
Master’s Thesis

Model-based Mutation Testing with SMT Solvers

Matthias Sebastian Kegele1

Institute for Software Technology (IST)
Graz University of Technology

A-8010 Graz, Austria

Advisor: Ao.Univ.-Prof. DI Dr.techn. Bernhard Aichernig
Co-Advisor: DI Dr.techn. Elisabeth Jöbstl

Graz, December 9, 2014

1 E-mail: matthias.kegele@student.tugraz.at

© Copyright 2014 by the author



Masterarbeit

Model-based Mutation Testing with SMT-Solvers

Matthias Sebastian Kegele1

Institut für Softwaretechnologie (IST)
Technische Universität Graz

A-8010 Graz

Gutachter: Ao.Univ.-Prof. DI Dr.techn. Bernhard Aichernig
Mitbetreuer: DI Dr.techn. Elisabeth Jöbstl

Graz, 9. Dezember 2014

Diese Arbeit ist in englischer Sprache verfasst.

1 E-Mail: matthias.kegele@student.tugraz.at

© Copyright 2014, Matthias Sebastian Kegele



Abstract

Showing correctness of a piece of a program is cumbersome and very hard to achieve
in a real world program. Tests can assure the correct working of a functionality
in a certain context but not show the absence of errors. Test authoring may be as
expensive in respect to effort, time and money as the development of the program or
even more.

The present thesis applies a novel technique called model-based mutation to auto-
matically generate test cases. An abstraction of a program - a model - is notated in
a modeling language (Action Systems) which allows non-determinism. By applying
mutation operators, the model is altered to generate mutated versions.

In model-based mutation testing, the original model and a mutated model are checked
for conformance. Refinement has been selected as conformance relation as it has
been defined for Action Systems. For being able to generate a distinguishing test
case, a so-called unsafe state has to be identified. From this state, a transition can
be enabled which is valid for the mutated model but not in the original. In fact, this
represents the check for non-refinement. For Action Systems, unsafe states have also
to fulfill the property of reachability which has to be checked separately.

In the course of this thesis, a prototype has been implemented called as2smt. The
Action System (in a Prolog notation) models are translated to SMT-LIB, an input
language for SMT solvers. An SMT solver serves as a computational back-end of
the tool for computing refinement. Due to the standardised input language, different
solvers can be configured. Furthermore, the application allows the selection of differ-
ent algorithms for performing the reachability analysis. Finally, the tool is evaluated
on different use cases.

Keywords: model-based mutation testing, automatic test generation, Action Sys-
tems, Satisfiability Modulo Theories (SMT) solver, SMT-LIB, refinement.

i



Kurzfassung

Die Korrektheit eines Teilbereichs eines existierendes Programms zu beweisen ist
mühsam und schwierig. Tests können die Korrektheit einzelner Funktionalitäten in
einem gewissen Zusammenhang zeigen, aber nicht die generelle Freiheit von Feh-
lern. Die Erstellung von Software Tests kann genauso aufwendig sein, wie die der
Software selbst oder sogar noch aufwändiger.

Diese Diplomarbeit wendet eine neuartige Testfallgenerierungsmethode namens Mo-
dellbasiertes Mutationstesten an. Eine Abstraktion eines Programms - ein Modell -
wird in einer Modellierungssprache (Action Systems), welche auch Nicht-Determinis-
mus unterstützt, notiert. Durch sogenannte Mutationsoperatoren wird das bestehende
Modell verändert. Daraus enstehen Mutanten des Modells.

Durch Modellbasiertes Mutationstesten werden das orginale und das mutierte Modell
auf Konformität überprüft. Die Verfeinerung wurde als Konformitätsrelation gewählt,
da diese bereits für Action Systems definiert wurde. Um Testfälle zu genierieren, die
das ursprüngliche Modell von seiner Mutation unterscheiden, muss ein sogenann-
ter unsicherer Zustand identifiziert werden. Von diesem Zustand aus kann ein Zu-
standsübergang gewählt werden, der valide für den Mutanten aber nicht für das Ori-
ginal ist. Diese Überprüfung stellt die Nicht-Verfeinerung dar. Für Action Systems
müssen unsichere Zustände zusätzlich die Eigenschaft der Erreichbarkeit erfüllen,
die separat überprüft wird.

Im Zuge dieser Diplomarbeit wurde ein Prototyp namens as2smt entwickelt. Die
Action System-Modelle (in Prolog-Notation) werden übersetzt in SMT-LIB, einer
Eingabesprache für SMT solver. Ein solcher SMT solver stellt das Back-end des im-
plementierten Programms dar. Es dient zur Berechnung der Verfeinerung. Durch die
standisierte Eingabesprache können verschiedene SMT solver als Back-end konfigu-
riert werden. Weiters erlaubt die Implementierung die Auswahl von verschiedenen
Algorithmen zur Erreichbarkeitsanalyse. Zum Abschluss wird die Implementierung
am Hand von Anwendungsfällen evaluiert.

Schlagworte: Modell-basiertes Mutationstesten, automatische Testfallgenerierung,
Action Systems, Satisfiability Modulo Theories (SMT), SMT-LIB, Scala, kombina-
torisches Parsen.

ii



Statutory Declaration

I declare that I have authored this thesis independently that I have not used other than the declared
sources/resources, and that I have explicitly marked all material which has been quoted either literally or
by content from the used sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Graz, December 9, 2014 (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Graz, 9. Dezember 2014 (Unterschrift)

iii



To Ludi

iv



Acknowledgements

I would like to thank everybody who supported throughout my study and the writing
of this thesis. I want to express my exceptional gratitude to my advisor Bernhard
Aichernig. His actions have sparked my interest in the field of software testing. His
open-mindedness and his ability to explain complex issues in an understandable way
make him an excellent teacher.

Furthermore, my special thanks goes to my co-advisor Elisabeth Jöbstl who showed
patience and understanding. Her advice, objections and remarks contributed to this
thesis significantly.

I want to express my appreciation to my friends and fellow students. Without their
support, the road through my study und to this thesis would have been much bumpier.
I owe my deepest gratitude to my mother Christine, who supported my throughout
my whole life.

I owe sincere and earnest thankfulness to my partner Lisa. She has given me the
understanding and support that was necessary to come to this point.

Matthias Kegele
Graz, Austria, December 9, 2014

Danksagung

Ich möchte mich herzlich bei allen bedanken, die mich bei durch mein Studium
und bei der Erstellung dieser Diplomarbeit unterstützt haben. Mein außerordentli-
cher Dank gilt meinem Betreuer Bernhard Aichernig. Sein Wirken hat mein Interesse
am Gebiet des Testens von Software geweckt. Seine offene Art und seine Fähigkeit
komplexe Zusammenhänge einfach zu erklären machen ihn zu einem exzellenten
Lehrer.

Ebenso gilt meine Wertschätzung meiner Zweitbetreuerin Elisabeth Jöbstl, die viel
Geduld und Verständnis gezeigt hat. Durch ihre Ratschläge, Einwände und Anmer-
kungen hat sie maßgeblich zur Qualität dieser Arbeit beigetragen. Auch Benedikt
Maderbacher gilt mein Dank für die Analyse und Lösung eines Implementierungs-
problems des im Zuge der Diplomarbeit entwickelten Programms.

Meine Anerkennung möchte ich hiermit auch der Unterstützung durch meiner Freun-
de und Studienkollegen ausdrücken, ohne die der Weg durch das Studium bis hin zu
dieser Arbeit deutlich steiniger gewesen wäre. Außerordentlichen Dank gilt meiner
Mutter Christine, dir mich immer in meinen Bestrebungen unterstützt hat.

Meinen besonderen Dank gilt meiner Partnerin Lisa. Sie hat mir den nötigen Ansporn
und die Unterstützung gegeben, um diese Arbeit zu erstellen.

Matthias Kegele
Graz, Österreich, 9. Dezember 2014

v



Contents

1 Introduction 1
1.1 On the Importance of Testing Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Model-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Equivalent Mutant Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Model-based Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Prerequisites 11
2.1 Modeling Language: Action Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Action System Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Refinement of Action Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Satisfiability Modulo Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 SAT & SMT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The as2smt Tool: Overview and Architecture 23
3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 External Tools Used for Implementation . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Implementation Language: Scala . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Process Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.6 Util . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 SBT: Configuration & Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Limitations of the Implemented Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



4 Translating Action Systems to SMT-LIB 39
4.1 Input Language: Action Systems in Prolog . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Lexical and Syntactic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Combinatory Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Abstract Syntax Tree Node Generation . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Precedence of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Translation from Action Systems to SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Variable Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Do-od Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.4 Sequential Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.5 Non-Deterministic Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.6 Guarded Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.7 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.8 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Improving Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Quantifier Elimination with the One-Point Rule . . . . . . . . . . . . . . . . . . 53

4.4.2 Introducing Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Data Structures for Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . 54

4.4.4 Symbolic Execution Without Branching . . . . . . . . . . . . . . . . . . . . . . 55

4.4.5 Symbolic Execution with Branching . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Refinement and Reachability 61
5.1 Refinement Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Non-Refinement Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Evaluating the Non-Refinement Formula . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Comparing Action Systems Syntactically . . . . . . . . . . . . . . . . . . . . . 65

5.2 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Initial Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Reachability analysis by breadth-first search . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Precomputation of State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.4 Reachability In One Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Further optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Solver Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Incremental Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Reachability Computation Strategies . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



6 Case Studies 77
6.1 Test Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Test Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Car Alarm System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Car Alarm System with PIN Input . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Stages of Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.2 Solver Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.3 Incremental solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Configuration of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5.1 Strategy 1: Reachability Analysis by Breadth-First Search . . . . . . . . . . . . 82

6.5.2 Strategy 2: Precomputation of Reachable States and Check Each on Mutant . . . 83

6.5.3 Strategy 3: Precomputation of Reachable States, List and Check Each Mutant . . 85

6.6 Conclusion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Related Work 88
7.1 Related Work on Action Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Related Work on Model-Based Mutation Testing . . . . . . . . . . . . . . . . . . . . . 88

8 Concluding Remarks 90
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A EBNF of Action System in Prolog Notation 92

B Action System Prolog Notation of the Rocket Steering Software Example 95

C SMT-LIB Translation of the Rocket Steering Software Example 97

Bibliography 101

viii



List of Figures

1.1 Model-based testing: the process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Example: a model of a spacecraft steering software . . . . . . . . . . . . . . . . . . . . 4

1.3 Example: a test case for the spacecraft steering software . . . . . . . . . . . . . . . . . 4

1.4 Mutation testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Model-based mutation testing (inspired by Figure 1 in [10]) . . . . . . . . . . . . . . . . 9

2.1 Linear SAT solver: SAT (left), STUCK (middle), UNSAT (right) . . . . . . . . . . . . . 17

2.2 Cubic SAT solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 DPLL-SAT: high-level overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Simple process overview of the as2smt application . . . . . . . . . . . . . . . . . . . . 26

3.2 Class diagram of package Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Class diagram of the AST nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Class diagram of ActionSystemTranslator and its dependencies . . . . . . . . . . . . . . 31

3.5 Class diagram of package Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Class diagram of interfaces/traits for accessing SMT solvers . . . . . . . . . . . . . . . 32

3.7 Class diagram of package Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 ANTLRWorks: editor for parser generator ANTLR . . . . . . . . . . . . . . . . . . . . 39

4.2 Example for incorrect and correct AST . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Execution of action body without NDC . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Symbolic execution: example for execution order of AST . . . . . . . . . . . . . . . . . 58

4.5 Execution of action body with NDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Original and normalised AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Graphical notation of state, trace and model . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 State value transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Initial strategy: compute all models, check if any pre-state is reachable . . . . . . . . . . 68

5.4 Example for the recursive execution of Algorithm 9 . . . . . . . . . . . . . . . . . . . . 70

5.5 State space of the rocket steering software Action System . . . . . . . . . . . . . . . . . 71

5.6 Assertion stack: usage of push and pop . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Car alarm system model (Ford’s automotive demonstrator, MOGENTES project [4]) . . 78

ix



List of Tables

1.1 Costs of famous software bugs [78] [62] . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 DPLL-SAT example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Standard solving vs. incremental solving: The number of assertions decreases drastically. 75

5.2 Reachability computation: number of average assertions per strategy . . . . . . . . . . . 76

6.1 Action Systems used as test input for the as2smt application . . . . . . . . . . . . . . . 80

6.2 Performance of non-refinement check per translation type . . . . . . . . . . . . . . . . . 80

6.3 Performance of non-refinement check per access type . . . . . . . . . . . . . . . . . . . 81

6.4 Performance of non-refinement check per solving type . . . . . . . . . . . . . . . . . . 81

6.5 Strategy 1: performance by SMT solver on CAS versions . . . . . . . . . . . . . . . . . 83

6.6 Strategy 1: performance by SMT solver on CAS version with PIN extension . . . . . . . 83

6.7 Strategy 1: performance by SMT solver on the triangle model . . . . . . . . . . . . . . 84

6.8 Estimated and actual numbers of asserts needed per strategy . . . . . . . . . . . . . . . 84

6.9 Strategy 2: performance by test input and SMT solver (in seconds) . . . . . . . . . . . . 84

6.10 Comparison of performance of SMTInterpol on TRIANGLE 10 test input . . . . . . . . . 85

6.11 Strategy 3: performance by test input and SMT solver (in seconds) . . . . . . . . . . . . 86

x



Listings

1.1 Off-By-One error in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Original program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Equivalent mutant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Rocket steering software: type and variables declarations and initial values1 . . . . . . . 11
2.2 Rocket steering software: action declarations . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Rocket steering software: do-od block . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Converting a String to an integer in Java . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Converting a String to an integer in Scala . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Class definition in Java with two immutable members . . . . . . . . . . . . . . . . . . . 25
3.4 Class definition in Scala with two members . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Definition of AST nodes (subset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Function to match AST node type (subset) . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Configuration of SBT (build.sbt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 SBT shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 SBT plugins: adding plugins to SBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 Output of run command: choosing the solver . . . . . . . . . . . . . . . . . . . . . . . 36
3.11 Output of run command: choosing the solving method . . . . . . . . . . . . . . . . . . 36
3.12 Output of run command: choosing the Action System . . . . . . . . . . . . . . . . . . . 37
3.13 Adding an Action System configuration (part 1) . . . . . . . . . . . . . . . . . . . . . . 37
3.14 Adding an Action System configuration (part 2) . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Scala API Parser class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Example for a function returning a String in Scala . . . . . . . . . . . . . . . . . . . . . 41
4.3 Example for a function without explicit return type . . . . . . . . . . . . . . . . . . . . 41
4.4 Excerpt from the RegexParsers class with implicit conversion from String to Parser . . . 41
4.5 Example for a parser parsing the String ”ACTION” . . . . . . . . . . . . . . . . . . . . 41
4.6 Action engange from the rocket steering software example . . . . . . . . . . . . . . . . 42
4.7 EBNF for parsing actions (some rules and alternatives for readability omitted) . . . . . . 43
4.8 Scala code for parsing the EBNF described in Listing 4.7 . . . . . . . . . . . . . . . . . 43
4.9 Corrected return types (cmp. Listing 4.8; ignored action return type for readability) . . . 44
4.10 Scala code for AST generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 Precedence climbing method in EBNF . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12 Example for star combinator usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.13 Precedence in Scala: arithmetic expressions . . . . . . . . . . . . . . . . . . . . . . . . 47
4.14 Example for a variable definition in Action System notation in Prolog . . . . . . . . . . 48
4.15 Variable declaration in SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.16 Example for an assignment in Action System description in Prolog . . . . . . . . . . . . 48
4.17 Example for an assignment in SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.18 Example for an sequential composition in SMT-LIB . . . . . . . . . . . . . . . . . . . . 50
4.19 Example for a non-deterministic choice in Action System notation in Prolog . . . . . . . 50
4.20 Translation to SMT-LIB of Listing 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.21 Translation of an assignment with a guarded command . . . . . . . . . . . . . . . . . . 51

xi



4.22 Translation of an action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.23 Action System with one action call with two parameters . . . . . . . . . . . . . . . . . . 52

4.24 Example: Assignment of parameter trace variables . . . . . . . . . . . . . . . . . . . . 52

4.25 Example for symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.26 Translation of result of symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Non-refinement formula: negated specification and positive mutant . . . . . . . . . . . . 61

5.2 Example for an Action System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Rocket steering software mutant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Example for a back jump clause in SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 SMT-LIB state space assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1 EBNF of Action System in Prolog notation . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 Rocket example Action System in Prolog . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 Rocket example translation to SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



List of Algorithms
1 Symbolic execution of an assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2 Symbolic execution of a sequential composition . . . . . . . . . . . . . . . . . . . . . . 56
3 Symbolic execution of a guarded command . . . . . . . . . . . . . . . . . . . . . . . . 57
4 AST normalisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Translation of execution paths to SMT-LIB (String representation) . . . . . . . . . . . . 60
6 Find mutated action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7 Syntactic equality check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8 Find all possible models, initial strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9 Check reachable states for unsafety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10 Find post states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



1 Introduction

In 1965, the following statement from Gordon Moore has become Moore’s law [65]: the number of
transistors on integrated circuits doubles approximately every two years. In more abstract terms, this
means that computational power increases at this ratio. In 1995, Niklaus Wirth added the argument
that the increase in computational performance triggers also the increase in software complexity (not
necessarily functionality) [87]. The more complex a software system is, the more effort has to be taken
into account for testing it.

1.1 On the Importance of Testing Software

Identifier Description Year Est. damage
Mars Climate Or-
biter

Different sorts of measuring units (English vs. met-
ric) used in two steering modules.

1998 245.6 million C

Pentium floating
point calculation

A faulty hardware implementation of the math co-
processor on Pentium chips resulted in a possible
miscalculation of decimal numbers.

1994 356.1 million C

Knight Capital
trading software

Trading at the Wall street in New York (US) was dis-
rupted for 45 minutes. A new version of the trading
software placed erroneous orders at the stock mar-
ket.

2012 329.8 million C

Toyota braking sys-
tem

Toyota had to recall about 400.000 of their cars. A
software bug caused a lag in the anti-lock-brake sys-
tem.

2012 2.249 billion C

Table 1.1: Costs of famous software bugs [78] [62]

In economical terms, testing of software can be as expensive as its development or even more. The
world-wide costs of fixing software errors are enormous. Table 1.1 shows a small selection of famous
software errors and the estimated economical damage they resulted in. Apart from statistics and num-
bers, the Ariane 5 incident in 1996 still serves as a classical example for the severity of lack of testing
[25]. An integer overflow in the steering software of the rocket led to the destruction of the spacecraft.
Furthermore, there exists a case with far higher severity as the incident nearly had provoked World War
III. In 1983 - during the cold war - the Soviet satellite early-warning system signaled that five missiles
were heading to the Soviet Union [51]. The person in charge, Lt. Col. Stanislav Petrov, did not react to
it as he had been supposed to, as just five missiles were in his opinion a too low number for a preventive
strike from a foreign aggressor. In fact, the detection software running on the satellites did not take into
account that sun rays can be reflected by clouds which the system registered falsely as missiles.

For sure, in both cases, there had been some software testing involved. But the performed tests did
not uncover the defects that were found at productional run time of the respective software. The later a
bug is found, the more severe its results can become.

1.2 Motivation

The steering software of Ariane 4 was reused without modifications for Ariane 5, ignoring some technical
differences which caused in the end the destruction of the space craft [25]. Nevertheless, the assumption
is that some testing has been performed. But the collection of tests for the failed component did not
uncover this severe error. How effective can a test suite be? Is it able to uncover all kind of possible

1



Chapter 1. Introduction 2

programming errors? For this purpose, test criteria like statement coverage, path coverage, etc. have
been defined [13]. With their aid, an evaluation of test suites can be performed. In general, these
coverage criteria check if some part was executed by any test. But does the lack of a test of some part of
programming code imply that a possible programming error exists there?

In addition to the criteria mentioned above, there exists mutation coverage. From the original pro-
gram source code, a series of automatically modified programs - called mutants - are generated (by a
mutant generator). The better the existing test suite is, the more of these mutants will be uncovered by
failing (at least) one of the test cases the original program passes. This software testing technique eval-
uates test suites by a so-called mutation (adequacy) score. This represents the ratio of identified mutants
over total number of non-equivalent mutants [13, p.181].

1.3 Problem Description

A novel testing technique called model-based mutation testing has been presented by Aichernig et al. [2].
It combines model-based testing with mutation testing. Instead of generating mutants from a concrete
program, the mutant generator takes an abstract model of this program (notated in a modeling language).
Furthermore, the mutants will not be executed against an existing test suite but actually generate it: if
there is a semantic difference between the original model (specification) and the mutated model, this can
be uncovered by a specific, simultaneous execution. In fact, this execution trace represents a test. Its
result indicates if a program implements one of the generated mutants and not the specification. With
model-based mutation testing, a set of tests can be generated that uncovers all possible errors in a present
System under Test (SUT). This generation of a distinguishing trace/test case is exactly the problem this
thesis faces.

Initially, this technique requires a model which conforms to the SUT. Furthermore, a mutation gener-
ator outputs mutants of this model. Then, the set of generated mutants and the specification are compared
in terms of refinement. The present thesis focuses only on the last issue: the generation of test cases from
an existing model and corresponding mutants. In the following sections, model-based testing (Section
1.4), mutation testing (Section 1.5) and model-based mutation testing (Section 1.6) are outlined. The
described techniques form a basis for this thesis.

Speaking in technical terms, the models (both specification and mutants) are described in a modeling
language (Action Systems). The application developed in course of this thesis translates these models
to a standardised input language for a Satisfiability Modulo Theories (SMT) solver. Furthermore, this
compiler is extended to map the problem of refinement of two models (a specification and a mutant) to
an SMT problem. Eventually, an SMT solver evaluates the problem and outputs a distinguishing trace
from which a test case can derived.

1.4 Model-based Testing

In classical testing, an SUT is already present at the time of testing. Tests are then specified on a certain
feature or error case of an SUT. For instance, let there be a spacecraft steering software. A range of
calculations and interactions are involved in this project. As it is far too complex to understand the whole,
internal structure of such a program, a black-box approach is considered by the testing department. So,
how would testing then proceed? Prenninger and Pretschner state that abstraction is the most important
tool computer engineers possess. It may be claimed that a computer engineer / a test case writer creates
an abstraction of the program in his mind. Then, the test cases would be derived from this mental model.

Model-based testing is a black-box testing technique. Like every member of this testing kind, it
emphasises the external behaviour of the System Under Test (SUT). In contrast to the example mentioned
before, the approach is much more formal. According to Utting et al. [84], the process of model-based



Chapter 1. Introduction 3

Figure 1.1: Model-based testing: the process1(inspired by Figure 1 in [84])

testing consists of the five steps. Figure 1.1 visualises these tasks. The description of these steps is listed
below.

1. Model creation: initially, a model has to be extracted from the requirements of the SUT. It repre-
sents an abstract view on the SUT. The level of abstraction has to be chosen with care. It has to be
sufficiently precise to serve as a basis for generating ’meaningful’ tests. Furthermore, the authors
remark that the model should be created with respect to the testing objectives. An existing design
model of the SUT might not fit this task in general.

For instance, the following requirements for an unmanned spacecraft steering software exist: the
software adjusts speed and course of the rocket. After the ascend (to a certain level), angle correc-
tions are possible. If this happens to be a dangerous correction (with respect to loss of steerability),
an automatic self-destruction is triggered. Otherwise, the course is adjusted accordingly and the
ascend continues. Additionally, a landing procedure can be initiated. When landed, the software
is able to initiate an integrity check if another ascend is possible or not. From this specification, a
behaviour model in form of a finite state machine like shown in Figure 1.2 can be constructed.

2. Definition of test selection criteria: the next step involves the definition (the choice, respectively)
of the test selection criteria to be used. Utting et al. [84] state that criteria may focus on system
functionality (requirements-based test selection criteria), on the model structure (state and transi-
tion coverage), on data coverage heuristics, on environment properties or on stochastic heuristics
such as pure randomness. For the steering software, one criterion might be transition coverage. In
this way, all possible transitions have to be tested by generated tests.

3. Transformation to test case specification: on the basis of an existing model and defined test
selection criteria, test specifications can be derived. In case of a finite state machine like the model
of the spacecraft steering software and the chosen transition coverage, test specifications are easily
generated. Every transition has to be passed at least once: engage, regular and dangerous course
corrections, landing procedure, successful and failing integrity check.

1All diagrams in this thesis have been created by the freeware tool yEd by the company yWorks.

http://www.yworks.com/en/downloads.html


Chapter 1. Introduction 4

Figure 1.2: Example: a model of a spacecraft steering software

4. Test case generation: subsequently, test cases are generated from the test specifications by using
a test generator. One test case specification will lead to a set of test cases. If the test specification
is not satisfiable by the model, this set is empty. For example, if a finite state machine contains
one state which is not reachable from the initial state, but there exists a transition from this state
to a reachable one, no test may cover this transition. Still, a test specification for it might be
generated. Utting et al. [84] argue that a test may cover more than one test specification. Some
test generators even spend some effort on generating as few as possible test cases to cover all test
specifications. The test specifications for the steering software example (cover all transitions) may
then be covered by one single test like shown in Figure 1.3.

5. Test case execution: finally, the generated test suite is executed on the SUT. Test execution itself
may be manual or may be automated by a test execution environment.

Figure 1.3: Example: a test case for the spacecraft steering software

Utting and Legeard [83] present six beneficial reasons for the appliance of model-based testing in
software development:

• SUT fault detection: this is the most valued reason for using MBT. Comparative case studies
indicate that fault detection of model-based testing performs equally good or better than manually
designed test cases.



Chapter 1. Introduction 5

• Reduced testing costs and time: in general, if the time needed for creating and maintaining the
model plus the time spent for directing the test case generation is less than the effort to manually
design test cases, model-based testing is a valuable time and cost saver. Furthermore, the test
generator may take care of finding the shortest test sequences. Hence, test execution time is kept
as low as possible. Additionally, upon failure, not only the test case implementation itself can be
inspected but also the abstract test. Using MBT over manual test creation may ease the search for
and fixing of failures in the SUT.

• Improved testing quality: the quality of manually created test cases depends heavily on the
skills of the engineer. A relation to the original system requirements is not easy to outline. With
MBT, this process becomes more formal/systematic as test cases emerge from the existence of a
formalisation of a requirement in form of a model. Also, the quality of the test cases itself depend
much less on individual ingenuity. Moreover, the quantity of a series of generated test cases may
be much higher than the number of manually crafted test cases.

• Requirement defect detection: requirements are often recorded in natural language documents.
These recordings might contain omissions, contradictions and unclear requirements. In this sense,
the construction of an abstract model may unveil these issues. Taking it to the next level, failing
tests may indicate errors in the model or in the requirements.

• Traceability: MBT enables a relation of all items in the system: each test case relates to the
model, to the test selection criteria and even to the informal system requirements. The model-test
traceability enables

– the extraction of transitions that are not covered by any tests,
– the information which set of test cases covers a certain transition,
– a visualisation of the test case as a sequence of transitions in the model (cmp. Figure 1.3).

Moreover, the requirements-model traceability provides the information if a requirement is mod-
eled and how this requirement influences the model. Eventually, the requirements-tests traceability

– identifies untested requirements,
– gives the information which set of test cases covers a certain requirement, and
– shows the requirements that a test depends on.

• Requirements evolution: if there is some major change in an SUT, this has most certainly a big
effect on its test cases. New requirements have to be tested, previously existing ones have to be
adapted or dropped. By using MBT instead of manual test case creation, this effort can be kept
on a lower level. Due to the traceability mentioned before, it is easy to determine which test case
has to be deleted when a certain requirement is removed, for instance. The same holds also for
changed, unchanged and added requirements.

Utting and Legeard [83] describe in their paper also some limitations of this testing technique. The
authors state that it is not possible to guarantee to find all non-conforming behaviour of the SUT ac-
cording to the model. Furthermore, the model creation requires some experience: the correct level of
abstraction has to be chosen. Finally, the model creation itself takes some initial effort which has no
counterpart in manual test case creation.

1.5 Mutation Testing

Back in 1978, DeMillo and Lipton [42] present their competent programmer hypothesis: programmers
do not create programs at random but ones that are close to correct. The most common syntactical devi-
ations from the initial code to the correct one can be recorded and generalised into code transformations.
For instance, when looping through an array, the off-by-one error is classical: the chosen upper index



Chapter 1. Introduction 6

bound exceeds the size of the array. This is simply caused by the fact that natural counting starts with
the number one and indexing of a non-empty array starts with the number zero. Often, this is caused by
the wrong comparison operator or the missing decrement over the length of the array. By changing the
occurring less than or equals to relation to a less than relation, the resulting code might then become
correct or incorrect (cmp. Listing 1.1).

1 for(int i = 0; i <= array.size(); i++){
2 System.out.println(array[i]);
3 }

Listing 1.1: Off-By-One error in Java

In general, proving correctness of a program is possible with tools like model checking and theorem
proving but these often cause an unacceptable level of effort. In practice, it is often sufficient to show
the absence of specific errors (and the presence of working functionality) rather than prove correctness.
But what if tests do not uncover a major error like in the Ariane 5 steering software? Initially, there is an
SUT which passes an existing test suite. By altering the source code of the SUT just the way previously
described, a modified version of the SUT is created. This modified program represents a fault-injected
SUT. The question at hand is how will the test suite behave for the modified program?

Mutation testing has been introduced by Hamlet [48] for comparing/improving the effectiveness of
test suites. By looking at the behaviour of an existing test suite applied to a range of modified programs
(further called mutants), this method can evaluate the quality of the test suite. With its aid, this can then
be assessed directly by the so called mutation (adequacy) score (cmp. Equation 1.1 [54]). It represents
the ratio of detected mutants (at least one of the tests fail) to the number of non-equivalent mutants.
In this field of study, detected mutants are denoted as killed mutants hence they do not survive the test
execution phase.

mas =
#killed

#non-equivalent
(1.1)

The set of source code transformations - further called mutation operators - has to be chosen in
a representative manner to cover classical errors like the off-by-one error (cmp. Listing 1.1). In this
way, a series of mutants can be generated (manually or automatically) from the source code of the
SUT. For instance, the tool PIT mutation testing for Java programs [37] defines a range of mutation
operators (mutators) for its automated mutant generation: conditional boundary relations (contains the
transformation from ≤ to <), mathematical mutators (for example from + to −) and more (a complete
list can be found on the tool’s web site [37]).

When running a set of tests on a mutant (cmp. Figure 1.4), the result matches one of the following
three cases:

1. If at least one test fails, the test suite kills the mutant. This means the test case is able to distinguish
the mutant from the original SUT.

2. No test fails but the SUT and the mutants are semantically different. This indicates that a test case
has to be added to the test suite. This test case should distinguish the SUT and the mutant. It passes
for the correct implementation and fails for the incorrect one. There exists the possibility that not
the original SUT is the correct implementation but the mutant.

3. No test fails because the original SUT and its mutant are syntactically different but equal with
respect to semantics. This refers to the equivalent mutant problem. It will be further discussed in
Section 1.5.1.

The determination between the last two cases may only be performed if the question of semantic
equality of the mutant and the SUT can be answered. This will be discussed further later on (Section
1.5.1).



Chapter 1. Introduction 7

Figure 1.4: Mutation testing

In addition to the competent programmer hypothesis, DeMillo and Lipton [42] introduce the term
coupling effect: test data that distinguishes all programs differing from the correct one by only simple
errors is so sensitive that it also implicitly distinguishes more complex errors. They point out that they do
not offer a prove for this effect but present empirical data to support the validity of this principle. Offutt
[71] applies the idea of the coupling effect to the domain of mutation testing: in his experiments, a series
of first-, second- and third-order mutants for three different programs is generated. This means that one,
two or three different faults are injected into one mutant. First order mutants represent the simple errors,
second and third order mutants resemble to more complex errors. His empirical results indicate:

• test data developed to kill first order mutants is very successful at killing second order mutants.

• the surviving second order mutants show no characteristics that would suggest the infeasibility of
killing them by test data developed for first order mutants.

