Trans. Speech and Audio Processing, vol. 11, no. 6, pp.
672–683, Nov. 2003.

[26] J. Fu and W.-P. Zhu, “A simplified structure of second-order Volterra filters for nonlinear
acoustic echo cancellation,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2010),
Jun. 2010, pp. 2366–2369.

[27] H. Furuhashi, Y. Kajikawa, and Y. Nomura, “Realization of nonlinear acoustic echo can-
cellation by subband parallel cascade Volterra filter,” in Proc. Int. Symp. Intelligent Signal
Processing and Communications (ISPACS), Dec. 2006, pp. 837–840.

[28] E. Biglieri, S. Barberis, and M. Catena, “Analysis and compensation of nonlinearities in
digital transmission systems,” IEEE J. Selected Areas in Communications, vol. 6, no. 1, pp.
42–51, Jan. 1988.

[29] T. Ogunfunmi and T. Drullinger, “Equalization of non-linear channels using a Volterra-
based non-linear adaptive filter,” in Proc. IEEE 54th Int. Midwest Symp. Circuits and
Systems (MWSCAS), Aug. 2011, pp. 1–4.

[30] D. Kotoulas and G. Maragakis, “XDSL and OFDM systems equalization using Volterra
series,” in Proc. 50th FITCE Congress, Sep. 2011, pp. 1–3.

[31] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing, ser. Wiley Series in
Telecommunications and Signal Processing. Wiley, 2000.

[32] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach. Johns Hopkins
University Press, 1981.

[33] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. Wiley, 1980.

[34] P. Alper, “A consideration of the discrete Volterra series,” IEEE Trans. Automatic Control,
vol. 10, no. 3, pp. 322–327, Jul. 1965.

[35] S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear opera-
tors with Volterra series,” IEEE Trans. Circuits and Systems, vol. 32, no. 11, pp. 1150–1161,
Nov. 1985.

[36] M. B. Brilliant, “Theory of the analysis of nonlinear systems,” Massachusetts Institute of
Technology, Research Laboratory of Electronics, Cambridge, MA, Tech. Rep. 345, Mar.
1958.

[37] B. Murmann, C. Vogel, and H. Koeppl, “Digitally enhanced analog circuits: System as-
pects,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2008), May 2008, pp.
560–563.

[38] V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Processing Magazine, vol. 8,
no. 3, pp. 10–26, Jul. 1991.

[39] M. Schetzen, “Theory of pth-order inverses of nonlinear systems,” IEEE Trans. Circuits
and Systems, vol. 23, no. 5, pp. 285–291, May 1976.

58 BIBLIOGRAPHY

[40] E. Biglieri, A. Gersho, R. Gitlin, and T. L. Lim, “Adaptive cancellation of nonlinear inter-
symbol interference for voiceband data transmission,” IEEE J. Selected Areas in Commu-
nications, vol. 2, no. 5, pp. 765–777, Sep. 1984.

[41] A. J. Redfern and G. T. Zhou, “A root method for Volterra system equalization,” IEEE
Signal Processing Letters, vol. 5, no. 11, pp. 285–288, Nov. 1998.

[42] A. Sarti and S. Pupolin, “Recursive techniques for the synthesis of a pth-order inverse of
a Volterra system,” European Trans. Telecommunications, vol. 3, no. 4, pp. 315–322, Jul.
1992.

[43] V. S. Kafka, “Rekursive Strukturen auf Volterra-Basis zur aufwandsarmen Darstellung und
Entzerrung von nichtlinearen Systemen,” Ph.D. dissertation, Universität der Bundeswehr
München, Germany, Mar. 2002.

[44] Y.-W. Fang, L.-C. Jiao, X.-D. Zhang, and J. Pan, “On the convergence of Volterra filter
equalizers using a pth-order inverse approach,” IEEE Trans. Signal Processing, vol. 49,
no. 8, pp. 1734–1744, Aug. 2001.

[45] K. Lashkari, “A novel Volterra-Wiener model for equalization of loudspeaker distortions,”
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), vol. 5, May
2006.

[46] A. Carini, J. V. Mathews, and G. L. Sicuranza, “Exact and pth order equalization and lin-
earization of recursive polynomial systems,” in Proc. Thirty-Second Asilomar Conf. Signals,
Systems & Computers, vol. 1, Nov. 1998, pp. 688–692.

[47] A. Halme, J. Orava, and H. Blomberg, “Polynomial operators in non-linear systems theory,”
Int. J. Systems Science, vol. 2, no. 1, pp. 25–47, 1971.

[48] P. M. Prenter, “On polynomial operators and equations,” in Nonlinear Functional Analysis
and Applications, L. B. Rall, Ed. New York: Academic Press, 1971.

[49] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, ser. Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics, 1995. [Online].
Available: http://www.siam.org/books/textbooks/fr16_book.pdf

[50] E. Zeidler, Nonlinear Functional Analysis and its Applications: Fixed-Point Theorems.
New York: Springer, 1986.

[51] E. Isaacson and H. B. Keller, Analysis of Numerical Methods. New York: Dover Publica-
tions, 1994.

[52] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 2003. [Online]. Available:
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

[53] C. L. Byrne, Applied Iterative Methods. AK Peters, 2008.

[54] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version
1.22,” http://cvxr.com/, May 2012.

http://www.siam.org/books/textbooks/fr16_book.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://cvxr.com/

BIBLIOGRAPHY 59

[55] ——, “Graph implementations for nonsmooth convex programs,” in Recent Advances in
Learning and Control, ser. Lecture Notes in Control and Information Sciences, V. Blondel,
S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110, http://stanford.
edu/~boyd/graph_dcp.html.

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

	Introduction
	Scientific Contributions

	Parallel Processing with Linear Time-Varying Filters
	Introduction
	SISO to MIMO LTV Filter Transformation
	Application Examples
	Farrow Filter
	Iterative Correction Structures
	Differentiator-Multiplier Cascade

	Implementation and Practical Aspects
	Farrow Filter
	Differentiator-Multiplier Cascade

	Summary

	Equalization of Time-Varying Nonlinear Systems
	Introduction
	Time-Varying Discrete-Time Volterra Series
	Existing Equalization Methods
	Pth-Order Inverse
	Nonlinear Fixed-Point Iteration

	Transformation of a Volterra System to an LTV System
	Iterative Methods for Solving Systems of Linear Equations
	Richardson Iteration
	Jacobi Iteration
	Condition for Convergence

	Equalizers based on Iterative Methods
	Richardson Equalizer
	Jacobi Equalizer
	Condition for Convergence

	Simulation Results
	Influence of the Input Signal
	Comparison of the Equalizers
	Optimal Convergence of the Richardson and Jacobi Equalizer
	Computational Complexity

	Summary

	Concluding Remarks and Future Research
	Direct and Transposed Form LTV FIR Filters
	Direct Form LTV FIR Filters
	Transposed Form LTV FIR Filters

	Bibliography

