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ABSTRACT

In financial theory market liquidity refers to how easy it is to buy or sell an asset within
little time and without losing money due to price impacts. In contrast to classical
arbitrage theory, which assumes that the market is perfectly liquid, this model deals with
the risk coming from the illiquidity of an asset in terms of the following aspects: The
price per share of an asset depends on the order size and every trade has a lasting impact
on the price process. The price impact and the resulting supply curve are correlated to
the level of liquidity of the asset. As a consequence the value of a trading strategy
differs from the value in classical theory. We start by determining the additional costs of
a trading strategy which are due to the illiquidity of the asset. We show that the model
is free of arbitrage and that the market is appoximately complete. We then investigate
the impact of the illiquidity on the replication value of contingent claims. To obtain the
minimal replication strategy one has to solve a backward stochastic differential equation.
Only if the process which describes the liquidity of the stock is a martingale, the minimal
replication value is equal to the classical fair price. In general the minimal replication
value is a non linear functional of the contingent claim, e.g. it depends in a non linear
way on the order volume of the contingent claim. We compute this minimal replication
value in simple models and compare the replication values of european options to their
prices in classical theory.
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1. Introduction

In classical arbitrage pricing theory it is assumed that the market is infinitely liquid. In
that case the price of an asset is independent of the number of shares that are purchased.
Furthermore, market participants act like price takers which means that their trades
do not have an impact on the price of the asset. While famous models created by
Black-Scholes or Merton deal with market and credit risk, they neglect the risk coming
from the illiquidity of an asset.

In financial theory market liquidity refers to how easy it is to buy or sell stocks
within little time and without losing money due to price impacts. If a number of stock
shares is bought and can immediately be sold at the same price, the stock is called
perfectly liquid. Whereas, if the shares can not be sold at all for any price the stock is
illiquid. In reality the liquidity of an asset can be found somewhere in between these
extremes. Liquidity becomes a risk factor if its impact on the price of an asset changes
randomly over time. We think of liquidity risk as additional risk due to the timing and
size of a trade. As a consequence of liquidity risk, the value of a trading strategy differs
from the value in classical theory. We refer to this difference as liquidity costs. The
additional costs can be substantially higher if large quantities are traded. Consequently
this issue is of special interest for moderate and large traders. In this thesis we are
interested in the liquidity costs of a trading strategy and the impact of illiquidity on the
replication costs of financial derivatives.

The literature on liquidity risk can be divided into two categories. In the first cat-
egory of models the price of an asset depends on the quoted price and the size of the
transaction. In that case, there is no long term influence of a trade on the quoted price
process. Examples of these models are Cetin and Rogers [21] and Rogers and Singh
[9]. In the second category of liquidity risk models, trades have a lasting impact on
the quoted price of an asset. The impact of these trades depends on the number of
purchased shares. If this impact is more than linear in the number of shares, large trades
have a proportional stronger influence on the price. These models are therefore known
as larger trader models. Examples are Bank and Baum [12] , Frey [18] and Jarrow [19].
In this thesis we use a model which combines both of these approaches. The price of an
asset depends on the transaction size and each trade triggers a price impact.

Cetin, Jarrow and Protter [22] created a time continuous model, where the price
of an asset is determined by the quoted price and an increasing supply curve. They
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assume that trades do not cause any fluctuations of the quoted price. The liquidity
costs in this model is determined by the quadratic variation of the trading strategy.
The costs can be completely avoided if the strategy is continuous and of finite variation
and the price of a financial derivative is therefore equal to the price in classical theory.
Different studies done by Weber and Rosenow [17] and Farmer, Gillemot, Lillo [5] have
shown that there is a correlation between price fluctuations and the level of liquidity
of a stock. Blais and Protter [I0] could show that for highly liquid stocks the supply
curve is approximately linear with a randomly changing slope. This slope depends on
the level of liquidity and it can therefore be used to model liquidity. This observation is
used in Roch [3]. In his model the price of a stock is given by a linear supply curve and
therefore depends on the size of the transaction. In addition each trade has an impact,
which is directly related to the amount of liquidity of the asset, measured by the slope
of the supply curve. The exact mechanism of the price impact of a trade is motivated
by an investigation of the limit order book of a stock. This way A. Roch combines both
notions of liquidity risk in one model.

This thesis is based on the work of A. Roch [3]. Similar to his paper we are inter-
ested in the impact of liquidity on the replication costs of a contingent claim. Roch
uses a specific stochastic volatility model for the stock price. We derive the theoretical
results in a more general setting. The minimal replication costs of a contingent claim
can be obtained by solving a backward stochastic differential equation. Using simple
models we are able to calculate these costs explicitly and compare the values with prices
in classical theory. In the original model of A. Roch explicit solutions are not available.
Moreover, even numerical solutions seem to be very hard to obtain in the full model.

This thesis is organized as follows. In Chapter |2l we describe the limit order book
of a stock and investigate the impact of liquidity on the stock price. We show that
market orders trigger price impacts which depend on the size of the transaction and the
density of unexecuted limit orders. Assuming that the supply curve of a stock is linear,
we derive the density of the order book and determine the impact on the quoted price.
We use these observations in Chapter 3| to calculate the actual observed stock price,
which includes all price impacts and therefore depends on the full history of trades. For
a self financing trading strategy we deduce the liquidity costs. We define admissible
trading strategies and show that by merely trading these strategies we can not generate
arbitrage with vanishing risk. In addition we define the notion approximate replication
and show that the minimal replication value of a claim is equal or bigger to its expected
output.

In Chapter 4 we consider the underlying processes in a general model and investigate
the minimal replication value of a claim. We complete the market by adding sufficiently
many assets (e.g. variance swaps) and prove that every integrable claim can be approx-
imately replicated. The approximate hedges are continuous trading strategies of finite
variation, which converge to the solution of a backward stochastic differential equation.
The minimal replication value is determined by the minimal solution of this equation.
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We show some analytical properties of the solution, including an approximation of the
price of a claim which is linear (in the order size).

In Chapter 5 we consider models where the liquidity process M is a martingale. This
case turns out to be an extension of the classical theory as the price of an asset is given
by its expectation.

In the last Chapter 6 we compute the minimal replication value in simple models.
We derive analytical and numerical solutions of the corresponding backward stochastic
differential equations.



2. Background: The limit order book

To understand the impact of liquidity on the price of an asset, we first explain how assets
are traded on the stock exchange. The standard mechanism for price formation in most
modern financial markets is called double continuous auction. We then consider the
supply curve of a stock. Assuming it has a linear shape we deduce the density of the
limit order book. For further information on the double auction mechanism see Farmer,
Gillemot, Lillo [5].

2.1. Double auction mechanism

In economic theory the price of an asset is determined by its demand and supply. If a
person A wants to sell a stock at a specific price P or higher and a trader B is willing
to buy the stock for the same price P or less, their interests match. Given that nobody
else wants to buy or sell the stock, the trade will be executed at price P. But what
happens if A offers the stock at a price P4 which is higher than the maximum price Pp
the person B is willing to pay. In that case the trader has two possiblities: Either he
waits until B or someone else wants to buy the stock for the price P4 or higher, or A
sells the stock immediately for the lower price Pg. This introduces two different ways
how agents place orders in financial markets.

e Market orders: A market order is a request to buy or sell a given number of shares
immediately at the best available price. (i.e.: A sells the stock at price Pp)

e Limit orders: If the trader is more patient he might submit a limit order (also
called quote), where he waits until someone is willing to buy (resp. sell) a number
of shares for a price equal or higher (resp. lower) to the corresponding limit price.
If the trader wants to sell the stock, the limit order is called ask and if he wants to
buy the stock, it is called bid. (i.e. A places an ask-order if he waits until someone
wants to buy the stock at price P4 or higher.)

Of course not all of the limit orders can be executed immediately, therefore they are
stored in a queue, which we refer to as limit order book. This means the limit order
book contains all unexecuted bid and ask orders. At every time t we define the best ask
with price pa to be the lowest ask order in the limit order book and the best bid order
with price pp as the highest bid order. Of coures the prices satisfy pp < p4, otherwise
they would be executed immediately. This means there is a gap between the highest
bid and the lowest ask price. This gap is called the bid-ask spread Ap = p4 — pp.
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The number of shares of a order is called size or volume of the order. From now on
a negative volume corresponds to a sell order and a positive volume to a buy order.
Therefore, we can identify a order by its type (limit or market order), the price and the
number of shares. In financial markets the prices are not continuous, but rather change
in discrete quanta called ticks. Figure 2.1]illustrates the shape of a order book, the best
prices and the bid-ask spread at time ¢1 : t] < t9 < t3 .

If somebody places a market order of x shares, the limit orders of opposite sign

Volume
N w0
30
p
A .
) Price
o L
-20
-30 -30
\’ -40

Figure 2.1.: The limit or book at time ¢;

—sign(x) will be executed starting with the best price. If there are several limit orders
offered at the same price those with earlier arrival time will be served first. This way
limit orders vanish until a total volume of x is executed. Of course every limit and
market order can have a different volume. Therefore it is not possible to match limit and
market orders one to one. It might happen that only a part of the volume of the limit
order is executed by the first market order. The resulting rest of the volume remains in
the order book and might be used to match the next order. If a market order arrives
with a volume which is bigger than the total number of shares offered at the best price,
all limit orders at that price will be executed in the limit order book. This means the
best price with opposite sign as the market order will be removed. This impact on the
price is called market impact or price impact. Figure 2.2/ shows the limit order book at
time t2 when a sell market order is placed and Figure 2.3| represents the limit order book
after the market order was executed and illustrates how changes in the best prices occur.

It is easy to see that the direction of these impacts remains the same: A buy
market order increases the lowest ask price, while a sell market order decreases the
highest bid. However every price impact makes the bid-ask spread bigger. The spread
keeps growing until new limit orders are placed with prices in between the best ask price
pa and the best bid pp.

The impact of a market order depends on the density of the limit order book p:(z) for
a stock price z. As the tick size is very small (down to 1 cent) we will from now on
assume that prices are continuous, therefore z € R*. If the density per price is high, the
stock is called liquid and a market order will only trigger a small movement. On the
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Figure 2.3.: The limit or book at time ¢3
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other side if the liquidity is low, it has a big impact on the best price.

In this thesis we are interested in the impact of liquidity on the price of financial
derivatives. We consider a trader who wants to hedge a contingent claim. The trader
has to place orders at specific times and is not patient enough to wait until someone
accepts his or her offered price. Hence, the trader will only place market orders to hedge
the contingent claim. It will be shown, that the liquidity of the underlying, which is
given by the density of the order book, has an influence on the price of the claim.

2.2. The supply curve

Let us consider a stock which is actively traded through a limit order book. We take the
point of view from a hedger who observes the order book and makes market orders. As
stated above, the order book stores all unexecuted limit orders and this way determines
the supply of a stock. We have seen that the price of a stock might be influenced by the
size x of an order. A positive order x > 0 represents a buy, a negative order x < 0 a sell
of x shares and x = 0 corresponds to the marginal trade. We are interested in the price
per share for a transaction of a specific size. Let us define

S(t,x,w) for te]0,T],zeR,we

as the average price per share if we buy x shares at time t. Given the stage w in
the probability space 2 and fixing the time t we get a function of the order size
x — S(t,z,w) for z € R. In the following we supress the dependence on w and write
S(t,x) for the random variable w +— S(¢,z,w). We assume that a supply curve S(t, x,w)
satisfies the following conditions.

Definition 2.1. A Supply-Curve is a function S(t,z,w) : [0,T] x R x Q@ — R* which
satisfies

1. S(t,x) is Fy-measurable and non-negative

2. Given stage w and time t the function x — S(t,x,w) is non-decreasing.

3. Given stage w the function (t,x) v S(t,z,w) is in C? in z, % 18 continuous
. 22S(t,xw) - . .
in t and — gz 1S continuous in t.

4. t— S(t,0) is a semimartingale

5. t— S(t,x) has continuous sample paths (including time 0) for all x
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Of course the number of shares of a stock that are offered at time t is limited. Therefore
a buy-order of a stock leads to an decrease in supply, while a sell-order leads to an
increase. From an economic perspective, it is clear that a decrease in supply drives the
price up and an increase in supply decreases the price. Therefore it is reasonable to
assume that the price of x > 1 stocks is higher than x times the price of one. This
is considered in condition 2 of the above definition. As a special case this definition
includes constant supply-curves. In that case the size of an order does not have an
impact on the price. In a liquidity risk model we want the trader’s transactions to have
an affect on the executed price. Therefore a horizontal supply-curve, as in the classical
theory, is not appropriate in our model. So what should the supply curve look like?

When we are purchasing x shares of a stock, the average price per share could be
obtained by observing the limit order book and taking the average price of all executed
limit orders. Unfortunately limit order book data of a stock is not accessible to the
public. Therefore we rely on a study by Blais and Protter [10] from 2010. They analyzed
the supply curve models of liquidity issues in stock and option market trading. They
considered the most liquid stocks on the New York Stock Exchange and could show
that a supply curve really exists and is non trivial (S(t,z) # S(¢,0)). Furthermore,
they determined that supply curves for highly liquid stocks are linear in the number of
shares with a dynamically changing random slope. Figure [2.4] is taken from Blais and
Protter [10]. It shows the price of the British Petroleum (BP) stock on the New York
Stock Exchange depending on the trade size and the corresponding linear regression line.

Note that the average price per share Sy(z) = S(t,x) of x shares of a stock is a

M. Blais & P. Protter

Time 1057043551, Regression line slope = 8.261e-006
T T r T

a2z o a2

420+

Price

8-

416

L L L L L I L L
-6 -4 -2 1] 2 4 6 8 10
Trade Size: Seller-initiated < 0, Buyer-initiated > 0 x10°

Figure 2.4.: Linear supply curve: British Petroleum

stochastic process. From now on we assume that we are dealing with a stock which has
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a linear supply curve S(f,z,w) in the number of shares x. Hence, the average stock
price Si(x) is given by
Se(x) = St + Myx  for x € R, (2.1)

where (S;);>0 and the random slope (M) are continuous and positive processes.
Since x — Si(x) is continuous at z = 0, there is no bid-ask spread in the limit order
book. A stock is considered to be liquid if it can be converted into cash quickly, without
having a big impact on the received price. This will be satisfied if the slope of the
supply curve is small. By requiring that the process (M;);>o takes small values and that
the price for a marginal trade is positive, we also ensure that the price process Si(x) is
positive (at least with high probability). In the next chapter we show that the linear
structure of the supply curve corresponds to a constant density of the limit order book.

We call the linear supply curve (2.1) the unaffected supply curve, since a trade of
x shares, executed at price xS¢(z), does not influence the price of future trades. In the
next chapter we determine the mechanism how the trades of a trader influence future
prices.

2.3. The density of the order book

We deduce the density of the limit order book, which corresponds to the linear structure
of the unaffected supply curve and use it to identify the price impact of a trade.

The limit order book can be defined by its density function p;(z) which denotes
the density of the number of shares that are offered at price z at time t. This means
that the number of total shares offered between the prices z; and 29 (21 < 22) is

J ~ ou()dz.

21

If the trader orders a market order of size x, the order starts at the quoted price S; and
therefore p;(S;)dz shares are obtained at that price. Then the order moves up in the
limit order book until the total amount of purchased shares is x. This means that the
trader pays a price of z, for the last p;(z,)dz shares, where z, solves the equation

JZI pe(2)dz = x. (2.2)
St

This way we obtain the total price for a market order of size x. If the trader wants to
buy x shares, the total amount he has to pay is

J ' zpe(2)dz,

St
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which is equivalent to xS;(z). Because of our assumption on the structure of the supply
curve, we deduce

J | 2pi(2)dz = 2Sy(x) = xSy + 2° M,
St

and therefore p
Zx
zxpt(zz)a =S + 2x M. (2.3)

Because of equation (2.2) we know that pt(zx)% = 1. Then,
Zy = St + 2x My

and %@ = 2M;. Equation (2.3) yields p:(S; +2xM;)2M; = 1 for all x. Hence, the density

p¢ 18 constant
1

= TM'
Since we think of p; as a measure of liquidity, we may also consider M; to be a measure
of illiquidity. In the following chapters we show that the larger M;, the higher is the
liquidity cost compared to the quoted price S;.

pi(2) (2.4)

As mentioned before, whenever a trade occurs in our model, it happens due to a
market order and every market order is executed against the existing limit orders,
decreasing the liquidity and triggering price impacts. If market orders (i.e. buy) are
ordered, then limit orders in the limit order book are executed starting with the cheapest
and then continuing with more expensive limit orders until the required number of shares
is purchased. Because of the density of the order book, this means that after the market
order of size x at time t all limit orders within the price interval G = [S;, S¢ + 2M,x]
are used up. If no additional limit orders were placed, there would be a bid-ask spread
of Ap = 2M;x in the limit order book immediately after the order, such that

0, for z € [Sy, St + 2M,x]
pt+(2) =

pe(2), otherwise.

