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Abstract

The evaluation of high dimensional integrals or sums, as occurring in statistical

analyses or in statistical physics problems, poses a challenging task for standard

Monte Carlo methods, especially if the integrand or summand exhibits a multi-

modal structure. An example for such a problem is the calculation of the partition

function of the Potts model. The energy distribution of the Potts model with

q > 4, exhibits a well separated phase space, associated with a �rst order phase

transition. A novel, promising way to deal with this issue is the nested sampling

algorithm by John Skilling.

Nested sampling and the more established thermodynamic integration are em-

ployed to evaluate the partition function of the Potts model. A correlation time

analysis of both algorithms shows, that the severe slowing down of thermodynamic

integration around the critical temperature does not occur for the nested sampling

algorithm.

The scaling exponents of the computational time in dependence of the system size

exhibit the same values for both methods, though nested sampling is about three

orders of magnitude faster. Further a way to compute physical quantities, hence

the derivations of the logarithmic partition function, via the nested sampling re-

sults, is presented. Results for the inner energy are compared to known results

obtained from a multicanonical simulation. Eventually an approach for a parallel

implementation of nested sampling is investigated. Here no signi�cant enhance-

ment in computational performance for the evaluation of the Potts model has been

observed. However, the parallel nested sampling is able to use more walkers, which

leads to a better sampling of the phase space, while the wall clock time is kept con-

stant. Hence when dealing with problems involving a multiple peaked likelihood,

the parallel implementation will become advantageous.
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Kurzfassung

Das Berechnen hochdimensionaler Integrale oder Summen, kommt in statistischen

Analysen und Problemen der statistischen Physik häu�g vor. Es stellt, speziell im

Fall multimodaler Integranden und Summanden, eine schwierige Aufgabe für Stan-

dard Monte Carlo Methoden dar. Ein Beispiel für ein derartiges Problem ist die

Berechnung der Zustandssumme des Potts-Modells. Die Energie Verteilung dieses

Modells besitzt für q > 4, einen stark separierten Phasenraum, im Zusammenhang

mit einem Phasenübergang erster Ordnung. Einen neuartigen und vielversprechen-

den Weg, solche Aufgaben zu lösen, bietet die Nested Sampling Methode von John

Skilling.

Nested Sampling und das etablierte thermodynamische Integrieren werden zur

Berechnung der Zustandssumme des Potts-Modells herangezogen. Mittels einer

Korrelationszeitanalyse beider Methoden ergibt sich, dass die starke Zunahme der

Korrelationszeiten beim thermodynamischen Integrieren nahe der kritischen Tem-

peratur, beim Nested Sampling Algorithmus nicht auftritt. Die Rechenzeit in Ab-

hängigkeit von der Systemgröÿe skaliert für beide Methoden in etwa quadratisch.

Die benötigte Zeit für Nested Sampling liegt allerdings ca. drei Gröÿenordnungen

unter der benötigten Zeit für das thermodynamische Integrieren.

Weiters wird angeführt, wie physikalische Gröÿen, d.h. die Ableitungen der log-

arithmischen Zustandsfunktion, aus den Ergebnissen des Nested Sampling Algo-

rithmus, berechnet werden können. Zusätzlich wird eine Möglichkeit präsentiert

den Algorithmus zu parallelisieren. Die Implementierung des parallelen Algorith-

mus liefert allerdings für das Potts-Modell keine wesentliche Verbesserung. Jedoch

ist es durch die parallele Version möglich mehr Walker zu verwenden als im nicht

parallelen Fall, was bei konstanter, realer Rechenzeit ein besseres Explorieren des

Phasenraums erlaubt. Speziell bei Problemen, welche eine Likelihood Funktion mit

mehreren Peaks aufweisen, ist daher die parallele Implementierung vorteilhafter.
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1 Introduction

With the massive rise of computer power and the coupled decrease in price over

the last decades, the endless possibilities of computer simulations attract an enor-

mous attention in science and industry. For Landau 'computer experiments' are

meanwhile one of the three cornerstones, besides theory and experiments, in the

attempt of describing nature [14].

One of the most important kind of 'computer experiments' are Monte Carlo algo-

rithms, developed by the physicists Fermi, Ulam, Neumann and Metropolis in the

1940's [13]. Nowadays they are successfully used to solve problems which originate

from various scienti�c disciplines. In principle Monte Carlo methods rely on sim-

ulating certain models in a stochastic manner instead of a determined analytical

way. Although plenty di�erent prosperous designs of this algorithms exist, prob-

lems with a complicated phase space structure, still depict a demanding challenge.

Diverse methods for such problems, for example simulated annealing [14] or multi-

canonical simulations [4], [5], exist. Basically they are trying to �atten structures

in phase space in di�erent ways, to enhance the e�ciency of the MC algorithm.

A conceptual completely new approach, named nested sampling, has been sug-

gested by Skilling in 2004 [22]. It is an ingenious and promising way in estimating

high dimensional, multimodal integrals and is based on a clever rearrangement

of the integral. Since its development it has already found its way into various

�elds of research. Especially for solving statistical and Bayesian inference problems

many applications already exist (e.g. [2], [6], [8], [17], [20]). A �rst application

in the �eld of statistical physics was investigated by Murray et al. [18]. They

presented a way to compute the partition function of the Potts model via nested

sampling. The evaluation of the partition function of that model represents a dif-

�cult challenge for standard Monte Carlo algorithms. Especially the �rst order

phase transition occurring for certain parameters, poses a severe di�culty. Fur-

ther the Potts model provides, although its simple structure, a wide variety of
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CHAPTER 1. INTRODUCTION

physically interesting properties. The analytical availability of certain quantities

of the two dimensional system makes it an optimal playground for testing new

approaches in simulation techniques. A �rst investigation of the nested sampling

algorithm for this model has been conducted by Murray et al. [18].

In the present work the performance of nested sampling in evaluating the partition

function of the Potts model is investigated in more detail. Further we present

a thorough analysis of the application of nested sampling to this model. The

performance of thermodynamic integration, an alternative way of computing the

partition function, is used to benchmark nested sampling.

The second chapter gives a short introduction of the investigated Potts model. In

chapter 3 the principle of Monte Carlo methods and the idea of cluster algorithms

are explained.

The Monte Carlo variants employed by us to compute the partition of the Potts

model are found in chapter 4. thermodynamic integration, 5. multicanonical

simulation and 6. nested sampling. The �rst part explaines the basics of the

algorithms and the second part deals with their application to the Potts model.

Being in the focus of our investigation nested sampling is treated in a more elab-

orate way. A parallel implementation of it is presented in section 6.5.

Results for a one dimensional Gaussian likelihood function and the Potts model,

as well as a performance comparison of thermodynamic integration and nested

sampling are compiled in chapter 7. Further it is depicted how to retrieve ther-

modynamic quantities from the nested sampling results. Subsequently an analysis

of the capability of the parallel implementation is given. Finally the results are

discussed and potentially future work is outlined.
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2 Potts model

One of the most investigated models in statistical physics is the Ising model. On

the one hand it shows a great simplicity, on the other hand it is able to show

diverse, interesting phenomena like e.g. phase transitions. Landau even denotes

this model as the �fruit �y� in this �eld of research ([14, p.16]). The Hamiltonian

of this model reads as

HIsing = −
∑
〈i,j〉

Jij si sj − h
∑
i

si

Here i and j denote lattice indices and the si's represent the spin value at the

indicated location. The Ising model restricts the spins to 2 possible states, also

called colours. The �rst sum only includes the nearest neighbour spins (here and in

the following denoted by 〈i, j〉). Jij is the interaction strength between spin si and

sj. The system is called ferromagnetic if Jij > 0, because the same spin orientation

for all spins is energetically favoured, and anti-ferromagnetic if Jij < 0 respectively.

The second sum includes the coupling to an external �eld. The number of spins

is denoted by N. Notice that the discussion in this thesis is restricted to square

lattices with periodic boundary conditions pbc.

The extension of the Ising model to an arbitrary number of possible single spin

states, is named Potts model. For an extensive review of this model see Wu [29].

The generic Potts model Hamiltonian has the following form:

HPotts = −
∑
〈i,j〉

Jij δsi,sj − h
∑
i

δsi,1

Due to the Kronecker delta δsi,sj neighbouring spins with the same colour are

the only contribution to the �rst sum. Throughout this work we assume a ho-

mogeneous ferromagnetic system so the couplings Jij are positive (J > 0) and

independent of the indices i, j. Further we apply no external �eld (h = 0) and

3



CHAPTER 2. POTTS MODEL

periodic boundary conditions. Therefore our Hamiltonian of interest yields

HPotts = −J
∑
〈i,j〉

δsi,sj (2.1)

An important point, regarding the connection of the Ising and the Potts model

needs to be outlined. Looking at the Potts model with 2 colours, which corresponds

to the Ising model, one notices that the Hamiltonians do not yield the same value.

This leads to the relation

sisj = 2δsi,sj − 1 (2.2)

A further used representation of the same Hamiltonian (e.g. in [18]) is given by

HPotts = −J
∑
〈i,j〉

(
δsi,sj − 1

)
(2.3)

This includes an constant shift of the energy of −2N J and will be relevant when

we are comparing results of the di�erent methods later on.

The probability for the system to be in a certain state s is given by the Boltzmann

weight

p(s) =
e−β H(s)

Z

where β denotes the inverse temperature and the normalisation Z is the partition

function.

Z =
∑
s

eβ H(s) (2.4)

The sum runs over all possible spin con�gurations. The partition function contains

all thermodynamic information of the system at hand.

High and low temperature limit

In the limit of high temperature (β = 0) each spin in the system becomes inde-

pendent of the state of his neighbouring spins. Therefore the partition function in
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Fortuin-Kasteleyn random cluster model

this limit equals the number of all possible con�gurations.

lim
β→0

Z = qN (2.5)

In the limit of low temperature (β → ∞) all the spins freeze into the same state

and the system e�ectively got just q remaining con�gurations.

lim
β→∞

Z = q (2.6)

Phase transition temperature

The inverse temperature at the phase transition for an in�nite square lattice is

known analytically and can be found e.g. in [5].

Jβcrit = ln(1 +
√
q) (2.7)

Therefore the physically interesting Jβ range will, also for systems with a high

number of colours, be restricted to quite low values. For example for a system

with q = 1000 we obtain Jβcrit = 3.485.

The phase transition is of �rst order for q > 4 and of higher order for q <= 4 (see

[5]).

2.1 Fortuin-Kasteleyn random cluster model

Instead of writing the Hamiltonian of the Potts model as a function of the spins it

is also thinkable to establish a dependence from a di�erent variable, which is still

able to describe the same states. One model, which will be used in chapter 6.6

to adapt the nested sampling algorithm, is the Fortuin-Kasteleyn random cluster

(FK) model.

The FK model can be obtained starting from the partition function of the Potts

model

Z(s) =
∑
s

e−βH(s) =
∑
s

eβJ
∑
<i,j>(δsi,sj−1)

=
∑
s

∏
<i,j>

eβJ (δsi,sj−1) (2.8)

5



Fortuin-Kasteleyn random cluster model

Here the sum again includes all possible spin con�gurations (s1 = 1...q, s2 = 1...q,

..., sN = 1...q).

In the next step a single factor of the product is rewritten as

e−βJeβJ δsi,sj = e−βJe0(1− δsi,sj) + e−βJeβJδsi,sj

= (1− p) + p δsi,sj with p = 1− e−βJ (2.9)

Now a new variable for bonds dij is introduced, which equals 1 with probability

p if neighbouring spins are equal. If the neighbouring spins are not in the same

state dij = 0. This leads us to

e−βJeβJ δsi,sj =
∑

{dij}=0,1

[
(1− p) δdij ,0 + p δsi,sj δdij ,1

]
p describes the probability that two spins with the same colour are connected by

a bond. Then the partition function is given by

Z(s,d) =
∑
s

∏
<i,j>

∑
{dij}=0,1

[
(1− p) δdij ,0 + p δsi,sj δdij ,1

]
=

∑
s

∏
<i,j>

∑
{dij}=0,1

[
(1− p)( δdij ,0 +

p

1− p
δsi,sj δdij ,1)

]

Here the state space has been extended through the embedding of the bond vari-

able. This joint model, called Fortuin-Kasteleyn-Swendsen-Wang model, was in-

troduced in [9]. As pointed out in [18] marginalisation of Z(s,d) over d gives

again the Potts model Z(s). Marginalisation over s leads to the Fortuin-Kasteleyn

random cluster model Z(d).

Next we can exchange the summation and excerpt the factor (1− p)E. Therefore
we get

Z(s,d) = (1− p)E
∑

{dij}=0,1

∑
s

∏
<i,j>

[
δdij ,0 +

p

1− p
δsi,sj δdij ,1

]

If now dij = 1 the factor p
1−p yields a contribution if δsi,sj is ful�lled. Hence it

contributes D =
∑

ij dij times. For dij = 0 only the factor 1 contributes without

any restriction on the spin orientation.
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Fortuin-Kasteleyn random cluster model

The number of possible spin con�gurations is accounted in the factor qC , which

is considering that the spins in areas connected by dij = 0 are constant. C is the

number of this connected areas, which are from now on termed clusters.

Following this considerations the Hamiltonian for the FK model can eventually be

expressed as

Z(d) =
∑

{dij}=0,1

(1− p)E
(

p

1− p

)D(d)

qC(d)

=
∑

{dij}=0,1

pD(d)(1− p)E−D(d) qC(d) (2.10)

with

E = number of edges

D(d) =
∑
i,j

dij = number of bonds

C(d) = number of clusters

In this model a cluster describes a region, where the spins have the same colour and

are connected through bonds. But because bonds are only active with probability p

the area with equal spin colour does not correspond to the clusters (see �gure 2.1).

This model and especially the clusters are the basis for the algorithms described

in chapter 3.2.2.

Figure 2.1: (a) Spin con�guration of a q = 2 Potts model and (b) the respective
representation in bond variables (taken from [14]). All spins within a
cluster exhibit the same orientation.
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3 Monte Carlo methods

In many problems in physics, expectation values or normalization constants usually

need high dimensional integrals or sums to be evaluated. These integrals are mostly

analytically intractable. Therefore either the integrand can be approximated by a

function, which allows an analytical solution or an approximation for the integral

as a whole can be computed by numerical integration. Or one uses sampling

techniques like MC [27].

A good and compact overview of MC methods can be found in [27]. The presented

basics here are based on this review. For a more detailed presentation of Monte

Carlo simulations with the focus on statistical physics see [14].

The principle of a Monte Carlo simulation is to create a set of samples xi, which

is distributed according to a certain distribution p(x). The generation of such a

sample is usually called a draw from the distribution. The set of drawn samples, of

size K, allows to calculate an approximation of the expectation value of a certain

quantity.

In general the expectation value of some function f is given by

〈f(x)〉 =

∫
dx f(x) p(x)

This can be estimated by

f̄ =
1

K

K∑
i=1

f(xi) (3.1)

In the limit K → ∞ this unbiased estimator f̄ approaches the expectation value

〈f(x)〉. To obtain a meaningful estimate, it always needs to be accompanied by

an estimate of its error.