• the coupling effect increases with third order mutants. So, killing of third-order mutants with test
data developed to kill first order mutants is even more successful than for second-order mutants.

In 2011, Yue and Harman [54] conducted a survey on recent papers about mutation testing. They
identified three problems of this technique. First, its application is related to a high computational effort.
Each generated mutant is run against a set of test cases. The authors give an overview on the various
existing cost reduction techniques separating them into two classes: reduction of the number of mutants
and reduction of the test execution time. Second, the human oracle problem defines the effort to check
the output of the SUT to be correct. So, mutation testing might provoke a significant increase in oracle
effort to be spent on further output checks, respectively test cases. Third, the equivalent mutants mark a
computational, undecidable problem.

1.5.1 Equivalent Mutant Problem

One of the possible results of running a mutant against the set of existing test cases is that no test fails
on the mutant. Killing a mutant is defined as being able to show a semantic difference between the
original program and its mutant. The problem of detecting equivalent mutants is undecidable as program
semantic equivalence is undecidable (classical halting problem; cmp. also [29]).



Chapter 1. Introduction 8

1 int greaterThanNull(int x) {
2 if(x > 0){
3 return 0;
4 }
5 return -1;
6 }

Listing 1.2: Original program

1 int greaterThanNull(int x) {
2 if(x >= 1){
3 return 0;
4 }
5 return -1;
6 }

Listing 1.3: Equivalent mutant

Listing 1.2 and 1.3 show an example for an original function and an equivalent mutant (written in the
Java programming language). Both functions will return the same value for the same input. Hence, they
are semantically but not syntactically equivalent.

1.6 Model-based Mutation Testing

Model-based mutation testing is a combination of the model-based and mutation testing approaches. It
has been introduced by Aichernig et al. [2]. Figure 1.5 visualises the process of this novel testing tech-
nique. As in traditional model-based testing, a model is created from a set of (informal) requirements (1).
Instead of deriving test selection criteria and further test specifications, mutation operators are applied
to the model (2). Like in mutation testing, mutants are created this way (3). Furthermore, a test case
generator tool takes the original model (further referred as specification) and a mutant as input (4). It
checks the conformance of these two models. In case of a non-equivalent mutant, a distinguishing test
case is generated (5). Finally, this test case can then be run against the SUT to show if the mutant was
actually implemented or not (6 and 7).

Test case generation from two models has not occurred in neither model-based testing nor mutation
testing. Therefore, this has to be discussed in more detail. Both models represent abstract versions of
implementations. The intention of a generated test case is being able to distinguish an SUT implementing
the correct model or the mutated model. If these two models are equal in semantics, this is not possi-
ble. In this thesis, the Action System formalism serves as the modeling language (cmp. Section 2.1.1).
This enables also modeling of non-deterministic systems. Such systems require a different check than
equivalence: a conformance relation. Aichernig and Jöbstl [9] show the inadequacy of equivalence for
non-deterministic systems in a simple example: in a program, a variable outo is set to either the value 1
or 2. A mutated version of this program sets the variable outm to the value 2 or 3. Both decisions are
chosen non-deterministically. As it is intended to check for different behaviour, the two programs should
return different values. This can be fulfilled for the value combinations

1. outo := 1 and outm := 2

2. outo := 1 and outm := 3

3. outo := 2 and outm := 3

The combinations 2.) and 3.) mark definitely counter examples as the original system does not allow
out := 3. But the combination 1.) is not a proper counterexample. The value out := 2 is allowed by
the original system. These kind of false positives can be eliminated by applying a conformance relation
which relies on an ordering from abstract to more concrete models. As this thesis is largely based on the
work of Aichernig and Jöbstl, the same order relation is applied: refinement [7].

1.6.1 Refinement

In 1980, the refinement calculus has been introduced by Back [15]. He states that the basic idea of this
technique is to develop a program through a sequence of refinement steps, starting from a specification



Chapter 1. Introduction 9

Figure 1.5: Model-based mutation testing (inspired by Figure 1 in [10])

of a program and ending up with an efficient program meeting the specification. Furthermore, Hoare
and He give refinement in their Unifying Theories of Programming (UTP) [50] a predicative semantics.
Additionally, Aichernig and Jifeng develop a mutation testing technique for UTP [6]. Based on this,
Aichernig et al. give the following definition of refinement [10].

Definition 1. Refinement

M v I =df ∀v, v′ : I(v, v′) =⇒ M(v, v′)

Given a model M , an implementation I , the refinement denoted by the operator v, and M and I being
predicates over two sets of variables, refinement is defined as follows. The set v = 〈x, y, ...〉 denotes
observations before execution and v′ = 〈x′, y′, ...〉 denoting the observations afterwards. A concrete
implementation I refines an abstract model M if and only if the implementation implies the model.

Furthermore, a mutant can be looked at as a concrete implementation of a model. In this way, the
same conformance relation can be applied to the model of the SUT (further referred to as specification)
and its mutated version: the mutant refines the specification. The goal of its usage in this thesis is to find
a test case for every mutated model MM which does not refine an original model Mo, so Mo 6v MM .
For being able to get a distinguishing case, a counterexample to refinement has to be identified. This can
only exist if and only if implication in Definition 1 does not hold.

Definition 2. Non-Refinement

∃v, v′ : MM (v, v′) ∧ ¬MO(v, v′)



Chapter 1. Introduction 10

A mutated model MM does not refine an original model MO if there exist observations (i.e. state
transitions) in MM which are not allowed in MO.

If the mutated model MM shows a behaviour which is not allowed by the original model MO, the
state of the program in which non-refinement can be determined is called unsafe state.

Definition 3. Unsafe state

u ∈ {v|∃v′ : MM (v, v′) ∧ ¬MO(v, v′))}

A pre-state u identifies an unsafe state if it shows wrong (not conforming) behaviour in a mutated model
MM with respect to an original model MO.

From these unsafe states, distinguishing test cases can be generated. An execution of such a test case
will uncover if the SUT implemented the original model MO or the fault-injected, mutated model MM .

1.7 Thesis contribution

This thesis has been designed to be a part of the PhD thesis of Elisabeth Jöbstl[55]. Therefore, it con-
tributes also to a project called trust via failed falsification of complex dependable systems using auto-
mated test case generation through model mutation (for short TRUFAL). This project has been funded by
the national Austrian research promotion agency.

In addition, the findings of this thesis have been input for a paper called Incremental Refinement
Checking for Test Case Generation by Bernhard Aichernig (supervisor), Elisabeth Jöbstl (co-supervisor)
and Matthias Kegele (author of this thesis) [10]. In 2013, this paper had been accepted at the Test &
Proof (TAP) conference in Budapest, Hungary.

1.8 Thesis Structure

In the previous section, the technique of model-based mutation testing has been explained. This includes
the definition of refinement of models in general (Section 1.6.1). In Chapter 2.1, the modeling formalism
Action Systems is described. It also illustrates the refinement of models described in this formalism.
Subsequently, Satisfiability Modulo Theories are explained in short (Chapter 2.2). The standardised input
language for SMT solvers (SMT-LIB) is discussed in more detail (Section 2.2.2). Then, the next three
consecutive chapters document different aspects of the implemented application called as2smt (Action
System to SMT-LIB): Chapter 3 outlines the general process the tool steps through and the modules it
consists of. Chapter 4 concentrates on the translation from a Prolog notation for Action Systems to the
SMT-LIB language. Chapter 5 shows how refinement of two models has been implemented. Moreover,
the results of the performed case studies are presented (Chapter 6). This is affiliated by a discussion of
related work (Chapter 7). Finally, a conclusion of the thesis is drawn (Chapter 8).



2 Prerequisites

As stated in the problem description (Section 1.3), a compiler is intended to be constructed. The input
language for this compiler is an Action System notation in Prolog (cmp. Section 4.1). The modeling
language is presented in Section 2.1. Then, a closer look is taken at Satisfiability Modulo Theories
(SMT, Section 2.2), SMT solvers (Section 2.2.1) and the output language for the compiler - SMT-LIB
(Section 2.2.2).

2.1 Modeling Language: Action Systems

The modeling formalism which has been chosen to be used in this thesis is the Action System formalism
[17]. The following sections will discuss this formalism in general and its formal semantics in refinement.

2.1.1 Action System Formalism

Back and Kurki-Suonio introduced this formalism in 1983 [17] and revised it in 1988 [18]. Its intent is to
describe process nets in form of joint actions. One action consists of processes directly linked together.
The execution of an action results in value changes of the local variables of the process. Every action
is accompanied by an enabling condition (so called action guard). It may depend on any variables of
the system (global variables). By deciding that the evaluation of the enabling condition of every action
is performed as an atomic operation, the actions can be executed sequentially. If there is more than one
enabled action, it is chosen non-deterministically which action is executed. In case of Action Systems,
formal semantics is defined by Back and Kurki-Suonio in terms of weakest precondition [17]. However,
Aichernig and Jöbstl defined them by relational predicative semantics [8]. For the purpose of testing, this
semantics also includes trace information of the executed action which does not exist in Back’s original
version. For better understanding, the semantics is explained in addition to the formal definition by an
example.

Description of example Action System

1 % type declarations
2 type(bool, X) :- X in 0..1, labeling([],[X]).
3 type(int_0_2, X) :- X in 0..2, labeling([],[X]).
4 type(int_0_4, X) :- X in 0..4, labeling([],[X]).
5 type(n, X) :- X in 0..1, labeling([],[X]).
6
7 % variable declarations
8 var([engine], bool).
9 var([integrity], int_0_2).
10 var([state], int_0_4).
11 var([x, y], n).
12
13 % definition of the state
14 state_def([engine, integrity, state, x, y]).
15 % initial state values
16 init([0, 0, 0, 0, 0, 0]).

Listing 2.1: Rocket steering software: type and variables declarations and initial values1

1The expression labeling([],[X]) is an enumeration predicate of Prolog. It enables the search for values in bounded domain
[30]. For this thesis, this has no meaning. Nevertheless, this is part of the input language definition (cmp. Section 4.1).

11



Chapter 2. Prerequisites 12

In the implemented tool, a Prolog notation for Action Systems is used (cmp. Appendix A). In general,
this notation consists of five parts: type declarations, variable declarations, initial state assignment, action
declarations and the do-od block definition. The example presented in Listing 2.1, 2.2 and 2.3 is written
in a simplified version of this Prolog notation2. It shows the Action System of the rocket steering software
presented in Figure 1.2.

1 % actions
2 actions (
3 ’engage’ :: (integrity = 0 ∧ engine = 0 ∧ x = 0 ∧ y = 0) => (
4 state := 1,
5 engine := 1,
6 x := 1,
7 y := 1
8 ),
9
10 ’course_correction’(x_next, y_next)::(integrity = 1 ∧ engine = 1) => (
11 % irregular course correction, destruction
12 (((x - x_next < 0) ∨ (y - y_next < 0)) =>
13 state = 2,
14 integrity = 2)
15 ;
16 % regular course correction
17 (((x - x_next ≥ 0) ∧ (y - y_next ≥ 0)) =>
18 state := 1,
19 x := x_next,
20 y := y_next
21 )
22 ),
23
24 ’land’ :: integrity = 0 => (
25 state := 3,
26 engine := 0,
27 (
28 % perfect landing
29 integrity := 0
30 ;
31 % damage on landing
32 integrity := 1)
33 ),
34
35 ’repair’ :: (engine = 0 ∧ integriy = 1) => (
36 % repair successful
37 integrity := 0
38 ;
39 % repair fails
40 integrity := 1
41 ),
42
43 ’integrity_check’ :: (integrity = 0 ∧ state = 4) => (
44 % back to idle
45 state := 0
46 )
47 )

Listing 2.2: Rocket steering software: action declarations

2ignoring any Prolog code unnecessary for this illustration



Chapter 2. Prerequisites 13

Listing 2.1 shows the type definition and variable definitions and the initial values of the these vari-
ables. The used types are defined as subsets of Integer values. The Boolean type bool maps false and
true to the values 0 and 1. For enumeration variables, the types int 0 2 and int 0 4 allowing values
between 0 and 2, 0 and 4 respectively. The Boolean value engine indicates if the engine is turned on
(0) or off(1; Line 8). integrity signals the operability of the space craft: intact (0), damaged (1) and
destroyed (2; Line 9). The state resembles to the state in the state graph (Figure 1.2): idle (0), ascend
(1), destructed (2) and damaged (3; Line 10). x and y identify the coordinates of the current position of
the rocket (Line 11). In Line 14, the set of variables is defined to form the state. Initially, this state is
declared by all variables set to 0 (Line 16).

1 % do-od block
2 dood (
3 engage
4 ; [A:n,B:n] : course_correction(A, B)
5 ; land
6 ; repair
7 ; integrity_check
8 )

Listing 2.3: Rocket steering software: do-od block

Predicative Semantics

For this thesis, the mentioned predicative semantics defined by Aichernig and Jöbstl has been chosen [8]
which include traces. So, observations are represented by the system states (a vector of variables) and
event traces before and after one execution of the do-od block. These states are denoted by

• (v̄, tr) to describe a pre-state

• (v̄′, tr′) to describe a post-state

In the following, the semantics is explained per expression type. In the definitions, the left hand side
shows the syntax of the element, the right hand side its semantic meaning.

Definition 4. Action

l :: g => B =df g ∧B(v̄, v̄′) ∧ tr′ = tr ̂ [l]

An action consists of a label l, a guard g and a body B. Before execution, the trace tr represents the
list of all called actions before. The conjunction of the guard g, the body of the action B and addition
of its label l to the previously observed trace tr represent the guarded action’s transition relation. The
post-state value of tr is held in the trace variable tr′.

Listing 2.2 displays the action definitions for the space craft steering software example (cmp. Figure
1.2). The individual transitions are described as actions in an actions block. The first action in this block
is the action labeled with engage (l, Line 3). At the same line, two colons separate it from the guard
condition g (integrity = 0 ∧ engine = 0 ∧ x = 0 ∧ y = 0). Subsequently, the
body of the action is defined (Lines 4 - 7).

Definition 5. Action with parameters

l(X̄) :: g => B =df ∃X̄ : (g ∧B(v̄, v̄′) ∧ tr′ = tr ̂ [l(X̄)])

If an action is parameterised, the parameters X̄ are added as local variables to the predicate. The
assigned values to X̄ are also added to the post-state trace variable.



Chapter 2. Prerequisites 14

Among the listed actions in Listing 2.2, there is also one action with parameters. It is labeled
course_correction and takes two parameters identified by x_next and y_next. The type of
the parameters is defined in the action call in the do-od block (Line 4, Figure 2.3).

Inside the body B of an action, four types of operations are permitted: assignment, sequential com-
position, non-deterministic choice and guarded command.

Definition 6. Assignment

x := e =df x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

An assignment updates a local variable x to a value e. All other variables are left unchanged.

Listing 2.2 contains a range of examples for assignments. For instance, at Line 4, the variable state
is set to the value 1. In general, e can also be any arithmetic expression which is defined in Appendix A.

Definition 7. Sequential composition

B1, B2 =df ∃v̄0 : B1(v̄, v̄0) ∧B2(v̄0, v̄′)

When two bodies of processes, each with a pre-state v̄ and a post-state v̄′ are concatenated by a sequen-
tial composition, the following transition relation applies: There exists an intermediate state between the
two bodies. The first block changes the local variables from v̄ to the intermediate state v̄0 and the second
one from v̄0 to the post-state v̄′.

In the Prolog notation for Action Systems, the comma symbol denotes a sequential composition.
The body B of the engage action consists of sequential compositions of assignments (Lines 4 -7). The
comma operator is left-associative. This means that the first sequential composition to be executed is
state := 1 , engine := 1. Before the execution of the first assignment, the Action System
has the state v̄. When updating the value of state to 1, the intermediate state v̄0 is reached. Then, the
second assignments set the variable engine to the value 1. After the execution of both assignments,
Action System is in the post-state v̄′. This procedure is carried on with the second composition, having
the post-state after the execution of the first sequential composition as an intermediate state v̄0 for the
second one. Section 4.3.4 lists an example for sequential composition.

Definition 8. Non-deterministic choice

B1;B2 =df B1(v̄, v̄′) ∨B2(v̄, v̄′)

A non-deterministic choice between two bodies results in terms of predicative semantics in a disjunction
of the two elements.

A non-deterministic choice operation is indicated by a semicolon. The body of the repair action
contains this left-associative operator (Lines 36 - 40): integrity := 0 ; integrity := 1. It
can not be determined which of the two bodies (consisting each of just one assignment) is executed at
run time. For the rocket steering software example, the support for non-determinism in the modeling
language is of importance. Modeling the possibility that the space craft is possibly damaged is difficult,
otherwise.

Definition 9. Guarded command

g => B =df g ∧B(v̄, v̄′)

Any body of processes B can be guarded by an enabling condition g. Similarly to the guarded action’s
transition relation, for the guarded command transition relation, the conjunction of the body B and its
accompanied guard g must hold. The only difference here is that no trace variable is involved as it is
part of an action itself.



Chapter 2. Prerequisites 15

Just like for actions, a guard condition g and a body B is separated by an arrow symbol =>. Again,
Listing 2.2 contains an example for this. In Line 12, there is the guard condition to check whether an
irregular course correction occurred. If this condition g holds, then the two assignments (Lines 13 & 14;
connected by sequential composition) are executed.

The previous definitions show the elements contained in an action. The do-od block provides the
event-based view on the Action System: the labels (appended by possible parameters) of the actions are
composed here to indicate the possible enabling of the action. In general, the do-od block consists of
non-deterministic choices between action calls. If sequential composition was also allowed, the joined
actions might be thought of one virtual action, combining the bodies of both action. In this thesis, only
non-deterministic choice is considered in the do-od block.

Listing 2.3 presents the do-od block for the space craft example. As mentioned before, just one of
the actions is chosen to be executed. This holds also if multiple actions are enabled. In this case, one
action is chosen non-deterministically (i.e. interleaving semantics). If none of the actions listed in the
do-od block can be enabled, the Action System terminates. Otherwise, the Action System continues with
executing actions.

2.1.2 Refinement of Action Systems

In Section 1.6.1, refinement has been explained in general and how to use it as a criterion to identify
unsafe states. Applying Definition 1, an Action System ASm refines its original ASo if and only if every
observable behaviour of the mutant is allowed by the original. Like in a traditional program, an Action
System may not reach all states (in the sense of value combinations of all variables). For this reason, it
has to be dealt with reachability when defining refinement.

Definition 10. Refinement of Action Systems

ASo v ASm =df ∀v̄, v̄′, tr, tr′ : ((v̄ ∈ reachable(ASo, tr) ∧ P (v̄, v̄′, tr, tr′)m) =⇒
P (v̄, v̄′, tr, tr′)o)

The function reachable returns the set of reachable states for a given Action System ASo and a cor-
responding event trace for each state. Let an Action System ASm with the do-od block Pm refine the
Action System ASo with the do-od block P o. Then, any reachable state change (v to v′) with an event
trace (tr to tr′) that is valid in the implementation/mutant ASm, has to hold also on the specification
ASo.

So, every state has to be a reachable state (according to ASo) and enable at least one action in
Pm. This implies that also an action in the do-od block P o is enabled. Considering the fact that a
do-od block consists of a non-deterministic choice of actions Ai, P o and Pm can be substituted. For
example, let there be a mutation, called rocketm, of the rocket steering software Action System (further
referenced as rocketo). The do-od block described in Listing 2.1 is changed slightly. In Line 4, the call
to the action course_correction is modified to [B:n] : course_correction(1, B). In
this way, course corrections are only possible in y-axis direction as the parameter x_next is fixed to
the constant value 1. Then, rocketm refines the original described one. Any event trace valid in rocketm

holds also for rocketo as the mutant differs only in a limitation of a parameter.

The negation of Definition 10 leads to the non-refinement condition for two Action Systems.

∃v̄, v̄′, tr, tr′ : (v̄ ∈ reachable(ASo, tr) ∧ (Am
1 (v̄, v̄′, tr, tr′) ∨ ... ∨Am

n (v̄, v̄′, tr, tr′)) ∧
¬Ao

1(v̄, v̄
′, tr, tr′) ∧ ... ∧ ¬Ao

m(v̄, v̄′, tr, tr′))

By looking at each action Am
i of ASm individually (application of the distributive law), a set of con-

straints is created which have to be checked to detect non-refinement.



Chapter 2. Prerequisites 16

Theorem 1. Non-Refinement of Action Systems

ASo 6v ASm ⇐⇒
n∨

i=1
∃v̄, v̄′, tr, tr′ :

(v̄ ∈ reachable(ASo, tr) ∧Am
i (v̄, v̄′, tr, tr′) ∧ ¬Ao

1(v̄, v̄
′, tr, tr′) ∧ ... ∧ ¬Ao

m(v̄, v̄′, tr, tr′))

A mutated Action System ASm does not refine its original ASo iff any action Am
i of the mutant shows

trace or state-behaviour that is not possible in the original Action System [8].

If such an event trace or state-behaviour is found as it is described in Theorem 1, then an unsafe state
is identified. Let there be another mutant of the space craft steering software rocketo called rocketm2.
By changing the line 37 in Listing 2.2 to the same as Line 40, the action repair is not able to set
the integrity flag back to 0. So, when landing resulted in a damage, we reach a state in which the
guard of the integrity_check action may never again evaluate to true. Actually, this state marks
the unsafe state. Hence, the Action System rocketm2 does not refine rocketo.

2.2 Satisfiability Modulo Theories

Determining, whether an arbitrary propositional formula is satisfiable (SAT), is a well-known NP-complete
problem. Satisfiability modulo theories (SMT) generalises Boolean satisfiability (SAT) by adding equal-
ity reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories
[40].

The intention of the usage of SMT in this thesis is to map the problem of finding counterexamples
from the modeling language Action System (cmp. Chapter 2.1) to the SMT-LIB language. An SMT
solver is a tool for deciding the satisfiability of formulas in these theories. By using an SMT solver,
the problem of finding counter examples when checking bounded refinement of two Action Systems is
solvable in an automated way.

At first, this chapter outlines the basic algorithms used in SAT & SMT solvers. Then, the SMT-LIB
language is explained thoroughly. Finally, the motivation for using SMT-LIB is explained.

2.2.1 SAT & SMT Solvers

As mentioned before, SMT solvers evolved from SAT solvers by enriching SAT problems by domain
theories. SAT & SMT solvers may be based on various techniques. This section gives a first look on
general algorithms implemented in SAT and SMT solvers. It has no claim for completeness but serves
as a small overview of the techniques applied in such solvers. Huth and Ryan give more information on
this in [52].

Linear SAT solving

Huth and Ryan describe a marking algorithm with unit propagation as an example for a simple SAT
solver [52, p. 68-72]. With this algorithm, SAT solving can be performed. At first, the input constraint
parse tree is transformed into a directed acyclic graph (DAG). It contains only one node per variable (all
occurrences link to the same node), negations and conjunctions. Furthermore, the root of this DAG is
marked with 1 : T . This identifies the root node evaluated to true which is exactly the condition that has
to be fulfilled to decide satisfiability. As a next step, this truth value is propagated by the following rules:

• negation ¬p: Negation propagation leads to a negation of the marked truth value. Propagation
may be performed in both directions (¬p marked as truth value x, p is marked as ¬x).

• conjunction p ∧ q:



Chapter 2. Prerequisites 17

– A true conjunction p ∧ q forces true conjuncts p and q.
– True conjuncts p and q force true conjunction p ∧ q.
– False conjuncts p and q force false conjunction p ∧ q.
– False conjunction p ∧ q and true conjunct p (or q) force false conjunct q (or p).

These rules are applied until either all nodes in the DAG have been marked properly or a conflict has
been determined. In case the marking has been completed, a valuation for all variables in the Boolean
formula has been found. So, the SAT solver has proven the satisfiability of the given constraint. If the
SAT solver stops by discovering a conflict or no further marking is possible, it simply fails. This is called
a linear SAT solver as the running time of the solver scales linearly with the input formula.

Figure 2.1: Linear SAT solver: SAT (left), STUCK (middle), UNSAT (right)

Figure 2.1 illustrates three examples. The first example on the left side presents the expression
¬p ∧ ¬(¬p ∧ q) as a DAG. At first, the rule true-conjunction lead to true conjuncts is applied. Then, the
negation rule is applied three times (¬p marked as true leads to p marked false). Finally, all nodes have
been marked with a value and so also the assignments for the Boolean variables have been found. So, a
SAT solver (working with the described algorithm) returns satisfiable for the left example. The second
example in the middle shows the Boolean expression ¬(p ∧ q). It stops after marking the root node and
applying the negation rule once because the expression p ∧ q marked with false can not be marked any
further (according to the defined rules). In this case, a solver returns UNKNOWN or STUCK as it is
not able to valuate all nodes. The third example on the right side illustrates the DAG of the expression
(¬p∧¬q)∧(p∧¬q). Here, the marking algorithms is applied as before but the marking leads to a conflict.
By applying two rules, two different values should valuate a node. In this case, a solver determines that
the expression at hand is unsatisfiable as this conflict can not be resolved.

Cubic SAT solving

A cubic SAT solver continues when the linear SAT solver is not able to apply any further markings.
It temporarily sets a node to a concrete truth value and proceeds with the application of the marking



Chapter 2. Prerequisites 18

Figure 2.2: Cubic SAT solver: Conflict in temporary marking (left), making temporary marking
permanent (middle), SAT with temporary markings (right)

rules. If the marking stops with a conflict, the opposite truth value is chosen as new temporary value.
Otherwise, the marking becomes permanent. In this way, just the answers SAT or UNSAT are possible.
Figure 2.2 shows possible cases for the cubic SAT solver [52, p. 72ff].

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Figure 2.3: DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann algorithm.
The variable dl is the decision level to which the procedure backtracks [61]

In 1960, Davis and Putnam presented their computing procedure for quantification theory [39]. Fur-
thermore, Davis, Logemann and Loveland suggested some modifications to the algorithm resulting in
the Davis-Putnam-Logemann-Loveland algorithm [38]. It is able to decide satisfiability of propositional
formulas in conjunctive normal form (CNF). Figure 2.3 illustrates its application:

• DECIDE assigns a truth value to a selected variable. The decision is made on the basis of heuris-



Chapter 2. Prerequisites 19

tics. If no further decisions can be made because all variables have been set, the algorithm termi-
nates and the result is SAT. Otherwise, the algorithm proceeds with BCP.

• BCP (Boolean constraint propagation) applies repeatedly the unit clause, i.e. assigns single
unassigned variables to Boolean values with the goal to fulfill a formula. When propagation
ends, it continues with DECIDE. If propagation uncovers a conflict, this is analysed (ANALYSE-
CONFLICT).

• ANALYSE-CONFLICT investigates which backtracking point (decision level) has to be recov-
ered to continue processing. If this action is performed at decision level 0, the algorithm terminates.
This implies that the input formula has been found unsatisfiable. Otherwise, the decision level to
backtrack to is taken as an input for the BACKTRACK action.

• BACKTRACK resets all assignments to the input decision level which becomes the current deci-
sion level.

1 ∅ ¬a ∨ b, ¬b ∨ ¬c ∨ ¬d, c ∨ ¬d ⇒ DECIDE
2 a ¬a ∨ b, ¬b ∨ ¬c ∨ ¬d, c ∨ ¬d ⇒ BCP
3 a, b ¬a ∨ b, ¬b ∨ ¬c ∨ ¬d, c ∨ ¬d ⇒ DECIDE
4 a, b, c ¬a ∨ b, ¬b ∨¬c ∨ ¬d, c ∨ ¬d ⇒ BCP
5 a, b, c, d ¬a ∨ b, ¬b ∨¬c ∨ ¬d, c ∨ ¬d ⇒ BACKTRACK
6 a, b, ¬c, ¬d ¬a ∨ b, ¬b ∨¬c ∨ ¬d, c ∨ ¬d final state: model found �.

Table 2.1: DPLL-SAT example

Table 2.1 applies DPLL (SAT) to the formula (¬a∨b)∧(¬b∨¬c∨¬d)∧(c∨¬d). On the left, there is
the set of assigned values. If the variable has a prefixed ¬ symbol, the assigned value is false. Otherwise,
true is assigned. Bold symbols represent variable values that have been decided (by the DECIDE action).
Initially, there are no variables set to any values (Line 1). The algorithm starts with the DECIDE action
and sets the variable a to true (Line 2). As DECIDE is not able to generate a full assignment, BCP is
applied which leads to an assignment of b to true (Line 3). No further markings are possible with BCP.
Therefore, the algorithm continues with DECIDE. Again, a variable is chosen. This time, c is set to
true (Line 4). By executing the unit propagation, d is set to true (Line 5), but this leads to a conflict:
the first and third term evaluate to true by setting d to true, but the second term would evaluate to false.
Subsequently, the conflict is analysed and resolved by back tracking and setting c to false and also d to
false. The solver outputs satisfiable and is able to present the model a = true, b = true, c = false and
d = false.

In 2004, Nieuwenhuis et al. [67] state that most state-of-the-art SAT solvers were based on different
variations of the DPLL algorithm [66] [46]. Furthermore, they modeled the DPLL algorithm and its
existing extensions as transition systems in an abstract version. The current implementations (2012)
of the SMT solvers used in this thesis implement this algorithm framework [40] [33] [34] (with some
adaptions). Among the extensions Nieuwenhuis et al. described, is clause learning: when backtracking
from a level j to i, a temporary clause is added to the existing ones. This clause, called back jump clause,
prevents decisions which led to backtracking. Furthermore, it enables the possibility to reverse more than
one decision level. This back jump clause can determined for example by a conflict analysis (analysing
the conflict graph,[63]). The algorithms implemented in SMT solvers are constantly evolving.

2.2.2 SMT-LIB

In 2003, Ranise and Tinelli proposed the initial version of the SMT-LIB format [75]. Its purpose has
been to produce an online library of benchmarks for satisfiability modulo theories. Furthermore, a stan-
dardised input language for SMT solvers has been defined, in which these benchmark were written. A



Chapter 2. Prerequisites 20

similar approach has been performed for SAT solvers. The standardised input language for SAT solvers
is the DIMACS format3. In 2010, Barett et al. released the specification SMT-LIB in Version 2 [24].
This is the version that has been used in this thesis. The version number will not be further noted when
referencing SMT-LIB in the following. It defines

• a language for writing terms and formulas in a sorted (i.e., typed) version of first-order logic

• a language for specifying background theories and fixing a standard vocabulary of sort, function,
and predicate symbols for them

• a language for specifying logics, suitably restricted classes of formulas to be checked for satisfi-
ability with respect to a specific background theory

• a command language for interacting with SMT solvers [24, p.13]

The syntax of SMT-LIB is structured exactly like so called symbolic expressions (s-expressions)
originating from the LISP programming language. Every s-expression starts with an opening and ends
with a closing parenthesis. Operators and operands are separated by a blank character, the operator
notation is a prefix-based one. Example: (and a b).

Underlying Logic

SMT-LIB logic is based on a many-sorted first-order logic with equality. It contains sorts (i.e. basic
types) and sorted terms. Deviant from standard many-sorted first order logic, there is no syntactic cate-
gory of formulas distinct from terms. Formulas are interpreted as sorted terms of a distinguished Boolean
sort which is interpreted as a two-element set in every SMT-LIB theory. Moreover, the definition of sorts
is not limited to constants like Int, but are defined as sort terms. This enables the use of composed data
structures like (List (Array Int Real)). Another feature inspired by traditional programming
languages is the let binder which can be seen as a local variable binder. Additionally, existential and
universal quantifiers can be used to write formulas.