In that case the lowest ask price would move up to S; +2M;z, while the highest bid price
would remain the same. What happens to this gap after the order is executed? If the
market order is a bid, the number of offered shares is decreasing, whereas the number of
people who are interested in buying the stock remains the same. In that case the demand
per share is increasing and people are willing to pay a higher price than S; for the stock.
Furthermore, as long as there is a gap between the best ask and bid price and as long as
there are no transaction costs, there will be traders who make use of this situation by
placing limit orders in the gap. This way it is reasonable to think that the limit order
book immediately fills up after a trade. But should the gap be filled by bid or ask orders?

If the limit order book was entirely filled up by bid orders after an market order

10
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of size x, the quoted price of the stock would go up to Sy + 2Mx. This would be the
biggest price impact that could occur. Otherwise, if the entire gap was filled with ask
orders, there would not be any price impact at all. Weber and Rosenow [I7] showed
that the truth is somewhere in between: The price impact exists, but is less than the full
impact. This statement is based on the following observation. There is a negative cor-
relation between price changes and the volume of incoming limit orders, which suggest
that market participants respond to a market order by adding new limit orders in the
opposite way. If a market-order (buy) is placed the lowest ask price of the asset instantly
moves up. Informed traders, who determine the fundamental price of the stock, take
advantage of the price impact by selling limit orders at the temporarily disadvantaged
price. Therefore we assume that the upper part of the gap in the limit order book
disappears immediately after the trade. This phenomenon is called short-term resiliency
effect. To model this effect we define a parameter

A€ [0,1]

which indicates the percentage of the gap in the limit order book that is filled up with
bid orders. Hence, depending on A the price of the asset after a market order of size x
moves up to

Sty ({L‘) =S¢ + 2AM;zx.

We assume that the density level of the order book remains unaffected by the trade.

11
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Let us consider a simple economy which consists of a financial asset (typically a stock)
and a risk free asset. We use a filtered probability space (2, F, Fo<i<r,P), which
satisfies the usual conditions. For simplicity we assume that the interest rate is constant
and we always work with discounted price processes.

We start by defining an endogenously given adapted semimartingale
S =(St)e=0

and call it the unaffected quoted price process of the stock. We assume that S is
the price process that occurs due to actions of all market participants except the single
trader who wants to replicate a contingent claim. This process is independent of the
trader’s strategy. As discussed in the last chapter we assume that the unaffected
average price per share S;(x) at time ¢ is a linear function of the order size x € R
and can be written as

St(ﬂf) =5 + Myx

where M = (M;)>¢ is an adapted semimartingale. S;(0) = S; is the (unaffected) quoted
price. We want M to be continuous and non-negative and think of it as a measure of
illiquidity. M=0 refers to a stock which is infinitely liquid and the stock becomes less
liquid if M increases. For simplicity we call M the liquidity process. In addition to .S we
define a second price process

S% = (57)e=0

which is called the observed quoted price process. This price process SX gives
the actual observed quoted price including the price impacts of the trader’s hedge X.
Consequently, S7¥ is dependent on all historic actions of the trader prior to time t. The
X in the notation emphasizes the dependence on the traders’s strategy. In addition it
depends on the process M and the given resiliency paramter A € [0, 1]. Since we assume
that the level of liquidity is not affected by X, the observed average price per share
SX(x) at time t is again given by the linear supply curve

SX(z) = S + Myx.

SX(0) = Si¥ is the observed quoted price. The process (S;¥)¢>o and its properties will
be derived in Section 3.1.1.

12
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Note: The basic unaffected price process S could as well be interpreted as the funda-
mental value of a company and the process SX as the observed price that occures due
to all trades on the market. In that case X indicates the total order flow of the stock
and the model can be used to explain asset price bubbles. See Jarrow, Protter, Roch
[20] in this context. But as the goal of this thesis is to replicate and price contingent
claims, we are interested in the impact of the hedge and therefore in the impact that
a single trader has on the price process. Hence, the unaffected quoted price process S
results from the limit and market orders of all other market participants. We assume
that everyone is allowed to place market orders and by doing this every participant has
an impact on the price .S, which is proportional to the liquidity process M. Then it is
reasonable to conclude that the volatility of S is in part correlated to the process M.
This is supported by Farmer, Gillemot, Lillo [5]. There it is also shown that fluctuations
caused by individual market orders are driven by liquidity fluctuations, variations in
the market’s ability to absorb new orders. This means that both illiquidity and the size
of the transaction have to be taken into account in order to explain price changes. Also
have a look at Weber, Rosenow [17] in this context.

Throughout this thesis we use the following definition of a stochastic integral. For
a semimartingale X and a predictable X-integrable process Y (e.g. every caglad
process) we write Y o X = {YdX with

t
(Y o X), = f YdX = f YdX.
0 (0]

Note that this definition is slightly different from the stochastic integral used by Cetin,
Jarrow, Protter [22] and Roch [3], who include the 0 and use S[o j YdX. We make use
of the following theorems and definitions.

Definition 3.1. A random partition 7 is a finite sequence of finite stopping times
O=1<m... <1 < 0.

A sequence of random partitions (7 )p>1 with m, : 0 =171 < ... < T,?n s said to tend
to identity if supg_y _x, T — o0 and

|7 [|= sup |7ty =7 [—0 (3.1)
0<k<kn

almost surely for n — . A sequence of random partitions (mp)n=1 of [0,t] with
T 0=1) < ... <7 < tis said to tend to identity if T;! converges to t almost
surely and (3.1) is satisfied.

Let D denote the space of all adapted processes with cadlag paths and L the space of all
adapted processes with caglad paths.

13



3. The impact of liquidity

Theorem 3.2. X is a semimartingale and Y is a process in D or in L . Let (mp)n>1 be
a sequence of random partitions tending to the identity. Then,

JYﬂ-ndX — ZYT[L (X'rzﬂ-%—l — XTzn) up JY_dX

Here ucp means uniformly on compact sets in probability and Y_ = (Y;_)¢=0.

Proof. See Theorem 21 of Chapter II in Protter [16] ¢

Theorem 3.3. Y is an adapted cadlag process, X and Z are semimartingales. Let
(Tn)n>1 be a sequence of random partitions tending to identity. Then

ZYT? (XTin+1 _ Xnn) (ZTin+1 _ Z"'in) uep f}/'_(,*l[)('7 Z],

Proof. See Theorem 30 of Chapter II in Protter [16] ¢

For a cadlag process Y consider the process Y with Y, = Y1 [0,)(8). Thenfori=1,... k,
and s <t

Voo (KT XY = v (xI00 xR0,

k3

such as
?TZ‘ (Xsn-’ll _ XsTin) (Z;Zﬂrl _ Z}'n) — Y (X§T1?+1At) B ngm)) <Z§Tf+lAt) B ZgrfAt)> _

The sequence (Tp)n>1 With m, : 0 =7 < ... <7 < tand 7} = (77! A t) is a sequence
of random partitions of [0,¢] tending to identity. Hence, the statements of Theorem
3.2 and Theorem 3.3 remain true for a sequence of random partitions of |0, ¢] tending
to identity. In that case the convergence is uniformly on compact subsets of [0,¢] in
probability. We write ucp on [0, 1].

Corollary 3.4. Let Y be an adapted caglad (or cadlag) process and let X, Z be two
semimartingales defined on the intervall [0,t]. (7, )n>1 denotes a sequence of random
partitions of [0,t] tending to identity. Then

D Von (X7 —XT) D JY_dX (3.2)
%
and
D Yor (X0 — XY (270 — 27 2B JY_d[X, Al (3.3)

14



3. The impact of liquidity

3.1. Trading strategies in a model with liquidity risk

3.1.1. The observed stock price

We consider a semimartingale X = (X;)o<t<r which represents the trading strategy
in the risky asset. X; denotes the number of shares hold by the trader after the trade
at time t. In contrast to the classical arbitrage theory, where a trading strategy is
a predictable process, we assume that X is cadlag. It can therefore be used as an
integrator for stochastic integrals. Moreover, we assume that the trader already holds
X_ shares of stocks before time 0, where Xy_ is a Fp-measureable random variable.

Let 7, : 0 = 7§ < ... < 71! be a random partition of [0,7] tending to identity.
For a process P we define operators

AZ : AZP = PTI? — PTI?—I
for kK = 1,...,k, and AP = APy = Py — Pp—. X can be approximated by a simple
cadlag process X™, which is equal to X:» on [7, 71", ),

kTL
X[ =Xo_ + Z A2X1[7;17w)(t).
k=0

We trade the stock according to the strategy X™ and are interested in the observed
quoted price at time ¢ < T. At every stopping time 7" < ¢, we buy A?'X shares of the
stock, causing a price impact of 2AM» A7 X at time 7;"+. We sum up all price impacts
until time ¢ € (7'_;,7/'] and get the observed quoted price associated to the strategy

X7rn
k—1

S = Sp +2) ). M APX. (3.4)
i=0
Let t = 737, where k < k,. We add the price impact of the trade at time ¢ to obtain

k
S =S+ 20 Y M ATX
=0

k—1 k k
=S +2) Y M ATX + <2>\ Mg AFX —2X\)° MT;LIA?X>
1=0 i=1 i=1
k k
= Sy + 2AMpAGX + 20 YT M ATX +2) ) (ATM)(A7X). (3.5)
=1 =1
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3. The impact of liquidity

By (3.2) and (3.3) this converges for n — o in ucp to the semimartingale and hence
right continuous process

t t
St =S +2)\ (MOA(;X + J M, dX, + J d[M, X]u>
0 0

t
=5+ 2\ (XtMt — J Xy_dM, — XOM0> . (36)
0

In the last step we use integration by parts. This defines the cadlag process (S,;’i)ogth.
Furthermore, we obtain the observed quoted price by subtracting the price impact at
time t.

Definition 3.5. For 0 <t < T the observed quoted price is
S =SX — 2 MAX,, (3.7)

where Si)i is given by (3.6) and AX;, = Xy — Xy

Note that both (S5 )< and (S;¥):;<r depend on the strategy X, the process M and the
resiliency parameter A. As discussed in Chapter 2, we assume that the level of liquidity
is not affected by any trades.

Definition 3.6. For 0 <t < T and x € R the observed average price per share is
Si(z) = SX + My, (3.8)

with S by (3.7).

Remember that A indicates the part of the order book which is renewed with bid orders.

Let us define the price impact of a trading strategy X = (X;)i>0 at time t as the
difference between the observed quoted price and the unaffected quoted price,

t
SX — 8 =2\ (XtMt — f Xy_dM, — XOMO) .
0

The full price impact occurs in case A = 1. For A € [0, 1) the impact is A times the full
impact.

The effect of trading the stock with the strategy X can be summarized as follows. At
time ¢ € [0, 7] we observe the price process S* and buy AX; shares of the stock for an
average price per share S;¥ (AX;) = Si¥ + M;AX; (hence a total of AX,(S;X + M;AXy)).
At time ¢+ the observed quoted stock price jumps to Sg)i = S + 2AM;AX;.
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3. The impact of liquidity

3.1.2. Self financing trading strategies

A trading strategy (X,Y’) consists of a semimartingale X = (X;)o<t<7 and an adapted
cadlag process Y = (Y;)o<t<r. At every moment ¢t we have a portfolio (X3, Y;), which
means that after the trade at time t the hedger holds X; shares in the stock and Y; in
the (discounted) risk free asset.

In financial mathematics a trading strategy is called self financing if the value of
the portfolio is obtained via merely trading the stock and the risk free asset without
adding or removing any money. If the trader owns a portfolio (Xy,,Y;,) at time ¢, he
does not trade until time ¢ > ¢; and then changes the portfolio to (X4,,Y;,) without
additional costs, the value of the portfolio must satisfy

Y, + Xy St)g((XtQ - Xt1) =Y, + Xt2St)g((Xt2 - Xt1)
or equivalently

Y;fQ - Y;ﬁ + (XtQ - th)Si)Q((XtQ - th) =0.

Similarly at time 0 a self-financing strategy satisfies AYy + AXoS5(AXg) = 0. To

define self-financing strategies we first define the (discounted) total costs RgX’Y) of a
trading strategy (X,Y’) at time t. To do this we consider a sequence (7, ),>1 of random
partitions 0 = 70 < ... < T/?n =t of [0,t] and the associated discrete trading strategies
(X7, Y7), which are equal to (Xrn, Yrn) on [, 77, ;) and X" = Xo—. The total costs
of (X™ Y ™) at time t are

Ry(X™,Y™) =Yy — Yo_ + AFX™ S " (AFX™)

kn
2 Yoy = Yo+ (Xop = X, ) (SE7 + (Xop — X, ) Moy )
k=1

kn
— Y, - Yoo + ARXSF(ARX) + Y ARX (Sﬁ%”" + AZXMT]?) . (3.9)
k=1

We define the total costs of a trading stragegy (X,Y) as the limit of the total costs of
the associated discrete strategy (X™,Y ™).

Definition 3.7. The total costs R,(X,Y) of the trading strategy (X,Y) at time ¢t are
Ry(X,Y) =Y, + X (S7% — MM Xy) — Yo — Xo (S — AMoXo) + AY) + AXoSg (AXo)

t t t
—f X, dS, + AJ X2 dM, + (1 - /\)J M, d[X,X],-
0 0 0
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3. The impact of liquidity

Proposition 3.8. Let (X,Y) be a trading strategy and (mp)n>1 a sequence of random
partitions of [0,t] tending to identity, then

Rt(XﬂTLvYﬂ—n) ﬂ) Rt(va)

Proof. Let mp: 0 =70 <7< .. <7 =tbearandom partition . Then
k:TL
DVARX (ST + Mop ARX) (3.10)
k=1
kn kn
N X XT™n X™ XT™n n 2
_ kzl (XT,?ST,? ~ Xop (STS —5X™ 4 sﬂl)) + kzl My (A}X)

-1

kn kn kn,

X™ X™ XTn
O (XS5 = X SE) = 3 X ARSYT Y Myp (AR X)?
k=1 k=1 k=1

kn

XK - XoSg = Y (X ARS + 2AMrp Xop AR X)
k=1
En
+ ) M (ARX)?
k=1

k’ll
= XiS¥ — XoSg" — 2AMoXoAXo + 2AM X, AXy — > Xon ALS
k=1

kn kn kn
=23 AMep Xp AFX + Y AMp(AFX)? + D (1= N Moy (AR X)?
k=1 k=1 k=1
kn kn kn
= XS = XoSg = DL Xop [ ARS = D AMp ARX? 4+ Y (1= M) Mp(AFX)?
k=1 k=1 k=1

= XS~ — XoSg — AMX}? + AMo X3

kn kn kn,

= D) Xop AFS+ DAXZ ATM + (1= \) Moy (ARX)2.
k=1 k=1 k=1

By (3.2) we get

kn t
DX ARS 25 J Xy dS,,
k=1 0

kn t
DIAXZ ARM = )\J X2_dM,.
- 0

k=1
Furthermore,
kn kn kn,
STMp(ARX)2 = S My (A7X)+ Y (ARM)(ARX)2.
k=1 k=1 k=1
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3. The impact of liquidity

By (3.3) the first term converges in ucp to SS M,_d|X, X],. Whereas

kn kn
SUAPM)(ATX)?| < sup [ATM] D (AFX)2
i=1 ¢ i—1

Because M is continuous this converges to zero for n — o. Hence, for n — oo the sum
(3.10) converges to

t
X (SE =AM X,) — Xo (Sg5. — AMoXo) — f X, dSy
0

t t
+ J X2 dM, + J My d[X, X]u.
0 0

Furthermore,

AXo S5 (AXo) — Yo — Xo (S5, — AMoXo)
= —Yp — Xo (S5y — AMoXo) + AYy + AXoS5 (AXp)

Substituting these results in (3.9) yields the statement.

