
Masterarbeit

Authentication Performance
Evaluation

based on NFC Host Emulation

Matthias Schwarz, BSc.

————————————–

Institut für Technische Informatik
Technische Universität Graz

Begutachter: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger
Betreuer: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger

Dipl.-Ing. Manuel Menghin

Graz, im September 2012

Kurzfassung

In heutigen Radio Frequency Identification (RFID) Systemen werden oft so genannte
Contactless Smart Cards wie zum Beispiel der NXP MIFARE DESFire EV1 ver-
wendet, die Sicherheitsstandards wie Common Criteria Certification CEAL4+ oder
höher erfüllen. Um in diesen Systemen die Authentizität von Karte und Lesegerät
sicher zu stellen kommen Authentifizierungsprotokolle basierend auf offenen Kryp-
tographie Standards wie Data Encryption Standard (DES), triple DES oder Ad-
vanced Encryption Standard (AES) zum Einsatz. Die dafür benötigte Rechen-
leistung wird im Falle der Smart Cards von dezidierten Kypto Coprozessoren er-
bracht. Diese ermöglichen es, die erforderlichen kryptografischen Operationen in
einem Zeitrahmen, der in der ISO14443 Norm beschrieben wird, abzuarbeiten.

Auf Basis dieser RFID Technologie entstand in den letzten Jahren die sogenan-
nte Near Field Communication (NFC) Technologie. Heutige NFC-fähige Mobiltele-
fone sind rückwärtskompatibel zum ISO 14443 Standard und sind mittlerweile mit
leistungsfähigen CPUs bzw. Basisband Prozessoren ausgestattet. Im sogenannten
Karten Emulationsmodus sind diese in der Lage, sich wie konventionelle Contactless
Smart Cards zu verhalten. Die dafür nötigen Rechenoperationen werden in einem
sogenannten Trusted Execution Environment (TEE) durchgeführt wie z.B. einer
SIM Karte oder einem Secure Access Module (SAM) e.g. NXP SmartMX.

Diese Arbeit zeigt die Fähigkeit eines modernen NFC-fähigen Mobiltelefons diese
Karten Emulation auerhalb des Trusted Execution Environment eines Secure Ele-
ment (SE) über den Basisband Prozessor durchzuführen. Am Beispiel eines AES
Authentifizierungsprotokolls, wie es der MIFARE DESFire EV1 verwendet, wird die
Performance der Authentifizierung auf einem Mobiltelefon gezeigt und durch frei-
schalten des sogenannten Host Emulationsmodus eine Proof of Concepte Implemen-
tierung erstellt. Dies Implementierung zeigt, dass es möglich ist die AES Authen-
tifizierung in vergleichbarere Zeit zur Emulation mittels SIM Karte durchzuführen.

I

Abstract

Contactless smart cards are commonly used in nowadays Radio Frequency Identi-
fication (RFID) systems. These credentials e.g. the NXP MIFARE DESFire EV1
meet security standards like Common Criteria Certification CEAL4+ and higher.
To ensure the authenticity of the credential and the reader these systems rely on
certain authentication protocols based on open cryptography standards like Data
Encryption Standard (DES), triple DES and Advanced Encryption Standard (AES).
Usually contactless smartcards use a dedicated crypto coprocessor to compute these
cryptographic functions in a time frame defined by ISO14443 standard.

The upcoming Near Field Communication (NFC) technology is based on this RFID
technology and therefore NFC enabled cell phones are backwards compatible to the
existing ISO14443 standard and come along with fast CPUs or base band processors.
In a card emulation mode they can act like a conventional Contactless Smartcard
whereby the emulation is hosted in a Trusted Execution Environment (TEE) like a
SIM card or a Secure Access Module (SAM) e.g. SmartMX.

This work shows the abilities of a modern NFC smart phone to host this card
emulation not in the Trusted Execution Environment of Secure Element (SE) but
on the base band processor. Using the example of the AES mutual authentication
protocol of a MIFARE DESFire EV1 this work shows the timing behavior on a
smart phone. By enabling the so call Host Emulation Mode a Proof of Concept
implementations is provided. The measurements on this implementation show that
the authentication protocol can be executed in comparable time to existing SIM
card emulations.

II

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

III

Acknowledgment

Diese Diplomarbeit wurde im Studienjahr 2011/2012 in Zusammenarbeit mit NXP
Semiconductors Austria und dem Institut für Technische Informatik an der Tech-
nischen Universität Graz durchgeführt.

Hiermit möchte ich allen, die mich bei dieser Arbeit unterstütz haben meinen Dank
aus sprechen. Besonders möchte ich meinem Betreuer bei NXP Semiconductors Aus-
tria Dipl.-Ing. Wolfgang Steinbauer sowie Dipl.-Ing., Diplomé Ingénieur (ECP),
M.A. Rainer Lutz für die Ermöglichung diese Projekts danken sowie allen andern
Mitarbeitern bei NXP die zum Gelingen dieser Arbeit beigetrage haben. Des Weit-
eren möchte ich mich auch bei meinen Betreuern an der Universität Ass.-Prof.Dipl.-
Ing.Dr.techn. Christian Steger, Dipl.-Ing. Manuel Menghin und Dipl.-Ing. Norbert
Druml herzlich bedanken die mich mit Verständnis und konstruktiven Anregungen
unterstützt haben.

Ganz besonders möchte ich mich bei meiner Freundin Yvonne für ihr Verständ-
nis und ihre Unterstützung in dieser nicht immer leichten Zeit bedanken. Ohne sie
wäre der Abschluss diese Arbeit nicht möglich gewesen.

Nicht zuletzt möcht ich noch meinen Eltern für die Unterstützung während des
Studiums herzlich danken!

Graz, im Mai 2012 Matthias Schwarz

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure of this work . 3

2 State of the Art and Related Work 4
2.1 RFID . 4

2.1.1 Basics . 4
2.1.2 Smart Card . 5
2.1.3 Near Field Communication . 9
2.1.4 Use Case: Access Management 14

2.2 Crypto Algorithm . 17
2.2.1 Advanced Encryption Standard AES 17
2.2.2 Related Work on AES Implementations 20

2.3 Security Aspects of RFID Systems 21
2.3.1 Attacks on Cryptography . 21
2.3.2 Attacks on the RFID System 21

3 Design 23
3.1 Project Plan and Tasks . 23

3.1.1 Starting Situation . 23
3.1.2 Work Flow . 24

3.2 Hardware and Platform Selection . 25
3.2.1 Selection of Processor . 25
3.2.2 NFC Phone . 26
3.2.3 Existing devices for Comparison 26

3.3 Protocol Analysis . 27
3.4 Common Elements for all Implementations 28
3.5 Design of C Implementation . 29
3.6 Design of Application Level Implementations 29

3.6.1 Interface . 29
3.6.2 Java Implementation . 30
3.6.3 JNI implementation . 30

V

3.7 Design of Proof of Concept . 31
3.7.1 Platform Analysis . 31
3.7.2 Stack Adoptions . 34
3.7.3 Implementation Levels . 37
3.7.4 Profiling and Timestamps . 38
3.7.5 PoC Use Case . 40

4 Implementation 42
4.1 Used Hardware Platforms . 42

4.1.1 LPC1343 LPCXPresso board 42
4.1.2 Nexus S . 44

4.2 Used Developing Tools . 45
4.2.1 LPCXpresso IDE . 45
4.2.2 Eclipse . 45
4.2.3 Visual Studio . 46
4.2.4 Testbench . 46
4.2.5 Android System Build Environment 46
4.2.6 Used Versions of Developing Tools 47

4.3 C Implementation . 47
4.3.1 Gladman Implementation . 48
4.3.2 Structure of Implementation 48

4.4 Application Level Implementations 48
4.4.1 User Interface . 48
4.4.2 Java Implementation . 49
4.4.3 JNI Implementation . 51

4.5 Proof of Concept Implementation . 52
4.5.1 Stack Adaptation . 52
4.5.2 PoC Stack Level . 54
4.5.3 Routing . 55
4.5.4 SDK Adoption . 57
4.5.5 PoC Application Level . 57
4.5.6 PoC Use Case Implementation 59