8



Markov Chain Monte Carlo

The variance of f(x) under the distribution p(x) is de�ned as

σ2 =

∫
dx p(x) [f(x) − 〈f(x)〉]2

The estimator of the variance, employing the estimator of the mean, reads as

follows

var(f̄) =
σ2

K
(3.2)

This estimate of the variance is independent of the dimension of x, which is not

the case for e.g. quadrature methods. The 1/K dependence further gives the

possibility to reduce the variance with increasing sample size. These two points

are essential foundation of Monte Carlo algorithms.

One needs to be aware that the estimators are just valid in the case of indepen-

dent draws of samples. Unfortunately the di�cult part is to draw independent

samples from a distribution p(x). For standard distributions (Cauchy, student-t,

Gauss) algorithms using a non-linear transformation of uniformly distributed ran-

dom numbers are available. For non-standard distributions other algorithms like

rejection sampling or importance sampling exist [27]. In high dimensions, though,

all of this methods, which allow us to generate independent samples, become very

ine�cient.

For these problems Markov Chain Monte Carlo (MCMC) has �rst been developed

in 1953 by Metropolis [27].

3.1 Markov Chain Monte Carlo

Instead of drawing independent samples, now successive draws are not independent

any more, but they depend on the preceding sample. Therefore the samples in such

a chain ful�l the following property

p(xt+1|x0, x1, ....., xt) = p(xt+1|xt)

This means a new state does just depend on the current one and not on the previous

history. A series of samples evaluated in such a manner is called a Markov chain.

It is speci�ed by the initial probability p(x0) and the transition probability T (x, x′)

from the state x at time ti to the state x′ at ti+1.

9



Markov Chain Monte Carlo

An invariant distribution of a Markov chain is a distribution which will not change

any more once it is reached.

The Markov chain is named irreducible if it is able to reach all of its possible states.

Further it is called aperiodic if it is not captured in periodic cycles. If the chain is

irreducible and aperiodic it is called ergodic.

In Markov chain Monte Carlo (MCMC) algorithms we use ergodic chains to sample

from their invariant distribution.

For a Markov chain to be reversible it needs to ful�l the so called detailed balance

condition. The detailed balance condition

T (x, x′)p(x) = T (x′, x)p(x′)

ensures that the distribution is invariant.

In the next section we will see how we can construct a Markov chain with a desired

invariant distribution.

3.1.1 Metropolis Hastings algorithm

The Metropolis Hastings (MH) algorithm accepts a new state of the chain with

the acceptance probability

Paccept = min

(
1,
p(x′) pp(xt|x′)
p(xt) pp(x′|xt)

)
where pp denotes the proposal function and x′ the proposed state. If this function

is symmetric pp(x
′|x) = pp(x|x′) then one gets the original Metropolis algorithm.

If the proposed step gets accepted then xt+1 = x′, else the actual state is kept

xt+1 = xt.

The proposal function has crucial in�uence on the acceptance rate and therefore

on the e�ciency of the method. A narrow function will suggest new positions in

parameter space, close to the current one. The new position will be accepted with

a high probability, but the samples of the chain will take a long time to reach

all of the phase space. Using a broad proposal function give us the vice versa

situation, where the low acceptance rate will be the reason for ine�ciency. To �nd

the optimal setting one can use the autocorrelation function.

10



Markov Chain Monte Carlo

Autocorrelation

The correlation between successive states can be computed by the autocorrelation

function of the Markov chain [27]. It is de�ned as

ρ(j) =

∑
t (xt − 〈x〉) (xt+j − 〈x〉)√∑

t (xt − 〈x〉)2
√∑

t (xt+j − 〈x〉)2
(3.3)

From the autocorrelation function we are able to calculate the integrated correla-

tion time

τint =
1

2
+

n∑
j=1

ρ(j) (1− j

n
) (3.4)

The integrated correlation time speci�es the time, that is needed between two

measurements in a timeseries to be uncorrelated. Therefore τint can be used to

obtain the true variance from the naive variance given in equation 3.2.

var(f̄) =
σ2

K
2τint (3.5)

This further implies that the number of e�ective measurements scales like

nuncorr =
n

2 τint
(3.6)

MH for Potts models

For the Potts model a potential choice for the acceptance probability, assuming

symmetric proposal, looks like

Paccept = min

(
1,

exp [−H(s′)]

exp [−H(s)]

)
= min (1, exp [−∆H])

A possible implementation of MH uses local spin updates. After an initialisation

of the system, a randomly chosen single spin is �ipped and the energy di�erence is

computed. The �ip gets accepted with the above probability. After each step an

observable of the system can be measured. For correct measures one needs to take

into account a certain time of thermalisation in the beginning of the simulation.

Because of the tiny changes in con�guration due to a single spin �ip correlations

11



Cluster algorithms

will play an important role.

Especially in MHMC simulations of Potts/Ising models near the phase transition

the diverging correlation time causes problems. This behaviour is known as crit-

ical slowing down. The slowing down stems from the diverging correlation length

ξ around that critical point. Large areas show the same colouring and therefore

a single spin �ip is rarely accepted. When dealing with �nite systems, the corre-

lation length can then be approximated by the system size L. For the �nite two

dimensional Ising model with local updates it is known that the correlation time

grows as

τ ∝ ξz ≈ Lz (3.7)

where the critical exponent z ≈ 2. (See [13] for the basic application of MC on

spin systems)

3.2 Cluster algorithms

Now we consider how to improve the Markov process regarding to critical slowing

down. Once the Markov-chain has reached a representative spin con�guration,

moves by single spin �ips will de�nitively take a long time to be uncorrelated. They

will not su�ciently change the state of the spin�system. We expect that reasonable

MC�moves are rather those which 'rotate' large portions of ferromagnetic domains

at once. Therefore our strategy is that all Potts spins in one domain acquire a

new value s ∈ {1, 2, . . . , q}. To do so we can now employ the clusters we found in

section 2.1 for the FK model.

3.2.1 Introduction of Clusters

We want to examine the clusters in more detail. What we have to do is to glue

ferro-magnetically aligned spins together to form rigid clusters which have to be

rotated simultaneously in the subsequent Markov step. Of course, rotating all spins

of ferromagnetic domain together would not be a valid procedure if those domains

would never split apart. We again need a stochastic ergodic process describing the

formation of clusters in a given spin con�guration s. This process must meet the

following conditions:

12



Cluster algorithms

• Parallel neighbour spins are glued together (form a bond) only with proba-

bility p < 1.

• There is still a �nite chance (1− p) that ferromagnetic bonds brake apart.

• Unequal spins are never glued together.

Then clusters are described by a set of bonds dij between spins si and sj. We use

the convention dij = 1 if a bond links si with sj and dij = 0 if this is not the case.

Let Nd denote the number of actual bonds and Nd the number of vacant bonds.

Then their sum must be the number of next neighbours Nnn,

Nd +Nd = Nnn

If spin s1 is linked with s2 by d12 and spin s2 is liked with s3 by d23 then all three

belong to the same (perhaps even bigger) cluster. All Nc clusters can be identi�ed

on the basis of the binary bonds dij.

3.2.2 The Swendsen�Wang algorithm

A way to utilize these clusters and hence overcome critical slowing down has been

developed by Swendsen and Wang (SW) [25]. The SW algorithm consists of four

steps:

1. For each interaction-pair < i, j > with equal spins si = sj a bond is inserted

with probability p

2. All spins which are pairwise connected by bonds are frozen and form clus-

ters. An isolated spin (not connected to any bond) is also called a cluster.

The clusters are identi�ed and enumerated 1, 2, . . . Nc. They constitute the

objects to be manipulated by MC-moves.

3. In step three new spin values are generated for whole clusters. There are two

commonly used approaches: single-cluster (Wol� method) or multi-cluster

(actual SW) move [14]. In the single-cluster algorithm one cluster is

selected at random and for all spins in the selected cluster a new common

spin value is determined at random; the old value is excluded. In the Ising

case q = 2 the cluster spins are �ipped with probability 1. I.e. the spin-

change proposal is always accepted. In the multi-cluster algorithm the

13



Evaluation of the partition function

clusters are scanned sequentially and for each cluster a new spin value s ∈
{1, 2, . . . , q} is chosen at random. In this case there is a �nite probability

1/q that the spins in a cluster are not changed. In the Ising case the spins

in a cluster are �ipped with probability 1/2.

4. A measurement for the observable O is carried out.

The key success factor of the SW-algorithm is that the bond creation is driven

by the Hamiltonian itself. This leads to a proposal spin-con�guration which will

always be accepted. As opposed to the naive scheme where large modi�cations are

proposed by an non-physical proposal distribution which then are decided upon by

the Metropolis�Hastings acceptance probability and which lead to tiny acceptance

rates.

The critical exponent for the SW algorithm is therefore way lower than for the

single spin updates - z ≈ 0.25.

3.2.3 Cluster Identi�cation

One of the critical and most time consuming step in cluster algorithms is the

identi�cation of a cluster. A quite commonly used algorithm is the Hoshen Kop-

pelmann method [14]. A further fast algorithm has been presented by Newman et

al. [19].

3.3 Evaluation of the partition function

The standard MC algorithms are designed for the evaluation of expectation values

of observables. This evaluation does not require the knowledge of the partition

function. Computing the partition function Z itself, involves usually a much more

structured integrand. This leads to severe problems for standard MC algorithms.

Also when computing similar quantities like the evidence (also marginal likelihood)

in Bayesian inference, standard MC methods encounter massive problems (for

details see [27]). Hence for the evaluation of these quantities special algorithms,

like thermodynamic integration (see chapter 4) or nested sampling (see chapter 6),

are available .
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4 Thermodynamic integration

A way to compute the partition function Z is depicted by the so called thermody-

namic integration (TI), where an auxiliary parameter β is introduced. Consider

the normalization constant in the form

Z(β) =

∫
dx L(d|x)β p(x) (4.1)

where Z(0) = 1, because of the normalized prior and Z(1) =
∫
dx L(d|x) p(x).

The derivation of ln(Z(β)) with respect to β leads to

d

dβ
ln(Z(β)) =

1

Z(β)

∫
dx p(x)

d

dβ

(
L(d|x)β

)︸ ︷︷ ︸
exp(β ln(L))

=

∫
dx

p(x)

Z(β)
L(d|x)β︸ ︷︷ ︸
pβ(x)

ln(L(d|x))

= 〈ln(L(d|x))〉β

Here 〈ln(L(d|x))〉β denotes the expectation value of ln(L(d|x)) under the distri-

bution pβ(x). We are therefore able to retrieve ln(Z) via a integration over β.

Evaluating this expectation value by a SW simulation one can compute the loga-

rithm of the partition function using

ln(Z(1))− ln(Z(0)) =

∫ 1

0

dβ 〈ln(L(d|x) )〉β

An approximation of this integral can be obtained by the sum over a sequence of

inverse temperatures βi.

ln(Z) ≈
N∑
i=1

∆β 〈ln(L(d|x) )〉βi (4.2)
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where ∆β = βi − βi−1 with the start value β0 = 0.

4.1 Thermodynamic integration for Potts models

According to equation 4.2, we need the expectation value 〈ln(L(d|x) )〉βi for the
calculation of an estimate for ln(Z) with thermodynamic integration. Therefore

we compare equation 4.1, from which we derived this estimate, with the partition

function given in equation 2.4. We �nd

L(d|x)β =
(
eH(s)

)β
(4.3)

Using the Hamiltonian from equation 2.1, we can retrieve

L(d|x)β =
(
eJ S

)β
(4.4)

⇒ ln(L(d|x)) = J S (4.5)

S denotes the number of neighbouring spins in the same state. We therefore need

to compute the expectation value for S at certain βi values. With equation 4.2

the estimate for ln(Z) is then given by

ln(Z) =
M∑
i=1

Sβi ∆β (4.6)

The evaluation of 〈Sβi〉 at certain βi values is performed as follows. First the

range of β0 = 0 to βmax = βNβ is divided into Nβ equally spaced steps. At β0,

which corresponds to T = ∞, the partition function is �xed at the known value

ln(Z) = N ln(q) (see section 2). Then S is sampled via Swendsen Wang a 100 times

at temperature β1. From these samples we can retrieve 〈Sβi〉. The evaluations are
iterated until βmax is reached. For each SW time-series the con�gurations after

the �rst couple of updates (here 5) are discarded due to the above mentioned

thermalisation of the sequence. We introduce the variable E, which depicts the

maximal number of bonds 2N . The Jβ dependence of (E − 〈Sβi〉) is computed

that way for a 3 × 3 and q = 5 system for illustration. The result is displayed in

�gure 4.2. Indicated are plots for di�erent number of βi values. The plots now

show the same progression for all number of steps, though smaller di�erences in

the β values lead to less �uctuations.
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Murray et al. employed less optimal parameters for evaluating the results in [18]

via a similar approach called annealed importance sampling. They used a single

SW update for each βi and computed this way 100 sequences of 〈Sβi〉 values. For
the evaluation of the estimate in equation 4.6 they employed the average of this

sequences. Figure 4.2 shows the result of this approach. This way of computing

the expectation values is bound to fail, because the con�gurations after just one

SW update show correlations. Further there is no possibility for thermalisation.

This becomes evident when looking at �gure 4.2. The plot for Nβ = 100 steps

shows a strongly correlated behaviour and di�ers in his progression clearly from

the other plots with Nβ = 500, 1000. For Nβ = 500 and Nβ = 1000 the correlations

are oppressed more, because the small changes in temperature will not cause a big

change in the con�guration.

The results for the partition function for this system are displayed in �gure 4.3.

At 500 β steps an increasing number of SW updates have been performed. With

the increasing number of SW updates M = 100,M = 500 and M = 1000, the

result of the thermodynamic integration converges to the exact result (calculated

in section 6.6.2).

Using multiple SW updates for evaluating the estimates at each βi value does not

cause a total failure of the thermodynamic integration approach, as described in

[18], where only one SW updates for each βi value has been used. For further

analysis the correlation time of thermodynamic integration is investigated in more

detail.
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Figure 4.1: The di�erence E−〈Sβi〉 in dependence of Jβ for a 3× 3, q = 5 system
and for di�erent number of β steps. At each Jβ value 100 SW updates
are performed.
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Figure 4.2: The di�erence E−〈Sβi〉 in dependence of Jβ for a 3× 3, q = 5 system
and for di�erent number of β steps averaged over 100 runs.
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Figure 4.3: The logarithm of the partition function ln(Z) for a 3× 3, q = 5 Potts
system evaluated via TI for di�erent number of SW updates M: (a)
M = 100, (b)M = 500 and (c) M = 1000. The exact result is depicted
by the black line.
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4.1.1 Correlation time analysis

For later comparison of nested sampling with the performance of thermodynamic

integration, we analyse the correlation time of the SW time series, required by TI

at each βi.

The Swendsen Wang algorithm used for thermodynamic integration, has to deal

with increasing correlation times near phase transitions for Potts models with

q > 4 ( see [10]).

