
Master’s Thesis

Runtime-Reconfigurable Real-Time
Communication System for Measurement

and Control Solutions

Florian Brugger, BSc

————————————–

Institute for Technical Informatics
Graz University of Technology

Head of the Institute: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Gernot Kubin

Institute of Lightweigth Design
Graz University of Technology

Head of the Institute: Ass.Prof. Dipl.-Ing.Dr. techn.Christian Moser

Reviewer: Dipl.-Ing.Dr. techn.Christian Kreiner

Advisor: Dipl.-Ing.Dr. techn.Christian Kreiner
Dipl.-Ing.Dr. techn.Thomas Thurner

Graz, September 2012

Abstract

Over the last decade, the concept of distributed computing has become more and more
important in industrial research; even in the field of measurement and automation, where
generally the use of conventional but well-proofed technology is preferred. Distribut-
ing computational resources and performance among the members of a network implies
increasing effort for communication between the different units. Furthermore, in the ap-
plication fields mentioned before – measurement and automation – very high standards
for precision and real-time behavior of the communication channel are defined.

In the course of the development of distributed computational networks, the estab-
lished concepts for data transfer were soon pushed to their limits; additional requirements
regarding functionality and flexibility could not be satisfied, any more. Changing the base
technology from fieldbus to Ethernet leads to a significant gain in data throughput and
allows the usage of more complex network topologies. When special communication con-
cepts are applied (e.g. EtherCAT, which is used in the present work), highest demands
on the quality of the data transmission can be satisfied.

This document presents the design of a communication system dedicated for measure-
ment equipment in a testing facility. On the theoretical side, the design process covers
the determination of the system requirements, the consideration of a suitable technology,
and the design of a convenient system architecture. Following this, a prototype of a com-
munication component is implemented according to the given requirements and, at last,
evaluated in respect to the actual operation in a test bench setup, which is the target
environment.

Key words

communication systems, sensor networks, data transfer, real-time, EtherCAT, Industrial
Ethernet, inter-device communication, system engineering

1

Kurzfassung

Im letzten Jahrzehnt hat das Konzept des distributed computing stetig an Bedeutung ge-
wonnen und auch in der Industrie Einzug gehalten. Dies führte dazu, dass auch in (aus
informationstechnischer Sicht) eher konservativen Bereichen, wie der Meß- und Automa-
tisierungstechnik, zunehmend verteilte Rechnermodelle eingesetzt werden. Die Verteilung
von Rechenkapazität und -leistung auf die einzelnen Teilnehmer eines Netzwerks bringt
allerdings auch einen steigenden Aufwand für die Kommunikation der Recheneinheiten un-
tereinander mit sich. Die genannten Einsatzbereiche (Meßtechnik und Automatisierung)
stellen außerdem sehr hohe Anforderungen an die Präzision und das Echtzeitverhalten des
Übertragungsweges.

Im Zuge dieser Entwicklung wurden die Leistungsgrenzen der etablierten Konzepte zur
Datenübertragung bald erreicht. Es ergaben sich auch zusätzliche Anforderungen an deren
Funktionalität und Flexibilität, die diese kaum mehr erfüllen konnten. Der Umstieg vom
Medium Feldbus auf Ethernet erlaubt eine deutliche Steigerung der Datenrate in Verbin-
dung mit komplexeren Topologien. Mit speziellen Konzepten, wie dem in dieser Arbeit
verwendeten EtherCAT können auch höchste Qualitätsstandards für die Datenübertra-
gung garantiert werden.

Dieses Dokument behandelt die Entwicklung eines Kommunikationssystems für den
Einsatz in einem mechanischen Prüfinstitut. Der Entwicklungsprozeß umfaßt auf der theo-
retischen Seite sowohl die Ermittlung der genauen Systemanforderungen, als auch eine
Betrachtung der eingesetzten Technologie (EtherCAT) und die Erstellung einer geeigne-
ten Systemarchitektur. In Folge wird ein Prototyp einer Kommunikationskomponente den
Anforderungen entsprechend implementiert und hinsichtlich seiner tatsächlichen Eignung
in der Zielumgebung (ein meßtechnischer Aufbau im Labor) evaluiert.

Stichwörter

Kommunikationssystem, Sensornetzwerk, Datenübertragung, Echtzeit, EtherCAT, Indu-
strial Ethernet, Inter-device communication, Systementwicklung

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Goal . 9
1.3 Outline . 10

2 Related work, technologies, and system characteristics 11
2.1 Test bench and automation system characteristics 11

2.1.1 Use cases . 11
2.1.2 System requirements . 13
2.1.3 Quality of service . 15

2.2 Ethernet-based fieldbus technologies . 17
2.2.1 EtherCAT . 17
2.2.2 Competitive technologies . 25
2.2.3 Industrial solutions . 29
2.2.4 Functional and performance testing of EtherCAT 31

3 Design of a runtime-reconfigurable real-time communication system 36
3.1 Additional requirements for the target environment 36
3.2 System component architecture . 38

3.2.1 Slave device . 38
3.2.2 Master device . 39

3.3 Topology of the network . 44
3.4 Comparison of host interfaces, description of layers and data model 46

3.4.1 Host interface . 46
3.4.2 Layers model . 50
3.4.3 Data flow . 52

4 Implementation of the real-time communication system and its separate
components 53
4.1 Preliminary remarks . 53

4.1.1 Development process . 53
4.1.2 Choice of hardware components . 53
4.1.3 Development environment . 54
4.1.4 Pin layout . 55

4.2 Detailed component architecture . 57
4.2.1 Asynchronous 16-bit microcontroller interface 57

4

4.2.2 SPI . 60
4.3 Implementation of the host interface . 63

4.3.1 Architectural overview . 63
4.3.2 Control logic . 64
4.3.3 SPI interface . 65
4.3.4 Microcontroller interface . 67

4.4 Device and network configuration . 68
4.4.1 Configuring a slave device (SSC Tool) 68
4.4.2 Configuring the network (TwinCAT) 71

4.5 Testing environments . 72
4.5.1 Single-loop interface test . 72
4.5.2 Performance test . 73
4.5.3 Two-way data transfer . 74

4.6 Experimental results . 75
4.6.1 Timing behavior . 77
4.6.2 Functionality of the host interface 79
4.6.3 Two-way data transfer . 81

4.7 Outlook and future work . 83

5 Summary 84

A Appendix 85
A.1 Real-time requirements . 85
A.2 Types of failure . 86
A.3 Characteristic values of a communication system 86
A.4 Legend for HW architecture . 87
A.5 Definitions and abbreviations . 87
A.6 Pin layout for the adapter boards . 90
A.7 Performance analysis of the implemented interface 91
A.8 Configuring TwinCAT (Screenshots) . 92
A.9 Hierarchy and file list of the implementation 95

Bibliography 96

5

List of Figures

2.1 Example of an EtherCAT network (from [Häf08]) 17
2.2 Example of an EtherCAT frame (from [ETG12]) 18
2.3 Nesting of the EtherCAT frame inside the Ethernet frame (from [ETG12]) . 18
2.4 Physical ring structure using cable redundancy (from [Häf08]) 20
2.5 FMMU mapping example (from [Bec10]) . 20
2.6 Buffer interaction (from [Bec10]) . 21
2.7 The EtherCAT state machine, as defined in [Bec10] 22
2.8 Comparison of the minimal cycle time for an increasing number of network

participants (from [Spo10]) . 26
2.9 Basic setup for the performance tests (from [Bru11]) 31
2.10 Increasing efficiency (rate of payload to total amount of transmitted data)

for a growing number of bus participants (from [Bru11]) 33
2.11 Peaks in the frame rate [pack/s] when reconnecting all bus participants, one

by one (from [Bru11]) . 34

3.1 Architecture of a slave device . 38
3.2 1. Shared host, implemented fully in software, integrated solution 40
3.3 2. Shared host, implemented fully in software, distributed control 40
3.4 3. Shared host and ASIC, integrated solution 40
3.5 4. Shared host and ASIC, distributed control 40
3.6 5. Data and control path separated, implemented in SW 41
3.7 6. Multiple host, but common connection to the network 41
3.8 7. Multiple hosts; separation of data and network management 41
3.9 8. Multiple hosts and shared ASIC . 41
3.10 Proposed system architecture . 43
3.11 Sample setup for an EtherCAT network, implementing different topologies . 46
3.12 The OSI reference model (from [ISO94]) . 50
3.13 Adaptation of the OSI reference model for EtherCAT 51
3.14 Data flow . 52

4.1 The development environment . 55
4.2 Schematic view of the adapter board (horizontal view) 56
4.3 Schematic view of the adapter board (top view) 56
4.4 The piggyback controller mounted on the two adapter boards (side view) . 56
4.5 FB1111-142, LEDs in operational mode . 56
4.6 Architecture of the host interface as it is implemented 57

6

4.7 Microcontroller interconnection (from [Bec10]) 58
4.8 µC interface, read access (from [Bec10]) . 59
4.9 µC interface, write access(from [Bec10]) . 59
4.10 SPI, transfer block diagram (from [Fre03]) 61
4.11 SPI, transmission cycle, CPHA = 0 (from [Fre03]) 61
4.12 The three parallel loops of a component . 64
4.13 The main control state machine (left: the task cycle; right: detailed se-

quence for data transmission, i.e. reading and writing cycle) 64
4.14 Implementation of the control loop . 65
4.15 Implementation of the SPI interface . 65
4.16 State machine of the SPI interface . 66
4.17 State machine of the µC interface . 66
4.18 Implementation of the µC interface . 67
4.19 The Slave Stack Code Tool . 68
4.20 Cumulated ESI EEPROM settings . 71
4.21 The structure of the test environment for the single-loop test 73
4.22 Additional pins for timing measurements (black : signal; green: GND) . . . 74
4.23 Data transfer in the sample network . 75
4.24 The two EtherCAT devices and the sbRio FPGA board 76
4.25 The user interface for the single-loop test 77
4.26 The SYNC0 signal . 78
4.27 Jitter of the SYNC0 signal . 78
4.28 Sampling of SYNC0 . 78
4.29 Software loop timing . 78
4.30 Analysis of the network traffic in Wireshark 80
4.31 Difference between the values of the current and the preceding frame 81
4.32 User interface for the data exchange test . 82
4.33 Disconnection and reconnection of one device 82
4.34 Schematic of a hardware solution . 83

A.1 Symbols used for the HW architecture sketches 87
A.2 Pin mapping FB1111 - sbRio (for connection to the pin bars P3 and P5) . . 90
A.3 Pin mapping FB1111 - sbRio (for connection to the pin bars P2 and P4) . . 90
A.4 Transmitted data versus execution time . 91
A.5 Configuring a process data object . 92
A.6 Write ESI to EEPROM . 93
A.7 Configuring inputs and outputs . 93
A.8 Configuring the FMMUs . 94
A.9 Setting up the reference clock . 94
A.10 Hierarchy of the submodules for one component 95

7

List of Tables

2.1 Properties of the expected data . 13
2.2 Main sections of the ET1100’s EEPROM, as defined in [Bec10] 24
2.3 Network device vendors and products . 29

3.1 Data rates, payload only . 37
3.2 Comparison of host interfaces . 49

4.1 The signals of the µC interface . 58
4.2 Configuration of the FIFOs . 63
4.3 Modified registers in the ESI comparing to the EL9800 settings 69
4.4 ET1100 ESI EEPROM Configuration . 70
4.5 Device settings for testing . 76
4.6 Execution time measurement . 79

A.1 Measuring units . 87
A.2 Prefixes . 88
A.3 International standards . 88
A.4 Abbreviations . 89
A.5 Performance analysis: Task cycle modification 91
A.6 Performance analysis: CPU cycle modification 92
A.7 Submodules used in the implementation of the µC interface 95

8

Chapter 1

Introduction

1.1 Motivation

The Institute of Lightweight Design, Graz University of Technology, develops and runs
test benches for fatigue testing of mechanical components. Each test setup consists of
several servo-hydraulic test cylinders and peripheral sensors of various types. The whole
setup is connected to a mainframe computer running a dedicated state-of-the-art control
system (HW: IST LabTronic 8800, SW: IST LabSite Modulogic). Presently all compo-
nents are connected by analogue signaling and each is using a separate controller. The
proprietary communication protocol used for communication between the components and
the mainframe computer is restricting a further enlargement or optimization of the present
installation.

For future improvement the test cylinders with attached sensors shall all be equipped
with intelligent cylinder controllers (compactRio from NI) and the number of channels for
each unit shall be extended, thus expanding the overall performance of the installation.
For that purpose a high performance bus is needed to cover all traffic and an interface
to both, power PC and component controller, should be designed. This task should be
accomplished by using standardized hardware. Both synchronous and asynchronous data
transfer shall be supported and real-time requirements must be fulfilled.

By these improvements, not only the scalability of the test setup but also the flexibility
and performance will be increased considerably. Among other features, a faster calibration
and a simple reconfiguration of single components or a whole test setup and the possibility
of distributed computations on the separate FPGAs will be possible.

1.2 Goal

A ‘smart control’ communication will be designed using an established technology and
standardized hardware. During a preceding project, EtherCAT was chosen as preferred
communication concept and its suitability for deployment was tested.

This work covers all necessary steps to the final implementation based on this technol-
ogy: the creation of a detailed specification and system architecture, the implementation
of a prototype, including additional peripheral hardware or libraries eventually needed.
The prototype bus will be implemented in software on a FPGA and tested with regard to

9

CHAPTER 1. INTRODUCTION 10

the target environment. The final goal is a fully operational prototype of a communication
system for distributed computation, measurement and automation environments, which
satisfies high demands regarding performance, quality and real-time behavior.

1.3 Outline

It is presumed that the reader of the work at hand is familiar with the concepts and basic
functionalities of computer networks and communication in measurement and automation
systems; the fundamentals of digital communication are assumed to be known. Therefore
topics such as the functional principle of the Ethernet bus and fieldbus systems (e.g.
CAN), network topologies or communication protocols are not explained in detail.

Chapter 2, Related work, technologies, and system characteristics, first presents use
cases for the communication network to be designed (section 2.1.1). Based on these use
cases, general requirements for a real-time system are derived in section 2.1.2. In section
2.1.3, definition and terms of Quality of service are introduced.

The communication technology used is presented in section 2.2.1. After a detailed
description of EtherCAT related concepts and works are discussed and a comparison is
made in section 2.2.2. Existing industrial solutions are presented in section 2.2.3. The
chapter is concluded by a description of performance tests which were performed on an
EtherCAT network (section 2.2.4).

In chapter 3, Design of a runtime-reconfigurable real-time communication system, first
additional requirements for the operation of the communication network in the target
environment are defined (section 3.1). In section 3.2 the architectural concept of the
separate network components are shown. Then a topological overview over the whole
communication path is given in section 3.3.

A discussion of possible interface protocols for the connection of a communication
module to a specific host unit can be found in section 3.4.1, followed by a description of
the HW/SW layer concept in section 3.4.2. A presentation of the data flow (section 3.4.3)
on the transmission channel concludes this chapter.

Chapter 4, Implementation of the real-time communication system and its separate
components, is dedicated to the actual implementation of the communication system.
After some preliminary remarks on the development process and environment in section
4.1, a detailed description of the architecture of a communication component is presented
in section 4.2. In section 4.3 the actual implementation of the host interface is described.
The configuration of the network and its individual components is addressed in 4.4. Finally,
the testing of the prototype device is covered in the sections 4.5 and 4.6.

The concluding chapter 5 summarizes the findings and outcomes of this work and gives
an outlook on future topics in this field of research.

Chapter 2

Related work, technologies, and
system characteristics

2.1 Test bench and automation system characteristics

The requirements listed in this chapter were identified during a preceding project on the
matter of real-time communication systems [Bru11]. The structure and proceeding of this
work followed the 4+1 Layer Model by [Kru95]. In this concept, the starting point for the
determination of requirements are use cases. The granularity of these use cases defines
the degree of detail of the deduced system requirements. In section 2.1.1, typical use cases
for the given task are listed. Additionally, knowledge about the kind and amount of data
which will be transmitted over the network is necessary. Therefore the data traffic to
expect is specified first in section 2.1.2) before the actual requirements are defined.

2.1.1 Use cases

Use cases represent working conditions and examples which make it easier to identify and
defined specific requirements for the communication system. This section covers all use
cases as given in [Bru11]. Based on these use cases, test cases were defined which are
described later in section 2.2.4. The following list was slightly adapted comparing to the
one in the original document.

Data transfer in normal operation mode

In normal operation mode, the mainframe computer performs periodic calculations and
sends commando data to the sensors and actuators. At the same time, those components
are gathering measurement data, process this data and send it back to the mainframe
PC. All data must be transferred during one transmission cycle to guarantee the real-time
behavior of all components and the overall system. In each time step, each unit must
be given the opportunity to send its data and receive all data addressed to it. The data
transmission has to be correct and reliable. The actual amount of data can vary for each
time step, but the variation is small compared to the overall volume. So one can expect a
relatively steady stream of data with hard real-time requirements.

11

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 12

Parametrization of a component

Changes in a test process may require modifications in the test bench’s setup and recon-
figuration of sensors or actuators. Therefore it is necessary to send a larger amount of
acyclic parametrization data to the affected component to reconfigure it. This transfer is
done in aperiodic transmission mode with relaxed requirements regarding real-time char-
acteristics. Nevertheless, the integrity of the transferred data must be guaranteed. The
data can be transferred to the single components either in a serial or a parallel way.

Initialization

When the hardware setup was changed (regarding the number of devices and/or the ca-
bling of the components), the communication network will need a reinitialization. This
procedure imposes no restrictions regarding real-time behavior or correctness of the re-
ceived data. The important thing is to check the basic functionality and detect the current
settings of the network and of all of its components and store the new scheme in an appro-
priate way, if needed. The generation of this scheme can be done fully or half automated,
or even by hand.

Checking the setup

After a successful initialization, the network, all its components and the configuration of
the communication path shall be checked. For this purpose a special test procedure is
initiated by the network master (typically the mainframe computer). This procedure is
designed to check as much sources of failure as possible and get detailed state and error
information out of the system’s response. If any irregularities or errors occur the setup has
to be checked, modified by the user, or even reconfigured if need be. In case of a spurious
alarm the test procedure itself should be reviewed.

Failure of a component

When a network component fails, the bus master, the mainframe PC, and all affected
components have to be warned. The data transfer within the remaining network shall be
maintained as best as possible to either continue normal operation, allow a controlled shut
down, or any other failure reaction. The error message should contain enough informa-
tion about the failure to decide which error reaction to start and to come to a detailed
conclusion about the state of the remaining network.

Changing the setup at runtime

When one or more new components are installed on the communication system, it should
be capable of detecting automatically the changes and include the new bus members in
the normal operation. If this is not possible, at least the ongoing data transmission inside
the original network must not be influenced and the new components shall be activated at
the time of the next initialization. In that case, all excluded units must not be considered
for the ongoing traffic in any way, nor be activated accidentally. In case of a controlled
shut down and removal of one or more components, the functionality of the remaining
network must not be affected in any way.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 13

2.1.2 System requirements

Properties of the expected data flow

The following table 2.1 states the expected types of data and their main properties and
requirements for the communication system:

Type of data Real-time Tolerable Error Highest Error Resend

latency detection accuracy correction

in real-time

Measurement x very low x x x
Commando x very low x x x
Parameter x low x x x x
Calibration high x x x
Setup high x

Table 2.1: Properties of the expected data

The cyclic measurement data makes clearly the highest demands on the communication
channel. Commando and parameter data shall reach their target in real-time, as well, but
are less frequent and generally of smaller size. When calibrating a device over the network,
it is not necessary to perform the task in a given time, but the received data must be
correct. Finally, best effort is enough for data to setup and initialize the network.