Background Theories

In SMT-LIB, there exist two kinds of theories: basic and combined. The standard explicitly declares
six basic theories. In a use case, not a single basic theory but a combination of those theories might
fit best for the problem at hand. This combination can be carried out implicitly by a general modular
combination operator. The current available basic theories are listed on the SMT-LIB web page [23]:

• Core: core theory, defining the basic Boolean operators

• Ints: integer numbers with basic arithmetical (plus div, mod and abs) and relational operators

• Reals: real numbers with basic arithmetical and relational operators

• Reals Ints: combination of Ints and Reals theories with additional functions (to real, to int, is int)

• FixedSizeBitVectors: bit vectors with arbitrary but constant size

• ArraysEx: functional arrays with extensibility

Theory specifications have mostly documentation purposes [24]. Their intention is to be a standard
reference for human readers. Only the set of sorts and the sorted function symbols are specified formally.

3The DIMACS acronym and the format origin from the Center of Discrete Mathematics & Theoretical Computer Science
from the Rutgers University in New Brunswick, USA. [14]



Chapter 2. Prerequisites 21

Logics

Every SMT-LIB assertion is always interpreted and executed in the context of a logic ([23], tutorial
document). In addition to the core SMT-LIB logic (cmp. Section 2.2.2), a sub-logic can be defined. Such
a logic declaration includes apart from a textual description a reference to the used theories. Additionally,
it may contain extensions in form of sorted function symbols. For example, the logic AUFNIRA is
based on the theories Reals Ints and ArraysEx and defines three sorted function symbols (intended to be
syntactic sugar) as extensions. Like the theories described in Section 2.2.2, all supported logics are listed
on the SMT-LIB web page. The naming of the logics seems initially a bit cryptic but the different capital
letters mark either the implementation of a theory, a limitation or an extension:

• QF: Quantifier-Free (limitation)

• UF: Uninterpreted Functions (extension)

• IA: Integer Arithmetic (Ints (theory))

• RA: Real number Arithmetic (Reals (theory))

• IRA: Integer and Real number Arithmetic (Reals Ints (theory))

• L or N: Linear or Non-linear

• DL: Difference Logic (limitation)

• BV: Bit Vectors (FixedSizeBitVectors (theory))

• A: Arrays (ArraysEx (theory))

Additionally, there might be further restrictions and extensions of a logic [36]. This is described in
the textual logic description. Any combination of the listed limitations and extensions are possible per
theory. The name of the theory then consists of a concatenation of the letters. In general, there exist the
following categories:

• Boolean logics: a single listed logic supports only the Core theory: QF UF - the logic of Quantifier-
Free Uninterpreted Functions. It restricts the SMT-LIB logic (cmp. Section 2.2.2) to quantifier free
expressions.

• Logics with linear arithmetic: a set of logics is defined which can deal with arithmetical expres-
sions. Two of the most popular according to the SMT competition are listed bellow:

– QF UFLIA is limited to linear integer arithmetic without quantifiers: multiplication is only
possible if one factor is a constant value.

– QF UFLRA represents QF UFLIA with real numbers.

• Logics for difference arithmetic: instead of allowing all kinds of arithmetic expressions (cmp.
previous category), difference arithmetic logics only allows the comparison between numeric val-
ues or the comparison of a difference between two numeric values to a positive or negative literal
[23].

• Logics with bit vectors: instead of integers and real numbers, also bit vectors can be used. The
most basic representative of this family is the QF BV logic. Like for arithmetic logics, extensions
exist like QF UFBV (QF BV plus the support of uninterpreted functions).

• Logics with arrays: this kind of logics enable the support of arrays of sorts, allowing to define a
sort for the index and the value separately. Any arithmetic, difference or bit vector logic may serve
as basis (for example AUFLIA or AUFNIRA).



Chapter 2. Prerequisites 22

Command Language

The command language of SMT-LIB conforms to the format of writing terms and defining logics. It de-
fines various commands which have to be interpretable by a solver implementing the SMT-LIB language.
There exist the following types of commands:

• Solver options: every solver may be configured by parameters. In respect to the previous section,
the command set-logic is of importance: it sets the logic to be used. It is obligatory to set this
command before any others (with few exceptions) as they might be dependent on the choice of
the logic. Further configuration parameters can be set by set-option commands. It has to be
distinguished between standard options defined by the SMT-LIB specification and solver-specific
options. The implemented application makes only use of the standard option produce-models to
enable the retrieval of a model from the solver in case the assertions are in a satisfiable state. The
complete list can be obtained from the SMT-LIB specification document [24].

• Definition and declaration of sorts: apart from the standard sorts Boolean, Integer, Real and Bit
Vector, additional sorts can be defined. This way, more complex data structures can be created.

• Definition and declaration of symbols: depending on the logic, function symbols may be de-
clared by declare-fun. It is also used to declare a constant which is just a function with-
out parameters [41]. Microsoft’s Z3 even introduces syntactic sugar for declaring constants -
declare-const - to omit the braces of the empty parameter list ((declare-const x Int)
instead of
(declare-fun x () Int)) [41].

• Assertion commands: a solver implementing SMT-LIB maintains a stack of the asserted formu-
las, declarations and definitions. Assertions are added through the assert command (example:
(assert (= x y))). The satisfiability of all assertions on the stack can be issued by the com-
mand check-sat. It outputs the classical (SAT solver) response SAT, UNSAT or UNKNOWN. A
feature of SMT-LIB compliant solvers is the support of incremental solving: it is not only possible
to add assertions from the stack but also to remove some (in fact to backtrack to a previous state
of the stack). With push, a backtrack marker is set on the assertion stack. By issuing a pop
command, the state, when the most recent marker was set, is restored. This feature has been used
heavily in the implemented application (cmp. Section 5.3.2).

• Inspection of proofs and models: the previously mentioned check-sat command tries to find
an assignment to every symbol to satisfy all assertions on the stack. This assignment can be output
by the get-assignment command. Furthermore, there exist the commands get-proof to
get a proof of unsatisfiability and get-unsat-core to get the set of assertions that the solver
determined to be unsatisfiable. These two commands have not been used in the course of this
thesis.



3 The as2smt Tool: Overview and Architecture

This chapter is structured as follows: at first, the environment of the tool implemented in the course of
this thesis will be outlined. Then, the different modules of the tool and their internal responsibilities will
be discussed. Finally, an installation and usage guide is provided.

3.1 Environment

In this section, the tools used in the course of this thesis are listed. Furthermore, a closer look is done on
the implementation language. At last, a process overview of the Action System to Satisfiability Modulo
Theories (as2smt) application is presented.

3.1.1 External Tools Used for Implementation

The development process included the use of the following external tools and libraries:

• Scala [69]: the Scala programming language has been used in version 2.9.1. Most of the source
code of the application is written in this language.

• Java: the Java programming language in version 1.6 has been used as well but just by referencing
generated Java code in Scala.

• ScalaTest [85]: ScalaTest is a Scala library which enables the programmer to write unit tests.
Version 1.6.1 has been used in this project.

• Simple Build Tool [49] (SBT): SBT is a build tool for Java and Scala projects (both at a time).
Version 0.11.3 has been used to run tests, build the source code and generate the ScalaDoc (source
code documentation for Scala).

• ANTLR Works [74]: this tool is an IDE for the ANTLR parser generator. It has not been used
to actually generate the parser but to check if the parsed grammar fulfills the property of being an
LL(1) grammar 1.

• JNAerator [31]: the Java Native Access (JNA) is a way to to call native code from the Java
programming language. This library is part of the Java Development Kit (SDK) since version 1.4.
JNAerator is a tool to generate JNA code from a C/C++ header file. This has been used to call the
APIs (written in the C programming language) of the solvers which had no Java bindings available
at the time of implementation.

• Eclipse & Scala Plugin [43]: Eclipse is a well-known IDE widely used for Java development.
The Scala plugin enables approximately the same support for Scala projects as it already exists for
Java projects.

3.1.2 Implementation Language: Scala

Scala in version 2.9.1 has been chosen as implementation language. It is a Java Virtual Machine (JVM)
based language2). As it is JVM-based, any code written in Java is accessible natively. It is a multi-
paradigm programming language merging object-oriented and functional style. In the reference book
Programming in Scala [70], the authors Odersky et al. discuss the advantages of this language closely.
Further books on Scala are listed on the Scala language page [68].

1A grammar being left to right and leftmost derivation with one look ahead token (LL(1)) avoids back-tracking of the parser
(cmp. Section 4.1).

2More information about Scala can be found on its official site.

23

http://www.scala-lang.org/documentation/books.html
http://www.scala-lang.org


Chapter 3. The as2smt Tool: Overview and Architecture 24

Object-oriented & Functional

On the one hand, Scala is a purely object-oriented programming language. Its main principle is that
every value is an object. This is not the case in Java as there exist native types like integer and null
pointer. There are also boxed versions of the native types (Integer instead of integer), but just the fact
that there exists something not in accordance to the principle crosses the line of pure object-orientation.
On the other hand, Scala is a functional programming language. This enforces two main principles: at
first, functions are first-class values. They can be passed like values. Combined with the principle of
pure object-orientation, this leads to the statement that every function is an object. The second principle
states that operations of a program map input values to output values. It is important to notice that this
mapping should not produce any side effects. This inherits that no changeable inner state of an object
(which includes functions as previously stated) exists. Pure functional programming would enforce this,
Scala nevertheless allows imperative-style programming (e.g. with side-effects), but encourages the
programmer to program as functional as possible. For instance, there are two types of collections in the
Scala library: mutable and immutable ones. Scala automatically imports the immutable versions. Hence,
when using a List object, it will be used as an immutable List as long as the mutable implementation is
not referenced explicitly.

Compatible & Concise

One very big advantage of Scala is its compatibility. As previously stated, it compiles to JVM byte code.
This fact inherits that Java code can be called from Scala code and vice-versa without any additional
code (apart from the standard Scala API). So in general the run-time performance should be very similar.
To assure full interoperability, Scala types are using the standard Java types and wrap them with some
higher level functionalities. The type conversion from a String object to an Integer object should show
how this works exemplarily.

1 Integer.parseInt("42");

Listing 3.1: Converting a String to an integer in Java

Listing 3.1 shows a Java code snippet: String 42 should be converted to the integer 42. In Java,
a static class called Integer has to be called to achieve this. Would it not be more comfortable if the
conversion function exists within the String type?

1 "42".toInt

Listing 3.2: Converting a String to an integer in Scala

Usually the Scala compiler would work with the Java String implementation. But then it would
not find the function toInt like it is shown in Listing 3.2. Scala will find an implicit conversion from
a Java.util.String instance to an enriched String type which includes this method. This Scala compiler
feature will be discussed in a more detailed fashion in Section 4.2.1.



Chapter 3. The as2smt Tool: Overview and Architecture 25

1 class SimpleClass {
2 public final int intMember;
3 public final String strMember;
4
5 public SimpleClass(int intMember, String strMember) {
6 this.intMember = intMember;
7 this.strMember = strMember;
8 }
9 }

Listing 3.3: Class definition in Java with two immutable members

Another benefit of the language is that it tries to avoid unnecessary code. Listing 3.3 shows a class
definition in Java. The SimpleClass holds two kinds of values: a String and an integer. The Java code
needs eight lines of code to declare this type. In Scala this declaration is done in one single line (cmp.
Listing 3.4). Both source codes will be translated to the same JVM byte code.

1 class SimpleClass(intMember: Int, strMember: String)

Listing 3.4: Class definition in Scala with two members

3.2 Process Description

Figure 3.1 illustrates how the application steps through the process of translating the model-based muta-
tion testing problem and outputs the solution. Action Systems are the input for the application:

• one specification

• one or multiple mutants of the specification

These Action Systems are notated in a Prolog source code file. Prolog is a logical programming
language. A close look at the Action System description in Prolog is done in Section 4.1. This input
type was chosen because it has been used by Ulysses3. The process starts by parsing the input files. This
is achieved by a special parsing technique called combinator parsing. This topic will be discussed in
Section 4.2.1 closely. Internally, the output of the parsing will be converted to an abstract syntax tree
(AST). This and other used data structures will be explained in Section 3.3 thoroughly. Furthermore, this
AST will be translated to SMT-LIB (cmp. Section 2.2.2). For refinement checking, the non-refinement
formula is constructed (cmp. Section 2.1.2 and 5.1.1). As non-refinement checking for Action Systems
includes the computation of reachability of the found (possible unsafe) state, the SMT solver has to be
called at least a second time. The exact number of calls to the solver depends on the used strategy (cmp.
Chapter 5).

3.3 Packages

The following section discusses the modules the as2smt application consists of.

3.3.1 Execute

The Execute module contains all classes and objects which are used for the execution of the application:
3Ulysses is an enumerative test case generator. It has been developed at the Institute for Software Technology (IST) at Graz

University of Technology (cmp. [3], [4], [7]).



Chapter 3. The as2smt Tool: Overview and Architecture 26

Figure 3.1: Simple process overview of the as2smt application

• API: the static API object enlists all algorithms to solve the problem of model-based mutation
testing. During implementation various improvements have been done on the solution process.
These solutions are reflected by the different methods defined in the API object.

• Configuration: the Configuration class holds different values which are used throughout all mo-
dules. The respective object holds the latest values and makes them accessible globally.

• ModelBasedChecker: the static ModelBasedChecker object is the entry point for starting the
application. By simply executing the runModelBasedChecker method, the as2smt application is
started.

• Run: the static Run object is a simple command line interface for starting some predefined con-
figurations. In Section 3.4, its usage is outlined.

3.3.2 Parser

In the Parser module, all implemented parsers can be found. The parsers use combinatory parsing.
Figure 3.2 shows the classes of this package in an UML class diagram. The implemented classes inherit
from JavaTokenParser - a Scala API class which represents combinator parsers (with some previously
defined combinators). More on this technique can be found in Section 4.2.1.

• ActionSystemParser The ActionSystemParser object defines the parser combinators to process a



Chapter 3. The as2smt Tool: Overview and Architecture 27

file containing an Action System in Prolog (cmp. section 4.1).

• ResultParser The ResultParser trait4 specifies the two functions which every result parser has to
contain. The parseResult function is already implemented as it is not result parser-specific. The
resultParser function is the root parser combinator which is called by the implemented parseRe-
sult function. The return value is of type ActionSystemModel which is described closely in the
Translation subsection. The following classes implement the ResultParser trait:

– CVC3ResultParser parses the output of the CVC3 SMT solver.
– MathSATResultParser parses the output of the MathSAT SMT solver.
– Z3ResultParser parses the output of the Z3 SMT solver when called via C API.
– Z3ModelParser parses the output of the Z3 SMT solver when called via command line.

Figure 3.2: Package Parser class diagram: combinator parsers extend JavaTokenParser (Scala API
class)

3.3.3 Translation

The Translation package consists mainly of class declarations to define the abstract syntax tree (sub-
classes of Translation, cmp. Figure 3.3) and a translator (ActionSystemTranslator). In case of ANTLR,
the visitor pattern [73] is used when walking through an abstract syntax tree. Utilising this pattern in
Scala is also undoubtedly possible. But this kind of functionality is achieved more concisely with a
feature this language offers: pattern matching.

Abstract syntax tree

The parseFile function defined in the ActionSystemParser (cmp. Figure 3.2) returns an instance of an
ActionSystem. This class and all other AST nodes are defined in the Translation file. All nodes extend
from Translation. Nodes for arithmetic and Boolean expressions, statements, variable types and do-od
block expressions (Callable) are grouped in an additional hierarchy level. The nodes CallPrioComp and
StmtPrioComp are not listed because their translation has not been implemented yet.

In Scala, it is possible to define multiple classes in one file (which is not possible in Java). All AST
nodes are sub-classes of the abstract Translation class. The sealed keyword assures that the class will
not get extended by other classes which have not been declared in the same file. All of these classes are
marked as case classes to enable class/object matching on them. The defined AST nodes are shown in
Figure 3.3. Listing 3.5 shows a small subset of the class declarations in the Translation.scala file.

4A trait is a stackable, rich interface in Scala. For a detailed description, refer to [70, p.217 ff].



Chapter 3. The as2smt Tool: Overview and Architecture 28

1
2 sealed abstract class Translation
3
4 sealed abstract trait ArithmeticExpression extends Translation
5
6 case class AEInteger(value: Int) extends ArithmeticExpression
7
8 case class AEVariable(value: String) extends ArithmeticExpression
9
10 case class AEAddition(left: Translation, right: Translation) extends

ArithmeticExpression
11
12 case class AESubstraction(left: Translation, right: Translation) extends

ArithmeticExpression

Listing 3.5: Definition of AST nodes (subset)

Translation to target language

When using the mentioned Visitor pattern solution [45], one would define a translate method on every
AST node. The much cleaner and easier to refactor way is to implement it like it has been done in the
ActionSystemTranslator class. Once again, the subset is sufficient to show the idea behind it. This is
illustrated in Listing 3.6. The translate function takes as input a Translation object which origins from
the parser and an integer indicating the current depth in the AST (only necessary pretty printing). The
function simply applies the Scala match operator on the Translation object. Depending on the real type
of this object, the code under the case object definition gets executed.

1 def translate(t: Translation = as, depth: Int = 0): String = t match {
2 case AEInteger(value) =>
3 ... //translation of an AEInteger object
4 case AEVariable(name) =>
5 ... //translation of an AEVariable object
6 case AEAddition(left, right) =>
7 ... //translation of an AEAddition object
8 case AESubstraction(left, right) =>
9 ... //translation of an AESubstraction object

10 }

Listing 3.6: Function to match AST node type (subset)

The marking as case classes enables the pattern matching on it (case keyword plus class name). The
identifiers in parentheses after the class name indicate the member fields of the object (cmp. Section
3.1.2). As the sealed keyword assures no further extensions in other files, the compiler will notice if the
matching is exhaustive or not e.g. if a case was forgotten [70, p.286ff].

Supplemental classes

Additionally to ActionSystemTranslator and the AST node definitions in Translation the following object
definitions (classes) exist:

• ActionSystemNormalizer: this class is responsible to transform an abstract syntax tree into a
certain normal form (cmp. Section 4.4.5).



Chapter 3. The as2smt Tool: Overview and Architecture 29

Figure 3.3: Class diagram of the AST nodes

• SymbolTable & SymbolTableEntry: during the translation process, a data storage is needed to
translate the AST correctly. An instance of the SymbolTable class keeps track of all values nec-
essary to compute the translation. Among those variables are instances of the SymbolTableEntry.
One instance holds the current symbolic value of a SMT-LIB variable. This is necessary for ap-



Chapter 3. The as2smt Tool: Overview and Architecture 30

plying the one-point rule (cmp. Section 4.4.1).

• TranslationType: the TranslationType is an enumeration (which is achieved in Scala by extend-
ing from the Enumeration class). It is used as a member to be set for an ActionSystemTranslator
instance. For testing, the translator SimpleTranslation is used, which will produce a positive trans-
lation including the variable declarations. When choosing NegatedSpecification, the result will
contain the SMT-LIB code in negated form (by adding a negation in front of the root node), the
variable declarations will stay the same. By setting it to Mutant, the translation will be exactly like
when using SimpleTranslation but without any variable declarations and leading negation.

• Formatter sub-package: the output of the translator will be in form of a string. By setting the
TranslationFormatter, the shape of this string can be affected.

– TranslationFormatter: this trait defines the functions which have to be implemented to
construct a usable formatter. Both, the SimpleTranslationFormatter and the IndentedTrans-
lationFormatter implement this.

– SimpleTranslationFormatter: the SimpleTranslationFormatter results in a compact string
output.

– IndentedTranslationFormatter: the IndentedTranslationFormatter adds indentations to make
the SMT-LIB code better readable for humans.

The ActionSystemTranslator and its dependencies are illustrated in Figure 3.4. A UML class diagram
representation of the formatter sub-package is shown Figure 3.5.

3.3.4 Solver

Figure 3.1 shows the interaction with a back-end: an SMT solver. SMT-LIB (version 2) language has
been implemented as target language of the translator, which is a standardised input language for SMT
solvers [23] (cmp. Section 2.2.2). In general, SMT solvers support just a subset of the defined theories.
Initially, integers, real numbers, arrays and quantification were required by the tool. Due to the elim-
ination of quantifiers (cmp. Section 4.4) and the drop of real number and array support, just integers
have been needed by the as2smt tool. At the time of the implementation, the following solvers have been
considered as back ends for the implemented application:

• Z3 [76] developed by Microsoft Research (Redmond, United States)

• MathSAT [47] developed at University of Trentino, Italy

• CVC3 [21] developed at New York University, US

• SMTInterpol [32] developed at University of Freiburg, Germany

These solvers are accessed by the as2smt application in different ways. At an early development
stage, this was achieved by a command line call for all solvers. During the first experiments this was one
major performance bottleneck. Therefore a solution for a native access has been implemented: Z3 - the
most promising solver when it comes to performance [79] - had no official Scala/Java interface available
at the time of implementation. The external library ScalaZ3 [81] (a Google Code project of Phillip Suter,
a member of Martin Odersky’s team) was tested, but at the time of implementation the latest version of
Z3 was not supported. Hence, the usage of the Java Native Interface (JNI) and Java Native Access was
evaluated. Through these Java frameworks (both part of the standard Java API) it is possible to call native
interfaces. It would have been quite an effort to implement the glue code in one of the frameworks. The
tool JNAerator [31] is a generator of JNA bindings based on C-header files5. Through this method Z3,
MathSAT and CVC3 are accessed in a native way with good performance. SMTInterpol is written itself
in Java so the matter of accessing it was simple.

5Thanks to the author Oliver Chafik and also Angelo Gargantini for sharing his experience with the tool.



Chapter 3. The as2smt Tool: Overview and Architecture 31

Figure 3.4: Class diagram of ActionSystemTranslator and its dependencies



Chapter 3. The as2smt Tool: Overview and Architecture 32

Figure 3.5: Class diagram of package Formatter

The package Solver defines the following elements:

• SMTSolver is an enumeration of all currently supported SMT solvers.

• SMTSolverAPI defines functions which the as2smt application needs when interfacing to an SMT
solver.

• SMTIncrementalSolver defines functions to enable incremental solving support for a specific
solver.

• SMTSolverConfiguration specifies the configuration parameters which can be set for a specific
solver.

In the sub-packages cvc3, mathsat, smtinterpol and z3 the implementations of the previously listed inter-
faces can be found. Figure 3.6 shows a class diagram with the needed interfaces to access an SMT solver
in the as2smt application.

Figure 3.6: Class diagram of interfaces/traits for accessing SMT solvers

3.3.5 Reachability

The Reachability package consists of classes which use the solver at a higher level. In Figure 3.1 the ac-
tions Refinement and Reachability represent these steps. These are the building blocks for the algorithms
defined in the API object in the Execute package. The elements are listed below and in Figure 3.7.



Chapter 3. The as2smt Tool: Overview and Architecture 33

• ActionSystemModel: this data structure represents the output of a solver. Usually this is a number
of assignments to variables. In fact there are three kinds of variables: original (pre)state variables,
the post state variables and the trace variables. An ActionSystemModel object separates these three
types cleanly.

• MutatedActionFinder: this is a deprecated way for determining which action has been mutated
in comparison with a specification. It uses the solver heavily by translating every action of the
mutant one by one.

• SyntacticEqualityChecker: a more efficient way to determine the mutated action is the syntactic
equality checker. By comparing the ASTs of the specification and the mutant syntactically this is
achieved in the SyntacticEqualityChecker.

• PostStateFinder: this class implements the logic to get all direct post states from one initial state.
It uses an instance of an SMTIncrementalSolver. At creation time it pushes the specification on the
assertion stack.

• ReachabilityChecker: the ReachabilityChecker uses a PostStateFinder instance to explore the
next possible states. With an extra SMTIncrementalSolver instance it checks if one of the found
post states is an unsafe state. If not it continues with one of the found post states as an initial state.
The used search algorithm in this state tree is breadth first. This terminates either when an unsafe
state is found or the maximum search level is reached.

• ReachabilityAnalyzer & ReachableStatesExplorer: the ReachabilityAnalyzer and the Reach-
ableStatesExplorer split this task into two separate ones. The set of reachable states is generated
by the ReachableStatesExplorer which serves the ReachabilityAnalyzer as an input to find an un-
safe state.

3.3.6 Util

The Util package contains two objects for creating an output in a file representation:

• StopWatch: the StopWatch is used mainly in the API object (Execute package) to determine
timing behaviour.

• CsvFileWriter: the results of the as2smt application are written into a comma-separated values
(CSV) file.

3.4 Usage

The Simple Build Tool (SBT) acquires all external dependencies needed to build and run the as2smt
application. The only requirement needed is that a JVM version ≥ 1.6 is provided.

3.4.1 SBT: Configuration & Usage

The folder as2smt/code contains a script sbt to launch the SimpleBuildTool [49]. This tool offers an
interactive shell to build, test, generate documentation for and deploy pure Scala, Java or mixed projects.
It is configurable via a build.sbt file, located in the same directory where it has been started on the
command line. The SBT configuration of this project is shown in Listing 3.7. There the name, the
version of the project and the used Scala version is set. Additionally, a Scala compiler option is enabled
(-deprecation triggers compiler warnings if deprecated classes are referenced) and a library dependency
is added. In general, every parameter-value pair has to be separated by an empty line. For a more
complex configuration, a Scala file can be used instead (cmp. [49], Documentation section).



Chapter 3. The as2smt Tool: Overview and Architecture 34

Figure 3.7: Class diagram of package Reachability

1 name := ” as2smt−s b t ”
2
3 version := ” 1 . 0 ”
4
5 scalaVersion := ” 2 . 9 . 1 ”
6
7 scalacOptions += ”−d e p r e c a t i o n ”
8
9 libraryDependencies += ” org . s c a l a t e s t ” %% ” s c a l a t e s t ” % ” 1 . 8 ” % ” t e s t ”

Listing 3.7: Configuration of SBT (build.sbt)



Chapter 3. The as2smt Tool: Overview and Architecture 35

When starting the sbt script, all dependencies of the project will be downloaded automatically from
an external repository. This includes the set Scala version and the external library dependencies. After-
wards, the interactive shell will appear (cmp. Figure 3.8)

1 [info ] Loading project definition from /home /matthias /private /thesis /
as2smt /code /project

2 [info ] Set current project to as2smt−sbt (in build file : / home /matthias /
private /thesis /as2smt /code / )

3 >

Listing 3.8: SBT shell

The SBT shell is capable of command completion just like in the bash on Unix-based systems by
using the Tab button. The following commands have been used during development process:

• compile: This command will compile the application to Java Byte code.

• doc: The doc command triggers the generation of the ScalaDoc.

• test & test-only: To run all tests suites test is used. Single test suites can be executed by test-only.

• update-sbt-classifiers: This will update the SBT installation.

• eclipse: In SBT additional plugins can be added. This is set in a separate file plugins.sbt located
in the project folder (cmp. Listing 3.9). To open the project in Eclipse, a .project can be generated
via this command.

• run: The run command starts the main function in the application.

1 resolvers += Classpaths .typesafeResolver
2
3 addSbtPlugin ( ”com . t y p e s a f e . s b t e c l i p s e ” % ” s b t e c l i p s e −p l u g i n ” % ” 2 . 1 . 1 ” )

Listing 3.9: SBT plugins: adding plugins to SBT

3.4.2 Running the Application

In general, the application requires three parameters:

• SMT solver

• API method

• Action System

The implemented main function (execute.Run.main) is executed in SBT by entering run. The needed
parameters can be set

• directly with the run command, e.g. run 1 1 1.

• interactively, setting it one by one.

The values for the parameters are numerical. The mappings of the numbers to their meaning are
shown in the interactive mode. After typing run, the output as presented in Listing 3.10 appears. The
possible values are:

1. MathSAT



Chapter 3. The as2smt Tool: Overview and Architecture 36

2. SMTInterpol

3. Z3

By entering one of the three numbers, the selected solver will be used as a back-end of the as2smt
tool for this run. If an input is chosen which is not listed, a default value is taken instead. Listing 3.10
illustrates this behaviour.

1 > run
2 [info ] Running execute .Run
3 please select a solver :
4 1 − MathSAT
5 2 − SMTInterpol
6 3 − Z3
7 > 5
8 no solver selected . choosing Z3 by default .

Listing 3.10: Output of run command: choosing the solver

The next parameter to be set is the API method with the following possible values:

1. Syntactic check, incremental solving, reachability computed per mutant

2. Syntactic check, incremental solving, precomputation of reachable states

3. Syntactic check, incremental solving, precomputation and single assertion of reachable states

The default value for this parameter is set to API method #2. Listing 3.11 represents the output for
this parameter selection.

1 please select the API method to be used :
2 1 − Syntactic check , incremental solving , reachability per mutant
3 2 − Syntactic check , incremental solving , precomputation of reachable

states
4 3 − Syntactic check , incremental solving , precomputation and single

assertion of reachable states
5 > 0
6 no method selected . choosing 2 by default .

Listing 3.11: Output of run command: choosing the solving method

The last parameter is the Action System configuration to be tested. This contains a specification file
path and a directory with all mutants to be tested. The as2smt application comes with eight different
configurations based on four action systems (cmp. Section 6.2):

1. Original car alarm system (CAS)

2. Original CAS with parameter values multiplied by 10

3. Original CAS with parameter values multiplied by 100

4. Original CAS with parameter values multiplied by 1000

5. Car alarm system with Boolean PIN

6. Car alarm system with numerical PIN

7. Triangle

8. Triangle with parameter values multiplied by 10

9. Custom Action System (selection of name and paths)



Chapter 3. The as2smt Tool: Overview and Architecture 37

The output is shown in Listing 3.12. For this parameter the Original CAS is selected by default.

1 please select the Action System to be tested :
2 1 − Original CAS
3 2 − Original CAS ( 1 0 )
4 3 − Original CAS ( 1 0 0 )
5 4 − Original CAS ( 1 0 0 0 )
6 5 − Boolean−PIN CAS
7 6 − PIN CAS
8 7 − Triangle
9 8 − Triangle ( 1 0 )

10 9 − [INPUT ]
11 > 9
12 name : test
13 specification file path : . . / . . / examples /car_alarm_system /simplified_non

−det_2 /AlarmSystem_5Custom_noskip_sound_off_twice .pl
14 mutant folder path : . . / . . / examples /car_alarm_system /simplified_non−

det_2 /mutants

Listing 3.12: Output of run command: choosing the Action System

In total, there are 72 existing run configurations. By choosing #9, a custom Action System can be
set. If this should be permanently part of the application, this can be embedded easily in the source code
by adding two lines of code:

• The selection function getActionSystem (takes an integer as a parameter) has to be adapted by one
additional case (cmp. Listing 3.13).

• The output function getActionSystem (takes three Strings as parameters) has to be extended by the
new option. This way, the interactive mode works also properly.

1 case 10 => ( ” . . / example / p a t h / t o / s p e c f i l e . p l ” , ” . . / example / p a t h / t o /
m u t a n t F o l d e r / ” , ” exampleName ” )

Listing 3.13: Adding an Action System configuration (part 1)

1 10 − exampleName

Listing 3.14: Adding an Action System configuration (part 2)

The results in CSV (comma separated values) format of every run will be saved in the results direc-
tory.

3.5 Limitations of the Implemented Tool

In this section, the limitations of the implemented tool are listed.

• First order mutants: the as2smt application is able to deal with a first order mutations only.
Multiple mutations are not detectable by the tool. If there would be a mutation in more than one
action, just the first action found would be analysed. In Section 1.5, the coupling effect has been
discussed. In regards to it, first order mutants are sufficient to also uncover higher order mutations.



Chapter 3. The as2smt Tool: Overview and Architecture 38

• Mutants with the same variable definitions as the original: the mutant is translated but without
any variable definitions. This is important to note because this marks another limitation of the
tool. There must not exist any mutations concerning the state variables. Neither changes of their
number, nor their names are possible to detect with the presented tool.

• Mutants with fixed action signature: the tool is not able to handle additional parameters for
actions in mutants as this would imply additional variable declarations. All parameters are declared
as read only variables in the beginning at the time the original is translated.

• Mutants with same number of calls in the do-od block: at the current state, as2smt is not able
to handle different numbers of calls to actions in mutants. It will terminate with an error.