In �gure 4.4 one can see a distinct peak in correlation time near the phase transition

temperature. Here a 8× 8 system with q = 10 has been analysed. At each β step

10000 SW updates were computed. Further Jβ = ln(2)1 is indicated in the �gure

by a dotted black line. The correlation times for SW runs at Jβ values below that

line all show a value around 2 (see �gure 4.5). Therefore the correlation causes no

complication, when computing values of ln(Z) up to this temperature.

Jβ / 200
0 100 200 300 400 500 600 700

τ
in

t

0

20

40

60

80

100

120

140

τ
int

Phase transition q=10

Jβ = ln(2)

see next figure

Figure 4.4: Correlation times for a 8×8, q = 10 system computed for temperatures
around the phase transition. Jβ = ln(2) and the exact phase transition
are indicated with vertical lines.

1TI up to this temperature is exploited later to compute the prior normalization required for
the nested sampling algorithm for Potts models.
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Figure 4.5: Zoom into the area of indicated in the previous �gure. The correlations
in this Jβ range have a value around 2 for the 8×8 and q = 10 system.

However if one wants to assess the partition function for Jβ above the phase

transition, the correlation needs to be taken into account with respectively large

number of SW updates or a proper calculation of the errors (see 3.1.1).

Baillie et al. [3] evaluated the correlation time at the critical temperature for the

q = 2 and q = 3 Potts system. For the analysis of this critical slowing down, of

the q = 10 Potts system, we determined the integrated correlation time τint for

di�erent grid sizes, as described in [3]. For a �rst test we perform the calculation

for q=3 systems. We computed at each Jβ value a time series of 5000 SW updates.

For each of this time series we calculated the mean autocorrelation function ρ(t)

out of 10 independent runs. To get rid of noise in the data, each ρ(t) has been cut

o�, before either an increase or an negative value in ρ(t) occurred.

Afterwards a linear �t through the last 50 percent of the logarithm of the autocor-

relation function ln(ρ(t)) was determined. This �t is further used to approximate

ρ(t) for values above the cut-o� value. Finally the correlation time τint is computed

by summing ρ(t) up to the cut-o� value and then adding the values from the linear

�t, which can be expressed analytically by a geometric sum. For an estimate of

the error, τint has also been separately calculated for each of the above mentioned

10 runs.

The results in [3] for the q = 3 systems, were compared to our results in order to

get an veri�cation (see table 4.1). Our estimates yield the same values within the
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Thermodynamic integration for Potts models

error bars. Our errors exhibit larger values, because Baillie et al. retrieved τint

from runs with 5× 105 − 106 sweeps, which is about a factor of 100 larger than in

our measurements.

Table 4.1: Comparison of τint at the in�nite critical point for q = 3 Potts systems.
For further discussion see text

Grid-size τint (Baillie et al.) τint

8× 8 6.056 ±0.009 6.59 ±0.49
16× 16 8.99 ±0.03 9.9 ±1.9
32× 32 13.30 ±0.06 12.9 ±1.7
64× 64 19.58 ±0.12 16.9 ±3.7

After verifying the way of evaluation of τint, we focus again on the q=10 Potts

model. The integrated correlation times for this system are listed in table 4.2.

The number of SW updates for each grid-size has been set as follows: 10000 for

the 4× 4, 20000 for the 8× 8, 100000 for the 16× 16 and 250000 for the 32× 32

system.

Figure 4.6 shows the power law function τint = a Lzint �tted to the data in the

table.
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Figure 4.6: τint results for a q = 10 Potts model evaluated for di�erent grid-sizes
and �t to a power law. Note the double logarithmic scale.

The scaling exponent zint from this �t yields

zint = 1.85 ± 0.07 (4.7)

For the pre-factor a = 2.29 ± 0.52 is obtained. The �t has been computed with

Matlab's curve �tting tool.

Table 4.2: τint at the in�nite critical point for q = 10 Potts systems.

Grid-size τint

4x4 30.1± 3.7
8x8 103.3± 14.6
16x16 389.4± 94.8
32x32 1369.8± 353.3

With the �tted power law model at hand we can now compute the proper scaling

of the length of the SW time series at the critical temperature as well as correct

the respective variance according to equation 3.5.
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5 Multicanonical sampling

Multicanonical Sampling (MUCA) is a method introduced by Berg and Neuhaus

[4]. It is designed to overcome the problems of classical Monte Carlo methods

in a highly varying phase space with multiple separated maxima. In such cases

the classical methods could easily get stuck in a separated peak and therefore

correct sampling is di�cult. Still transitions between the peaks are possible but

very improbable and therefore the relative weights of the maxima will be not

determined correctly.

For example the magnetization of the Ising model below the critical temperature

is most probable either positive or negative. This is displayed in �gure 5.1 (taken

from [21]). Here the canonical distribution pcan(M) drawn in red shows two well

separated maxima.

Figure 5.1: Comparison of the multicanonical and the canonical distribution

In principle the distribution can be a function of any order parameter of the sys-

tem [21]. As we want to obtain the partition function later on, we focus on the

investigation of the probability distribution as a function of the energy.
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Weight estimate

The principal idea of multicanonical sampling is to tune the weights of the Monte

Carlo sampling in such a way that the whole phase space can be reached (see [21]).

The Boltzmann weight

ωcan(E) ∝ exp(−βE)

leads to the following canonical probability distribution for the energy

pcan(E) =
1

Zcan
n(E) exp(−βE) (5.1)

with n(E) being the spectral density of the energy.

To determine the multicanonical probability distribution an additional weight-

function ωmuca(E) is introduced (the resulting multicanonical distribution for the

above example is indicated by the blue line in �gure 5.1).

pmuca(E) ∝ pcan(E)ωmuca(E)

The canonical probability distribution can be retrieved again by re-weighting

pcan(E) ∝ pmuca(E)

ωmuca(E)

A MC simulation, with the modi�ed weights, enables us to evaluate expectation

values for observables under the multicanonical distribution. Canonical expecta-

tion values again are retrieved via re-weighting.

The factor ωmuca(E) is not known in the �rst hand, otherwise we would already

know pcan, therefore we perform a canonical simulation in the beginning to retrieve

a rough estimate for it Find more details on the estimation in [5], and for the

estimation related to Potts models in [21].

5.1 Weight estimate

The weight function can for instance be estimated by means of an iterative process,

as described in [21]. In the beginning the order parameter E is divided into bins

Ei, which cover all possible values of E.
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Evaluation of the partition function

We de�ne the weight-function as ωmuca(Ei) = exp(W (Ei)) and determine W (Ei)

by means of the following algorithm.

Algorithm 5.1.1: Weight iteration(W (Ei))

initialize W (Ei) = 0 ∀ i, C = 1, Cthreshold

while C > Cthreshold

do



while not every bin visited

do


MC simulation with the modi�ed probability

every time visiting bin i set:

W (Ei) ← W (Ei)− C
C ← C/2

return (W (Ei))

During the iteration in the presented algorithm, the value of the function W (Ei)

of frequently visited bins is lowered to a higher extent than in bins, where visits

happen rarely. Therefore the probability of visiting it again is reduced. After all

bins have bin reached during the Monte Carlo runs, C is reduced. The process

eventually comes to halt, when a certain threshold value of C is reached.

With the weight function at hand we sample instead of the canonical distribution

pcan from the multicanonical distribution

pmuca(E) =
1

Zmuca
n(E) wmuca(E) (5.2)

via Monte Carlo.

5.2 Evaluation of the partition function

It is furthermore possible to retrieve the partition function from the results of

a multicanonical simulation. An outline of this calculation can be found in [4].

Substituting n(E) from equation 5.2 in equation 5.1, the canonical probability
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Evaluation of the partition function

distribution can be estimated after a multicanonical simulation by

pcan(E) =
Zmuca
Z(β)

Hmuca(E)

wmuca(E)
exp(−βE)

Here the histogram generated by the multicanonical simulation Hmuca(E), serves

as estimate for pmuca(E).

The partition function Z(β) is the quantity we want to retrieve. For β = 0 one

�nds Z(0) = qN , because at in�nite temperature the system is in total disorder.

Therefore the unknown normalization Zmuca of the multicanonical distribution can

be obtained at this temperature from the normalization of the canonical distribu-

tion. ∑
E

pcan(E) =
∑
E

Zmuca
Z(β)

Hmuca(E)

wmuca(E)
exp(−βE) = 1

at β = 0 →
∑
E

Zmuca
qN

Hmuca(E)

wmuca(E)
= 1

→ Zmuca = qN
1∑

E
Hmuca(E)
wmuca(E)

With Zmuca at hand, it is possible to compute Z(β) for β > 0 again by means of

the normalization
∑

E p(E) = 1.

Z(β) = Zmuca
∑
E

Hmuca(E)

wmuca(E)
exp(−βE) (5.3)
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6 Nested sampling

6.1 Basics

Nested sampling (NESA) was proposed by John Skilling in 2004 [22]. The basics

presented here are based on the chapter nested sampling in [26] and the paper from

Murray et al. [18]. For a more detailed explanation and analysis of the method

the reader is referred to the cited book.

Again the underlying problem is the computation of an integral of the form

Z =

∫
dRx L(x) p(x) (6.1)

where the integration is done in any arbitrary number of dimensions R. Here L(x)

denotes the likelihood and p(x) the prior. The following considerations hold also

when dealing with a high dimensional sum Z =
∑

i δ(x− xi) p(xi)L(xi).

Starting from an integral as in equation 6.1, Skilling suggested to rewrite it as

Z =

∫
dλ X(λ) (6.2)

X(λ) :=

∫
dRx p(x) Θ(L(x) > λ) (6.3)

The prior mass X(λ) cumulates the prior, which is subject to a constraint on

the likelihood, over the parameter space x. The Heaviside function Θ ensures

the integral is just non-zero in areas, where the likelihood L(x) exceeds a certain

threshold λ.

To verify expression 6.2 insert equation 6.3.∫
dλ X(λ) =

∫
dRx p(x)

∫
dλΘ(L(x) > λ) = Z
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Figure 6.1, taken from [26], shows the principle of the nested sampling algorithm

in a one dimensional parameter space with a discrete likelihood function.

In the �rst two columns plots of the likelihood L(x) and the prior p(x) are shown.

The thresholds λi are indicated in the likelihood plots by horizontal lines. Areas

of the histogram ful�lling the constraint L(x) > λ are displayed with a greyish

shade. With increasing values of the threshold (λ1 to λ4) the prior masses X(λ)

decrease. The rightmost diagram shows the dependence of the likelihood L(X) on

the prior mass X.
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Figure 6.1: Principle of the nested sampling algorithm. The �rst two columns show
plots of the likelihood L(x) and the prior p(x) with di�erent threshold
values λn. The last column shows the likelihood in dependence of the
prior mass X

The value of the prior mass X(λ) is constrained to values in the range from 0 to

1. The maximum value X = 1 is obviously obtained with the constraint λ = 0,

because integration of the normalized prior p(x) runs over the whole parameter

space. Equation 6.3 ensures further, that with increasing λ the integrand decreases

monotonically.

Strict monotonicity can be achieved by adding an in�nitesimal value κ(λ) to the

prior mass demanding �nally κ(λ) → 0. We allow the likelihood L to be equiva-
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lently a function of x and X, depending on the present context. Integrating the

likelihood over the prior mass leads to the form

Z =

∫ 1

0

dX L(X) (6.4)

So eventually the preceding rearrangements simplify our multidimensional integral

in equation 6.1 to an one dimensional one, where the integrand is monotonically

decreasing and the integral is bound by 0 and 1.

6.2 Nested sampling algorithm

The integral in equation 6.4 can be approximated through a Riemann sum

ZK =
∞∑
n=1

L(Xn)∆Xn (6.5)

∆Xn = Xn −Xn+1 (6.6)

The monotonicity of L(X) ensures that the sum yields a lower bound for the

integral value. Equivalent the upper bound reads as

ZK =
∞∑
n=1

L(Xn) (Xn−1 −Xn) (6.7)

Skilling came up with the following algorithm to compute the L(Xn) values.

Algorithm 6.2.1: Nested sampling algorithm(λ̂n)

initialize λ̂0 = 0, n = 0,

while λn+1 − λn > ελ

do


increment the iteration count n← n+ 1

draw sample {xi} of size K from p(x|λ̂n−1)

calculate the likelihood for each sample λi = L(xi)

determine sample minimum λ̂n = mini(λi)

set nmax = n

return (λ̂n, nmax)

30



Nested sampling algorithm

Here the prior

p(x|λ̂n−1) =
p(x)

X(λ)
Θ(L(x) > λ) (6.8)

depicts the prior restricted to areas, where the likelihood L(x) exceeds the λ thresh-

old. K is the size of the sample and will from now on be referred to as number of

walkers.

Given the likelihood minima λ̂n from the algorithm 6.2.1, the Riemann sum in Eq.

6.5 can be estimated by

Ẑ =
nmax∑
n=1

λ̂n∆X̂n (6.9)

The �gures 6.2 and 6.3, used to illustrate the principle of the nested sampling

algorithm, are taken from [15] and adapted to the notation used in this work. The

�rst �gure illustrates the sorting of elements of a 2 dimensional parameter space.

The lower graphs display the increase of the likelihood values over the enclosed

prior mass.

Figure 6.2: Relation of L(x) and L(X) in a 2 dimensional parameter space.

Using multiple walkers to explore the phase space, we �rst draw the walkers from

the unconstrained prior. Then the likelihood of each walker is computed and the

values are sorted in increasing order. Instead of sampling all of the walkers from

the constrained prior in every update, one can also only update the walker with

the lowest likelihood. All other walkers are already a valid sample of the actual

constrained prior. Figure 6.3 illustrates such a update. The outermost walker
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indicated by the black dot is replaced by its updated version indicated by the

purple dot.

Figure 6.3: Update of the walker with the lowest likelihood. The upper plot depicts
the two dimensional parameter space and the lower diagram shows the
sorted likelihood values.

Drawing samples from the constrained prior

Sampling from a prior underlying a constraint can be a challenging task. Especially

if one is dealing with multi-modal likelihood functions, the increasing threshold

leads to disjoint regions during nested sampling. A common approach is to clone

a walker, which lies within an allowed region, and then move it by e.g. MCMC

in allowed areas of the phase space. For this approach it is necessary for multiple

peaks to have enough walkers to populate all of the peaks from the beginning to

achieve a proper sampling. Because walker will die out in smaller peaks and be

reborn in the higher ones, nested sampling is able to sample the correct height of

these structures. Classical MCMC fails in this case.

Up to this point just the likelihood values are known. Although the prior mass

values are in principle de�ned through the relation

λ̂n = L(X̂n)
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Figure 6.4: Possibilities to evaluate the estimate of Z (see equation 6.11).

where we unfortunately do not know the function L(X). But we know that the

values of the prior mass X̂n are random variables, which are independent from the

likelihood values. This independence is one of the key points of nested sampling.

The bulk of the statistical analysis of NESA focuses on these variables. We will

further analyse the prior mass in the section 6.3.

But before digging deeper into the statistics of X̂n, an alternative way of writing

the estimator for Z is presented. We remind that the value of X0 = 1 and the

value λ0 = 0.