Functional requirements

1. The data stream of each unit is split into logical channels. The mapping and through-
put of those channels must be adjustable during run time.

2. The data transfer must meet hard real-time requirements, i.e. all data sent in one
time slot must reach its recipient within a well specified time of delay (typically
the same time slot). Additionally, the integrity of the transmitted data must be
guaranteed. For a list of real-time requirements typically used see appendix A.1.

3. To satisfy point 2, the traffic should be of a synchronous nature. An asynchronous
mode for non-time-critical data is advisable but not obligatory. The synchronous
transfer mode should support both, a periodical operating mode for traffic of mea-
surement and commando data, and an aperiodic mode for calibration and para-
metrization data. The switching between modes, resp. combinations of them, should
be possible at run time.

4. It should be possible to activate and deactivate single transfer units or parts of the
communication bus without affecting the functionality of the remaining network.
There should be the possibility to connect several independent test benches (each
representing a subnetwork) to a common bus, as long as all participants are controlled
by the same central computer. This requires the mapping of data to single units to
be done in the mainframe PC and to be transparent on the bus; thus, a perfect data
encapsulation is necessary.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 14

5. A fully automated and self-controlled initialization routine is desirable. This in-
cludes the special benefit of operating small networks without a main computer (e.g.
communication between slave devices).

6. All transmitted data must not be modified, corrupted, or affected in any other way
by the transmission path. It must be possible for the recipient to check the integrity
and correctness of the received data. This should be accomplished by a suitable data
structure (e.g. CRC). The correctness of the data should be verifiable on both ends
of the transmission path – sender and receiver – to guarantee an error detection as
fast as possible. This can be done using a special protocol (e.g. handshake).

7. After the installation of the communication bus in the laboratory, the network might
need some adaptations to the actual setup of the testing bench. These adjustments
can be performed either automatically, supported by software tools, or manually.
During this configuration phase, modifications on the communication system may
be required.
After concluding the configuration, the system should be available immediately with-
out any additional configuration and provide full functionality at any time. At run
time, no readjustment of the system’s structure should be necessary. Between hours
of operation, adaptations of the bus are allowed only in case of major changes in the
setup, including maintenance operations or modifications in the bus’s cabling or the
hardware of the main computer, or installation of new bus participants. Changes of
the bus topology (e.g. replugging of components) should require no reconfiguration.
At each start up the network should perform a short routine to initialize, activate
and check the correct behavior of all bus components.

8. If a failure occurs in any part of the system, the functionality of the remaining
network should be maintained as best as possible. Depending on the severity of the
failure, this might include further normal operation, a (more or less) complex error
reaction, or a controlled emergency shut down in the worst case. The topology of the
communication system should be chosen in a way that the failure of one component
has the least impact on the overall system.
The error detection should satisfy the same timing demands as the data transfer.
The reaction on a failure must not affect the ongoing data transfer, running in real-
time. All requirements stated earlier in this section must be met to full extent for
all possible types of failure, as listed in appendix A.2.

Architectural requirements

1. A simple change in the setup – if the number of components does not change –
must be possible without leading to any data loss or restrictions regarding the per-
formance or the functionality of the network. The same goes for expanding of the
bus. However, in this case, minor activities for adjustment and reconfiguration are
tolerable. The limit for the extensibility of the installation, caused by restrictions in-
herent in the technology, should be some degrees above the bench mark of a network
consisting of 24 components, with four transmission channels each.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 15

2. In case of maintenance, all parts of the system should be replaceable independently
from each other. In this context, ‘a part’ is the communication interface of one unit
or the mainframe PC, or the cabling. The replacement of one part by an equivalent
one should lead to no additional effort for adjustment or reconfiguration on the net-
work.
It is strongly recommended that the architecture of the communication system sup-
ports the replacement of single parts by superior or newly developed devices, as long
as they are fully compatible to the existing setup. Thus the limits for compatibility
and upgrading of network components should only be a matter of the manufacturers
requirements and implemented features.

3. While running, the communication system must not influence its peripheral devices
or any ambient parts of the test bench in any way. This is especially important
regarding EMC.
All modifications to the existing test bench setup due to the installation of the
communication system should be minimized and not affect its behavior. Losses in
performance or functionality are tolerable under no circumstances. Adaptation of
existing software is acceptable, as long as it is a matter of extension or reconfiguration
and induces no further modification of its functionality.

2.1.3 Quality of service

The term ‘QoS’ is often used without a significant definition. In the context of this
work, the term includes all requirements regarding real-time behavior and data integrity
as described in chapter 2.1.2. For further clarification, in this section the term ‘QoS’ is
inspected from a different, more general point of view by taking a closer look at the key
features of QoS. This approach is based on [OY08]. Generally, the required level of QoS
for this project can be specified as the highest level, known as hard QoS or guaranteed
service.

Accessibility: The accessibility rate of the communication system is ‘full access’, pre-
cisely 100%. This means that no regular access to the bus is denied or ignored; a
‘regular’ access can only be done by the device currently holding the token (Eth-
ernet frame). The second parameter for accessibility, the total number of incoming
requests, is defined for this condition to be exactly 1. Any violation of these two
criteria is clearly a severe malfunction according to the EtherCAT specification and
has immediately to be dealt with.

Availability: Similar to accessibility, the system has to be fully available any time at
runtime, resulting in an availability rate of 100%. The only exception for this rule
is at the start-up of a bus participant or the network. For a (very limited) period
of time the component or bus is allowed to run an initialization routine. Afterwards
all unavailability is a failure.

Accuracy: For accuracy the level ‘precise’ is expected. This is the highest level of accu-
racy. The error rate has to be extremely low, because in a real-time environment, in
most situations there is not enough time to detect the error, report it and resend the
affected data. A value very near the BER of a high-class Ethernet system is required.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 16

All erroneous data must be strictly avoided, because in a distributed control system,
even one faulty value might put high risk to the whole setup. This fact requires a
very precise error detection logic with high-grade error correction, if available.
Another important point is the timing behavior of the transmission path. As de-
scribed in section 2.1.2, the reference time of the communication bus has to be very
accurate to provide deterministic and constant values for RTT and jitter.

Reliability: Reliability is a measurement for the robustness and stability of the commu-
nication system. For services in a distributed real-time setup, it is required that
the network is absolutely reliable. This includes mechanisms for early-detection of
possible threads, such as failure of a bus participant, or when a value of the transfer
characteristics (e.g. RTT or jitter) is exceeding its tolerance.

Performance: The performance of a system can be expressed in two dimensions. The
effectiveness of the network – generally measured by the throughput – is highly
depending on the technology used. Thus for defining a level, one can only refer
to the minimum data rate required (a detailed definition of the throughput for the
present work is given in chapter 3, table 3.1) and otherwise expect the system to be
‘as efficient as possible’.
On the other hand, the responsiveness of the bus, including all devices involved, has
to be as high as possible, satisfying the highest level, labeled as ‘receptive’. Again,
the actual values for execution time and response time are depending on the specific
technology and the hardware in use; but bearing in mind that the bus is operated
in a real-time environment, it becomes clear that no operation is allowed to take
longer than one task cycle if time-critical data is involved. For network management
and non-real-time data the level of responsiveness might degrade even down to ‘just
better than slow’.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 17

2.2 Ethernet-based fieldbus technologies

2.2.1 EtherCAT

Description of the basic concept

Figure 2.1: Example of an EtherCAT network (from [Häf08])

EtherCAT (Ethernet for Control Automation Technology) can be seen as a kind of field-
bus implementation which uses Ethernet as communication medium. Therefore, the main
goals are high throughput of data of relatively small size, and satisfying high demands
regarding quality and timing behavior. For a standard implementation of Ethernet, us-
ing CSMA/CD as arbitration scheme in a star topology network, these targets can only
be achieved if special protocols and concepts are used, such as time slicing or polling.
All these approaches lead to additional communication overhead, of course. To minimize
this overhead, EtherCAT uses a logical ring structure, where a data packet is no longer
received, processed and sent back by each bus participant, but passed around the bus,
whereas each component reads and writes data to the frame on the fly. Thus, the delay
time per frame and communication device is reduced to microseconds. Although the in-
ternal structure of the communication bus is a line topology, using a virtual logical ring,
the structure of the physical network can be chosen freely (see figure 2.1).

To benefit from existing technologies, the EtherCAT protocol is set on top of the phys-
ical layer of Fast Ethernet (IEEE 802.3u) and uses the standard Ethernet frame. This
allows to keep the protocol up to date and fully operational for any possible current or
future developments or improvements in the Ethernet technology and its components.

Basically, the EtherCAT telegram is holding a logical image of the process data,
wherein each bus component is given a memory area to work on. The structure of this
process data image is not depending on the actual setup of the communication network.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 18

A sample correlation between an EtherCAT frame and the bus members may look as in
figure 2.2.

Figure 2.2: Example of an EtherCAT frame (from [ETG12])

Protocol and frame format

The EtherCAT telegram is nested inside an Ethernet frame, which is generated by the
network master. The frame starts with a 14 Byte Ethernet header and is terminated by
the Ethernet CRC. The payload of the Ethernet frame is fully dedicated to the EtherCAT
telegram. This section starts with a short header and holds one or more datagrams,
which can be accessed by the bus participants according to their individual configuration.
Besides the standard configuration, as shown in the upper part of figure 2.3, there is also

Figure 2.3: Nesting of the EtherCAT frame inside the Ethernet frame (from [ETG12])

the possibility to use IP services and send UDP packets over the EtherCAT bus. For
this purpose, the relevant information is added to the header (see lower part of figure
2.3). Each EtherCAT slave receives the full telegram, reads and writes the memory block
assigned to himself and passes the frame to the next slave on the line. The processing of
the frames is done ‘on the fly’ – in contrast to the store-and-forward principle of standard

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 19

Ethernet devices. The resulting transmission delay per device is very low (approx. 1 µs).
Of course, this feature needs a special kind of hardware, described in EtherCAT hardware.

The EtherCAT network can work without an explicit addressing scheme; each slave is
identified by its place on the line. But explicitly addressing one or more slaves is possible,
as well, and can be used for special purposes. For example, to integrate an EtherCAT
segment into a larger network (e.g. by a switch), the first slave is addressed as entrance
point to the network by its MAC address. For non-real-time applications, IP routing
and the TCP/IP protocol as known from common Ethernet networks are supported, as
well. The logical address space of the datagram – whose size is typically 4 GB [JB04] – is
shared among all devices in the network. Each slave uses dedicated memory mapping units
(FMMUs, explained below in EtherCAT hardware), which are individually configured for
mapping its process data into the shared memory. A way for the master to keep track
of read/write operations on the frame is the working counter. This counter is increased
by every slave device which has just performed a data access with success. Another way
of addressing the bus participants is, to distribute the available memory consecutively,
depending on the order of the devices on the bus. Of course, a setup implementing such
an addressing scheme would be rather inflexible at runtime. Broadcast messaging is also
possible; it is typically used for device control and network configuration.

EtherCAT hardware

On the physical level, EtherCAT devices support two different protocols. One is an en-
hanced version of Ethernet, where special care is taken in link detection mechanisms and
frame processing to guarantee real-time behavior. Each connector can detect whether it is
connected to a carrier signal or not, and it is able to automatically close an open port by
shortening it internally. Thus, each device can act both, as intermediate, and as terminal
network node and even adapt dynamically to the current state of its network connections.
This behavior is the basis for the hot connect feature, which allows a slave to be integrated
in the network at any open connection, even at runtime. Before installing the device, it
has to be given a unique ID to avoid confusion and additional traffic for reconfiguration.
Furthermore, each communication device – called the EtherCAT slave controller (ESC)
– is equipped with a minimum of two Ethernet ports – one ’input port‘ and one ’output
port‘. This is necessary to establish flexibility in the setup without needing hubs or net-
work switches. When a second Ethernet interface is available at the master device, one of
the unconnected ports of a slave device can be connected to it, thus creating a redundant
communication path, which increases the network’s robustness towards line breaks, as
shown in figure 2.4.

The second protocol implemented on each ESC is the proprietary EBUS, which is
designed and used as backplane bus and not intended for wire communication. It encap-
sulates the whole Ethernet frame and transmits it at a data rate of 100 Mbit/s, using Low
Voltage Differential Signaling (LVDS) applying to ANSI/TIA/EIA-644 [Bec10].

The task of internally mapping physical addresses to logical addresses and back is
performed by each device’s Field Memory Management Unit (FMMU). The FMMU is
divided into channels which map a continuous logical address space inside the datagram
onto a continuous physical address space in the slave’s memory. Each channel can be
freely configured to either perform read access, write access, or both (see figure 2.5).

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 20

Figure 2.4: Physical ring structure using cable redundancy (from [Häf08])

Figure 2.5: FMMU mapping example (from [Bec10])

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 21

To allow a consistent and secure data transmission between master and slave devices,
EtherCAT uses a so called SyncManager. This unit manages the mutual access to the
memory shared between the communication device (EtherCAT slave) and its host device.
Basically, two communication modes are supported: buffered and mailbox. Buffered mode
is typically used for cyclic process data. It is based on a producer-consumer scheme. The
usage of three separate memory areas, where each is holding a full copy of the process
data, enables both participants to access the same data at the same time without the risk
of losing consistency of the transmitted data. A buffer must always be read from start to
end; random access is not possible. The buffer access strategy is shown in figure 2.6.

Figure 2.6: Buffer interaction (from [Bec10])

The second communication mode, mailbox mode, allows no parallel access on the pro-
cess data image; it can either be read or written – again, only the complete buffer at a
time. But on the other hand it makes the usage of elaborate transmission protocols pos-
sible. In mailbox mode, EtherCAT supports Ethernet over EtherCAT (EoE), CANopen
over EtherCAT (CoE), File Access over EtherCAT (FoE), and more. Advanced com-
munication principles, such as handshake and repeat/request schemes, are supported, as
well.

Distributed clock

For accurate synchronization of all bus participants, EtherCAT uses a so called distributed
clock (DC). This concept uses a master clock signal – a time stamp typically derived from
the internal clock of the first slave in line after the network master – which is broadcast
periodically. All other network devices tune their internal clock to this signal. For addi-
tional accuracy, the propagation delay is measured and sent to the master. Based on the
gathered information, the network master calculates the actual offset for each device and
returns the resulting value to improve the compensation.

Based on the distributed clock, each slave can generated one or two synchronization
signals. The two signals can each be driven in one of two modes: sync as input, or latch as
output. The sync signals can be used for the generation of internal or external interrupts,

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 22

or as clock signal for an external device (e.g. the host interface). The first signal (SYNC0)
is derived from the internal clock of the ESC and its timing behavior can be configured as
cyclic or as event based. The second signal (SYNC1) is always derived from SYNC0, as an
integer multiple of it, and with a configurable delay. Latch signals are used for generating
internal events which are triggered by an external source.

The most important category of events are interrupts, which are distinguished by there
purpose: AL event requests (PDI interrupts) are used to inform an attached microcon-
troller about changes in the PDI; and ECAT event requests (ECAT interrupts) to inform
a master about slave events. Which interrupts to sent and which to suppress is defined in
the corresponding Interrupt Mask Registers. These registers are combined with the actual
interrupt registers by a logical AND, thus allowing or denying an event to be set on the
interrupt line when generated.

EtherCAT state machine

In the EtherCAT state machine (ESM), the different operational conditions of master and
slave devices are represented as states. Typically, the state of each slave device is set and
continuously monitored by the master using the AL control and AL status registers. In
case of misconfiguration or internal errors, an unexpected change in a device’s state or not
following the master’s request, signals the master a problem at the specific device. The
five states defined and all possible transitions are shown in figure 2.7.

Figure 2.7: The EtherCAT state machine, as defined in [Bec10]

A slave’s operational status and all associated errors or warnings are stored in dedicated
registers. These registers can be accessed by the master. Whereas the state of a slave
device with an attached microcontroller is usually controlled by the host, devices in basic
configuration are used in device emulation mode. In this mode, the content of the AL
control register – the state request – is directly copied to the AL status register by the
ESC; the master is in direct control of the specific slave device.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 23

Memory management

The memory of an EtherCAT slave is typically a serial EEPROM with I2C interface, using
an address space of 64 kB. The related address space is divided into two parts: The ESI
and the process RAM. The ESI (EtherCAT slave information) part spans a range of 4 kB
– from 0x000 to 0x0FFF – and contains all device specific information, stored in registers.
The process data section starts at address 0x1000 and is handled as block memory.

Table 2.2 gives an overview of the main sections, each with a short description. The
registers and address space of this list show the configuration for the ASIC ET-1100 ;
which registers are actually present and configurable varies depending on the ESC and
the variant used. Not all bytes covered by the address range contain relevant information
for this variant of the device; therefore the number of registers actually in use is given
separately.

The main part of the ESI registers can only be changed using a special tool (for details
see chapter 4.4.1) and has to be flashed into the EEPROM before the device can be
activated. For each type of EtherCAT device a dedicated configuration exists, mostly
provided by the manufacturer. The usage of the last memory section, reserved for process
data, can be configured freely. Each device is assigned an address range for reading and
writing, whereas address ranges of different slaves can be configured overlapping, thus
allowing them to exchange data without requiring the network master to perform data
routing.

To access the process data RAM as host, several interfaces are supported, of whom one
has to be selected when configuring the ESC. In the following list, all interfaces basically
supported by the ET1100 ASIC are highlighted:

• Interface deactivated

• Digital I/O (32 freely configurable I/O lines)

• SPI Slave

• EtherCAT Bridge (for switching functionality)

• 8-/16-bit asynchronous microcontroller (µC) interface

• 8-/16-bit synchronous µCinterface

• On-chip bus

As some interfaces need dedicated hardware, the piggyback controller boards using
this ASIC generally support only a subset of the interfaces listed above. At start-up, the
PDI becomes active after the ESI EEPROM was loaded successfully. Until then, and in
case of EEPROM failure, all PDI pins are kept inactive.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 24

Address
Length
(Byte)

Description

0x0000 - 0x0009 10
ESC Information

Type, revision, RAM size, ESC features, e.a.

0x0010 - 0x0013 4
Station Address

Configured station address and alias

0x0020 - 0x0031 4
Write Protection

Settings for write protection

0x0040 - 0x0111 10
Data Link Layer

Settings for the ESC’s DL

0x0120 - 0x0139 8
Application Layer

AL control, AL status, e.a.

0x0140 - 0x0153 14
PDI

PDI control and configuration settings

0x0200 - 0x0223 12
Interrupts

ECAT and AL event requests and event masks

0x0300 - 0x0313 19
Error Counters

Communication, operation and PDI errors

0x0400 - 0x0443 18
Watchdogs

Watchdog configuration

0x0500 - 0x050F 16
ESI EEPROM Interface

EEPROM configuration, incl. access and
control state, address, e.a.

0x0510 - 0x0511 12
MMI Management Interface

Configuration of the PHY interface

0x0600 - 0x06FF 16x16
FMMU

Configuration of the FMMU(s) (16 units possible)

0x0800 - 0x087F 16x8
SyncManager

Configuration of the SyncManager(s)
(16 units possible)

0x0900 - 0x09FF 133
Distributed Clock

Detailed configuration of the DC

0x0E00 - 0x0EFF 256
ESC specific

Power-on values, product and vendor ID, e.a.