4 Translating Action Systems to SMT-LIB

This chapter presents how the translation of Action Systems to SMT-LIB input language has been
achieved. For brevity, the language will just denoted by SMT-LIB or SMT-LIB code. It involves the
steps Parsing and Translation in Figure 3.1. At first, the source language is introduced. The subsequent
section deals with the methods of lexical and syntactic analysis of the source language. Furthermore,
the translation of each element of the Action System language definition to SMT-LIB code is discussed.
Finally, the last section introduces a different approach of the translation which has been shown to be
more efficient (cmp. Chapter 6).

4.1 Input Language: Action Systems in Prolog

In general, Action System is a formalism (cmp. 2.1.1), not a concrete programming language. A tool
called Ulysses (cmp. [3, 4, 7]) developed at the Institute for Software Technology (IST) at Graz Uni-
versity of Technology has been using Action Systems (AS for short, cmp. Section 2.1.1). Aichernig
et al. show the Action System syntax for the Prolog programming language by an example [8]. The
syntax was formalised into an Extended Backus-Naur form (EBNF) representation in the (not publicly
available) internal Ulysses documentation. Taking this existing EBNF as a source, a subset (with the ex-
tension for Qualtiative Action System [5]) is transformed into a left to right and leftmost derivation with
one look ahead token grammar (LL(1) for short). The parsing technique used for the as2smt translation
supports grammars in other forms than LL(k). There is even an implementation supporting left recur-
sions [86]. But backtracking is omitted when transforming the grammar into this kind of context-free
grammar. Hence, this represents the more optimal solution with respect to performance. This transfor-
mation was achieved by the aid of ANTLRWorks - an ANTLR IDE. Figure 4.1 shows a screenshot of the
ANTLRWorks application [74]. Its graphical interface enables the user to spot even very opaque indirect
recursions. In the shown example, the editor highlights the rule input to indicate that the rule is declared
in a left-recursive fashion. By applying the suggested transformations of the EBNF, the grammar can be
converted to an LL(k) grammar1. The resulting grammar can be found in Appendix A. On the basis of
this grammar, a compiler has been implemented. It is presented in the further sections of this chapter.

Figure 4.1: ANTLRWorks: editor for parser generator ANTLR

1For LL(1), the option k = 1 has to be set in ANTLRWorks.

39



Chapter 4. Translating Action Systems to SMT-LIB 40

4.2 Lexical and Syntactic Analysis

A compiler generation framework like ANTLR [72] could have been used for implementing this trans-
lation. But there exists a parsing technique which is inherent to functional programming (cmp. Section
3.1.2): combinatory parsing. The main benefits of the Scala implementation of parser combinators for
this project have been

• its usage is clearly better integrated into the implementation language,

• the readability of the code. The lexer part of a parser in Scala resembles very closely to an EBNF
grammar,

• the dependency on the pure Scala API without external references,

• the possible gain in performance (optimised code for this purpose), and

• the more intuitive way of writing programming code for the semantic analysis.

In the following subsection, we take a close look how combinatory parsing works in Scala.

4.2.1 Combinatory Parsing

The main idea behind this approach is the usage of higher-order functions which each parses a distinct
part of the input. Back in 1989, Frost and Launchburry introduce this way of constructing a natural
language interpreter in a lazy functional language [44]. In 1992, Hutton presents a library for parser
combinators in Haskell [53]. The Scala API includes the used parser combinator framework [70].

Building block: Functions

In combinatory parsing, a parser is nothing else than a function. This function is applied on the whole
input and validates that one lexeme exists at its beginning. It outputs a successful message and the rest
of the text without the validated lexeme if this lexeme has been found. If not, it returns a failure message
[53]. In the Scala library scala.util.parsing.combinator, such a parser is represented by an instance of the
Parser class. It is simply a function which takes one parameter of type Input (which is usually a character
stream) and returns a value of type ParseResult which is typed itself by another type T. In the as2smt tool,
the extension JavaTokenParsers has been used. In difference to its base class, it implements an implicit
type conversion for parser combinators for constant strings. Furthermore, the Input type is set to Char
by default. Additionally, there are already defined combinators for parsing identifiers, integers, floats
and string literals. To call this combinator function in an object-oriented way (in the multi-paradigm
programming language Scala a function is a first-order object), the apply method is defined. Listing 4.1
shows the abstract Parser class of the Scala API (version 2.9.2). ParseResult contains the remaining,
not yet parsed part of the input plus one of the messages mentioned above. The Scala API distinguishes
between two cases of the failure message. So, the ParseResult can be one of the following values:

• Success which is equivalent to the mentioned successful message.

• Failure which denotes that the function was not able to match the lexeme, but the program may
continue by backtracking and look for another possibility.

• Error which indicates that the function was not able to match the lexeme and no backtracking is
done.



Chapter 4. Translating Action Systems to SMT-LIB 41

1 abstract class Parser[+T] extends (Input => ParseResult[T]) {
2 def apply(in: Input): ParseResult[T]
3 }

Listing 4.1: Scala API Parser class

Implicit conversion

To fully understand the syntax, one has to know about the implicit conversion feature of the Scala com-
piler. It is able to determine the type of any variable including return values. Listing 4.2 shows an
example of a usual Scala function with a String as return value. The return value type is given explicitly
after the function name (separated by a colon, Line 1). However, the Scala compiler is able to check
the return value on its own as the right-hand side (Line 2) of the function definition is of the type String
(implicit return type). Therefore, Listing 4.3 also compiles without any warnings or errors.

1 def conStrFunction:String =
2 "constantString"

Listing 4.2: Example for a function
returning a String in
Scala

1 def conStrFunction =
2 "constantString"

Listing 4.3: Example for a function
without explicit return
type

In case of an explicit return type, the Scala compiler tries to match the explicit and the implicit types.
If they do not match, the compiler looks up all declared implicit conversions. These are marked by the
keyword implicit in the source code. The used RegexParsers trait (an extension of Parsers) has such
an implicit conversion defined. Listing 4.4 illustrates this conversion function defined in the mentioned
object. Because of this feature of the Scala compiler and the declared import, Listing 4.5 compiles
without any warning or error: the implicit type is String, the explicit one is Parser[String]. The compiler
finds an implicit type conversion from String to Parser[String].

1 trait RegexParsers extends Parsers {
2 /* [...] */
3
4 implicit def literal(s: String): Parser[String] = new Parser[String] {
5 // object creation
6 }
7
8 /* [...] */
9 }

Listing 4.4: Excerpt from the RegexParsers class with implicit conversion from String to Parser

1 import scala.util.parsing.combinator.JavaTokenParsers
2
3 object MyParser {
4 def actionStringParser:Parser[String] = "ACTION"
5 }

Listing 4.5: Example for a parser parsing the String ”ACTION”



Chapter 4. Translating Action Systems to SMT-LIB 42

Combinations of Parsers

With the implicit conversion feature and the implemented parsers in the JavaTokenParsers object, the
following lexemes can be parsed:

• Any constant String (cmp. Listing 4.5)

• An ASCII identifier (ident parser)

• A string literal encapsulated by double quotes (stringLiteral parser)

• An integer without a sign or with a negative sign (wholeNumber parser)

• An integer with a sign (decimalNumber parser)

• An integer with a sign, negative sign and e or E and a signed integer (floatingPointNumber parser)

For parsing more complex input, these parsers are combined with so-called combinators. A parser
combinator is simply a function which takes two parsers and combines them in a certain way. The Scala
API defines a great variety of these combinators. In the as2smt application, the following combinators
have been used:

• P1 ∼ P2 is the sequence combinator. Two parsers connected with it will result in a new parser.
This parser first applies P1 followed by P2.

• P1|P2 is the alternative compinator. The resulting parser tries to apply first P1 on the input. If
this fails, P2 is applied to the input.

• opt(Poptional) is the optional combinator. Poptional is applied to the input. If this fails the resulting
parser does not fail in total.

• rep(Pelement) is the repeat combinator. This parser will try to parse Pelement as many times as
possible until it fails.

• repsep(Pelement, Psep) is the same as the repeat combinator but with a separation element. This
parser will try to parse Pelement one time. When this does not fail, it will try to apply Psep and
then again Pelement. This continues until Psep or Pelement fails.

• P1 ∼> P2 and P1 <∼ P2 are equal to the sequence combinator but the left/right parser’s output
is ignored (cmp. Section 4.2.2).

• Pelement * Psep is a combination of an element parser and a separator parser (cmp. Section
4.2.3).

With these combinators, it is possible to write down any EBNF. The Scala code will resemble this
grammar notation. For illustration, consider the action repair in Listing 4.6 (defined in Listing 2.2 in
Line 35-41). For parsing such an action, let there be the EBNF defined in Listing 4.72.

1 ’repair’ :: (engine #= 0 #/\ integrity #= 1) => (
2 % repair successful
3 integrity := 0
4 ;
5 % repair fails
6 integrity := 1
7 )

Listing 4.6: Action engange from the rocket steering software example

2Note that the illustrated EBNF only considers lexemes shown in the example in Listing 4.6. The limitation of one or two
boolean relatation expressions is intended. The complete EBNF for actions in Action Systems can be found in Appendix A.



Chapter 4. Translating Action Systems to SMT-LIB 43

1 action : ID ":: (" boolExpr ") => (" stmtBlock ")";
2
3 boolExpr : boolRel ("#/\\" boolRel)? ;
4
5 boolRel : ID "#=" NUMBER;
6
7 stmtBlock : stmt (";" stmt)*;
8
9 stmt : ID ":=" NUMBER;

Listing 4.7: EBNF for parsing actions (some rules and alternatives for readability omitted)

The transition from EBNF (cmp. Listing 4.7) to Scala parser combinator code (cmp. Listing 4.8)
is rather simple. Every rule becomes one function, returning a Parser instance. References to ID and
NUMBER (Lines 1,5 and 9) are mapped to the ident and wholeNumber parser (from the JavaToken-
Parsers class; Lines 2, 8 and 14). By type implicit conversion, the strings become autmatically Parser
instances, parsing the respective string. Additionally, the question mark operator (Line 3) gets replaced
by the opt combinator (Line 5). Furthermore, the star operator (Line 7) becomes the repsep combinator
(Line 11). By applying these conversions, the code resembles still to EBNF but is in fact compiling and
working Scala programming code for parsing the given input (Listing 4.6).

1 def action: Parser[Any] =
2 ident ˜ ":: (" ˜ boolExpr ˜ ") => (" ˜ stmtBlock ˜ ")"
3
4 def boolExpr: Parser[Any] =
5 boolRel ˜ opt("#/\\" ˜ boolRel)
6
7 def boolRel: Parser[Any] =
8 ident ˜ "#=" ˜ wholeNumber
9

10 def stmtBlock: Parser[Any] =
11 stmt ˜ repsep(stmt, ";")
12
13 def stmt:Parser[Any] =
14 ident ˜ ":=" ˜ wholeNumber

Listing 4.8: Scala code for parsing the EBNF described in Listing 4.7

The return types of the parser functions above is always Any. This omits a concrete type declartion
as the example illustrates only the lexical and syntactic analysis with Scala parser combinators. For the
translation process, an abstract syntax tree has to be created by the parser. The following section deals
with the topic of processing the return values to AST nodes.

4.2.2 Abstract Syntax Tree Node Generation

As mentioned before, the return values have to be processed to abstract syntax tree nodes. Listing 4.1
shows the Scala Parser class. The type of the parser defines exactly the type of the ParseResult object. So,
the return type of a constant string parser like shown in Listing 4.5 is a string, in fact the constant string
itself. The repsep combinator returns a list of the element’s type. The optional combinator opt returns
a parser of type Option with the inner type of the return type of the optional parser. With sequential
composition of parsers, this is more complex. Apart from the ∼ combinator, there exists also a type with
the same name which has to type parameters T and U 3. A parser formed by the sequential composition

3A syntactic sugar feature of Scala enables that types with two type parameters can be written also like infix left-associative
operator: ∼[T,U] becomes T ∼ U.



Chapter 4. Translating Action Systems to SMT-LIB 44

of parser with types A and B has the return type ∼[A, B], A ∼ B respectively. Listing 4.9 shows the
correct return types for two parser methods.

1 def action: Parser[Any] =
2 ident ˜ ":: (" ˜ boolExpr ˜ ") => (" ˜ stmtBlock ˜ ")"
3
4 def boolExpr: Parser[String ˜ String ˜ String ˜ Option[˜[String,String

˜ String ˜ String]]] =
5 boolRel ˜ opt("#/\\" ˜ boolRel)
6
7 def boolRel: Parser[String ˜ String ˜ String] =
8 ident ˜ "#=" ˜ wholeNumber
9

10 def stmtBlock: Parser[String ˜ String ˜ String ˜ List[String ˜ String ˜
String]] =

11 stmt ˜ repsep(stmt, ";")
12
13 def stmt: Parser[String ˜ String ˜ String] =
14 ident ˜ ":=" ˜ wholeNumber

Listing 4.9: Corrected return types (cmp. Listing 4.8; ignored action return type for
readability)

Additionally to the combinators mentioned in the previous section, there exist the two functions:

• P ˆˆ f applies at first the parser P on the input. If this is successful, the conversion function f will
be applied to the output of P . The input of f is the parser P (also if P is a combination of parsers).

• P ˆˆˆ f works the same as the first operation except of ignoring the output of P . This is necessary
when parsing constant values. So, f will always return a constant in this case if the input is
parseable by P .

When using these combinators, AST nodes can be constructed instead of obscure concatenation of
types. In the as2smt application, the nodes are declared as classes of type Translation (cmp. Section
3.3.3). Still, the conversion function has to handle a concatenation of types. For being able to distinguish
the structural part of the input, i.e. the individial parse results, a case expression is used. Besides for
pattern matching (cmp. Section 3.3.3), sequences of case expressions (wrapped in curly brackets) can
also be used as partial functions (cmp. [70, p.291]). Listing 4.10 shows the AST node generation through
conversion functions which are such case sequences.



Chapter 4. Translating Action Systems to SMT-LIB 45

1 def action: Parser[Action] =
2 ident ˜ ":: (" ˜ boolExpr ˜ ") => (" ˜ stmtBlock ˜ ")" ˆˆ {
3 case actionName ˜ _ ˜ guard ˜ _ ˜ stmtList ˜ _ => Action(actionName,

guard, stmtList)
4 }
5
6 def boolExpr: Parser[List[EEquals]] =
7 boolRel ˜ opt("#/\\" ˜ boolRel) ˆˆ {
8 case a ˜ None => a :: Nil
9 case a ˜ Some(_ ˜ b) => a :: b :: Nil

10 }
11
12 def boolRel: Parser[EEquals] = ident ˜ "#=" ˜ wholeNumber ˆˆ {
13 case a ˜ _ ˜ b => EEquals(EVar(a), EConst(b.toInt))
14 }
15
16 def stmtBlock: Parser[List[Assignment]] = stmt ˜ repsep(stmt, ";") ˆˆ {
17 case a ˜ b => a :: b
18 }
19
20 def stmt: Parser[Assignment] = ident ˜ ":=" ˜ wholeNumber ˆˆ {
21 case a ˜ _ ˜ b => Assignment(a, AEInteger(b.toInt))
22 }

Listing 4.10: Scala code for AST generation

4.2.3 Precedence of Operators

Figure 4.2: Incorrect (left) and correct (right) AST of the expression 1 + 2 ∗ 3− 4

When parsing arithmetic or boolean expressions, it has to be dealt with operator precedences. For
example, there is the expression 1 + 2 ∗ 3− 4. The mathematical rule multiplication and division before
addition and subtraction holds. Figure 4.2 presents an incorrect and the correct AST of this expression.
Actually, this problem is already solved in the EBNF by using the precedence climbing method [77].
There, every precedence level is declared as an own parsing rule.



Chapter 4. Translating Action Systems to SMT-LIB 46

1 expression : prec1-expression;
2
3 prec1-expression : prec2-expression (prec1-op prec1-expression)*
4
5 prec2-expression : element (prec2-op prec2-expression)*
6
7 element : ID | NUMBER

Listing 4.11: Precedence climbing method in EBNF

For the parser generator ANTLR, there exists an alternative solution. For Scala, Mcbeath suggests
in his blog a much cleaner solution [64]. It makes use of the star parser combinator and the fact that
combinator rules are functions which can also take input parameters. The star combinator combines an
element parser Pelement with a separator parser Psep. From the input consumption point of view, this
works exactly like the repsep parser combinator (cmp. 4.2.1). But the handling of the result objects is
different. Instead of ignoring the return value of the separator parser and putting all results of the element
parser into a list, the separator parser combines both sides to one result object. This is applied in a left
associative way.

For example, the expression 1 + 2 + 3 can be parsed by the code in Listing 4.12. In the as2smt
application, the Translation trait is also a base trait for all AST node types. When applying the example
input to the arithExpr function, the following steps will proceeed:

1. the arithFactor parser consumes 1 and outputs AEInteger(1),

2. the arithOp parser consumes +,

3. the arithFactor parser consumes 2 and outputs AEInteger(2),

4. the arithOp parser consumes +,

5. the arithFactor parser consumes 3 and outputs AEInteger(3),

6. the arithOp parser outputs Sum of output of step (1) and (3),

7. the arithOp parser outputs Sum of output of step (5) and (6).

1 def arithExpr : Parser[Translation] =
2 arithFactor * arithOp | arithFactor
3
4 def arithOp: Parser[(Translation, Translation) => Translation] =
5 "+" ˆˆˆ { (a: Translation, b: Translation) => Sum(a,b) }
6
7 def arithFactor: Parser[Translation] =
8 wholeNumber ˆˆ {case a => AEInteger(a)}

Listing 4.12: Example for star combinator usage

Listing 4.13 shows an extention of the example from Listing 4.12. The top level combinator is also
the arithExpr function (Line 4). It distinguishes between a simple arithmetic factor (Line 10) and an
arith expression (Line 6) where the precedence decision is encapsulated. Initially, the level is set to 1
(the minimum precedence level). Then, parser will behave as follows on the input 1 + 2 ∗ 3 − 4 (cmp
Figure 4.2).

1. At first, the precedence level is 1. So, the arithOp parser checks the input for plus or minus
operations. In case of the example, there is one plus and one minus operation. Due to the left-
associativity, the root node of the expression is the minus operation, having the plus operation as a
left child.



Chapter 4. Translating Action Systems to SMT-LIB 47

2. Then, the input is checked for operations of precedence level 2, so multiplication or division. In
the example, there is one occurrence of a multiplication. It is the element on the right hand side of
the plus operation. So, the multiplication becomes the right child of the plus AST node.

3. Afterwards, the level has increased to 3. The arith parser delegates to the arithExpr parser which
consumes the numbers.

The advantages in using this method over the precedence climbing method directly in EBNF are
extensibility and readability. It is easy to spot all precedences for one kind of expression. Adding
another precedence level or adding new operators to a precedence level is simple.

1 val minPrec = 1
2 val maxPrec = 2
3
4 def arithExpr: Parser[Translation] = (arith(minPrec) | arithFactor)
5
6 def arith(level: Int): Parser[Translation] =
7 if (level > maxPrec) arithFactor
8 else arith(level + 1) * arithOp(level)
9

10 def arithFactor: Parser[Translation] =
11 ident ˆˆ { case ident => AEVar(ident) } |
12 wholeNumber ˆˆ { case wholeNumber => AEInt(wholeNumber.toInt) }
13
14 def arithOp(level: Int): Parser[((Translation, Translation) =>

Translation)] = {
15 level match {
16 case 1 =>
17 PLUS ˆˆˆ { (a: Translation, b: Translation) => AEAdd(a, b) } |
18 MINUS ˆˆˆ { (a: Translation, b: Translation) => AESub(a, b) }
19 case 2 =>
20 TIMES ˆˆˆ { (a: Translation, b: Translation) => AEMul(a, b) } |
21 DIV ˆˆˆ { (a: Translation, b: Translation) => AEDiv(a, b) }
22 case _ => throw new RuntimeException("bad precedence level " +

level)
23 }
24 }

Listing 4.13: Precedence in Scala: arithmetic expressions

4.3 Translation from Action Systems to SMT-LIB

This section discusses the translation from Action Systems elements to the SMT-LIB input language.

4.3.1 Variable Declaration

Every Action System has state variables. These have to be declared in SMT-LIB, too. In the Action
System notation the needed information is spread among several lines of the file. Listing 4.14 shows
the definition of the state variable in Line 2. Line 10 indicates the bounds of the referenced int type.
With this combined information, the state variable can be defined in SMT-LIB. Listing 4.15 shows the
SMT-LIB code for the variable out. A declaration of a variable is achieved in SMT-LIB by declaring a
function with no parameters and with one return value. The boundaries of the type of the variable are
simply added by an additional assertion.



Chapter 4. Translating Action Systems to SMT-LIB 48

1 % definition of state space
2 var([out], int).
3
4 [...]
5
6 % action system
7 [...]
8
9 % types

10 type(int, X) :- X in 0..2, labeling([],[X]).

Listing 4.14: Example for a variable definition in Action System notation in Prolog

1 (declare-fun out () Int)
2 (assert
3 (and
4 (>= out 0)
5 (<= out 2)
6 )
7 )

Listing 4.15: Variable declaration in SMT-LIB

4.3.2 Assignment

In Definition 6 (Section 2.1.1), the predicative semantics of an assignment of a variable has been ex-
plained. It states that an assignment updates a local variable to a value. All other variables are left
unchanged. In SMT-LIB, there is no notion of assignment, only of equality. Translation of boolean
expressions can be mapped directly to SMT-LIB. But assignment has to be handled in a special way. An
example for an assignment in the Action System description in Prolog is shown in Figure 4.16.

1 a := a + b

Listing 4.16: Example for an assignment in Action System description in Prolog

1 (declare-fun a () Int)
2 (declare-fun b () Int)
3 (declare-fun a_post () Int)
4 (declare-fun b_post () Int)
5
6 (assert
7 (= a_post (+ a b))
8 (= b_post b)
9 )

Listing 4.17: Example for an assignment in SMT-LIB

By introducing intermediate variables for reassignments of variables, this semantical gap can be
closed. For every reassignment, there exists a new variable with the name of the original variable iden-
tifier suffixed with an underline character and a counting number. For the last assignment the variable
name consists of the original variable identifier suffixed with the string post. Listing 4.17 shows the
translation to SMT-LIB4. Any intermediate variable would follow the described naming scheme and

4For this example, the type boundary assertions (Lines 2-7 in Listing 4.15) have been omitted for brevity. Moreover, the



Chapter 4. Translating Action Systems to SMT-LIB 49

would also be declared like a post in the example. The post variable represents exactly the primed
variable declared in Section 2.1.1).

4.3.3 Do-od Block

The Do-od block is a continuous loop of a set of statements (cmp. Section 2.1.1). A simple call in the
Do-od block will be translated to an instance of the action. For example, an action with the name plustwo
consists of the content of Listing 4.17. Then, there will be just this line translated to SMT-LIB in place of
the Do-od block call. If there is a non-deterministic choice of calls in the Do-od block, these are handled
the same way it would be the case for normal statements. Sequential composition in the Do-od block
is not supported by the current version of the application but inside actions. The two operations will be
discussed in the following two sections.

4.3.4 Sequential Composition

Intuitively, sequential composition of statements should be translatable by simple conjunction. But Aich-
ernig and Jöbstl state in their paper [9] that the predicative semantics is defined differently. There exists
an intermediate state between both blocks. v0 marks the output of block one and the input for block two.

B1(v, v
′);B2(v, v

′) =df ∃(v0 : B1(v, v0) ∧B2(v0, v
′))

The problem with the intuitive way is that it maps the semantics correctly in the positive case but not in
the negative one. For example, let there be two assignments out := 1 and out := 2. The positive case:

out0 = 1 ∧ out1 = 2 6= ∃out0 : out0 = 1 ∧ out1 = 2

By negating the expressions above, the semantic difference is inherent (assuming the domain of the
variable out is N):

¬(out0 = 1 ∧ out1 = 2) 6= ¬(∃out0 : out0 = 1 ∧ out1 = 2)

(out0 6= 1 ∨ out1 6= 2) 6= (∀out0 : out0 6= 1 ∨ out1 6= 2)

(out0 6= 1 ∨ out1 6= 2) 6= (false ∨ out1 6= 2))

(out0 6= 1 ∨ out1 6= 2) 6= (out1 6= 2)

As out can be any decimal number, it also could be 1. Therefore, the first statement evaluates to false
in the correct translation. This can be shortened by simplifying the last statement. The difference can
now be easily seen, as the first (wrong) translation permits a second case which enables the expression to
evaluate to true. Because of the mutant gets translated in a negated way, the correct translation can only
be achieved with quantifiers. Aichernig and Jöbstl present this possible translation error among others
in [9]. Therefore, the usage of an existential quantifier in the SMT-LIB translation is obligatory. Listing
4.18 illustrates an example of the translation of the sequential composition of two statements: out := 1
and out := 2.

action/do-od block construct has been ignored as it will be explained in the next subsection.



Chapter 4. Translating Action Systems to SMT-LIB 50

1 (exists
2 ((out_1 Int))
3 (and
4 (= out_1 1)
5 (= out_2 2)
6 )

Listing 4.18: Example for an sequential composition in SMT-LIB

4.3.5 Non-Deterministic Choice

In case of the non-deterministic choice (NDC), the intuitive approach works correctly: both blocks are
connected by disjunction. The disjunction is not an exclusive but inclusive one. Hence, the operation
NDC enables one of two branches to be executed. If the choice would be an exclusive one, the semantics
of this construct would be changed: if an expression e consisting of an NDC between two instances of
a := 1, translation to an exclusive choice would lead constantly to an unsatisfiable expression.

In the rocket steering software example, there exists the action land (cmp. Listing 2.2, Lines 24-33).
It contains the non-deterministic choice expression presented in Listing 4.19. Listing 4.20 shows its
translation to SMT-LIB (omitting variable declartions).

1 % perfect landing
2 integrity := 0
3 ;
4 % damage on landing
5 integrity := 1

Listing 4.19: Example for a non-deterministic choice in Action System notation in Prolog

1 (or
2 (= integrity_1 0)
3 (= integrity_1 1)
4 )

Listing 4.20: Translation to SMT-LIB of Listing 4.19

4.3.6 Guarded Command

If a certain (guard) property has to hold for executing a block of statements, a guarded command is used.
It is called guard, because it controls the execution of its body. It resembles to an if expression in a
procedural programming language. Hence, the guard consists of a Boolean expression. Only when the
guard gives his confirmation (i.e. is satisfiable), the guarded block can be applied. Logically speaking,
this results in a connection by a conjunction. As actions are in fact named guarded commands, the
translation is performed in the same way. When an action is called, its guard and its body have to hold.



Chapter 4. Translating Action Systems to SMT-LIB 51

1 ’repair’ :: (engine #= 0 #/\ integrity #= 1) => (
2 % repair successful
3 integrity := 0
4 ;
5 % repair fails
6 integrity := 1
7 )

Listing 4.21: Translation of an assignment with a guarded command

Listing 4.21 shows an example of a guarded command in form of the action repair from the rocket
steering software example (cmp. Listing 2.2). Listing 4.22 shows its translation to SMT-LIB code
consisting of

• the guard (Lines 2-6),

• the action body being a non-deterministic choice (Lines 7-11), and

• the trace (Lines 12-13; will be explained in the next subsection).

1 (and
2 ; guard
3 (and
4 (= engine 0)
5 (= integrity 1)
6 )
7 ; action body
8 (or
9 (= integrity_post 0)

10 (= integrity_post 1)
11 )
12 ; trace
13 (= trace 4)
14 )

Listing 4.22: Translation of an action

4.3.7 Trace

In an Action System, multiple actions can be defined. The information, which action has been executed
(has evaluated to true respectively), has to be recorded. There is a certain order in the definition of the
actions. This order is used as an index for every action to identify it by a number. This index has to be
used instead of the actual, textual identifier due to the fact that textual values are not possible in SMT-
LIB. This index starts at zero. Each action body is wrapped by a conjunction with the assignment of this
identifier to a so called trace variable. Listing 4.22 illustrates the translation of the repair action (cmp.
Listing 2.2) to SMT-LIB code including the trace information (Line 13). The trace value 4 indicates that
the action land (being the fourth declared action) has been called.

4.3.8 Parameters

Each action may have one or more parameters. In the do-od block these parameter can be set for every
action call. The arity of the call and the action itself have to match up like in a standard function call.
In case of the as2smt implementation just two kinds of parameters are allowed: numeric values and
parameter variables. Numeric values are simply constants. Parameter variables can be interpreted by



Chapter 4. Translating Action Systems to SMT-LIB 52

setting a range of possible values for a parameter. In the do-od section such a variable can be declared.
This declaration includes a specific type. Types in an Action System are defined by a minimum and a
maximum integer value. Listing 4.23 illustrates an example.

1 % [...]
2
3 % ACTIONS
4 actions (
5 action1(A,B) => % [...]
6 ),
7
8 % do-od
9 dood (

10 [D:int]:action1(1,D)
11 )
12
13 % [...]
14
15 type(int, X) :- X in 0..2, labeling([],[X]).

Listing 4.23: Example: Action System with one action call with two parameters: one
numerical (1) and one parameter variable (D)

Additionally to the information of the action identifier, parameter values have to be stored in separate
variables. For each parameter, there is an additional trace variable. Hence, per Action System the highest
arity defines the number of needed parameter trace variables. Listing 4.24 shows the translation of Listing
4.23 to SMT-LIB. The naming convention for such variables is trace plus underline plus parameter index
(starting at zero).

1 ; [...]
2
3 (declare-fun D () Int)
4 (assert (and
5 (>= D 0)
6 (<= D 2)
7 ))
8
9 (assert

10 (and
11 ; [...]
12 (= trace 0)
13 (= trace_0 1)
14 (= trace_1 D)
15 )
16 )

Listing 4.24: Example: Assignment of parameter trace variables

4.4 Improving Performance

When applying the translation rules listed in the previous section, the Action System can be properly
translated and solved by the used SMT solver. When discovering the time difference between Action
Systems with and without sequential composition (cmp. Section 6.3.1), one can assume that the used
existential quantifier in the sequential composition translation (cmp. Section 4.3.4) is the reason for this.
In fact, at the time this thesis was written, just two SMT solvers supported quantifiers at all. Actually,



Chapter 4. Translating Action Systems to SMT-LIB 53

when negating the mutant Action System, the existential quantifier becomes a universal quantifier. This
quantification has been identified to be crucial with respect to performance.

This section presents an alternative way to the previously described translation from Action Systems
to SMT-LIB code. This improved method makes use of a propositional logic rule called one-point rule.
Its application in the context of this thesis represents actually symbolic execution.

4.4.1 Quantifier Elimination with the One-Point Rule

Propositional logic offers a conversion rule for expressions containing existential quantifiers. By apply-
ing the one-point rule (OPR), these quantifiers can be eliminated. It is defined as shown in Definition
11.

Definition 11. One-Point rule

∃x : x = e ∧ P (x) ⇐⇒ P (e)

The one-point rule states that if and only if a variable x is bound to a fixed value e, i.e. the expression
e does not contain any bound variable, it is possible to substitute x by e and eliminate the existential
quantification.

Aichernig and Jöbstl apply this quantifier elimination in [7]. Furthermore, they state that this logical
rule application is only possible if and only if the value e is determinstic. If e contains a non-deterministic
choice operation, the one-point rule can not be used as e would then be not fixed. Applying the one-point
rule to the sequential composition of the assignments x := e1 and x := x + e2 (where e1 and e2 do not
contain references to bound variables) results in the following:

∃x1 : (x1 = e1 ∧ x2 = x1 + e2)
opr⇐⇒ x2 = e1 + e2 ∧ xpost = e1 + e2

In the second term, x1 was substituted by its assigned value e1. As the expression e1 + e2 does
not contain any bound variables, assigning symbolic values is also possible. We relabel x2 to xpost to
show that this variable assignment is part of the post state of the Action System. By keeping track of the
current value not in the formula but in a symbol table, we can reduce this to the following:

xpost = e1 + e2

This replacement of variables by their symbolic values represents the symbolic execution of the expres-
sion (in Prolog Action System notation) x := e1, x := x + e2.