Z =
nmax∑
n=1

λ̂n (X̂n − X̂n+1)︸ ︷︷ ︸
∆X̂n

=
nmax∑
n=1

X̂n (λ̂n − λ̂n−1)︸ ︷︷ ︸
∆λ̂n

(6.10)

=
nmax∑
n=1

λ̂n ∆X̂n =
nmax∑
n=1

X̂n ∆λ̂n (6.11)

For problems with discrete likelihood values, like we obtain for the Potts model,

the second representation is advantageous, because ∆λ̂n will be equal to zero for

a lot of the summands. Therefore one just needs to process a summand when a

change in the likelihood value occurs. For the Potts model this can happen at

most 2N times (see the de�nition of the likelihood in section 6.6.1). This is also

useful for storing the resulting likelihood sequence, because in this case just 2N

values are relevant to keep.
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6.2.1 Degeneracy

In the case of discrete systems the occurrence of degenerated likelihood values is

possible. For the nested sampling algorithm to work, we need an unique ordering

of these values. Therefore an additional independent random variable m, used as

label for the likelihood values, is introduced (see [18]). Therefore an enhanced

prior probability can be chosen of the form

p(x,m) = p(x) p(m) =
1

Z
L(x)p(x)

1

Zm
L(m)p(m)

Drawing a sample from this probability, if a likelihood constraint λ̂n is applied

yields the restriction

L(x′) L(m′) > λ̂n (6.12)

on the new likelihood values. Eventually this only a�ects the nested sampling

algorithm if L(xi′ ) = L(xi). This new con�guration is then accepted if m′ > m,

otherwise not. The treatment of this label m during a nested sampling update for

the Potts model is described in section 6.6.1.

# of bonds
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#
 o

f 
c
o

n
fi
g

u
ra

ti
o

n
s

×10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 6.5: Degeneracy of con�gurations with a certain number of bonds for a 3×3,
q = 2 system.

As we will see the likelihood values of nested sampling for the Potts model will

depend only on the number of active bonds (section 6.6.1). Figure 6.5 displays the
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degeneracy of con�gurations in dependency on the number of active bonds for a

3x3 Potts system. This should emphasize that a proper treatment of degenerated

likelihoods is critical for the treatment of the Potts model.

6.3 Statistical analysis of the prior masses

The evaluation of the likelihood-minima sequence is the most time consuming

part of the nested sampling algorithm, due to the time intense sampling from the

constrained prior. Fortunately we are able to retrieve the distribution of the prior

mass. Hence we can obtain the Skilling estimate including an estimate for its error

from a single nested sampling run.

In the �rst iteration, without any constraint, the sample of the prior masses is

uniformly distributed in the domain [0, 1]. If now only one walker is updated,

the maximum prior mass, corresponding to the minimal likelihood, of the sample,

constrains the values of the prior masses for the next iteration. Thus [0, X̂1] is the

domain for the second iteration. Therefore the probability for iteration n is given

by

p(X|Xn) =
Θ(X < Xn)

Xn

(6.13)

X̂n+1 is the maximum of a sample of size K, where the samples are uniformly

drawn from the interval (0, Xn). Hence the compression at each step Xn+1

Xn
follows

the same distribution as X1.

For n iterations, we can therefore draw n independent samples X̂1 and compute

X̂n as the product of these samples.

X̂n =
n∏
i=1

X̂1 (6.14)

For further analysis of X̂n, we obtain the mean and the variance of X̂1 in the next

step.
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6.3.1 Order statistic

In the basic nested sampling algorithm the walker with the largest prior mass Xn is

discarded. We can also think of the general case of discarding k walkers each step.

This will become relevant later for the parallelised version of the nested sampling

algorithm. Hence we need to �nd the expectation value for the kth largest element

of the prior masses after each step. It can be retrieved from order statistic. A

more detailed explanation of order statistic can be found in [26, p. 119].

The probability density function (PDF) for the kth largest elements in a list of

sorted random numbers (in our case the prior mass values in a certain step) drawn

from a certain probability density ρ(x) is given via p(Xk ∈ (X,X + dX)|K, ρ, I).

It should ful�l the following propositions

• K-k elements have a value lower or equal to X

• k-1 elements have a value higher or equal to X

• 1 element has a value in the interval X + dX

The de�nition of the distribution function F (X), yields the probability for one

element to be smaller than X. The probability to have a higher value is therefore

1− F (X). The probability for an element to have a value in the interval X + dX

equals ρ(x)dx.

This yields

p(Xk ∈ (X,X + dX)|K, ρ, I) =
F (X)(K−k)[1− F (X)](k−1)

B(K − k + 1, k)
ρ(X)dX

Here B(K − k + 1, k) denotes the Beta function (see appendix). The above prob-

ability is similar to the beta distribution (eq. 6.15), which we will exploit soon.

The beta distribution and the �rst and second moment of it, are de�ned as

pβ(f |α, γ) =
1

B(α, γ)
fα−1(1− f)γ−1 with f ∈ [0, 1] (6.15)

〈x〉 =
α

α + γ
(6.16)

〈x2〉 =
(α + 1) α

(α + γ + 1) (α + γ)
(6.17)
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To evaluate the mean of the order statistic, the monotonicity of the distribution

function and therefore the availability of the inverse function F−1(X) is used.

Again the derivation can be found in [26, p. 119]. As result we obtain

〈X̂〉k =

∫ 1

0

F−1(f) pβ(f |K − k + 1, k) df

The samples of prior masses Xn are drawn from a uniform PDF, where the dis-

tribution function is given through F (x) = x with Θ(0 ≤ x ≤ 1) with the inverse

F−1(f) = f in the interval 0 ≤ f ≤ 1.

In this case the mean can be read directly from equation 6.16.

〈X〉k =

∫ 1

0

f pβ(f |K − k + 1, k) df =
K − k + 1

K + 1

Depending on the number k of discarded walkers, the mean compression rate at

each iteration step is

〈X〉k =
K − k + 1

K + 1
(6.18)

The second moment then reads

〈
X2
〉
k

=
(K − k + 2)(K − k + 1)

(K + 2)(K + 1)
(6.19)

Now we can go back to equation 6.14. The mean of X̂1 is given trough equation

6.18. Because the samples are independent, the expectation value of X̂n can be

expressed as product of the individual expectation values.

〈X̂n〉 =
n∏
i=1

〈X̂1〉 = Xn (6.20)

Next we want to obtain the covariance
〈

∆X̂n′∆X̂n

〉
. The derivation for the case

of k = 0 can be found in [26, p. 617]. Here the expression for an arbitrary k

value is derived. According to the symmetry of the covariance matrix, we can set
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n′ = n+m with m ≥ 0. Generally〈
∆X̂m+n∆X̂n

〉
=

〈
X̂m+nX̂n

〉
−
〈
X̂m+n

〉〈
X̂n

〉
With equation 6.20 we already know the last two terms. The �rst term, evaluated

with equation 6.14 and 6.20, gives

〈
X̂n+mX̂n

〉
=

〈
n+m∏
i=1

X̂1i

n∏
i′=1

X̂1
i
′

〉

=
n+m∏
i=n+1

〈
X̂1i

〉 n∏
i′=1

〈
X̂1

i
′

2
〉

=

(
K − k + 1

K + 1

)m(
(K − k + 2)(K − k + 1)

(K + 2)(K + 1)

)n
(6.21)

Hence we obtain for the covariance〈
∆X̂m+n∆X̂n

〉
=

(
K − k + 1

K + 1

)m(
(K − k + 2)(K − k + 1)

(K + 2)(K + 1)

)n
−
(
K − k + 1

K + 1

)n+m(
K − k + 1

K + 1

)n

= Xm+nXn

((K − k + 2)(K + 1)

(K + 2)(K − k + 1)

)n
︸ ︷︷ ︸

Γ

−1

 (6.22)

with

Γ =

(
1 +

k

(K + 2)(K − k + 1)

)n
= exp

(
n ln

(
1 +

k

(K + 2)(K − k + 1)

))
From equation 6.18 we obtain

ln(Xn) = n ln

(
K − k + 1

K + 1

)
= n ln

(
1− k

K + 1

)
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Considering these results, equation 6.22 can be written as

〈
∆X̂m+n∆X̂n

〉
= Xm+nXn

 exp (−ln(Xn) κ)︸ ︷︷ ︸
X−κn

−1


where κ =

ln
(

1 + k
(K+2)(K−k+1)

)
ln
(

K+1
K+1−k

)
Here κ is of order 1/K. Finally the covariance yields the following result

〈
∆X̂m+n∆X̂n

〉
= Xm+nXn

[
X−κn − 1

]
(6.23)

6.3.2 Mean and variance for the estimator of Z

Next we approach the desired quantities 〈Z〉 and 〈(∆Z)2〉. In equation 6.9 an

estimator for the partition function was given. The γth moment of this has the

following form (see [26, p. 582])

〈Zγ〉 =

〈(
nmax∑
n=1

X̂n∆λ̂n

)γ〉
(6.24)

Therefore the mean can be computed as

〈Z〉 =
nmax∑
n=1

〈
X̂n

〉
∆λ̂n (with eq. 6.20)

〈Z〉 =
nmax∑
n=1

Xn∆λ̂n (6.25)

For the variance we will need also the square of the mean

〈Z〉2 =
nmax∑
n=1

〈
X̂n

〉2

∆λ̂2
n +

nmax∑
n=1

nmax∑
n′=1︸ ︷︷ ︸

n6=n′

〈
X̂n′

〉〈
X̂n

〉
∆λ̂n′∆λ̂n
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The second moment is

〈Z2〉 =

〈(
nmax∑
n=1

X̂n∆λ̂n

)2〉

=

〈
nmax∑
n=1

X̂n

2
∆λ̂2

n

〉
+

〈
nmax∑
n=1

nmax∑
n′=1︸ ︷︷ ︸

n6=n′

X̂n′X̂n ∆λ̂n′∆λ̂n

〉

=
nmax∑
n=1

〈
X̂n

2
〉

∆λ̂2
n +

nmax∑
n=1

nmax∑
n′=1︸ ︷︷ ︸

n 6=n′

〈
X̂n′X̂n

〉
∆λ̂n′∆λ̂n

Inserting the above results we eventually obtain for the variance

〈
(∆Z)2

〉
= 〈Z2〉 − 〈Z〉2

=
nmax∑
n=1

〈
(∆X̂n)2

〉
∆λ̂2

n +
nmax∑
n=1

nmax∑
n′=1︸ ︷︷ ︸

n 6=n′

〈
∆X̂n′∆X̂n

〉
∆λ̂n′∆λ̂n

=
nmax∑
n,n′=1

〈
∆X̂n′∆X̂n

〉
∆λ̂n′∆λ̂n (6.26)

〈
∆X̂n′∆X̂n

〉
is the covariance matrix, derived in section 6.3.1.

In the end we obtain the desired variance of Z:

〈
(∆Z)2

〉
=

nmax∑
n,n′=1

Xn′Xn

[
X−κn − 1

]
∆λ̂n′∆λ̂n with n′ ≥ n

〈
(∆Z)2

〉
=

nmax∑
n

∆λ̂nXn

(
X−κn − 1

) nmax∑
n′≥n

∆λ̂n′ (2− δnn′)Xn′ (6.27)

This gives us the possibility to calculate an the mean and the variance for Z out

of a single likelihood sequence.

Unfortunately this expression is just useful for very small Potts systems. For larger

systems the likelihood values λn will massively increase and we are forced to use the

logarithmic values, if we want to prevent numerical problems. Therefore another
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way of evaluating the variance is presented.

6.3.3 Samples of the prior mass

The way of directly calculating the variance of Z out of a single sequence of likeli-

hood values becomes numerically problematic for large likelihood values. Also then

the distribution of Z will not be Gaussian any more, but rather the distribution

of ln(Z) [22].

Instead of using the derived expression in equation 6.27, one can also use a set

of prior mass sequences, which are drawn form the known distribution. Then

multiple estimates for Z can be computed out of a single likelihood sequence.

These estimates enable us to retrieve the respective variance.

The extremely large values of L, which are common in problems of our interest,

will restrict us to work with the logarithmic values. For correct evaluation of

the estimate of ln(Z) see section 9.1 in the appendix. The determination of the

logarithmic likelihood value via NESA does not require any principal changes in

the algorithm. But to sample the values of ln(X), we need to derive the respective

distribution.

First lets us transform our random variable x to a new random variable l

x := X̂n → l := − ln(X̂n) (6.28)

The transformation keeps the in�nitesimal probability mass constant (see [26, p.

121]).

px(x)dx = pl(l)dl ⇒ pl(l) = px(x)

∣∣∣∣dxdl
∣∣∣∣ (6.29)

The probability for x being the largest of N uniform random numbers in the interval

[0,1] is

px(x) = K xK−1

This corresponds to equation 6.15 for k=1. Inserting this and the inverse of equa-
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tion 6.28 into equation 6.29 we retrieve as distribution for our new variable l

pl(l) = K exp (−K l) (6.30)

pl(l) exhibits the form of a Γ distribution, hence we can determine the mean and

the variance by comparing it to the following de�nition (see [26])

pΓ(x|α, β) =
βα

Γ(α)
xα−1 e−β x

〈x〉 =
α

β

var(x) =
α

β2

Here x lies in the range [0,∞) and Γ(α) denotes the Gamma function (see ap-

pendix).

So we are able to identify from equation 6.30

〈l〉 =
1

K

〈(∆l)2〉 =
1

K2

Again we are interested in the general case of discarding k walkers at once. Dis-

carding k walkers means that we compress the prior mass k times. The same

compression could be achieved via independently taking away k times just one

walker. Therefore the mean and the variance for the omission of k walkers yield

〈 l 〉 = (K − k + 1)−1 + (K − k + 2)−1...+K−1 (6.31)

〈(∆l)2〉 = (K − k + 1)−2 + (K − k + 2)−2...+K−2 (6.32)

An estimate for the variance of ln(Z) can be determined as follows (see [26]). First

we employ the samples l̂n, drawn from the known distribution, to get an estimate

ln(Ẑ). The respective mean ln = n/K is used to get an estimate ln(Z̄). An

estimate for the variance of ln(Z) can then be computed via

〈(
ln(ẐK)− ln(Z̄K)

)2
〉

=

〈[
ln

(∑nmax
n=1 e−l̂n∆λ̂n∑nmax
n=1 e−

n
K ∆λ̂n

)]2〉
(6.33)
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6.3.4 Upper bound of variance

In [26] an analytical expression for the upper bound of the standard deviation of

ln(Z) is derived. Below, an outline of this derivation is presented for k = 1.

Starting from equation 6.33, we know that ∆λ̂n is positive, so we can assign nor-

malised weights

ωn :=
e−

n
K ∆λ̂n∑nmax

n=1 e−
n
K ∆λ̂n

, ωn > 0,
nmax∑
n=1

ωn = 1

This yields

〈(
ln(ẐK)− ln(Z̄K)

)2
〉

=

〈[
ln

(
nmax∑
n=1

ωne
−∆ l̂n

)]2〉

where ∆l̂n = l̂n −
〈
l̂n

〉
. For obtaining an upper bound for the variance all sum-

mands can be replaced by the largest one, say e−∆ l̂n′ , which leads to

〈(
ln(ẐK)− ln(Z̄K)

)2
〉
≤

〈[
ln

(
e−∆ l̂n′

nmax∑
n=1

ωn

)]2〉

=

〈[
ln
(
e−∆ l̂n′

)]2
〉

=

〈(
∆ l̂n′

)2
〉

=
n′

K2

The upper bound will therefore be maximal for n′ = nmax.