0x0F00 - 0x0F1F 20
Digital Input/Output

General purpose input and output registers

0x0F80 - 0x0FFF 20
User RAM / Extended ESC features
Additional and user defined features

0x0100 - 0x2FFF 8000
Process Data RAM

Address space for process data

Table 2.2: Main sections of the ET1100’s EEPROM, as defined in [Bec10]

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 25

2.2.2 Competitive technologies

As the settings and requirements for this project are common for industrial applications,
there exists a number of projects and products pursuing the same goal. Some solutions
use a very different approach, some may seem very much identical. For an overview
on fieldbus-like communication concepts see [Sau10]. In a preceding project, the most
common technologies were inspected regarding their qualification for the implement of a
communication system which combines very high performance and flexibility, guarantees
robustness and meets all requirements of a real-time system. One outcome of this compar-
ison was, that no other systems than Ethernet-based ones are capable of fulfilling all the
required criteria. Therefore only these technologies are mentioned below. A more detailed
discussion on the topic can be found in [Bru11].

The following section first explains some of the most established concepts and discusses
their main advantages and disadvantages (especially when compared against EtherCAT),
then takes a closer look at companies providing solutions and producing hardware, which
share the same scope as the work at hand. Because of their vast number, this listing can
neither claim to be complete, nor representative; the focus is set on important vendors
for measurement and automation systems in Central Europe, namely in Germany and
Austria.

PROFINET

PROFINET (PROcess FIeld NETwork) is a communication bus system which was for-
merly developed by Siemens but now is an open standard, maintained by the PROFIBUS
International (PI) group. The concept complies to the IEEE 802.3u, the IEC 61158 and
the IEC 61784. There are different default settings which allow to adapt the bus to a cer-
tain usage profile. The only one suitable for a real-time system is the so called PROFINET
I/O configuration. It supports isochronous real-time data transfer and a transmission cy-
cle time down to 1 ms [Fel04].

A PROFINET network consists of at least one master device and one or more I/O
devices, each one addressed by its MAC address. The communication principle in use, to
provide guaranteed bandwidth for time-critical applications, is a time slicing mechanism.
Each transfer cycle is split into a time-critical and a non-time-critical window. In the
latter one, all stations are allowed to submit any kind of traffic, typically UDP/IP for
parameters and network management. A priority scheduling mechanism allows further
traffic shaping at runtime. In case of a collision, the situation is handled as known from
the CSMA/CD mechanism. To avoid collisions in the critical time zone, switches are used.
Together with a network plan (defined before the start-up of the network), it is possible to
treat real-time data separately and thus guarantee full QoS for the communication path.
A predefined network map also permits a certain level of optimization. Furthermore, there
is a possibility to classify the real-time traffic in three classes with different QoS objectives.
Other features of this technology are auto-negotiation of the network settings, support of
full-duplex mode in a 100Base-TX Ethernet environment (100 Mbit/s), and possible usage
in any upcoming extension of the standard.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 26

A big advantage of PROFINET is that it is fully based on and compatible to inter-
national standards, which allows the use of any Ethernet device from any vendor as long
as it complies itself with these standards. This extends the range of hardware and makes
inexpensive solutions and simple maintenance possible. On the other hand, the use of time
slicing reduces the efficiency of the network when the number of bus participants is in-
creasing [Pry08]. This is caused by a fixed communication overhead per station; although
in PROFINET some of this loss can be regained by optimization. A comparison of the
minimal cycle time is shown in figure 2.8. Another weak point is the missing flexibility of
a PROFINET setup at runtime. To profit from optimization, a network plan has to be
defined and processed before starting the network traffic. So there is very little possibility
to switch bus participants afterwards - and much less to add a device, or make changes in
the topology while a transmission is ongoing.

Figure 2.8: Comparison of the minimal cycle time for an increasing number of network
participants (from [Spo10])

POWERLINK

The company Bernecker + Rainer (B&R) developed the Ethernet POWERLINK as pro-
tocol enhancement to the IEEE 802.3u standard. It is now maintained by the open Eth-
ernet Powerlink Standardization Group (EPSG). Similar to PROFINET presented above,
POWERLINK uses a time-slicing mechanism, but combined with polling. This concept is
called Slot Communication Network Management (SCNM).

A POWERLINK network consists of one master device (called master node) and sev-
eral slave devices (called controlled nodes). The number of participants of such a subnet
is limited by the applied addressing scheme to 240 devices. Larger networks can only be
assembled by connecting these relatively small subnetworks with hubs [EPSG08]. POW-
ERLINK is fully compatible with the IEEE 802.3u standard and can therefore be run on
any Ethernet hardware available. QoS and real-time behavior is guaranteed be the polling

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 27

mechanism. Each node is given a unique ID and a unique time slot in each transmission
cycle. Each device is only allowed to send, when polled by the network master. The
polling scheme has to be defined and loaded to the master before start-up. If not all time
slots are needed, the remaining time is typically shared by all bus participants using the
usual CSMA/CD access scheme.

An advantage of this concept is clearly that by using polling, no time synchronization
among the bus participants is needed. However, regarding efficiency this mechanism is very
weak (see figure 2.8), because the communication overhead for each additional device in
the network is not negligible. Using optimized network plans, POWERLINK can decrease
this overhead when several devices are scheduled for the same time slot but in different
cycles, for example. Another way of reducing the delay between two network nodes is to
use a poll-response request which allows all other nodes to read along the response of the
polled node and thus saving the time for transmitting the data first to the master and
onwards to the receiving node. The network plan, used for the polling mechanism, can be
changed at runtime which allows POWERLINK a higher degree of flexibility.

SERCOS

SERCOS is a communication interface, first introduced in 1985 for motion control and au-
tomation systems. It is standardized in the IEC 61491. Over the years the concept, first
conceived for analogue data transfer, was adapted to modern communication technologies
and is now available for Ethernet systems under the name of SERCOS III. The concept
is driven by the SERCOS International (SI) group.

As most of the other Ethernet-based technologies, SERCOS III uses the standard
Ethernet protocol, enhanced by time-slicing and hardware synchronization. IP protocols,
slave-to-slave communication and hot-plugging (i.e. making changes to the installed net-
work at runtime) are supported as well. As in POWERLINK and others, after the end of
the transmission of time-critical data, the remaining time is shared among all bus partic-
ipants. This is called a non-real-time channel (NRT channel). During this time interval,
all kind of traffic is allowed, even web services such as HTTP and data from other fieldbus
standards, as long as they conform to the Ethernet frame formatting.

A special feature of this technology is its typical topology: a double ring. Although
a line topology is possible as well, through the ring, the communication path gains cable
redundancy. Any other possible setup which might be used in other Ethernet-based sys-
tems – first of all a star topology – is not allowed, because hubs and switches can not be
used in SERCOS III.

The main advantage of SERCOS III is that the concept is a ‘tried and true’ mechanism
[Sch04]. Great attention has been paid to keep SERCOS compatible over all expansion
levels and to continuously improve the concept. Although a SERCOS network is flexible
at runtime, the fact that not all topologies are possible is a drawback. This impossibility
to use hubs and switches sets certain restrictions when planning a network installation.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 28

EtherNet/IP

The name EtherNet/IP stands for Ethernet Industrial Protocol and is basically an en-
hancement to the IEEE 802.3u standard. It comes along with the Control & Information
Protocol (CIP) which is a platform-independent application for real-time I/O. The devel-
opment is done by the Open DeviceNet Vendor Association (ODVA), together with the
ControlNet International (CI) group and the Industrial Ethernet Association (IEA).

The EtherNet/IP technology uses common Ethernet hardware, including switches,
which makes the network suitable for real-time traffic. In contrast to most other technolo-
gies, which replace the TCP/IP protocol on the transport layer by proprietary protocols,
in EtherNet/IP the CIP is set on top of TCP/IP/UDP. The communication concept is
a producer-customer model, thus reducing the occurrence of collisions and offering a lot
of possibilities regarding scheduling schemes, such as polling, time-slicing, multi-cast and
so on. Although a clever choice of scheduling mechanisms (e.g. priority-based or polling)
and hardware (e.g. using switched star coupler instead of shared ones) can minimize the
probability of collisions, EtherNet/IP can not guarantee a collision free network [ODV01],
and therefore must be classified as non-deterministic. In fact the freedom to choose what-
ever concept one might like for a network installation may open a wide field of possible
implementations but can not guarantee a save communication channel.

Modbus

Originally, Modbus was invented as fieldbus protocol and later adapted to Ethernet under
the name of Modbus TCP. The concept was first handed in by Schneider Automation and
became an international standard since. In Modbus TCP, the known Modbus protocol
is set on top of the TCP/IP stack and a master-slave or client-server mechanism is used.
The protocol is connection-oriented and the network topology can be chosen freely.

Regarding guaranteed QoS, Modbus TCP meets the same restrictions as EtherNet/IP:
Building a communication channel on top of the non-deterministic TCP/IP protocol can
not ensure real-time behavior. The connection-oriented traffic produces additional pro-
tocol overhead and the object and data type model is not as elaborate as in CANopen
which is used by many other technologies. All in all, Modbus is not as potent as other
technologies and the adaptation to Ethernet, although making it faster, does not improve
the concept appropriately. However, the protocol will be looked at again in another con-
text in chapter 3.4.1, namely to establish a connection for serial communication between
a communication device and the peripheral hardware.

VARAN

This technology uses a time-slotting approach on top of standard Ethernet, very simi-
lar to EtherNet/IP. Dating from 2006, VARAN (Versatile Automation Random Access
Network) is a relatively young development from the VARAN-Bus-Nutzerorganisation
(VNO), published as open standard. The main idea is to have a bus master (called the
VARAN manager) which is responsible for the network management and the observance
of a timing schedule which contains information for all devices about their assigned time
slots. Although the mapping of the bus participants to time slots is done typically be-
fore starting the transmission, VARAN supports hot plug and dynamic addressing, which

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 29

makes the bus flexible at runtime. An optional asynchronous task is also provided, and a
task dedicated to network administration and synchronization is sent at the end of every
transmission cycle.

The basic hardware for a VARAN implementation is a FPGA. Although this would
provide the flexibility for elaborate functionality, only basic functions are supported,
mainly read and write on the address space spanned by the network participants. The
topology of the network can be chosen arbitrarily, as well as the hardware for devices and
peripheral network components, such as switches or hubs, which, in this context, are called
splitter and play a very important role in VARAN networks.

A drawback to VARAN is the usage of packets of a maximum length of 128 Byte.
This decision is argued to allow resending of a message in case of communication errors.
Compared to other Ethernet-based technologies, the band width is relatively small due to
the inevitable delay time caused by the use of many splitters [Kra08].

2.2.3 Industrial solutions

Most of the industrial solutions use either one of the technologies presented above or
proprietary protocols. When one looks into the data sheet of most of the offered commu-
nication hardware, one recognizes that most of the devices on the market support at least
two or more protocols. Table 2.3 states the most important producers of network devices.
Below some examples of their usage in industrial solutions are given.

Company Device EtherCAT PROFINET POWERLINK SERCOS EtherNet/IP

family

ASIC
B&R aPCI x x
Beckhoff ET1000 x x x x
Deutschmann UNIGATE x x x x
gridconnect EX-184 x x
Hilscher netX x x x x x
HMS anybus x x
Renesas ERTEC x

FPGA
Altera Cyclone x x x x x
IXXAT x x x x x
Xilinx Spartan x x x x x

Table 2.3: Network device vendors and products

B&R

Dedicated to automation, the German company Bernecker + Rainer (B&R) is a well
known name for industrial computation systems. As inventor of POWERLINK, it is
mainly this technology which is developed and promoted, but also PROFINET, its CAN-
based equivalent PROFIBUS, CAN itself, and DeviceNet are supported.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 30

Beckhoff

Obviously, as inventor of EtherCAT and founding member of the EtherCAT Technology
Group, Beckhoff is highly interested in further spreading the use of this technology and
increasing their market share. Nevertheless, the hardware on the portfolio is compatible
with nearly all other concepts and a large number of gateway devices to other protocols
and fieldbus systems exist. The main sector of the company’s products covers industrial
computers, I/O and fieldbus components, drive engineering, and automation software.
The headquarter of Beckhoff is situated in Verl, northern Germany.

HBM

HBM (Hottinger Baldwin Messtechnik) is producing, installing and maintaining high per-
formance measurement equipment for all purposes. Originating in Germany, the company
has set up branches all over the world. Developing no communication system itself, HBM
uses FireWire, PROFINET and EtherCAT for data acquisition under real-time conditions.

Hilscher

The netX series from Hilscher is able to be used for all Ethernet-based transfer protocols.
The company, situated in Hattersheim, Germany, offers network devices in various patterns
for all possible devices and use cases, from PCI-cards and gateways, over communication
modules down to the single ASIC. However, the functionality and list of features is not al-
ways as long as for comparable products from other manufacturers (e.g. the netX50 ASIC
supports only two full functional EtherCAT ports, whereas Beckhoff’s ET1100 supports
up to four).

HMS

As producer of communication systems for industrial purposes, HMS is striving to make
their products compatible to as many concepts as possible. Although the company, which
is resident in Sweden, is member of the EtherCAT Technology Group, the technologies
mainly supported are PROFINET and EtherNet/IP.

imc

The German company imc offers mainly measurement products and solutions for the
automotive, the engineering and the energy recuperation domain. Besides fieldbus systems
(e.g. the CAN bus), most of imc’s solutions use EtherCAT communication technology.
The company is also official member of the EtherCAT Technology Group.

NI

National Instruments (NI), a company from Austin, Texas, USA, offers a large supply
on equipment and software for measurement and data collection purposes. Consequently,
the company not only relays on one communication technology but uses and develops
many concepts simultaneously. NI’s network portfolio includes fieldbus protocols, such

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 31

as Modbus Serial (and its Ethernet derivate Modbus TCP), PROFIBUS (the ‘field-
bus brother’ of PROFINET), or DeviceNet (the CAN-based equivalent to EtherNet/IP).
Among Ethernet-based systems, the dominant concepts are EtherCAT and EtherNet/IP.
NI benefits from the fact that for EtherNet/IP, there are absolutely no additional require-
ments or restrictions to the used equipment, than the ones already defined in the Ethernet
standard IEEE 802.3u. So whereas EtherNet/IP offers no limits to the design and the im-
plementation of a communication path, the application field of EtherCAT is much more
narrow – but it provides guaranteed real-time behavior and a more efficient data traffic.
A sort of proprietary implementation of EtherCAT is used for communication between
NI components. Traffic with bus participants from other vendors or the use of any other
master software than NI’s own is possible but generally not intended, and therefore barely
supported. The last protocol to mention is CANopen. This high level protocol is used on
top of fieldbus systems such as CAN but also on the application layer of EtherCAT, thus
providing a standardized and fully available interface between NI software as data master
and any other communication system which might be connected to it.

Schuler

Connecting hydraulic press cylinders was a pilot project for both, the German press and
stamping company Schuler, and Beckhoff as provider of the complete communication sys-
tem. The task was to establish a communication path between four stations, each consist-
ing of one hydraulic press cylinder and some sensors. On the hardware side, EtherCAT
couplers from Beckhoff were used, the network was controlled by TwinCAT, and the visu-
alization was done using a software from Schuler called BasicView. With a cycle time of
1 ms and a jitter of max. 0.1 ms, the requirements are similar to the ones in the present
work. However, with a total number of approx. 300 channels for 110 modules, the amount
of data to transmit in each task cycle was nearly three times higher [SJ11].

2.2.4 Functional and performance testing of EtherCAT

In contrast to the use cases described earlier

Figure 2.9: Basic setup for the
performance tests (from [Bru11])

(compare section 2.1.1), test cases are not fo-
cused on operational scenarios, but on checking
the system in detail. Generally, use cases can
be seen as very generic test cases. The main
points of interest lie on failure conditions, be-
havior in unusual situations, and operating the
system at the limit of its performance. In con-
trast to the generally constructed use cases, the
test cases in this section are considering Ether-
CAT as preferred communication technology. This was done to gain detailed information
about additional requirements and restrictions for the design of a detailed system archi-
tecture later on.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 32

Preliminary remarks

This section gives a summary over tests performed with a small EtherCAT network
[Bru11]. The test setup was composed of a PC, running TwinCAT as network master, and
eight EtherCAT couplers from Beckhoff as network slaves, of whom each was equipped
with four I/O interfaces. The basic topology is shown in figure 2.9. All EtherCAT frames
of the ongoing data traffic were captured using the monitoring software Wireshark and
the recorded traffic was analyzed in both Wireshark and MatLab. For this test series no
modification of the protocol’s source code or implementation were made. Unfortunately,
this fact and the limited amount of test hardware denied any change in the amount of
transmitted data, thus allowing no other kind of payload shaping than modifying the tim-
ing of the transmission cycle by varying the sampling rate and the global task time of the
EtherCAT network.

The main goal of the test sequences was to determine, whether EtherCAT would be
a suitable technology for a communication system which is reconfigurable at runtime and
meets hard real-time requirements even at high performance. Each test run of each test
sequence was evaluated against the following main criteria:

• Latency: All sent data shall reach their target within the same transmission cycle.

• Temporal precision: The jitter over the whole transmission path shall not exceed 50
µs.

• Data throughput: At any time, the communication system shall have enough remain-
ing resources to guarantee the transmission of all pending data or take appropriate
actions otherwise.

• Robustness: Deactivation, reactivation, or failure of single network participants or
subnetworks shall have no negative impact on the ongoing communication.

• Flexibility: If the setup of the network is modified, the changes shall be recognized
immediately by the network management device and action shall be taken to inte-
grate new devices in the ongoing transmission.

• Correctness: No undiscovered transmission failures or errors in the transmitted data
shall occur.

The main parameters to evaluate the fitness of the EtherCAT network at any time during
a test run were the jitter and the round trip time (RTT), both computed as proposed by
[Wir11] (see appendix A.3).

Test cases and experimental results

1. Activating and initializing the network
The network was set up and special care was taken to install all components cor-

rectly. Then the communication network was activated.
Afterwards the samples of the recorded data traffic were evaluated using Wireshark
and MatLab to verify the correctness of the analysis scripts.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 33

2. Running in normal operation mode
The network was set up correctly, was activated and was running without failure

or any other condition which might restrict normal functionality. Now data transfer
was started. At first, only cyclic measurement data was transmitted from the slave
devices to the network master. The data rate was varied by modifying the cycle
time of the transmission task.
As expected, the data rate and the frame rate were increasing proportionally when
the task time was decreased gradually. Both RTT and jitter did not exceed the given
tolerances. However, it could be observed that periodically frames where received
only in the next transmission cycle or later. This violation of the requirements
regarding deterministic behavior occurred because the network master was running
on a non-real-time environment (a common desktop PC with Windows XP).

3. Installing one or more new network components
The network was set up and the initialization – including a basic functionality check
– was finished successfully. Now the bus was deactivated. After the installation of
an additional bus participant the network was relaunched. Some components were
equipped with an ID switch, permitting to assign a fixed ID to that particular slave
device. Again the frame rate was varied during the test run.
For each additional network component, the particular device was detected, recog-
nized and activated automatically. The data transfer to this bus participant was
established and worked correctly. The ongoing traffic and all other network com-
ponents were not influenced in any way. Neither could any different behavior be
detected when a subnetwork consisting of more than one new bus participant was
connected to the network.
Due to the limited amount of available devices, a single EtherCAT frame was enough
to hold the data for all attached components, even for the maximum configuration.
Nevertheless an increasing efficiency in the data traffic could be measured: as ex-
pected, the rate of payload to overall data was converging to approx. 78%.

Figure 2.10: Increasing efficiency (rate of payload to total amount of transmitted data)
for a growing number of bus participants (from [Bru11])

4. Deactivation and reactivation of one or more components at runtime
To test the influence of control messages on the ongoing real-time data traffic, all

network components were deactivated by the master, down to one single device.

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 34

Afterwards, the bus participants were reactivated again.
As expected, using controlled deactivation and reactivation of bus participants, the
procedure could not at all be perceived in the characteristics, calculated from the
recorded trace of the data traffic, at all. This lack of overhead due to control data
is only possible because the network management in EtherCAT is performed using
dedicated control bits in the cyclic frame.