5 Experimental Results 60
5.1 Equipment and Tools . 60

5.1.1 ISO Setup . 60
5.1.2 Android Debug Bridge and LogCat 61
5.1.3 Time Measurement . 62

5.2 Devices for Comparison . 64
5.3 C Implementation . 65
5.4 Application Level Implementations 66

5.4.1 Multiple Repetitions . 67
5.5 Proof of Concept Measurement . 69

VI

5.5.1 PoC Stack . 69
5.5.2 PoC Java . 70
5.5.3 PoC JNI . 71

5.6 Discussion of Measurement Results 72
5.7 Impact on the Integrity of Existing RFID System 77
5.8 Usage Possibility for the Host Emulation 78

6 Conclusion and Future Work 79
6.1 Conclusion . 79
6.2 Future Work . 80

Bibliography 81

A Abbreviations A 1

B Measurement Tables B 1
B.1 PoC Stack . B 1
B.2 PoC JAVA . B 2
B.3 PoC JNI . B 4

VII

List of Figures

2.1 Block Diagram of MIFARE DESFire [NXP10a] 6
2.2 Level 3 and 4 Activation after ISO 14443 [ISO08] 8
2.3 Overview of NFC Forum Architecture [LR10] 9
2.4 Passive Mode - Card Emulation [Fin10] 10
2.5 Basic Components of the NFC-functionality of a Mobile Device [LR10]

. 11
2.6 Components of PN65 [NFC11a] . 13
2.7 PN544 Block Diagram [NXP10b] . 13
2.8 Generic Access System [RNP10] . 14
2.9 Principle Access Control Procedure with Mutual Authentication . . . 16
2.10 Input to, and output from, the cipher state array [Gla07] 17
2.11 SubBytes Transformation [Gla07] . 18
2.12 ShiftRows Transformation [Gla07] 19
2.13 MixColumns Transformation [Gla07] 19
2.14 XorRoundKey Transformation [Gla07] 20

3.1 Work Flow Task and their Dependences 25
3.2 Schematic AES Authentication Protocol 27
3.3 Android Stack . 31
3.4 AndroidGlue [Mad11] . 32
3.5 FRI and HAL Architecture [NXP11c] 33
3.6 HCI Activation Sequence . 35
3.7 HCI Protocol for Host Emulation . 36
3.8 Schematic Position of Timing Points for PoC Stack 38
3.9 Schematic Position of Timing Points for PoC Java 39
3.10 Schematic Position of Timing Points for PoC JNI 40

4.1 LPC13xx Block Diagram [NXP11b] 43
4.2 Screenshot Graphical User Interface 49
4.3 Application Class Diagram of Java Implementation 50
4.4 Sequence Diagram of Authentication with Java Implementation . . . 51
4.5 Application Class Diagram of JNI Implementation 52
4.6 Call Trace for Initializing Host Emulation 53
4.7 Structure AES Authentication Communication Blocks 55

VIII

4.8 Data Flow after HCI Receive Event for PoC Application Level Im-
plementations . 56

4.9 Class diagram of PoC Java . 58
4.10 Sequence diagram for PoC JNI with callback 58
4.11 Structure of Selcect Application Command and Response 59
4.12 Structure of Read Command and Response 59

5.1 Complete Test Bench in Detail [GBBM08] 61
5.2 Average Measured Computation Times of JNI and Java Implementation 67
5.3 Repetition effect on JAVA Implemetation 68
5.4 Measured FDT of PoC Stack . 69
5.5 Measured FDT of PoC Java with intend notification 70
5.6 Measured FDT of PoC JNI with intend notification 71
5.7 Callback and Intent comparison for PoC JNI 73
5.8 Measured FDT for PoC Use Case on PoC Stack 74
5.9 Comparison Devices and PoC Implemetations PICCBlock1 75
5.10 Comparison Devices and PoC Implemetations PICCBlock2 76

IX

List of Tables

2.1 List of Available NFC Phones . 12

3.1 Elements of the User Interface . 30

4.1 Card Emulation Type A Register Values 54

5.1 Profiling Time Consumption . 63
5.2 Correction Values for Profiling . 64
5.3 Measured FDT of Comparison Devices 64
5.4 Computation Cycles for Different Compiler Settings 65
5.5 Computation Cycles for Different Number of Lookup Tables and Code

Unroll . 66
5.6 Computation Cycles for Different Number of Lookup Tables with JNI

Implementation . 67
5.7 Measured FDT of PoC Java with Intent Notification for PICCBlock1 71
5.8 C vs JNI . 72
5.9 FDTs of PoC Use Case Commands for Different PoC Implementations 74

B.1 Total Measurement Results for PoC Stack B 1
B.2 Total Measurement Results for PoC Java with Intent Notification . . B 2
B.3 Total Measurement Results for PoC Java with Callback Notification . B 3
B.4 Total Measurement Results for PoC JNI with Intent Notification . . . B 4
B.5 Total Measurement Results for PoC JNI with Callback Notification . B 5

X

Chapter 1

Introduction

1.1 Motivation

It’s impossible to exclude Radio Frequency Identification (RFID) Systems from our
daily live. They play important roles in many areas e.g. logistics, animal identifica-
tion or anti-theft protection. While early systems just had the possibilities to more
or less store a certain amount of data on a transponder and recall this if needed
or indicate their presence in a reader field, nowadays systems have abilities to en-
crypt data and carry out complex computation work. Therefore they can be used
in security relevant areas like access management, ticketing or payment solutions.
State of the art secure RFID systems rely on chip card transponders with micro
controllers. They guarantee the authenticity of the two counterparts (reader and
card) with encrypted data transfer. An example of this micro controller card is the
MIFARE DESFire EV1[NXP10a], which can use an AES authentication protocol
for this purpose. On this so called contactless smart card the crypto function are
typically carried out on specific crypto hardware.

The introduction of the NFC Standards resolved the strict isolation of active and
passive component in terms of dedicated reader or transponder. New NFC devices
like smart phones are able to emulate card. Usually this is done in a secure environ-
ment like in additional hardware modules e.g. SmartMX and Universal Integrated
Circuit Card (UICC) or Subscriber Identity Module (SIM) card to exclude from
untrusted access. The recent speed up in mobile processors used in NFC enabled
mobiles and smart phones and the performance evaluation on other AES implemen-
tations [Sha06] make it likely that this computations can be done on the base band
processor of this devices as well.

1

CHAPTER 1. INTRODUCTION 2

1.2 Objectives

The new possibilities of NFC enabled mobile phones bring up the following questions:

• Is it possible to compute the AES base authentication protocol on a mobile
phone’s base band processor in comparable time to existing smart card and
NFC solutions?

• How does the context of a mobile phone environment affect the computation
time and total delays?

• Can the computation on the base band processor affect the security of systems
relying on this AES based authentication?

Therefore it is the main objective to give an answer to these questions. This should
be done by providing different implementations of the AES authentication protocol
as it is used by a MIFAR DESFire EV11 and a evaluation of their performance.
Thereby each one of these implementations aims to show a partial aspect.

The first implementation on a plain ARM processor should show the basic per-
formance on typical mobile phone CPU without the capability of hardware crypto
acceleration and without the overhead of an operating system (OS).

A second implementation should show the influence of an OS. This should be done
on a free available NFC enabled smart phone and should be compared to a third
implementation in a different programming language for the same hardware plat-
form and OS.

To provide a proof of concept the hidden card emulation features of a NFC mo-
bile phone via the base band processor should be enabled and the authentication
protocol should be attached.

A comparison to state of the art smart card and card emulation solutions should
show whether the host emulation could be used in a practical access management
system or if it could be a gateway for possible attacks.

1Will be explained in Chapter 2

CHAPTER 1. INTRODUCTION 3

1.3 Structure of this work

Chapter 2 starts with the introduction into the state of the art including the
relevant basics of RFID and NFC technology plus a description of the access man-
agement use case. Describing the AES crypto algorithm and its related work will
round up this chapter.

In Chapter 3 the necessary steps for achieving the objectives are defined and the
chosen platforms are lined out as well as the design of the protocol implementations
and the proof of concept.

Later on, in Chapter 4, it will be described how the actual implementations and
the proof of concept are carried out.

The actual measurements and results are presented in Chapter 5 followed by an
analysis of the impact on existing RFID systems as well as statements to the usabil-
ity of the host emulated AES authentication.

In the last Chapter 6 the work shall be completed with an all-embracing con-
clusion and future perspective.

Chapter 2

State of the Art and Related Work

In the first part of this chapter the basics of RFID and NFC systems are described.
Later on the focus moves to AES cypher and the chapter is closed by an assumption
of possible attacks on RFID systems.