Definition 3.9. A trading strategy (X,Y) is self-financing (s.f.t.s.) on [0,T] if
R(X,Y)=0 foralltel0,T].
A sft.s. satisfies Ro(X,Y) = 0 or equivalently AYy + AXoS5(AXg) = 0. This term

is equal to the costs of transforming the portfolio (Xy_,Yp-) to (Xo,Yp). Hence, the
initial value in the cash account is Yy_ = Y, + AXOSé((AXO).

Definition 3.10. For a trading strateqy (X,Y) let us define the process VM (X,Y) by
VM = VMXY) =Y+ X (S - AMXL).

As will be discussed in Section 3.1.4 the value V,M is equal to the asymptotically real-

izeable wealth of the portfolio (Y, X;). This means if we try to liquidate the shares of

the stock until time ¢+ the value we obtain is smaller or equal to the realizeable wealth.

We make use of this notation to obtain the following representation of self-financing
strategies.

Corollary 3.11. A trading strategy (X,Y) is self-financing on [0,T] if and only if
Yo = Yo — AXoSg (AXo)
and for t € (0,7

t t t
vM =y M 4+ f Xo_dS, — AJ X2 dM, — (1 - )\)J M,_d[X,X],-
0 0 0
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3. The impact of liquidity

Proof. This follows from Definition 3.9. ¢

When it comes to the replicating of contingent claims, we assume that the trader does
not hold any stock shares before time 0 and hence only consider strategies with Xg_ =
0. This guarantees that no price impacts where triggered before time 0 and therefore
S5 = Sp. Then, Yo = Y + XS0(Xo) is the initial value of the trading strategy (X,Y)
and

VM =Yy + Xo(S§ + AMpXo) = Yo — (1 — \)MoX2.

By Corollary 3.11/if Xo_ = 0 a s.f.t.s. satisfies
t t
Y, + Xy (Si — AMXy) = Yo + f Xou—dS, — /\J X2 _dM,
0 0

— (1= Uot M,d[X, X], + Moxg) : (3.11)

Furthermore, if all stock shares have been liquidated at time T, e.g. Xp = 0, the
realizeable wealth is equal to the value of the risk free asset VM = Yy. By (3.11) a
s.f.t.s. with Xo_ = X7 = 0 satisfies

T T T
Yo = Yo_ +J Xy_dS, — )\J X2_dM, —(1—\) (f M,d[X,X], + Moxg) . (3.12)
0 0 0

Remark. A s.fit.s. with Xg_ = 0 is determined by the strategy in the risky asset
(Xt)o<t<r and the initial value in the cash account Yy_. The process (Y;)o<t<r is given
by (3.11).

3.1.3. Liquidity costs of s.f.t.s.

In addition to V™ we define the following processes.

Definition 3.12. For a trading strategy (X,Y) we denote by VE(X,Y) the value of the
portfolio (X,Y:) at time t in an infinitely liquid market (classical theory)

Ve =VOX,Y) =Y, + X, 5, 0<t

/N

T.

Definition 3.13. For a trading strategy (X,Y) let VE(X,Y) be the value of the portfolio
(Xt,Y:) at time t if it is immediately liquidated

VE=VEX,Y) =Y+ X,SY,  0<t<T.
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3. The impact of liquidity

Remark. In an infinitely liquid market a s.f.t.s. (X, f/) satisfies
t
VOX,Y)-VEX,Y) = f X,_dS,. (3.13)

We refer to liquidity cost as additional cost a trader has to pay because the traded assets
are not infinitely liquid.

Definition 3.14. The liquidity costs L; of a s.ft.s. (X,Y) are given as the difference
between the value VL (Xy,Y;), where (X,Y) is a self financing trading strategy in an
infinitely liquid market (M=0), and the value V,(X,Y). By (3.13) for t € [0,T]

t
Ly = Ly(X,Y) =Yy_ + f X,_dS, —VE(X,Y).
0

From the definition of L; it follows that
¢
(V€ + L) — (VE + Ly) :f Xy-dS,, 0<s<t<T.
S

Note that this is consistent with the definition of a s.f.t.s in classical arbitrage theory if
there are no liquidity costs.

Proposition 3.15. The liquidity costs of a s.f-t.s (X,Y) with Xg— =0 are

t t
L=\ U (X — Xu_)?dM, + M0X3> +(1=X\) (J M,_d[X,X], + M0X§> .
0 0

Proof. By (3.11) with Xy = 0,

t t
Y, + Xy (S — AMXy) = Yo + f Xu—dS, — /\J X2 _dM,
0 0

— (1= <£ M,-d[X,X], + Moxg) .

Using (3.6) we obtain

t t
Y; + XSy + A ((Mt — Mo)X? — 2th X,_dM, + J (Xu_)QdMu) + MM X2
0 0

t t
+(1-2) U M,_d[X,X], + Moxg) = Yo + f X,_dS,
0 0

or equivalently

A (ﬂ (X, — Xu_)*dM, + M0X§> +(1-)) (Jot M, d[X,X], + M0X§>

t
=Yy + f X, dS, —VE(X,Y) = L;.
0
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3. The impact of liquidity

While the second term of these costs, which is due to the quadratic variation of X |

(1—N) (Jot M, d[X,X], + M0X§>

is positiv, we can not make any statement about the sign of the term

t
A (J (X — Xy )2 dM, + MOXE) .
0

Note that the investor always has a certain benefit if the process M decreases, which
means that the stock becomes more liquid. It might happen that the liquidity costs are
negative in total. In that case the investor benefits from the stock being not perfectly
liquid.

The liquidity costs are not linear. To see this, consider a s.f.t.s. (X,Y). For a
constant a > 0 we build a trading strategy (aX;)¢<r, such that for every time 0 <t < T
we invest aX; shares in the risky asset. This leads to the following liquidity costs

t
Li(aX) =\ ( f (aX; — aX_)? dM, + aZMOXE)
0

t
+(1-2) U M;_d[aX,aX], + a2M0X3>
0
= a’Li(X).

In this sense the additional costs due to liquidity are quadratic in the number of stock
shares we purchase. An informed trader, could exploit this situation. To illustrate this
think of an investor, who buys x shares at time s. The price of the stock goes up higher
after his purchase (S5, = SX + 2AM,x). Now the trader waits until time t when the
conditions are good to sell the shares. Assuming that the trader does not place any
orders within the time (s,t) this leads to a benefit of

z(Sy — Ss) + 22 (2AM, — My — M,).

If the trader is patient enough to wait until M; < Ms(2A—1), the benefit of an investment
is of quadratic growth in the number of purchased shares. This suggests that large traders
who are willing to buy big amounts of shares can manipulate the market and manage
to obtain a proportional higher benefit. To make sure this does not happen, we want M
to be a submartingale. Then, E[M; | Fs] = My > Ms(2)\ — 1). In Section 3.2/ we show
that this condition is sufficient to rule out arbitrage opportunities.

Example: Liquidity costs in a model with constant liquidity

We assume that the liquidity is constant,

M,=M, 0<t<T.
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3. The impact of liquidity

By (3.7) with Xo_ = 0 the observed quoted price is S* = S; + 2AM X;_ and by (3.8)
the average price for AX; shares is

SX(AX;) = S; + MX;_(2\ — 1) + M X;. (3.14)

A trading strategy (X,Y) with Xo_ = 0 is self-financing if and only if
¢

(VE + L) — (V€ + Ly) = J Xy—dSy, 0<t<T.
0

The corresponding liquidity costs are
Ly = AMX}? + (1-)) (M[X, X]: + X3) . (3.15)
We observe that in this model the liquidity costs at every time t are positiv,
L = 0.

Note that any self-financing trading strategy with Xy = 0 which is continuous and of
finite variation and liquidates all stock shares at maturity T, e.g. X7 = 0, has final
liquidity costs L = 0.

3.1.4. The cost of turning around a position

As stated by A. Kyle [1] a liquidity model should deal with the following dimensions:
e Resiliency: The rate at which prices bounce back from a shock.
e Depth: The size of order flow required to change prices a given amount.
e Tightness: The cost of turning around a position over a short period of time.

This liquidity-risk model of A. Roch deals with all of these dimensions. The (short-term)
resiliency is given by (1 — A). The depth is defined as the size of the order flow, which
is required to change the price by one unit. This means the price impact that occurs
immediately after a trade has to be 2AM; X; = 1 and the depth therefore is ﬁ

The tightness is related to the best trading strategy of the model. Later on we
show that continuous trading strategies with finite variation play a key role when it
comes to the replication of contingent claims. As a motivation, have a look at a trader
who wants to purchase z shares of a stock within the time [t,t + At]. If the trader
decides to buy x shares immediately at time t the costs are

SX(z) = Sz + M.
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3. The impact of liquidity

The resulting cost due to liquidity risk are less if the trader places n smaller orders at
time ¢ + iAt (1 = 1,...,n) with size of 1X shares per order instead. The processes M
and S are contmuous and for At small Mt M A+ and the price

S At(f

. T T
b4 At n) ~ S+ (Z - 1)2)\Mtﬁ + Mtﬁ

Then the total cost for this series of trades is

ii(StJr z—1)2/\Mt—+Mt )

2

"(22)2AMtx + M=
— 28, + AMa®  for n — .

=x5; +

As a consequence the trader is better off if he splits the trade into smaller parts. This
remains true if we want to sell the shares. The trader keeps a portfolio (X3, Y;) at time
t and he or she wants to liquidate it immediately after time t the value is Y; + Xt(St)i —
M;X;). But if the trader splits the liquidation process into several trades of small size
the maximum value that can be obtained at time ¢+ is V;M Y, + Xt(S — AM X3).
Because S;X T — 2AM;x is the quoted stock price if x shares are liquidated after the last
trade at time t, the limit of the proceeds V, may be represented as

Xt
Vi + Xe (S — MM Xy) =Yi+ | Siy — 2AMyw da.
0
This value is called asymptotically realizeable wealth and is higher than the imme-
diate liquidation value. See Bank and Baum [2] in this context.

No matter whether the position is long or short, the trader is better off if he splits the
trades into smaller parts. This way we may assume that the best way of trading is to
use continuous trading strategies of finite variation. We take up this idea in Chapter 4.

3.2. Arbitrage-Theory

In a real economy the price of a product is determined by its demand and supply. As a
consequence arbitrage opportunities vanish within little time. An arbitrage opportunity
is a trading strategy which leads to a benefit without taking any risk. Of course we
also want to eliminate these opportunities in the liquidity risk model. We therefore
assign our market with trading restrictions, such that only specific trading strategies
are allowed which rule out arbitrage.
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3. The impact of liquidity

A benefit without taking any risk, means that the trader uses a s.f.t.s such that
the portfolio at time t converted into cash is bigger than the initial value of the cash
account. The benefit is measured in cash. We therefore only consider trading strategies
where all stock shares have been liquidated before or at time T or equivalently strategies
with

Xr=0.

Hence,
VEX,)Y)=VF(X,Y)=VMX,Y)=Yr.

Similar to the definition of a Free lunch with vanishing risk in Delbaen and Schacher-
mayer [6], we also want to eliminate sequences of trading strategies which cause a benefit
with asymptotically vanishing risk, which we refer to as asymptotic arbitrage.

Definition 3.16. (Arbitrage)

e A self-financing trading strategy (X,Y) with Yo— = Xo— =0 and X7 = 0 is called
arbitrage if
P(YTZO)Zl and IP(YT>O)>O.

n

e A sequence of self-financing trading strategies (X™,Y"™))n>0 with Y© = X§_ =0
and X7} = 0 is called asymptotic arbitrage if

n L!
Y7 = Hrp
with convergence in L', where

P(Hr=0)=1 and P(Hr>0)>0.

If there are no (asymptotic) arbitrage opportunities in a set of trading strategies, we call
this set free of (asymptotic) arbitrage.

We show that the following assumption are sufficient to rule out arbitrage opportunities.

Assumption 3.17. From now on we assume that there exists an equivalent measure
Q ~ P such that

(M1) the unaffected price process (St)i=0 is a Q-local martingale,

(M2) the illiquidity process M is a Q-local submartingale.
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3. The impact of liquidity

By Doob-Meyer decomposition for a a Q-local submartingale M there exists a local
martingale M and a predictable increasing process A with Ag = 0, such that

M =M + A.

Using the following definition of admissible trading strategies, it turns out that the set
of admissible trading strategies is free of arbitrage and even free of asymptotic arbitrage.

Definition 3.18. Let Q be an equivalent martingale measure which satisfies the as-
sumption 3.17 and let M = M + A be the Doob-Meyer decomposition of the Q-local
submartingale M. A trading strategy (X,Y) is called admissible (with respect to Q ) if
the process

t t
U =Uy(X) = J Xy—dS, — AJ X2 dM,, 0<t<T,
0 0

is a Q-Supermartingal. A sequence ((X",Y"))n=1 is called admissible if (X™,Y") is an
admissible trading strategy for every n.

The following lemma shows that this definition of admissible trading strategies is consis-
tent with the definition in classical theory, where the stock is infinitely liquid (M = 0).
In classical arbitrage theory an admissible trading strategy X satisfies

¢
J Xy-dS, =z —K
0

for some K > 0. The payoff in classical theory is bounded from below, which suggests
that not every amount of money can be borrowed.

Lemma 3.19. A trading strategy (X,Y) is admissible, if the process U is bounded from
below.

Proof. From the general theory of stochastic integrals we know that U is a Q-local
martingale. Every local martingale which is bounded from below is a supermartingale.

¢

Theorem 3.20. Given assumption |3.17, there exists
e no admissible arbitrage opportunity,

o no admissible asymptotic arbitrage opportunity.
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Proof. Let us consider an admissible s.f.t.s (X,Y). Because Yp— = 0 and Xy = 0 by
(3.12) its payoff at time 7" can be written as

T T T
Yr = f X,_dS, — )\J X2 dM, —(1-=N) U My_d[X, X]u + M0X02> .
0 0 0
This yields
T T L
Ur = f X, dS, — /\J X2 dM,
0 0
T o T
=Yr + )\J X2 dA,+ (1 -\ (J M, d[X, X, + Moxg) .
0

0

Because (X,Y) is admissible, U is a Q-Supermartingale and consequently EQ[Ur] <
Up = 0. Therefore,

EQ[Yr] = }EQ[UT— JXQ_dA (1—X (J M, d[X +M0X§”<o

v~

>0
Since Q(Yr = 0) = P(Yr = 0) = 1, we know that
P(Yr=0)=Q(Yr=0) =1.

Therefore (X,Y) is not an arbitrage. For the second part let ((X™,Y™)),>1 be a sequence
of self-financing admissible trading strategies with Y;> = 0 and X} = 0 for every n.
Similar to the first part of the proof we get

EQ[v}] < 0.
Yy — Hr in L', it follows that
EQ[Y?] — EY[Hr] <0

where Hp = 0 Q-a.s.. We conclude

which contradicts asymptotic arbitrage.

3.3. The approximate replication of a contingent claim

We are interested in the impact of liquidity of the underlying asset on the price of
contingent claims. We therefore try to replicate a contingent claim by trading the basic
assets of our economy.
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3. The impact of liquidity

Definition 3.21. A contingent claim is a Fp-measureable random variable H which

is integrable with respect to Q,
EQ[|H]|] < oo.

We want the value of the trading strategy at time T to be equal to the payoff of the
claim H.

Definition 3.22. The exact replication problem of a contingent claim H consists of
finding an admissible s.f.t.s. (X,Y) with Xo_ = 0 which satisfies

VE(X,Y)=H P-as..

Depending on the delivery of a claim (cash or physical), we have to impose requirements
on X7 and Y, which lead to different replication problems. In the following definition of
an approximating sequence of trading strategies we require X7 = 0, which corresponds
to a cash delivery problem. In Section [3.3.1) we justify this assumption.

Definition 3.23. A claim H is approximately replicable, if there exists an admissible
sequence of s.f.t.s. (X", Y"™))n=1, with X' = X7 = 0 for every n, which satisfies

vExm vy =ve B E.

The sequence ((X™,Y™))n>1 is called (admissible) approximating sequence. De-
note by ®*(H) the set of all (admissible) approzimating sequences for H.

Definition 3.24. A market is called approzximately complete, if every Q-integrable
contingent claim H is approximately replicable.