5. Removal and reinstallation of one or more components at runtime
In contrast to the preceding test case, a subnetwork – consisting of one or more

components – was removed and reinstalled on the bus at runtime. The integration
of the subnetwork was done correctly and had no impact on the functionality of
the existing setup. Both, installation, and removal of a subnetwork was transparent
for all other bus participants, except for the ones with a direct connection to the
concerned devices. This fact follows from the architectural concept of the EtherCAT
network, which implies that apart from the master, the physical neighbors, and the
direct partners in data exchange, all other slave devices in the network are not aware
of failure, malfunction, or even of the existence of the component or subnetwork.
The deactivation and removal of one or more devices lead to absolutely no influ-
ence on the ongoing data traffic (compare test case 4). However in contrast to the
reactivation by software, when a device was physically reconnected to the bus, the
overhead of control data, which is needed to reintegrate the component into the
network, could clearly be detected, even by simply inspecting the overall frame rate.
Figure 2.11 gives a sample measurement, as evaluated by Wireshark.
When declaring an EtherCAT coupler as hot connect – which is typically done by
assigning a unique ID to the component – the behavior mentioned above could not
be reproduced. Thus, as is the intention behind the hot connect concept (see sec-
tion 2.2.1, EtherCAT hardware), these devices can be integrated at any time and
anywhere on the bus without risking to violate any real-time requirement or QoS.

Figure 2.11: Peaks in the frame rate [pack/s] when reconnecting all bus participants, one
by one (from [Bru11])

6. Network failure by cable cut
In this test, a cable cut was simulated, meaning that the physical connection of a

communication device to the network was cut at runtime. Such a kind of failure is
expected to be rather common in an actual test bench situation. If the connection
to a bus participant is interrupted physically by a cable cut, the neighboring device

CHAPTER 2. RELATED WORK AND SYSTEM CHARACTERISTICS 35

must detect the open connection and the network master must start an appropri-
ate error reaction. This is vital to avoid a complete break down of the remaining
network. Further on, no unreasonable high – but nevertheless useless – effort shall
be taken to restore the broken connection. This is requested to avoid congestion
on the communication path, as well as violation of the QoS for all remaining bus
participants.
Similar to the failure of a single component, also a malfunction of a subnetwork was
simulated. In this case the failure condition was further complicated by the fact, that
not only one bus participant was failing, but that the network master had to deal
with multiple failures at the same time, and had to react on or compensate all those
errors at once. For certain topologies – e.g. a ring topology without redundancy –
the malfunction of a single component might lead to the cut-off of a large number
of other devices.
In all simulated situations, the error was detected correctly and reported to the
network master even in the same transmission cycle. The affected bus participants
were ignored and the data transmission between the remaining bus participants was
not affected in any way, except for the devices directly concerned by the loss of a
communication partner (compare test case 5).
To improve the stability of the network towards mechanical failures in the cabling,
EtherCAT provides cable redundancy (see section 2.2.1, EtherCAT hardware). Using
redundancy in a test run, the network could keep up the ongoing traffic without any
interruption when a failure was introduced by cutting a single connection. It was
checked that the open connection was detected correctly and that the EtherCAT
master adapted the network layout to the occurring change in the setup. Only when
introducing a second cabling failure, an error situation as described above could be
simulated.

7. Bit errors
In final long-time test runs, the occurrence of bit errors was tested. Each bus

participant should be able to detect any bit error in a message sent to him and report
the transmission error(s) to the sender. Depending on the type of data contained
in the message, the packet may be resent (see table 2.1). In any case, all bit errors
have to be detected and all incorrect messages must be discarded.
Four different test runs were performed – with a duration of 19 h 20 min, 45 h 55
min, 69 h 45 min, and 166 h 15 min – but even in the longest run not one single bit
error occurred.

Conclusion of the experimental results

The setup and execution of the test cases went smoothly and the evaluation of the trans-
mission characteristics (RTT and jitter) and the analysis of the measured data traffic
revealed no unexpected behavior or result. However, some observed violations of the de-
fined QoS, caused by the operational environment of the network master, which was not
real-time capable, confirmed the importance to choose a hardware and an operating sys-
tem specially dedicated for real-time operation, when EtherCAT is used in a time-critical
setup.

Chapter 3

Design of a runtime-reconfigurable
real-time communication system

3.1 Additional requirements for the target environment

The target operational environment of the communication system and its task is the
connection of distributed measurement equipment in the Fatigue Testing Facility of the
Institute of Lightweight Design, Technical University of Graz. To fit the functionality and
characteristics of the EtherCAT network to the intended use, additional requirements have
to be satisfied. The definition of these requirements was done based on the same use cases
and according to the approach described in chapter 2.1 for the general requirements of a
runtime-reconfigurable real-time communication system. The requirements listed below
are also part of the system description in [Bru11].

1. The data rate values given in table 3.1 are based on an assumed amount of four
logical channels per module, each consisting of two words of 32 bit. In each cycle,
each unit sends its measurement data on three channels and receives commando data
from the main computer over one channel. The amount of modules is assumed to be
24 units. All calculated results for the data rates are referring only to the payload in
isochronous transfer mode. Possible overhead from any protocol is depending on the
used concept and technology, and is therefore not considered. Example calculation
of the data rate: 2 data words * 32 bit * 3 channels * 1 kHz = 192 kbit/s

2. For periodical data traffic, the communication system should provide a minimum
task frequency of 1 kHz, preferably up to 2 kHz. This leads to a minimum data
rate of 4.608 Mbit/s (up to 9.216 Mbit/s) as can be seen in table 3.1. Using data
packaging, the transfer frequency can be reduced to approx. 200 Hz. However the
data rate must be maintained.
For aperiodic but synchronous data traffic (e.g. transfer of commands) a transfer
rate of 100 Hz (up to 500 Hz) is expected, which leads to a data rate of 153.6 kbit/s
(up to 768 kbit/s). The transmission shall be quasi-bidirectional in synchronous
operating mode, i.e. upload and download for each bus participant must be done
simultaneously (or at least in the same time slot) and all units must be served in
one task.

36

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 37

per unit for a system of 24 units
task frequency* typical high typical high

synchronous mode
upload 192 kbit/s 384 kbit/s 4608 kbit/s 9216 kbit/s
download 6.4 kbit/s 32 kbit/s 153.6 kbit/s 768 kbit/s
sum 198.4 kbit/s 416 kbit/s 4761.6 kbit/s 9984 kbit/s

asynchronous mode
download 160 kbit/s 3840 kbit/s

* the detailed task frequency values used for the calculation are defined in point 2

Table 3.1: Data rates, payload only

Transfer of aperiodic data and potential asynchronous traffic should be performed
with a rate of at least 50 Hz. The bench mark for the aperiodic data traffic is 100
parameter values at a time in a network of 24 units, which corresponds to a data
rate of 3.84 Mbit/s.

3. The maximum delay allowed for the overall communication path in periodical oper-
ation mode is one transmission cycle (1 ms for 1 kHz, resp. 0.5 ms for 2 kHz), with
a jitter of 50 µs. The value of the jitter is defined as the absolute difference between
the ideal and real time of arrival of a data frame at the receiver.
For the asynchronous transfer of parameter values the overall transmission delay
may exceed the hard real-time requirements of the synchronous mode. For a de-
tailed definition of the characteristic values see appendix A.3.

4. On the slave side, the communication component will be integrated into the modular
compactRio system produced by NI. It communicates to his host using a standard-
ized communication protocol. Thus the overall dimension of the communication
module must not exceed the spacial limits given by the compactRio architecture.
On the master side, the communication bus will be connected to a desktop com-
puter which is running a real-time operation system. The interface between PC
and bus should be implemented in software as device driver, or a similar standard-
ized interface. All drivers needed for this connection are considered as part of the
communication system. If available, existing solutions, even if proprietary and not
open-source, are favored. For the physical layer of the interface between PC and
communication bus, a standard PCI card should be used.
All components of the communication system should be operated using the supplying
voltage available at the particular peripheral hardware.

5. The architecture of the communication system should follow the modular concept of
the test bench’s hardware setup. This means that every component of the measure-
ment setup is connected to the network by its own communication interface. The
individual bus participants must be fully compatible among each other.

6. During operation of the test benches, strong mechanical vibrations should be taken
into account. This should be considered when choosing the hardware components of
the communication system.Electromagnetic interference is not expected and there

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 38

are no specific requirements regarding ambient temperature, humidity, and mechani-
cal load or force. Basically the physical requirements and restrictions for compactRio
modules should by applied as defined in [NI09].

7. The fact that the communication network is connected to, and is getting data only
from components or programs from NI, leads to the demand that the structure
of the processed data is not changed, and that the data itself is not transformed
in any way. Possible adaptations of the data due to needs or restrictions of the
transmission channel should be done in the interfaces, which are regarded as part of
the communication system. All modifications, which are performed when the data
is entering the transfer path, have to be reversed completely when the transmitted
data is passed on to the recipient unit. The possibility of a simple and fast check
for data integrity (e.g. parity check) should be implemented on both sides of the
transfer path, i.e. sender and receiver.

3.2 System component architecture

Basically, there is a difference between the architecture of a master and a slave device.
This results from the different peripheral hardware of the components – a PC (desktop or
embedded) for the master and a FPGA-based computation system for the slave.

3.2.1 Slave device

The peripheral hardware of most bus participants will be NI’s compactRio. In this envi-
ronment, it is not possible to implement the driver for the communication unit in software
because the basic compactRio architecture provides no genuine interface to an EtherCAT
network. Additionally, the resources of the on-board FPGA are limited. Thus an external
communication module has to be used (see figure 3.1, for explanation of the symbols used
in the following figures, see the legend in appendix A.4). As the overall dimensions of
this module must not exceed the limits defined for slide-in modules (see chapter 4.1.2 and
[NI09]), the selection of fitting industrial solutions is limited. Common to all solutions is
the use of an ASIC as core unit.

Generally, the protocol for data exchange between the communication unit and the
host can be chosen among a set of predefined concepts which are available from the man-
ufacturer of the ASIC. The preferred protocol can be flashed into the ASIC’s EEPROM
together with the needed runtime library. The compactRio provides some low-level com-
munication protocols for external slide-in modules, as well.

Figure 3.1: Architecture of a slave device

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 39

Each EtherCAT slave device has to support at least two separate interfaces:

• an Ethernet port for connection to the EtherCAT bus

• an interface for data exchange with the host system

The µC interface protocol was chosen as host interface. Section 3.4.1 describes this
concept and the considerations behind the choice in detail. At runtime, a slave’s behavior
in the network is controlled solely by the network master; the compactRio is periodically
exchanging data with the EtherCAT slave but is not interfering in the bus communication
in any way.

3.2.2 Master device

For the design and implementation of the master device much more concepts are possible.
On the one hand the master’s runtime library can be either flashed on an ASIC or be
implemented as software driver. On the other hand, the network management can be
running on the same machine as the data source – most likely an application on the
mainframe computer – or data path and network can be managed on separate machines.
Taking into account that the data path is controlled by a mainframe computer, operating
under hard real-time conditions and using LabView for managing the measurement and
control data, there are the following possibilities for the architecture of a master device:

Implementation for one host

Fully implemented in SW

1. Integrated solution
The network control is implemented in LabView completely. The connection be-

tween PC and EtherCAT network is established through a standard PCI Ethernet
card. All functionality required by the EtherCAT master is integrated to the host
application as runtime library.

2. Distributed control for network and data management
In this concept the EtherCAT master is modeled completely in SW, as well. How-

ever it is running as separate process in the host system’s OS. The data exchange
between the ‘data master’ (LabView) and the network master is done through a SW
interface. The physical connection between host PC and EtherCAT network is again
established via an PCI Ethernet card.

Implementation using an ASIC

3. Integrated solution
The integration of a driver for the EtherCAT master is not needed when an ASIC

is used as master device on the bus. All runtime libraries are flashed in the ASIC’s
EEPROM as needed. The control of the master unit is implemented in LabView in
this case. Thus a software library containing access functions to the ASIC must be
included into the application. The communication between host system and ASIC
can be accomplished using different types of interfaces (see section 3.4.1).

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 40

4. Distributed control for network and data management
The control over the EtherCAT master and the data path is distributed (as described
in point 2). However, in the present situation a direct connection between LabView
and the EtherCAT controller is no longer necessary to get data on the bus. Both,
payload data, and network management data is sent to the ASIC through a common
interface. If supported, two separate connections are preferable to avoid possible side
effects and the need for an access scheduling algorithm on the interface.

Figure 3.2: 1. Shared host, implemented
fully in software, integrated solution

Figure 3.3: 2. Shared host, implemented
fully in software, distributed control

Figure 3.4: 3. Shared host and ASIC,
integrated solution

Figure 3.5: 4. Shared host and ASIC,
distributed control

Implementation for multiple hosts

Fully implemented in SW

5. Network master as router
All components of the EtherCAT bus master are implemented in software. The

physical interface to the network is an PCI Ethernet card. In contrast to point 2,
data master and network management are not running on the same host OS; so
LabView has no direct or indirect access to the master device, thus arising the need
of an additional slave device to receive data from the data source and propagate it
to the network.

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 41

6. Data management via the bus master
In this case, the data master has to establish a connection to the bus master via

an external interface. Basically the type and technology of this connection can be
chosen freely but must meet all mentioned standards regarding quality and real-time
behavior required for the EtherCAT network.

Figure 3.6: 5. Data and control path separated,
implemented in SW

Figure 3.7: 6. Multiple host,
but common connection to

the network

Figure 3.8: 7. Multiple hosts; separation of data and
network management

Figure 3.9: 8. Multiple hosts
and shared ASIC

Implementation using an ASIC

7. Network master as router
The control over the ASIC and the exchange of transmitted data is done through

separate interfaces as described in point 4. Though in this case, the bus management
and the data source (LabView) are running on different host systems. That fact
makes the use of a shared connection to the ASIC impossible and forces the data
master to be connected to the network over an additional slave device (compare
point 5).

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 42

8. Data management via the bus master
The architecture follows the concept described in point 6; because of the separation

on the hardware level between the network management on the PC and the master’s
runtime code on the ASIC, a connection from the data source to the EtherCAT
master is now easier established. This demands the ASIC to be able of handling two
separate hardware interfaces at the same time.

Before making a decision for one of the mentioned architectural concepts, some basic
considerations regarding the desired properties and features of the communication system
should be made.

Implementation: Looking at the implementation, a solution only in software is often
more complex than a solution in hardware, with rather simple, dedicated functions
on different layers. On the other hand, in SW more elaborate and yet efficient
algorithms and data structures can be used.

Performance and stability: Implementing the communication bus using an ASIC bears
the advantage of dedicating the full capacity of the device to this sole purpose, ad-
ditionally excluding all side effects and loss of performance by competing processes
and tasks, as it is possible on a shared resource. Even when a real-time OS is used
such effects can never be completely eliminated.
One can expect that a system implemented in low-level – even completely in hard-
ware – will rather be capable of satisfying the requirements for real-time behavior,
even under high stress. This assumption results from the fact that for an efficient
and proper low-level implementation, all hardware related restrictions and limita-
tions have to be taken into account already at the time of the design of the system
architecture. For realization on a higher level, those considerations are typically left
to a compiler.
Considering that a high level implementation is done for hosts with high perfor-
mance, the communication system will have more resources at its disposal in this
case. But part of this advantage might be reduced by a lower degree of optimization.
Regarding the timing behavior at runtime, a specialized device – as an ASIC is –
will typically provide higher precision, which can furthermore not be interfered by
possible inaccuracies from the host’s OS.

Robustness and maintenance: Using an ASIC, a system crash is not expected, unless
it is caused by a severe failure or breakdown. A modular system with more or less
autonomous units requires less effort and less changes in the peripheral hardware in
case of modifications on single components than a system with a highly integrated
architecture does. This is true as long as no modification of the specification of
the interface is needed. On the other hand, maintenance operations are easier and
faster done for high-level implementations. The same goes for reconfiguration and
firmware updates which are much more expensive in low-level systems.

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 43

Figure 3.10: Proposed system architecture

Taking into account the general observations above, it is rather preferable to use a
system architecture where each unit has a dedicated function – providing/receiving data,
network management, routing, and so on – than to accumulate as much functionality as
possible into one device. Although each component has a very specific purpose in this
case, the network itself is highly flexible and most changes concern only a small part of
the overall setup. The impact of failures or device errors is minimized, as well.

The basic concept and implementation of the communication system – protocol stack,
function libraries, and so on – is not very likely to be changed during the lifetime of
the system. Thus the flexibility provided by high-level software implementations will be
needed rarely and is outweighed by the advantage of stability and precision as provided by
dedicated hardware solutions. The complexity of the SW functions and libraries used for
performing network management and communication tasks is relatively low and therefore
demands not more computational power than a common ASIC can provide.

These considerations lead to the conclusion that the solution presented in point 7 is
suited best. It makes a very clear separation possible between the data path and the
network management. Furthermore, handling the data master as a common bus partic-
ipant allows much more topologies and combinations inside the network than handling
both main functionalities in the same host or even device. As the bus is running au-
tonomously, the runtime environment of the network master has no restrictions regarding
timing behavior and synchronization. The communication bus can even be set up without
any peripheral devices, which can be connected to the bus later on and communication
started as needed.

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 44

3.3 Topology of the network

As explained in chapter 2.2.1, the logical topology of the EtherCAT bus on the level of the
data link layer is always a ring. This structure is inbuilt and can not be changed without
violating the specification and changing the overall behavior of the communication system.
However on the physical level, there are more possibilities for connecting the participants
of an EtherCAT bus. [Häf08] names the basic bus topologies and their advantages and
drawbacks for EtherCAT. The following section resumes the main points and then looks
at structures not mentioned in the article to complete the overview.

Line

The line or daisy chain topology is the basic structure of an EtherCAT bus. A simple
slave device has two Ethernet ports, one for incoming traffic and one for outgoing. The
advantage of this structure is its simpleness, for both, networking and connecting: The
actual position of each device in the line equals its logical position in the ring and the
network master is the head of the chain. The main drawback of this topology is that it
is not flexible and not very robust at runtime. Whenever a device is removed or fails, the
line is broken and all following devices are also disconnected from the bus. This kind of
damage can be reduced by using a ring topology (see Ring).

Point-to-point

This type of network topology is not feasible for the EtherCAT technology which needs a
dedicated network master. Because all frames are routed over this master, the structure
would basically be a star topology (see Star) and for actual point-to-point connections the
network master ought to have as many physical interfaces as bus participants. However,
this does not mean that slave-slave communication is not possible; on the contrary, the
usage of a shared logical memory in the cyclic frame makes direct data exchange possible
without sending separate messages to each communication partner.

Star

In a star network, a break down of a larger part of the bus because of a single failing
bus participant (as described for Line) will not happen. The removal of a component will
not harm this network in any way, because, when an open line is detected at the port of
an EtherCAT slave, this port is internally short-circuited automatically on the physical
level. Thus, a missing device can not disconnect any other device. The next device in the
ring will detect that the address of its predecessor changed and will sent a message to the
network master. On the logical level, a missing EtherCAT slave will not read or alter the
data in its assigned frame slot; but this is a matter on a higher application layer and does
not affect the functionality of the bus itself.

The main disadvantage for this network structure is the amount of Ethernet ports
needed by the master device to connect it to all the slave devices; but this effort can be
kept reasonably low by choosing appropriate hardware (for example, Beckhoff offers ASICs
with up to four Ethernet ports, or one might use switches).