By applying the quantifier elimination as shown in Definition 11, any variable occurrences in any
expression e can be replaced by their symbolic values. So, e becomes a fixed value. For keeping track
of such values, there has to be some kind of symbol table just like for compilers but for symbolic values.
By the time an assignment is executed, the variables possibly bound in e can be replaced by their current
symbolic values for being able to eliminate the existential quantifer. This kind of execution is called
Symbolic Execution.

4.4.2 Introducing Symbolic Execution

Back in 1969, Balzer [20] performed a similar technique to the previously presented one in his Extend-
able Debugging and Monitoring System (EXDAMS). King formalised Symbolic Execution [56] in 1974.
Further research has been performed by King [57], Boyer et al. [27] and Clarke [35]. King suggests that
symbolic execution performs the same way as traditional execution in trivial cases involving no symbols
[56]. The behaviour changes only when symbols are encountered in the following two cases:



Chapter 4. Translating Action Systems to SMT-LIB 54

• Computation of Expressions: the value that a symbol has to be assigned to, contains a symbol
itself. Instead of assigning a concrete value to the symbol, the symbolic expression is saved in
the symbol table. If an expression is dependent on an input variable (parameter), the evaluation is
delayed. Conside the assignment A := P + e where e does not contain any bound variables. P
represents an input value (P for parameter), so it will not have a concrete value until it is executed
for real (not symbolically). But the symbol A gets assigned the symbolic value P + e. The next
time an expression containing A is encountered, it will be substituted by the symbolic value P +e.

• Conditional Branching: the execution path comes across a conditional branching operation. Con-
sidering a typical conditional program statement: IF B THEN S1 ELSE S2. The condition B
determines if the left code block S1 or the right code block S2 is executed. It is not deterministic
which branch will be executed. The execution path splits into two at this point. One path fulfills
B, the other one fulfills ¬B. B ∨ ¬B represent the so called path conditions [56].

1 if (x > 0 && y > 0 && z > 0){ // pc -> x > 0, y > 0, z > 0
2 x = y * z; // x -> y * z
3 y = z - x; // y -> z - y * z
4 z = x + y; // z -> y * z + (z - y * z)
5 }

Listing 4.25: Example for symbolic execution

For illustrating symbolic execution, let there be the example shown in Listing 4.25. This Java code
snippet consists of an if expression and three assignment statements. When executing this code sym-
bolically, the following values get updated in the symbol table. At first, the path condition is set to
x > 0 ∧ y > 0 ∧ z > 0 (Line 1). At this point, branching occurs. For this example, we consider only
the if branch as the else branch does not update the variables. The first statement (Line 2) updates the
variable x to the symbolic value y × z. Then, variable y gets assigned to z − x. As, there is already a
symbolic value set to x, its occurrence has to be replaced with it. Therefore, the symbolic value of y is
z − y × z. Finally, the last statement gives z the symbolic value y × z + (z − y × z) by replacing x and
y in the expression x + y (Line 4).

Instead of executing the statements sequentially, symbolic execution outputs symbolic expressions
per variable which depend only on the input paramters. In this way, a code snippet like shown in Listing
4.25 becomes a mapping of initial values to primed values.

4.4.3 Data Structures for Symbolic Execution

With respect to the translation of Action Systems, the compiler - becoming partly a symbolic execution
environment - has to adjust its behaviour for the following kinds of operations:

• Assignment

• Guarded Command

• Sequential Composition

• Non-Deterministic Choice

The do-od block, trace variables and parameters will still be translated the same way as before. For
being able to perform symbolic execution, two data structures are needed: the abstract syntax tree (AST)
of the expression and a symbol table. ASTs of expressions have already been used for the translation
shown in Section 4.3. The symbol table keeps track of the symbolic values assigned to the variables.

As mentioned, only some parts of the Action System translation are executed symbolically. In fact,
only the bodies of the actions called in the do-od block are translated in this way. A single action body
may contain one of the following nodes:



Chapter 4. Translating Action Systems to SMT-LIB 55

• An assignment node (ASS) assigns a value to a variable. This value is an arithmetic expres-
sion (cmp. Section 3.3.3). According to its definition, it might also contain references to bound
variables.

• A sequential composition (SEQ) composes two of the AST node types mentioned in this list
sequentially.

• A non-deterministic choice (NDC) states that one of two AST nodes (also type from this list) is
executed. This is decided in a non-deterministic way.

• A guarded command (GC) consists of a guard (GD) and a body (BDY). The guard is a constraint
in form of a Boolean expression (cmp. Section 3.3.3). The body is an AST node of any type. This
AST node just gets executed if the constraint is fulfilled.

The symbol table consists of the following data structures (cmp. Section 3.3.3):

• A symbol map contains the name of a variable and its corresponding value. This value is a
symbolic value in form of an abstract syntax tree of an expression.

• A list of guard constraints keeps track of all guard constraints found on an execution path. By
the conjunction of the elements of this list, the so called path condition is formed.

4.4.4 Symbolic Execution Without Branching

At first, we consider only symbolic execution without branching. This subsection shows the symbolic
execution of action bodies without non-deterministic choice. No branching means that there exists only
one execution path. Figure 4.3 visualises that there is vector of state variables with their initial (symbolic)
values v and the same vector with possibly different values v′ after the symbolic execution of sequential
compositions of assignments and guarded commands.

Figure 4.3: Vector v holds all symbolic values of the state variables s1 to sn. After executing an
action body which does not contain any non-deterministic choice, there is one new
vector v′.

For translation to SMT-LIB code, this means that all primed (_post suffixed) variables are equal
to their symbolic values. When interpreting the code snippet from Listing 4.25 as an Action System
(in a Java notation), there exists one action with its body consisting of a guarded commands and three
sequentially composed assignments. Listing 4.26 shows the SMT-LIB code translation consisting of the
path condition and the path assignments.



Chapter 4. Translating Action Systems to SMT-LIB 56

1 (and
2 ; path condition
3 (and
4 (> x 0)
5 (> y 0)
6 (> z 0)
7 )
8 ; path assignments
9 (and

10 (= x_post
11 (* x y)
12 )
13 (= y_post
14 (- z (* y z))
15 )
16 (= z_post
17 (+ (* y z) (- z (* y z)))
18 )
19 )
20 )

Listing 4.26: Translation of result of symbolic execution

Symbolic Execution of Assignments & Sequential Composition

The elementary object of an action body is the assignment. Algorithm 1 illustrates the symbolic execution
of an assignment implemented in the as2smt application. At first, the current symbolic value for the
symbol that should be assigned to a new value is retrieved (Line 2). Then, the one-point rule is applied to
the new value (Line 3) and the symbol table is updated (Line 4). Sequential composition of assignments
in an Action System is in fact the sequential symbolic execution. So, it is just the repeated call to
Algorithm 1 with the current symbol table. Algorithm 2 illustrates this.

Algorithm 1 Symbolic execution of an assignment
Input: symbol table st, AST node of an assignment ass with a left hand side (variable name, lhs) and

a right hand side (symbolic value, rhs)
Output: updated version of symbol table st

1: function SYMBOLICEXECUTE(ass, st)
2: oldV alue := st .getValueOfSymbol(ass.lhs)
3: newV alue := replaceAllV ariables(ass.rhs, st)
4: st.setV alue(ast.variable, newV alue)
5: return st
6: end function

Algorithm 2 Symbolic execution of a sequential composition
Input: symbol table st, AST node of a sequential composition sc with a first and a second AST node
Output: updated version of symbol table st

1: function SYMBOLICEXECUTE(ass, st)
2: newSt := symbolicExecute(sc.first, st)
3: return symbolicExecute(sc.second, newSt)
4: end function



Chapter 4. Translating Action Systems to SMT-LIB 57

Symbolic Execution of Guarded Commands

There is also just one possible execution path if we take an action body which contains guarded com-
mands but no non-deterministic choices. Algorithm 3 presents the steps that are taken to execute a
guarded command symbolically: at first, the guard is freed from any variable occurrences (Line 2; ex-
cept of parameters - cmp. Section 4.4.2). Then, the guard condition is added to the path condition (Line
3). Finally, the execution continues with the body of the guarded command (Line 4) where its resulting
symbol table is returned.

Algorithm 3 Symbolic execution of a guarded command
Input: symbol table st, AST node of the guarded command gc consisting of a guard and a body
Output: updated symbol table st

1: function SYMBOLICEXECUTE(gc, st)
2: newGuard := replaceAllVariables(gc.guard, st)
3: st.addToPathCondition(newGuard)
4: return symbolicExecute(gc.body, st)
5: end function

If there are multiple assignments and guarded commands connected by sequential composition, these
are executed in the depth-first search order. Let there be the following action body as an example:

((a #>= 1) => (x := 1)) ,
(b #>= 1) => ((x := x + 2) ,
(x := x - a - b))

Additionally, let a have the initial value 1 and b be a parameter value. Figure 4.4 illustrates the
AST of this expression, and enumerates the nodes by their execution order. By the end of the symbolic
execution the data structures contain the following data:

• Symbolic values:

a→ 1

b→ same value as before execution (parameter value)
x→ 1 + 2 - 1 - b

• Path condition: 1 >= 1 ∧ b >= 1

4.4.5 Symbolic Execution with Branching

As seen in the previous section, the one-point rule can be applied easily when there is no non-deterministic
choice in an action body. When there exists one, the symbolic value in the symbol table is ambiguous.
For example, the expression (x := 1 ; x := 2), y := 1 + x contains two execution paths.
In the first one, the symbolic value 1 is assigned x and therefore y has the symbolic value 1 + 1. In the
second case, the symbolic values are 2 for x and 1 + 2 for y. Each occurring non-deterministic choice
results in a forking of the execution. So, if there exist n NDC nodes in one expression, there exist n + 1
execution paths. Every execution path results in one state vector v′i (cmp. Figure 4.5). This motivated a
normalisation of the abstract syntax tree before applying symbolic execution. This normalisation assures
that the outermost operation is the non-deterministic choice between execution paths. Each path can then
be symbolically executed as described in Section 4.4.4.



Chapter 4. Translating Action Systems to SMT-LIB 58

Figure 4.4: Symbolic execution: example for execution order of AST

Figure 4.5: Vector v contains all state variable values (cmp. Figure 4.3). Executing an action body
containing n non-deterministic choices results in n vectors v′i.

Normalisation of the Abstract Syntax Tree

As mentioned in Section 4.4.1, the quantified expression has be deterministic to apply the one-point rule.
Hence, the term has to be transformed to have non-deterministic choice as the outermost operation. In
fact, this transformation represents the application of the distributive law in Boolean logic. So, the result-
ing normalised form equals a disjunctive normal form (DNF). Algorithm 4 describes this normalisation
of the AST. As input, the mentioned AST of one action body is taken. The function normaliseAst re-
turns a list of possible execution paths. It is called recursively. The returned list represents the different
execution possibilities. The algorithm deals with four cases:

• Assignment: the AST node parameter’s type (currentAstNode) is an assignment (Lines 2 & 3).
It returns the node as a single element of a list.

• Guarded Command: the AST node parameter’s type is a guarded command (Lines 4 - 10). The
function is invoked recursively on the body of the guarded command. Consecutively, the returned
list of execution paths is looped to prepend the original guard to each element. Finally, this list of
modified elements is returned and the algorithm terminates.

• Sequential composition: the AST node parameter’s type is a sequential composition (Lines 11
- 20). In this case, we have to call the function recursively twice: once on the left part of the
sequential composition and once on the right part. These calls return two lists with execution



Chapter 4. Translating Action Systems to SMT-LIB 59

Algorithm 4 AST normalisation algorithm
Input: an AST node currentAstNode
Output: a normalised AST node

1: function NORMALISEAST(currentAstNode)
2: if typeof (currentAstNode) = Assignment(variable, value) then
3: return [currentAstNode]
4: else if typeof (currentAstNode) = GuardedCommand(guard, body) then
5: astList := []
6: bodyAstList := normaliseAst(currentAstNode.body)
7: for all ast ∈ bodyAstList do
8: astList.enqueue(GuardedCommand(currentAstNode.guard, ast))
9: end for

10: return astList
11: else if typeof (currentAstNode) = SequentialComposition(left , right) then
12: leftAstList = normaliseAst(currentAstNode.left)
13: rightAstList = normaliseAst(currentAstNode.right)
14: astList := []
15: for all l ∈ leftAstList do
16: for all r ∈ rightAstList do
17: astList.enqueue(SequentialComposition(l, r))
18: end for
19: end for
20: return astList
21: else if typeof (currentAstNode) = NonDeterministicChoice(choice1, choice2) then
22: return [normaliseAst(choice1), normaliseAst(choice2)]
23: end if
24: end function

possibilities. Every element of the first (left) list and every element of the second (right) list are
composed sequentially. Finally the function returns this list of sequential compositions.

• Non-deterministic choice: the AST node parameter’s type is a non-deterministic choice (Lines
21 - 22). First, the function is called recursively with the left choice AST as a parameter. Then,
the right choice is handled in the same way. The return values of both calls are composed to a list
which is returned as a final result of the algorithm.

A normalised AST represents a set of possible execution paths per action. There is no more branch-
ing on a path. One execution path still consists of sequentially composed assignments and guarded
commands. Figure 4.6 shows two abstract syntax trees of one action body. The left tree is an example
for a not normalised abstract syntax tree, because it contains non-deterministic choice nodes (NDC) not
positioned at the root. The right tree shows the normalised representation of the left AST. All of the
three paths (separated by dashed lines) just contain guarded commands (GC - splits into body (BDY) and
guard (GD)), sequential composition (SEQ) and assignments (ASS).

Translation of an Execution Path

As each execution path has no data dependency on any other execution path, multiple paths are simply
combined by a disjunction of their translations. As mentioned in the beginning of this section, the do-od
block, the parameters and the trace variables are still handled the same way as in Section 4.3.

With the presented translation in this section, the performance of the execution has been improved
drastically (cmp. Section 6.3.1). So, the translation of the defined subset (cmp. Appendix A) of the Ac-



Chapter 4. Translating Action Systems to SMT-LIB 60

Figure 4.6: Original (left) and normalised (right) AST

Algorithm 5 Translation of execution paths to SMT-LIB (String representation)
Input: list of execution paths executionPathList
Output: translation of execution paths

1: function TRANSLATEPATHS(executionPathList)
2: resultList := []
3: for all path ∈ executionPathList do
4: st := symbolicExecute(path, ())
5: pathAssignments := []
6: for all (variableName) ∈ st.symbolMap do
7: variableV alue := st .getValueOfSymbol(variableName)
8: assignInSmtLib := translateToSmtLib(variableName, variableV alue)
9: pathAssignments.enqueue(assignInSmtLib)

10: end for
11: pathCondition := translateToSmtLib(st.getGuardList())
12: pathTrans := translateToSmtLibConjunction(pathAssignments)
13: resultTrans := translateToSmtLibConjunction(pathTrans, pathCondition))
14: resultList.enqueue(resultTrans)
15: end for
16: return translateToSmtLibDisjunction(resultList)
17: end function

tion System Prolog notation language to SMT-LIB is complete. Further work may involve the translation
of features of the input language to SMT-LIB.



5 Refinement and Reachability

The previous chapter described the translation of Action Systems (notated in Prolog) to the SMT-LIB
input language. This chapter discusses how the as2smt application uses this translation to generate coun-
terexamples from which test cases can be created. It presents the steps Refinement Check and Reach-
ability Check of the as2smt application (cmp. Figure 3.1). In Section 2.1.2, non-refinement of Action
Systems has been discussed. It states that an Action System ASm does not refine an Action System ASo

if and only if the following properties hold:

• there exists an unsafe state in the mutant ASm which is not allowed by the specification ASo.

• this unsafe state is reachable from the initial state defined in the specification ASo.

These two properties for non-refinement of Action Systems are computed consecutively. Aichernig
and Jöbstl perform the same approach in their as2csp implementation [8]. In fact, the problem their
tool confronts is the same as this thesis: finding unsafe states by checking non-refinement of two Action
Systems.

This chapter is divided into two sections: the first section describes how refinement of two Action
Systems is computed. It ignores reachability completely as this will be discussed separately in the second
section. In this consecutive section, different strategies for computing reachability check are presented.

5.1 Refinement Check

In this section, the refinement check of two Action Systems - a specification and a mutant - is discussed.
At first, the notion of the non-refinement formula is introduced. Furthermore, its resolution by an SMT
solver is explained. Then, an efficient way of checking refinement of two Action Systems is discussed.

5.1.1 Non-Refinement Formula

1 ; [... variable definitions ...]
2
3 ; negated specification
4 (assert
5 (not
6 ; [... specification action calls ...]
7 )
8 )
9
10 ; mutant
11 (assert
12 ; [... mutant action calls ...]
13 )

Listing 5.1: Non-refinement formula: negated specification and positive mutant

The non-refinement formula combines the translations of the specification and the mutated Action
System. In Section 2.1.2, Theorem 1 defined non-refinement of Action Systems. Ignoring the reachable
term (as this will be discussed in the next section), non-refinement of Action Systems is given when at
least one action Am

i of the mutant ASm and the negation of all actions1 of the specification ASo have
1As every action is distinct, it is sufficient that the non-refinement formula cosists of the mutated action and its specification

counterpart - not all actions. Neverthesless, this translation has been chosen for this thesis. An important feature of the
implemented tool relies on it - incremental solving (cmp. Section 5.3.2).

61



Chapter 5. Refinement and Reachability 62

to hold for a state v. In SMT-LIB, it is rendered as shown in Listing 5.1. There are two consecutive
assertions: one for the negated specification and one for the mutant. If these two assertions are both
satisfiable2, the SMT solver has found at least one valuation for all state variables and the trace variables.
In this thesis, the combination of initial (unprimed) and post (primed) values of the state variables and
the trace information (cmp. Section 4.3.7) is called a model3. Such a model is represented in the as2smt
application by the class ActionSystemModel (cmp. Section 3.3.5). Figure 5.1 presents a graphical nota-
tion for the terms state, trace and model. A trace can either show a single transition like presented in the
Figure (trace length is one). Or, it may cover multiple transitions (trace length greater than one). This
notation will be used in further illustrations.

Figure 5.1: Graphical notation of state (left), trace (middle, trace length in parenthesis) and model
(right)

As an example for non-refinement, Listing 5.2 shows an Action System with two state variables x
and y. Assume their possible values are just zero and one. By changing the less operator < in Line 3
to the less or equal operator <=, a mutated Action System is defined. By translating those two Action
Systems and combining them (as shown in Listing 5.1), a non-refinement SMT-LIB formula is created.
With the two possible values - zero and one - for x and y, there are just four possible combinations which
can serve as initial values. When choosing x = 1 and y = 1 the specification part of the non-refinement
formula becomes unsatisfiable, i.e. it’s negation is satisfiable.

1 actions (
2 event1::(y < 1) => (x := 1)
3 event2::(x < 1) => (y := 1) /* event2::(x <= 1) => (y := 1) */
4 ),
5
6 dood (
7 event1
8 ;
9 event2
10 )

Listing 5.2: Example for an Action System

In Figure 5.2, the models for the example are shown in the previously described graphical notation
(cmp. Figure 5.1). The refinement group models hold for the specification and the mutant. The model
shown in the non-refinement group holds for the mutant but not for the specification. This is exactly the
constraint that the non-refinement formula has to fulfil.

As stated in Section 3.2, the as2smt tool takes one specification and multiple mutants as input. For
each combination of a specification and a mutant, there is one non-refinement formula. The translation
process described in the previous chapter also takes care of the difference between the two kinds of
Action Systems. The specification has to be translated first and includes the variable definitions. Then,
the mutant is translated but without any variable definitions. This is important to note because this marks
a limitation of the tool. There must not exist any mutations concerning the state variables apart from
their valuation. For state variable definitions, neither changes of their set, nor changes to their names are

2In an SMT-LIB script, every declared assertion has to be satisfiable to come to a satisfiable conclusion.
3This name has been chosen in accordance to SMT-LIB[24]. There, the option :produce-models has to be set for retrieving

an valuation for all variables in case of SAT.



Chapter 5. Refinement and Reachability 63

Figure 5.2: State variables: transitions from initial to post values, one counterexample to refine-
ment at the bottom.

possible to detect with the presented tool. Further limitations have been listed in Section 3.5.

When creating the non-refinement formula, it is not necessary to translate the whole mutant, but
just the mutated action. This has been shown by the disjunction in Theorem 1. Therefore, the mutated
action has to be identified. The following two sections will present different approaches to achieve this
identification.

5.1.2 Evaluating the Non-Refinement Formula

The first identification of the mutated action method works with the non-refinement formula. After
parsing, the data structure ActionSystem (cmp. Figure 3.3) will contain - among others - a list of all
action calls. Algorithm 6 shows the pseudo code of the implemented procedure to find the mutated
action with the aid of the solver. It takes the original and the mutated Action Systems as inputs. At first,
the specification is translated into SMT-LIB in a negated way (TranslationType is NegatedSpecification;
Line 2). Then, the algorithm steps through the list of all calls in the do-od block (Line 3). These are joined
by a non-deterministic choice (cmp. Section 2.1.1). Just the names have to be extracted, as they represent
the references to the actions. Subsequently, a new Action System is constructed which equals the mutant
(search depth, variable, type and action definitions) but with a different do-od block. It consists only
of a single call to the action to be tested (parameter call; Line 4). The next step translates this Action
System to SMT-LIB (Line 5). By the conjunction of this translation with the negated specification, the
non-refinement formula is constructed (cmp. Figure 5.1.1). This serves as input to the SMT solver. The
solver may then output three possible values:

• SAT: Satisfiable indicates that there is a semantic difference between the mutated action and the
according original action. The algorithm returns the mutated action name (Line 9).

• UNSAT: Unsatisfiable provides the information that this action of the mutant refines the action of
the specification. The next action call has to be checked (Line 11). If the SMT solver outputs this
result for all calls, the whole mutant refines the specification (Line 16).

• UNKNOWN: Unknown denotes that the SMT solver is not capable of deciding between the two
previous results. In this case, the used SMT solver does not suffice to decide on this refinement
problem (Line 13).



Chapter 5. Refinement and Reachability 64

Algorithm 6 Find mutated action
Input: two Action Systems, the original s and a mutant m
Output: the identifier of the mutated action

1: function FINDMUTATEDACTION

2: negSpecTrans := ActionSystemTranslator .translate(s,TType.NegatedSpecification)
3: for all call ∈ m.calls do
4: singleCallAS := ActionSystem(m.sDepth,m.varDefs,m.actions, call ,m.typeDefs)
5: singleCallTrans := ActionSystemTranslator .translate(singleCallAS ,TType.Mutant)
6: nonRefinementFormula := negSpecTrans ∧ singleCallTrans
7: result := SMTSolver .solve(nonRefinementFormula)
8: if result = SAT then
9: return call .actionName

10: else if result = UNSAT then
11: continue
12: else
13: throw SMTReturnedUnkownException
14: end if
15: end for
16: return null
17: end function

If a mutant contained multiple mutations, this algorithm should not stop after finding the first mutated
action. At the current stage of the tool, higher-order mutants are not supported (cmp. Section 3.5).

1 % actions
2 actions (
3 engage :: (integrity = 0 ∧ engine = 1 ∧ x = 0 ∧ y = 0) => (
4 state := 1,
5 engine := 1,
6 x := 1,
7 y := 1
8 ),
9 % [... all other actions from specification...]

10 )

Listing 5.3: Rocket steering software mutant

Previously, an Action System was defined that models a rocket steering software. Listing 2.2 shows
its action definitions (cmp. state graph in Figure 1.2). Let there be a mutant which injects a fault into the
engage action as presented in Listing 5.3. The guard condition checks if engine is turned on instead
of turned off. At first, the Action System is translated to SMT-LIB code as described in the previous
chapter (Algorithm 6, Line 2). For the translation type is set to NegatedSpecification, the translation will
be wrapped by a negated assertion (cmp. Listing 5.1, Lines 4 - 8). As the do-od block of the mutant is
unchanged, all calls stay the same as in the specification. In fact, the action call to engage is the first
one listed. So, it is also the first iteration of the for each loop (Lines 3 - 15). A new Action System is
created as a clone of the clone but just consisting of the call to engage in the do-od block. Then, this
Action System is translated to SMT-LIB in a positive way (cmp. Listing 5.1, Lines 11 - 13). In fact, the
String concatenation of the negated specification translation with this translation is a conjunction of both
terms. Technically speaking, both assertions are put on the assertion stack before asking the SMT solver
to look for a possible valuation of the declared variables. Finally, the solver outputs SAT and returns
a valuation for all state variables and trace variable. The latter evaluates to 1 identifying the mutated
engage action (cmp. Section 4.3.7).



Chapter 5. Refinement and Reachability 65

Algorithm 7 Syntactic equality check
Input: two Action Systems, the original s and a mutant m
Output: the identifier of the mutated action or None

1: function CHECKSYNTACTICALEQUALITY

2: if s.actions.size = m.actions.size then
3: callListSpec := s.getCallList()
4: callListMutant := m.getCallList()
5: callCheckResult := checkCallListEquality(callListSpec, callListMutant)
6: if callCheckResult = Some(x ) then
7: return callCheckResult
8: else
9: actionCheckResult := checkActionListEquality(s.actions,m.actions)

10: if actionCheckResult = Some(x ) then
11: return callListMutant .findCallofAction(callListMutant)
12: else
13: return None
14: end if
15: end if
16: end if
17: throw UnsupportedMutationException
18: end function

5.1.3 Comparing Action Systems Syntactically

Aichernig and Jöbstl [7] presented an improvement for their tool which has been implemented by the
as2smt application as well: using a syntactic check for finding the mutated action. As we only consider
first-order mutants, there exists just one mutated action. In the example before, the mutated action was
the first called action. In this way, the algorithm loops just for one iteration. If a non-mutated action is the
first element in this list of calls, looping continues. Literally speaking, a non-mutated action means no
changes at all have been performed in comparison to the original action. So, translating a non-refinement
formula consisting of the specification action Ao

i and the non-mutated action Am
i to SMT-LIB, an SMT

solver is asked to find a model for the expression Am
i ∨¬Ao

i . As Am
i and Ao

i are equal, this contradiction
can not be fulfilled by any valuation, the SMT solver returns unsatisfiable (UNSAT).

In addition to this, a real-mutated action has to differ syntactically to the specification. Nevertheless,
it may also be an equivalent mutant which differs in syntax but not in semantics (cmp. Listing 1.2 and
1.3). Still, the information of the mutated action name can be retrieved by a syntactical analysis.

After parsing the specification and the mutant, two abstract syntax trees are available (cmp. Section
3.3.3). These two objects are compared syntactically. With Scala, this was relatively easy to implement.
When comparing non-primitive data types, Java will check referential equality. This means that both
variables have to point to the same value on the JVM stack. In contrast to that, Scala checks equality by
comparing all fields of the objects. In Scala, there exist no primitive data types like in Java. So, every
value is an object.

In the as2smt application, the SyntacticEqualityChecker is responsible to evaluate which action or
call differs between two Action Systems (cmp. Section 3.3.3). Algorithm 7 illustrates how this problem
has been solved. One Scala feature is used here which has not been discussed yet. In Java, the value null
indicates a missing pointer - a null pointer respectively. If a variable is allowed to be null, it has to be
checked every time before its usage. This violates the principle of pure object orientation (cmp. Section
3.1.2). For this purpose, the Option type exists (cmp. [70], page 288ff). It may have one of two different
values:

• None is used instead of a null value.



Chapter 5. Refinement and Reachability 66

• Some contains a value of a variable which could have been nullable.

The function described in Algorithm 7 has the return value Option[Call]. So, there might be some
Call value returned, there might be none (this is what an Option object in Scala represents). At first, it
is checked, whether the two Action Systems contain the same amount of actions (Line 2). If this is not
the case, an unsupported mutation is detected (Line 17, cmp. Section 3.5). Furthermore, the call lists are
extracted and checked for containing the same elements (Lines 3-5). With this check, mutations of the
parameters in action calls can be detected (Lines 6 & 7). If no mutation was found yet, the algorithm
proceeds by checking each action (Line 9). Again, if a syntactic difference is found, the identifier of the
called action is returned (Line 11). Otherwise, the algorithm concludes that the present Action Systems
are syntactically equal which implies their semantic equality (and so their conformance).

A mutant and its original may differ syntactically but may have the same semantic meaning. This is
the limitation of the syntactic analysis. Therefore, the found, possible non-refinement formula has to be
checked once by the SMT solver. If the solver determines that the formula is unsatisfiable, the Action
Systems are semantically equal.

An alternative to both presented algorithms would be to simply input the mutated action name as a
parameter. At the time of mutant creation, this is a known information. If its forwarding is ensured (for
example by some marking or similar), the effort of finding the mutated action can be omitted.

5.2 Reachability Analysis

In the previous section, the algorithms of determining the non-refinement formula (including all actions
of the specification and the mutated action) has been presented. This section deals with the reachability
analysis of possible unsafe states. It presents four different ways of its computation.

5.2.1 Initial Strategy

The initial strategy lists all models which fulfill the non-refinement formula. Algorithm 8 describes how
to collect these models. The function takes two parameters: the non-refinement formula and the list of
already found models. Initially, the list of found models is set to the empty list. The first step in the
function is to execute the SMT solver with the non-refinement formula (Line 2). This will return a model
if the formula has been satisfiable (Line 3). Otherwise, all models that fulfill the formula have been found
(Line 9). Furthermore, the new model is appended to the found models list (Line 4). Additionally, it is
translated to SMT-LIB in a negated way (Line 5). Then, this translation is conjuncted with the current
formula (Line 6). Similarly to the back jump clause of the DPLL algorithm (cmp. Section 2.2), this term
assures that the solver does not output the same state once again.

Listing 5.4 gives an example for back jump clause in SMT-LIB. The model notation of this example
is exactly the one shown in Figure 5.1. In addition to the two assertions from the non-refinement formula
(cmp. Listing 5.1.1), a third assertion is put on the assertion stack. As stated before, this resembles
to a logical conjunction. It contains the negation of a previously found model which fulfills the non-
refinement formula.



Chapter 5. Refinement and Reachability 67

Algorithm 8 Find all possible models, initial strategy
Input: the non refinement formula and a list of models (initially the empty list)
Output: the list of all models fulfilling the non-refinement formula

function FINDMODELS

result := SMTSolver .solve(nonRefinementFormula)
if result .satisfiability = SAT then

models.append(result .model)
negModelTrans := translateNegatedModel(result .model)
newNonRefFormula := nonRefinementFormula ∧ negModelTrans
return findModels(newNonRefFormula,models)

else
return models

end if
end function

1 (assert
2 (not
3 (and
4 ; pre-state
5 (= x 0)
6 (= y 0)
7 ; post-state
8 (= x_post 0)
9 (= y_post 1)

10 ; trace
11 (= trace 2) ; index of event2 is 2
12 (= trace_0 1) ; first parameter
13 (= trace_1 2) ; second parameter
14 )
15 )
16 )

Listing 5.4: Example for a back jump clause in SMT-LIB

When having collected these models, the actual reachability check is performed. Every Action Sys-
tem defines initial values for all state variables. From this point, a reachability tree is constructed by
using the specification. Every run of the SMT-solver in this context represents one transition in this tree
(cmp. Section 5.1.1).

Figure 5.3 presents a graphical representation of this approach. First, the non-refinement formula is
input to SMT solver without setting any pre- or post-state. In this way, the solver returns all possible
combinations of pre-states vi and post-states v′i with trace length one (cmp. graphical model notation,
Figure 5.1). Second, the complete state space starting at the initial state is computed (will be described
more closely later in this chapter). For determining an unsafe state, the state space has to contain the
pre-state vi of a found model.

However, this initial algorithm does not scale. If the state space of the state variables are larger,
the number of models to check increases rapidly. The explicit enumeration of all transitions (models)
encoded by the non-refinement formula has proven to be not efficient. Nevertheless, it gave insights for
developing the strategy described in Section 5.2.4.