We can not show that every claim H can be replicated, but it turns out that every
Q-integrable claim can be approximately replicated using a sequence of s.f.t.s. (see
Chapter 4).

Remark. One would like to consider claims which are functions of the observed quoted
stock price at maturity T, H = h(S5). Note that in our model the observed quoted
stock price itself depends on the trading strategy X = (X;)o<t<r. As a consequence the
true replication of H is an implicit problem. We do not consider such implicit problems.
As an approximation we deal with claims of the form

H = h(S5)

where X = ()?t)ogth is the hedge of the claim H in a model without liquidity risk.
X and therefore the claim H are independent of the replication strategy X. With the
exception of Chapter 4.4 the claim H is an arbitrary Q-integrable random variable
independent of X.
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3. The impact of liquidity

3.3.1. Physical- vs Cash-Delivery

Because of the non-trivial supply curve, the portfolio (X7, Yr) can not be liquidated
without causing additional costs. In fact the asymptotically realizeable wealth, which
results if we piecewise sell our shares after time T as fast as possible, is given by
VM(X,Y) = Yr + Xp(S3, — AM7pXr). In general this value differs form the value
of the portfolio VTL(X JY)=Ypr+ XTS%( . As a consequence the replication of a financial
derivative, which claims stock shares at maturity, is not identical to the replication of
a derivative, where cash is delivered. In fact a general contigent claim consists of two
positions
(HO, )

where HC is the position of the claim which is delivered in cash and H” is the number
of stock shares that are delivered at maturity. When replicating this claim, we want to
find a s.f.t.s with Xp = H? and

VE(X,Y) = HC + HP S5

For instance, consider a European-Call option. The owner of the option is delivered a

stock share if the stock price Sj)f is bigger than the strike price K at maturity and there-
. . . P _ _ c _ _

fore has to pay the strike price K in cash (e.g. H" = ]I{S%(>K} and H* = K1{5§>K} )

Depending on the delivery, we have to face different replication problems:

e Cash-Delivery: If the claim has cash-delivery the long position in the option re-
ceives cash at maturity and H” = 0. As a consequence all shares in the underlying
stock must be liquidated before or at maturity. Thus, we want to find a s.f.t.s.
(X,Y) such that X7 = 0 and Yy = HC.

e Physical- or Mixed-Delivery: We consider a claim which has both physical and
cash delivery. At maturity the owner of the claim is delivered a certain amount
HP of stock shares and HC in cash. We have already mentioned that the cheapest
way of trading is to split trades into tiny packages. Hence, let us assume that
AXp = 0. The owner of the stock position changes, but no stock shares are
purchased or sold at time 7. The replication problem consists of finding a s.f.t.s.

(X,Y) with X7 = H? and Vi (X,Y) = HC + HPSX.

We show that the mixed delivery problem has an asymptotic solution if an associated
cash delivery problem has an asymptotic solution.

Therefore, consider a claim (H®, H”) which has both, a physical and a cash posi-
tion. We assume that H is bounded and define H = H® + HPS%. We build a new
claim (H®, H”) with H” = 0 and

HC = H — AMp(HT)?.
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3. The impact of liquidity

In Theorem 4.9 we show that if HC is Q-integrable, there exists an approximating
sequence ((X",Y")),>1 of bounded continuous trading strategies with Xg = X7 = 0.
Thus,

T T I~
X" dS, — AJ (X" )2dM, = HC. (3.16)

VE(X™ Y™ = Y + f
0

0

We assume that ((X",Y")),>1 is known. For every n sufﬁc1ently large we construct a

sequence of trading strategies ((X™™, Y™™)), -1 with Y =Y and
~ Xp for0<t<T -1,
xXnmm m
t EC[HP | Fl+ (X7, —EHP | F)T —t)m  for T— L <t<T.

Note that )?;m = HP for every n. We only consider continuous processes S and M in
H2(0,T) (See Definition |A.2). For every (n,m) we apply Theorem |A.4 with k—1 to get
a sequence of continuous trading strategies of finite variation ((X™™ Y7m1)),_; with
}N/On_,m,l = Y,L and )Z’;,f’m’l — HP for | » oo. By Theorem |A.4 and Theorem A.5 with
k=1

t t
f xrmilgs, 2 J X™_dS,, (3.17)
0 0
for [, m — 0. The same theorems with k=2 yield
t 2t
J (Xmm™h2ang, =5 J (XI_)2dM,, (3.18)
0 0
for I,m — o0. By (3.11) with AX?™! = 0, X" = 0 and [X™m! Xnml] = 0,
T ~ ~
VE(Xmmd yrmly =y f Xpmtds, — )\J (X™N2dM, + AMp(XE™2.
0
For I,m — oo by (3.17) and (3.18)
- - 12 T T
VE(xmml ynmly 2y 4 f X" dS, — A J (X"_)2dM,, + \Mp(HT)?
0 0
= VE(X™, V™) + AMp(HT)2,
Together with (3.16) we get
V(X gty L O L AMp(HP)? = H

for I,m,n — oo with X7 X"l HP. Hence, there exists an approximate replication

strategy for the contingent claim (HC, HT).

We therefore assume that the contingent claim H requires cash at maturity. Thus,
HP =0, H® = H. Consequently, we restrict our trades to strategies with X7 = 0.
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3. The impact of liquidity

3.3.2. The minimal replication value

Definition 3.25. The minimal replication value (of admissible sequences) of an
approzimately replicable contingent claim H 1s

7 (H) = inf {liminf Y{", where ((X",Y™))n=1 € ®*(H)}.

Here ®%(H) denotes the set of all admissible sequences of trading strategies which asym-
totically replicate H.

In classical arbitrage theory the fair price of a product is given by its expectation. This
is in general not true for the minimal replication value in the model with liquidity risk.
For an admissible trading strategy the expected additional costs due to the liquidity of
an asset are positive. As a consequence, the minimal replication value is equal or bigger
to the expected output.

Lemma 3.26. Let H be a contigent claim. If H is approximately replicable, then the
minimal replication value satisfies

m§(H) > E°[H].

Proof. Let ((X™,Y™)),>1 be an approximating sequence such that lim,, o, VA (X", V") =
H. By (3.12) and U(X™) in Definition 3.18,

T T
VE(X" Y™ =Y +J X;}dsu—AJ (X" )2dM,
0 0

T
—(1-X) ( JO M,d[X", X"], + Mo<X8>2)
<Y + Up(X™).

Because (X", Y™) is admissible, the process U(X™) is a supermartingale. Hence for
every n
Vi > B9[],

This is true for all approximating sequences and therefore for the infimum.

¢

In classical arbitrage theory the fair price of a contingent claim is unique and inde-
pendent of the replication strategy. The price is determined such that the economy
extended with the trade of the contigent claim is free of arbitrage and it can be shown
that every other price causes arbitrage opportunities. In the model with liquidity
risk where ((X",Y")),>1 is an approximating sequence for a claim H, the sequence
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3. The impact of liquidity

((=X"™,—=Y"™)),>1 does in general not replicate (—H). Hence, —m(—H) # 7 (H) and
because of Lemma 3.26| we get that

—nd(—H) < EQ[H] < 7&(H).

In Section 3.1.3| we have seen that the impact of a trading strategy X on the liquidity
costs is not linear. As a consequence the replication costs if we purchase x shares of a
financial derivative are in general not equal to x times the replication costs of one share.
For a claim H = h(S:,)f ) we are also interested in the average replication costs depending
on the number of purchased shares x. We therefore consider the claim

H* = h(SFY)

where X is the (continuous) hedge in a model without liquidity risk, z € R and S&¥
by (3.7). Since the stock is not infinitely liquid, it is reasonable to deduce that the
contingent claim, depending on the stock, is not infinitely liquid too. Similar to the
price of the stock, the average price of the contingent claim in the extended economy is
given by a supply curve. In Section 4.4 we show that if h is continuous and bounded,
the average price per share converges to EC[h(Sr)] for 2 — 0.
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4. The replication in a general model

Let B = (B, ..., Bg) be a d-dimensional Brownian motion with respect to Q and F the
canonical filtration of B which satsifies the usual conditions. We specify the dynamics
of the unaffected quoted stock price S and the liquidity process M in terms of B and
extend our economy with (d — 1) additional assets. We then show that the market
is approximately complete. The approximating sequence converges to the solution of a
backward stochastic differential equation and the minimal replication value is determined
by the minimal solution of this equation.

4.1. The extended economy

The dynamcis of the price process and the liquidity process M are defined by given
continuous processes

Ui = (Widoster (0<i<d, 1<j<d),

which are adapted to F, integrable with respect to B and w’f =0 for k =2,...,d. For
O0<u<T

d
dSy = > 4} ,dB;,  with Sy >0
j=1
and
d
dM, = ,du+ Y ¢),dBj.  with My > 0.
=2
The contingent claim depends on d independent processes Bj, ..., B;y. In order to hedge
the risk coming from these processes we have to extend our economy with (d — 1) addi-

tional assets. We denote their (unaffected) quoted price process by G* (2 < k < d) and
assume

d
dGl = Y 45 ,dB;,  with Gj > 0.
j=2
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4. The replication in a general model

Roch uses variance swaps to complete the market, which fit into the above pattern (see
Proposition 3.1 in [3]). We assume that the above stochastic differential equations have
a unique strong solution. Furthermore the process M is non-negative and

Y9 = 0.

Then M is a positive Q-submartingale. We assume that the average price per share
G,’f(m), when x shares of the product k at time t are purchased, depends on the slope
M} of its supply curve, e.g.
Gi(x) = GF + M.

A trade of x shares leads to a bid-ask spread, which is refilled with both bid and ask
orders. Denoting by A* the resiliency parameter of the k-th asset, this causes a price
impact of 2\* M}z immediately after the trade. We only use financial derivatives G*
which are frequently traded. For simplicity we assume that the liquidity process is
constant. Thus for k = 2,...,d

Mf=MF  0<t<T.
We are trading the product & due to a semimartingale x* = (x);<r. The observed
quoted price process Gi‘k depends on the trader’s history x*. By (3.6) and (3.14)

GX (AxE) = G —20FANE with  GX = G+ 2AF MYk
A trading strategy in the extended market is a (d + 1)-dimensional process

(Xt7 X%a cey X?; Y;f)téT-

At every time t the hedger holds Y; in the risk free asset, X; shares in the stock and
x"* in the additional assets (k=2,...,d). For simplicity we refer to it as (X, ,Y"), where
x = (%, ..., x%). We again assume that the trader does not hold any shares before time
0, eg. Xo_ = Xléf = (0 and since we want to replicate a claim which delivers cash at
maturity we require Xr = xr = 0. Consequently, the value of a trading strategy at
maturity is
V%(X> X5 Y) =Yr.

We have to adapt the definition of a self-financing trading strategy and admissibility
to the extended model. Similar to Definition 3.7 we call a trading strategy (X, x,Y)
self-financing if its total costs are 0. Analogously to Proposition 3.8 it can be shown
that this is equivalent to the following definition.

Definition 4.1. A trading strategy (X, x,Y) with Xo— = xk_ = X7 = xk =0 (k =
2,...,d) is called self-financing (s.f.t.s.) if and only if

d
k
i+ Xi(S — AMXy) + ) xF(GYy — M MFx)
k=2

t d t
=Y +f Xy-dSy + ). f xb dah — )\f X2 dM, - QV(X,x): (4.1)
0 =2 J0 0
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4. The replication in a general model

where

t
QV(X,x)e=(1-=X) (J M, d[X,X], + MOX§>
d
k k k k k\2
g =k (W], + 0d?) - (4.2)
By (4.1) the initial value in the cash account is

d
Yoo = Yo + Xo(So + MoXo) + > XE(Gh + MFxE).
k=2
The process

d
VM = VM(X,x,Y) = Vi + X4 (S — AM, X;) + 2 (GX, — AFMEAE)

denotes the maximal realizeable wealth of the portfolio (Xi, x¢, Yz). See Section 3.1.4.
QV (X, x) are the costs coming from the quadratic variation. Note that QV is zero if
the trading strategy is continuous and of finite variation with Xo = x2 = ... = x& = 0.
In terms of B this reads

14 t
VM(X,x,Y) =Yy + f Xu—th1 4dB1u — A f X2 W ,du

+ Z J (X ¢]u + - ju + Z Xu ¢j u> diju - QV(X’ X)t

=Yy + Z J ZjudBj, — A f 73 Oudu — QV (X, x)1, (4.3)
—1J0 0
where O,, ) >0 and
= (Wt w)?
Zl,u = Xufwiua (44)
In matrix notation
Z2,u 1zZ)%,u e wg,u ng w%,uXU* + ¢g,u (Xu*)Q
= +
Za Via o U] \xL by Xue + 95, (Xus)?

35



4. The replication in a general model

This transformation has to be invertible. We therefore assume that the matrix

Yi, 0
v, = (wiu)lék,g‘éd = ( é) g2
u

is invertible for 0 < u < T'. Then, for a given Z = (Z1, ..., Z4) we obtain processes X
and y with

AR
X, = 2k (4.6)
vl
and 1 2 1 0 2
X%— B Zu - ¢2,uXU* - wQ,u(XU*)
Co = e : (4.7)
XZ— Zg - 1/15,UXu7 - ¢2,u (Xuf)Q

Definition 4.2. Let M = M + A be the Doob-Meyer decomposition of the Q-local
submartingale M. For t < T we define the process U by

t d ot t
Uy = Uy(X, x) =f X, dS, + EJ Xﬁj_dGﬁ—AJ X2 dM,.
0 i=o Y0 0

d
= 2 f ZjvudBj7u‘
=10

with Z by (4.4) and (4.5). A trading strategy (X,x,Y) is called L?-admissible (with
respect to Q ) if the process U is square integrable,

EQ { sup Utg} < 0.

0<t<T

A sequence (X", X", Y™))nx1 is called L?-admissible if (X", X", Y™) is an L*-admissible
trading strategy for every n. and Z™ by (4.4) and (4.5) converges to Z almost surely
with

T

]EQ[J Z2du] < 0.

0
Remark. To make sure the market is free of arbitrage, it is sufficient to require that
the process U is a supermartingale, e.g. the corresponding strategy is admissible. The
additional restrictions to L2-admissible trading strategies and L2-admissible sequences

are necessary to make statements about the minimal replication value. See Theorem
4.12 and Theorem 4.13.

The process U of an L?-admissible trading strategy is a square integrable Q-Martingale.
The results of Chapter 3.2, in particular Theorem |3.20, can easily be adapted to the
extended model.
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4. The replication in a general model

Theorem 4.3. Since S and G* are Q-local martingales and M is a Q-local submartin-
gale, there exists

e no admissible arbitrage opportunity,

e no admissible asymptotical arbitrage opportunity.
Proof. Analogously to Theorem 3.20. ¢

Example: The stochastic volatility model of A. Roch

A. Roch [3] uses a stochastic volatility model to specify the dynamics of the unaffected
stock price S and the liquidity process M. His model deals with three different sources
of risk:

e The unaffected stock price S,
e The volatility ¥ of the stock,
e The level of liquidity M.
Roch defines the quoted price process S as the solution of
dS; = X5 dWh ¢, Sp > 0.
The processes > and M are defined in terms of U and V, which satisfy
AUy = ~(Uy + n)dt + T'(U)dWa, Uy > 0,
dVi = o(V; + a)dt + A(Vy)dWs 4, Vo > 0.

Here v,n,a,a € R and W = (Wi,t)0<t<T7i=1,2,3 is a Brownian motion with correlated
components. The functions A and I' are chosen such that the solutions of the above
stochastic differential equations are well defined. Then,

Zt:'\/Ut-i-V;g and Mt: %,

for some k > 0. To hedge the risks which are induced by the processes M, ¥ and 5,
Roch expands the model with two additional assets. Empirical works have shown that
the liquidity is in part correlated to the variance of the log-returns of a stock. Therefore
he uses two variance swaps

T

o= J Y2du — K;,  (i=1,2),
0

with maturity 77 # 15 and strike price K;, as intruments to complete the market. He

shows that the corresponding matrix W, is invertible at every time ¢ € [0, T']. In addition

Roch proves that the constructed replication strategy is a viscosity solution of a partial

differential equation. For details see Roch [2].
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4. The replication in a general model

4.2. Smooth trading strategies and the replication problem

We want to approximately replicate a Q-integrable claim H. This means we try to find
a sequence of (L?) admissible s.f.t.s. (X7, X Y"™))nz=1 = (X" X>", o0y X4, Y™)) 1,
with XJ = X = xi" = 5" = 0 for k = 2,..., d, which satisfies
L L'
V(X" x",Y") =Y — H.