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 45

Tree

For the setup of a tree structure in an EtherCAT network, so called junctions are necessary.
A junction is an EtherCAT slave device equipped with an additional output, providing
a total of three Ethernet ports. Using junctions in the network reduces its vulnerability
towards unintended disconnections. It also allows - to a certain degree - a hierarchical bus
structure which, in combination with the hot connect feature of EtherCAT, increases the
flexibility and maintainability of the network a lot.

Ring

As the data link layer uses a ring topology, it would be an obvious choice to use the same
structure on the physical layer, as well. In fact this topology is really well suited for
EtherCAT networks. As described above, when connecting all bus participants serially
(compare Line), one can minimize the required effort for network management and reduce
the length of the data path and thus the overall transmission time. A closed ring can
be established by connecting the loose end of the line to a second Ethernet port on the
network master. Often a PC is used as master device, which requires only a second PCI
card to do so; all ASICs from Beckhoff are equipped with two ports, at least. This feature
is intended and supported by the EtherCAT technology, providing a very simple way of
bringing redundancy into the network and allowing one disconnection anywhere on the
bus at runtime without loss of data and functionality.

Mesh

Apart from the fact that the effort for connecting a number of slave devices directly is
far from reasonable – creating a fully connected mesh is not even theoretically possible,
because no slave device with more than four connections is available – it would also not
optimize the overall timing behavior of the data traffic because of the ring topology applied
on the data link layer: There is only one message being passed around the bus in each
task cycle, and this messages can only be processed by one device at a time. The only
(theoretical) advantage is that a mesh network would provide a lot of cable redundancy.

The preceding overview shows that there are two basic bus structures which are well
suited for the setup of an EtherCAT network: Ring and Tree topology. Each supports one
of the two features which should not be missing in any communication system: physical
cable redundancy and interchangeability of bus participants. To benefit from both fea-
tures, it is obvious that a mixture of the two topologies will be the best solution for an
EtherCAT installation [KDI10], whose goal is to support a large number of bus partici-
pants which are arranged in several groups, as for example test benches.

For this purpose a central ring is used. This core network consists only of the net-
work master and of EtherCAT junctions. The installation should be permanent, its sole
function being to provide connection points for the attached subnetworks. After the first
setup, the overall network’s robustness is increased by redundancy in this part of the
communication system. Each subnetwork attached can either be configured in advance or
use the hot connect feature; the latter allowing a lot of flexibility at runtime, whereas the
former will be better suited for a long-term installation. The subnetwork’s structure might

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 46

even shadow the global structure of the whole system (i.e. central ring plus branches).
Another possibility for a subnetwork is to use a (pre)configured line topology. Although
loosing the hot connect feature, this variant might be the simplest in situations where no
modifications on the bus are intended at runtime.

Figure 3.11: Sample setup for an EtherCAT network, implementing different topologies

3.4 Comparison of host interfaces, description of layers and
data model

3.4.1 Host interface

Description of different concepts

The data exchange between a communication module and the attached measurement or
actuator device is done via the host interface. This interface shall provide a well-defined
and standardized communication channel for the exchange of input and output data and
control commands.

First of all, the host interface shall be capable of processing the intended amount of
data in the requested time, as defined in chapter 2.1.2 and section 3.1. Furthermore,
it should be as simple as possible to avoid control overhead, but provide all functions
necessary to establish a safe and reliable connection. This can be achieved either by
hardware design or by a dedicated functionality such as check bits, line monitoring or
the like. A modern micro controller generally supports a set of the most commonly used
communication protocols:

Digital I/O: The digital input/output interface uses a very simple concept for parallel
exchange of data with a minimum of control overhead. In most implementations 32

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 47

bit are set on 32 separate lines. An output valid signal is set when the data can be
read. The mapping of the ports to logical inputs and outputs is done in advance.
Alternatively the interface can be operated in bidirectional mode, where individual
port configuration is ignored. Using an additional latch signal for synchronization
and a start of frame (SOF) signal for triggering, is all that is needed for data transfer.

SPI: The serial peripheral interface bus is a concept for serial communication between a
microcontroller and a peripheral device. The data transfer is either started by the
SPI master using polling or by the slave setting an interrupt. The data transfer is
established using only four pins. When the transfer is started, the content of the
slave’s and the master’s 8-bit data registers is exchanged, bit by bit; one can see the
two registers as one distributed 16-bit register which is shifted cyclically, whereas in
each clock cycle one bit is sent from the master to the slave on the MOSI line and
in parallel one is transmitted from the slave to the master on the MISO wire. The
devices are synchronized by a common clock sent by the master on the SCK (serial
clock) line. The transmission frequency can be selected in the range of 12.21 kHz to
12.5 MHz in discrete steps of varying width [Fre03].
Collision handling in SPI is very primitive: When a SPI master detects a low on
the SS line (slave select, used to select a slave device and start the communication)
while he is not sending, this condition is considered as mode fault, meaning that
more than one master is trying to send. The device is then automatically switched
to slave mode, but with its output port disabled. This reaction is intended to avoid
conflicts in multi-master environments. The error is automatically cleared when the
failure condition is past.

Synchronous/asynchronous µC interface: The µC interface is very similar to the
random access memory (RAM) concept and therefore also called dual-port RAM.
The term ‘dual-port’ signifies that in this case the memory is a shared resource,
meaning that more than one instance is accessing its content. The shared memory
resource is accessed by providing the start address of the desired range in the memory.
The content of the requested memory area is set on the output in case of reading;
in case of writing, the data present on the bidirectional data lines is stored in the
memory. Depending on the implementation of the RAM and the given number of
physical connections (i.e. I/O pins), the interface is defined for a word length of 8
bit or 16 bit. The length of address words and data words are identical. To select
the intended access – read or write – two separate lines are given; RD is set to active
for a reading access and WR is set for writing data to the memory. Multiple access
at the same time, which would lead to data loss and inconsistency, is prevented by
the use of a BUSY signal. This signal is set while a request is processed and the data
on the output is not valid. An additional interrupt line can be used to signal when
the content of the memory was changed. In that way, when a device is waiting for
some data to be written to the memory, redundant reading requests can be avoided.
If the µC interface is implemented as textitsynchronous, the BUSY line is replaced
by a CLK (clock) line. A further enhancement is the chip select (CS) signal to
address more than one memory device. The same data and address lines can be
used, but each memory device has to be given an individual CS line.

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 48

I2C: The inter-integrated circuit protocol’s intention is to provide a connection between
the single components of a system, but in a very tight spacial area, such as a com-
puter’s motherboard [NXP07].
For transmission, a master device first allocates the bus, then sends the address of
a specific slave device and a command bit (read or write). According to this com-
mand, a data stream is exchanged. When finished, a stop flag is set by the master
to free the bus. The length of the data stream transmitted is not restricted, but
periodically acknowledged by one bit after a chunk of 8 bits. For this procedure,
only two wires are needed: the serial data (SDA) and the serial clock (SCL) line,
which are shared by all connected devices. This establishes a common clock between
all bus participants and makes it possible to define data validity and special signals
(e.g. START and STOP) by the offset between these two.
Two significant features let I2C stick out among similar concepts: Clock stretching
- a mechanism for a slave to signal the master that a previous data request is not
yet fully processed and a new request can not be processed immediately, causing
the caller to pause transmission until the slave is ready again; and arbitration - a
concept of managing conflicts when multiple devices are sending at the same time,
which is very similar to CSMA/CA as known from CAN, e.a.: All master devices
continue to send until one by one they realize that the message on the bus is not the
one they are trying to sent. This is the moment for the specific master(s) to give up
and wait until the bus gets free again. The winning master continuous sending and
the loosing masters may switch to slave mode to receive data if addressed.

Modbus: The Modbus protocol is able to establish a connection between many devices
in a network, giving each a unique address. Adapted for many purposes and carrier
technologies, Modbus RTU (remote terminal unit) is the most basic and compact
implementation. It uses a stripped frame format in binary notation, where address
and function code have a length of 8 bit, the CRC a length of 16 bit and the data
a length of n*8 bit. The basic functionalities of Modbus are reading and writing of
internal registers, reading and writing of I/O ports and sending of data. The traffic
scheme is master-slave communication and there exists no possibility of setting an
interrupt, thus requiring the master to perpetually send out polling messages.
Each transaction is started be the client sending a request, the server responding
and the client acknowledging the response. In case of failure, there is a set of error
messages to notify the client. As mentioned above, the functionality of Modbus RTU
is very limited, but for high level implementations the amount of functions is much
extended [Mod06].

Comparison of the different concepts

From this short description of commonly used technologies, it can easily be argued that
the µC interface is the technology of choice for the given task.

First of all, the given setting with two devices exchanging data is very simple. One
device (the compactRio) can clearly be identified as master, receiving, processing
and producing data; whereas the EtherCAT module is acting as slave, transmitting

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 49

and receiving data to and from other devices on a cyclic time basis. For this purpose,
no complex network management, diagnosis and addressing schemes are necessary.

Second, the master and slave device are placed very close together inside the chassis of
the compactRio. This leads to a very short connection path – preferably without
any cabling – which reduces its sensibility towards electromagnetic interference dra-
matically. So safety features such as special coding or error correction will not be
necessary.

Third, the absence of any third device on this bus and the reduction of interference
makes acknowledgments and arbitration mostly obsolete, which, when omitted, will
increase the efficiency of the bus regarding the throughput of data.

Forth, the simpler the implementation, the less space and computation resources are
needed on the ASIC and the FPGA.

Summarizing all the points mentioned here and in the sections above, the µC interface
is not only capable of handling this task, but is also the best choice, because it is simple,
efficient and stable. Each of the other solutions would bring some advantage but also
avoidable drawbacks. Last, but not least, the µC protocol is the one protocol which is
supported by all inspected hardware solutions for EtherCAT; and with the least differ-
ences in the implementation between the different vendors. This means that only small
modifications in hardware and software will be necessary if a communication module from
a different vendor has to be used.

Digital I/O SPI µC I2C Modbus

Acknow-
ledgment

- - - bit frame

Interrupts - x x - -

CRC - - - - x

Data length 32 bit
8 bit

(register)
8/16 bit

8 bit
(continuous)

n * 8 bit
(RTU)

Clock signal x x x x -

Multiple slaves - SS signal CS signal address address

Diagnosis - - - - x

Additional
functionality

- - - some* x

supported by
compactRio

-
3rd party

HW module
-

3rd party
HW module

SW library

* SPI: clock stretching, arbitration

Table 3.2: Comparison of host interfaces

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 50

3.4.2 Layers model

To clearly assign functionality and define interfaces between the various system compo-
nents, it is advisable to split the overall system in hierarchical layers. Because EtherCAT
is based on the Ethernet concept, this is done by applying the OSI reference model, a
standard approach for digital communication networks. Figure 3.12 shows the basic layers
model as defined in [ISO94].

Figure 3.12: The OSI reference model (from [ISO94])

In the official specification of EtherCAT [ETG10], the OSI reference model is reduced
to three layers. These are sufficient to describe and categorize the services and function-
alities of EtherCAT: Physical layer, data link layer and application layer. Services and
functionalities which originally belong to intermediate layers are either placed in the data-
link or the application layer.

Figure 3.13 shows the basic layers model used for EtherCAT slaves. In this context,
the components and functions of the communication system are mapped onto the three
layers of the original OSI layer model as follows (from bottom to top):

Physical layer: EtherCAT sets practically no restrictions regarding the use of any tech-
nology on the physical layer, as long as the technology is cable-bound. Wireless
channels are not intended (see Data Link layer). The choice of hardware is limited
to a list of compatible devices, as provided by Beckhoff in [ETG09]. For detailed
explanations about the choice of hardware see chapter 4.1.2. No modifications on
the physical level of the network were done for the present work.

Data link layer: On the data link layer, EtherCAT uses the Ethernet technology. This
includes the protocol stack, the frame format and data integrity check (CRC). Col-
lision detection and handling is implemented but not needed because of the special
topology and behavior of the EtherCAT network. For a detailed description of the
protocol, see chapter 2.2.1, Protocol and frame format.
EtherCAT is restricted to be operated in cable-bound networks because the used

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 51

concept of frame handling is not realizable in wireless networks. This is due to the
fact that in a wireless network, always more than one device is receiving the frame.
This multiple access to the data requires a lot of controlling overhead, which is not
provided.
The overwhelming part of EtherCAT networks are implemented in standard Eth-
ernet technology (100Base-TX), but the concept allows also migration to Gigabit
Ethernet or any possible new technology based on IEEE 802.3. Thus all used hard-
ware must meet the definitions and restrictions of this standard.
In this work, no modification of the implementation of the Ethernet-based services
of the data layer was done. For all necessary adaptations and configurations, helper
functions are provided by the used devices, SW libraries, and configuration tools.
Another feature of this layer is the handling of the process data, including all needed
services for memory management, routing, and processing of the data via FMMU’s.
These services provide a solid base for the use of these data structures in the appli-
cation layer.

Application layer: It is on the application layer, where EtherCAT is primarily situated.
Replacing the commonly known IP packets inside an Ethernet frame, EtherCAT
puts there one or more of its own proprietary EtherCAT telegrams (see chapter
2.2.1). Based on that concept, it is possible to implement a number of services and
protocols on top of EtherCAT without giving up the characteristics of the real-time
network underneath. Due to the special structure of such an communication net-
work, scheduling and routing algorithms are mainly obsolete. The same applies to
elaborate fragmentation and streaming functionality.
This layer is clearly in the focus of this work; although no modifications, improve-
ments and extensions to the present implementation of the EtherCAT protocol was
necessary, the features defined in this layer were vital to design an efficient network
concept which meets the given requirements.

Network to Presentation layer: By placing the EtherCAT telegram directly inside the
Ethernet frame, the OSI layers three to six are skipped in the basic implementation of
EtherCAT, resulting in a very much reduced layer model (see figure 3.13). However,
when the network is operated using elaborate routing and addressing schemes, such
as TCP/IP or UDP, the full communication stack is in use. This keeps EtherCAT
in full compliance to the IEEE standard.

Figure 3.13: Adaptation of the OSI reference model for EtherCAT

CHAPTER 3. DESIGN OF THE COMMUNICATION SYSTEM 52

3.4.3 Data flow

As described in section 3.3, the intended network consists of one bus master and an arbi-
trary number of slave devices. The task of each slave device is to send and receive data,
whereas the actual composition and amount of the payload data is flexible. In figure 3.14,
the left slave represents a mainframe computer running LabView, the right slave is a com-
pactRio which is supposed to act as standard bus participant for all kind of devices in the
installation. The third device on the EtherCAT bus is the bus master. It is controlled
by a dedicated software which may be running on any appropriate platform. This system
does not have to meet any special requirements regarding QoS or real-time and can be
chosen depending on the actual implementation of the master device.

The master is responsible for generating and sending out EtherCAT frames cyclically.
These frames are received by the slave devices, one at a time and the EtherCAT protocol
stack on the ASIC is responsible for getting out the right data packets by their address
information. Further on, these packets are transmitted via the µC interface to the com-
puting entity. This may be either a FPGA (in case of the compactRio) or an application
(in case of the mainframe computer). The consumer unpacks the data according to the
chosen packing scheme, e.g. CANopen, to get the separate values. The use of this stan-
dard procedure is suitable for this design, because both, EtherCAT and NI provide full
support. But basically, any other data packet format could be chosen as well. For sending
data over the network, the packing procedure is exactly reversed.

Figure 3.14: Data flow

Chapter 4

Implementation of the real-time
communication system and its
separate components

4.1 Preliminary remarks

4.1.1 Development process

The development process of this project is chosen according to general rules of system
and SW development, based on common principles and best practice. The main concept
is related to standards on software development in embedded and industrial environment
(e.g. IEC 61508) but follows definitely no constraints or restrictions regarding functional
or general safety. The implementation process consists of the following main steps:

Requirement analysis: The system requirements (as already defined) are revised ac-
cording to the chosen technology and hardware.

System architecture: An architecture of the overall system is developed, as well as all
component’s detailed sub architectures.

Prototyping: A prototype of a communication device is implemented. Although not the
final hardware is used (FPGA simulation instead of the actual hardware interface)
this step brings a lot of vital information for a later implementation in the target
environment. The prototype contains all functionality, as far as realizable.

Implementation of the system: A prototype system is set up using a network master
and the prototype devices.

Evaluation and testing of the overall system: The communication system is tested
to check the correct implementation of the functionality and behavior.

4.1.2 Choice of hardware components

As already described in earlier in chapter 2.2.3 and summarized in table 2.3, there is a
number of vendors which are offering communication equipment for EtherCAT. However,

53

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 54

looking at the ASICs used in these devices, one will find that only two different products
are available: the netX series from Hilscher and the ET1x00 series from the inventor of
EtherCAT, Beckhoff.

Both solutions have their individual advantages: The netX supports a wide range of
Ethernet and fieldbus based communication protocols and is therefore very well suited for
comparative experiments. There is also a product variant which can be used as hardware
master in an EtherCAT network. On the other hand, this flexibility of the ASIC restricts
it to the use of the main functions of the protocol. Although this is sufficient for most
industrial purposes, it is clearly a disadvantage when exploring the full width of function-
ality of the EtherCAT technology.

The ET1100 is the ‘original EtherCAT ASIC’ and used by all third party vendors
of communication modules except for Hilscher. It supports all functions and features of
EtherCAT as specified by the ETG. Peripheral equipment, such as switches and adapters,
and configuration tools in software are available, as well. The EtherCAT master software
TwinCAT is designed to manage all aspects of configuration and network management at
runtime, bearing only the small disadvantage that it has to be run on a PC with real-time
OS to provide real-time data traffic. For the current work, a solution from Beckhoff was
chosen, because of the full compliance to the specification and the availability of all needed
configuration tools by the same vendor.

4.1.3 Development environment

The following equipment was used to implement a host interface for the EtherCAT slave
and to set up a small experimental network:

• 2 EtherCAT piggyback controller boards FB1111-142 from Beckhoff

• 2 host interface adapter boards EL9803 from Beckhoff

• SW TwinCAT from Beckhoff

• 1 sbRIO-9631 from NI

• SW LabView 2011 Suite from NI

• 1 power supply 24V from Voltcraft

• 2 adapter boards, self-made

• twisted pair cable (CAT5 with RJ-45 connector)

• flat cable (SCSI with IDC50 connector)

• SW Wireshark

• 1 desktop PC (Windows XP, SP3 with Intel Pro/1000 GT Ethernet interface, device
ID 0x107C))

• 1 notebook PC (Windows 7, SP1)

• 1 oscilloscope DL 1640L from Yokogawa

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 55

The sbRio is a development board from NI equipped with a Xilinx Spartan-3 FPGA. It
has a 266 MHz CPU with 128 MB nonvolatile memory, 64 MB DRAM, and an integrated,
reconfigurable one mega-gate FPGA (RIO). It is equipped with 110 bidirectional digital
I/O lines, grouped to four pin bars and 36 16-bit analog I/Os. The digital lines are
bidirectional, freely configurable and designed for an operational voltage of 3.3 V. The
programming and debugging interface is run in LabView whereas the sbRio is connected
to the host computer via standard 100Base-TX Ethernet. It requires a supplying voltage
of 24 V, which is provided by an external device. The EtherCAT piggyback controllers
require 5 V, which is supplied by the VCC pins of the sbRio. The connection between the
EtherCAT slaves and the sbRio is done by flat cable.