2.1 RFID

2.1.1 Basics

Generally spoken Radio Frequency Identification (RFID) is a technology that uses
electromagnetic fields to transmit data for the prose of identification. Such an RFID
system in principle consists of two components [Fin10].

• A transponder or tag that contains information and can be attached to other
objects to identify them.

• And a reader to contactessly reads and/or writes the information on this tag.

RFID systems can use different methods and frequencies to transfer the data. De-
pending on that the reading range can be from a few centimeters up to more than 100
meters. Beside others they can roughly be categorized in system using a Backscat-
ter principle to perform the data transfer from the transponder to the reader and
systems using load modulation.

Backscatter

In a backscatter system the transponder is able to modulate the reflected electromag-
netic wave sent from the reader. Usually this system is operating in the Microwave
area as the energy of the reflected wave rises with the frequency [Fin10].

4

CHAPTER 2. STATE OF THE ART AND RELATED WORK 5

Load Modulation

Load modulation is normally used for short rage devices where the tag has to be in
the near field of the reader and therefore is inductively coupled. By switching a load
resistor the tag can influence the electromagnetic field provider by the reader. This
can be sensed by the reader and be treated like an ordinary amplitude modulation.

The field of application for RFID systems is manifold. They reach from animal
identification,logistic solutions over anti-theft to contactless measurement applica-
tions. There the physical appearance if the tags can be very different e.g. Glass
tube transponder, Keys and Key Fobs, smart labels [Fin10]. For personal identifica-
tion and accesses management often credentials (RFID transponders) in check card
format are used.

2.1.2 Smart Card

Smart cards are plastic cards with normed dimensions that are featured with a mi-
crochip [LR10, translated].

They can be used for a range of applications like identification cards or bank cards.
In principle they can be categorized in Storage cards or Processor cards. Proces-
sor cards contain a micro controller and the functionality depends on the software
running on it [LR10, c.f.]. These cards can also contain additional hardware blocks
like coprocessors for cryptography.

Contactless Smart Card

If such a microprocessor card features a RFID interface it is a contactless smart
cards. Even if there are a number of different contactless smart card types we want
to concentrate on cards compatible to ISO/IEC 14443. A representative of this card
type is the MIFARE DESFire EV1.

MIFARE DESFire EV1

The MIFARE DESFire EV1 is compatible to ISO/IEC 14443A that fulfils Common
Criteria Certification EAL4+. Some of its additional features are [NXP10a, c.f.]:

• ISO/IEC 7816 compatibility

• 7 bytes or RANDOM ID

• Mutual three pass authentication

• Hardware DES using 56/112/168 bit keys featuring key version, data authen-
ticity by 8 byte CMAC

CHAPTER 2. STATE OF THE ART AND RELATED WORK 6

• Hardware AES using 128-bit keys featuring key version, data authenticity by
8 byte CMAC

• Up to 28 applications with 32 files each

The principle function blocks of the MIFARE DESFire EV1 can be seen in figure 2.1.

Figure 2.1: Block Diagram of MIFARE DESFire [NXP10a, p.5]

ISO 14443

This standard describes the transponder types relevant for this work, the so called
Proximity Cards. They are powered by alternating magnetic field of a reader at
frequency of 13.56MHz and operate in range of about 10 cm. Their physical ap-
pearance and behaviour are standardized in the ISO 14443 [ISO08] which consists of
four parts. The first part describes the physical characteristics and defines different
classes of tags according to their antenna size and shape. In the second part the
field and signal shapes the reader or proximity coupling device (PCD) and the tag
or proximity card (PICC) use to exchange data are described. It also distinguishes
between two types of tags, Type A and Type B. The two types differ in signal shape
and bit coding. To reference a certain PICC type in this woke it will be indicated
by a letter e.g. 14443A for type A.
The framing and the anticollision mechanisms for operating with more than one

CHAPTER 2. STATE OF THE ART AND RELATED WORK 7

PICC in the reader field are described in Part 3. Commands of this part will be
called Level 3 commands. The so called Level 4 commands are defined in the last
part of the standard as well as the framing for upper layer commands and applica-
tion data.

In order to exchange higher level data the PICC has to be in a certain active state.
The steps needed to activate a certain type A tag to level 4 is shown in Figure 2.2.

First the PCD sends a “Request“ (REQA). All PICCs in the field will answer to this
with the “Answer to Request“ (ATQA). In the anticollision loop a PICC certain UID
is address and selected. The received “Answer to Select“ (SAK) tells the PCD if the
PICC is compliant to ISO/IEC 14443-4. If so it sends the “Request for Answer To
Select“ (RATS) command. In the “Answer To Select“ (ATS) the PICC can define
how much time it needs to for responding to a Level 4 command. This is the so
called Frame Waiting Time (FWT). This can have a value between 302 s and 4949
ms. If the PICC supports the “Protocol and Parameter Selection“ (PPS)’ command
(also coded in the ATS), this can be used to change the transmission rate in both
directions. Once the card is activate to this level it can communicate transparently
with previously defined (or default) parameters. Additionally, if the allocated FWT
is not sufficient for responding to a specific command, the PICC can extend that
time temporarily with a special respond (Waiting time extension WTX) up to 292
seconds.
As this standard does not include security mechanisms, this will be considered on a
higher abstraction level.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 8

Institut für Technische Informatik
www.ITI.TUGraz.at

2

 Matthias Schwarz Graz, 5.3.2012 Secure Authentication Performance

Card Background

Field On

Send REQA

Receive ATQA

Anticollision
Loop

Use
ISO/IEC14443-

4 protocol?

Send RATS

Receive ATS

PPS
supported

?

Exchange
Transparent Data

ATS
available?

yes

yes

Parameter
change?

Send PPS Request

Receive PPS Response

no

no

no

yes

yes

no

Pa
rt

 3
A

 S
ec

tio
n

Pa
rt

 4
A

Se
ct

io
n

Background and Related Work

Figure 2.2: Level 3 and 4 Activation after ISO 14443 [ISO08]

CHAPTER 2. STATE OF THE ART AND RELATED WORK 9

2.1.3 Near Field Communication

The idea of NFC is to harmonize today’s contactless technologies [NFC11b, c.f.].

This technology tears down the strict separation between active reader and pas-
sive tag [LR10]. Such devices are able to switch between active polling and passive
listening. It combines the existing RFID Standards ISO14443 Type A and B and
JIS X 6319-4 (FeliCa) with additional protocols for the communication between two
NFC devices in ISO/IEC 18092 or ECMA-340.

A NFC device should support three modes of operation. Figure 2.3 shows them
with the according standards.

Figure 2.3: Overview of NFC Forum Architecture [LR10, p.90]

• The peer to peer (P2P) Mode is used for the communication between two NFC
devices. This can either be done in a passive communication mode where one
device (the initiator) provides the field and the other (the target) answers with
load emulation or active communication mode where both devices provide their
own field one after the other. The used Protocol is called NFCIP-1 defined in
ISO/IEC 18092.

• In the Reader/Writer-Mode the device acts like a convention PCD device. It
provides the field and senses the load modulation of a PICC.

• The most relevant mode for this work is the card emulation mode. In that
mode the NFC device acts like a PICC and modulates the field of a PCD as
shown in figure 2.4.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 10

Figure 2.4: Passive Mode - Card Emulation [Fin10, p. 58]

These abilities of NFC devices offer a lot more possible application areas than RFID
tags could on their own. Especially when combining those devices with internet
connection like this is done on NFC enabled smart phones. This allows for examle
to:

• download tickets and use the mobile to pass the access control.

• display informations from a smart poster

• Exchange business card

• Get and use coupons

The list of possible application is still growing.

Mobile phones

To provide the described functionalities a NFC enabled mobile phone should have
at least these four components you can see in figure 2.5 [LR10]

• A base band processor to host applications and control the other components

• A NFC controller to control the RF Interface

• A Secure Element to provide a trusted Execution environment

• And a NFC Antenna

CHAPTER 2. STATE OF THE ART AND RELATED WORK 11

Figure 2.5: Basic Components of the NFC-functionality of a Mobile Device [LR10,
p.146]

For the connection between the NFC controller and the Secure Element (SE) two
protocols have been specified. If the SE is a UICC or SIM, the communication is
done over the so called Single Wire Protocol (SWP) defined in ETSI TS 102 613.
The second possibility is to connect a SE, e.g. at SmartMX over the NFC- WI as
defined in ECMA-373. By principle more than one of this secure elements could be
used at the same time and each could host several cards but in some cases this can
lead to problems for example when the reader specification allows just one RFID
card in the field. In [LR10] and [MDLS08] several approaches for solving this prob-
lem are discussed but no standardized solution has been found so far.