Finally we arrive at the result for the upper bound for the standard deviation of

ln(Z) √〈(
ln(∆ ẐK)

)2
〉
≤
√
nmax
K

(6.34)

6.4 Quadrature and truncation error

Besides the statistical uncertainty stemming from the statistic of the prior mass, we

need to take the error of the quadrature procedure and the error of the truncation

of the likelihood sequence into account.
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The quadrature error of the Riemann sum is easily accessible through the lower

(eq. 6.5) and upper (eq. 6.7) bound. From the mean prior compression rate (eq.

6.18) we derived for Xn

Xn =

(
K − k + 1

K + 1

)n
(6.35)

and therefore we retrieve for the lower bound

Xn −Xn+1 =

(
K − k + 1

K + 1

)n(
1− K − k + 1

K + 1

)
=

(
K − k + 1

K + 1

)n(
k

K + 1

)
and respectively for the upper bound

Xn−1 −Xn =

(
K − k + 1

K + 1

)n(
K + 1

K − k + 1
− 1

)
=

(
K − k + 1

K + 1

)n(
k

K − k + 1

)
The boundaries for the exact value are therefore given by

ln(Z) ≤ ln(Zexact) ≤ ln

(
K + 1

K − k + 1

)
+ ln(Z) (6.36)

With the assumption that we compute the sum of Z after nmax nested sampling

steps, the truncation error can be estimated by the residue

Rnmax =
∞∑

n=nmax+1

λ̂n (Xn −Xn+1)

Once the minimal likelihood values λ̂n converge, the residue can be approximated

by

Rnmax ≈ λ̂nmax

∞∑
n=nmax+1

(Xn −Xn+1)

= λ̂nmax Xnmax
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Accordingly we can write for the error due to truncation after nmax steps

Rnmax ≈ λ̂nmax

(
K − k + 1

K + 1

)nmax
(6.37)

6.5 Parallel implementation

Observing the computational time of nested sampling, one identi�es the update of

each walker within the likelihood constraint as the most time consuming part. For

example, as presented in section 6.6.1, the update for the Potts model is performed

by means of the Swendsen Wang algorithm (see section 3.2.2). Here especially the

search for the clusters in a given con�guration costs most of the time.

As we found in section 6.3.3 the mean and the variance of the logarithmic prior

compression yield

〈 l 〉 = (K − k + 1)−1 + (K − k + 2)−1...+K−1

〈(∆l)2〉 = (K − k + 1)−2 + (K − k + 2)−2...+K−2

According to this values, Skilling argues in [24] that the replacement of just one

walker yields the highest accuracy. To compensate this loss in accuracy, equation

6.32 suggests, to increase the number of live walkers K. For a higher number of

walkers K the mean shrinkage of the prior mass (eq. 6.31) becomes smaller. Hence

the number of iterations to reach all of the relevant prior mass regions increases.

Although with a higher number of walkers, regions of the prior, which are separated

through the likelihood constraint are more likely completely covered. This comes

especially into account when dealing with multi-modal likelihood functions.

The idea of parallelising the method has recently found its way into some pub-

lications ([11], [6],[16], [28]) Also Skilling already thought of the possibility of a

parallel implementation in his original paper [22, p. 846].

Henderson et al. proposed therefore to parallelise the nested sampling algorithm

and take the advantage of a large number of walkers while reducing the time needed

for a nested sampling run [11]. Instead of one walker, they discard k walkers at each

iteration. The update of each walker position in parameter space is subsequently
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calculated in parallel. Henderson et al. derived the proper scaling of the number

of live walkers with respect to the number of omitted walkers, so that the value

of the variance is kept constant. The derivation as described in [11] is presented

hereafter.

We demand the variance to stay constant

〈(∆l1)2〉 = 〈(∆lk)2〉 (6.38)

The subscripts here denote the number of omitted walkers each step.

Inserting equation 6.32 into equation 6.38 yields

1

K2
1

=
k−1∑
n=0

(
1

Kk − n

)2

=
1

K2
k

+
k−1∑
n=1

(
1

Kk − n

)2

⇒ K1 =
Kk√

1 +
∑k−1

n=1

(
Kk

Kk−n

)2

We assume K >> k, that means the number of live samples K needs to be much

greater than the number of discarded walkers k. This leads to the relation

Kk ≈
√
k K1 (6.39)

Substituting this relation into the equation for the mean gives

〈 l1 〉 =
1

K1

≈
√
k

Kk

(6.40)

Respectively

〈 lk 〉 =
1

Kk

+
k−1∑
n=1

1

Kk − n
≈ k

Kk

(6.41)

Therefore the mean for an abitrary k can be expressed as

〈 lk 〉 =
√
k 〈 l1 〉 (6.42)
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Eventually if we increase k, given the requirement of constant variance, we arrive at

the result that the shrinkage of the prior mass at each iteration increases compared

to the case of one walker. Because of this increase in shrinkage, we expect the

walkers to reach convergence with fewer steps.

6.5.1 Parallel nested sampling algorithm

For the parallel implementation the earlier presented nested sampling algorithm

(6.2.1) needs some modi�cations.

Algorithm 6.5.1: Parallel NESA algorithm(λ̂n, nmax)

initialize λ̂0 = 0, n = 0,

draw sample {xi} of size K from p(x|λ̂0)

determine sorted list of likelihood values λi = L(xi)

determine kth minimal likelihood λ̂1

set n = 1

while λn+1 − λn > ελ

do



increment the iteration count n← n+ 1

parallel

{
start thread j = 1 : k

draw xjn from p(x|λ̂n−1)

insert the new likelihood values λjn = L(xjn) into sorted list

determine kth minimal likelihood λ̂n

set nmax = n

return (λ̂n, nmax)

In the standard realisation of NESA only the walker with the minimal likelihood

value needs to be found. If one discards multiple walkers k, respectively the k

minimal likelihood values are wanted. Henderson et al. suggest using a so called

partial quicksort routine [11]. We used a slightly di�erent approach. Instead of

sorting the likelihood values each iteration, we kept them listed in increasing order.

For each iteration, the walkers with the k least values are updated and sorted into
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the list with their new values. The sorting is done using the so called binary search

algorithm. This performs better than looking for the correct insertion place brute

force.

6.5.2 OpenMP

We used OpenMP (Open Multi Processing) to implement the parallel nested sam-

pling algorithm.

Our problem represents a case of a so called embarrassingly parallel problem, be-

cause the single threads do not need to communicate throughout their tasks, hence

OpenMP can be implemented in a straight forward manner.

Figure 6.6: Spawning of threads with OpenMP [1]

Figure 6.6 shows how in principle a serial code is parallelised with OpenMP. In our

realisation we spawn threads for every update process of the walkers. Each thread

gets a walker and computes the evolution through phase space. Each thread awaits

the update of all walkers. Then the master thread sorts the new likelihood values

into the present list, where the likelihood values of all live walker are stored.

6.6 Nested sampling for Potts models

6.6.1 Adaption of Nested sampling

In [18] it is shown how the formalism of nested sampling can be applied to Potts

models in the representation of Fortuin and Kasteleyn. Starting from the FK

model, which we obtained in equation 2.10, we can rewrite the bond distribution
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like

P (d) =
1

ZP
pD(d) (1− p)E−D(d) qC(d) with p = (1− e−Jβ)

=
1

ZP
eκ D(d) e−JβEqC(d) with κ = ln( eJβ − 1) (6.43)

The quantity we are interested in, the partition function ZP , then reads as

ZP =
∑
d

Zπ e
κ D(d) e−JβE

qC(d)

Zπ

= Zπ e
−JβE

∑
d

eκ D(d) q
C(d)

Zπ︸ ︷︷ ︸
ZNESA

(6.44)

We choose qC(d) ∝ π(d) as our prior probability for the NESA algorithm. To get a

proper normalized prior the summands in equation 6.44 are extended by a factor
Zπ
Zπ
, where Zπ denotes the prior normalization

Zπ =
∑
d

qC(d)

The likelihood function is then de�ned as

L(d) = eκ D(d) with D(d) =
∑
i,j

dij (6.45)

We can use NESA to determine

ZNESA(β) =
∑
d

L(d) π(d) (6.46)

Afterwards the wanted partition function of the Potts model ZP (β) can be obtained

via

ZP (β) = ZNESA(β) Zπ e
−JβE (6.47)

Noteworthy that the prior normalization is not a function of β: Zπ 6= Zπ(β). To

obtain Zπ we can try to exploit ZP (β), which is known for β = 0 and β =∞.
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For β = 0 we �nd

ZP (0) = qN = ZNESA(0) Zπ → Zπ =
qN

ZNESA(0)

If β = 0 it follows that κ = −∞ and hence

L(d) = 1 for D(d) = 0

L(d) = 0 for D(d) > 0

According to our prior π(d), con�gurations with D = 0 will be very unlikely and

therefore sampling of ZNESA(0) is extremely ine�cient.

In the limit β →∞ we �nd

ZP (β →∞) = q = ZNESA(β →∞) Zπ e
−JβE → Zπ =

q

ZNESA(β →∞) e−JβE

For β � 1 we �nd κ ≈ Jβ and hence

L(d) e−JβE = 1 for D(d) = E

L(d) e−JβE = 0 for D(d) < E

Again sampling con�gurations with D = E from our prior π(d) is not useful due to

the lousy statistics for this case. Hence, because we do not know any other values

for ZP (β), we are not able to retrieve Zπ from equation 6.46. Therefore we need

to determine Zπ separately. Jβ = ln(2) provides an optimal value of evaluation,

because then κ = 0, L(d) = 1 and hence ZNESA(β = ln(2)) = 1. Thus for this Jβ

we do not need to compute ZNESA. Inserting this into equation 6.47, we �nd

ZP (β = ln(2)) = Zπ e
−ln(2) E = Zπ

1

2E
(6.48)

Hence, via a separat evaluation of ZP (β = ln(2)) for example by thermodynamic

integration (as by Murray et al. [18]) we can determine Zπ.

Next we have a closer look on the likelihood de�nition and how it a�ects the NESA

algorithm. The value of the likelihood depends on the number of active bonds D.

The value of Jβ determines if the value of the likelihood L will either increase or
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decrease, with a increase in the number of bonds D. In the NESA algorithm we

have to be able to sort the likelihood values in increasing order. To ensure that

behaviour one has to make a distinction between the following cases:

• Jβ < ln(2)→ the number of active bonds D has to decrease

• Jβ > ln(2)→ the number of active bonds D has to increase

For us only the second case is of further relevance, because by means of the previous

TI run, we already know the values of Z for Jβ < ln(2).

The steps in a single nested sampling update for the Potts model are:

1. Start out from a given bond occupation d

2. Compute the number D of bonds in d

3. Then determine the clusters and choose at random a spin con�guration s a

la Swendsen Wang.

4. Given s, determine the number of possible bonds, which represents the num-

ber of nearest spins with the same orientation.

5. a.) According to probability p0 (see �gure 6.7) decide, if the number of bonds

D′ in the new bond occupation d′ is the same as the number in d, namely

D′ = D, or not.

b.) Otherwise (with probability 1 − p0) the number of bonds is determined

according to the probability

P (D′|E(s)) = 2−E

(
E

D′

)
. (6.49)

This is the binomial distribution with the probability 1/2 for a single reali-

sation (bond set or not).

6. Eventually there are

(
E

D′

)
ways to place D′ bonds on the E possible sites.

This bond con�guration is from the set D(s), where one is chosen uniformly.
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In other words, the probability is

P (d′|s, D′) =
1(
E

D′

) Θ(d′ ∈ D(s)) (6.50)

In section 6.6.1 a closer look on the statements of the �fth step in the above list

is taken.

Selection of the new number of bonds

The selection of the new number of bonds is the important di�erence of the nested

sampling approach to the general SW algorithm. Here the likelihood constraint

on the prior comes into play.

As described in equation (6.50), the new number gets chosen out of a truncated

binomial distribution. Lets have a look at this in more detail for an increasing bond

number. For putting D′ bonds on E possible positions the binomial distribution(
E

D′

)
(6.51)

is obtained. With the constraint for increasing likelihood values, the number of the

actual bonds D needs to increase. Therefore we avoid smaller values by truncating

the binomial distribution forD′ < D. To get a proper probability distribution from

which samples, for the new bond number can be drawn, the truncated distribution

needs to be normalized. Figure 6.7 shows a schematic illustration of a truncated

binomial distribution.

The decision tree shown in �gure 6.8 illustrates how to obtain the probability for

either the branch (1) D′ > D or the branch (2) D′ = D. In the graph r1 and r2

denote random numbers, uniformly distributed between 0 and 1. p0 is indicated

in �gure 6.7.

Let us analyse the decision tree to retrieve a probability for each branch. If the

�rst condition r1 < p0 is ful�lled the second one ensures an increasing likelihood

value via increasing the random label m. This means that the number of bonds

stays only the same if m′ > m. Otherwise we start from the top, a new random

number r1 is drawn and the �rst condition has to be checked again. Continuing

this procedure we can derive the following geometrical series, which enables us
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Figure 6.7: Truncated binomial distribution of the new number of bonds D'

to assign probabilities for both branches. For the case D′ > D the probability

therefore reads

p1.branch = (1− p0) + (1− p0) p0m+ (1− p0) (p0m)2 + ...

= (1− p0)
1

1− p0m
(6.52)

and for the second case, where D′ retains the value of D,

p2.branch = p0(1−m) + p0m p0(1−m) + (p0m)2 p0(1−m) + ...

= p0(1−m) (1 + p0m+ (p0m)2 + ...)

= p0(1−m)
1

1− p0m
(6.53)

The sum p1.branch + p2.branch = 1 assures the right normalization.

If the bond number stays constant one needs to compute a new random label m′.

m′ = m (1−m) r, (6.54)

where r denotes a uniform random number. This way the constraint m′ > m is

satis�ed. If a change in the bond-number is accepted, one calculates the discarded

and normalized binomial distribution again, which contains only D′ > D and

randomly draws the new number. Because of the changing bond-number the label
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Figure 6.8: Decision tree for evaluating the probability of the two displayed cases.

m′ is not subject to any constraint and is chosen randomly m′ = r.

If the likelihood constraint requires the bond number to decrease, the procedure

is analogous to the above one, exept of a slight di�erence, that needs to be taken

into account. If the possible number of bonds E is lower than the actual number

D one needs to ensure that the constraint not just ful�ls D′ ≤ D but also D′ ≤ E.

Performance comparison of bond selection

The presented approach of computing the new bond number is to prefer over

the straight forward way of calculating the whole truncated binomial distribution

and drawing the new bond number from it (as in [18]). The truncated binomial

distribution will decline very fast and hence a lot of possible new bond numbers

will be very improbable.