Figure 4.1: The development environment

4.1.4 Pin layout

The pin layout of the EtherCAT component used for this work (FB1111-0142) is basi-
cally designed for digital I/O (see chapter 3.4.1). To use the piggyback controller board
with a dual-port RAM interface, there is an adapter board (EL9803) which reroutes the
connections internally, so that the output pin layout corresponds to the one of the pig-
gyback controller’s standard version (FB1111-0140), without any manual modifications
on the board. Care has to be taken to connect the adapter board with the correct pin
bar, labeled As uC on the routing board. If connected correctly, the dedicated LED is on
when powered up, together with the LED for power supply (+5V). A third light (RUN)
indicates that the device is connected to the network and running. The connector layout
and the mapping of the pins between the FB1111 and the sbRio connector interface are
shown in the following figures 4.2 and 4.3. A detailed pin layout is given in appendix A.6.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 56

Figure 4.2: Schematic view of the adapter board (horizontal view)

Figure 4.3: Schematic view of the adapter board (top view)

Figure 4.4: The piggyback controller mounted
on the two adapter boards (side view)

Figure 4.5: FB1111-142, LEDs in
operational mode

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 57

4.2 Detailed component architecture

Due to the fact that each expansion slot of the compactRio is only equipped with an 15-
pin D-Sub connector interface (see [NI09]), the transmission protocol of first choice would
be SPI because it needs very few wires. Unfortunately, not all EtherCAT modules from
Beckhoff and from Hilscher support the basic SPI protocol, but a variant with extended
functionality (Modbus, e.g.). Thus, because of the immanent control overhead, the SPI
bus can not provide the requested data rate of approx. 10 Mbit/s. This is the reason
why, for the implementation of the host interface, the asynchronous µC interface was
chosen (see chapter 3.4.1). The EtherCAT piggyback controller board FB1111 supports
this type of interface for both, 8-bit and 16-bit wording. Because the sbRio offers enough
pins, the 16 bit version can be used. To connect the µC interface to the compactRio an
intermediary SPI bus shall be implemented which is responsible for transmitting the data
for a single step of the asynchronous µC transmission, consisting of an address of 16 bit
and a data word of the same length. When reading from the ESC, the data is fed back
from the shift register to the host device. Figure 4.6 shows the intended architecture.

Figure 4.6: Architecture of the host interface as it is implemented

The functional implementation of the interface protocol on the FPGA follows the
specification of the DP-RAM interface as defined in [Bec10], the pin layout is defined in
[Bec07]. The SPI protocol is only implemented in software to the degree that it simulates
the behavior of an actual SPI interface as defined in [Fre03].

4.2.1 Asynchronous 16-bit microcontroller interface

For accessing the process data section in the ET1100’s dual-port RAM, nine signals are
needed which are described in table 4.1. The address and data signal have a width of
16 bit, all others are 1 bit wide. ‘Polarity’ indicates whether a signal is considered to be
active at high voltage level (high) or at GND (low).

In this implementation the signals BHE and ADR[0] have to be set to constant low
to indicate the 16-bit addressing scheme. Of course, it has to be considered in the im-
plementation that the constant ADR[0] bit reduces the actual address space to 15 bit.
This corresponds to a shift by one of the address value or a division by two. The CS
line is also permanently set to low, which is allowed because only two devices are in-

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 58

terconnected and deselecting the memory device between access requests is redundant.
The EEPROM LOADED signal indicates that the EtherCAT slave device is configured
correctly. This flag has to be checked before any valid data transfer request is started.

Figure 4.7: Microcontroller interconnection (from [Bec10])

Signal Description Polarity
CS chip select for assertion low
ADR[15:0] address bus high
BHE byte high enable* low
RD read command low
WR write command low
DATA[15:0] data bus high
BUSY memory is busy low
IRQ not needed in this implementation low
EEPROM LOADED PDI is active, EEPROM is loaded high

*defines, in combination with ADR[0], the addressing mode

Table 4.1: The signals of the µC interface

For staring a read request, RD is pulled down after setting an address on the ADR
bus. The EtherCAT slave will set BUSY, read the data internally and set it on the DATA
bus. After BUSY is released the valid data can be read and the µC resets RD. The data
is kept valid until either ADR or RD is changed. When setting the RD signal, two time
intervals have to be considered by the calling instance and shall not be interfered for a
valid read access:

• tRD to BUSY (max. 15 ns) is the time the memory needs to signal BUSY when the
request is signaled by setting RD

• tBUSY to DATA valid (5 to 15 ns) is the interval before the data is valid after deasser-
tion of BUSY.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 59

Figure 4.8: µC interface, read access (from [Bec10])

Figure 4.9: µC interface, write access(from [Bec10])

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 60

To write data into the memory, both the data and the intended address have to be set.
Then WR has to be set and reset one time, before BUSY will fall and the data will be
written to the EEPROM. Immediately after BUSY is active, new data and a new writ-
ing request can be set. It is important that WR is active long enough for the request
to be detected by the memory controller (tWR active = 10 ns) and no other request is
started during tWR to BUSY (15 ns). ADR and DATA have to be kept valid before and
after the deassertion of WR for a time interval of tADR BHE DATA setup (10 ns), resp.
tADR BHE DATA hold (3 ns) to be read correctly by the EtherCAT device.

For two consecutive memory access requests a guard interval of 10 ns has to be consid-
ered if the second request is of the same type as the previous (i.e. read after read or write
after write). Between the deassertion of RD and the assertion of WR no guard interval
is needed. The same applies to a read request if the requested address is different to the
one of the proceeding write; if the previously written data shall be reread immediately, an
extra delay of 20 ns is required.

4.2.2 SPI

The serial peripheral interface (SPI) bus is a concept for serial communication between a
micro controller and a peripheral device. The data transfer is either started by the SPI
master using polling, or by the slave setting an interrupt. When the transfer is started,
the content of the slave’s and the master’s data registers is exchanged. The connection is
established using four pins, each dedicated to a special purpose:

Slave select (SS): When this pin is pulled down by the master, then transmission starts.
In a multi-slave configuration either each slave gets its own SS pin, which allows
direct master-slave communication between; or the slaves are daisy chained, thus
implementing a distributed shift register.

Serial clock (SCK): On the SCK line the master sends the common clock. The clock
frequency is not fixed but can be selected in the master device by changing the setting
of the SPI baud rate register, allowing a transmission frequency between 12.21 kHz
and 12.5 MHz in discrete steps of varying width.

Master out / slave in (MOSI): This pin is configured as data output on the master
device and data input on the slave.

Master in / slave out (MISO): The MISO is the contrary of the MOSI: Data input if
the device is a master and output in case of a slave.

As mentioned before, the data transfer is a sort of shifting operation: One can see the
two 8-bit registers as one distributed 16-bit register, which is shifted cyclically. In each
clock cycle, one bit is sent from the master to the slave on the MOSI line and in parallel
one is transmitted from the slave to the master on the MISO wire. This scheme implies
that each shifting cycle has to last exactly for 8 clock cycles, because only then both
registers are fully updated. Shorter transmission cycles are not intended, even if not all of
the bits sent represent meaningful data. After a transmission cycle, the register values are
read by the devices, processed and new values are written to the registers. Now the SPI
is ready for the next transmission cycle. Even if there are implementations with 16-bit or

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 61

Figure 4.10: SPI, transfer block diagram (from [Fre03])

Figure 4.11: SPI, transmission cycle, CPHA = 0 (from [Fre03])

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 62

larger, the usual (and mandatory) register size is 8-bit. Figure 4.11 gives an example of
one transmission cycle.

Two additional parameters are used to configure the transmission characteristic: clock
polarity (CPOL) and clock phase (CPHA). The CPOL bit defines whether the data sample
has to be taken at the rising (CPOL = 0) or the falling edge (CPOL = 1) of the clock. The
choice between the two is arbitrary, but – same as for the clock frequency – the setting
has to be identical in master and slave device. In a multi-slave environment, the polarity
of the slave devices can differ, allowing the master more flexibility when addressing the
individual devices with different requirements. The CPHA bit indicates the time when
the switch to a new bit is performed on the data lines. For CPHA = 1 data is set on the
first edge of each cycle and captured on the second half; for CPHA = 0 data is captured in
the first half cycle and set in the second. Again, the choice is rather an issue of hardware
design than of functionality. For the case where CPHA = 1, the SPI specification allows
the SS pin to stay low during the idle interval between two consecutive transmission cycles.
This behavior, called back-to-back transfer, is especially useful for systems with one fixed
master and only one slave driving the MISO data line. Some special features complete the
functionality of SPI:

Bidirectional mode: One of the data lines (MOSI or MISO) can be declared as the
single data line. This puts the other one out of service and send all data bits over
this pin. The remaining line can now be used for another purpose.

Power safe mode: Apart from the run mode, SPI knows also two power safe modes:
wait mode and stop mode. Only a master device can be set to wait mode, causing it
to pause the transmission until set back to running. The wait mode can be disable
by a configuration bit (SPISWAI). When a slave device is set to wait, transmission
and reception is not stopped, thus keeping the device synchronized to the master
and not missing any of the sent data. The behavior of slave and master is identical,
when set to stop mode, but the stop mode is not influenced by the SPISWAI bit.
When using these power safe functions, it has to be kept in mind that slave devices
in wait or stop mode are performing data transfer but internally do not read or
update the data registers or send interrupts.

Mode fault error: When a SPI master detects a low on the SS line while he is not
sending, this condition is considered as mode fault, meaning that more than one
master is trying to send. The device is then automatically switched to slave mode
but with its output port disabled. This reaction is intended to avoid conflicts in
multi-master environments. The error is automatically cleared when the failure
condition is past.

Interrupt: Although not explicitly specified in the standard, SPI provides the usage of
interrupts. The details of the implementation are left to the developer. In most
cases the use of an additional pin reserved for interrupts is a good choice.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 63

4.3 Implementation of the host interface

4.3.1 Architectural overview

The host interface, as it is implemented on the sbRio FPGA, is divided into three parts
as shown in figure 4.6. Each subpart runs on the target as an independent loop with
an individual cycle time. In appendix A.9 the hierarchy of the implemented software is
shown, together with a complete list of submodules used. All cycle times are defined in
µs. Although the µC interface of the FB1111 piggyback controller supports access times
in the range of hundreds of nanoseconds, the I/O ports of the FPGA are not fast enough
to operate at such a speed – the operational frequency is defined up to a maximum of 10
MHz [NI10]. The execution time is further restricted by the complexity of the performed
operations, especially by the time to access the FPGA’s memory for data arrays and FI-
FOs.

All data transfer between the different submodules of the communication interface is
implemented as FIFO. All data is only written when produced, and the buffer size is ad-
justed to the size of the actually transmitted data to avoid large buffers and additional
delays for processing of the buffer’s content. The communication between the sbRio and
LabView is done by FIFOs for the time-critical payload data, and the so called program-
matic front panel communication (PFPC) which covers the rest of the – mostly invariant
– data such as the cycle time parameters or the physical addresses. State, timing and eval-
uation data from the FPGA is also transmitted over PFPC, which satisfies no real-time
criteria. The configuration of the DMA channels is shown in table 4.2.

Source -
destination

Data type
Number of
elements

Description

Host - Ctrl U16 2* Data to be transmitted
Ctrl - Host U16 200 Data read from the slave’s memory
Ctrl - SPI U16 3 Word to write, word to read and address
SPI - Ctrl U16 1 Word read
Ctrl - µC Boolean 1 R/W flag
µC - Ctrl Boolean 1 Sync signal
SPI - µC U16 2 Data to write and address
µC - SPI U16 1 Data read

* the actual value has to be adapted to the application

Table 4.2: Configuration of the FIFOs

One might make the observation that no state signals or flags are exchanged by the
three loops, although that might seem vital for synchronized inter-loop communication. In
fact such synchronization signals are not needed when the size of each buffer corresponds to
the expected content: If a buffer is only filled by the producer when new data is currently
available, and this data is put in the FIFO only one time, then the consumer can be
triggered by the buffer’s filling level: if there is data in the buffer, the consumer has to
process it, if the buffer is empty, the consumer has to wait for new data. On the other
hand, when a buffer is still full, the producer is implicitly aware that he has to wait for
the consumer to process the present data before putting in more data. This solution was

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 64

chosen because on the FPGA, where array sizes and execution timing are fixed, it is the
simplest way to synchronize loops with different execution cycles.

Figure 4.12: The three parallel loops of a component

4.3.2 Control logic

The control loop holds a state machine for the management of the pending jobs in each
transmission cycle. In the state machine shown in figure 4.13, the number of read and
write operations is flexible. In fact on the FPGA, the number of operations and the size
of the array holding the data has to be defined already at compile time.

The second task of the control loop is the communication with the host computer. The
management for outgoing data consists of storing the data which was read by the interface
during one transmission cycle, and sending it to the host. The input data coming from the
computer is fed to the SPI interface in chunks of 16 bit. This part was slightly adapted
for performance testing, as described in section 4.5. The top level of the control loop’s
implementation is shown in figure 4.14.

Figure 4.13: The main control state machine (left: the task cycle; right: detailed
sequence for data transmission, i.e. reading and writing cycle)

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 65

Figure 4.14: Implementation of the control loop

4.3.3 SPI interface

The SPI interface is not actually implemented as specified but simulated, meaning that
there is no data exchange over a MISO and MOSI line and no clock signal. This solution
was chosen because for this interface, there is no actual hardware available, and for the
simulation of a serial data transfer, it is enough to emulate the intended behavior by
copying the data bit by bit from the input array to the output array. As the SPI interface
is the mediator between the control loop and the µC loop, it performs data exchange with
both of them. The SPI interface processes always three data words at the same time:
address, data read, and data to write.

Figure 4.15: Implementation of the SPI interface

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 66

Figure 4.16: State machine of the SPI interface

Figure 4.17: State machine of the µC interface

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 67

4.3.4 Microcontroller interface

The data to write is fed into the µC loop by the SPI interface and the data read from the
memory of the EtherCAT slave is forwarded via the SPI. The microcontroller loop is the
only instance of the implementation which has access to the I/O pins of the sbRio. For
this reason, it also exists a connection to the control loop to forward the synchronization
signal and receive information about the kind of transaction to make (i.e. read or write).
The data transfer process is implemented closely to the specification for the asynchronous
µC interface as explained in section 4.2.1.

Although there are a lot of timing restrictions defined for the µC interface, none of
them are relevant for the present implementation. This is due to the fact, that all time
limits are defined much lower than the cycle time of the implemented interface loop: The
absolute worst case access time for a 16-bit word via the asynchronous 16-bit DP-RAM
interface is given in [Bec10] as 575 ns for read and 280 ns for write access. Therefore,
bearing in mind that the minimum cycle time of the implementation on the FPGA is 1
µs, no critical time limit can ever be violated. However, great care has been taken to
preserve the required sequence for setting the access request signal (nRD and nWR) and
checking the BUSY flag before starting any action. Figure 4.17 shows the state machine
corresponding to the access diagrams shown in section 4.2.1, figure 4.8 and 4.9.

Figure 4.18: Implementation of the µC interface

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 68

4.4 Device and network configuration

4.4.1 Configuring a slave device (SSC Tool)

For the configuration of an EtherCAT slave device, the Slave Stack Code (SSC) tool
from Beckhoff is used. This tool allows the user to specify the kind and behavior of the
component by programming the ESI section in the EEPROM (for detailed information
about the ESI see chapter 2.2.1, Memory management). All registers which are allowed
to be modified by the user are grouped semantically in a tree structure. A screenshot of
the tool’s main window is shown in figure 4.19.

Figure 4.19: The Slave Stack Code Tool

Based on the defined settings, the tool generates adjusted C code for the specific
EtherCAT slave type and also the ESI in XML format. Whereas the source code is not
needed here, the ESI file has to be included in TwinCAT ’s model library. Now the intended
slave configuration can be selected in the network management tool and be flashed into
the slave device’s permanent memory (for further information refer to section 4.4.2).

For the present work, the preset for an EL9800 application – intended to be run on
the EL9800 evaluation board – was used and adapted to the needs of the present task by
the following settings (sorted as in the order defined by the SSC tool):

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 69

Slave Information
VENDOR ID 0x701
VENDOR NAME LeichtbauTUGraz
DEVICE NAME Test App
Generic
ESC EEPROM ACCESS SUPPORT 1
Hardware
EL9800 HW 0
MCI HW 1
PIC24 0

BIG ENDIAN 16BIT 1
ESC EEPROM EMULATION 1
ESC CONFIG DATA 080F05DD6400 *
Synchronization
ECAT TIMER INT 1
Application
TEST APPLICATION 1
EL9800 APPLICATION 0
Process Data
MAX PD WRITE ADDRESS 0x110
MIN PD READ ADDRESS 0x1200
MAX PD READ ADDRESS 0x1300
MAX PD INPUT SIZE 0x12
MAX PD OUTPUT SIZE 0x4
Mailbox
AOE SUPPORTED 1
DIAGNOSIS SUPPORTED 1
EOE SUPPORTED 1
FOE SUPPORTED 1
MIN MBX WRITE ADDRESS 0x2000
MAX MBX WRITE ADDRESS 0x2200
MIN MBX READ ADDRESS 0x2300
MAX MBX READ ADDRESS 0x2400

* for details see table 4.4 and figure 4.20

Table 4.3: Modified registers in the ESI comparing to the EL9800 settings

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 70

The slave information section and the application section contain information about
the vendor, the version and the intended use of the device. In the generic section and
the hardware section, the device settings are adapted to the host system: the microcon-
troller flag is set instead of the evaluation board flag (MCI HW and EL9800 HW) and
processor specific flags are adapted. The ESC EEPROM emulation flag is needed to as-
sign control over the state machine to the network master, even if the slave is operated in
a µC environment (compare chapter 2.2.1, EtherCAT state machine). The configuration
data bitfield contains a lot of different settings combined to one value which is generated
using the spreadsheet ‘ET1100 configuration and pinout V4.2.xls’. The detailed settings
for this work can be found in table 4.4. Special EtherCAT features, such as a hardware
timer interrupt and additional protocols, are enabled in the sections synchronization and
mailbox.

The address space range for the process data was reduced to 0x1000 - 0x1300 and the
range of the mailbox to 0x2000 - 0x2400. This was done to keep the address space easy to
manage, because no large amount of data will be transmitted by the prototype. For the
ET1100 ASIC in use, the overall address space for process data could be expanded up to
a range of 0x1000 - 0x2FFF, which covers 8 kB [Bec10].

Function Selection Register Value
PDI selection µC async. 16bit 0x0140 0x08
Device emulation On 0x0140.8 1
Enhanced link detection All ports on 0x0140.9 1
DC units power saving DC latch + sync unit 0x0140[11:10] 11

BUSY output driver/polarity Open drain (active low) 0x0150[1:0] 01
IRQ output driver/polarity Open drain (active low) 0x0150[3:2] 01
BHE polarity Active low 0x0150.4 0
RD polarity Active low 0x0150.7 0
Read BUSY delay Normal delay 0x0152.0 0

Pulse length SyncSignals 100*10 ns 0x982:0x0983 0x0064
SYNC0/LATCH0 SYNC output 0x0151.2 1
Output driver/polarity Open drain (active low) 0x0151[1:0] 01
Map to AL Event Request On 0x0151.3 1
SYNC1/LATCH1 SYNC output 0x0151.6 1
Output driver/polarity Open drain (active low) 0x0151[5:4] 01
Map to AL Event Request On 0x0151.7 1

Station Alias 0 0x0012:0x0013 0x0000

A hexadecimal value is defined by the prefix ‘0x’

A dot (.) defines a single bit at an address: ‘0x0000.0’

A colon (:) defines an address range: ‘0x0000:0x1111’

Squared brackets ([:]) define a bit range at an address: ‘0x0000[2:0]’

Table 4.4: ET1100 ESI EEPROM Configuration

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 71

Figure 4.20: Cumulated ESI EEPROM settings

4.4.2 Configuring the network (TwinCAT)

Preparing the slave device

To configure a new EtherCAT slave, first the corresponding ESI configuration has to be
flashed into the EEPROM memory of the device. This is done via the ‘Write EEPROM’
button in the ‘Advanced EtherCAT Settings’ dialog, section ‘ESC Access – E2PROM –
Smart View’ (see figure A.6 in appendix A.8). In the same dialog, in the section ‘FMMU’,
the physical start address for the reading and the writing area have to be defined, as can
be seen in figure A.8. Exactly these addresses have to be used by the host to access the
shared memory. The length of the memory space is calculated automatically from the
content of the process data object (PDO) list. A PDO can be defined in the ‘Process
Data’ tab of the slave configuration (see figure A.5). Only the name of the variable and
its length have to be given. Note that the index is the same for all variables and size and
offset are computed automatically. Each PDO corresponds to one data channel in the host
system and consists of one or more logical signals.