There are already a number of NFC enabled smart phones commercially available.
A collection of them can be seen in table 2.1. All of these phones could fulfil the
above mentioned requirements.
It is not always known which actual NFC chip is used within this phones. In case
of the Google Nexus S documented tear down [ifi11] shows that this device uses an
NXP PN65 chip. Therefore they will be described briefly.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 12

Name Hersteller OS

Nexus S Samsung Android
Galaxy Nexus S Samsung Android
Galaxy S2 NFC Samsung Android

Galaxy Note Samsung Android
Sonic U8650 / T20 Huawei / Turckcell Android

Droid Razr Motorola Android
Ruby HTC Android

Liquid Express HTC Android
C7 Nokia Symbian3
N9 Nokia MeeGo
700 Nokia Symbian Belle
701 Nokia Symbian Belle

Wave 578 Samsung Bada
Wave Y Samsung Bada
Wave M Samsung Bada

Bold 9900 BlackBerry BB 7 OS
Curve 9350 BlackBerry BB 7 OS

Table 2.1: List of Available NFC Phones

NFC Controller Chip

In the schematic picture of the PN65 in figure 2.6 you can see, that it hosts a PN544
NFC chip which is connected to a SmartMX in the same package. For the purpose
of this work this SmartMX is not relevant and the PN65 can be treated the same
way as the PN544. Therefore only this chip is described in detail

CHAPTER 2. STATE OF THE ART AND RELATED WORK 13

Institut für Technische Informatik
www.ITI.TUGraz.at

4

 Matthias Schwarz Graz, 5.3.2012 Secure Authentication Performance

Prove of Concept

FRI/API - Host Controller

PN65 PN544

HCI

PN53x

SWP

80C51

HAL

BFL

U
IC

C

Sm
ar

tM
X

PN51x

SWP

S2C

Antenna
(CLF)

Design and Implementation

Figure 2.6: Components of PN65 [NFC11a]

Figure 2.7: PN544 Block Diagram [NXP10b, p. 3]

CHAPTER 2. STATE OF THE ART AND RELATED WORK 14

If you look at the composition this PN544 in figure 2.7 it can be seen, that in
principle the SE can be connected in different ways.One is to do it over the NFC-WI
interface for the Secure Application Module (SAM) like the SmartMX. This interface
is connected directly to the Contactless UART Block whereas the connection over
the Single Wire Protocol (SWP) interface and the Host interface are established
over the chips CPU. This means, at least theoretically, that the last two should
have similar access possibilities. The relevant functional abilities of the PN544 will
be described later in chapter 3 as well as the Host Controller Interface (HCI) defined
in [ETS08].

Card Emulation Solutions

As described before, a NFC enabled cell phone should be able to emulate a RFID
card. In fact there are not many solutions available on the commercial market. This
is most likely because of the not fully developed ecosystem that has to deal with
proprietary smart card solutions and restricted access to the secure elements.

Nevertheless the company Gemalto announced in 2010 to be the first to integrate
a MIFARE DESFire card emulation in a SIM card [Gem10]. Also emulations on
SmartMX exist but because of the mentioned restricted access rights they are not
available on a phone.

2.1.4 Use Case: Access Management

One of the key applications in the truest sense of the word of RFID systems is
the access control. Even if most of the following points hold for logical access
management as well this work will focus on providing physical access to restricted
areas. Therefore the schematic setup of a access management system can be seen in
figure 2.8.

Intrusion detection,
fraud management

Access card Transceiver Door controller

Network

Backend

Figure 2.8: Generic Access System [RNP10, p. 15]

CHAPTER 2. STATE OF THE ART AND RELATED WORK 15

You can distinguish between an online and an offline system.

The offline system just contains the left parts of figure 2.8. The door controller
is not connected to a network or backend system. Therefore it has to store all the
relevant keys and white listed card IDs. This topology is useful for small systems
because a high number of these standalone controllers comes along with a high man-
aging effort.

In an online system the backend system is connected to all controllers. This kind
systems is easier to maintain and manage and it gives much more possibilities to
detect frauds and intrusion e.g. by comparing the locations where a tag is used and
if the time between the usages is plausible.

Authentication Flow

Old RFID access management systems often just use the card UID for checking the
cards authenticity. These systems can be spoofed easily as there already exist cheap
solutions for cloning the UID. To achieve a state of the art security level a certain
Authentication Protocol is recommended in [RNP10].

The practical implementation of this protocol for a Type A contactless smart card
like the MIFARE DESFire EV1 is shown in figure 2.9. It highlights the relevant
information the reader receives from the card during this procedure. For authenti-
cation it is recommended to use diversified key. That means each credential is using
a different key that is derived from a master key and e.g. the cards UID. After this
mutual authentication all messages should be protected by a message authentication
code (MAC) or full encryption.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 16

Figure 2.9: Principle Access Control Procedure with Mutual Authentication

CHAPTER 2. STATE OF THE ART AND RELATED WORK 17

2.2 Crypto Algorithm

The relevant encryption standard in this work is the Advanced Encryption Standard
(AES). Therefore this section gives a summary of this algorithm as well as the known
implementations and evaluations. This is important to see the possible performance
switches to boost the performance of the algorithm.

2.2.1 Advanced Encryption Standard AES

The AES was originally called Rijndael algorithm and was developed by Joan Dae-
men and Vincent Rijmen. It was adopted by the U.S. National Institute of Standards
and Technology NIST after a five-year standardization process to find a follower to
the Data Encryption Standard DES. The Algorithm that is described in the AES
is a specific variant of the Rijndael algorithm where the block size is fixed at 128.
Therefore it is specified for key lengths of 128, 192 and 256 bits.

For doing an encryption the input data are stored in a four by four byte matrix
which is called the state as you can see in figure 2.10.

Figure 2.10: Input to, and output from, the cipher state array [Gla07, p. 2]

Next this state is treated according to the following structure of the AES algorithm
[Gla07, Sha06, c.f.]:

1. Key schedule

2. Initial round

(a) XorRoundKey Transformation

3. (Nr - 1) Rounds (where Nr is 10, 12 or 14, depending on the key length)

(a) SubBytes Transformation

(b) ShiftRows Transformation

CHAPTER 2. STATE OF THE ART AND RELATED WORK 18

(c) MixColumns Transformation

(d) XorRoundKey Transformation

4. Final round

(a) SubBytes Transformation

(b) ShiftRows Transformation

(c) XorRoundKey Transformation

Key schedule

To do the AES encryption a key for each round has to be derived. Therefore the
original key is expanded with the Rijndael key schedule as described in [Gla07].
The expansion can be done totally in advance or stepwise before each round.

SubBytes Transformation

At the SubBytes Transformation on all elements of the state array a non-linear byte
substitution is performed. The used substitution table is the so called s-box and is
constructed as described in [Gla07, p. 7].

Figure 2.11: SubBytes Transformation [Gla07, p. 7]

ShiftRows Transformation

For the ShiftRows Transformation the rows of the state get cyclically shifted. The
nth row is shifted n-1 bytes to the left as shown in figure 2.12.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 19

Figure 2.12: ShiftRows Transformation [Gla07, p. 9]

MixColumns Transformation

In the MixColumns Transformation each column of the matrix gets multiplied with
a fixed polynomial.

Figure 2.13: MixColumns Transformation [Gla07, p. 9]

XorRoundKey Transformation

In the last step the rows of the state matrix get XORed with the round keys derived
during the key schedule as shown in figure 2.14.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 20

Figure 2.14: XorRoundKey Transformation [Gla07, p. 10]

Decryption

The presented transformations for encryption are invertible and therefore the inverse
transformations can be performed in the reverse order to execute a decryption.

2.2.2 Related Work on AES Implementations

As the AES algorithm is in use for some years now e.g. for securing WLAN and the
SSH protocol, numbers of implementations and works about the performance and
optimization of the algorithm are available. Even if the performance of the cypher
could be accelerated with a hardware implementation the attention in this work is
focused on software implements.

The usual approach to accelerate those AES software implementations is to adapt
the algorithm to the special abilities of the hardware e.g. in [BBF+03] it is done by
introducing a new way of calculating MixColumns transformation.
In this context papers like [OBSC10] or [BKG11]and a master thesis [Sha06] show
performance evaluations on different kinds of platforms including ARM processors.