Chapter 5. Refinement and Reachability 68

Figure 5.3: Initial strategy: compute all models, check if any pre-state is reachable

5.2.2 Reachability analysis by breadth-first search

As the first approach has shown to be impractical, an alternative had to be found. The non-refinement
formula is satisfiable for every transition which can be performed in the mutated Action System but
not in the original one. When setting a specific pre-state in the non-refinement formula, it will be only
satisfiable if the given state is an unsafe state. Instead of enumerating the possible unsafe states and
checking whether they are reachable or not, the reverse is done. The reachable target states from one
source state are computed and checked if they are unsafe. Aichernig and Jöbstl also performed the
reachability analysis in their tool by using this method [7]. Algorithm 9 illustrates these steps. At first,
the post state of the current model (which is the initial state of the Action System in the first recursion
step) is translated to SMT-LIB (Line 1). Then, this translation is appended to the non-refinement formula
(Line 2). Furthermore, this string serves as an input to the solver (Line 3). If the result is satisfiable,
an unsafe state is identified (Line 4). The tuple containing the unsafe state and its trace is then returned
(Line 6). If the result is not satisfiable, the search for a reachable unsafe state continues. The algorithm
aborts, when the maximum search depth has been reached. The length of the trace indicates the depth
of the search. Hence, the check if the length of the trace of the current model is equal or greater to the
maximum search depth is the valid abortion condition (Lines 8 & 9). If the search has to continue, all
transitions from the post-state of the current model are calculated.

At this point, the current model can be added to the list of tested states as its safety has been shown
(Line 12). If the call to findPostStates returns a non-empty list, the new states to explore are the ones
which have not been covered yet (Lines 13 - 16). Consecutively, the list of states to explore is extended
by the newly found post states (Line 17). In case there are no more states to explore, the search is
finished (Line 24). This means that all transitions have been checked for non-refinement leading to a
negative result. So, the mutant refines the specification. If there is at least one state to explore (Line
18), the function will be applied for one more recursion (Lines 19 - 21): the parameters specTrans ,



Chapter 5. Refinement and Reachability 69

Algorithm 9 Check reachable states for unsafety
Input: the translation of the specification, translation of the non-refinement formula, the maximum

search depth, the currently checked model, the list of explored states and the list of tested states
Output: trace to unsafe state if found

1: function ISREACHABLEREC(specTrans, nonRefFormula, curModel, exploreStates, testedStates,
maxSearchDepth)

2: initStateTrans := translate(currentModel .postState)
3: formula := nonRefFormula ∧ stateTrans
4: result := SMTSolver .solve(formula)
5: if result .satisfiability = SAT then
6: unsafeModel := newActionSystemModel(result .model)
7: return Some((unsafeModel .prestate, curModel .trace))
8: else
9: if curModel .trace.length ≥ maxSearchDepth then

10: return None
11: else
12: testedStates.prepend(curModel)
13: newStates := findPostStates(specTrans, curModel .postState, curModel .trace)
14: if newStates 6= Nil then
15: newStates := newStates \ (testedStates ∪ exploreStates)
16: end if
17: exploreStates.append(newStates)
18: if exploreStates.size ≥ 1 then
19: nextModel := exploreStates.head
20: newExploreStates := exploreStates.tail
21: result := isReachableRec(specTrans,nonRefFormula,nextModel ,

newExploreStates, testedStates,maxSearchDepth)
22: return result
23: else
24: return None
25: end if
26: end if
27: end if
28: end function

nonRefFormula and maxSearchDepth stay the same in every recursion call. The next model, which
will be checked, is the head element of the list of states to be explored. Removing this head element, this
list is taken as a new value for the list of states to explore. Furthermore, the list of tested states for the
next call to the present function is updated by appending the current model to it. Then, the function is
applied recursively.

Figure 5.4 shows an example for Algorithm 9. On the left hand side, the situation after the first re-
cursion loop is illustrated: From the initial state, there exist three post-states (1-3). These states represent
the list of states to be checked (marked with dashed lines). In the list of found states, only the initial state
is kept (marked with permanent lines). On the right side, the situation after the second recursion loop is
presented: state 1 is no unsafe state, so the loop has to continue. Furthermore, the state has been added
to the list of found states. As the dashed lines indicate, the list of states to be explored ranges now from
state 2 to 5. The next state to be checked, will be state 2.



Chapter 5. Refinement and Reachability 70

Figure 5.4: Example for the recursive execution of Algorithm 9

Find Possible Transitions From A State

For computing the reachable states from one specific state, the as2smt application uses the class Post-
StateFinder (package reachability, cmp. Section 3.3.5). It contains an algorithm to retrieve the post-
states using the SMT solver. Algorithm 10 takes as parameters:

• specWithInitStateTrans: an SMT-LIB formula containing the (positive) specification and a
reachable pre-state.

• rootTrace: the trace which leads from the initial state to the pre-state - called root trace.

• curModel: the model identified at the last recursion step pointing from the initial state of the
Action System to a found post-state.

• foundModels: the models found until this point of execution (initially set to the empty list).

The first action of this function is to append the current model to the found models list (Line 2).
This model is actually the last found transition. Then, the post state of the current model is negated
and translated into SMT-LIB (Line 3). This assures that the solving process does not return the same
ActionSystemModel again. Therefore, the translation is performed in a negated way (cmp. example in
Figure 5.4). By adding this translation to the existing one (specification and initial state), a new SMT
formula is created and checked by the solver (Line 3 & 4). If the result is not satisfiable, the algorithm has
reached its end and returns the list of found models (Line 9 & 10). Otherwise, the solver will indicate
that the formula is satisfiable. Hence, it has found another transition from the tested state. This new
model is then the input for the next recursion of this function (Lines 7 & 8).

As illustrated in Figure 5.4 and described in the previous paragraph, each call to the findPostStatesRec
function results in the list of possible transitions from this state. This may include also states, which have
been checked for safety before. Therefore, Algorithm 9 subtracts these previously found states from the
states to be checked (Line 15).

5.2.3 Precomputation of State Space

In Section 5.2.2, the next reachable states from a certain state are computed if this state is proven to be
a safe state. In general, this seems to be the most efficient way: The states are checked in breadth-first
search order. In this way, no unnecessary state exploration occurs. When looking at real use cases of
this functionality, the situation differs. Usually, not just one mutant will be checked but a set of mutants.
The state space does not change when checking a list of mutants. This repeated state space exploration -
until the unsafe state is identified - for each mutant represents an unnecessary redundancy. This section
introduces the strategy to compute the whole state space in advance to eliminate this redundancy. In fact,
with this approach, the previously explained algorithm (cmp. Section 5.2.2) is split into two phases: the
state space exploration and the unsafety check for the reachable states.



Chapter 5. Refinement and Reachability 71

Algorithm 10 Find post states
Input: the translation of the Action System asTranslation , the root trace, the last found model

curModel , the list of found post-states foundModels
Output: a list of all post-states reachable from the pre-state set in asTranslation

1: function FINDPOSTSTATESREC

2: foundModels.append(curModel)
3: negStateTrans := translateNegState(curModel .postState)
4: asTranslation := asTranslation ∧ negStateTrans
5: result := SMTSolver .solve(asTranslation)
6: if result .satisfiability = SAT then
7: nextModel := newActionSystemModel(result .model , rootTrace)
8: return findPostStatesRec(asTranslation, rootTrace,nextModel , foundModels)
9: else

10: return foundModels
11: end if
12: end function

Phase #1 has to be executed just once for a list of mutants but for the whole state space. In the
previous approach, this has to be done for each mutant separately. Phase #2 is left unchanged in both
strategies. A disadvantage of this procedure is that its computation depends heavily on the size of the
whole state space. This is not the case for non-equivalent mutants for the procedure presented in Section
5.2.2: There, each found state is checked instantly. So, the breadth-first search terminates when an unsafe
state is identified. Nevertheless, the search is carried out on the whole state space for equivalent mutants
(cmp. Figures 1.2, 1.3). Hence, if there is any equivalent mutant in a list of mutants to check, the previous
approach needs more state exploration steps than the one presented in this section.

Figure 5.5: State space of the rocket steering software Action System

For example, let there be the Action System rocketo which consists of the state space shown in
Figure 5.5. It consists in total of nine states. Exactly this number of states is computed when checking
ten mutants. Assume that nine mutants are non-equivalent and one is equivalent. In Section 2.1.2,
Definition 10 states that an Action System ASm refines second Action System ASm if every reachable
state in specification ASo that holds in mutant ASm has to hold also in ASo. For determining this fact,
all reachable states have to be computed. So, the exploration of the whole state space has to be carried



Chapter 5. Refinement and Reachability 72

out for equivalent mutants. For the present example, this means that any computation of states in addition
to the exploration carried out for the equivalent mutant check is redundant.

5.2.4 Reachability In One Step

This section introduces a new approach for reachability analysis. Instead of checking each reachable
state one by one, it can be performed at once. After pushing the negated specification to the assertion
stack, the disjunction of all states is passed on to the solver. By this action, the solver already knows all
possible solutions. An advantage of this method is that the number of times the solver has to be accessed
externally is linear. For a list of mutants to check, its number consists of:

1. the number of reachable states: same as in the strategy presented in Section 5.2.3

2. the number of mutants to check: one check per mutant

As the solver will not check the states by a certain order, the found state is not necessarily the one
with the shortest path. Nevertheless, this is a valid solution.

1 (assert
2 (or
3 (and
4 (= state 0)
5 (= engine 0)
6 (= integrity 0)
7 (= x 0)
8 (= y 0)
9 )

10 (and
11 (= state 1)
12 (= engine 1)
13 (= integrity 0)
14 (= x 1)
15 (= y 1)
16 )
17 ; [... all other states ...]
18 )
19 )

Listing 5.5: SMT-LIB state space assertion

Again, let’s consider the rocket steering software example. As shown in Figure 5.5, the state space
of this Action System consists of nine states. For every non-equivalent mutant, the list of reachable
states has to be looped until an unsafe state is identified. For the approach presented in the previous
section, this requires one to nine individual checks. In contrast to this strategy, the concatenation of all
reachable states encoded in SMT-LIB by a disjunction guarantees to be just one single check per mutant.
Listing 5.5 shows the translation of the disjunction of all reachable states for the rocket steering software
example.

5.3 Further optimisation

Optimising the as2smt application in performance has been a declared goal of this thesis. In Section 4.4,
the translation from Action System Prolog notation to SMT-LIB has been changed to achieve lower run
times than with quantification. Section 5.1.3 has presented an approach to find the mutated action by a



Chapter 5. Refinement and Reachability 73

syntactical comparison instead of an SMT solver call. The previous section presented different strategies
to determine unsafe states differ with respect to performance depending on the configuration.

This section gives two more optimisation measures and an analysis of the presented reachability
computation methods. At first, the way of accessing the solver has been changed in the course of the
thesis. Instead of a command line call communicating over standard input/output, the SMT solver API is
used. With this access method, the second measure has been enabled: incremental solving. Finally, the
reachability method analysis is performed.

5.3.1 Solver Access

As shown in Figure 3.1, the as2smt application uses an external SMT solver as a backend. In general, all
tested solvers support the input of a file, containing the SMT-LIB assertions to be solved. Initially, this
way was used to interact with the solver in the following steps:

1. The Action System is translated to the SMT-LIB language (cmp. Section 4).

2. The translation is written to a text file (with the suffix .smt2).

3. The solver is started by a command line call, handing over the generated file name via standard
input.

4. The output of the solver is redirected from the standard output to another file.

5. The file is read and parsed.

This method led to a high number of system IO operations which is known to be quite computation
time consuming. Therefore, the access of the solver was changed to JVM bindings of the various SMT
solvers (cmp. Section 3.3.4).

• MathSAT: MathSAT offers a Java API.

• SMTInterpol: at the SMTcomp 2012, SMTInterpol by a developer team at the University of
Freiburg, Germany has received some attention as a new participant. It is completely written in
Java, and therefore can be accessed natively by the as2smt tool.

• Z3: in spring 2012, there were no JVM language bindings available from Microsoft Research
directly. By this time, a solution has been introduced by Angelo Gargantini. His team used Yices
- another SMT solver - with Java by the aid of JNA. The JNA code itself was not programmed
on his own but generated by a tool called JNAerator [31]. It takes as input a C header file and
generates JNA code for binding the C API to Java. We performed this approach by Gargantini on
the Z3 C API headers. This solution is of a general nature, as it can be used with other solvers as
well. The project ScalaZ3 by Phillip Suter would have also fitted the requirements. By the time of
the implementation of the binding, the ScalaZ3 library did not support the current version of the
SMT solver. Therefore, it has been decided to use the more general approach. Since version 4.3
of Z3, official Java bindings have been added which appear to be identical to the ones generated
by JNAerator.

The mentioned SMT solver Yices could not be used, as it implements just SMT-LIB in Version 1.
With this solver API access, the steps are reduced to the following:

1. The Action System is translated to the SMT-LIB language (cmp. Section 4).

2. The translation is sent directly as input to the solver via the API.

3. The solver returns its satisfiability and in case of SAT also a model.



Chapter 5. Refinement and Reachability 74

In general, interactions between the JVM and the operating system can be very costly in matters of
performance. File reading and writing and command line calls are two kinds of such interactions. The
API approach minimises the operating system IO to a minimal level 4.

5.3.2 Incremental Solving

In a standard use case of an SMT solver, one may take an SMT-LIB formula, give it to the solver and
get back the information whether the input is satisfiable or not. Additionally, a model might be obtained
if it has been satisfiable. On the next call, the solver forgets about the previous set of assertions. Let
there be the rocket Action System as an example. Its SMT-LIB representation is listed in Appendix C.
When inputting this formula to the SMT solver and asking for satisfiability, it outputs SAT and returns a
reachable state of the Action System as a model. When intending to check this formula appended by the
assertion (assert (= state 2)), the concatenation of both SMT-LIB expressions has to be input
to the solver. In fact, the internal state of the solver after the rocket specification assertion (and before
evaluating the additional assertion) is the same. When using the API access method, this state can be
saved.

Therefore, the commands push and pop are defined in SMT-LIB in version 2: In general, a formula
may consist not of only one but many assertions. These assertions are put on a so-called assertion stack.
The push command creates a backtracking point on this stack. Then, new assertions can be added and
checked. To go back to the state of the push call, just pop has to be invoked.

Figure 5.6 shows how push and pop work on this stack by an example: initially, two assertions are
put on the stack (State (a)). Then, a backtracking point bt#1 is set by calling push once. Afterwards,
another assertion is put on the stack and checked for satisfiability (State (b)). By applying pop (State
(c)), the initial situation (State (a)) is restored. Finally, a new assertion (assertion #4) can be added to the
current knowledge base (assertions #1 and #2; State (d)).

This technique fits perfectly the requirements of the as2smt tool. In general, the following assertion
types have been used:

• domain assertions for the variables (Listing 4.15)

• specification assertion (Listing 4.24, used for reachable states computation, cmp. Section 5.2.2)

• negated specification assertion (Listing 5.1)

• mutant assertions (Listing 5.1)

• state assertions (Listing 5.5)

• negated state assertions (Listing 5.4)

Some assertions stay always the same in the different solver calls and can be left on the assertion
stack. In comparison to the previously described solver API access, incremental solving is a real per-
formance booster. To illustrate this, two numbers have been picked (cmp. Table 5.1). The first key
figure denotes the number of assertions necessary for non-refinement checkingM mutants (ignoring the
reachability analysis). The second key figure marks the number of assertions necessary for checking R
reachable states fulfilling a non-refinement formula.

When checking a list of mutants, the negated specification assertion (cmp. Listing 5.1) will never
change among the non-refinement formulas of the checked mutants. So initially, the negated specification
is pushed on the stack. Then, the first mutant is pushed, evaluated and popped to restore the assertion
stack with just the negated specification on it. This continues for all mutants. With non-incremental
solving, the specification assertion has to be pushed the same amount of times as the number of mutant
assertions, leading to a total number ofM× 2 assertion evaluations. Incremental solving achieves the
same result by just evaluatingM+ 1 assertions (one time the negated specification,M mutants).

4The file creation of the result file remains (cmp. Figure 3.1).



Chapter 5. Refinement and Reachability 75

Figure 5.6: Assertion stack: usage of push and pop

number of assertions input to the solver standard solving incremental solving
refinement check ofM mutants M× 2 M+ 1
reachability check ofR states (one mutant) R× 3 R+ 2

Table 5.1: Standard solving vs. incremental solving: The number of assertions decreases drasti-
cally.

Also, the non-refinement formula itself does not change when checking various (reachable) states.
Instead of pushing the non-refinement formula (which consists of two assertions) and the state assertion
for each state, the negated specification assertion and the mutant assertion are kept on the stack and just
the reachable state is pushed, evaluated and popped. In this way, the number of assertions decreases from
R × 3 (the negated specification, mutant and state assertion) with standard solving to only R + 2 (the
negated specification and the mutant assertion stay the same) with incremental solving.

5.3.3 Reachability Computation Strategies

In Section 5.2, four different strategies have been presented to find the reachable states of an Action
System. The first one was to check the reachability by possible looking up unsafe states in the list of
reachable ones. This has been found very inefficient and therefore is not taken into account. In the
following, we evaluate the other three strategies:



Chapter 5. Refinement and Reachability 76

# assertions
Strategy 1 1 +M× (1 +R+R/2× T )
Strategy 2 2 +R× (1 + T +M/2)
Strategy 3 3 +M+R× T +R

Table 5.2: Reachability computation: number of average assertions per strategy

1. Reachability analysis by breadth-first search: the transition relation gets initialised with the
initial state of the Action System. Each found state serves as initial state of the non-refinement
formula. By checking its satisfiability, it is determined if it is an unsafe state (cmp Algorithm 9).

2. Pre-computation of reachable states and check with non-refinement constraint: this repre-
sents the same algorithm as the previous list item. However the reachable states computation is
performed before non-refinement checking. For each mutant, the reachable states can be checked
(cmp. Section 5.2.3).

3. Pre-computation of reachable states and check whole state space at once: the non-refinement
check is performed by one SMT-LIB assertion instead by a number of checks (cmp. Listing 5.5).

Again, like in the Section 5.1, let there be an Action System withR reachable states andMmutants.
Table 5.2 lists the three different strategies and their corresponding average number of assertions which
have to be pushed to the assertion stack (cmp. Figure 5.6).

Strategy 1 needs two SMT solver instances: one for checking for unsafe states and one for computing
reachable states. After pushing the negated specification and the first mutant, the initial state is pushed.
Then, this can be either SAT and the algorithm finished or a new state has to be checked.

Assuming the unsafe states are equally distributed, it takes in average half of the state space (R/2)
per mutant to look through to find an unsafe state. For computing half of the state space, it takes the
transition relation, the R/2 pre-states and R/2 times average transition number T post-states (cmp.
Algorithm 10). In case, every pre-state has only one post-state, this number T equals 1. This represents
the lower bound. For a state graph having transitions from every state to every state, T equals toRwhich
is the maximum value for T .

For recovering the reachable states for Strategy 1, the translation relation (e.g. the specification) and
the initial state is set as a pre-state and are pushed to the second solver instance. So, the solver instance
for the reachable states computation consumes in average 1 + M × (R/2 + R/2 × T ) assertions,
and the one for unsafe state checking consumes M × (1 + R/2) assertions. Finally, the expression
1 +M× (R/2 +R/2× T ) +M× (1 +R/2) can be transformed to 1 +M× (1 +R+R/2× T ).

In Strategy 2, the reachable states are precomputed once. Its computation requires 1 +R +R× T
assertions (translation relation plusR pre-states andR×T post-states). In contrast to Strategy 1, this is
no longer dependent onM. Exactly as previously described, 1+M×R/2 assertions have to be pushed to
the SMT solver to find an unsafe state in case they are equally distributed. In total, 2+R×(1+T +M/2)
assertions have to be input to the solver in this strategy.

The third strategy also precomputes the state space but translates it to one assertion on the assertion
stack to remain there until every mutant has been checked. Again, the precomputation takes 1+R+R×T
assertions. For the unsafe state check, only 1 + 1 +M assertions are needed. In total, this sums up to
3 +M+R× T +R.



6 Case Studies

In the course of this thesis, the as2smt application has been developed. In Chapter 3, the implementation
details have been discussed. In Chapter 4, the translation of an Action System to SMT-LIB has been
presented. The previous chapter has given insights into the methods used to solve the model-based
mutation testing problem. During development, algorithms have evolved and have been replaced by more
efficient ones. This chapter documents these improvement stages where a difference in performance can
be observed in our use cases.

At first, the test machine description is listed. Then, the various test inputs are presented. Further-
more, the development stages are discussed. Consecutively, the different configurations for the experi-
ments are outlined. Finally, the results are documented.

6.1 Test Machine

The test machine consists of

• an Intel Core i7-2640M CPU running at 2.80GHz

• 8 GB DDR3 RAM

• an Intel Solid-State-Disk

• Linux operating system, kernel 3.16.6, OpenSuse 13.2, 64-bit

• Java Runtime Environment 1.8 (OpenJDK)

• Scala 2.10.3

For the solvers, the following versions have been tested:

• MathSAT [47] in Version 5.2.1

• SMTInterpol [32] in Version 2.1-3

• Z3 [76] in Version 4.3.2

6.2 Test Input

As described in Section 3.2, the implemented tool takes as input Action Systems represented in Prolog.
The illustrated examples in the case studies have also been used by the as2csp [7] application. On its
basis, Aichernig et al. compared the two tools with respect to performance [10].

6.2.1 Car Alarm System

The first case study contains an Action System modeling a simplified car alarm system. It origins from
Ford’s automotive demonstrator within the MOGENTES project [4]. There, the following requirements
are listed to be fulfilled:

1. Arming: when the all doors are closed, the system arms itself after 20 seconds in this state.

2. Alarm: on any attempt to open a door in the armed state without authorisation (for instance a key),
the alarm sound will be turned on for 30 seconds. Additionally, the hazard flasher will be enabled
for five minutes.

3. Deactivation: deactivation of the anti-theft alarm system occurs when the car is unlocked from
outside. This can be enforced at any time after the alarm has been set.

77



Chapter 6. Case Studies 78

Figure 6.1: Car alarm system model (Ford’s automotive demonstrator, MOGENTES project [4])

Aichernig et al. present a model in form of a UML state machine which implements these require-
ments [4]. This state machine is illustrated in Figure 6.1. There exist two transitions from the initial
state OpenAndUnlocked to ClosedAndLocked via ClosedAndUnlocked and OpenAndLocked depending
on the sequence of the actions close and lock. After 20 seconds in the ClosedAndLocked state, the alarm
is turned on (state Armed). This implements the first requirement. By opening a door, the acoustic and
optical alarm is raised in the FlashAndSound state. This has been modeled as a sub-state of the Alarm
state. After 30 seconds the alarm sound is turned off but the hazard lights continue (sub-state Flash) to
fulfil the second requirement. It is not specified what happens after the sound lights are disabled. If an
unauthorised access happens (state SilentAndOpen) afterwards and the door gets closed, Aichernig et al.
implemented a transition to the Armed state. The last requirement is simply adding the transition from
the Armed state to OpenAndUnlocked when unlocking the vehicle.

Furthermore, Aichernig and Jöbstl modeled this state machine as an Action System [8]. Additionally,
they manually constructed mutants by applying three different mutation operators:

• Guards: all guards in the entire Action System are changed to be true all the time resulting in 34
mutants.

• Equality swapping: each equality and each inequality sign gets swapped to its opposite. This
leads to 56 mutants.

• Incrementation: every reference to a number is substituted by the number plus one. For Mutations
which would have resulted in a domain violation this way, the lowest number in the domain has
been used. Note that also the states are modeled as numbers. 116 mutants resulted from this
mutation operation.

Furthermore, the equivalent mutant - actually the same Action System as the original - is also in-
cluded in the set of mutants. So in total, this sums up to 207 mutants. This model is used in the case
studies in four different versions: CAS 1, CAS 10, CAS 100, CAS 1000. CAS is short for Car Alarm
System. The number i in CAS i indicates the factor applied to the parameter values. For example, the
action after (modeling a time delay) reacts on three different values: 20, 30 and 270. In the CAS 10,
these values are set to 200, 300 and 2700. The reason for checking this is to test the behaviour of the
solvers on domain extensions.



Chapter 6. Case Studies 79

6.2.2 Car Alarm System with PIN Input

Furthermore, two new Action Systems are defined by parametrising the actions Lock and Unlock from
the original CAS. If the parameter (PIN) is set to a predefined value, the Action System behaves as the
original one. Otherwise, the result is the same as opening the car in the Armed state. The flash lights will
turn on and the alarm sound will start to go off. The two versions differ in the domains of the parameters
of the mentioned two actions:

• In the CAS BOOLPIN model, the parameter is a simple Boolean. It may indicate the presence of
a key-like token.

• The CAS PIN Action System takes for the Lock and Unlock actions an integer in the range between
0 and 999 like in a traditional combination lock.

The application of the previously described three mutation operations results in 246 mutants, also
including the equivalent mutant.

6.2.3 Triangle

Finally, an Action System that models a simple function, serves as a case study. This function checks
if a triangle with given side lengths is equilateral, isosceles, scalene or actually no triangle. The Action
System consists of three actions: Input, Calculate and Output.

• Input takes the three integers between zero and three and sets the state variables a, b and c to these
values. These are the side lengths of the triangle.

• Calculate determines which case applies to the side lengths (state variables).

• Output takes the triangle kind as an input and sets the respective state variable.

In contrast to the previously introduced Action Systems, the state space size is directly dependent
on the size of the parameter domain. In the different CAS versions, the domain of a parameter has been
changed too, but the state variables have been fixed. Thethe range zero and three Action System limits
this directly by the domain of the parameters. Therefore, another version of it extends the parameter
domain from the range zero and three to an integer between zero and 30. As the range increases by a
factor of ten, this version of the triangle test input is called TRIANGLE 10 The state space is enlarged
this way by a factor of 458. For test purposes, two mutants have been created manually.

Table 6.1 lists all the Action Systems used in the case studies. It gives an overview of the major
differences between the test inputs. Apart from the parameter ranges, all standard CAS versions have the
same properties. In contrast to the two TRIANGLE versions, parameter range increase does not affect
the number of reachable states. Also, the extended CAS test inputs (including the PIN) have also 21
reachable states. But the number of mutants increases due to the higher number of parametrised actions.

6.3 Stages of Development

This section gives an overview of the different development stages and improvements applied to the
as2smt application.

6.3.1 Quantifier Elimination

After our first tests using SMT formulas containing quantifiers, performance issues became obvious.
Quantifiers are needed to translate sequential composition correctly (cmp. Section 4.3.4) when using



Chapter 6. Case Studies 80

action system #actions (parametrised) #state variables #mutants #reachable states
CAS 1 11 (1) 6 207 21
CAS 10 11 (1) 6 207 21
CAS 100 11 (1) 6 207 21

CAS 1000 11 (1) 6 207 21
CAS BOOLPIN 11 (3) 6 246 21

CAS PIN 11 (3) 6 246 21
TRIANGLE 3 (2) 9 2 65

TRIANGLE 10 3 (2) 9 2 29792

Table 6.1: Action Systems used as test input for the as2smt application

Original CAS (CAS 1) Extended CAS (CAS BOOLPIN)
io translate solve total io translate solve total

direct translation 2.67 1.48 1670.52 1674.75 5.01 2.61 2852.74 2860.36
no quantifiers (incorrect) 2.69 1.45 11.90 16.04 3.58 1.99 19.74 25.31

no quantifiers (correct) 3.01 0.47 0.89 4.37 4.02 0.63 1.14 5.79

Table 6.2: Performance of non-refinement formula check of all mutants per translation type (in
seconds)

negation. These test results did only cover the non-refinement check and not the reachability analysis
as this had not been implemented by the time these experiments had been run. As a comparison, the
solver had been run with the same output formula but without the needed quantifiers. In this way, the
computation is incorrect. But it has given an indication for the performance gap when using quantifiers.
Therefore, (existential) quantifiers have been eliminated by applying the one-point rule. This has been
described in Section 4.4.

For comparability, the module containing the translation with quantification has been restored and
placed as a copy into the package oldapproach. In Table 6.2, the results for this former translation
method are presented. The as2smt application accesses the back-end Z3 via API (cmp. Section 6.3.2).
The time consumption of the as2smt tool for three translation approaches are listed: the first one contains
existential quantifiers as it has been restored from the old source code. Then, the second one skips the
generation of the quantifiers to show the performance issue. Finally, the third approach applies the one-
point rule to remove the quantification. Section 4.4.1 describes the quantifier elimination in detail. All
three translation types have been applied to the original CAS (version CAS 1) and the extended CAS
(version CAS BOOLPIN test inputs. Table 6.2 shows four different times. The total run time is split into
three different parts:

• io: time needed to read (input) files, parse and write (output) files

• translate: time needed to translate the Action System from an internal representation to SMT-LIB

• solve: solving time of the SMT solver

Apart from the enormous gap in the solve time between the first and the two last approaches, the
translate time also differs between the two correct approaches. The reason lies in the difference of
complexity of the translation. When using the direct translation including quantifiers, more variables
and constraints have to be generated as when applying the one-point rule and executing the code symbol-
ically. For instance, every time a variable is re-assigned in an action, a new variable (including also its
bounds) has to be created in SMT-LIB (cmp. Section 4.3.2). For the chosen test inputs, using quantifier
elimination results in the decrease of the run time by approximately 99.8%.



Chapter 6. Case Studies 81

Original CAS (CAS 1) Extended CAS (CAS BOOLPIN)
io translate solve total io translate solve total

command
line call

4.24 0.48 2.74 7.46 5.58 0.66 3.37 9.61

API access 3.01 0.47 0.89 4.37 4.02 0.63 1.14 5.79

Table 6.3: Timing behaviour of non-refinement formula check of all mutants per access type (in
seconds)

Original CAS (CAS 1) Extended CAS (CAS BOOLPIN)
io translate solve total io translate solve total

non-incremental 3.01 0.47 0.89 4.37 4.02 0.63 1.14 5.79
incremental 1.66 0.30 0.62 2.58 2.20 0.40 0.80 3.40

Table 6.4: Timing behaviour of the non-refinement formula check of all mutants per solving type
(in seconds)

6.3.2 Solver Access

In Section 5.3.1, the two different types to access the SMT solver have been discussed: by command
line calls or by API access. As the algorithms for reachability analysis have been implemented after the
change of access type to the API access, the experiments in this section cover only the non-refinement
check without any reachability analysis. Table 6.3 shows the run times of the as2smt application by the
two access types for two examples (CAS 1 and CAS BOOLPIN) using Z3 as a back-end. The results
indicate that the way of accessing the solver improves the performance significantly.

For the listed examples, the diminished file I/O activity represents a crucial factor. Writing input
from and reading results to files becomes unnecessary (cmp. Section 5.3.1). Even more significantly,
the solver time is decreased drastically as the solver has not to read input and write output files but is
being fed with SMT-LIB strings directly. In total, the performance boost can be quantified by a 40%
descreased run time.

6.3.3 Incremental solving

In Section 5.3.2, incremental solving has been described. This SMT-LIB feature specifies backtracking
points which can be set by push and recovered by pop [24]. With command line calls, incremental
solving can be used but assertion stack modifications are only possible if they happen in the scope of one
input file. With API access, incremental solving becomes more useful.

Similar to Table 6.3, Table 6.4 shows the run times of the as2smt application for two examples
(CAS 1 and CAS BOOLPIN) using Z3 as a back-end. But instead of comparing access types, solving
types are compared: non-incremental and incremental solving. All previous mentioned improvements
have been also applied. Here, the results for non-incremental solving are exactly the ones listed in Table
6.3 for the API access type.

Like in the previous section, the numbers indicate a performance improvement. Again, file I/O times
have been reduced (this time by about 45%). Also, translation time has been minimised by 35 %. Addi-
tionally, the solver computation time is lowered by 30 %. For the test inputs, incremental solving shows a
reduction of the run time by around 40 % in total. For reachability, this can not be confirmed by empirical
results, as the reachability analysis algorithms require incremental solving. Nevertheless, Section 5.3.2
gives strong arguments that non-incremental solving performs much worse for the reachability analysis.