Costs can be avoided when we are using continuous trading strategies of finite variation
(smooth trading strategies). Theorem A.6 highlights the special nature of these strate-
gies when it comes to the replication of contingent claims.

In order to show the existence of asymptotic solutions for an integrable claim H,
we deal with the following backward stochastic differential equation (BSDE).

Definition 4.4. For a stopping time 7 < T and a F; measureable random variable H,
which is integrable with respect to Q, consider the BSDE

d
dVi = 3 ZjudBjy — M (t, Zug)dt, 0<t <, (4.8)
j=1

with continuous generator f(t,z) = \z?©; and terminal condition V, = H. This is
equivalent to the stochastic integral equation

T d T
Vi=H+ )\J ]l{uéT}Ziu@udu — Z J ]l{ugr}Zj,udBj,ua 0<t<T.
t j=1 t

A (d+1)-dimensional progessively measureable process (Z,V') = (Z1 4, ..., Zat, Vi)o<t<Ts
which is adapted to the filtration F and satisfies equation (4.8), is called solution of the
BSDE if Zy =0 and Vy = V; forte|r,T| and

E@[J | Z2| du] < co.
0
A solution (Z*,V*) is called minimal if for any solution (Z,V') of (4.8) and t =0

#
V;g,\q— < Viar

Theorem 4.5. The BSDE (4.8) has at least one solution if

(i)3 v>0: 1yen©r <y, for0<t<T and
(i) 3 A>~: E2[exp(\|H|)] < oo,

Proof. See Theorem 2 in P. Briand and Y. Hu [I3].
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Theorem 4.6. Let H and H with H < H' be Fr measureable random variables and
(i))3 v>0: Tyu0: <y, for0<t<T,
(i) EQ [exp(/\ |H| + A ‘H‘)] <o for all A > 0.

If (Z,V) is a solution of (4.8) with terminal condition H and (Z',V') a solution with
terminal condition H' , then

Proof. See Theorem 5 in [14].
¢

Corollary 4.7. If © is uniformly bounded, the solution of the BSDE (4.8) is unique
amongst all solutions which have moments of all order.

Proof. By Theorem 4.6 and Corollary 4 in [14]. ¢

If © is uniformly bounded and H is bounded, the conditions of Corollary 4.7 are
satisfied and the equation has a unique solution. Also see Delbaen, Hu and Richou [7]
on the uniqueness of quadratic BSDEs with convex generators and unbounded terminal
conditions.

Remark. For a solution (Z, V') of the BSDE (4.8) we get processes X and x by (4.6)
and (4.7). If X and x are continuous and of finite variation, then V = VM (X, y,Y) is
the maximal realizeable wealth of the s.f.t.s. (X, x,Y) with Y determined by (4.1). See
(4.3).

In case there exists a solution of the BSDE (4.8) with terminal condition H we construct
a sequence of smooth trading strategies with self-financing and L?-admissible elements
which approximately replicates H

Lemma 4.8. Let 7 < T be a stopping time and H a Q-integrable, F, measureable
random variable. We assume there exists a solution (Z,V') of the BSDE (4.8), the
matriz W, is invertible for t € [0,T] and for a constant K > 0

0
(i) 0 < Tyepy©; = n{t@% < K forte[0,T] and

(ii) 1pery w;i,t‘ <K forte[0,T] and (i,5) € {0,..,d} x {1,....d} .
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Then there exists an L*-admissible sequence (X", X", Y™))n>1 of s.f.t.s. such that Y' =

Vo and for n — o

vr L om.

Proof. Let (Z;, Vi)o<t<r be a solution of the BSDE (4.8). With Z in (4.6) and (4.7) we
transform this solution to (X, x, V) = (X, x¢, Vi)o<e<r, with Xy = x¢y = 0 and V; = V;
for t € [7,T]. Then (X, x, V) solves the equation

T d T T
H=Vy+ f Xy dSu+ )] f X _dGh — )\f X2_dM,. (4.9)
0 f=n Y0 0

Let us define the bounded processes

X" = X1xiem o pi<m) and X" =XL{x|<m ~ |xl<m}- (4.10)
Because of (i) these processes satisfy
T T
B[ (VLSS <0 and B[ (GG <
0 0

By Theorem |A.6| we get a sequence of continuous, bounded processes X" ™ with
X" = X" =X = X" = 0, such that for n — oo

Tﬂn n L? T*m

f XS, —>J X" dS,, (4.11)
0 0
T 2 T

f Xo M dGy, —»J X dG,. (4.12)
0 0

Because the processes are bounded, X " (resp. X"™") is square-integrable with respect
to [S, 5] (resp. [G,G]). Let us construct a s.f.t.s. (X", x™", Y "), where the process
= oF

Y™, with Yo" =Y, =V, is determined by (4.1).

By equation (4.4) and (4.5) with (X, %) instead of X and y, we obtain a pro-
cess 7 = (71”,7721) and analogously we get a process Z = = (21", .., Z;") due

to X", ™. (X, X™) converges to (X,Y) almost surely and consequently Z™ %3 Z.
Because of (4.10) we have that ‘7m‘ < |Z| and since (Z,V) is a solution of the BSDE

(4.8), we know that EQ[Sg Z2du] < 00. The dominated convergence theorem proves

RO Uf(zu TP >0 o)

n

By Theorem A.6 we get X" — X™ almost surely (resp. x""" — x" a.s.) and
consequently by (4.4) and (4.5) with bounded processes ¢, Z"™"™ — Z™ almost surely.
The dominated convergence theorem states

EQ UT@” — W’”)Qdu] , (n — o).

u u
0
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Together we get,

EQ UOT(Z“ — ZT’”)Qdu} <E UOT(Z“ — ZT)Qdu} +E UOT(Zﬁ — Z’"’”)Qdu} — 0.
0

By (4.9) and (4.1) with [X™", X™"] = [y™", x™"] = 0 and X" = 3" = 0,

EC[| V7"~ H |

= E[\ L T(XZ"L" — Xy )dS, + J (X" = Xu— )Gy — AJ (X2 - (Xu_)2)dMu\]

s | |

T n 2 T HM,N\ 92 2
<E J Z," — Z,| du| +E )\KJ (Z1:)? = (Z1u)?|du| — 0
0 0

T T

T T
| @ - zids, -3 [ (@0 - (Z1020udu
0 0

for n —» o0 and m — . Hence, we find a sequence of bounded, continuous trading
strategies (X", x,Y™) with finite variation, such that Y* — H in L'.

It remains to show that the constructed sequence is L?-admissible. X™, x", Y™ are
bounded for every n and by (ii) the processes ¢ are uniformly bounded. Consider

T t

X_dGy, — )\J (X" )2dM,

0

t
U(X™, x") = f X,_dS, —i—J
0 0
t

= f Z"dB,
0

with Z" = (Z7,...,Z}) via equation (4.4) and (4.5) with (X", x") instead of (X, ).
Then Z™ is bounded too. Consequently U;(X™, x™) is a square integrable martingale for
every n and the strategy (X", x",Y") is L?-admissible. Furthermore, Z" — Z almost
surely by construction.

¢

The next theorem states that every integrable claim H can be approximately replicated
if the matrix W, is invertible at every time t. The market therefore is approximately
complete.

Theorem 4.9. If U, is invertible (0 < t < T'), then every integrable contingent claim H
is approzimately replicable. There exists a sequence of continuous, L?>-admissible s.f.t.s.
(X", x™, Y™) with finite variation such that

Lt
Y — H, (n — o).

41



4. The replication in a general model

Proof. Consider the claim

N for H > N,
HN = H for — N < H <N,
—N for H <—N.

We define the stopping time

1 .
T = inf{t < T‘@bit <gor 5| = L for (i,5) € {0,...,d} x {1, ...,d}}. (4.13)

Furthermore, let

oY =g [HY | F,,].
The random variable HY < N is JF, -measureable and bounded. By (4.13)
wé’t‘ < Loand 1,30 < L? for 0 <t < T . Theorem 4.5 states that there

exists a solution to the BSDE (4.8). By Theorem 4.8 we get an L?-admissible sequence of
smooth trading strategies (XN LNy LNy with YT”’L’N — Hiv in L! for n — oo.
Then,

Lp<ryy

EQ HYT’“L’N—HH <E[| yeN _ gy |] +E[| HY = HY ||+E[| H - HY ].

2 3)

Using the martingale convergence for (2) and dominated convergence theorem for (3)
this converges to 0 for n, L, N — c0. Thus, we find a sequence of smooth L?-admissible
s.f.t.s. which asymptotically replicates H.

¢

4.3. The minimal replication value

In contrast to the minimal replication value (of admissible sequences) defined in Sec-
tion 3.3.2, we now restrict our trade to L?-admissible s.f.t.s.. In addition we want the
approximating sequences to be L2-admissible (see Definition 4.2).

Definition 4.10. An L?-admissible approzimating sequence is an L>-admissible
sequence of s.f.t.s. which asymptotically replicates the claim H. The set ®(H) consists
of all L?-admissible approzimating sequences.

In the definition of the minimal replication value in the extended economy, we only
consider L?-admissible approximating sequences ((X™,x",Y™))n>1 with

AX7 = Axp =0, (n>=1).
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4. The replication in a general model

We now justify this restriction. Therefore, consider an arbitrary L?-admissible sequence
(X" XY )z (X" = (3™ ..., x%™)). By (4.4) and (4.5) we get a processes Z" =
(27, ..., Z%). We apply Theorem A.5 to obtain processes Z™™, with AZ"m = 0. Then
Zmm satisfies

t t
f Znmap, J (Z"dBy,  (m — o),
0 0

and if © is uniformly bounded
¢ N o[t
f O (27 ™2y 1 J Ou(ZM2du,  (m — o).
0 0

We assume that U is invertible. By (4.6) and (4.7) we construct Xmm and X™™ with
X" =X and X" = xP for t € [0,7 — L] and AX™ = AY:™ = 0. Then

QVR™™ Y™™ 1 = QX" Xy x =5 QVIX" X1y (m— ).

Since V' is integrable and by the definition of L?-admissible strategies,
EQ[QV (X", x")7] < co. The monotone convergence theorem yields QV()?”"”, ?”’m)T_i
QV(X™, x")r_ in L' for m — oo. Furthermore note that by the definition of QV in
(4.2) and (3.3)

d
QV(X", X" — QV(X™, x")r_ = (1 — A)Mp(AX})? Z — A ME(AXE™?.

With Y™™ determined by }N/O";m = Yj~ and (4.1), the process (Xmm grm yrmy g
self-financing. Then by (4.3) for m — «©

V]V[ (Xnm >znm Ynm)

T—L 7L
= [T Zpmap x| euZi e - QUET

0 0 m
Ll T T
— YL + f ZydBy, — AJ Gu(Zﬁu)Qdu
0 0
d
— QV(X", X" + (1 — N)Mr(AX})? + Z (1= AF) MR (Aykm)2,
k=2
This limit is equal or bigger VA (X" x",Y") = Y& for every n. Because
AXnm — A~nm = 0 we get Qv(Xnm Nnm)T_ — Qv(Xnm Nnm)T- Then

VM (X”m ™ YY) converges to VM (Xmm grm yrmy in LU for k to infinity.

Consequently, for every L2-admissible sequence ((X™,x",Y"))n>1 we find an L2-
admissible sequence ((X", X", Y"))n>1 with Y = Y” and

. n
nlg%oYT > T}grgo Y7 (a.s.).
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4. The replication in a general model

Definition 4.11. The minimal replication value (of L?>-admissible sequences) is

mo(H) = inf {liminf Yj, where (X", X", Y"))p>1 € ®(H) with AX} = Ax} = 0}.

Since G* are Q-local martingales, the process U of an L?-admissible strategy is a Q-
martingale and Lemma [3.26| remains true. Hence,

mo(H) = EQ[H].

For a claim H let ®*(H) € ®(H) denote the set of all approximating sequences which
are continuous and of finite variation (smooth). It turns out that to calculate the
minimal replication value it is sufficient to consider smooth sequences in ®°(H).

Theorem 4.12. Let O, be uniformly bounded and the matriz Yy is invertible for t €
[0,T]. Then the minimal replication value of a contingent claim H satisfies

mo(H) = inf {liminf ", where (X", x",Y"))n>1 € ®°(H)}.

Proof. We show that for every approximating sequence in ®(H) we find a sequence in
®*(H) with equal or lower replication costs. Consider an L?-admissible self-financing
sequence (X", X", Y"™))p=>1 in ®(H) with AX} = Ax% = 0. Then by (4.3) with V;" =
V;M (Xn7 Xn7 Yn)

+ t
Ve =i+ [ s, +2 f "G = | (XM, - QX"

=YL + Z J ZfudBju — J (Z?,u)zgudu — QV (X", x")t. (4.14)

Note that V;* = YJ* — H in L'. For every pair (N, L) we introduce a stopping time
NI = inf{t < TL‘ |V |> N or QV(X™, ") > N} (4.15)

with 77, as in (4.13). V! is integrable, © bounded and E@[SO 7%, du] < oo for j=1,...d
by the definition of an L% admissible strategy. By (4.14) EQ[QV (X", x")r] < o and
consequently 7y 7, — T almost surely for N and L to infinity. Because QV and V" are

cadlag, we get that QV (X", x")ry ,— < N and V" <N . Then with H = V"

TN,L— TN,L—

o d - TN, L— )
T=vy + 3 f 20 dB;, — Afo (2020t — QV(X™, X )1,

d TN,L— TN,L— ~
<YL + Z J 77 dBj . — Af (Z},)*Oudu = H < 2N.
0
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4. The replication in a general model

Consequently (Z”,‘A/) with Vp = Yy is a solution of the BSDE (4.8) with bounded

terminal condition ‘A/T = H and 7 = 7y, —. Furthermore, by Theorem 4.5 there exists
a solution (Z,V) of the same equation, but with terminal condition H = V. Since
H < H Theorem 4.5 yields R

Vo<V =Y.

By Lemma 4.8 there exists an L?-admissible approximating sequence of smooth trading
strategies with initial value Vy which converges to H = V" in L' at maturity T. By

(4.14) e

Since © is bounded and Z" square integrable, the first two integrals converge to zero
for N, L — o by dominated convergence. In general QV is not continuous. But since
AXT} = Axip = 0 we get that QV (X", x")ry,— = QV(X",x")r. Then, the last term
converges to zero by monotone convergence. Hence, we find a sequence of smooth self-
financing and admissible trading strategies which approximately replicates V' and with
initial value equal or smaller Y;* . This is true for every n and consequently we find an

T
f Z"dB,

TN,L—

T
)\J (Z1.,)*Oudu

TN,L—

B [[vg - v || <E® [

]HEQ

+ EQ UQV(X”, Xn)T - QV(X”, Xn)TN,L*H .

approximating sequence of smooth trading strategies (X", ¥, Y™))n>1 in ®*(H) with
lim V' < lim Y.
n—0 n—o0

¢

Theorem 4.13. Let O, be uniformly bounded and V., invertible on [0,T]. If the BSDE
(4.8) (with T =T and terminal condition H) has a minimal solution (Z*,V*), then the
minimal replication value of o clatm H satisfies

Proof. By Lemma 4.8 for every solution (Z,V) of the BSDE (4.8) with 7 = T and
terminal condition H we find an approximating sequence in ®*(H). Hence,

mo(H) < Vy'".

On the other hand we consider an L?admissible approximating sequence
(X", X", Y"™"))p>1 in ®°(H). Since O is uniformly bounded and by the definition
of an L?-admissible sequence of trading strategies

d d
Z JZJ’-fudBu uep, 2 JZj,udBu
= j=1
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4. The replication in a general model

and
J(Zﬁu) Oudy —> | Z1,Oudy.