As there is no implementation on a mobile device including an Operating System
(OS) these works can just give a hint that this platform is fast enough for the pur-
pose of this work. But the previously mentioned works list a number of existing
implementations. One of them is from Gladman [Gla11]. It is the mostly referenced
one and also one of the fastest as the measurements in [Sha06] show. This fact and
the good availability of the Gladman implementation make it a proper candidate
for this work. Details of this implementation will be presented in Chapter 4.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 21

2.3 Security Aspects of RFID Systems

As RFID systems are often used in high security areas they face a latent risk to
be attacked. On the one hand such an attack could try to break the cryptographic
algorithm to gain information about the secret keys and on the other hand it could
use weaknesses in the implementation of the RFID system. Therefore the existing
attacks on both sides are described here briefly.

2.3.1 Attacks on Cryptography

As the AES algorithm is used in many security critical applications a number of
theoretical works is written about breaking the cypher. The approaches to do these
attacks are various e.g. a related-key attacks like in [BK09] or attacks based on
bicliques like in [BKR11]. So far none of these attacks is for practical use but in
conclusion you can say that at the current state the 128-bit key version is at least
as secure as the 192-bit and the 256-bit versions.

2.3.2 Attacks on the RFID System

For RFID systems you can group the attacks into three categories. Attacks on the
transponder, on the reader or on the interface [Fin10]. As the reader is not in focus
of this work we will concentrate on the other two.

Spoofing and Cloning

The first principle attacks is to clone a tag with all its functionality and including
the data stored on it. Therefore either blank cards which allows to set the UID or
devices that act like a card are needed. Such a device is for example the Chameleon
emulator of [KvMOP11] which is able to emulate a series of ISO14443 cards. Never
the less, for executing this attack the information stored on a transponder has to
be extracted. Of course in modern smart cards this is protected from unauthorized
reading by secret keys which have to be extracted from the card with other attacks
e.g. Side-channel analysis

Side-channel analysis

In this attack the actual hardware implementation of a cypher algorithm is exam-
ined. Thereby additional information to break the cypher can be gained from e.g
the consumed power like in a differential power analysis or timing behaviour. In
[OP11] for example such a side-channel attack is successfully performed on an older
version of the MIFARE DESFire the MF3ICD40.

CHAPTER 2. STATE OF THE ART AND RELATED WORK 22

Replay authentications

At a replay attack the communication between the card and the reader is eaves-
dropped and is replayed later on. This attack can be countered by using strong
random numbers for the authentication.

Relay Attack

The principle of this attack is to extend the range between the reader and the
transponder. Such an attack can be seen in [Han06]. For this attack two devices
are required. One device, the proxy, that is located near the reader to remotely
transceive data to and from the second device, the leech, that is located close to the
transponder and simulates a reader [Fin10, c.f.]. For ISO 14443 compliant systems
the first barrier comes with the level 3 activation where the time-out constraints are
very strict. Therefore the level 3 activation could be done autonomously by the two
devices in order to match the constrains. This requires to counter this attack on
ISO1443-4 level with a so called proximity check. The command uses similar crypto
functions as used during the mutual authentication with the derived session key.
Thereby a restrictive time out vale is set. The unknowing of the session key makes
a real time imitation of the card repose impossible. This command also disqualifies
cards that need too long for the crypto computation.

Chapter 3

Design

The first part of this chapter describes how the work should give answers to the
objective questions of section 1.2 and defines the necessary steps to be made. Further
on the selection of the required hardware is described and later on the design of the
required implementations and the proof of concept will be explained in more detail.

3.1 Project Plan and Tasks

3.1.1 Starting Situation

If doing a rough conclusion of the aim of this work you can say it should give an
insight into the capability of modern NFC smart phones base band processor to
provide AES based secure authentication and to act like a conventional proximity
smart card.

To be able to do this two components are required:

• Software implementations of this authentication protocol in appropriate pro-
gramming languages.

• And a NFC enabled phone that is able to host a card emulation on its base
band processor.

The problem is: none of them is available.
So in order to acquire knowledge about the performance of the authentication pro-
tocol these two components have to be created.

23

CHAPTER 3. DESIGN 24

3.1.2 Work Flow

As a first step, it is important to set up a work flow for the required work. This can
be seen in figure 3.1.

The attempt to bring light into the matter starts with a C implementation. To
create a reference base that is not influenced by an operating system this will be
done on a plain ARM processor that is comparable to a typical mobile phone base
band processor.

Performance measurements on this implementation will show optimization poten-
tials and whether it computes within the time limit stated in ISO 14443-4. As
described in Section 2.1.2 this is a broad border and it would make no sense to
continue the work if the computation time exceeds that limit.

If the C implementation is fast enough it is time to do implementations on a mobile
phone. Therefore a proper hardware has to be selected.

On top of this hardware and its associated operating system two implementations
on application level will be done. One will base on the C implementation to show
the influence of the OS and another in a different programming language to show
the language influence.

These should fulfil the ISO limits as well to justify the effort of enabling the hidden
card emulation feature.

As these C and application level implementations just show the calculation time
and give no information about communication time overhead the next step is to
enable the host emulation and combine it with the previous implementation to a
Proof of Concept (PoC).

Provided that the enabling of this feature is possible the proof of concept gets ex-
panded to satisfy the requirement the of access management use case and to shows
the practical usability.

Measuring the authentication performance of existing smart card and card emu-
lation solution will give reverence for a concluding analyses of security impact.

All this steps are designed in more detail in the following chapter. With respect
to a better readability and understandability this is not done in chronological order.
This also forecloses that all implementations satisfy the ISO 14443-4 limits and the
enabling of the host emulation feature is possible.

CHAPTER 3. DESIGN 25

Figure 3.1: Work Flow Task and their Dependences

3.2 Hardware and Platform Selection

A basic idea of this work is to show the computation of the authentication protocol
on real hardware. That makes it important to find devices that have a representative
character. Therefore the reason for taking the particular devices used in this work
will be outlined now.

3.2.1 Selection of Processor

For the first implementation a hardware platform is required that is close to a mobile
phone’s hardware but does not come with the overhead of an operating system.

Many actual smart phones use ARM Cortex A processors which are designed to
“provide an entire range of solutions for devices hosting a rich OS platform and
user applications...“ [ARM11]. As an OS application is not wanted in this case the
choice fell on another processor type of the ARM Cortex family namely a member
of the ARM Cortex M series.

CHAPTER 3. DESIGN 26

This can be found on the NXP LPC1343 LPCXPresso board with its 32-bit ARM
Cortex-M3 microcontroller. Additionally to the proper processor this board comes
together with an Eclipse base IDE called LPCXpresso which makes it easy to setup
a build tool chain.

3.2.2 NFC Phone

The choice of the mobile platform fell on the Google Nexus S. This choice was mainly
driven by two factors, the OS and the NFC Chip.

The Nexus S is able run an Android OS in the most current version (Icecream-
sandwich) and as seen in table 2.1 this is the mostly used OS on NFC enabled
smart phones. It hosts applications written in Java or in C with the Java Native
Interface (JNI). Therefore those will be the languages used for the application level
implementations. Additionally Android is an open source platform and a Source
Developing Kit (SDK) is provided by Google. Together with the PN65 this makes
the enabling of the host emulation feature possible. Another point that talks for
this devise as an implementation platform is that on the one hand the Nexus S is
a mass market consumer product and on the other hand it is a designated Android
developer phone. This fact makes it easier to do changes in the OS.

3.2.3 Existing devices for Comparison

Measuring the performance of the designed implementations is not the only objec-
tive of this work. An important part is the comparison to existing PICCs and card
emulation solutions. The principles of this solutions were already described in Sec-
tion 2.1.3. Therefore we take a look at the particularly chosen devices.

The first reference object of course will be a conventional smart card. As the pro-
tocol is directly derived from the NXP MIFARE DESfire this will be the object of
choice. In the actual case it will be a MIFARE DESfire EV1 which is the current
representative version of this smart card family

As there exists no DESFire emulation for SmartMx on a NFC phone the next solu-
tion is a JCOP SmartMx card that hosts the DESFire functionality and is provided
by NXP as well.

The last two test objects use the Gemalto SIM card to emulate the MIFARE DES-
Fire. In one case the SIM card is hosted by the NXP PN544 Design Kit board in
the other case by a Huawei Sonic U8650 / Turckcell T20.