Chapter 6. Case Studies 82

6.4 Configuration of Experiments

The improvements listed in the previous section are undoubtedly speeding up the performance. So,
quantifier elimination, solver access via API and incremental solving are used in all experiments. Their
performance benefit has been shown before. The influence of the choice of the reachability computation
method has been discussed only in an analytical way (cmp. Section 5.3.3), not in an experimental one.
Furthermore, the selection of the test input and the solver may also be significant. Hence, the as2smt
application defines three options to be selected (cmp. Section 3.4.2):

• SMT solver: MathSAT, SMTInterpol or Z3 can be chosen.

• Solving method: the unsafe state is determined by

– finding and checking each reachable state (Strategy 1).
– precomputing all reachable states and then checking them for each mutant. The check occurs

by their breadth-first search ordering (Strategy 2).
– precomputing all reachable states, translate them to one assertion and check each mutant.

With this method, it is not assured to get the unsafe state with the shortest path (Strategy 3).

• Action System: the example input can be selected from eight different Action Systems with al-
ready declared mutations. In general, any Action System in Prolog notation (cmp. Appendix A,
cmp.) can be input. But only the Action Systems listed under Section 6.2 have been selected as
case studies.

Three solvers, three reachability solving methods and eight different example Action Systems (spec-
ifications and mutants) result in 72 test configurations.

6.5 Results

This section presents the performance results of the as2smt application with the test configurations. The
different reachability solving methods (cmp. Section 5.3.3) are applied to the chosen test input (cmp.
Section 6.2). Each combination of test input and reachability solving method can be executed with one
of three SMT solvers (cmp. Section 6.4).

6.5.1 Strategy 1: Reachability Analysis by Breadth-First Search

At first, the three solvers are compared by their performance on the four different variable domain ranges
for the original CAS. Table 6.5 shows the results for the different CAS versions (CAS 1, CAS 10,
CAS 100 and CAS 1000). Per run, the time needed for solver interactions and the total run time have
been tracked. Furthermore, the average execution time per mutant and the longest run for one mutant are
listed.

In general, it can be observed that the execution time of the as2smt application depends heavily on
the time consumption of the solver. In numbers, this variance can range up to 90 % of the total run
time. In fact, the period of time the tool takes ignoring the interaction times with the SMT solver varies
between 1.57 and 2.69 seconds.

Focusing on solver performance, Z3 and SMTInterpol outperform MathSAT by far (approximately by
a factor of five). In fact, that SMTInterpol implemented in Java performs so much better than MathSAT
implemented in C seems to be remarkable. Taken into account the different implementation languages,
performance gap between SMTInterpol and Z3 seems to be rather small.

Another noticeable fact is that the computation times vary from run to run. When collecting the
results, each configuration has been executed three times and the median value has been recorded to



Chapter 6. Case Studies 83

in seconds MathSAT SMTInterpol Z3
solver total solver total solver total

CAS 1
∑

23.84 26.04 5.66 8.46 4.76 6.36
∅ 0.12 0.13 0.03 0.04 0.02 0.03
max. 0.40 0.43 0.13 0.14 0.09 0.10

CAS 10
∑

23.80 26.16 4.90 7.25 5.31 7.06
∅ 0.11 0.13 0.02 0.04 0.03 0.03
max. 0.39 0.40 0.12 0.14 0.09 0.11

CAS 100
∑

24.12 26.24 5.12 7.60 4.71 6.28
∅ 0.12 0.13 0.02 0.04 0.02 0.03
max. 0.48 0.50 0.13 0.15 0.11 0.12

CAS 1000
∑

22.95 25.16 5.00 7.69 4.74 6.35
∅ 0.11 0.12 0.02 0.04 0.02 0.03
max. 0.34 0.37 0.13 0.16 0.07 0.08

Table 6.5: Strategy 1: performance by SMT solver on CAS versions

in seconds MathSAT SMTInterpol Z3
solver total solver total solver total

CAS BOOLPIN
∑

32.17 35.31 6.00 9.12 6.15 8.27
∅ 0.13 0.14 0.02 0.04 0.02 0.03
max. 0.48 0.50 0.17 0.18 0.09 0.10

CAS PIN
∑

32.42 35.70 5.99 9.17 6.09 8.21
∅ 0.13 0.15 0.02 0.04 0.02 0.03
max. 0.46 0.49 0.17 0.19 0.08 0.09

Table 6.6: Strategy 1: performance by SMT solver on CAS version with PIN extension

minimise the variance. For Z3 and SMTInterpol, the time differences between the runs last up to half a
second, for MathSAT up to two seconds. When taking this variance into account, the computation times
for the different CAS versions do not differ. With a much wider domain - respectively more variables -
this may change.

For CAS BOOLPIN and CAS PIN, the average run time for refinement checking a mutant with Stra-
tegy 1 is similar to the numbers for the CAS versions (cmp. Table 6.5). In comparison to each other,
the test inputs differ the same way as the different versions of the original CAS: the domain of one state
variable is changed. By observing the same effect again, it can be determined that this kind of alteration
has no major effect on the performance of the SMT solver and so on the as2smt application run time.

The triangle test input is distinct from the others by the size of its state space. The simple triangle
example performs quite well. Especially with Z3 as a back-end, the as2smt application is very fast in
recovering the correct result. With the TRIANGLE 10 configuration, it can be observed that widened state
space affects run time in a severe manner. Most interesting here is the performance of the SMTInterpol
solver. It beats Z3 and MathSAT by approximately a factor of seven or ten respectively.

6.5.2 Strategy 2: Precomputation of Reachable States and Check Each on Mutant

Strategy 2 performs the state space exploration before checking any mutant instead for each mutant until
an unsafe state is reached. This action decreases the times, the solver has to be accessed. In Table 5.2, the
assertion estimation formulas are listed for each strategy. These estimations are based on the assumption
that when checking the mutants, the found unsafe states are equally spread in the state space. Table



Chapter 6. Case Studies 84

in seconds MathSAT SMTInterpol Z3
solver total solver total solver total

TRIANGLE
∑

1.57 1.83 0.88 1.15 0.31 0.48
∅ 0.79 0.92 0.44 0.57 0.15 0.24
max. 0.87 1.01 0.51 0.64 0.22 0.31

TRIANGLE 10
∑

722.86 728.19 71.04 80.47 523.35 526.36
∅ 361.43 364.09 35.52 40.24 261.67 263.18
max. 387.58 390.47 36.45 40.45 263.56 265.07

Table 6.7: Strategy 1: performance by SMT solver on the triangle model

Strategy 1 Strategy 2 Strategy 3
estimated actual estimated actual estimated actual

CAS 7808 7391 2219 2077 264 262
CAS with PIN 9982 8554 2645 2571 309 307
TRIANGLE 261 126 262 243 200 197
TRIANGLE 10 119169 59749 119168 89375 89381 89375

Table 6.8: Estimated and actual numbers of asserts needed per strategy

MathSAT SMTInterpol Z3
solver total solver total solver total

CAS 1
∑

2.90 5.34 1.80 4.62 1.23 3.18
∅ 0.01 0.03 0.01 0.02 0.01 0.02

max. 0.03 0.07 0.03 0.05 0.01 0.03
CAS 10

∑
2.90 5.08 1.79 4.63 1.32 3.26

∅ 0.01 0.02 0.01 0.02 0.01 0.02
max. 0.04 0.07 0.03 0.04 0.01 0.03

CAS 100
∑

2.99 5.24 1.91 4.53 1.74 4.12
∅ 0.01 0.03 0.01 0.02 0.01 0.02

max. 0.06 0.08 0.06 0.08 0.04 0.05
CAS 1000

∑
3.12 5.48 1.93 4.63 1.29 3.19

∅ 0.01 0.03 0.01 0.02 0.01 0.02
max. 0.03 0.05 0.03 0.04 0.01 0.02

CAS BOOLPIN
∑

3.90 6.73 2.18 5.75 1.59 4.16
∅ 0.01 0.03 0.01 0.02 0.01 0.02

max. 0.03 0.06 0.03 0.06 0.01 0.03
CAS PIN

∑
3.94 7.08 2.19 5.96 1.54 4.05

∅ 0.01 0.03 0.01 0.02 0.01 0.02
max. 0.03 0.05 0.05 0.06 0.01 0.03

TRIANGLE
∑

1.40 1.67 0.61 0.82 0.45 0.61
∅ 0.36 0.83 0.16 0.41 0.12 0.31

max. 0.67 0.84 0.28 0.41 0.21 0.31
TRIANGLE 10

∑
659.46 699.79 70.02 105.10 318.38 353.13

∅ 164.96 349.90 17.57 52.55 79.77 176.56
max. 329.54 349.98 34.88 52.61 158.85 176.59

Table 6.9: Strategy 2: performance by test input and SMT solver (in seconds)



Chapter 6. Case Studies 85

in seconds Strategy 1 Strategy 2 Strategy 3
2 mutants 3 mutants 2 mutants 3 mutants 2 mutants 3 mutants

solver 71.04 110.50 70.02 64.29 74.76 63.68
total 80.47 126.69 105.10 102.03 111.97 100.37

Table 6.10: Comparison of performance of SMTInterpol on TRIANGLE 10 test input

6.8 shows the estimated and the actual numbers of assertions per strategy. For the the CAS examples
(original and extended), the numbers match up very closely. Nearly half of the state space had to be
uncovered per mutant.

Table 6.9 shows the results for all the test input. Interestingly, MathSAT reaches a much better
performance than with Strategy 1. In fact, its timing behaviour gets very close to the one of SMTInterpol.
With Z3 as a back-end, the as2smt tool computes the unsafe states much faster than with the other two
solvers.

In respect to the previous strategy, a general performance increase can be observed. MatSAT even
boosts its average time consumption per mutant for the CAS test inputs from 0.12 seconds down to 0.01
seconds. Also by using SMTInterpol and Z3, a definite run time decrease by about 50% to 75% can be
measured for the various CAS test inputs.

With the simple triangle use case, there seems to be no difference (as the state space size is nearly
the same as in the CAS examples). When widening the state space, the complete computation of all
reachable states may take more time than with the approach described in the previous strategy. This is
the case if the total number of states is higher than the sum over states that have to be checked for each
mutant. For the TRIANGLE 10 test input, the three solvers behave differently. While SMTInterpol shows
an increase in total run time, a run time decrease can be observed for MathSAT and Z3. In fact, the solver
time of SMTInterpol is nearly the same for both strategies (around 70 seconds). But the computational
overhead of the as2smt increases with Strategy 2. For just one more mutant, also SMTInterpol shows a
decrease in total run time with Strategy 2 (cmp. Table 6.10).

6.5.3 Strategy 3: Precomputation of Reachable States, List and Check Each Mutant

As mentioned, this method does not calculate the unsafe state with the shortest trace but just the first
one that the SMT solver finds. If a shortest trace is not regarded as a requirement of the application, this
method is comparable to the others. In Table 6.8, the estimated and the actual number of assertions are
listed for all strategies. There, Strategy 3 needs only 12 % to 13% of the assertions in comparison to
Strategy 2 for the CAS input versions.

As seen previously, the triangle test input behaves differently as the preceding state computation
creates an unnecessary overhead. Still, the application of Strategy 3 results in an improvement regarding
the run time when comparing to the same test input applied to Strategy 2.

Table 6.11 presents the results for the tested solvers and for all test inputs. In general, it decreases
the run time of all solvers by about 25% for the (original and PIN/BOOLPIN) CAS versions.

In total, the as2smt application shows the best performance for Z3 and Strategy 3 on the CAS and
the TRIANGLE test inputs. For TRIANGLE 10, SMTInterpol outperforms the other solvers by far. In
comparison to Strategies 1 & 2, Strategy 3 is the slowest among all for this configuration. But again, this
changes when adding one mutant (cmp. Table 6.10).



Chapter 6. Case Studies 86

MathSAT SMTInterpol Z3
solver total solver total solver total

CAS 1
∑

1.46 3.90 0.82 3.79 0.46 2.44
∅ 0.01 0.02 < 0.01 0.02 < 0.01 0.01

max. 0.01 0.04 0.01 0.04 < 0.01 0.02
CAS 10

∑
1.43 4.00 0.84 3.76 0.49 2.54

∅ 0.01 0.02 < 0.01 0.02 < 0.01 0.01
max. 0.03 0.05 0.01 0.04 < 0.01 0.02

CAS 100
∑

1.36 3.79 0.81 3.70 0.51 2.58
∅ < 0.01 0.02 < 0.01 0.02 < 0.01 0.01

max. 0.01 0.04 0.01 0.03 < 0.01 0.02
CAS 1000

∑
1.44 3.85 0.81 3.46 0.53 2.58

∅ 0.01 0.02 < 0.01 0.02 < 0.01 0.01
max. 0.01 0.04 0.01 0.03 < 0.01 0.02

CAS BOOLPIN
∑

1.67 4.72 1.03 4.99 0.58 3.19
∅ < 0.01 0.02 < 0.01 0.02 < 0.01 0.01

max. 0.01 0.05 0.01 0.04 < 0.01 0.02
CAS PIN

∑
1.78 4.83 1.06 4.83 0.60 3.24

∅ 0.01 0.02 < 0.01 0.02 < 0.01 0.01
max. 0.01 0.04 0.02 0.03 < 0.01 0.02

TRIANGLE
∑

1.25 1.50 0.81 1.04 0.39 0.55
∅ 0.32 0.75 0.21 0.52 0.10 0.28

max. 0.61 0.75 0.39 0.52 0.19 0.28
TRIANGLE 10

∑
716.59 758.40 74.76 111.97 374.32 412.181

∅ 179.18 379.20 18.87 55.98 93.61 206.09
max. 358.24 379.21 37.02 56.00 187.10 206.13

Table 6.11: Strategy 3: performance by test input and SMT solver (in seconds)



Chapter 6. Case Studies 87

6.6 Conclusion of Results

In this chapter, the presented improvements have been validated. Three different SMT solvers have been
used as back ends and different strategies for finding unsafe states have been tested on various test inputs.
The following findings can be listed:

• Quantification with SMT solvers has shown to be far slower than non-quantification and manual
application (done by the as2smt tool instead) of the one-point rule (cmp. Section 6.3.1).

• API access of SMT solvers has to be favoured over command line calls when using a solver as a
back-end (cmp. Section 6.3.2).

• Incremental solving decreases computation time as the solver has not to parse the same formulas
multiple times (cmp. Section 6.3.3).

• SMT solver performances may show major differences. For the tested solvers in combination
with the test input, Z3 by Microsoft Research showed the best performances. Only for the last
TRIANGLE 10 test input, SMTInterpol is faster than Z3.

• Approaches with reduced interaction with the back-end SMT solver should be favoured over more
intense interacting methods (cmp. Section 6.5.2 and 6.5.3).

• Computation of the complete state space may not trade-off if the number of checked mutants is
too low (cmp. result for TRIANGLE 10 test input with Strategies 1 & 2).



7 Related Work

7.1 Related Work on Action Systems

The used modeling language in this thesis has been Action Systems. Initially, Back and Kurkio-Suonio
defined this formalism in 1983 [17]. Previously, Back has introduced his notation of refinement in terms
of weakest precondition in [15] which he later applied to Action Systems [18].

Back and Sere extend Action Systems to include modularization features in [19]. They argue, that the
monolithic, large systems are impractical for refinement. With this extension, a module can be defined
which may export/import variables, set access restrictions to its own procedures and be able to call other
module’s procedures. Back and Sere present an adaptation of the Oberon programming language, called
Action-Oberon, for expressing such modular Action Systems. In terms of semantics, reduction rules are
defined for all modularization constructs to provide refinement also for Action-Oberon. Moreover, Back
et al. encapsulate also data and actions in objects in the Action-Oberon language [16].

In [26], Bonsangue et al. extend Action Systems with object-orientation. The introduced OO-Action
Systems can be mapped directly to ordinary Action Systems. In this way, the (weakest precondition)
semantics is preserved. Additionally, they present refinement rules for expressing inheritance and reuse
of code and proofs.

Krenn et al. present a mapping of UML state diagrams to object-oriented Action Systems [59]. This
translation maps concurrency to non-deterministic choice, enables support of triggered transitions and
sets event-processing to be in-order and loss-less. Furthermore, this mapping is used to translate UML
further to labelled-transition systems (LTS).

7.2 Related Work on Model-Based Mutation Testing

In 1998, Ammann et al. use a model-checker for generating test cases. The generated mutants and the
original model are input to the model-checker which validates if the mutant and the original program
produce different outputs. If they produce non-equal outputs a test case is generated from a counter-
example.

In 2006, Aichernig and Salas introduce their mutation testing approach for automatic test case gen-
eration from model-based specifications [12]. There, they apply mutation operators to the pre- and
post-conditions of models described in Object Constraint Language (OCL). Tretmans’ Input-Output con-
formance (ioco) of LTS [82] serves as conformance relation.

Krenn and Aichernig show how to generate test cases by using contract mutation in Spec# [58]. This
extension for the programming language C# allows - similar to the OCL - the definition of pre- and
post-conditions. An interesting side note here is, that Spec# relies on the SMT solver Z3 just like the
implemented as2smt tool.

Aichernig et al. apply model-based mutation testing also to an extension of Action Systems called
Qualitative Action Systems [2]. Their use enables the modeling of continuous behaviour in a discrete
domain [5]. Again, LTS semantics and ioco as conformance relation have been used.

In 2010, Aichernig and Jöbstl present the model-based mutation testing approach as it has been used
in this thesis: conformance checking of Action System models by refinement [7]. In difference to as2smt,
their as2csp tool uses SICStus Prolog. On the one hand, Prolog represents the implementation language.
On the other hand, the Prolog engine acts as constraint satisfaction problem (CSP) solver. In the course
of this thesis, as2smt and as2csp have evolved. Aichernig et al. compare both tools by their performance
[10]. In fact, both tools achieve on the chosen test input similar results.

In [11], Aichernig et al. present the application of model-based mutation testing to real-time systems.

88



Chapter 7. Related Work 89

As models, timed automated are used. Their conformance is checked by an extended version of ioco
called timed ioco [60]. The developed tool is based on bounded model-checking techniques. Again, an
SMT solver forms the back end of the tool.

Brillout et al. use a model checker to generate test cases from Simulink models and its mutants [28].
Their COVER tool checks for equivalence by bounded model checking. For being able to deal with a
decidable problem, a finite range for input and output values is assumed. Equivalence checking is limited
to a certain search depth k (just like the refinement check of the presented tool in this thesis), denoted as
k-equivalence.



8 Concluding Remarks

8.1 Summary

In this thesis, we have shown how SMT solvers can be used for model-based mutation testing (MBMT).
MBMT is a novel testing technique and enables the generation of test cases on a model level. Initially,
a set of fault-injected versions of an original program model is generated by an external program. This
program - a mutation generator - has not been in the scope of this thesis.

The main contribution of this thesis is the implementation of the as2smt tool. It applies MBMT on
Action System models. This formalism enables the modeling of reactive systems and features also non-
determinism. Originally, Action Systems are interpreted by weakest precondition semantics (by Back
and Wright). In this thesis, we applied the predicative semantics defined by Aichernig et al.

An SMT solver represents the computational back end of the tool. SMT solvers have evolved and
gained in popularity the last years. With the definition of the standardised SMT-LIB language, a universal
input language for SMT solvers exists. Due to this interchangeability, any SMT solver supporting SMT-
LIB can be used. Bindings for the solvers MathSAT, SMTInterpol and Z3 have been integrated into the
tool.

The as2smt application implements a compiler which translates from the modeling formalism Action
Systems (in a special notation) to the standard SMT solver input language SMT-LIB. This has been only
possible by the non-standard, predicative semantics given to Action Systems.

In MBMT, the original model and one mutant are compared with respect to their behaviour. Equality
of programs is an undecidable problem. Even with bounded exploration depth it has still exponential
runtime. Especially, hard is the possible non-determinism in Action Systems.

The state-based refinement relation has been chosen to effectively check the conformance of action
systems with SMT solvers. Refinement had been already defined for Action Systems. It states that any
reachable state change which is valid for the mutated model, has to hold also in the original model. For
test case generation, non-refinement is checked.

A non-conforming behaviour of the mutant (in regards to the original) has to fulfill two relations: non-
refinement relation and the reachability relation. The non-refinement relation has been entitled through
out this thesis by non-refinement formula which refers to the generated SMT-LIB formula. This non-
refinement formula consists of the translation of the negation of the original model conjuncted by the
checked, mutated model. For checking reachability, there has to exist a transition from the initial state
of the Action System to the pre-state of the checked transition. This requires a state space exploration of
the model.

We evolved the tool’s translation process from a direct translation of the predicative semantics to a
symbolic execution of each execution branch of the model. For the reachability analysis, three different
algorithms have been implemented and evaluated.

8.2 Contribution of this Thesis

The main contribution of this thesis is the implementation of the presented test case generation technique.
The as2smt application enables test case generation of models (with given mutants) in form of Action
Systems with an SMT-solver as computational back end.

Two different ways of translating Action System models to the standardised SMT solver input lan-
guage SMT-LIB have been evaluated. The direct translation of the predicative semantics to SMT-LIB
has been shown to be valid but inefficient. The translation of sequential composition in Action Systems
requires quantification. In contrast to other SMT-LIB language constructs, quantifiers trigger an increase

90



Chapter 8. Concluding Remarks 91

in solving time. Additionally, just a few solvers support quantification at all. The second translation
approach applies the one-point rule to eliminate the need of quantification in SMT-LIB. In fact, the
translation process has been adapted to symbolically execute assignments.

For selecting the mutated action of the Action System, two approaches have been considered. First,
the non-refinement formula has been input to the SMT solver which states a difference in behaviour in
the mutated action. Second, the Action Systems are compared syntactically. As a result, checking for the
mutated action has been shown to be more efficient in matters of performance by a syntactic check.

For reachability analysis, various algorithms have been shown which perform differently on the se-
lected test input. The tool’s run time depends heavily on the number of state variables, the number of
reachable states and the number of mutants that has to be checked. From the presented algorithms, this
thesis contributed two of them (cmp. Section 5.2.3 and Section 5.2.4). It has been shown in the per-
formed experiments (cmp. Section 6) and the algorithm analysis (cmp. Section 5.3.3) that on inputs
fulfilling certain properties the contributed algorithms outperform the algorithm presented in [7].

Performance has been a major objective in the course of this thesis. This continuous improvement
process has been majorly affected by the work of Elisabeth Jöbstl (co-adviser of this thesis) and her
as2csp application. A comparison of the two tools has been documented by Aichernig et al. [10]. Since
the release of that paper, performance has been improved further. In total, performance differences
between the two tools are minor.

Scala has been selected as an implementation language for the as2smt tool. The advantages of the
usage of Scala have been outlined throughout the thesis (cmp. Section 3.1.2, 4.2, 4.2.1, 4.2.3). This
modern programming language receives growing interest. Especially, its membership in the JVM family
seems to grow its popularity1.

Similarly to SMT-COMP - the SMT solver competition, three different solvers have been compared
in terms of performance: MathSAT, SMTInterpol and Z3. In almost all use cases Z3 is the fastest, but
SMTInterpol shows partly similar performance. Most interestingly, the Java-based SMTInterpol even
outperforms Z3 for two test configurations (cmp. Section 6.6).

Finally, it can be stated that model-based mutation testing allows test case generation in an efficient
way for small models. Larger models have to be tested and algorithms may have to be adapted to scale.
The largest model that was analyzed with this technique was the test model of an industrial measurement
device [1, 55].

8.3 Future work

Originally, it was planned to support all kinds of arithmetic operators but just a subset has been imple-
mented. Additionally, the support for data types like arrays has been on the list of features but has not
been realised. The current tool may be extended to support this.

The integration of further solvers might also be a valuable extension to the existing tool as it would
show also their performance. Among these is CVC4 (from New York University, United States of Amer-
ica) which has been released in the beginning of 2013. Noteworthy is the ability of parallel solving [22].
This could change the time behaviour severely on multi-core architecture.

Taking the idea of parallelism, the existing solving methods could be run each in its own thread. The
quickest would then terminate the others and so the best fitting solving method (cmp. Section 6.5) would
be chosen automatically.

1The author of Groovy, another functional programming language based on the JVM, states that he would probably never
created Groovy if Scala had existed already in 2003 [80]. Furthermore, he sees Scala as the new replacement for Java.



A EBNF of Action System in Prolog Notation

The following Listing shows the LL(1)-version of grammar defining the Prolog Action System notation
int ANTLR notation. It has been initially presented in a not publicly available documentation of the
Ulysses tool (cmp. Section4.1). A subset of this definition has been transformed in an LL(1) gram-
mar to avoid back-tracking of the parser. This tranformation has been achieved by the aid of the tool
ANTLRWorks [74].

1 grammar action_system ;
2
3 / / PARSER
4
5 qas : header declarations system (type_def ) * ;
6
7 header : ’ ” ” ( : − . * ) + ” ” ’ ;
8
9 declarations : search_depth (var_dec ) + state_ init input ;

10
11 search_depth : SEARCH_DEPTH LPAR INT RPAR DOT ;
12
13 var_dec : VAR LPAR s_val_list COLON IDENT RPAR DOT ;
14
15 s_val_list : LBRA IDENT (COLON IDENT ) * RBRA ;
16
17 i_val_list : LBRA INT (COLON INT ) * RBRA ;
18
19 qs_val_list : LBRA (QUOTE IDENT QUOTE (COLON QUOTE IDENT QUOTE

) * ) ? RBRA ;
20
21 state_ : STATE_DEF LPAR s_val_list RPAR DOT ;
22
23 init : INIT LPAR i_val_list RPAR DOT ;
24
25 input : INPUT LPAR qs_val_list RPAR DOT ;
26
27 q_string : IDENT | QUOTE IDENT QUOTE ;
28
29 type_def : TYPE LPAR q_string COLON X RPAR DESC X IN INT

DOT DOT INT COLON LABELING LPAR LBRA RBRA COLON LBRA X
RBRA RPAR DOT ;

30
31 call_list : call (comp_op call_list ) ? ;
32
33 call : q_string (LPAR arg_list RPAR ) ? ;
34
35 condition : term (relop1 condition ) ? ;
36
37 relop1 : IMPLIES_B | IMPLIES_R | IMPLIES_L ;
38
39 relop2 : AND | OR | NEG ;
40
41 relop3 : EQUALS | GREATER | SMALER | NEQUALS ;
42
43 term : factor (relop2 term ) ? ;
44
45 factor : boolean | rel_expr | IDENT ;

92



Appendix A. EBNF of Action System in Prolog Notation 93

46
47 boolean : TRUE | FALSE | FAIL ;
48
49 rel_expr : IDENT relop3 INT ;
50
51 stmt : guard_com | IDENT DEF arith_expr | SKIP ;
52
53 guard_com : LPAR condition RPAR IMPL stmt_comp ;
54
55 arith_expr : IDENT (arith_op INT ) * | INT ;
56
57 arith_op : PLUS | MINUS ;
58
59 system : AS DESC METHODS (NONE | LPAR NONE RPAR ) COLON

ACTIONS LPAR action_list RPAR COLON DOOD LPAR call_list RPAR
COLON S_QDES (NONE | LPAR NONE RPAR ) DOT ;

60
61 as : ( as_ | LPAR as_ RPAR ) ;
62
63 as_ : q_string (LPAR arg_list RPAR ) ? DDOT DDOT LPAR

condition RPAR IMPL LPAR action_list RPAR (COLON as ) ? ;
64
65 action_list : (action | LPAR action RPAR ) (COLON action_list ) ? ;
66
67 action : q_string DDOT DDOT guard_com ;
68
69 stmt_comp : LPAR stmt_list RPAR (SEMICOLON stmt_comp ) ? ;
70
71 stmt_list : stmt (COLON stmt_list ) ? ;
72
73 arg_list : ’ ’ ;
74
75 comp_op : SEMICOLON | COLON | DSLASH ;
76
77
78 / / LEXER
79
80 MODULE : ’module ’ ;
81 ACTIONS : ’actions ’ ;
82 AS : ’as ’ ;
83 METHODS : ’methods ’ ;
84 DOOD : ’dood ’ ;
85 NONE : ’none ’ ;
86 SKIP : ’skip ’ ;
87 S_QDES : ’qdes ’ ;
88 SEARCH_DEPTH : ’searchDepth ’ ;
89 VAR : ’var ’ ;
90 STATE_DEF : ’state_def ’ ;
91 INIT : ’init ’ ;
92 INPUT : ’input ’ ;
93 TYPE : ’type ’ ;
94 IN : ’in ’ ;
95 LABELING : ’labeling ’ ;
96 X : ’X ’ ;
97 I : ’I ’ ;
98 TRUE : ’true ’ ;
99 FALSE : ’false ’ ;

100 FAIL : ’fail ’ ;



Appendix A. EBNF of Action System in Prolog Notation 94

101 NEG : ’ #\\ ’ ;
102 EQUALS : ’ #= ’ ;
103 NEQUALS : ’#\\= ’ ;
104 AND : ’ # /\\ ’ ;
105 OR : ’ #\\ / ’ ;
106 GREATER : ’#> ’;
107 SMALER : ’#< ’;
108 IMPLIES_B : ’#<=> ’;
109 IMPLIES_R : ’#=> ’;
110 IMPLIES_L : ’#<= ’;
111 DESC : ’ :− ’ ;
112 DEF : ’ : = ’ ;
113 IMPL : ’=> ’;
114 DSLASH : ’ / / ’ ;
115 LPAR : ’ ( ’ ;
116 RPAR : ’ ) ’ ;
117 LBRA : ’ [ ’ ;
118 RBRA : ’ ] ’ ;
119 LCUR : ’{ ’ ;
120 RCUR : ’} ’ ;
121 COLON : ’ , ’ ;
122 SEMICOLON : ’ ; ’ ;
123 DOT : ’ . ’ ;
124 DDOT : ’ : ’ ;
125 EQUAL : ’ = ’ ;
126 PLUS : ’ + ’ ;
127 MINUS : ’− ’;
128 QUOTE : ’\ ’ ’ ;
129
130 IDENT : ( ’a ’ . . ’ z ’ | ’A ’ . . ’ Z ’ | ’_ ’ ) ( ’a ’ . . ’ z ’ | ’A ’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’_

’ ) *
131 ;
132
133 INT : ’ 0 ’ . . ’ 9 ’ +
134 ;
135
136 WS : ( ’ ’
137 | ’\t ’
138 | ’\r ’
139 | ’\n ’
140 ) {$channel=HIDDEN ;}
141 ;
142
143 COMMENT : ’%’ ˜ ( ’\n ’ | ’ \r ’ ) * ’\r ’ ? ’\n ’ {$channel=HIDDEN ;skip ( )

;}
144 ;

Listing A.1: EBNF of Action System in Prolog notation



B Action System Prolog Notation of the Rocket Steer-
ing Software Example

1 % c r a f t e d by M a t t h i a s Kege le
2
3 :− module (as , [ var / 2 , input / 1 , searchDepth / 1 , qspace / 2 ] ) .
4 :− use_module (library (clpfd ) ) .
5 :− public (as / 0 ) .
6 :− dynamic (as / 0 ) .
7 :− dynamic (type / 2 ) .
8
9 % maximal s e a r c h d e p t h ( change a t w i l l )

10 searchDepth ( 1 0 ) .
11
12 % v a r i a b l e d e c l a r a t i o n s
13 var ( [engine ] , bool ) .
14 var ( [integrity ] , int_0_2 ) .
15 var ( [state ] , int_0_4 ) .
16 var ( [x , y ] , n ) .
17
18 % s t a t e d e f i n i t i o n
19 state_def ( [engine , integrity , state , x , y ] ) .
20
21 % i n i t i a l s t a t e
22 init ( [ 0 , 0 , 0 , 0 , 0 , 0 ] ) .
23
24 % c o n t r o l l a b l e a c t i o n s
25 input ( [ ] ) .
26
27 % a c t i o n s y s t e m
28 as :−
29 methods (none ) ,
30
31 % a c t i o n s
32 actions (
33 ’ engage ’ : : (integrity #= 0 # /\ engine #= 0 # /\ x #= 0 # /\ y #= 0)

=> (
34 state := 1 ,
35 engine := 1 ,
36 x := 1 ,
37 y := 1
38 ) ,
39
40 ’ c o u r s e c o r r e c t i o n ’ (x_next , y_next ) : : (integrity #= 1 # /\ engine

#= 1) => (
41 % i r r e g u l a r c o u r s e c o r r e c t i o n , d e s t r u c t i o n
42 ( ( ( x − x_next #< 0) #\ / (y − y_next #< 0) ) => (
43 state := 2 ,
44 integrity := 2 )
45 ;
46 % r e g u l a r c o u r s e c o r r e c t i o n
47 ( (x − x_next #>= 0) #\ / (y − y_next #>= 0) ) => (
48 state := 1 ,
49 x := x_next ,
50 y := y_next

95



Appendix B. Action System Prolog Notation of the Rocket Steering Software Ex-
ample

96

51 )
52 ) ) ,
53
54 ’ l a n d ’ : : (integrity #= 0 # /\ state #= 1) => (
55 state := 3 ,
56 engine := 0 ,
57 (
58 % p e r f e c t l a n d i n g
59 integrity := 0
60 ;
61 % damage on l a n d i n g
62 integrity := 1 )
63 ) ,
64
65 ’ r e p a i r ’ : : (engine #= 0 # /\ integrity #= 1) => (
66 % r e p a i r s u c c e s s f u l
67 integrity := 0
68 ;
69 % r e p a i r f a i l s
70 integrity := 1
71 ) ,
72
73 ’ i n t e g r i t y c h e c k ’ : : (integrity #= 0 # /\ state #= 4) => (
74 % back t o i d l e
75 state := 0
76 )
77 ) ,
78
79
80 dood (
81 ’ engage ’
82 ; [A :n ,B :n ] : ’ c o u r s e c o r r e c t i o n ’ (A , B )
83 ; ’ l a n d ’
84 ; ’ r e p a i r ’
85 ; ’ i n t e g r i t y c h e c k ’
86 ) ,
87
88 qdes (none ) .
89
90 %t y p e d e c l a r a t i o n s
91 type (bool , X ) :− X in 0 . . 1 , labeling ( [ ] , [ X ] ) .
92 type (int_0_2 , X ) :− X in 0 . . 2 , labeling ( [ ] , [ X ] ) .
93 type (int_0_4 , X ) :− X in 0 . . 4 , labeling ( [ ] , [ X ] ) .
94 type (n , X ) :− X in 0 . . 1 0 , labeling ( [ ] , [ X ] ) .