As a last step, each logical signal has to be linked to an input or output of the EtherCAT
device. Possible targets are internal variables of the master, or outputs of the same or
even another slave. In the latter case, the network master is copying the incoming data
into the next generated frame at the area, which is assigned to the receiving device. So
direct communication between slaves becomes possible. In the sample configuration shown
in figure A.7, the input in1 hor is linked to the variable Hor1 and the output out1 16b;
the second input in2 ver is linked to the variable Ver1 and the output out2 16b. Used
signals and variables are marked in TwinCAT by a small arrow in the bottom-left corner
of the symbol. For the layout of the network, it is important to know that an input
can be mapped onto several outputs or variables, whereas an output can only be written
by one single source. Another important point in the nomenclature: In the TwinCAT
configuration the terms ‘input’ (data to be read) and ‘output’ (data to write) are used
from the point of view of the network master. This must not be confused with the inputs
and outputs of the EtherCAT slave at the host interface: The address where the host
reads from is the one the master is writing to, and vice versa.

Setting up the bus

The general proceeding for setting up an EtherCAT bus is described in detail in the
TwinCAT documentation which is part of the installation or can be downloaded from the
homepage of Beckhoff (http://www.beckhoff.de).

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 72

After connecting and flashing the slave devices, it is recommended to run an additional
device scan to check whether the connected components are detected correctly and to
perform a reload in case of differences. The assigned FMMU addresses should be checked,
as well, to avoid concurring or overlapping data ranges of different slave devices.

After defining an I/O task, the task time has to be set: The intended cycle time is set
as an integer multiple of the base time. For more flexibility when modifying the network
timing, this base time should be set much lower than the smallest cycle time. In this work
the network base time was set to 125 µs. The minimum base time is limited by TwinCAT
to 50 µs. The free run cycle time should be set same as the real-time setting. Usually the
first slave on the line is selected as reference clock. Its synchronization signal (SYNC0) has
to be enabled and set relative to the task time. A multiplication factor of ‘1x’ means that
the frequency of the rectangular SYNC0 signal matches the task time. If the data signals
should be oversampled, a factor less than 1 is used. Applying a factor greater than 1 to
the SYNC0 signal is not recommended because data loss is very likely. If for any reason,
a time shift or delay of the synchronization signal is needed, this can also be set in this
dialog (see figure A.9 in appendix A.8). Similar, but limited settings can be applied to
the second synchronization signal (SYNC1) if its use is requested by the host application.
Finally all other network devices have to be set to ‘DC synchronous’ mode, as well. This
setting can be found in the ‘DC’ tab of the EtherCAT slave configuration.

4.5 Testing environments

4.5.1 Single-loop interface test

To check the correct behavior of one component, an implementation was used which con-
sists of only one while loop which holds all three subsystems (control logic, SPI interface,
and µC interface). A test environment is provided in form of a virtual instrument (VI)
in LabView, which is running on the PC. The structure of the VI can be seen in figure
4.21 whereas in figure 4.25 the user interface is shown. Before starting the while loop, an
instance of the FPGA target is called and reset. The same is closed on the right most
edge, after the loop is stopped. In the loop, in each iteration, I/O interaction with the
target is done via PFPC. The DMA channel FIFO 1 is not used in that test because all
time-critical data processing is done on the FPGA.

The input data consists of a simple counter which is increased by one for every tick
of the SYNC signal. In that way, a ramp signal with constant step width is generated.
The signal is sent over the EtherCAT network and received at the next time step where
it is compared to the last received sample. The expected result is a constant difference
of +1 between adjacent samples. The data format of the counter matches the width of
the interface, i.e. unsigned integer of 16 bit. A second, inverted data signal is generated
and transmitted in parallel, producing a descending ramp from the maximum value of
the data type to zero. So the full range of the data type (0 to 65535) is covered in this
test case; the usage of larger values would make no sense, because the interface is defined
and implemented for this data type and all necessary adjustment has to be done outside
of the interface by the host device. To measure the occurrence of transmission failures,
two counters are implemented, one for each signal, which gather the total number of time
steps where the difference between outgoing and incoming value is greater than one.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 73

Figure 4.21: The structure of the test environment for the single-loop test

In the host VI, the gathered information is displayed: The signals are shown as value
and in a graph, the total number of transmission failures is given, and the failure rate in
relation to the number of samples, as well. To configure the interface device, the cycle
rate of the while loop, the read and write address and the maximum number of samples
to be transmitted can be set.

In TwinCAT, the EtherCAT slave is configured for a process data content of two 16-
bit values. The input for each signal is statically linked to the corresponding output as
described in section 4.4.2. It is expected that no transmission failure occurs. The only
exception is granted at the start of a test run, when the EtherCAT frame might hold a
value from the previous run.

4.5.2 Performance test

This test is designed to check the correctness of the implementation and measure the
timing and performance behavior of one component. The host interface is implemented
and flashed to the sbRio as described in section 4.3. As base test environment (i.e. VI
and EtherCAT settings) the setup from the single-loop test is used. To perform enhanced
measurement, additional timing information is gathered on the target system (FPGA) and
displayed in the user interface:

• the access time for a read operation on the µC interface

• the access time for a write operation on the µC interface

• the processing time of the SPI interface for one 16 bit word

• the overall execution time for one transmission cycle

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 74

All times are given in CPU task cycles of the sbRio and for each the mean value over a
test run is calculated. For the overall execution time, the maximum value is computed, as
well. As the implementation of the interface consists now of three while loops, the device
configuration is extended, to set the cycle time for each loop separately. To improve the
accuracy of the data signals read, a dedicated DMA channel is used in stead of the PFPC.
The signals are shown in a graph. Additionally, a toggling Boolean signal, labeled CLK,
was added to the implementation of the µC interface, which changes its state at every
iteration of the loop. For checking the accuracy of the sampling of the synchronization
signal SYNC0 and the stability of the FPGA’s internal loop execution, two additional pins
are provided at one of the adapter boards (see figure 4.22), where one of the two internal
signals can be applied to. The selection is done by a switch in the host VI (CLK/SYNC).
The device configuration for the EtherCAT network is the same as for the single-loop test.

Figure 4.22: Additional pins for timing measurements (black : signal; green: GND)

4.5.3 Two-way data transfer

To demonstrate the operational concept of data exchange between the slave devices of
an EtherCAT network, as described in chapter 3.2, two EtherCAT slaves are connected
to the sbRio. To communicate separately with the devices, two instances of the host
interface are flashed into the FPGA’s memory, whereas the configuration of the pin bars
has to be adapted according to the HW layout (see appendix A.6). The data exchange is
established by statically crossing the input and output lines of the two devices in TwinCAT.
This means, that the network master is copying the content of each device’s write section
into the read section of the other device when sending the next frame. Thus, device A is
receiving values from device B and vice versa (see figure 4.23). Now that two interfaces
are operated on the FPGA, each set of configuration parameters has to be provided twice
in the host VI (see figure 4.32). The signals read are displayed in signal diagrams.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 75

Figure 4.23: Data transfer in the sample network

To generate suitable input data, two signal generators are used, which each produce a
sinus wave of modifiable frequency, offset and amplitude. The data received by the slave
is sent to the host VI by a DMA channel. As the number of available DMA channels for
the FPGA target is limited to three, the data to be sent has to be transmitted via the
PFPC. Although the overall execution time is measured, the purpose of this test is not
the evaluation of any timing behavior, but to prove the communication concept developed
in this work. However, care has to be taken, when setting the task time of the network: a
task time which is close to or even smaller than the maximum execution time will result in
unpredictable behavior of the components and in communication errors. The same might
also happen for inappropriate settings of the loop cycle times.

4.6 Experimental results

The test setup consisted on the hardware side of two EtherCAT slave devices FB1111142
and one sbRio FPGA board as shown in figure 4.24. For the functional tests only one
component was used, whereas for the two-way data transfer test, both components were
connected to the network. For the first test, as described in section 4.5.1, the following
configuration – detailed timing and EtherCAT settings can be found in table 4.5 – was
applied in the user interface VI (shown in figure 4.25). As described in section 4.5.2, the
setup was then extended for testing of the final implementation of the interface. The
EtherCAT parameters were set to the same values for this test, as well; additional cycle
time settings are given in the lower half of table 4.5.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 76

Figure 4.24: The two EtherCAT devices and the sbRio FPGA board

EtherCAT settings
write address 0x1C00
read address 0x1800
cycle time of the EtherCAT network 10 ms

single-loop implementation
cycle time of the VI 3 ms
cycle time of the control loop 24 µs

final implementation
cycle time of the VI 5 ms
cycle time of the control loop 12 µs
cycle time of the SPI interface 24 µs
cycle time of the µC interface 18 µs

Table 4.5: Device settings for testing

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 77

Figure 4.25: The user interface for the single-loop test

4.6.1 Timing behavior

First, the timing accuracy of the synchronization signal and the execution time cycle of
the FPGA was checked using an oscilloscope. The SYNC0 signal was measured directly
at the output pin of the FB1111 piggy board controller. Figure 4.26 shows the signal at
a resolution of 2 ms/s and 5 V/div. The accuracy of the signal is shown in figure 4.27
(20 µs/s; 5 V/div) in accumulation mode. The cursor delimits the jitter of 12 µs which
is much smaller than the requested value of 50 µs as defined in chapter 3.1, point 3. The
sampling of the SYNC0 signal by the control loop running on the FPGA was also checked.
In figure 4.28 (resolution: 20 µs/s; 5 V/div) one can see clearly that the synchronization
signal is sampled at two different times. This is due to the fact that the software loop
and the EtherCAT slave device are not synchronized; the SYNC0 is only triggering the
control loop to start the memory access procedure. The deviation in the sampling of the
synchronization signal is not critical as long as it doesn’t exceed one FPGA task cycle
(18 µs in this example), which never happened. The accuracy of this task cycle could
be measured on the same output pins (see section 4.5.2). The signal in figure 4.29 was
measured at a resolution of 5 µs/s and 10 V/div. As the signal is not implemented as clock
signal but toggling for each loop iteration, the cursors indicate one task cycle of exactly
18 µs.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 78

In these timing tests, both the EtherCAT hardware and the sbRio showed very ac-
curate timing behavior. This result was expected, because all hardware devices used are
deterministic per definition.

Figure 4.26: The SYNC0 signal Figure 4.27: Jitter of the SYNC0 signal

Figure 4.28: Sampling of SYNC0 Figure 4.29: Software loop timing

When using different stages of the implementation with a different levels of complexity
– from one single-loop, over separated interface loops, to two communication devices im-
plemented in six software loops – the cycle timing of the loop(s) on the FPGA had to be
adapted for each increase in complexity. The actual minimum value for the control loop,
where correct behavior was still possible, depending on the implementation, covered an
approximate range of

• 1 µs for single submodules of the software

• 10 µs or more for the single-loop version

• 10 to 30 µs for the separate modules in the final version on one device

• 30 to 40 µs for the separate modules in the final version on two devices

A loop time of 5 ms proved to be stable for all the VIs running under LabView on
the PC, although values between 1 ms and the EtherCAT task time of 10 ms would be
possible in principle, as well. For the timing of the separate software loops of one device’s
interface, a relationship of ‘2 : 4 : 3’ for ‘control loop : SPI : µC’ proved to be suited
best. For higher cycle times, as used in the final test, all cycles times for one device were

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 79

set to the same value, whereas a small difference between the two devices lead to a better
overall behavior. Cycle time values below the ones mentioned above lead to misbehavior,
transmission errors or even complete failure of the host interface.

Another important part of the test runs was the measurement of the execution time of
the interface implemented on the FPGA. For this purpose four time values were examined:

• the execution time of the SPI interface for one 16 bit shift

• the execution time of the µC interface for read access for one data word (16 bit)

• the execution time of the µC interface for write access for one data word (16 bit)

• the overall execution time of one transmission cycle

The values of a sample measurement are given in table 4.6. The actual measurement
data is indicated by bold lettering. The execution time was measured in CPU task cycles
of the FPGA for a main clock of 80 MHz and loop cycle time settings as defined in table
4.5. The values were taken at a test run of 65535 samples on two 16-bit signals and are
mean values, rounded to the nearest ten. The difference between the theoretical sum and
the overall execution time is approx. 23%. A similar relation could be detected for various
cycle time settings.

Interface CPU cycles Number of accesses Total cycles
SPI 30720 7 215040

µC - Read 21600 2 43200
µC - Write 7480 2 14960

Theoretical sum 273200

Overall execution 336000
- 273200
= 62800 control overhead

Table 4.6: Execution time measurement

This measurement, and a simple performance analysis in appendix A.7, showed that
the present implementation is not able to provide the data throughput requested in chapter
3.1, point 1, for an EtherCAT network task cycle of 1 ms. Even using a higher FPGA
clock would only succeed if the implementation in SW is optimized to a degree, where it
is possible to run all three loops at a cycle time of 1 µs or less.

4.6.2 Functionality of the host interface

The correct functionality of the host interface of the communication component (i.e. read-
ing from and writing to the shared memory of the ASIC) was checked in two ways:

First, the test setup was chosen in a way to easily detect failures on the user interface.
This was achieved by configuring the network master to send back the received data
to the slave. Therefore, each read value had to match the value sent in the previous
transmission cycle. This evaluation was performed on the FPGA to avoid spurious

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 80

failures caused by the connection between the sbRio and the host application Lab-
View which could provide only quality of ‘best effort’. The data was displayed and
plotted in the VI, as can be seen in figure 4.25. Looking closely at the signal graph,
one can see that not all data was correctly transmitted from the FPGA to the PC.

Second, the network traffic was recorded using Wireshark and checked in detail for possi-
ble transmission failures. This was done by filtering and analyzing the network trace
and inspecting in detail the data section of the suspicious packets. As an example,
in figure 4.30 the data section for the LRW command of an EtherCAT frame, sent
from the slave device to the master, is highlighted. To allow Wireshark the recording
of the network traffic, the EtherCAT master had to be set to promiscuous mode.

Figure 4.30: Analysis of the network traffic in Wireshark

As explained before in section 4.5.1, for the performance tests, two ramp signals were
sent over the network. For the single-loop implementation, only one deviation could
be measured. This deviation is due to the random content of the ASIC’s memory at
the start of the test run and therefore not avoidable. But tests with the final solution
showed an error rate of approx. 1.4e-3 to 1.7e-3. The occurrence of the errors was highly
periodical but not related to the peaks in the data traffic observed in the EtherCAT tests
(compare figure 4.31 to figure 2.11 in chapter 2.2.4, point 5). Setting higher values for the
transmission cycle time did not affect the misbehavior in any way, whereas reducing the
transmission cycle time of the network below the maximum loop execution time of the
host interface, simulated on the FPGA, lead to a high transmission error rate, as expected.
The deviation of the difference between the value of the current sample and the expected

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 81

value was never greater than one. The analysis of the network traffic showed that in case
of an error, exactly one sample was missed (e.g. . . . - 94 - 95 - 97 - 98 - . . .). Looking
closely at the content of the EtherCAT frames of one transmission cycle, which all have
the same frame index, proved that the failure was not to be found in in the EtherCAT
network: The data was already wrong in the frames which were sent to the master, whereas
the content of all frames transmitted from the master to the slave was correct, meaning
that they contained the same data as the corresponding incoming frames. The fact that
omitted values only occurred in the final version of the software implementation, and not
when the single-loop variant was used, leads to the conclusion that the asynchronicity,
inflicted by the three independent software loops – remember, that each is running with
a different cycle time – is causing the overall system to drift in its timing behavior. This
drift leads sometimes to a delay during memory access, so that the new value cannot be
written in time to the dual-port RAM to be sent in the current transmission cycle. So in
the next cycle, the unchanged value is returned to the slave device, leading to a difference
of zero for this sample. But the internal counter has already advanced by one; so in the
following cycle, a temporary difference of +2 is observed. The deviation is compensated
now, and sent signal and received signal are in tune, again. The high accuracy of the
synchronization signal, and the fact that each memory access procedure is triggered anew
by this signal, is expected to prevent a stronger drift and more transmission errors.

Figure 4.31: Difference between the values of the current and the preceding frame

4.6.3 Two-way data transfer

The communication between two EtherCAT slaves was tested by sending two sinus wave
signals over the network. For each slave one signal was generated, sent by the commu-
nication device and received by the other bus participant, as described in section 4.5.3.
Then the signals were plotted in the user interface, which is shown in figure 4.32. As the
focus of this test lay on the communication between the two network components, a fixed
cycle rate for all software loops was used. The best results could be achieved if the cycle
rates of the two devices were set with a small difference. The presentation of the signals in
LabView was again imperfect, but this had no influence on the functionality of the overall
system. Transmission errors were not checked in this test.

The generation of each sinus wave was tunable by offset, amplitude and frequency.
The actual values were chosen in a way to achieve a good visual representation. As the
task time of the EtherCAT network was set to a rather high value of 10 ms, a relative
small frequency of the sinus waves and an amplitude of ten to twenty steps showed the
best results.

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 82

Figure 4.32: User interface for the data exchange test

The functional concept of the communication system could be fully approved by this
test. The communication between the two network components worked without any fail-
ures, even the temporary removal of one component was handled correctly by EtherCAT.
After reconnection, the device was reintegrated and operated normally. The operation of
the microcontroller host interface was not aborted or influenced in any other way by the
disconnection; the data exchange on the host interface was ongoing. Figure 4.33 shows
the signal history for this ‘cut test’. The signal break downs in the graph are rendering
failures on the host system. This occurred because the communication channel between
the FPGA and the host application, running on the PC, was not fully real-time capable.

Figure 4.33: Disconnection and reconnection of one device

CHAPTER 4. IMPLEMENTATION OF COMPONENTS AND SYSTEM 83

4.7 Outlook and future work

The considerations regarding data throughput and occasional communication errors, as
mentioned in the previous sections 4.6.1 and 4.6.2, suggest that an implementation of the
host interface in software is not fully suitable for the given task. So the logical next step
would be, to implement the two interfaces needed for the communication with the host
device – SPI and µC interface – completely in hardware. A possible solution, using 8-bit
shift registers with integrated sample/hold functionality for serial/parallel conversion, is
shown as schematic in figure 4.34.

Furthermore, to achieve a really flexible communication system, some additional func-
tionality for the individual parts of the network might be necessary:

• A network master, running on a dedicated deterministic hardware instead of a stan-
dard PC, could improve the overall timing performance of the network [SJK+10].

• The interface between host device and EtherCAT slave should be integrated onto a
single board.

• Additional slave information, such as the vendor ID, elaborate device configuration,
e.a., should be developed to allow the integration of the newly developed component
into any existing EtherCAT network.

• The data structure and exchange format of the host interface should be well defined
and standardized. This would allow to operate the communication device with as
much different host devices and applications as possible.

• A network, consisting of more than two network participants should be installed.

• The concept should be tested in a real world scenario such as an actual test bench
setup.

Figure 4.34: Schematic of a hardware solution

Chapter 5

Summary

The goal of the present work was to develop a concept for a reconfigurable real-time com-
munication system. The presented concept is based on requirements, derived from use
cases in a typical measurement environment. A detailed architecture was developed for
the network and the single communication devices. The results were also presented and
published on the I2MTC 2012 conference [BKT12].