Then by (4.3)

V=Y +ZJ Z7dB, f(zlu) Oudy

v+ Z f Z;.udB, — f 72 ,0ud, = Vi,
: 0 0

with Vo = lim,, 0 Y'. We get V' — H in L' and Vi — Vr in probability. Consequently
H = Vr almost surely or equivalently

d T T
H=Vy+ ) f Z; udBy — f 7} ,Oudy.
—1J0 0

Hence, (Z,V) is a solution of the BSDE (4.8) with 7 = T and terminal condition H.
Together with Theorem 4.12 we get

4.4. Analytical properties of the average price per share

In this section we investigate claims of the form
H = h(S7)

where ()A(, X, }A/) = ()A(t, Xt }AQ)KKT is the perfect continuous hedge of an arbitrary claim
H in the model without illiquidity (the case M = 0) and X7 = 0. This means at
maturity T all stock shares are sold. Then by (3.7)

T

SX = Sp —2) f X, _dM,. (4.16)
0
In a model without illiquidity (x)?t,xi,xﬁ)ogth is the hedge of the claim ¢H and
EQ[zH] = 2EQ[H] its price. In our model with illiquidity the minimal replication value
mo(H) is not linear in H. We therefore consider the claim

* = n(sE)

and investigate the dependence of mo(xH®*) on x. Our first aim is to show that the
average price per share converges to EQ[h(S7)] when the number of purchased shares
goes to zero.
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4. The replication in a general model

Theorem 4.14. If h is continuous then

m@HY) | gemsn)], (@ 0).

Proof. For the claim H® consider
()N = hN(555)
with hY(z) = max (min(h(x), N), —N) and
(H)} =B [(H)N|F,]
with stopping time 77, defined in (4.13). Then

zN, (4.17)
L’ 0<t<T. (4.18)

By Theorem 4.5 for every x, L, N there exists a solution (V*, Z%), with V;* = V. and
Zt =0 for t € [rr,, T, which solves the stochastic integral equation

T
oY = Vi + |

T
ZFdB, — A f (Z{ ,)?Oudu. (4.19)
t t

Lemma 4.8 states that there exists an L?-admissible, approximating sequence of contin-
wous s.f.t.s. (X®7 x™" Y*") with Y™ = V.

We want to show the result for x — 0 and therefore consider small values x with

1

—_. 4.2
By the maximum principle (Proposition 2.1 in Kobylanski [11])
1
VP IS [2IN < 5750 0st<T (4.21)

The formula of Ito applied on f(V,*) = (V;¥)?, with V* by (4.19), yields

T T

1

(w(H")E)? = (V) = 2j <A@u<2fu>2Vf -5 12 F) du + 2 f Vi ZydB,
t

t

(4.18) T T

> (V)2 + f (1—=X2L2 | VZ|) | Z% |? du + 2f V2 Z%dB,
t t

(4.21)

21 ) T ) T
> (V") +J 5 | Z35 |° du + 2[ VEZEdB,,. (4.22)
t t
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4. The replication in a general model

VFZ? is square integrable. Then

T (4.18) T
EQ U O.u( fu)Qdu|}"t} < E@ U L*| Z% |2 du|]-"t]
t t
(4.22))
< 2L°ER [(x(H™)M)? | ]

(4.17)
< 222 L2N2 (4.23)

Furthermore, by (4.19) 1V# = E@ [E@[h(sge??) | Frp ] + 2§ 0,(25,)2du | ]-"t]. This
together with (4.23) yields

1 ~
—VF —EQRN(SFY) | Frpad]

T

A T T \2
= ©.(Z7,,) du
e t ’

:E@{

‘J—}} < 22L2N2.

The continuity of hYY implies hY (S%X ) — hN(S7) for  — 0. Since A" is bounded the

dominated convergence theorem yields EQ[hN (S5X) | Fr, at] — EQ[RN(ST) | Frp at] for
x — 0. Hence,
1
i VT — RQ [N
lim wvt E® [h™ (S7) | Frpat] - (4.24)
By Lemma 3.26 and EQ[(H®)¥] = EQ[(H*)VN] we get EQ[z(H*)N] < mo(z(H*)Y) and
consequently for x # 0
EQ[(HCE)N] < Wo(w(HI)g)
x

Then,
H* N
X X

and by (4.24) for every N > 0 and L > 0

7T0<9«"(:£H””>5> — BN (Sp)], (@ 0).

Since HY L H for N,L — o

mo(zH?)
x

— EY(SD)], (x> 0).

¢

For the remaining part of this section ()?t,k\t, f/t)ogth, with )2} = %Xt = 0 and f’t =Y,
for t € [t,T], denotes the perfect hedge of the claim

HY =E?[rN(Sy)|Fx, |

48



4. The replication in a general model

in a model without illiquidity. Then by (4.3) with M =0
HY =V, + )] J Z;udBj . (4.25)
j=1""

where Vp = Y; and Z; = (21,t,---,2d,t) is given by (4.4) and (4.5). Because HY is
bounded, we get that E? [Sg Z2du) < oo.

Let (V*,Z%) be the solution of the BSDE (4.19), with F,, measureable terminal
condition

(1Y = E2 [nN(SFEO| - |

By Theorem 4.5 this solution is unique with Z¥ = 0 for t € [rz,T]. With Z7 in (4.6) we
define a (caglad) process X* = (X} )o<t<r With X =0 for ¢t € |71, T].

Lemma 4.15. If h is Lipschitz continuous then

~

1
Sxt % (- 0),
XT

and ,
[ %
S%(—i- - %)—i{m (':U - 0)
w 2
Remark. Since h is Lipschitz continuous this is equivalent to h(S7',) RGN
addition we show that for small x the quadratic error is

h(S3X). Tn

EC[(h(S75) — h(SF))*] = O(a?).
Proof. By (4.19) and (4.25)
T\ N N 1 1/ A (T T \2 i x >
(H*)p — Hp = (;‘/t - Vi) - 7 Ou(Z7,) du+ | (=2} — Zu)dBy. (4.26)
0
The formula of Ito yields
z\N NY2 1 T  1r\2 AT T \2 1 x
((H )L _HL) = (;Vo - W) —2; o @u(Zl,u) (;V — Vu)du

T N T 1 ~ 1 N
+ f (=Z% — Zy)*du + 2f (=Z% — Z,)(=V¥ = V,)dB,.
0 X 0 X X
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4. The replication in a general model

The integrand of the last integral is square integrable and its expectation is 0. Then,

E¢ UOT : du]

_EQ UE@ |1 (55%) — h(sp) | 7., |

1 ~
7~ Z,

| -me[Gve - o]

Q 1 (7 x \2 1 T >
+EQ 20 | Ou(Z1) (VT - V)

. 2 2)\L? T el . &
< B9 s59) — nisnf 1+ 2 | [ 20 Lve - T

a

By Proposition 2.1 in Kobylanski [IT] [V < N and | L] < N. Therefore, |1V — V| <

2N. By (4.23)
T 1
E@U 2z 2| Lve -
0 T

y (3.7) and because h is Lipschitz continuous with Lipschitz constant K

T ~
f Zl,u
0
The processes 1, are bounded for v < 77, 7 is square-integrable and dM, = ¥{du +
2?12 @b?’udBj,u. Hence, we find constants C7 and Cs such that

Va

du] < 42%L%N3.

(4.4)
uw < 2KLAx

_ (4.27)

h(S%%) — h(ST)‘ < 2K )z

2

T
1 ~
EQ [J fof — Zy < C1$2 + Cox = O(:C) (4.28)
. |x
~ 1lgz > ~ ~
As ‘%X{f — X, = Iwil,’u — ii” <L ‘qu — Z1,u| we get that iXx converges to X in L2.

By (3.6) with X2 = X7 =0

. T,
ST — 55X — 9\ L (a:Xu - X{f) M,

T
:2)\L@ (leu Zz, du+2)\ZJ o J:Zlu qu)dBj,u.

‘ho

1 2 and ©; < L? for t < 77. Then for

1,t

Zyy = Z§, =0 for t € [, T] and by (4.13)

<<
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4. The replication in a general model

some constant C' > 0
X bk
59 |5 - s+ ]

d

T, 2 T, 2
< SA2L2EY [(J (le,u - Z%,u> du> ] +8A\2L2EC (Z J (le,u - Z%,u> dBj,u)
0 =Jo
T /. 1 2 | @os)
< C$2EQ [J (Zl,u - J;Zﬁu) dU] = 0(5U3)
0

¢

The average price per share depends on the number of purchased shares x and is deter-
mined by the supply curve
S (x) = S + Myx.

The liquidity premium per share M; gives the additional costs for every purchased stock.
We are interested in a similar presentation for the average price 1mo((H?®)Y) for « units
of the bounded contingent claim (Hm)g By Theorem 4.13, with 1y, 1©; uniformly
bounded, we get that

() = 5 (Bw). o

xXr T T

Furthermore by (4.24) %Vox -V, = EQ [HY]. Consequently, we define

d (1
= zy=
dx (x 0 )

If this value exists, we use

1,1 N
= lim —(=V¥ — V}).

=0 =0T X

%WO ((HHY) ~ EHY] + M (4.29)

with MH = % (%VO‘E) . as an approximation for the average price if the number of
Tr=

units z is small. In that case M can be interpreted as the additional cost per unit for
the replication of the claim, which is caused by illiquidity.

The following proposition gives a condition when this derivative M exists and shows
how it can be computed in terms of the solution of the replication problem without
trade impacts.
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4. The replication in a general model

Theorem 4.16. If k"N is Lipschitz continuous and differentiable except at a finite number
of points, then iVOx is differentiable with respect to x and the derivative is

éi( VO) = ME [f@u@lm)%u}—?m@ [(hN>’<sT> fo ZludM]

wl u
Proof. We want to compute

=0

By the definition of 77, we have that 1,<;, ;0 < L? and by construction Zy, = 21,u =0
for w € [11,T]. By (4.26) we get

11 0 y ol T Z1u
( Vi — Vo) — AE U 0u(Z1,)%d ]+2)\]E [(h )(S)f0 wiudM“]

)\ T
.+ xj 0.(21.)%u|

T ~ , Z u
—~EQ {A f @quudu}JrE@ [2)\(hN) (S7) : dM”
t

X

- [E© {E@ [i (AN (55%) = ¥ (57))

0 ul
1 % ’ T 2 u
<EQ||= (hN(S%X) - hN(ST)) +2ABNY (Sr) | Stam,
x 0 d]l,u
T (78 N2 .
+AL? |EC /\J (“‘) — 72, | dull. (4.30)
0 z '

Because of (4.28) the second term converges to 0 for x — 0. Furthermore, since hY is
differentiable

T 7
N(czX N N _ Lu _pN
im% . (h (ST%)—h (ST)> = hn%— (h (ST 2)\33J0 i dMu> h (ST)>

z—0 T 1u
b

d 71,
= —hV S — 2/\xJ —dM,
dSU < 0 'l/}l u

T
, Z1u
— —2X(AN) (S7) J dM,.
1u

By (4.27) with Z square integrable and processes 1 bounded, we get

T ~
J Zl,u u :| <0
0

The dominated convergence theorem yields that the first part in (4.30) converges to 0
for x — 0.

EQ HhN (525) — BV (ST)H < 2\ K LEY [

¢
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4. The replication in a general model

Remark. If (Z% V®) is the solution of (4.19) with terminal condition xHY =
sEQ[WN (ST) | Fr,] instead of x(H*)Y = 2EQ[RN (S2X) | F;, ], we get

T (7178 \? =
EQ AJ (“) ~ 7% |du| -0
0 z ’
similar to (4.28) and similar to (4.24)
1 ~
A
x

AnalogouslyAto Theorem 4.16| the slope of the supply curve (in x = 0) can be calculated
in terms of Z and satisfies

1,1 ~ T
—CVE - To) - AEC U @u(zm)?du] : (4.31)
0
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In general the minimal replication costs of a claim is not its expected outcome. The
expected liquidity costs in the presented model, where M is a submartingale, are non-
negative (E2[Ly] > 0) and the minimal replication value therefore bigger or equal to
the expectation. We now prove that if the liquidity M is a Q-local martingale, the price
of the claim is as in classical theory given by

" = EQ[H).

We assume that M is a Q-local martingale, i.e. ¢?7u =0for 0 <u<T and

d
= D ¥ dBju. (5.1)
j=2

Theorem 5.1. If M is a Q-local martingale and the matriz Uy invertible for 0 <t < T,
then the minimal replication value mo(H) of a contingent claim H at time 0 is equal to
the expected outcome

mo(H) = EX[H].
Proof. Due to Lemma 3.26/ we already know

mo(H) > E[H].

Consider the approximating sequence of smooth trading strategies (X", x",Y")n>1
constructed in the proof of Theorem 4.9 with X7 = X§ = x7 = x5 = 0 and
[X", X" = [X",x"]: = 0. Hence, QV(X",x")r = 0 and since M is a Q-local mar-
tingale M = M. By (4.1) and the definition of the process U

T T

YR =Y +J " dS, + Z J Fagk — J (X! )2dM,
0 0
= Ybn— + UT( >X )

Because (X", x",Y™") is L?-admissible the process Ur(X",x") is a martingale and
EQ[Y2] = Y. Since Y converges to H in L!

B9[] = Jiy E°[¥F] = Jin, %"

This implies mo(H) = EQ [H].
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5. The replication if M is a martingale

Theorem 5.2. Under the same conditions as in Theorem 5.1 every time-0 value pf #
EQ [H] of a Q-integrable claim H leads to arbitrage opportunilies in a model extended
with the trade of H.

Proof. For the claim H let (X", x",Y"))n>1 be an approximating sequence. In general
the elements of the sequence ((—X",—x",—Y")),>1 are not self-financing and the
sequence is therefore no asymptotic solution of the claim (—H). But since (—H) is
integrable and mo(—H) = EQ [-H] = —EQ [H], there exists an approximating sequence
(X", X" Y™))ps1 with Y2 — (—H) in L' and Y* = —EQ[H]. TIf p! # E[H], we can
generate arbitrage:

e p > —EQ[H]: At time 0 we sell the claim H at price p/’. Then p! —E[H] = ¢ > 0.
The sequence of trading strategies (X", x™, Y™ +¢))n>1 is an asymptotic arbitrage
opportunity.

e p! < EQ[H]: We buy the claim H at price p/ and invest E2[H] — p! = ¢ > 0
in the risk free asset. The sequence ((X™, X", Y" + ¢))n>1 generates asymptotical
arbitrage.

¢
Corollary 5.3. The equivalent martingale measure Q is unique.
Proof. Consider the claim H = 14 where A € Fpr. Then
Q(A) =E%[14] = g
Since the minimal replication value is independent of the measure Q, QQ is unique.
¢

Remark. If M is a Q-local martingale, Q is unique and the price of a contingent claim
H is equal to the classical price EQ [H]. Nevertheless, the replication strategy in a model
with liquidity risk is different from the hedge in classical theory.

We illustrate this in the following example.
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5. The replication if M is a martingale

Example: - Constant liquidity in a Black-Scholes economy:

Consider a specific model, where B is a one dimensional Brownian motion (d=1)
and

wahl = oSy
1/12,1 =0

with 0 > 0, Sg > 0 and My = M > 0 for 0 <t < T. Consequently, the liquidity process
M is constant and the unaffected quoted price process is a geometric Brownian motion

dSy = 0S,dBu,

or equivalently

o2
Sy = 0Sg exp (O‘Bt — 275) )

By (3.15) the liquidity costs of a s.f.t.s are
Ly = AMX? + (1 - MM ([X, X]: + X3) > 0.

We immediately see that Ly = 0 if the process X is continuous with finite variation and
satisfies X7 = Xy = 0. In that case StX =5, + 2AM X; and Sr_,)w( = St.

Consider a European call option with strike K on the quoted stock price Sr, which
delivers cash at maturity T, i.e.

H = (Sr — K),.

Because M is a martingale, by Theorem [5.1 the fair price of this claim is equal to its
expectation
ro(H) = E[(S7 - K).],

which is well known and given by the Black-Scholes formula
7 = 8,®(dy) — K&(dy — ov/T — 1)

log(§t) + $0X(T — 1)

B ovT —1

where @ is the standard cumulative normal distribution function. The classical A-Hedge
of the call option is (X,Y) = (Xy, Yi)o<t<r With

dy

X, =®(d;) and Y, =—K®&(d, —oVT —1).
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5. The replication if M is a martingale

This trading strategy is continuous, but not of finite variation. In a model with liquidity
risk this strategy does not replicate the payoff (S7— K) . In fact it leads to the following
liquidity costs

Ly = AMX2+ (1 - \M ([X,)?]T + )?3)

u

= AM (®(dr))* + (1 = )M (2(do))” + (1 - /\)MLTd [®(du), D(du)]

T, 2
— AM (®(dr))2 + (1 — \)M (®(d))? + (1 — A)MJO ((I) (du)> d[dy, du],

, 2
P (d,
— AM (®(dr))* + (1 = NM (8(do))? + (1 - A)Mf: (T(_i)d“

since ) g g
d[dy, du], = md {IOg(K)’IOg(K)} = du.