CHAPTER 3. DESIGN 27

As written in table 2.1 the Huawei Sonic U8650 / Turckcell T20 is an NFC en-
abled smart phone with Android 2.3.3. The NFC functionality is provided by the
same NFC chip namely the NXP PN544.

In principle the Nexus S could be the hardware platform for the SIM solution as
well. The reason for not using it in this case is the fact that it does not support this
feature in its delivery state. Enabling it would be beyond the scope of this work
especially when having a proper pendant with the T20.

3.3 Protocol Analysis

Before starting with the work flow of section 3.1.2 the actual authentication pro-
tocol has to be examined. As already described an AES authentication procedure
comparable to the MIFARE DESFire is used to take a look at the authentication
performance. It is a symmetric authentication. This means that the reader and the
card have to assure that they hold the same secret keys. This type of authentication
sometimes is called three pass authentication. A schematic flow of the protocol is
shown in figure 3.2.

Institut für Technische Informatik
www.ITI.TUGraz.at

3

 Matthias Schwarz Graz, 5.3.2012 Secure Authentication Performance

Generic Authentication Protocol

Request Authentication

Send encrypted Data1

Send encrypted
Data1’+ Data2

Send encrypted Data2’

PICCBlock2:
• Decrypt Data1’+ Data2
• Verify Data1’ -> Card knows that

Reader uses the same key
• Modify Data2 -> Data2’
• Encrypt Data2‘
• Generate session key

PICCBlock1:
• Encrypt Data1

Reader

Card

ReaderBlock2:
• Decrypt Data2’
• Verify Data2’ ->Reader knows that

Card uses the same key
• Generate session key

ReaderBlock1:
• Decrypt Data1
• Modify Data1 -> Data1’
• Encrypt Data1‘+Data2

Background and Related Work

Figure 3.2: Schematic AES Authentication Protocol

CHAPTER 3. DESIGN 28

The RFID reader sends a command to request the authentication of the card.

The smart card generates a random number (RNDB). This number is encrypted
with the secret key and sent back to the reader. This block of computation is the
first interesting performance part of this work and will be referenced with PIC-
CBlock1 for the rest this work.

The read decrypts the number (RNDB). As it does not know the original num-
ber it does not know if it uses the same key as the card at this moment. It modifies
the decrypted number in a predefined way, e.g. rotate some bits. Then it generates
a random number (RNDA) as well and encrypt both, the modified number from the
card and its own number and sends them back to the card.

The card decrypts these numbers. Undoing the modification of the received number
tells the card if the reader has used the same key for the de- and encryption. If so the
card modifies the number from the Reader (RNDA) the same way, encrypts it and
sends it back to the reader. In addition it generates a session key from the RNDA
and RNDB for securing the further communication. This will be called PICCBlock2
in the remaining work.

Similar to the card the reader decrypts the received data and undoes the modi-
fications. If this equals the previously generated number the authentication is com-
pleted and the reader generates a session key as well.

In the consider case an AES128 algorithm is used for de- and encryption.

3.4 Common Elements for all Implementations

The work should show the performance of different implementations and therefore
should give the ability to measure the computation time of PICCBlock1 and PIC-
CBlock2. As this work starts from far a way of having an actual communication
with a reader device this parts had to be written in software as well. For the test
cases these software reflected parts are designed to communicate by method calls.
Another element that all implementations have in common is the fact that they are
not designed for secure computation in the first case. That means that they have
to work accordingly to the protocol but no additional measures e.g. for secure stor-
age of the key were considered. This decision was made in the context of possible
intruders that will not care about the software security but only about the fastest
and easiest possible solution.

CHAPTER 3. DESIGN 29

3.5 Design of C Implementation

The first planned implementation builds the corner stone of the performance anal-
ysis. It is designed to run on the ARM Cortex M3 and therefore has to be written
in plane C. From a design point of view there is not much to describe but it should
satisfy at least some basic requirements. It should:

be simple: no other security features like secure random generation or secure key
storage will be considered.

use an existing AES Implementation: As there are plenty of existing C imple-
mentations the tradeoff between performance an free availability has
to be considered.

be reusable for the JNI implementation: A modularly design will improve the
reusability.

3.6 Design of Application Level Implementations

Application level implementations will be the combining notation for the Java and
the JNI implementations which are designed to run as an Android applications on
the Nexus S.

3.6.1 Interface

To make the measurements and interaction easier the application level implementa-
tions require a user interface. As this is the only purpose it does not need to contain
any design highlights but some basic elements. These are shown in table 3.1.

CHAPTER 3. DESIGN 30

Name Type Comment

Key Input Input field To manually change the authentication key.

Set Key to Zero Button For a quick reset of the authentication key.

Generate Random
Key

Button Generates a random key and updates the
Key Input field.

Start
Authentication

Button To start the actual authentication.

Rounds Input Input field Defines the number of authentications to be
performed in sequence.

Start
Authentication
Rounds

Button Starts the authentication with a newly gen-
erated random key as often as defined by the
Rounds Input field.

Result Text field To display the used computation time of the
last authentication or the mean value in case
of more than one rounds and the generated
session key.

Table 3.1: Elements of the User Interface

3.6.2 Java Implementation

In principle the Java implementation should not do much more than the C imple-
mentation but as Java is an object oriented programming language it is obvious to
divide the application into the three following classes:

Application Class: controls the application, initialization and the user interface.

Card Class: hosts the actual computation part of PCCBlock1 and
PICCBlock2 for the actual performance measurement.

Reader Class: contains the reader computation parts.

For reasons of simplicity the message passing between two classes should be done
by public method calls.

3.6.3 JNI implementation

The JNI implementation should be quite similar to the Java implementation. The
only differences should be the reuse of the C implementation and the replacement
of the card emulation class with JNI methods calls.

CHAPTER 3. DESIGN 31

3.7 Design of Proof of Concept

The planned implantations in section 3.5 and 3.6 will give a good picture of how fast
the actual computation of the crypto function could be. This is not enough to make
statements according to how long the actual Frame Delay Time (FDT) would be
on a smart phone because the communication times between the different software
and hardware components play a significant role in this context. Unfortunately the
functionality of card emulation over the host controller interface of a NFC chip is
not implemented in nowadays mobile operating systems. Therefore this has to be
done as a part of this work to enable a proof of concept. This requires changes
deep in the heart of the operating system and the following analysis of the chosen
platform, the Samsung Nexus S with Android 4.0.3, will show where and how they
have to be made.

3.7.1 Platform Analysis

To get an orientation let us take a look at the principle setup of Android. In figure 3.3
you can see that Android is composed of several software levels. It starts with the
application layer and goes down to the Linux kernel on which Android is built on.
In principle this is the same for all Android versions.

Figure 3.3: Android Stack [Goo11c]

CHAPTER 3. DESIGN 32

The Nexus S gets shipped with Android 2.3 and is equipped with a NXP PN544
as described in Section 2.1.3. This Android version already holds the basic NFC
functionalities like reading and writing of tags and these functions are accessible
from the application level. But it does not cover the full functionalities of the
PN544 NFC chip as the card emulation features are not supported. Never the less,
some of the functionality is already prepared beneath the application framework
level but not accessible from an application. To cover all the latest preparation
work the decision was made to us Android 4.0.3 as the implementation basis which
is the latest available OS version at this time.
For doing the further analysis in principle three source were available. The major
part of information had to be extracted from the Android source code itself. The
second is the PN544 user manual [NXP11d] (not public) provided by NXP and the
third the ETSI standard [ETS08]. Parts of the analysing work were already done
by Madlmayr [Mad11] who provides a schematic of how the NFC functionality is
glued into the system as you can see in figure 3.4.