For the implementation of a prototype system, first available hardware solutions were
evaluated and the FB1111 communication device from Beckhoff was selected. To commu-
nicate between the piggy back controller and the connected host device, several interface
concepts were considered and finally, a choice was made to use an asynchronous micro-
controller interface, implemented in software and run on deterministic hardware. The
development environment for the prototype was the LabView Software Development suite
and the sbRio FPGA device from NI.

Concluding tests of the implemented system proved the concept to be suitable for the
given task, but also revealed some restrictions: The EtherCAT network is able to fully
satisfy the defined requirements, but the present implementation of the host interface is
not adequate in all points. Whereas the functionality of the DP-RAM interface could
be reproduced completely and correctly, the timing behavior and data throughput of the
software solution remains some degrees below the requested level.

These restrictions lead to the conclusion, that the requested performance could only
be provided if the whole host interface – including both separate interfaces needed for the
communication between host device and EtherCAT controller (i.e. SPI and µC interface)
– is completely implemented in hardware. Some improvements and additional features will
also be required to take the concept from prototype stage to a fully operational runtime-
reconfigurable real-time communication system.

84

Appendix A

Appendix

A.1 Real-time requirements

A detailed summary of requirements which are obligatory for a highly performant and
flexible real-time system can be found in [PGAB05]:

1. Time-triggered communication with operational flexibility.

2. Support for on-the-fly changes, both on the message set, and the scheduling policy
used.

3. Online admission control and dynamic QoS management.

4. Indication of temporal accuracy of real-time messages.

5. Support of event-triggered and time-triggered traffic.

6. Support of hard, soft, and non real-time traffic.

7. Temporal isolation: the different types of traffic must not disturb each other.

8. Efficient use of network bandwidth.

9. Efficient support of multi-cast messages.

10. Use of Ethernet COTS components.

85

APPENDIX A. APPENDIX 86

A.2 Types of failure

[Sch93] gives three different basic types of failure which can be expected when operating
a communication system:

Bit errors: A transient failure which only affects a few consecutive bits inside a message
(frame).

Failure of transmission segments: A Failure caused by a damaged spot in the trans-
mission line. This damage is typically of physical nature (e.g. cable break).

Failure of station: This is either a breakdown of a bus participant or some malfunction.
The latter includes unintended sending of data (called babbling) which may lead to
congestion on the bus.

A.3 Characteristic values of a communication system

Round Trip Time (RTT)

The RTT is defined as the difference between the time of sending a packet (S) and receiving
it - or its answering packet - back at the transmitter (R):

RTT = R − S [s]

Jitter

The Jitter J of a single packet is calculated from the transmitting time S, the receiving
time R and the jitter of the preceding packet J i−1 [Wir11]:

Ji = Ji−1 +
(|Di−1,i| − Ji−1)

16
[s]

with
Di,j = (Rj −Ri) − (Sj − Si) [s]

APPENDIX A. APPENDIX 87

A.4 Legend for HW architecture

The following legend states all symbols used in the HW architecture sketches in chapter
3.2.1 and 3.2.2.

Figure A.1: Symbols used for the HW architecture sketches

A.5 Definitions and abbreviations

A Ampère
b bit
B Byte (1B = 8b, 1kB = 1000B)
Hz Hertz
m meter
pack packet (i.e. Ethernet frame)
s second

Table A.1: Measuring units

APPENDIX A. APPENDIX 88

G giga
k kilo
m milli
µ micro
M mega
n nano

Table A.2: Prefixes

ANSI/TIA/EIA-644 Standard for Low Voltage Differential Signaling
IEC 61158 Digital data communication for measurement and control -

Fieldbus for use in industrial control systems
IEC 61491 Electrical equipment of industrial machines - Serial data link

for real-time communication between controls and drives
IEC 61508 Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems
IEC 61784 Digital data communications for measurement and control -

Profile sets for continuous and discrete manufacturing rela-
tive to fieldbus use in industrial control systems

IEEE 802.3u IEEE standards for local and metropolitan area networks -
Fast Ethernet

Table A.3: International standards

ADU Application Data Unit
AL Application Layer
API Application Programming Interface
ASIC Application Specific Integrated Circuit
BER Bit Error Rate
CA Collision Avoidance
CAN Controller Area Network
CD Collision Detection
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSMA Carrier Sense Multiple Access
DC Distributed Clock
DL Data Link Layer
DMA Direct Memory Access
DP-RAM Dual-Port RAM
GND Ground
ECAT EtherCAT
EEPROM Electrically Erasable Programmable Read-Only Memory
EMC Electromagnetic Compatibility

APPENDIX A. APPENDIX 89

ESC EtherCAT Slave Controller
ESI EtherCAT Slave Information
ESM EtherCAT State Machine
ETG EtherCAT Technology Group
FIFO First In First Out
FMMU Fieldbus Memory Management Unit
FPGA Field Programmable Gate Array
HTTP Hypertext Transfer Protocol
HW Hardware
I/O Input/Output
IP Internet Protocol
MAC Medium Access Control
NDIS Network Driver Interface Specification
NI National Instruments
OS Operating System
OSI Open Systems Interconnection
PCI Peripheral Component Interconnect
PDI Process Data Interface
PDO Process Data Object
PDU Protocol Data Unit
PFPC Programmatic Front Panel Communication
PHY Physical
PLC Programmable Logic Controller
QoS Quality of Service
RAM Random Access Memory
RIO Reconfigurable I/O
RTT Round Trip Time
RTU Remote Terminal Unit
SPI Serial Peripheral Interface
SSC Slave Stack Code
SW Software
TCP Transmission Control Protocol
TDMA Time Division Multiple Access
UDP User Datagram Protocol
UWB Ultra Wide Band
VI Virtual Instrument

Table A.4: Abbreviations

APPENDIX A. APPENDIX 90

A.6 Pin layout for the adapter boards

The pin routing on the hand-made adapter board to connect a FB111-140 piggyback
controller with the adapter board EL9803 to the pin bars of the sbRio.

Figure A.2: Pin mapping FB1111 - sbRio (for connection to the pin bars P3 and P5)

Figure A.3: Pin mapping FB1111 - sbRio (for connection to the pin bars P2 and P4)

APPENDIX A. APPENDIX 91

A.7 Performance analysis of the implemented interface

The following performance analysis is based on test runs with one component and the final
implementation of the host interface. The measured values for the three interfaces and the
overall execution time are taken from table 4.6; all given results are calculated on that basis
and given in microseconds. The highlighted column of 16 data words corresponds to the
requested throughput per slave device as defined in chapter 3.1, point 1: 4 channels with 2
words of 32 bit = 16 words of 16 bit. The maximum value of 320 data words corresponds
to the throughput on the interface of a master device in the intended EtherCAT network.
In table A.5 the CPU frequency is fixed to 80 MHz and the cycle time is altered. The
requested throughput can not be reached; only the transmission of 8 data words is possible
for a network task time of 1 ms. The relation between transmitted data and execution
time is shown in figure A.4.

Cycles Words
CPU SPI µC Ctrl 8 16 24 32 320

1.25e-08 24 18 12 13293 25417 37541 49665 486129
1.25e-08 12 9 6 6646.5 12708.5 18770.5 24832.5 243064.5
1.25e-08 6 4.5 3 3323.25 6354.25 9385.25 12416.25 121532.25
1.25e-08 1 1 1 626.97 1172.53 1718.08 2263.64 21903.64

Table A.5: Performance analysis: Task cycle modification

Figure A.4: Transmitted data versus execution time

Performing similar calculations for fixed task cycle times lead to the required CPU
frequency of the FPGA to meet the timing requirements. The top half of table A.6 gives
the estimated increase factor for a fixed loop iteration duration of 80 CPU cycles for
all three software loops – which corresponds to a loop cycle time of 1 µs for the base
configuration. The bottom half shows the same calculations for the ratio between loop
cycles and CPU cycle as used in the present implementation:

SPI : µC: Ctrl : CPU = 24 : 18 : 12 : 1/80

APPENDIX A. APPENDIX 92

Words
Factor MHz CPU cycles 8 16 24 32 320

1 80 1.25e-08 626.97 1172.53 1718.08 2263.64 21903.64
1.2 96 1.04167e-08 522.48 977.11 1431.74 1886.37 18253.03
2 160 6.25e-09 313.49 586.26 859.04 1131.82 10951.82
3 240 4.16667e-09 208.99 390.84 572.69 754.55 7301.21
22 1,760 5.68182e-10 28.499 53.3 78.09 102.89 995.62

1 80 1.25e-08 13293 25417 37541 49665 486129
2.5 200 0.5e-09 5317.2 10166.8 15016.4 19866 194451.6
6.25 500 0.2e-09 2126.88 4066.72 6006.56 7946.4 77780.64

15.625 1,250 8e-10 850.75 1626.69 2402.62 3178.56 31112.26
39.0625 3,125 3.2e-10 340.3 650.68 961.05 1271.42 12444.9

488 39,040 2.56e-11 27.24 52.08 76.93 101.77 996.17

Table A.6: Performance analysis: CPU cycle modification

One can clearly see that using a faster FPGA would help for an ordinary slave device;
but when a main frame computer should be connected to the network to gather all mea-
surement data, even state-of-the-art hardware, running at a CPU frequency of approx.
3.1 GHz would only be capable of transferring 24 data words in each transmission cycle.

A.8 Configuring TwinCAT (Screenshots)

Figure A.5: Configuring a process data object

APPENDIX A. APPENDIX 93

Figure A.6: Write ESI to EEPROM

Figure A.7: Configuring inputs and outputs

APPENDIX A. APPENDIX 94

Figure A.8: Configuring the FMMUs

Figure A.9: Setting up the reference clock

APPENDIX A. APPENDIX 95

A.9 Hierarchy and file list of the implementation

Table A.7 gives a detailed overview of the submodules used for the implementation of
the host interface. Except for the main VI AccessData and the SPI interface, which is
reused code, each submodule was implemented using an individual instance per device,
to guarantee a maximum of independency between the interfaces. Figure A.10 shows the
hierarchy between them for one EtherCAT slave device.

Main functions on the FPGA target
AccessData main model, containing all loops
Ctrl Loop control logic loop
SPI Loop loop for the SPI interface
aS Loop loop for the µC interface
SPI implementation of the SPI interface
aSDPRM implementation of the asynchronous DP-RAM interface
DataWrite state machine for write access
DataRead state machine for read access
AddressHandling control logic for address handling
Helper functions
Loop timing for setting the cycle time of each loop
SigOut implementation of the signal generation

and evaluation for the performance tests
Timer value execution time measurement

Table A.7: Submodules used in the implementation of the µC interface

Figure A.10: Hierarchy of the submodules for one component

Bibliography

[Bec07] Beckhoff. Hardware Data Sheet, FB1111 Piggyback Controller Boards. Beck-
hoff, 2.0 edition, January 2007.

[Bec10] Beckhoff. Hardware Data Sheet, ET1100 Slave Controller. Beckhoff Automa-
tion GmbH., 1.8 edition, May 2010.

[BKT12] Florian Brugger, Christian Kreiner, and Thomas Thurner. Runtime-re-
configurable communication concept for real-time measurement and control.
IEEE International Instrumentation and Measurement Technology Conference
(I2MTC), May 2012.

[Bru11] Florian Brugger. Echtzeit-Bussystem für Smart-Sensor und Smart-Aktuator
Kommunikation. Technical report, Institute for Technical Informatics, Graz
University of Technology, 2011.

[CGP11] F.J.P. Castelo, R.F. Garcia, and A.J.P. Pazos. Virtual Intelligent Sensors for
Distributed Environments Based on Industrial Ethernet: An Approach. 53th
International Symposium ELMAR, Zadar, Croatia, September 2011.

[EPSG08] EPSG Ethernet POWERLINK Standardization Group. Ethernet POWER-
LINK - Communication Profile Specification. Modbus-IDA.ORG, V1.1.0 edi-
tion, October 2008.

[ETG09] ETG EtherCAT Technology Group. EtherCAT Slave Implementation. Ether-
CAT Technology Group, ETG. 2200 G (R) V1.1.6 edition, May 2009.

[ETG10] ETG EtherCAT Technology Group. EtherCAT Specification. EtherCAT Tech-
nology Group, ETG.1000.x S (R) V1.0.2 edition, January 2010.

[ETG12] ETG EtherCAT Technology Group. EtherCAT - the Ethernet Fieldbus. online
resource accessed May 11th, 2012. http://ethercat.org/en/technology.html.

[Fel04] Joachim Feld. PROFINET - Scalable Factory Communication for all Appli-
cations. IEEE International Workshop on Factory Communication Systems,
2004.

[Fre03] Freescale Semiconductors, Inc. SPI Block Guide. Motorola Inc., V03.06 edi-
tion, February 2003.

[Häf08] Florian Häfele. Topologievarianten von EtherCAT und deren Einfluss auf die
Systemeigenschaften. atp, December 2008.

96

BIBLIOGRAPHY 97

[ISO94] ISO/IEC. Information technology - Open Systems Interconnection - Basic
Reference Model: The Basic Model, 1994.

[JB04] Dirk Jansen and Holger Büttner. Real-Time Ethernet the EtherCAT Solution
. Computing & Control Engineering Journal, 15(1), August 2004.

[KDI10] Mladen Knezic, Branko Dokic, and Zeljko Ivanovic. Topology Aspects in
EtherCAT Networks. 14th International Power Electronics and Motion Con-
trol Conference (EPE/PEMC), October 2010.

[Kra08] Jens Onno Krah. Motion Control mit FPGA und Echtzeit-Ethernet. drives &
motion special: Ethernet für Motion Control, April 2008.

[Kru95] Philippe Kruchten. Architectural Blueprints - The ‘4+1’ View Model of Soft-
ware Architecture. IEEE Software, 12(6), November 1995.

[Lap04] Phillip A. Laplante. Real-Time Systems Design and Analysis. John Wiley &
Sons, 3th edition, 2004.

[Mod06] Modbus.org. Modbus Application Protocol Specification. Modbus-IDA.ORG,
V1.1b edition, December 2006.

[NI09] NI National Instruments. NI cRIO-9951, CompactRIO Module Development
Kit User Manual. National Instruments Corporation, Austin, Texas, April
2009.

[NI10] NI National Instruments. NI sbRIO-961x/963x/964x and NI sbRIO-9612XT/-
9632XT/9642XT, Single-Board RIO OEM Devices User Guide. National In-
struments Corporation, Austin, Texas, June 2010.

[NXP07] NXP. UM10204 - I2C-bus specification and user manual. NXP Semiconduc-
tors, Rev.03 edition, June 2007.

[ODV01] ODVA. EtherNet/IP - Developer Recommendations - White Paper. Open
DeviceNet Vendor Association, May 2001.

[OY08] Bart Orriens and Jian Yang. On The Specification and Negotiation Of Quality
Of Service For Collaborative Services. 12th International IEEE Enterprise
Distributed Object Computing Conference, 2008.

[PGAB05] Paulo Pedreiras, Paolo Gai, Luis Almeida, and Giorgio C. Buttazzo. FTT-
Ethernet: A Flexible Real-Time Communication Protocol That Supports Dy-
namic QoS Management on Ethernet-Based Systems. IEEE Transactions on
Industrial Informatics, 1(3), August 2005.

[Pry08] Gunnar Prytz. A performance analysis of EtherCAT and PROFINET IRT.
13th IEEE International Conference on Emerging Technologies and Factory
Automation, 2008.

BIBLIOGRAPHY 98

[QWJY10] Junyan Qi, Lei Wang, Huijuan Jia, and Bo Yang. Design and Performance
evaluation of networked data acquisition systems based on EtherCAT. The 2nd
IEEE International Conference on Information Management and Engineering
(ICIME), 2010.

[RM10] Carlos Rojas and Peter Morell. Guidelines for Industrial Ethernet Infras-
tructure Implementation: A Control Engineer’s Guide. IEEE-IAS/PCA 52nd
Cement Industry Technical Conference, March 2010.

[RSD10] Martin Rostan, Joseph E. Stubbs, and Dmitry Dzilno. EtherCAT enabled
advanced control architecture . IEEE/SEMI Advanced Semiconductor Manu-
facturing Conference (ASMC), July 2010.

[Sau10] Thilo Sauter. The Three Generations of Field-Level NetworksEvolution and
Compatibility Issues. IEEE Transactions on Industrial Electronics, 57(11),
November 2010.

[Sch93] Stephan Schultze. Fault-Tolerance in Real-Time Communication. IEEE In-
ternational Symposium on Industrial Electronics, Budapest 1993.

[Sch04] Eberhard Schemm. SERCOS to link with Ethernet for its third generation.
Computing & Control Engineering Journal, 15(2), September 2004.

[SJ11] Ralf Sohr and Michael Jost. Hydraulic Production Press. slide presentation,
referenced version: August 16th, 2011.

[SJK+10] Il-Seuk Song, Yong-Han Jeon, Jin-Ho Kim, Suk-Hyun Seo, Key-Ho Kwon,
Jung-Hoon Chun, and Jae-Wook Jeon. Implementation and Analysis of the
Embedded master for EtherCAT. International Conference on Control Au-
tomation and Systems (ICCAS), October 2010.

[SMS+11] Christian Schlegel, Anton Meindl, Stefan Schönegger, Bhagath Karunakaran,
Huazhen Song, and Stéphane Potier. Der Vergleich – Die fünf wesentlichen
Systeme. Industrial Ethernet Facts, 1, November 2011.

[Spo10] Harald Sporer. Echtzeitkommunikation im Bereich virtueller Motorenprüf-
stände. Master’s thesis, Institute for Technical Informatics, Graz University
of Technology, May 2010.

[Tan03] Andrew S. Tanenbaum. Computer Networks. Pearson Education, 4th edition,
2003.

[Wir11] Wireshark.org. RTP statistics. online resource accessed March 14th, 2011.
http://wiki.wireshark.org/RTP statistics.

[WJQF10] Lei Wang, Huijuan Jia, Junyan Qi, and Bin Fang. The construction of soft
servo networked motion control system based on EtherCAT. 2nd International
Conference on Environmental Science and Information Application Technology
(ESIAT), 2010.

	Introduction
	Motivation
	Goal
	Outline

	Related work, technologies, and system characteristics
	Test bench and automation system characteristics
	Use cases
	System requirements
	Quality of service

	Ethernet-based fieldbus technologies
	EtherCAT
	Competitive technologies
	Industrial solutions
	Functional and performance testing of EtherCAT

	Design of a runtime-reconfigurable real-time communication system
	Additional requirements for the target environment
	System component architecture
	Slave device
	Master device

	Topology of the network
	Comparison of host interfaces, description of layers and data model
	Host interface
	Layers model
	Data flow

	Implementation of the real-time communication system and its separate components
	Preliminary remarks
	Development process
	Choice of hardware components
	Development environment
	Pin layout

	Detailed component architecture
	Asynchronous 16-bit microcontroller interface
	SPI

	Implementation of the host interface
	Architectural overview
	Control logic
	SPI interface
	Microcontroller interface

	Device and network configuration
	Configuring a slave device (SSC Tool)
	Configuring the network (TwinCAT)

	Testing environments
	Single-loop interface test
	Performance test
	Two-way data transfer

	Experimental results
	Timing behavior
	Functionality of the host interface
	Two-way data transfer

	Outlook and future work

	Summary
	Appendix
	Real-time requirements
	Types of failure
	Characteristic values of a communication system
	Legend for HW architecture
	Definitions and abbreviations
	Pin layout for the adapter boards
	Performance analysis of the implemented interface
	Configuring TwinCAT (Screenshots)
	Hierarchy and file list of the implementation

	Bibliography