See Cetin, Jarrow, Protter, Warachka [23] in this context.

Figure 5.1 shows the value of the A-Hedge in the Black-Scholes model (BS) and
the value of the same hedge in the model with liquidity risk (LR). In this plot we
observe the hedge of a call option with Sy = 80, 0 = 0.3, strike price K = 75 and a
maturity of T' = 0.5 years. In addition we use the following model parameters in the
model with liquidity risk: A = 0.5. The parameter M usually takes very small values,
but to demonstrate a significant difference between the models we choose a big value
M=10. For a trading strategy X = (X;)o<t<r and initial value Y?% = Y& = EQ[H],
let (X,Y5%) be a self-financing strategy in the Black Scholes model (3.13) and by
(3.11) let (X,YL®) be a s.f.t.s in the model with liquidity risk. Furthermore, let us
define V,P%(X) = V;(X,YB%) as the value of (X,Y5%) in the BS model (M = 0) and
VEIR(X) = VX, YER) as the value of (X, Y?F) in the model with liquidity risk. In
the observed trajectory the stock price takes the value ST = 90.69 and the A-Hedge X
leads to the following values:

9 (X) - ViH(X) = 0

VP (X) = VER(X) = 5.00
VFH(X) = VEH(X) = 5.68
@5(2) - Vg()?) = 5.51
VES(X) — VER(X) = 6.35.
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5. The replication if M is a martingale

40

— Delta-Hedge without LR
— Delta-Hedge with LR

Value
20
!

10

Time
Figure 5.1.: The Delta-Hedge in the BS and LR model

Note that the value of the trading strategy in the model with illiquidity (LR) in Figure
5.1 has a jump immediately after time 0. This is due to the term (1 — \)M XZ in the
liquidity costs (3.15).

We now construct a smooth version of the A-Hedge and show that the trading strategy
converges to the claim C at maturity. Therefore, let (X", Y™), with YJ' = Yy = EQ[H],
be a s.f.t.s in the model with liquidity risk and

~ _{ngét_}l)vo)z'udu, 0<t<T—%,
=

n
n2(T — )X T-1<t<T

1,
n

The continuous process X" is bounded and of finite variation with )?1_7; = 0. By (3.12)
with M constant and Theorem A.6

~ ~ T ~ 2 ~ T ~
Ve =3 +J Xr_ds, 25 Y, +J Xy_dS, =H,  (n— ).
0 0
For a fixed n the error

u

T
H-Yp= f (X" — X,)05,dB,
0

is normally distributed with a variance converging to zero. Figure 5.2| compares the
A-Hedge with the constructed smooth trading strategy (with n ~ 8). For the observed
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5. The replication if M is a martingale

— Delta-Hedge without LR
— Smoothed-Hedge with LR

Value

Time

Figure 5.2.: The replication strategy in the BS and LR model

trajectory the following values are obtained,

VP (X) = V(X = 0

st (X) — V%LR()NC”) —1.96
st(f() - V%LR()N(”) — 231
V@S (X)— V%R()N(”) — 3.28
VES(X) — VER(X™) = 1.50

We see that in the liquidity risk model the smooth hedge results in a better replication
than the A-Hedge.

This model is an extension of the liquidity risk model of Cetin, Jarrow, and Prot-
ter [22]. In their model the stock price is determined by an increasing supply curve, but
it is assumed that the trader acts as a price taker and consequently does not trigger any
price impacts.

From now on we deal with a more sophisticated liquidity process. If M is a strict
submartingale the replication value of an asset differs from the expected payoff of a
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5. The replication if M is a martingale

claim. In order to calculate this value we have to reconstruct the claim using the basic
assets of our economy.
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6. Calculation of the minimal replication
value

In Section 4.1 we create a sequence of smooth trading strategies, which approximately
replicates the Q-integrable claim H. Furthermore we have seen that in order to calculate
the minimal replication costs we only consider smooth admissible sequences. To obtain
the minimal replication value we solve the BSDE

d
dVy = =AZ7,0udu+ ) Z;udBju, 0<u<T, (6.1)
j=1
with terminal condition
Vi = H.

By Theorem 4.6| if

(i) W is invertible,
(ii) © is uniformily bounded,
(iii) there exists a minimal solution (Z*, V*) of the BSDE (6.1),

then the minimal replication value satisfies

mo(H) = V.

In this chapter we consider simple economies. For contingent claims which depend on
the unaffected quoted stock price we calculate the minimal replication costs mo(H ).

We assume that the liquidity process M is deterministic. To make sure the model
is free of arbitrage we want M to be a submaringale. Hence, (M;)o<t<r is a determin-
istic non-decreasing function. We consider models, where the unaffected stock price is
given by a Bachelier and a Black-Scholes economy.

6.1. A Bachelier model with deterministic liquidity

Let us consider the model

dSy = 0d By, So > 0,
dM; = cdt, Moy >0,
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6. Calculation of the minimal replication value

where o > (0, ¢ > 0 and B is a one dimensional Brownian motion. The unaffected stock
price is given by a Bachelier process

Sy =Sy +oB;

and the supply curve is a linear function in time with a positive slope. In the notation
of the general model of Section 4.1 this is equivalent to

v =c
Y1=0
and 1/);‘ = 0 otherwise. ©, = ~5 is constant and ¥, = o is invertible (d=1). To obtain

the minimal replication costs mo(H ), we want to find a minimal solution of the BSDE
(6.1) or equivalently a minimal solution (Z, V') of the equation

k T T
H:Vt—2£ ngu+£ ZyudBy, 0<t<T, (6.2)

with k = %'—’\2" We derive a closed form solution for this equation and show that it is

minimal.

Theorem 6.1. Let H > 0 be a F;-measureable random variable with EQ[exp(2kH)] <
. Then there exists a minimal solution (Z,V') of (6.2) with

Vi = %log (E@ [exp (kH) ‘ft]) .

Proof. The process N; = EQ [exp (kH) ‘]—}] is a square-integrable martingale. By the
martingale representation theorem there exists a predictable process X with

t
N, = Np + J X,dB,.
0

Let us define

1 X
V; = z log(Ny) and Zy = k:T\%

Then Vy = 4 log(exp(kH)) = H and the formula of Ito yields

1 1 k
v, = dN; — dNy)? = Z,dB; — ~ Z%dB;.
t th t QthQ( t) t t 2 t t

This is equivalent to equation (6.2). By martingale presentation theorem
EQ [SOT(k;NuZu)Qdu] < . Since N; > 1 we conclude E@ [SOT ngu] < 0. Hence,
(Z,V) is a solution of the BSDE (6.2).

62



6. Calculation of the minimal replication value

It remains to show that the solution is minimal. For an arbitrary solution (Z,V)
consider E; = exp(kV;). Then Ep = exp(kH) and by Ito

~ 1 ~ ~
dE, = kE,dV, + §k2Et(dW)2 = kE,Z,dB;.

The process E is a Q-local martingale which is bounded from below. Hence, E is a
supermartingale and

exp(kV;) = B, > E9 [exp(kH)‘]:t] = Ny = exp(kV}).

Consequently,
Vi< Vi, 0<t<T.

¢

Lemma 6.2. The minimal replication value of the European option H = (Sp — K)
(resp. H = (K — St)4) is

mo(H) = 1 log (B2 fexp(k )

where k = 20—’\2‘3 and

E? [exp(k(St — K) )] = exp (k‘(So -K)+ ;kQOQT) ®(—d® + okVT) + ®(dP)
E? [exp(k(K — S7)4)] = exp (k(K — S7) + ;k202T> (dP + okVT) + ®(—d?)

where ® denotes the cumulative distribution function of o standard normal distribution
and
K -5

dP = .
o/T

Proof. The claim H = (Sp — K), satisfies

E%exp(2kH)] < exp (2k(Sy — K)) E? [exp(2koWr)]
= exp (2k(Sy — K)) exp(2ko?T) < oo.
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6. Calculation of the minimal replication value

Note that Sr > K is equivalent to Wy

EQ [exp(k(St — K)4)]
= exp(k(So — K))E® [exp(koWrl (s, - ky)]

1 *© 1
= exp(k(So — K))ﬁ JK_SO exp ( 5T —(2* — 2Tk‘a:v)) dx

—5Sg 9
exp (_w) dx
24/(T

= exp (k:(So— K) + 2k2 )m s (—i(“\é’“’)ﬁ dz

+ ol exp (_QWT)> dx
el (5 o (52).

The calculation for H = (St — K)4 is similar. ¢

+7
27T J-

To compare the replication costs with the values in classical arbitrage theory, let us
consider the price of a European option in the Bachelier model without liquidity risk
(LR). The price of a European call option in a Bachelier model without LR is

CP = (So — K)® (—dP) + ovVTp(d®)

where @ is the CDF and ¢ is the density function of a standard normal distribution and

dB = li \;0 By the Call-Put parity the price of a put option is

PP =K -5,-C5.
We compare this price with the minimal replication costs of smooth strategies in the
model with deterministic liquidity. We consider a European call option H = (Sp — K)+
with strike price K = 100 and maturity 7' = 0.5. In addition we use the following model

parameters: A = 1, 0 = 3 and ¢ = 0.5. Figure 6.1 shows the price of the option for
different initial values of the underlying stock price.

As expected the replication costs in the model with liquidtiy risk is slightly bigger than
the price in classical theory. This is due to the positive liquidity costs

T
Lp(X™) — )\J X2 dM,,
0
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6. Calculation of the minimal replication value

— Replication cost with LR
— Bachelier price

Replication value

K-2 K K+2

Figure 6.1.: Replication value: Sp ~ K

where X" is the smooth replication strategy in the model with LR and X; = % where

(Z,V) is the minimal solution of the BSDE. See Proposition (3.15). The replication
costs of a claim are an increasing function in the size of the transaction. This will be
further discussed in Section 6.2.

We are interested in the impact of A on the minimal replication value. Remember
that the bid-ask spread is filled up immediately after a trade. The parameter A € [0, 1]
is the part of the spread which is refilled with ask orders and therefore corresponds to
the impact on the stock price. Then, A = 0 corresponds to no price impact and A = 1
indicates the biggest impact. Figure 6.2 illustrates the impact of the parameter A on
the replication costs of the call option with Sy = 98.

The slope of the supply curve ¢ has the same impact on the replication costs as A. This
is reasonable since ¢ determines the size of the bid-ask spread after a trade. See Figure
6.3l

As a second example consider the claim

H® = (SF* — K),
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. Calculation of the minimal replication value

Replication value

Replication value

0.30

025

0.20

04

03

02

01

00

T T T T T
0 025 0.5 0.75 1

Lambda

Figure 6.2.: Impact of parameter A € [0, 1]

Slope of the illiquidity

Figure 6.3.: Impact of the slope ¢ > 0
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6. Calculation of the minimal replication value

where Sj”if( is the observed quoted price and X denotes the stock part of the hedge

()A(, EA/) in the model without illiquidity, e.g. X; = @(f\t/%).

We use a Monte-Carlo simulation to calculate the expectation E%[exp(kH?)]. Since
H* < H, where H = (Sp — K),, the replication costs of H* are less or equal to the
costs of H. In Figure 6.4 we consider the replication costs of the claim H* and H with
the same model parameters. For A = 1 and a high slope of the illiquidity ¢ = 0.5, the
replication costs of H* are lower than the price in classical theory.

CwithLR
— HwithLR
— Hwithout LR

Replication value

K-2 K K+2

S0

Figure 6.4.: Replication value: Sy~ K

6.2. A Black-Scholes model with deterministic liquidity

We assume that the unaffected stock price is the Black-Scholes price and the liquidity
process is again a linear function with constant, positive slope

dSt = O'StdBt, S() > 0,
dM, = cdt, My > 0,
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6. Calculation of the minimal replication value

where 0 > 0 and ¢ > 0. Then S; = Spexp(ocB; — "7275) > 0. Fitting this model in the
general model of Chapter 4 means

W =c

w% = O'St

and w; = 0 otherwise. ¥, = wiu > 0 but the process ©, = @ is not bounded. Hence,
for a claim H we consider

with the stopping time 77, < T' defined in (4.13). Then, 1<, 10 < L? and the solution
(ZNL VLY of the stochastic integral equation

HY = E© [max (min(H, N), —N)

T T
HY =Vi-A[ Ofzitu+ | Zub,  o<ts<T. (6.3)
t t

is unique. By Theorem 4.13/ we get mo(HY) = %N’L. Furthermore, 7, — T a.s. and
HYN — H in L'

Since we do not know a closed form solution of this BSDE, we look for a numeri-
cal approximation. To apply numerical methods we have to get rid of the dependency
of the claim HY on S,,. Instead of equation (6.3) we consider

e T 22 T
H=V,— 25| Zug, Z,dB,, <t<T, 4
t ) , S2 +Jt 0 (6 )

where H is a function of the unaffected quoted price Sp. We assume that if there exists
a solution (Z, V) of (6.4), then V""" — V4.

Let us define the value process
‘/;f = F(t> St)

with F(T,Sr) = H and F(0,S)) = Yp. If F is sufficiently smooth, then by Ito’s
formula

oF OF 10F?
Vi = Gpdt+ 5g dSi+ 5 55 dlS Sl
oF 0F?o? oF
= = —82 ) dt + =—=0S:;dB
<8t+652 ) T 55,0

On the other hand, by (6.4) V; satisfies

dVy = ZEdt + ZydBy.

o2 52
The BSDE satisfies the Markov property and a comparison of the coefficients yields
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6. Calculation of the minimal replication value

oF
Zp = —
t aStUStv
(i)
oF o0F?0% , Ac o
ot T a i T T ag

Condition (ii) with Z; by (i) results in the following partial differential equation (PDE).

If the value process F(t,x) is two-times differentiable then it satisfies

—_ — —_— 27 —_—
En + p + 5 T 322 0 (6.5)

oF (ap) > g% ,0F?

Ac =
fort € [0,7] and x € (0,0). Conversely, if (6.5) has a classical solution then V; = F(¢t, S;)
satisfies (6.4).

Remark. A. Roch [3] proved that F'(¢,z) is a viscosity solution of (6.5).

Remark. If H depends on the stock price Sq):( = Sp— /\SOT )A(S,dMu, where X is the
hedge in the Black-Scholes model without illiquidtiy, the claim depends on (S)o<i<r
and (My)o<t<7- To get rid of this path dependency, Roch [3] defines a process

t
L = 2>\J X2 dM,.
0

Then H is a function of the quoted stock price St and L. The resulting PDE has 3
dimensions and is therefore more complicated than equation (6.5), where H = F(T, St).

To obtain the numerical replication costs of a claim H = F(T, St) we use two different
numerical methods. We first solve the corresponding PDE (6.5) in a finite difference
scheme. In addition, we solve the BSDE (6.4) in a binomial tree. From now on we
assume that the solution is correct if the results of these two methods match each other.
In that case we denote the numerical replication costs by 7 (H). See Appendix B for
further information on the numerical methods.

Let us have a look at the replication costs 7)'(H) of a European put option
H = (K — St)+. Remember that the price of this option in classical theory is
given by the Black-Scholes formula

PES = K& (—dP® + oVT) — Sy®(—dP)

where S .
JBS _ log(22 + 50°T)

oVT
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6. Calculation of the minimal replication value

We define K = 100 and T" = 0.5 and choose the following model parameters: A\ = 1,
o = 0.3 and ¢ = 0.5. The finite difference method calculates the prices of options for
So € [0,U], for an upper bound U = 200. Figure 6.5 compares the price of the put
option in the BS model without illiquidity (red) and the (numerical) replication value
in the model with liquidity risk (blue). A close-up (Figure 6.6) for initial values around

100
|

80
|

— Replication cost with LR
— Black-Schaoles price

80
|

Replication value
40

20
|

Figure 6.5.: Replication value: Furopean put option

the strike price K shows that the numerical replication value in the model with liquidity
risk is bigger than the Black-Scholes price. This is due to the positive liquidity costs

T
Lp(X™) — )\CJ X2 du
0

where (X", Y™) is the smooth approximating replication strategy and X, = fl—s’z, where
(Z,V) is the solution of the BSDE (6.4). See Proposition 3.15.