Institut für Technische Informatik
www.ITI.TUGraz.at

5

 Matthias Schwarz Graz, 5.3.2012 Secure Authentication Performance

Prove of Concept

(to be found in /packages/apps/NFC)

Apps

NfcAdapter

Android NFC Java Layer(= Java Source Files) NfcService

NativeNfcManager

(to be found in
/framework/base/co
re/java/android/nfc)

AIDL
Interfaces

Header-Files (Generated automatical with „javah“ during build)

Java-Native Interface Classes (C++)

JNI-Glue-Layer (com_android_nfc.h + ccp)

NXP FRI (=native C Code + Header File)
(to be found in /external/libnfc-nxp)

Linux Kernel with PN544 driver (/dev/pn544)

javah

Links
against

Design and Implementation

Figure 3.4: AndroidGlue [Mad11]

CHAPTER 3. DESIGN 33

Institut für Technische Informatik
www.ITI.TUGraz.at

5

 Matthias Schwarz Graz, 5.3.2012 Secure Authentication Performance

Prove of Concept
N

XP

M
id

dl
ew

ar
e

N
XP

 P
N

54
4

Dr
iv

er

Transport Layer (DAL)

O
SA

L

NFC FRI1.1 API

LLC

Discovery
Configuration

& Management

Registration,
Notification &
Data Exchange
Management

NDEF Tag R/W NDEF Parsing,
Record Type

Definition
Registration &

Notifivation

Type1

MIFARE 1K/4K Tag

Type2
Type3 Type4

Discovery
Configuration &

Management Data Exchange Card Emulation

HAL 4.0 API

Administration, Link,
Identity Management

HCI

Reader
RF Card RF

Connectivity

System
Management

MIFARE

FELICA

Polling
Loop

NFC-IP1

Others …

Secure
Element

SWP

NXP HCI

Design and Implementation

Figure 3.5: FRI and HAL Architecture [NXP11c, p.17]

It illustrates the route from the application level to the NXP Forum Reference Im-
plementation (FRI). This is a software stack for controlling the NFC chip over the
Host Controller Interface (HCI). As you can see in figure 3.5 it already contains
the functionality of the card emulation (HAL level). This stack is part of the open
Android source code as well.

A more detailed inspection of the source code shows that the functions for the
activation of card emulation over SWP and NFC-WI are already routed up to the
NativeNFCManager class which is part of the application framework. These in-
terfaces could be enabled during the activation sequence of the NFC chip. This
activation sequence is as followed:

1. Get hardware Module

2. Open PN544

3. Initialize Driver

4. Initialize Stack

5. Get Stack CAPABILITIES

CHAPTER 3. DESIGN 34

6. (Update Firmware)

7. Update EEPROM settings

8. (Activate SECURE ELEMENTS)

9. Configure LLCP and P2P mode

The steps in brackets are not performed at every initialization or not activated at all.

As the activation of secure elements is already prepared and the activation of Host
Controller Emulation (HCE) is similar to this the NativeNFCManager class seems
to be a good starting point.

When looking closer into the source code of the NFC stack it comes up that there
is already a class prepared for the HCE that can be extended. This class sets up on
the HCI communication as described in the ETSI Standard [ETS08].

3.7.2 Stack Adoptions

After the analysis of the current NFC stack structure has shown a possible point to
build on the required action for reaching the goal of performing the card emulation
on the base band processor over the host controller interface have to be brought to
the plan. They can be separated into three different steps:

1. Activation and configuration of the host interface during the enabling
sequence of the NFC controller.

2. Adoption and implementation of the actual authentication protocol func-
tion.

3. Routing the data through the different software layers.

For achieving the first point a communication pipe between the host controller and
the RF frontend of the PN544 has to be established. As described in the ETSI
Standard [ETS08] the pipe has to be set up between the “Type A Card RF Gates“
of the host controller and the Gate of the PN544. This pipe then can be used to set
the Gate register on the PN544 side. These register entries control the ISO 14443
Level 4 activation which is then performed by the NFC chip in an autonomic way.
The sequence to enabling the gate and setting of the parameters can be seen in
figure 3.6. This is the same procedure a UICC would use to establish a connection
with the difference that it is not possible to set a specific UID if using the Host
Controller Interface. Therefore in the following figure this step is set in brackets. In
case of emulation over the HCI a random UID is used that changes every time the
device enters the RF field of the reader.

CHAPTER 3. DESIGN 35

Enable Gate

Set FWI,SFGI

Set SACK

Set ATQA

(Set UID)

Open CE Pipe

Figure 3.6: HCI Activation Sequence

If the Gate is enabled the communication has to follow the protocol as shown in
figure 3.7. When PN544 detects the external reader field it notifies this to the host
controller (Host) and performs the level 4 activation and again reports this. If the
reader then sends an ISO 14443-4 command the PN544 Type A Card RF Gate rises
an “send data“ event that contains the sent data.

CHAPTER 3. DESIGN 36

Host PN544 external Rader

Typ A Card
RF Gate

Typ A Card
RF Gate

EVT_FIELD_ON

Typ A Card
RF Gate

Typ A Card
RF Gate

EVT_CARD_ACTIVATED

Typ A Card
RF Gate

Typ A Card
RF Gate

EVT_SEND_DATA

Typ A Card
RF Gate

Typ A Card
RF Gate

EVT_SEND_DATA

ISO 14443-3A:
REQA, anticol,
Select, RATS

Send data in ISO 14443 -4

Receive data in ISO 14443 -4

External RF �led

detected

Compute
Answer

Typ A Card
RF Gate

Typ A Card
RF Gate

EVT_FIELD_OFF

External RF �led cut

Can be repeated

Figure 3.7: HCI Protocol for Host Emulation

CHAPTER 3. DESIGN 37

When receiving this event the host can compute an answer and send it back with
another “send data“ event on the pipe. The PN544 relays this data to the reader by
load modulating the reader field. This can be repeated until the reader field gets cut.
The computing of the answer is the actual point where the emulation functionalities
for the AES authentication protocol come in.

3.7.3 Implementation Levels

The actual setup of the android operating system allows more than one option for
placing the emulation functionality.

The first possible implementation is to add the emulation code to the NFC stack.
This will probably be the fastest PoC solution, because it does not require to pass
the data though the different software layers of the OS. As the stack is written in
C it is possible to reuse the code of the C implementation. The disadvantage of
this kind of implantation is less flexibility and no chances at system run time. This
might be drawback for future application. To differ from the other implementation
this will be called the PoC Stack implementation.

The second approached will be on application level and will use the previously
described Java and JNI Applications. This requires to route the data through the
whole OS stack. The base of these implementation is an adoption of the Android
API to provide the functions to send and receive the data on this level. The two
resulting implementations will be called PoC Java and PoC JNI implementation or
PoC application level implementations if referring to both.

As the NFC chip sends the data asynchronously when receiving data from the reader
a certain mechanism is needed to trigger the computation. The Android OS there-
fore offers different mythologies to do this. On the one hand the intent approach and
on the other the a callback method. Both of them get implemented for comparison.

The first and simpler method is to use a messages object called intents. They
are used to pass data between activities (the application) and services (in this case
the NFC Service). The data is attached to this intent object and it is broadcast.
With the use of filters this intents can be caught by the application and can trigger
continuing actions. The problem of the approach is the large and varying time be-
tween the broadcast and reception of the intent as the measurements in section 5.5
will show.

The other possible way is to use a kind of callback mechanism. As Java does not
support callbacks directly a workaround has to be used. Instead of registering a call
back an addition interface is used that is implemented on application level.

CHAPTER 3. DESIGN 38

In more detail this will be described in the implementation section 4.5.3.

3.7.4 Profiling and Timestamps

Now that the operative functionality of the proof of concept implementations are
defined the focus comes to the definition of the profiling point positions. As the gen-
eration of timestamps in the program code produces distortion the number of them
has to be as small as possible. Of course, all three PoC implementation concepts
(PoC Stack, PoC Java and PoC JNI) require a different number of profiling points
but with respect to the comparability of them, times on same software level will be
named similarly. This means that the time between t0 and t11 will be the total
frame delay time (FDT). t1 will be the time of receiving the data from the NFC
chip on the I2C bus and t10 when sending the response on the bus. This also means
that according to the different level of the implementations the name of the pro-
filing points around the pure calculation of the authentication procedure will change.

As you can see in figure 3.8 these are the planned positions for the PoC Stack
implementation.

C

Card Implentions

Nfc Stack

Data
Processing

t1

t0

t2 t9

t10

t11
Time

Figure 3.8: Schematic Position of Timing Points for PoC Stack

In the ideal case this number of profiling points would be sufficient for the other
implementations as well but unfortunately the timestamps provide by the C function
differ from those provided by Java functions. These circumstances require additional
timestamps on the boarder between Java and C code as you can see in figure 3.9 for
the PoC Java implementation.

CHAPTER 3. DESIGN 39

C

Java

Application Level

Nfc Service

Native
NfcManager

Nfc Stack

Data Processing

t1

t0

t2

t3

t4 t7

t8

t9

t10

t11
Time

Figure 3.9: Schematic Position of Timing Points for PoC Java

As the PoC JNI implementation generates an additional Java / C boarder as you
can see figure 3.10 the timestamps t5 and t6 are introduced.