Comparing our approach with the straight forward method yields a considerably

reduction of CPU time needed for one NESA run (see �gure 6.9). For larger

systems the time of our version is in the 10 percent range of the second one.
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Figure 6.9: Comparison of the CPU times for a nested sampling computation,
applied on a q = 10 Potts model, for the two ways (see text) of choosing
the new bond number.

Thermalisation

In the beginning, the randomly chosen spin colouring with the resulting random

bond occupancy is unlikely to be a representative state of the system. The system

needs a certain amount of updates to reach relevant areas in state space. Therefore

at the beginning of each simulation multiple SW steps are executed. This initial

process is referred to as thermalisation of the system.

The prior normalisation

The prior normalisation Zπ of equation 6.44 is not known. It needs to be calculated

separately. We use thermodynamic integration (see section 4) to compute Zπ at

Jβ = ln(2). In [18] the same approach has been used. This separate calculation

is a drawback in the use of nested sampling for the Potts model. Although, the

need of an additional computation arises, the low Jβ value ensures that TI does

not have to deal with diverging correlation times (see section 4.1.1). Hence its

calculation is computationally still fairly cheap.
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Analysis of the Zπ evaluation

The CPU time needed by the thermodynamic integration method will of course

depend on the number of Jβ values, at which ln(Z) is calculated, and furthermore

on the number of the SW updates at each βi. For thermalisation 10 percent of

the SW updates at each βi are discarded. Before evaluating ln(Z) for di�erent

system sizes, we want to know how these parameters will a�ect the outcome. All

evaluations in this section were performed for a q = 10 system.
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Figure 6.10: Dependence of the time and partition function per site on the number
of Jβ steps with a maximum value of Jβmax = ln(2). The computa-
tions were performed for a q = 10 Potts system for various grid-sizes.

In �gure 6.10 the dependence of the partition function on the number of Jβ steps

is shown. Here 2000 SW updates (hence with a mean correlation time of 2 we

obtain 500 e�ective updates) have been evaluated at each Jβ. The time per site

shows a linear dependence, which is intuitively correct, because the same amount

of calculations have to be executed for each step. The value of ln(Z) per site
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in the second subplot converges at about 250 Jβ steps, the respective standard

deviations stays fairly constant over the whole range of Jβ steps. Hence we will

use 250 Jβ steps for the following calculations.

In �gure 6.11 the number of SW updates (for the e�ective number the same con-

sideration as above applies) for each measurement is successively increased. Again

the time per site rises linearly with increasing number of updates, because at each

update the same amount of computational work is done. ln(Z) varies very little

over the plotted range and the standard deviation shows the MC typical 1√
x
-decay

with increasing number of SW updates. This is emphasized in �gure 6.12. A

f(x) = a/
√
x �t displays an excellent agreement.
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Figure 6.11: Dependence of the time and partition function per site on the number
of SW updates at Jβ = ln(2). The computations were performed for
a q = 10 Potts system for various grid-sizes.
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Figure 6.12: The standard deviation of the partition function for the q = 10 Potts
model and various grid sizes shows the expected 1/

√
x decay over the

number of SW updates.

Due to the previous analysis, we determine the parameters for the evaluation of

the prior normalisation. 250 β steps and 4000 (1000 e�ective) SW updates allow

a good trade-o� between CPU time and accuracy. Figure 6.13 shows the required

CPU time per site for the Potts system with q = 10 colours in dependence on

the system size for these parameters. It stays quite constant for sizes in the range

from 16× 16 to 512× 512. For small systems, the parts of the code, which do not

scale with the system size (like e.g. initialisation, in- and output), claim a higher

percentage of the total time. Therefore the time per site results in little larger

values for these sizes.

The results for ln(Zπ) per site are plotted in the lower sub�gure. The standard

deviation decreases due to self averaging of the system. Larger systems can be

pictured as combination of e.g. multiple 4 × 4 systems. Therefore the standard

deviation exhibits a decrease for larger systems (see �gure 6.14), the same way as

we would obtain for using the respective number of these smaller systems.
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Jβmax = ln(2) in dependence on the grid-size, computed with 4000
SW updates and 250 β steps.
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6.6.2 Brute force calculation of small Potts systems

Generally a system with N spins and q colours exhibits qN possible con�gurations

if no restrictions are applied. For a small number of spins and colours, we are able

to calculate the exact partition function. Though, as the lattice size or the number

of colours increases just a little, the partition function becomes soon intractable

by such a brute force approach.

For the system of size 3 × 3 the partition function for q = 2 and q = 5 have

been computed exactly (see �gure 6.15). These exact results can be used for

the veri�cation of the simulation estimates of nested sampling, multicanonical

sampling or thermodynamic integration.
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Figure 6.15: Exact solution of the partition function for 3x3 systems with the
number of colours q = 2 and q = 5.

The partition function can be computed with the Hamiltonian expressed either in

the spin s or in the bond d variables.

Z(s) =
∑
s

exp(−βH)

Z(d) =
∑
d

exp(−βH)

In the spin representation our Hamiltonian is of the form (compare section 2)

HPotts = −J
∑
〈i,j〉

(2 δsi,sj − 1) (6.55)
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The summation then runs over 29 possible con�gurations for 9 spins with 2 possible

states. Equivalent for 5 states, it sums over 59 possible con�gurations.

The second way is to calculate Zexact with the Hamiltonian expressed in bond

variables. The partition function is then calculated as in equation 2.10. Now the

number of possible con�gurations is 218 for a system with 9 spins and q = 2,

because instead of 9 spins with up or down orientation, there are now 18 bonds

which can be active or not.

The calculation of Zexact according to equation 2.10 needs the number of clusters

C(d). They are not required in the spin representation. Hence, through compar-

ison of the two results for Zexact, the outcomes of the subprogram for the cluster

identi�cation, which is used for the SW update in nested sampling and thermo-

dynamic integration, can be veri�ed. The dependence of the resulting partition

functions on the inverse temperature β is shown in �gure 6.16. Since the two

representations of the Hamiltonian are equivalent, the two calculations yield the

same results.
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Figure 6.16: Exact partition function computed in spin and bond variables for the
3× 3 and q = 2 Potts model.
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6.6.3 Correlations

Successive con�gurations drawn from the prior as described in chapter 6.6 will

show correlations to a certain extent. Hence we determine the correlation times of

NESA for the 3×3 system for q = 2 and q = 5. The correlation has been analysed

for a single walker for two cases:

• First no constraint is applied on the number of bonds (therefore on the like-

lihood) and so the walker can move through all bond con�gurations.

• Second the movement underlies a constraint that just con�gurations with

increasing number of bonds are allowed (This corresponds to the case βJ >

log(2) as described in section 6.6.1).

The time series for the analysis are obtained as follows. The walker starts a

100 times from a �xed bond con�guration and it moves for 100 steps. Then the

con�guration is released for the same amount of steps (100×100) and �xed again.

This procedure is performed for 1000 �xed con�gurations. For the measurements,

starting from a �xed con�guration, the resulting autocorrelation functions are

averaged. The integrated correlation time is then evaluated the same way as

described in section 4.1.1.

The histograms of the resulting 1000 mean correlation times τi are shown in �gure

6.17. Table 6.6.3 lists the integrated correlation times with their corresponding

standard deviation for the above mentioned cases. The numbering (a) - (d) indi-

cates the related picture in �gure 6.17.

Gridsize 3x3 q = 2 q = 5

no constraint (a) 1.72 ± 0.05 (c) 1.85 ± 0.21
constraint (b) 1.54 ± 0.26 (d) 1.71 ± 0.03

Table 6.1: Integrated correlation times τ̄int. See text for further explanation.

Figure 6.18 shows the same distribution of correlation times for a 16× 16 system

with q = 10 colours, evaluated in the same way as described above. The likelihood

has been constrained during this simulation. The histogram indicates no increase

in correlation time for larger systems.
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Figure 6.17: Distributions of the integrated correlation time for a 3 × 3 system
with: (a) q = 2, not constrained, (b) q = 2 constrained, (c) q = 5 not
constrained and (d) q = 5 constrained

This observation is supported by �gure 6.19, where the mean ln(Z) of 10 inde-

pendent runs is plotted over the number of SW updates between measurements.

The greyish error bar indicates the standard deviation of the 10 runs, whereas the

turquoise one indicates the mean error calculated from 100 prior samples. The

values do not exhibit any signi�cant convergence to the true value with increasing

number of SW updates, nor any reduction in the error values.

The low values for the correlation times τ̄corr give reason to assume that the succes-

sive states of a walker during the evolution of the simulation are not signi�cantly

correlated. Therefore it is not necessary to discard measurements of the likelihood

in order to get unbiased estimates.
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Figure 6.18: Correlation times of a 16×16 Potts model with q = 10 and a constraint
on the likelihood.
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Figure 6.19: ln(Z) for the 16 × 16 system with standard deviation from 10 runs
and the error evaluated from 100 prior samples.
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7 Results

First the nested sampling algorithm has been tested for a simple illustrative prob-

lem - a one dimensional Gaussian likelihood function. This gives us the possibility

to study the behaviour of the algorithm, while having all quantities analytically

available.

Further the evaluation of the q = 10 Potts model partition function by means of

NESA is analysed in more detail. Afterwards results for thermodynamic quantities,

derivable from the partition function, are compared to the respective results from

a multicanonical simulation.

The performance comparison of retrieving the partition function ln(Z) via NESA

and via TI reveals a distinct advantage for NESA. Finally the investigation of the

parallel implementation of the NESA algorithm yields a potential way to reduce

runtime.

7.1 One dimensional Gaussian likelihood function

Starting again from our primary problem, evaluating the integral

Z =

∫
dx L(x) p(x) (7.1)

we are now employing

L(x) = exp(−x
2

2
) (7.2)

p(x) = uniform in [−1, 1]

a Gaussian likelihood and a uniform prior as the components of our integrand.

Utilising such a simple likelihood function gives us the possibility to test our im-

plementation of the nested sampling algorithm. For this toy problem all steps can

be compared to analytical results, because we know the functional form L(X).
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The analytical result for Z yields

Z =
1

Zpi

∫ 1

−1

exp(−x
2

2
) =

√
π

2
erf

(
1√
2

)
≈ 0.8556

with the prior normalisation Zpi = 2.

The application of the nested sampling algorithm begins with drawing the start

sample of walkers from the uniform prior in the range of [-1,1]. The respective

likelihood values can be computed directly from 7.2. We are now also able to

retrieve the new parameter boundary xmax corresponding to λmin, from the inverse

of the likelihood function. The new x, for the walker with the minimal likelihood,

is again uniformly drawn within x ∈ [−xmax, xmax]. The prior mass during each

step is simply given by X = 2 xmax.

The algorithm stops, when the variation of λmin values falls beneath a speci�ed

threshold ε. Commonly the likelihood values are not increasing any more after

a certain log(Xi) is reached. Unfortunately in general one can not be sure that

no further increase, hence further critical mass of the integral, will occur. The

convergence criterion needs to be properly chosen for problems at hand.

The time evolution of the positions of the walkers is depicted in �gure 7.1. Starting

from positions in [-1,1], the increasing likelihood threshold forces the walkers more

and more into the peak of our likelihood function. Fewer walkers achieve faster

shrinkage therefore one needs fewer steps to reach the peak. Although using more

walkers gives a better sampling of the phase space, which gets important when

one is dealing with a multiple peaked likelihood function.
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Figure 7.1: Positions of walkers for each step n during a single nested sampling
run for the Gaussian likelihood function and the uniform prior. In the
upper �gure a sample of 20 walkers was used, in the lower a sample of
100.
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Knowing the true prior mass values X = 2 xmax, we can compare them to the

X calculated from the Beta distribution of the shrinkage. Figure 7.2 shows the

likelihood values, retrieved from a single nested sampling run, in dependence of

their true X value and also in dependence of three samples of X sequences. The

likelihood values have been calculated with a sample of 10 walkers. The �rst 25

update steps of the algorithm are shown. The curves computed with the sampled

prior masses exhibit a similar shape as the one computed at the true X values, but

with the di�erence of a random o�set on the abscissa.

ln(X)
-2.25 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25

ln
(L

)

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

L(X)

Sample 1

Sample 2

Sample 3

Figure 7.2: Likelihood values from a single NESA run with 10 walkers placed at
their true X value and placed at three samples of prior sequences.

In �gure 7.3 ln(Z) is evaluated for di�erent sets of parameters. In each sub�gure

the results of 20 independent nested sampling runs are displayed. The left column

gives the results for the lower bound of the estimate of ln(Z). Respectively the

upper bound can be found in the right column.

Down the column k, the number of walkers, which are discarded in each update,

is successively increased. For k = 2 and k = 4 the parallel implementation of the

algorithm has been employed. The number of walkers K is scaled according to the

increase of the parallel updates per step k (equation 6.39).

The analytic result for ln(Z) (see equation 7.3) is depicted by the dotted black line.
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The magenta triangles indicate the values of ln(Z), where each of the respective

likelihood sequences has been computed at the true X values. The turquoise

crosses indicate the mean value of 100 ln(Z) values stemming from 100 samples of

prior mass sequences. The horizontal dashed lines in the respective colour indicate

the mean values of the 20 independent runs. The values evaluated by the prior

samples �uctuate around the true ones in a random fashion, hence the mean values

of both variants show good agreement with each other.

The plotted error bars are evaluated as in equation 6.33, by means of the multiple

samples of the prior masses. The errors conform to the observed �uctuations of

ln(Z), evaluated via the prior mass samples, around ln(Z), evaluated at the true

prior mass values.

The results for k = 1 agree within the error bars with the analytic result. For

k = 2 and k = 4 the results di�er in increasing fashion from the analytic result.

Furthermore the error bars display a decrease with increasing number of walkers

K. Remembering equation 6.36,

ln(Z) ≤ ln(Zanalytic) ≤ ln

(
K + 1

K − k + 1

)
+ ln(Z)

and employing it for the depicted parameters, one �nds that, the increasing gap be-

tween the lower and the upper bound can be explained by means of the quadrature

error, which is not considered in the evaluation of the indicated errorbars.

Further we are interested how the number of walkers K a�ects the outcome of the

computations. Figure 7.4 displays ln(Z) versus the number of employed walkers

K. Here the symbols refer to the same quantities as in the previous �gure. With

increasing K the results converge to the analytic value. The error bars show the

expected 1/
√
K decline. This is in addition qualitatively emphasized in �gure 7.5.

The higher accuracy of course leads to longer computation times. The CPU times

displayed in �gure 7.6, roughly match a cubic increase over K. Also the quadrature

error in equation 6.36 decreases with larger K.