We are interested in the average price per share if x shares are purchased. We
therefore consider the value

H(r) = Ll (o(K — 1))

where x is the order size. Figure 6.7 represents H(x) with initial underlying value
So = 105 dependent on the size of the transaction x. Recall that the supply curve of the
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6. Calculation of the minimal replication value

Replication value

Average price

10

Figure 6.6.: Replication value: Sg ~ K

— Price per share with LR
— Price per share without LR

T T T T T
-20 -10 0 10 20

Size of transaction

Figure 6.7.: The supply curve of the put option
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6. Calculation of the minimal replication value

stock price is linear with a positive slope. Figure 6.7 suggests that similar to the stock
price the average price per share of the claim H is an increasing linear function in the
order size. Since H = h(S7) is bounded and h Lipschitz continuous, we get the slope of
the supply curve in x = 0 by (4.31). We then use the approximation

H(z) ~ H(0) + H (0) - ,

where

H (0) = \E UOT @u@,u)?du] — \E UT c(f(u)Qdu] .

0
The A-Hedge X in the classical theory is

5 log(%t) + Lo?(T —t)
X—<I>( KU\/T27_t )—1.

A Monte-Carlo simulation yields
H' ~ 0.0658

and H(0) = 6.385. Hence by (4.29)
H(z) ~ 6.385 + 0.0658z. (6.6)

Figure 6.8/ compares this approximation (red) of the price per share with the supply curve
H(x) of Figure 6.7. We notice that the impact of liquidity is more than linear. For big
values z the replication value is significantly higher than the linear approximation. This
is expected since L(zX) = 2?L(X) for z € R. Nevertheless, if the number of purchased
claims is small, (6.6) serves as a good approximation of the exact (numerical) results.
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6. Calculation of the minimal replication value

Average price
7
!

— Supply-Curve with LR
— Approximation with LR

T T T T T
-20 -10 0 10 20

Size of transaction

Figure 6.8.: The approximation of the supply curve
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A. Smoothing of stochastic integrals

Definition A.1. Let X be a semimartingale. X is called a special semimartingale if
it has a decomposition

X=N+A4
where N, No = Xo, is a local martingale and A, Ay = 0, a predictable process which
has finite variation.

Remark. It can be shown that a semimartingale X is special if and only if X is locally
integrable. Furthermore, note that in case X is continuous, the processes A and N are
continuous.

Definition A.2. The 7—[% norm of a special semimartingale X, with canonical decom-
position X = N + A, is

Xl = B UOT d[N,N]] ‘E [(LT \dADQ] |

The space of all special semimartingales with finite /Hi norm is denoted by H2(0,T).
For X € H?(0,T) with canonical decomposition X = N + A and H and J predictable
processes we define a metric

ix(1,9) = (1= 1) 0 X, =B [ (11— 22a%. W) |+ [( [ \dA\u)2] -

0

Lemma A.3. Let X be a semimartingale in 7—[% Then

[ s 117 <8 1xE

o<t<T

Proof. See Theorem 5 of Chapter IV in Protter [16].
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A. Smoothing of stochastic integrals

Theorem A.4. Let X € H? be continuous with decomposition X = N+A and k € {1,2}.
Z 1is a predictable caglad process which is integrable with respect to X and HZ’€ o XHHQ <
T

0. Then Z is the a.s. limit of the sequence (Z™)n>1, with

4
A nf Z.du (A.1)
(tf%)vo

and ZZ = max(min(Z,,n), —n). For every n the process Z" is bounded, continuous and
of finite variation. Furthermore,

T 2 (T
f (ZMFdx, = J (Z,)FdX,, (n — o).
0 0

Proof. By definition of Z™ and because Z is caglad Z" — Z almost surely for n — oo.
Z™ can be represented as the difference of two increasing, continuous processes

t t—1
Z”=nJ|ZZ|du+nJ | Z | —Z. du
0 0

t—1 t
—(nJ |7Z|du+nf |ZZ|—ZZdu>.
0 0

Consequently, Z" is bounded, continuous and of finite variation. The process X is
continuous and so are the processes N and A. Since HZ’g o XH,HQ < oo and Z" is bounded,
T

we get Sg((Z{})k — (Z,)¥)?d[N,N], < . Lebesgue’s dominated convergence theorem
yields

Moreover for every n,

By the dominated convergence theorem

I -
Bl [ () - @) PN FL| o
LJO i
Analogously we show that

27

E (JOT ‘(Z{f)k . (Zu)k‘ |dA|u) 0.

The convergence in L? results from Lemma A.3. ¢

75



A. Smoothing of stochastic integrals

The next theorem is similar to Theorem A.4 in [22]. While Cetin, Jarrow and Protter
construct processes (trading strategies) with Z}. = 0, we construct processes where Z7.
is equal to a bounded random variable W.

Theorem A.5. Let X € H? be continuous with decomposition X = N + A. The process
Z is caglad, bounded and integrable with respect to X. In addition let W : @ — R be a
Fr-measureable bounded random variable and k € {1,2}. For every m > 1 we consider
the process Z™ = (Z]"o<t<r With

T—1t
2 = Lty + (507 | 7 + (L, — BV | FD ) U

and Ty, =T — % Then Z™ — Z almost surely for m — oo and

T 2 (T
J (Z;”)’“dX—>f zkax, (n — o).
0 0

Proof. Consider

T—t\"
@V = gy + (B 7+ 2n, ~EW | FDF ) daum. (A2
© (‘2’)

We first show that (1) converges to Z* in H2. Since Z is bounded

T T
J (ZS - Zsﬂ[O,Tm])Qd [Nv W]u < J ngd [N, N] < 0, a.s..

0 0 u

Since Z™ — Z almost surely by definition, the Lebesgue’s dominated convergence the-

orem yields

T
JO (Z§ = Zior,)?d{N,N) —0, as.

Because X € H? we get EQ [Sg(fo - Z{f]l[o’Tm])Qd [N, N]u] < o0. Hence by the domi-

nated convergence theorem

T
EQ UO (zk — ij]l[O,Tm])Qd [N,mu] 0.

Similarly we get that

EQUOT

Zy — Z¥o

|dAu|] So.
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A. Smoothing of stochastic integrals

Next we show that the part (2) in (A.2) converges to 0 in H2. Because Z and W are
bounded

T T \ 2 -
[ (2w 170+ -0 1 7D 1)t ad [V,

T
< | K1, nd[V.5), = & ([V.5], - [F.¥],, ) 0.

where K = |maxo<i<7(|Z¢| + [W])?*| . The dominated convergence theorem yields

T T—u \ 2 B
E [J (E[W | Ft| + (Z1,, —E[W | F]) T T ) L1, md [N,N]u — 0.
0 —4im
We use a similar argument to show that
T—u|f

E[W | Fi] + (Zr,,, — E[W | F])

T_T ]l(Tm,T] | dzu |] — 0.

o| [

Theorem A.6. The process X € H? is continuous with decomposition X = N + A and
Z, with ||Z o XHHQT < 0, is caglad and integrable with respect to X. Then there exists

a sequence of continuous processes (Z7) =1, where Z9 = (Z])o<i<r is bounded, of finite
variation with Z = Z3. = 0, such that Z1 — Z almost surely and

T (T
J ZJdX—>J ZdX,  (j— o).
0 0

Proof. By Theorem A.4 with k£ = 1 there exists a sequence (Z"),>1 of bounded, contin-
uous processes of finite variation with Z}' = 0. By Theorem A.5 with W = 0 and £ = 1,
we create a sequence (Z™™),,>q with Z™" = Z" on [0,T — -] and Z™" = nZ"(T —t)
linear on [T — %, T]. Hence, for every n the process Z™™ is bounded, continuous and
of finite variation with Zy"™ = Z7"™ = 0. Furthermore,

T 2 (7
J AR J ZdX (n,m — ).
0 0
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B. Approximation of the replications costs

To calculate the minimal replication costs of contingent claims in the liquidity risk models
used in Chapter |6/ we have to solve the corresponding BSDE. In this chapter we introduce
two different methods how the liquidity costs can be approximated in case no closed form
solution is known.

B.1. Time discrete approximation in a binomial tree

For a random variable H, let us consider the following BSDE

T T
V,=H+ J f(s,Ss, Zs)ds — J ZdWy (B.1)
¢ t

where W is a Brownian motion and f(¢,w, z)
f:[0,T] xQ2xR—R

the driver of the BSDE. For simplicity we supress the dependence on w € 2. The driver

satisfies

Ac 72 in the Bachelier model,

f(tv ) Zt) = i Z2 .
255y in the Black-Scholes model.
t

Instead of solving this BSDE we transform the equation to a backward stochastic
difference equation (BSAFE) and find a solution of a discrete time approximation of this
stochastic differential equation.

For every N let us consider a partition of the time intervall [0,7] tending to iden-
tity, such that 0 = tév <. < tﬁfv =T and

We approximate the Brownian motion by a Bernoulli random walk

T %
N _ N
thv—\/NJZlXj
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B. Approximation of the replications costs

for i.i.d random variables X JN on a probability space ((NZ, F ) @) with distribution @[X JN =
1] = Q[Xx JN = —1] = 3. Let us extend Wtjyv to the time continuous process W/ which

is constant on the intervals [t)¥ ,tﬁl). Furthermore, we denote by F/¥ the augmented

filtration of the process W/¥. The approximating BSAF is driven by the function
N0, T x QxR — R

such that for t € (tf-v, tﬁl]
Nt 2 = £, 2.

Instead of a solution (Z,V) to the BSDE (B.1) we are looking for a pair of processes
(z), V), with V¥ constant on the intervals [t)¥, ¢} ) and Z}¥ constant on (¢, ¢t} ],
such that,

T T
VN = HN +J f(s,8s, Zg)d[WN W], —f zZNawX.
t t

See Cheridito and M. Stadje [I5]. Since A[WYN WN]x = E [(AW;}@)Q] = L, this is

equivalent to

T
VA =V 4 pe, 25 - 2 (A ) (B.2)
vy =HY
where (AW% ) = Wtjy\, — Wtj}]\, and HY = h(W%V ). Let us take the conditional expec-
i+1 i+1 i

tation E[V;]]\V[ | ftjyv],
VN =E [Vtgl fj,VV] + N, ZN) (), — ) (B.4)

When multiplying equation (B.2) with (AWt% ) on both sides, the conditional expecta-
1+1
tion yields
N
N _ N N
Zy = 7BV, W)

i+1

ft%] . (B.5)

Note that the information F t]]\(, is equal to knowing the process Wt]x at time T}V. There-

fore

N
N

t;

N
Vin| _y =

k3

N
NtN

2 7

7
where N t]]_VV =# { j < i‘X JN = 1}. From now on we use the following notation,

VN (k) = VN

Y

t
i Ntfz’vzk
ZN (k) = ZN, .
tﬁv( ) 0NN, =k
t

i
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B. Approximation of the replications costs

By equation (B.4) and (B.5) we obtain a discrete time approximation, which can be
solved going backward in time. At time T,

Vi = HY (B.6)

and

% i+1

25w = X (v e - o) (B.7)

1 T
VAW =5 (VN 0+ VA (k+ 1) + £, 2 (k)<
i 2 i1 i1 i

¥ (B.8)

for k=0,...,7 and tZN =t

N
Ny td

The convergence of this method is shown for drivers with subquadratic growth in
Z, see P. Cheridito and M. Stadje [I5]. The resulting BSDEs in the liquidity risk model
of A. Roch are of quadratic growth, but calculations for different claims in models used
in Chapter 6/ have shown that this method converges to the exact solution.

See Cheridito and M. Stadje [15] for further information on BSAFEs and Ma, Protter,
San Martin, Torres [§], such as Bouchard, Touzi [4] for information on the discrete time
approximation of BSDEs.

B.2. The numerical solution of the PDE

In Chapter 6| we transform the BSDE to a partial differential equation. In this sec-
tion we use a finite difference scheme to solve this PDE. For different claims in the
Black-Scholes and Bachelier model, the numerical solutions obtained with this method
are identical to the values that result from the discrete time approximation (B.6) - (B.8) .

When the unaffected price process is a geometric Brownian motion and the illiquidity
process deterministic (see Section 6.2), we consider the PDE

OF (t, ) OF(t,x)\> o2 ,0F(t,z)®
" + Ac( . + A 0 (B.9)

for t € [0, 7] and x € [1,U]. Depending on the claim H we define boundary conditions.
For instance, a European put option satisfies

F(T,2) = (K — )4,

F(t,1) = K — 1,

F(t,U) =0,

where U >> K. The resulting PDE is quadratic in the first derivative with respect to
x. We show how this equation can be approximated using a finite difference method.
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B. Approximation of the replications costs

The factor 22 in the Black-Scholes PDE, causes oscillations when we try to solve
the PDE directly. Instead of solving the PDE (B.9) we apply an exponential transfor-
mation

G(t,z) = F(t,exp(z)) < G(tlog(x)) = F(t, ).
Then for z = log(z)
oF(t,x) 0G(t,z)

ot ot

OF(t,xz) 0G(t,z) 1
dr 0z expz’

OF(t,z)>  0G(t,z)* 1 0G(t,z) 1
0x2 022 exp2z 0z exp2z

By (B.9) this leads to

0G(t, z)
ot

= B.1
2, 0 (B.10)

fort € [0,T] and z € [0,log U]. The boundaries of a European put option are transformed
to

aG(t,2)\* o%aG(t,2) N 02 3G(t, 2)?
2 0z 2 022

+ Acexp(—2z) (

G(T,2) = (K — exp(2))
G(t,0) = K — 1
G(t,log(U)) = 0.

We use a finite difference method to solve (B.10). For N, € N, and N; € N, we use gird
points z; = iAz with mesh size Az = % and discrete time points t; = jA? where
At = % fori =0,..., N, and j =0,..., N;. Let G,; be the numerical approximation of
G(tj,z;) and

aG(tj,Zi) - (6G) N Gj+1,i - Gj}i
75t

ot ot At
0G(t, z) <5G> _ Gjin = Gjim1
0z 0z ji 2Az
0G*(tj, 2i) _ <8G2> Gyl — 2G5+ G
022\, (Az)? '

We use a the first order forward difference approximation with respect to t and central
difference approximation with respect to z, such as the central difference approximation
for the second derivative with respect to z. To approximate

(6Ga(tz, z) ) 2
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B. Approximation of the replications costs

(6Ga(tzz))2 N (aag: z)) _ <6G(t ;ZAt,z)).

(%) ~(%) (%)
0z i 0z Ry 0z ji

Given the numerical solution Gj1; for j = 0, ..., Ny we solve the implicit equation

oG 0G\?> o2 (oG o2 [(0G?
<8t>j7- + )\cexp(—2zi) (52’) N — ? (52’)]-71- + 7 (522> B = 0, (Bll)

? ]71 ]72

we assume that

Then

or equivalently

oG\ 2 Ato? [ 0G Ato? [ 0G?
tj,zi) = G(tj41, 2:) + AtA —2z) | o) - 0z T2 ’
G(tj, zi) = G(tj1, %) + cexp( Z)(az)j,i 2 (az)j,i+ 2 <622>

It

with respect to Gj;. We therefore use a simple iteration with n steps. For every time
step 7 and i = 0, ..., N, consider G§1 (k=1,...,n) with Gjll = Gj41, and

Ato?
k+1 _ k
Gj; = GjJrl,i + Gj,i-i—l (—(2)2)

Ato? Ato?  Atde exp(—2z;)
k 7
+ G (2(Az)2 B Gj“ﬂ'—l))
Ato? Ato?  Atle exp(—2z;)
k i
+ G (2(Az)2 + A 1(Az)? (Gjt1it1 — Gj+1,i1)) .

At maturity the numerical solution is given due to the boundary condition, e.g. for a
European put option Gy, ; = (K — exp(z;))+. By solving (B.11) we step backward in
time and this way obtain a numerical solution Gy ; at time 0. Then,

F(0,exp(zi)) ~ Go,.

For a small time grid ( At ﬁ) the numerical results show that this method converges

to the same values as the discrete time approximation of Section B.1.
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