Listing B.1: Rocket example Action System in Prolog



C SMT-LIB Translation of the Rocket Steering Soft-
ware Example

1 ; g e n e r a t e d by t h e as2smt t o o l
2 ; t r a c e v a r i a b l e
3
4 ( declare− fun trace ( ) Int )
5 ( a s s e r t ( and (>= trace 0) (<= trace 5) ) )
6 ( declare− fun trace_0 ( ) Int )
7 ( a s s e r t ( and (>= trace_0 0) (<= trace_0 10) ) )
8 ( declare− fun trace_1 ( ) Int )
9 ( a s s e r t ( and (>= trace_1 0) (<= trace_1 10) ) )

10
11 ; i n i t i a l v a r i a b l e d e c l a r a t i o n s
12
13 ( declare− fun engine ( ) Int )
14 ( a s s e r t ( and (>= engine 0) (<= engine 1) ) )
15 ( declare− fun engine_post ( ) Int )
16 ( a s s e r t ( and (>= engine_post 0) (<= engine_post 1) ) )
17 ( declare− fun integrity ( ) Int )
18 ( a s s e r t ( and (>= integrity 0) (<= integrity 2) ) )
19 ( declare− fun integrity_post ( ) Int )
20 ( a s s e r t ( and (>= integrity_post 0) (<= integrity_post 2) ) )
21 ( declare− fun state ( ) Int )
22 ( a s s e r t ( and (>= state 0) (<= state 4) ) )
23 ( declare− fun state_post ( ) Int )
24 ( a s s e r t ( and (>= state_post 0) (<= state_post 4) ) )
25 ( declare− fun x ( ) Int )
26 ( a s s e r t ( and (>= x 0) (<= x 10) ) )
27 ( declare− fun x_post ( ) Int )
28 ( a s s e r t ( and (>= x_post 0) (<= x_post 10) ) )
29 ( declare− fun y ( ) Int )
30 ( a s s e r t ( and (>= y 0) (<= y 10) ) )
31 ( declare− fun y_post ( ) Int )
32 ( a s s e r t ( and (>= y_post 0) (<= y_post 10) ) )
33
34 ; parame te r d e c l a r a t i o n s
35
36 ( declare− fun course_correction_x_next ( ) Int )
37 ( a s s e r t
38 ( and
39 (>= course_correction_x_next 0)
40 (<= course_correction_x_next 10)
41 )
42 )
43 ( declare− fun course_correction_y_next ( ) Int )
44 ( a s s e r t
45 ( and
46 (>= course_correction_y_next 0)
47 (<= course_correction_y_next 10)
48 )
49 )
50
51 ; t r a n s l a t i o n o f t h e a c t i o n s y s t e m
52

97



Appendix C. SMT-LIB Translation of the Rocket Steering Software Example 98

53 ( a s s e r t
54 ( or
55 ( or
56 ( or
57 ( or
58 ( and
59 ( and
60 ( and
61 ( and
62 (= integrity 0)
63 (= engine 0)
64 )
65 (= x 0)
66 )
67 (= y 0)
68 )
69 ( and
70 (= trace 1)
71 ( and
72 (= engine_post 1)
73 (= integrity_post integrity )
74 (= state_post 1)
75 (= x_post 1)
76 (= y_post 1)
77 )
78 )
79 )
80 ( and
81 ( and
82 ( and
83 (= integrity 1)
84 (= engine 1)
85 )
86 ( and
87 ( and
88 (= trace 2)
89 (= trace_0 course_correction_x_next )
90 (= trace_1 course_correction_y_next )
91 )
92 ( or
93 ( and
94 ( or
95 (<
96 (- x course_correction_x_next )
97 0
98 )
99 (<

100 (- y course_correction_y_next )
101 0
102 )
103 )
104 (= engine_post engine )
105 (= integrity_post 2)
106 (= state_post 2)
107 (= x_post x )
108 (= y_post y )
109 )
110 ( and



Appendix C. SMT-LIB Translation of the Rocket Steering Software Example 99

111 ( or
112 (>=
113 (-x course_correction_x_next )
114 0
115 )
116 (>=
117 (- y course_correction_y_next )
118 0
119 )
120 )
121 (= engine_post engine )
122 (= integrity_post integrity )
123 (= state_post 1)
124 (= x_post course_correction_x_next )
125 (= y_post course_correction_y_next )
126 )
127 )
128 )
129 )
130 ( and
131 (>= course_correction_x_next 0)
132 (<= course_correction_x_next 10)
133 )
134 ( and
135 (>= course_correction_y_next 0)
136 (<= course_correction_y_next 10)
137 )
138 )
139 )
140 ( and
141 ( and
142 (= integrity 0)
143 (= state 1)
144 )
145 ( and
146 (= trace 3)
147 ( or
148 ( and
149 (= engine_post 0)
150 (= integrity_post 0)
151 (= state_post 3)
152 (= x_post x )
153 (= y_post y )
154 )
155 ( and
156 (= engine_post 0)
157 (= integrity_post 1)
158 (= state_post 3)
159 (= x_post x )
160 (= y_post y )
161 )
162 )
163 )
164 )
165 )
166 ( and
167 ( and
168 (= engine 0)



Appendix C. SMT-LIB Translation of the Rocket Steering Software Example 100

169 (= integrity 1)
170 )
171 ( and
172 (= trace 4)
173 ( or
174 ( and
175 (= engine_post engine )
176 (= integrity_post 0)
177 (= state_post state )
178 (= x_post x )
179 (= y_post y )
180 )
181 ( and
182 (= engine_post engine )
183 (= integrity_post 1)
184 (= state_post state )
185 (= x_post x )
186 (= y_post y )
187 )
188 )
189 )
190 )
191 )
192 ( and
193 ( and
194 (= integrity 0)
195 (= state 4)
196 )
197 ( and
198 (= trace 5)
199 ( and
200 (= engine_post engine )
201 (= integrity_post integrity )
202 (= state_post 0)
203 (= x_post x )
204 (= y_post y )
205 )
206 )
207 )
208 )
209 )

Listing C.1: Rocket example translation to SMT-LIB



Bibliography

[1] Bernhard K. Aichernig, Jakob Auer, Elisabeth Jöbstl, Robert Korosec, Willibald Krenn, Rupert
Schlick, and Birgit Vera Schmidt. Model-based mutation testing of an industrial measurement
device. In Tests and Proofs - 8th International Conference, TAP 2014, Held as Part of STAF 2014,
York, UK, July 24-25, 2014. Proceedings, pages 1–19, 2014. (Cited on page 91.)

[2] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Model-Based Muta-
tion Testing of Hybrid Systems. In Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede,
and Michael Leuschel, editors, Formal Methods for Components and Objects - 8th International
Symposium, FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected Pa-
pers, volume 6286 of Lecture Notes in Computer Science, pages 228–249. Springer, 2009. (Cited
on pages 2, 8 and 88.)

[3] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. Efficient Mutation
Killers in Action. In IEEE Fourth International Conference on Software Testing, Verification and
Validation, ICST 2011, Berlin, Germany, 21-25 March 2011, pages 120–129. IEEE Computer So-
ciety, 2011. (Cited on pages 25 and 39.)

[4] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. UML in action:
a two-layered interpretation for testing. ACM SIGSOFT Software Engineering Notes, 36(1):1–8,
2011. (Cited on pages ix, 25, 39, 77 and 78.)

[5] Bernhard K. Aichernig, Harald Brandl, and Willibald Krenn. Qualitative Action Systems. In Karin
Breitman and Ana Cavalcanti, editors, Formal Methods and Software Engineering, 11th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro, Brazil, Decem-
ber 9-12, 2009. Proceedings, volume 5885 of Lecture Notes in Computer Science, pages 206–225.
Springer, 2009. (Cited on pages 39 and 88.)

[6] Bernhard K. Aichernig and Jifeng He. Mutation testing in UTP. Formal Aspects of Computing,
21(1-2):33–64, 2009. (Cited on page 9.)

[7] Bernhard K. Aichernig and Elisabeth Jöbstl. Efficient Refinement Checking for Model-Based Mu-
tation Testing. In Antony Tang and Henry Muccini, editors, 2012 12th International Conference on
Quality Software, Xi’an, Shaanxi, China, August 27-29, 2012, pages 21–30. IEEE, 2012. (Cited
on pages 8, 25, 39, 53, 65, 68, 77, 88 and 91.)

[8] Bernhard K. Aichernig and Elisabeth Jöbstl. Towards Symbolic Model-Based Mutation Testing:
Combining Reachability and Refinement Checking. In Alexander K. Petrenko and Holger Schlin-
gloff, editors, Proceedings 7th Workshop on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25
March 2012., volume 80, pages 88–102, 2012. (Cited on pages 11, 13, 16, 39, 61 and 78.)

[9] Bernhard K. Aichernig and Elisabeth Jöbstl. Towards Symbolic Model-Based Mutation Testing:
Pitfalls in Expressing Semantics as Constraints. In Giuliano Antoniol, Antonia Bertolino, and Yvan
Labiche, editors, 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, Montreal, QC, Canada, April 17-21, 2012, pages 752–757. IEEE, 2012. (Cited on
pages 8 and 49.)

[10] Bernhard K. Aichernig, Elisabeth Jöbstl, and Matthias Kegele. Incremental Refinement Checking
for Test Case Generation. In Margus Veanes and Luca Viganò, editors, Tests and Proofs - 7th
International Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, volume
7942 of Lecture Notes in Computer Science, pages 1–19. Springer, 2013. (Cited on pages ix, 9, 10,
77, 88 and 91.)

101



Bibliography 102

[11] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for Mutants - Model-Based
Mutation Testing with Timed Automata. In Margus Veanes and Luca Viganò, editors, Tests and
Proofs - 7th International Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceed-
ings, volume 7942 of Lecture Notes in Computer Science, pages 20–38. Springer, 2013. (Cited on
page 88.)

[12] Bernhard K. Aichernig and Percy Antonio Pari Salas. Test Case Generation by OCL Mutation
and Constraint Solving. In 2005 NASA / DoD Conference on Evolvable Hardware (EH 2005), 29
June - 1 July 2005, Washington, DC, USA, pages 64–71. IEEE Computer Society, 2005. (Cited on
page 88.)

[13] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press, 2008.
(Cited on page 2.)

[14] Domogaj Babic. Description of the DIMACS format. http://www.domagoj-babic.

com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf, November 2014. (Cited on
page 20.)

[15] R.-J. Back. Correctness Preserving Program Refinements. Technical Report Mathematical Centre
Tracts #131, Mathematisch Centrum Amsterdam, 1980. (Cited on pages 8 and 88.)

[16] Ralph Back, Martin Buchi, and Emil Sekerinski. Adding Type-Bound Actions to Action-Oberon.
Technical report, Turku Centre for Computer Science, 1996. (Cited on page 88.)

[17] Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of Process Nets with Centralized
Control. In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, Proceedings of the
Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Mon-
treal, Quebec, Canada, August 17-19, 1983, pages 131–142. ACM, 1983. (Cited on pages 11
and 88.)

[18] Ralph-Johan Back and Reino Kurki-Suonio. Distributed Cooperation with Action Systems. ACM
Trans. Program. Lang. Syst., 10(4):513–554, 1988. (Cited on pages 11 and 88.)

[19] Ralph-Johan Back and Kaisa Sere. From Action Systems to Modular Systems. Software - Concepts
and Tools, 17(1):26–39, 1996. (Cited on page 88.)

[20] R. M. Balzer. EXDAMS: extendable debugging and monitoring system. In Proceedings of the May
14-16, 1969, spring joint computer conference, AFIPS ’69 (Spring), pages 567–580, New York,
NY, USA, 1969. ACM. (Cited on page 53.)

[21] Clark Barrett et al. CVC3. http://www.cs.nyu.edu/acsys/cvc3/, November 2014. (Cited
on page 30.)

[22] Clark Barrett et al. Parallel solving (CVC4). http://cvc4.cs.nyu.edu/wiki/User_

Manual#Parallel_solving, November 2014. (Cited on page 91.)

[23] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2010. (Cited on pages 20, 21 and 30.)

[24] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta
and D. Kroening, editors, Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (Edinburgh, UK), 2010. (Cited on pages 20, 22, 62 and 81.)

[25] Mordechai Ben-Ari. The bug that destroyed a rocket. SIGCSE Bull., 33(2):58–59, June 2001.
(Cited on page 1.)

http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
http://www.cs.nyu.edu/acsys/cvc3/
http://cvc4.cs.nyu.edu/wiki/User_Manual#Parallel_solving
http://cvc4.cs.nyu.edu/wiki/User_Manual#Parallel_solving


Bibliography 103

[26] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An Approach to Object-Orientation in Ac-
tion Systems. In Johan Jeuring, editor, Mathematics of Program Construction, MPC’98, Marstrand,
Sweden, June 15-17, 1998, Proceedings, volume 1422 of Lecture Notes in Computer Science, pages
68–95. Springer, 1998. (Cited on page 88.)

[27] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT - Formal System for Testing and
Debugging Programs by Symbolic Execution. In Proceedings of the International Conference on
Reliable Software, pages 234–245, New York, NY, USA, 1975. ACM. (Cited on page 53.)

[28] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Purandare, Philipp
Rümmer, and Georg Weissenbacher. Mutation-Based Test Case Generation for Simulink Models.
In Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors,
Formal Methods for Components and Objects - 8th International Symposium, FMCO 2009, Eind-
hoven, The Netherlands, November 4-6, 2009. Revised Selected Papers, volume 6286 of Lecture
Notes in Computer Science, pages 208–227. Springer, 2009. (Cited on page 89.)

[29] Timothy A. Budd and Dana Angluin. Two Notions of Correctness and Their Relation to Testing.
Acta Inf., 18:31–45, 1982. (Cited on page 7.)

[30] Mats Carlsson et al. Sixtus Prolog documentation on enumeration predicates. https://sicstus.
sics.se/sicstus/docs/4.2.3/html/sicstus.html/Enumeration-Predicates.

html, November 2014. (Cited on page 11.)

[31] Oliver Chafik. JNAerator. http://code.google.com/p/jnaerator/, November 2014.
(Cited on pages 23, 30 and 73.)

[32] Jürgen Christ. SMTInterpol. http://ultimate.informatik.uni-freiburg.de/

smtinterpol/, November 2014. (Cited on pages 30 and 77.)

[33] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An Interpolating SMT Solver.
In Alastair F. Donaldson and David Parker, editors, Model Checking Software - 19th International
Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings, volume 7385 of Lecture Notes
in Computer Science, pages 248–254. Springer, 2012. (Cited on page 19.)

[34] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Computing Small Unsatisfiable
Cores in Satisfiability Modulo Theories. J. Artif. Intell. Res. (JAIR), 40:701–728, 2011. (Cited
on page 19.)

[35] Lori A. Clarke. A System to Generate Test Data and Symbolically Execute Programs. IEEE Trans.
Software Eng., 2(3):215–222, 1976. (Cited on page 53.)

[36] David Cok. SMT-LIB turtorial. http://www.grammatech.com/resource/smt/

SMTLIBTutorial.pdf, November 2014. (Cited on page 21.)

[37] Henry Coles. PIT mutation testing tool. http://http://pitest.org//, November 2014.
(Cited on page 6.)

[38] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962. (Cited on page 18.)

[39] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. J. ACM,
7(3):201–215, 1960. (Cited on page 18.)

[40] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,

https://sicstus.sics.se/sicstus/docs/4.2.3/html/sicstus.html/Enumeration-Predicates.html
https://sicstus.sics.se/sicstus/docs/4.2.3/html/sicstus.html/Enumeration-Predicates.html
https://sicstus.sics.se/sicstus/docs/4.2.3/html/sicstus.html/Enumeration-Predicates.html
http://code.google.com/p/jnaerator/
http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://http://pitest.org//


Bibliography 104

2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008. (Cited on pages 16 and 19.)

[41] Leonardo Mendonça de Moura, Nikolaj Bjørner, et al. Z3 tutorial. http://rise4fun.com/z3/
tutorialcontent/guide#h23, November 2014. (Cited on page 22.)

[42] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978. (Cited on pages 5 and 7.)

[43] Iulian Dragos et al. Scala IDE. http://scala-ide.org/, November 2014. (Cited on page 23.)

[44] R. Frost and John Launchbury. Constructing Natural Language Interpreters in a Lazy Functional
Language. Computer Journal, 32(2):108–121, 1989. (Cited on page 40.)

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995. (Cited on page 28.)

[46] Evguenii I. Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-Solver. In 2002 Design,
Automation and Test in Europe Conference and Exposition (DATE 2002), 4-8 March 2002, Paris,
France, pages 142–149. IEEE Computer Society, 2002. (Cited on page 19.)

[47] Alberto Griggio et al. MathSAT. http://mathsat.fbk.eu/, November 2014. (Cited on
pages 30 and 77.)

[48] R. G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Transactions on Software
Engineering, SE-3(4):279–290, July 1977. (Cited on page 6.)

[49] Mark Harrah et al. Simple Build Tool (SBT). http://www.scala-sbt.org/, November 2014.
(Cited on pages 23 and 33.)

[50] C.A.R. Hoare and J. He. Unifying theories of programming, volume 14. Prentice Hall, 1998. (Cited
on page 9.)

[51] David Hoffman. I Had A Funny Feeling in My Gut. Washington Post, 1(10):A19, February 1999.
(Cited on page 1.)

[52] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and reasoning about
systems (2. ed.). Cambridge University Press, 2004. (Cited on pages 16 and 18.)

[53] Graham Hutton. Higher-Order Functions for Parsing. J. Funct. Program., 2(3):323–343, 1992.
(Cited on page 40.)

[54] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation Testing. IEEE
Trans. Software Eng., 37(5):649–678, 2011. (Cited on pages 6 and 7.)

[55] Elisabeth Jöbstl. Model-Based Mutation Testing with Constraint and SMT Solvers. PhD thesis,
April 2014. (Cited on pages 10 and 91.)

[56] James C. King. A New Approach to Program Testing. In Clemens Hackl, editor, Programming
Methodology, volume 23 of Lecture Notes in Computer Science, pages 278–290. Springer, 1974.
(Cited on pages 53 and 54.)

[57] James C. King. On Generating Verification Conditions for Correctness Proofs. In Hans Jürgen
Schneider and Manfred Nagl, editors, Fachtagung über Programmiersprachen, volume 1 of
Informatik-Fachberichte, pages 253–267. Springer, 1976. (Cited on page 53.)

http://rise4fun.com/z3/tutorialcontent/guide#h23
http://rise4fun.com/z3/tutorialcontent/guide#h23
http://scala-ide.org/
http://mathsat.fbk.eu/
http://www.scala-sbt.org/


Bibliography 105

[58] Willibald Krenn and Bernhard K. Aichernig. Test Case Generation by Contract Mutation in Spec#.
Electr. Notes Theor. Comput. Sci., 253(2):71–86, 2009. (Cited on page 88.)

[59] Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig. Mapping UML to Labeled Tran-
sition Systems for Test-Case Generation - A Translation via Object-Oriented Action Systems. In
Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael Leuschel, editors, For-
mal Methods for Components and Objects - 8th International Symposium, FMCO 2009, Eindhoven,
The Netherlands, November 4-6, 2009. Revised Selected Papers, volume 6286 of Lecture Notes in
Computer Science, pages 186–207. Springer, 2009. (Cited on page 88.)

[60] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Formal Methods
in System Design, 34(3):238–304, 2009. (Cited on page 89.)

[61] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point of View. Springer
Publishing Company, Incorporated, 1 edition, 2008. (Cited on page 18.)

[62] Matt Lake. The Big Cost of Software Bugs. http://www.computerworld.com/s/article/
9183580/Epic_failures_11_infamous_software_bugs, September 2010. (Cited on
pages x and 1.)

[63] J.P. Marques-Silva and K.A. Sakallah. GRASP – A New Search Algorithm for Satisfiability. In
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, pages
220–227, 1996. (Cited on page 19.)

[64] Jim McBeath. Scala Operator Precedence. http://jim-mcbeath.blogspot.co.at/2008/

09/scala-parser-combinators.html, November 2014. (Cited on page 46.)

[65] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), April
1965. (Cited on page 1.)

[66] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001., pages 530–535. ACM, 2001. (Cited on
page 19.)

[67] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and Abstract DPLL
Modulo Theories. In Franz Baader and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, 11th International Conference, LPAR 2004, Montevideo, Uruguay,
March 14-18, 2005, Proceedings., volume 3452 of Lecture Notes in Computer Science, pages 36–
50. Springer, 2004. (Cited on page 19.)

[68] Martin Odersky et al. Description of the DIMACS format. http://www.scala-lang.org/

documentation/books.html, November 2014. (Cited on page 23.)

[69] Martin Odersky et al. Scala Programming Language. http://www.scala-lang.org/, Novem-
ber 2014. (Cited on page 23.)

[70] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, Mountain View,
CA, 2nd edition edition, 2008. (Cited on pages 23, 27, 28, 40, 44 and 65.)

[71] A. Jefferson Offutt. Investigations of the Software Testing Coupling Effect. ACM Trans. Softw.
Eng. Methodol., 1(1):5–20, 1992. (Cited on page 7.)

[72] Terrence Parr et al. ANTLR parser generator. http://www.antlr.org, November 2014. (Cited
on page 40.)

http://www.computerworld.com/s/article/9183580/Epic_failures_11_infamous_software_bugs
http://www.computerworld.com/s/article/9183580/Epic_failures_11_infamous_software_bugs
http://jim-mcbeath.blogspot.co.at/2008/09/scala-parser-combinators.html
http://jim-mcbeath.blogspot.co.at/2008/09/scala-parser-combinators.html
http://www.scala-lang.org/documentation/books.html
http://www.scala-lang.org/documentation/books.html
http://www.scala-lang.org/
http://www.antlr.org


Bibliography 106

[73] Terrence Parr et al. ANTLR, tree pattern matching. https://theantlrguy.atlassian.net/
wiki/display/ANTLR3/Tree+pattern+matching, November 2014. (Cited on page 27.)

[74] Terrence Parr et al. ANTLR Works. http://www.antlr3.org/works/, month = nov, title =
ANTLR parser generator, year = 2013, 2014. (Cited on pages 23, 39 and 92.)

[75] Silvio Ranise and Cesare Tinelli. The SMT-LIB format: An initial proposal. In Pragmatics of
Decision Procedures in Automated Reasoning 2003, July 29, 2003, Miami, USA, pages 94–111,
2003. (Cited on page 19.)

[76] Microsoft Research. Z3. http://z3.codeplex.com/, November 2014. (Cited on pages 30
and 77.)

[77] Martin Richards. BCPL: A tool for compiler writing and system programming. In American
Federation of Information Processing Societies: AFIPS Conference Proceedings: 1969 Spring
Joint Computer Conference, Boston, MA, USA, May 14-16, 1969, pages 557–566. ACM, 1969.
(Cited on page 45.)

[78] Jordan Robertson. The Big Cost of Software Bugs. http://www.bloomberg.com/slideshow/
2012-08-03/the-big-cost-of-software-bugs.html, August 2012. (Cited on pages x
and 1.)

[79] SMT-COMP. Results of the SMT solver competition SMT-COMP. http://www.smtexec.org/
exec/?jobs=856, July 2011. (Cited on page 30.)

[80] James Strachan et al. Scala as the long term replacement for java/javac? http://macstrac.

blogspot.co.at/2009/04/scala-as-long-term-replacement-for.html, November
2014. (Cited on page 91.)

[81] Phillip Suter. ScalaZ3. https://github.com/psuter/ScalaZ3, November 2014. (Cited on
page 30.)

[82] Jan Tretmans. Test generation with inputs, outputs, and quiescence. In Tiziana Margaria and
Bernhard Steffen, editors, Tools and Algorithms for Construction and Analysis of Systems, Second
International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996, Proceedings., volume
1055 of Lecture Notes in Computer Science, pages 127–146. Springer, 1996. (Cited on page 88.)

[83] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach. Morgan Kauf-
mann, 2006. (Cited on pages 4 and 5.)

[84] Mark Utting, Alexander Pretschner, and Bruno Legeard. A Taxonomy of Model-Based Testing
Approaches. Softw. Test. Verif. Reliab., 22(5):297–312, 2012. (Cited on pages 2, 3 and 4.)

[85] Bill Venners et al. ScalaTest Framework. http://www.scalatest.org/, November 2014.
(Cited on page 23.)

[86] Alessandro Warth, James R. Douglass, and Todd D. Millstein. Packrat parsers can support left
recursion. In Robert Glück and Oege de Moor, editors, Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipulation, PEPM 2008, San
Francisco, California, USA, January 7-8, 2008, pages 103–110. ACM, 2008. (Cited on page 39.)

[87] Niklaus Wirth. A Plea for Lean Software. Computer, 28(2):64–68, 1995. (Cited on page 1.)

https://theantlrguy.atlassian.net/wiki/display/ANTLR3/Tree+pattern+matching
https://theantlrguy.atlassian.net/wiki/display/ANTLR3/Tree+pattern+matching
http://www.antlr3.org/works/
http://z3.codeplex.com/
http://www.bloomberg.com/slideshow/2012-08-03/the-big-cost-of-software-bugs.html
http://www.bloomberg.com/slideshow/2012-08-03/the-big-cost-of-software-bugs.html
http://www.smtexec.org/exec/?jobs=856
http://www.smtexec.org/exec/?jobs=856
http://macstrac.blogspot.co.at/2009/04/scala-as-long-term-replacement-for.html
http://macstrac.blogspot.co.at/2009/04/scala-as-long-term-replacement-for.html
https://github.com/psuter/ScalaZ3
http://www.scalatest.org/

	1 Introduction
	1.1 On the Importance of Testing Software
	1.2 Motivation
	1.3 Problem Description
	1.4 Model-based Testing
	1.5 Mutation Testing
	1.5.1 Equivalent Mutant Problem

	1.6 Model-based Mutation Testing
	1.6.1 Refinement

	1.7 Thesis contribution
	1.8 Thesis Structure

	2 Prerequisites
	2.1 Modeling Language: Action Systems
	2.1.1 Action System Formalism
	2.1.2 Refinement of Action Systems

	2.2 Satisfiability Modulo Theories
	2.2.1 SAT & SMT Solvers
	2.2.2 SMT-LIB


	3 The as2smt Tool: Overview and Architecture
	3.1 Environment
	3.1.1 External Tools Used for Implementation
	3.1.2 Implementation Language: Scala

	3.2 Process Description
	3.3 Packages
	3.3.1 Execute
	3.3.2 Parser
	3.3.3 Translation
	3.3.4 Solver
	3.3.5 Reachability
	3.3.6 Util

	3.4 Usage
	3.4.1 SBT: Configuration & Usage
	3.4.2 Running the Application

	3.5 Limitations of the Implemented Tool

	4 Translating Action Systems to SMT-LIB
	4.1 Input Language: Action Systems in Prolog
	4.2 Lexical and Syntactic Analysis
	4.2.1 Combinatory Parsing
	4.2.2 Abstract Syntax Tree Node Generation
	4.2.3 Precedence of Operators

	4.3 Translation from Action Systems to SMT-LIB
	4.3.1 Variable Declaration
	4.3.2 Assignment
	4.3.3 Do-od Block
	4.3.4 Sequential Composition
	4.3.5 Non-Deterministic Choice
	4.3.6 Guarded Command
	4.3.7 Trace
	4.3.8 Parameters

	4.4 Improving Performance
	4.4.1 Quantifier Elimination with the One-Point Rule
	4.4.2 Introducing Symbolic Execution
	4.4.3 Data Structures for Symbolic Execution
	4.4.4 Symbolic Execution Without Branching
	4.4.5 Symbolic Execution with Branching


	5 Refinement and Reachability
	5.1 Refinement Check
	5.1.1 Non-Refinement Formula
	5.1.2 Evaluating the Non-Refinement Formula
	5.1.3 Comparing Action Systems Syntactically

	5.2 Reachability Analysis
	5.2.1 Initial Strategy
	5.2.2 Reachability analysis by breadth-first search
	5.2.3 Precomputation of State Space
	5.2.4 Reachability In One Step

	5.3 Further optimisation
	5.3.1 Solver Access
	5.3.2 Incremental Solving
	5.3.3 Reachability Computation Strategies


	6 Case Studies
	6.1 Test Machine
	6.2 Test Input
	6.2.1 Car Alarm System
	6.2.2 Car Alarm System with PIN Input
	6.2.3 Triangle

	6.3 Stages of Development
	6.3.1 Quantifier Elimination
	6.3.2 Solver Access
	6.3.3 Incremental solving

	6.4 Configuration of Experiments
	6.5 Results
	6.5.1 Strategy 1: Reachability Analysis by Breadth-First Search
	6.5.2 Strategy 2: Precomputation of Reachable States and Check Each on Mutant
	6.5.3 Strategy 3: Precomputation of Reachable States, List and Check Each Mutant

	6.6 Conclusion of Results

	7 Related Work
	7.1 Related Work on Action Systems
	7.2 Related Work on Model-Based Mutation Testing

	8 Concluding Remarks
	8.1 Summary
	8.2 Contribution of this Thesis
	8.3 Future work

	A EBNF of Action System in Prolog Notation
	B Action System Prolog Notation of the Rocket Steering Software Example
	C SMT-LIB Translation of the Rocket Steering Software Example
	Bibliography