At the end of this section we are able to conclude that our program for calculating

the likelihood sequence, in the standard and the parallel implementation, as well

as the program for evaluating the likelihood sequence via the sampled prior masses

leads to proper results for the illustrative Gaussian likelihood function at hand.
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Figure 7.3: ln(Z) results of 20 independent nested sampling runs: (a),(b) K=100,
k=1; (c),(d) K=200, k=4; (e),(f) K=346, k=12. The left/right column
shows the results for the lower/upper bound. The magenta triangles
indicate ln(Z) computed at the true X values. The turquoise crosses
indicate the mean of 100 ln(Z) values stemming from 100 prior mass
samples. The horizontal dashed lines in the respective colour indicate
the mean values of the 20 independent runs. The analytic result for
ln(Z) is depicted by the dotted black line.
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Figure 7.4: ln(Z) of the Gaussian likelihood function in dependence of the number
of walkers K for k = 1. The analytic result for ln(Z) (see equation 7.3)
is depicted by the dotted black line. The magenta triangles indicate
ln(Z) computed at the true X values. The turquoise crosses indicate
the mean value of 100 ln(Z) values stemming from 100 samples of prior
mass sequences.
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Figure 7.5: Standard deviation of ln(Z), indicated by the errorbars in the previous
�gure, in dependence of the number of walkers K.
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Figure 7.6: The increase of CPU time over increasing number of walkers K �tted
by a cubic function.
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7.2 Potts model with 10 colours

In this section we analyse the computation of the partition function ln(Z) for Potts

models in more detail. In the beginning we focus on a 4×4 system. A single nested

sampling run, using K=100 walkers, gives us the likelihood sequence used for the

further calculations. 100 samples of the prior mass are produced to compute the

mean and the variance of the partition function (see section 6).

First we want to understand how the number of nested sampling steps in�uences

the outcome of the evaluation.
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Figure 7.7: The values for ln(Z) for a 4×4, q=10 Potts model are displayed in de-
pendence on the number of NESA steps nmax used for their evaluation.
For increasing values of Jβ the nmax dependence of ln(Z) becomes im-
portant, which means that for larger Jβ-values the values of ln(Z)
need more steps to converge to a constant value. The lower row of
plots shows that for values of Jβ way above the phase transition, all
likelihood values need to be considered, to yield the known limiting
value of ln(Z) (indicated by the black dotted line). Note that the scale
on the y-axis changes in the upper row.

Remember that the likelihood value of the Potts model, as de�ned in 6.45, reaches

a maximum if all bonds are active. The required number of steps is strongly
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in�uenced by the value of Jβ, for which we want to determine ln(Z). Figure 7.7

shows the results for ln(Z) for di�erent Jβ values in dependence of nmax. nmax

here denotes the number of NESA steps, corresponding to the number of likelihood

values, used to compute ln(Z).

At low values of Jβ, already half (for Jβ = 1.2), or even a quarter (for Jβ ≤ 1.0) of

the maximal number of steps, yield converged results. For larger Jβ values, where

we can compare the results with the limiting ln(Z) value (indicated by the black

dotted line), only for large nmax values the correct results are obtained. Hence we

�nd that for increasing Jβ-values the number of required NESA steps, to obtain

correct results, increases. For very high Jβ values (e.g. Jβ = 100), an accurate

estimate for ln(Z) is only available, if the whole possible sequence, including the

likelihood values up to D = 2N , is considered.

The Jβ dependence of the partition function stems from the di�erent shapes of

L(X). Figure 7.8 displays in (a) ln(L) in dependence of ln(X). The stairplot

should emphasize that for the Potts model L can just take on discrete values for

various values of Jβ. Here the values have been shifted by 2NJβ, so they all start

out at ln(L) = 0 and crossing is avoided. One should not be deluded by the slight

slope of the logarithmic values.

In (b) and (c) L is plotted over X, where X is displayed on a logarithmic scale,

respectively for Jβ = 0.8 and Jβ = 2. These two plots display the extreme

narrowing and increase of the likelihood peak with increasing Jβ, which is already

distinctive for this small system. The points, where ln(Z) has been evaluated for

the respective plots in �gure 7.7, are marked with an black x. One can observe in

both �gures that for Jβ = 2 in (c) the last terms contribute more to the sum for

ln(Z) than the last terms for Jβ = 0.8 in (b).

This becomes evident when plotting the summands of Z over the number nmax of

evaluated steps. For Jβ = 0.8 it is now obvious why the second ln(Z) evaluation

in the respective plot in �gure 7.7 yields approximately the same result as the last

evaluation. For Jβ = 2 the main contribution to the sum stems already from the

last third of the sequence and for Jβ = 5 the last summand clearly dominates.

Again this is in good agreement with the results in �gure 7.7.
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Figure 7.8: (a) Plot of the logarithmic likelihood over the logarithmic prior mass of
the 4× 4, q = 10 Potts system for di�erent temperatures (b) Semilog-
arithmic plot of L(X) for Jβ = 0.8 (c) Semilogarithmic plot of L(X)
for Jβ = 2.
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Figure 7.9: Summands of equation 4.6 for a 4 × 4 and q = 10 system at di�erent
temperatures: (a) Jβ = 0.8, (b) Jβ = 2, (c) Jβ = 5.

The above analysis applied to a 128× 128 system yields in principal the same but

more distinct behaviour. The results for ln(Z) in dependence on the number of

NESA steps, as shown in �gure 7.11, reveals that at high Jβ values the importance

of the last summand further increases for larger systems. Here the separate inves-

tigation of the exponential summands, as for the 4× 4 system, is computationally

not available any more, due to the occurrence of extremely large values.

Eventually we can conclude, that for the ability to evaluate ln(Z) properly up to

large Jβ values, it is required to calculate the whole likelihood sequence up to the

maximum value, corresponding to D = 2N set bonds.
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Figure 7.10: The values of the likelihood function over the prior mass fairly increase
for the 128×128, q = 10 system, when comparing it to the 4x4 system.
Note the log scale on both axes.
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Figure 7.11: The values for ln(Z) for a 128×128, q=10 Potts model are displayed in
dependence on the number of NESA steps nmax. For large Jβ values
the whole likelihood sequence needs to be evaluated. The lower row of
plots shows that for values of Jβ way above the phase transition, all
likelihood values need to be considered, to yield the known limiting
value of ln(Z) (indicated by the black dotted line) within the error
bars. Note that the x-axis in the lower row only displays half the
range of the upper.
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Number of prior mass samples

Although the calculation of a prior mass sequence is computationally cheap in

comparison to a nested sampling run, the in�uence of the number of prior mass

samples is of interest.

Here we deal with a 32× 32 system with 10 colours and evaluate ln(Z) for a value

of Jβ = 10. For the NESA run 100 walkers were employed. The dependence of

ln(Z) and the respective standard deviation on s, the number of prior sequences

used for evaluation, is illustrated in �gure 7.12. For each s the average of 100

repeated calculations of ln(Z) is shown. Above s = 50, ln(Z) as well as the

standard deviation, stay fairly constant. Therefore for the following evaluations

s = 50 sequences are su�cient for each computation of the partition function. At

�rst glance it is surprising that the errors do not decrease with a larger number

of prior samples. However, considering the standard deviation given in equation

6.33, one �nds no dependence on s.
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Figure 7.12: The number of prior sequences s has little in�uence on the evaluation
of ln(Z) (displayed here for a 32× 32, q = 10 system at Jβ = 10).
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Number of walkers

An increasing number of walkers will lead to convergence to the true value, with

increasing accuracy. Figure 7.13 displays the results for K = 10 − 10000 and

supports the expected 1√
K
decay (as we found for the upper bound of the variance

in equation 6.34).
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Figure 7.13: ln(Z) of a 32 × 32 and q=10 system versus the number of walkers
K. The limiting value of ln(Z) for Jβ →∞ is indicated by the black
dashed line.

Partition function dependence on Jβ

In statistical physics we are usually interested in the dependence of the partition

function on the inverse temperature. In the canonical ensemble we this provides

the whole thermodynamic information of the system.

Figure 7.14 and 7.15 display ln(Z) per site versus Jβ for grid sizes 16 × 16 and

128× 128. Further depicted are the phase transition temperature and the limiting

value of ln(Z). For Jβ values above the critical Jβ, ln(Z) quickly approaches the

limiting value ln(q)/N .
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Figure 7.14: ln(Z) of a 16× 16, q=10 system versus Jβ evaluated via NESA with
K = 100. For Jβ values larger than 2, ln(Z) approaches the limiting
value of ln(Z) for Jβ →∞ (indicated by the black dashed line).
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Figure 7.15: ln(Z) of a 128 × 128, q=10 system versus Jβ evaluated via NESA
with K = 100. For Jβ values larger than 2, ln(Z) approaches the
limiting value of ln(Z) for Jβ → ∞ (indicated by the black dashed
line).
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7.3 Thermodynamic quantities

Given the partition function of a system in the canonical ensemble, thermodynamic

quantities like the free energy F and the inner energy U as well as the entropy S

and heat capacity cV can be deduced. The de�nitions of these quantities read as:

F = − 1

β
ln(Z) (7.3)

U = − ∂

∂β
ln(Z) (7.4)

S =
U − F
T

(7.5)

cV =
∂

∂T
U = kBβ

2 ∂2

∂β2
ln(Z) (7.6)

Starting from the de�nition of the estimate of the partition function, we deduce

expressions for the �rst and second derivation of ln(Z). Given this expressions

we can evaluate the above physical quantities analytically employing the obtained

likelihood sequence and samples of prior masses. Hence we can avoid the determi-

nation of the numerical derivatives and their associated errors.

Remembering equation 6.45 we get for ln(L)

ln(L) = D ln( exp (J β)− 1 ) (7.7)

and the derivation of ln(L) with respect to β yields

∂

∂β
ln(L) = D

J exp (J β)

exp (J β)− 1
(7.8)

Given ln(Ln) and ln(∆Xn) we can calculate the logarithm of the partition as

follows

ln(Z) = ln

(∑
n

exp [ ln(Ln) + ln(∆Xn) ]

)
(7.9)

Here it is bene�cial to use the �rst de�nition of ln(Z) in 6.10, where Ln occurs only

once in each summand and therefore simpli�es following derivatives with respect

to β.

In the following an expression for the �rst and second derivative of the partition
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function in terms of the number of bonds Dn, the likelihood Ln and the prior

masses Xn is given.

∂

∂β
ln(Z) =

∑
n exp [ ln(∆Xn)] ∂

∂β
exp [ ln(Ln) ]∑

n exp [ ln(Ln) + ln(∆Xn) ]

with
∂

∂β
exp( ln(Ln) ) = exp

Dn ln [exp(Jβ)− 1]︸ ︷︷ ︸
ln(Ln)

Dn
J exp (J β)

exp (J β)− 1
(7.10)

So eventually the �rst derivative reads as

∂

∂β
ln(Z) =

J exp (J β)

exp (J β)− 1

∑
n

Γn︷ ︸︸ ︷
exp [ ln(Dn) + ln(Ln) + ln(∆Xn) ]∑

n exp [ ln(Ln) + ln(∆Xn) ]︸ ︷︷ ︸
Ωn

(7.11)

Here Γn and Ωn are introduced for enhancing further readability. With this de�-

nition the second derivation has the following form

∂2

∂β2
ln(Z) =

(
J exp (J β)

exp (J β)− 1
−
(
J exp (J β)

exp (J β)− 1

)2
) ∑

n Γn∑
n Ωn

+
J exp (J β)

exp (J β)− 1

∑
n Γn

∂
∂β

ln(Ln)∑
n Ωn

− J exp (J β)

exp (J β)− 1

∑
n Γi

∑
n Ωn

∂
∂β

ln(Ln)

(
∑

n Ωn)2

Inserting equation 7.10 leads to

∂2

∂β2
ln(Z) =

(
J exp (J β)

exp (J β)− 1
−
(
J exp (J β)

exp (J β)− 1

)2
) ∑

n Γn∑
n Ωn

+

(
J exp J β)

(exp (J β)− 1

)2 ∑
i Γn Dn∑
n Ωn

−
(

J exp J β)

(exp (J β)− 1

)2 (∑
n Γn∑
n Ωn

)2

(7.12)

In both derivatives sums of exponentials occur. For an accurate calculation we

refer once again to section 9.1.
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Thermodynamic quantities

7.3.1 Comparison of multicanonical sampling and nested

sampling

The result of the energy per site, calculated according to 7.4 and 7.11, is compared

to the respective result in [5]. The evaluation is performed for a 20 × 20 system

with q = 10 colours. The results of the paper are reproduced by the Fortran code,

provided by the author. The code has been downloaded from www.hep.fsu.edu/

~berg. Details on the link and the usage of the code are explained in [5].

One needs to be aware of the de�nition of the energy, when comparing the results

of the MUCA simulation with our nested sampling simulation. The de�nition of

the energy per spin in [5] exhibits a factor 2 larger energy with a constant shift of

2/q, in comparison to the de�nition used in this work.

The number of walkers for the NESA algorithm as well as the parameters for

the TI were tuned to yield approximately the same total computation time as

the multicanonical simulation (ca. 100 sec.). Therefore for nested sampling we

employed 500 walkers and for TI we set the number of β steps to 250 and the

number of SW updates to 1250 (here the assumed mean correlation time of τint = 2

lead to a total number of SW updates of 5000).

The results of the energy for di�erent values of Jβ computed via nested sampling

and via a multicanonical simulation are shown in �gure 7.16. They exhibit a quite

good agreement, though, the error bars of the multicanonical simulation are about

a factor 10 smaller than the ones obtained by nested sampling. Although this crude

comparison favours the multicanonical simulation, one should consider that the

code of Berg will already be fairly optimized in terms of computational e�ciency.

Therefore further improvement of the code for NESA could yield improvement in

runtime. Secondly the system investigated, is still rather small hence a comparison

of the scaling with grid size of both methods would be of further interest. Moreover

the multicanonical simulation in the employed implementation samples new states

by means of the standard Metropolis algorithm. A more competitive approach,

applying SW updates, would be the so called multibondic sampling algorithm

introduced by Janke [12].

83

www.hep.fsu.edu/~berg
www.hep.fsu.edu/~berg


Performance comparison of thermodynamic integration and nested sampling

Jβ
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

U
 /

 a
.u

.

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Multicanonical Simulation

Nested sampling

Phase transition

Figure 7.16: Energy per site versus Jβ evaluated by means of NESA and MUCA
for the 20× 20 and q = 10 Potts system.

7.4 Performance comparison of thermodynamic

integration and nested sampling

In table 7.1 our results are compared to the results of table 1 in Murray et al.

[18]. The employed annealed importance sampling algorithm (AIS) is bound to

fail, because using only one SW update per β value, will, especially for larger

systems, give strongly correlated results (see 4.1). This leads to the strongly

deviating results in [18]. Although, working for the presented problem in table

7.1, TI encounters massive slowing down if the system size increases as we found

in section 4.1.1.

Table 7.1: ln(Z) for a 16 × 16 model computed by TI for parameters near phase
transition. The second row shows the results from [18].

Method q=2, Jβ = 1 q=10, Jβ = 1.477

Swendsen Wang TI 7.4 ±1.5 11.4 ±1.6
Swendsen Wang AIS 7.4 ±0.1 1.2

First we analyse the required time of the NESA algorithm to compute the partition
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function of various grid sizes N . Having ln(Zπ) from a TI run and the sequence

of likelihood values from a single NESA run at hand, one is able to calculate

ln(Z) for all Jβ values greater than ln(2). The importance of this point should be

emphasized, because the most time consuming part are the SW updates during the

NESA run, whereas the subsequent evaluation of ln(Z) is computationally cheap.

Lower values would also be possible to retrieve from the corresponding likelihood

sequence, but because of the required previous thermodynamic integration, these

values are already known.

In �gure 7.17 one �nds the required CPU time for NESA in dependence of the

system size (from 4× 4 up to 256× 256). The total time as well as the time spent

for the preceding TI run and the following nested sampling run are indicated

separately. The TI was computed with 250 β steps and 1000 SW updates per

step. The number of updates has been corrected by a correlation time of τint = 2

(therefore we run 4000 SW updates) for all β values. For this parameter setting

the error of ln(Zπ) �nally accounts for about 4 − 5% of the error we obtain for

ln(ZN) from NESA.

While the total TI runtime scales linearly (hence the time per site stays constant),

we identify a power law in the increase of the total NESA runtime. From a linear

�t (y = a x+ b) of ln(tNESA) versus ln(N) we obtain

a = 1.96 ± 0.03 and b = −9.63 ± 0.25 (7.13)

For small systems the time needed for the TI computation prevails. For larger

systems, though, the power law increase of the NESA algorithm dominates. As

reference point for the total time, the computation of the 256 × 256 grid with

NESA took about 57h.

Figure 7.18 shows the results for ln(Z) per site at Jβ = 10 evaluated via NESA.

The error bars are in good agreement with the indicated limiting value of ln(Z)

for low temperature.
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Figure 7.17: Breakdown of the total CPU time versus N for the nested sampling
evaluation of the q = 10 Potts model.
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Figure 7.18: ln(Z) for the q = 10 Potts model computed by the nested sampling
algorithm versus grid size N .
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For a proper comparison of the two methods, NESA and TI, some important

points need to be considered. Thermodynamic integration yields the values of the

partition function only at the values of the Jβ steps explicitly determined in the

start parameters. But looking at �gure 4.1 and remembering equation 4.6, we see

that only terms contribute to the sum, if not all bonds are active. The probability

for a bond to be active is given in equation 2.9. It follows, that above a certain

Jβ value, there will be nearly no contributions to the sum any more. Hence it is

su�cient to calculate the partition function ln(Z) with thermodynamic integration

up to a value of e.g. Jβ = 10 for the investigation of the q = 10 system. Above

Jβ = 10 no signi�cant variation in the result of ln(Z) will occur.

The most time consuming element of both methods is the SW update. Remember

that for nested sampling the number of required SW steps equals the number

of likelihood values, whereas in thermodynamic integration for each Jβ value,

multiple SW updates are performed. Additionally to the plain SW update, nested

sampling requires for each update the determination of a new bond number (see

section 6.6.1) and further the minimal likelihood values after each update need to

be ordered.

For the comparison of NESA and TI the respective parameters have been chosen

in a way that the resulting error bars of ln(Z) at Jβ = 10 are of approximately

the same size (see �gure 7.19). For system sizes ranging from 4 × 4 to 32 × 32

the correlation times are computed for all Jβ values (details on the computation

can be found in section 4.1.1). This enables us to correct the respective variances

for TI at every Jβ value. NESA used a sample of 100 walkers and 50 prior mass

samples in all following computations.

The results for ln(Z) computed via NESA and via TI are displayed in �gure 7.19.

The respective computational time required for TI as well as for NESA is given in

�gure 7.20. From a linear �t (y = a x + b) of the logarithmic values obtained for

TI we �nd

a = 1.94 ± 0.07 and b = −2.83 ± 0.37 (7.14)
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Figure 7.19: ln(Z) of the q=10 Potts model computed by thermodynamic integra-
tion and nested sampling in dependence of the grid-size.
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Figure 7.20: Investigating the q=10 Potts model, the logarithmic time versus the
logarithmic grid size exhibits a similar scaling for both methods. The
time required for the Zπ evaluation is not included in the time for
NESA, because it only scales linearly with N .
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Figure 7.21 shows the number of SW updates for each algorithm for grid-sizes from

4× 4 to 32× 32. Being the most time consuming element of both procedures, the

plots of TI and NESA (without the number of SW updates for the preceding TI

computation) exhibit the same structure as the respective graphs of computational

time.
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Figure 7.21: Number of SW updates required for the results of TI and NESA.
The SW updates for the NESA run and the additional TI to evaluate
ln(Zπ)(β = ln(2)) are indicated separately.

Assuming that the SW update is the most time consuming part, the total time of

both algorithms is given via

ttotal = nSW tSW

= ebn Nan ebt Nat

= eb Na

(7.15)

(7.16)

(7.17)

Here nSW denotes the number of SW updates and tSW denotes the time per SW

update. Both quantities exhibit a power law dependence on the system size.

Again the corresponding logarithmic values ln(tSW ) and ln(nSW ) in dependence

on ln(N) are linearly �tted. The obtained values for the exponents are listed in

table 7.2
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Table 7.2: Values of the exponents in equation 7.16 determined by a linear �t of
the logarithmic values of tSW and nSW . The last two lines depict the
exponents found earlier for the �ts of the total time.

a) Fit of # of SW updates an bn

TI 0.97 ± 0.07 12.76 ± 0.37
NESA 1.001 ± 0.002 5.51 ± 0.12

b) Fit of t per SW update at bt

TI 0.97 ± 0.05 −15.59 ± 0.24
NESA 0.96 ± 0.04 −15.14 ± 0.26

c) Combination of a) and b) a = an + at b = bn + bt

TI 1.94 ± 0.12 −2.83 ± 0.61
NESA 1.96 ± 0.04 −9.63 ± 0.38

d) Fit of total time a b

TI 1.94 ± 0.07 −2.83 ± 0.37
NESA 1.96 ± 0.03 −9.63 ± 0.25

The results show that for both methods the number of SW updates roughly scales

linearly with the system size N. Also the time per SW update exhibits a approx-

imately linear scaling with N. The scaling of the total time in dependence on the

grid size computed via the individual components yields the same results as we

found earlier by means of �tting the total time.

Finally we �nd that both methods show the same scaling within the error bars. In

each case the total time scales approximately quadratic with N. From the results

in equation 7.13 and 7.14 we �nd that the prefactor eb leads to a lower total

computational time for the NESA algorithm by a factor of 898 (483, 1669). Again it

needs to be noted that for this evaluations the time for the ln(Zπ) computation has

not been included and the above factor is only valid for system greater ≈ 32× 32.

7.5 Analysis of the parallel nested sampling

algorithm

In this section we implement the parallel NESA algorithm (as presented in section

6.5) and analyse it for system sizes from 4× 4 to 64× 64. For the case of k = 1 a

sample of K = 100 walkers is employed. If k > 1, K is scaled with the number of

cores according to equation 6.39. The computations for k = 1, 2, 4 are performed
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Analysis of the parallel nested sampling algorithm

on a processor including 4 cores.

For the evaluation of each ln(Z) value, 100 sequences of prior samples are used.

The samples X are drawn from the respective Beta distribution and afterwards

their logarithmic value is computed. The error of ln(Z) is evaluated according to

equation 6.33.

Figure 7.22 shows the wall-clock time of the parallel NESA evaluations for the

analysed grid-sizes. The wall-clock time depicts the real time, which passes by for

the user, while computing a task. It includes also the time needed for e.g. input

and output operations.
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Figure 7.22: Normalized wall clock time required by parallel NESA for the q = 10
Potts model for various grid-sizes in dependence of the number of
employed cores k.

The values displayed in �gure 7.22 are normalized with respect to the case of

k = 1. Each value is the mean of �ve independent runs. The respective standard

deviation of the time is only drawn for the measurements at k = 4 for clarity. One

can observe that for increasing grid-sizes the increase in wall clock time, over the

number of cores, shrinks. For the 64×64 system an increase of about 10 percent for
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4 cores is measured. The slight kink in the plot is presumably caused by reaching

the full capacity of the processor, when employing 4 cores.

The accumulated time, of all involved cores, actually spent for processing the code,

is referred to as CPU time. When processing code in parallel this value will be

larger than the wall-clock time. Figure 7.23 displays the CPU time of the parallel

nested sampling algorithm for di�erent grid sizes. Again the values are normalized

with respect to the time at k = 1. The mean values and the standard deviation are

evaluated, again from the 5 independent runs used above. The CPU time scales

roughly linearly with the number of cores. The reason that the real computational

e�ort increases with larger k is due to the higher number of walkers K.
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Figure 7.23: Normalized CPU time required by parallel NESA for the q = 10 Potts
model for various grid-sizes in dependence of the number of employed
cores k.
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The results for ln(Z) are given in �gure 7.24. The indicated ln(Z) values are the

average of 5 independent samples and the error bars are the mean value of the

corresponding standard deviations. Although the number of walkers in the NESA

runs has been scaled to yield constant variance, we �nd a slight decrease in the

error of ln(Z) for all sizes.

We can conclude, that the parallel NESA algorithm does not yield a distinct

improvement for the problem of the 10 state Potts model. The decreasing trend

in variation as well as the trend to constant values for the wall-clock time for

larger systems suggest that for systems with a more structured phase space, the

parallel NESA could be advantageous. Because with parallel NESA we are able

to simulate more walkers within the same time, which is advantageous for multi-

modal likelihood functions, where we need enough walkers per mode if we employ

the present clone approach (see section 6.2).
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Figure 7.24: ln(Z) per site versus the number k of employed cores for the q=10
Potts model computed for various grid-sizes by means of the parallel
NESA algorithm.
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8 Conclusion

In this thesis the application of nested sampling on physical problems was studied.

For this purpose the evaluation of the partition function of the two dimensional

Potts model was investigated.

As alternative method the established thermodynamic integration has been em-

ployed. A correlation time analysis of this method, displayed a massive slowing

down near the critical temperature. In the temperature range, where the prior

normalization, required for the nested sampling algorithm, is evaluated, however,

the correlation times are small and pose no signi�cant slowing down. The deter-

mination of correlation times for nested sampling yielded negligible values.

Furthermore expressions to determine thermodynamic quantities from the results

of a single nested sampling run, without employing numerical derivatives were

obtained. The results for the energy were con�rmed by a comparison with the

results from a multicanonical simulation.

Both methods exhibit a power law scaling with increasing grid-sizes. Fits of the

CPU time yielded roughly a quadratic exponent for both methods. Though, due

to a smaller prefactor, the nested sampling algorithm is about three orders of

magnitude faster than thermodynamic integration. For small system sizes the

time for the additional thermodynamic integration computation to calculate the

prior normalization, which scales only linearly with system size, accounts for most

of the computational time.

The time per Swendsen Wang update for each of the methods exhibits approxi-

mately the same value and the same scaling, which is reasonable, because for both

methods the cluster identi�cation during each update is the most time consuming

task. On the other hand the same scaling in the number of Swendsen Wang up-

dates is in the �rst sight stunning, because nested sampling does not require to

increase the number of updates, due to the negligible correlation time. However,

where thermodynamic integration needs to increase the number of Swendsen Wang
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updates for larger systems due to rising correlation times, nested sampling needs

more updates to reach the maximum likelihood value. This increase seems to scale

similarly for both methods. Eventually the reason for the time di�erence is, that

for each expectation value obtained during thermodynamic integration, we need

to evaluate multiple Swendsen Wang updates. An important advantage of nested

sampling is, that the partition function for all temperatures is available from the

results of a single run.

The partition function of a 10 state Potts model was evaluated via nested sampling

up to a grid-size of 256×256, where the total time for the largest system was about

57 h. Employing thermodynamic integration for the same evaluation would already

take about 4 years.

Finally a parallelised version of the nested sampling algorithm was investigated.

The parallel implementation, employing 1 to 4 cores, was tested for system sizes

ranging from 4×4 to 64×64. The wall clock times as well as the respective results

for the partition function did not reveal a relevant improvement for the application

of the parallelised version to the Potts model. However, parallel nested sampling

has to use more walkers, which is the reason why there is no CPU time gain in

the parallel implementation, but leads to a better sampling of the phase space,

while keeping the wall clock time constant. Hence when dealing with problems

involving a multiple peaked likelihood, the parallel implementation will become

advantageous.

The independence of the algorithm on temperature, makes nested sampling able to

deal with �rst order phase transitions. The method poses a promising challenger

for the multicanonical and multibondic algorithms, which are state of the art

algorithms for dealing with Potts models.

In our opinion nested sampling depicts a high potential algorithm for applications

in statistical physics and due to its uniqueness it deserves a place in a physicists

standard repertoire of simulation techniques.
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9 Appendix

9.1 Handling sums of large numbers

Determining certain quantities for problems in statistical physics often require to

evaluate exponential functions with large numbers as arguments. For instance

the computation of the partition function (equation 2.8) or the computation of

expectation values of observables involve such evaluations due to the Boltzmann

factor e−β H . Consider a Potts model with q = 2 and size 100 × 100. The energy

in the case of total disorder yields H = 0, whereas the ground-state energy yields

H = −2 × 104. For intermediate β values the computation of the Boltzmann

factor, in the order of exp(104), leads to over�ow errors. It is therefore preferable

to work with the respective logarithmic values.

Therefore we need a technique to evaluate sums, where the individual contributions

xi are given in their logarithmic value ln xi, i.e.∑
i

xi =
∑
i

eln xi

Note that we need to deal in our case only with positive summands xi. Calcu-

lating the sum straightforward, would infer with our intent to never calculate the

exponentials explicitly. Let us investigate the general case of a sum of two terms

Ω = xn + xm, where xn and xm depict positive numbers. Assuming we know ln xn

and ln xm, then Ω can be retrieved via

Ω = max(xn, xm)

(
1 +

min(xn, xm)

max(xn, xm)

)

and the logarithm of Ω reads as

ln(Ω) = max(ln xn, ln xm) + ln
[

1 + e( min(ln xn, ln xm)−max(ln xn, ln xm) )
]
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The argument of the exponential function is constructed to be negative, therefore

only under�ow errors will occur, when the di�erence becomes large. These values

are set to zero and pose therefore no problem for the resulting ln(Ω). For sums

with multiple summands this approach leads to

ln(Ω) = max
i

(ln xi) + ln
[

1 + e
∑
i( ln xi−maxj(ln xj) )

]
For an optimal evaluation of the sum in the exponent, the summands should be

ordered in increasing order to prevent �oating point errors due to �nite precision.

With this approach it is never necessary to calculate either of the numbers xn, xm

or Ω during the evaluation of the sum. (compare [5] for the presented information

in this section).

9.2 Beta and Gamma function

The Beta function is de�ned by

B(α, ρ) :=

∫ 1

0

pα−1 (1− p)ρ−1 dp (9.1)

The Gamma function reads as

Γ(α) :=

∫ ∞
0

tα−1 e−t dt (9.2)

Γ(α) = (α− 1) Γ(α− 1) (9.3)

Γ(m) = (m− 1)! for m ∈ N (9.4)

Both functions are related via

B(α, ρ) =
Γ(α) Γ(ρ)

Γ(α + ρ)
(9.5)

For more information the reader is referred to [26].
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