CHAPTER 3. DESIGN 40

C

JNI

C

Java

Application Level

Nfc Service

Native
NfcManager

Nfc Stack

Data
Processing

t1

t0

t2

t3

t4 t7

t8

t9

t10

t11

t6t5

Time

Figure 3.10: Schematic Position of Timing Points for PoC JNI

More details concerning the used profiling functions and the differences will be de-
scribed in section 5.1.3.

3.7.5 PoC Use Case

All of these previous parts of the proof of concept implantations will allow a good
picture of the authentication performance but they are not sufficient for a practi-
cal use case. In order to be able to give estimations about the usability of this
PoC implementations in a real case they are going to be extended to satisfy the
requirements for the access management use case as described in Section 2.1.4.

Description

The goal of this implementation is to provide the full functionality that is used in
access management systems to provide privileged access as seen in figure 2.9. This
requires two additional commands:

CHAPTER 3. DESIGN 41

Select Application Usually there can be more than one application on a smart
card. With this command a specific one is selected e.g. the
access management application.

Read Data The selected application can have a number of data files. The
data in this files can be gathered with this command. For
this use case the authenticity of the read data also has to
be secured by a MAC that is generated with the session key
derived during the authentication.

In access management the credential should identify the person it belongs to. There-
fore the data responded on a read command has to contain a user ID. To demonstrate
that this ID can be changed on the fly the User Interface has to be extended by an
input field for this user ID.

Chapter 4

Implementation

The following chapter covers the practical implementation of the designed parts. In
the first section the actually used hardware is described more closely followed by
an overview of the used developing environments and tools. The remaining sections
will illustrate how the actual implementations were done and how they look like in
the end.

4.1 Used Hardware Platforms

For hosting the authentication protocol two devices were used. As mentioned in
section 3.2.2 the designated hardware for the C implementation is the LPC1343
LPCXPresso board. And as a NFC phone platform the Google Nexus S was chosen.
Therefore these devices are described now briefly.

4.1.1 LPC1343 LPCXPresso board

The LPC1343 LPCXPresso board is like the rest of the LPC13xx LPCXpresso fam-
ily a combination of an ARM Cortex-M3 target and a JTAG Debugger interface
called LPC-LinkTM on one board. This device which jointly developed by NXP,
Code Red, and Embedded Artists gives combined with the LPCXpresso IDE a good
development platform. The schematic structure of this target platform and its var-
ious in and output interfaces can be seen in figure 4.1.

As the name indicates the processor on this board is a NXP LPC1343. This is
running at frequencies of up to 72 MHz and it has 8kB SRAM. The program code is
stored in a 32kB flash memory and the test and debug interface allows direct control
of the core register.

42

CHAPTER 4. IMPLEMENTATION 43

UM10375 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

User manual Rev. 4 — 28 September 2011 7 of 369

NXP Semiconductors UM10375
Chapter 1: LPC13xx Introductory information

1.5 Block diagram

(1) LPC1342/43 only.

(2) LQFP48 package only.

(3) On LPC1313FBD48/01 only.

(4) Windowed WatchDog Timer (WWDT) on LPC1311/01 and LPC1313/01 only.

Fig 1. LPC13xx block diagram

SRAM
4/8 kB

ARM
CORTEX-M3

TEST/DEBUG
INTERFACE

FLASH
8/16/32 kB

USB DEVICE
CONTROLLER(1)

I-code
bus

D-code
bus

system
bus

AHB TO
APB

BRIDGE

HIGH-SPEED
GPIO

CLOCK
GENERATION,

POWER CONTROL,
SYSTEM

FUNCTIONS

XTALIN
XTALOUT

RESET

clocks and
controls

SWD

USB PHY(1)

SSP0

10-bit ADCUART

32-bit COUNTER/TIMER 0

I2C-BUS

WDT/WWDT(4)

IOCONFIG

LPC1311/13/42/43

slave

002aae722

slaveslave slave

slave

ROM
slave

AHB-LITE BUS

GPIO ports
PIO0/1/2/3

CT32B0_MAT[3:0]

AD[7:0]

CT32B0_CAP0

SDA
SCL

RXD
TXD

DTR, DSR(2), CTS,
DCD(2), RI(2), RTS

SYSTEM CONTROL

32-bit COUNTER/TIMER 1
CT32B1_MAT[3:0]

CT32B1_CAP0

16-bit COUNTER/TIMER 1
CT16B1_MAT[1:0]

CT16B1_CAP0

16-bit COUNTER/TIMER 0
CT16B0_MAT[2:0]

CT16B0_CAP0

USB pins

SCK0,SSEL0
MISO0, MOSI0

SSP1(3)
SCK1,SSEL1
MISO1, MOSI0

CLKOUT

IRC

WDO

POR

Figure 4.1: LPC13xx Block Diagram [NXP11b, p. 7]

CHAPTER 4. IMPLEMENTATION 44

4.1.2 Nexus S

The Google Nexus S was the first Android device that supported NFC and was
released in November 2011. It was manufactured by Samsung Electronics in four
different versions mainly differing in the used display and mobile radio (3G and 4G).
The version used for this evaluation has the product identification GT-I9023 and is
original shipped with Android 2.3. (Gingerbread) but was updated to version 4.0.3
(Icecreamsandwich) during this work.

Hardware

The basic parameter of the Nexus S hardware which are relevant for this work are
the following:

• 1 GHz ARM Cortex-A8 Hummingbird Single-Core Multimedia Applica-
tions Processor

• 512 MB total RAM

• 16 GB internal storage

• NXP PN65 Nfc chip

NFC Chip

As described in section 2.1.3 the PN65 is a package of SmartMX and PN544 which
is designed for use in mobile phones and portable devices. Some if its key features
are [NXP10b]:

• Support for variety of RF protocols

• Integrated power management unit

• Simultaneous multi cards management (ISO14443-A,B,B’, MIFARE)

• Multiple interfaces (Serial UART, I2C, SPI, SWP, NFC-WI)

Operating System

Android is a Linux kernel based operating system for mobile devices as well a soft-
ware platform for applications. Each of this application runs on a separate Virtual
Machine (VM) called Dalvik VM which supports Just In Time (JIT) compiling since
version 2.2. The NFC support was introduced in version 2.3.

CHAPTER 4. IMPLEMENTATION 45

4.2 Used Developing Tools

For implementing the AES authentication protocol on the different platforms a
number of developing tools were required. It starts with the LPCXpresso IDE
to do the C Implementation on the LPC1343. Then it goes on with the Eclipse
IDE that provides together with the Android Source Developing Kit (SDK) and
the Android Native Developing Kit (NDK) an environment to do the Java and JNI
implementations on the actual phone. To do the changes on the Android source code
a virtual Linux machine was required and for the functional and FDT measurement
tests Microsoft Virtual Studio with the Testbench framework was used. Therefore
these programs and the use versions are described briefly.

4.2.1 LPCXpresso IDE

The LPCXpresso IDE is specially designed for the NXP LPC microcontroller series
and is powered by Code Red Technologies. It bases on an adapted Eclipse platform
and provides a C programming environment that uses an “industry-standard GNU
tool chain with an optimized C library“ [NXP11a].
All other necessary libraries and examples can be downloaded on the NXP home-
page.
The effort to set up this environment keeps low which is as well a reason for taking
the LPC1343 Board. The only thing to do is to run the setup, connect the device
via an USB cable and run the compiled code.

4.2.2 Eclipse

Eclipse is an open source IDE developed by the Eclipse Foundation. It is widely
used for Java programming and also provides plug-ins for other programming lan-
guages. To be able to do Android application programming an additional plugin
called Android Development Tools (ADT) is required .This allows Eclipse to create
Android project and make use of the Android Source Developing Kit (SDK) and
Android Application Framework API.

Android SDK

The Android Source Developing Kid is a set of software developing tools. It provides
all tools for a successful developing of applications e.g. libraries, debugger, sample
code and emulators. It was developed by Google and is available for free.

Android NDK

The Android Native Developing Kit allows in combination with the SDK to de-
velop in C or C++. It contains all required components to build this code for sev-

CHAPTER 4. IMPLEMENTATION 46

eral instruction sets including ARMv5TE, ARMv7-A, ix86 instructions and MIPS
[Goo11b] and it is available for free as well.

4.2.3 Visual Studio

Visual Studio is an IDE from Microsoft. It can be used for developing in languages
based on the .net framework and supports for example C#, C, C++ and Visual
Basic. Visual studio was mainly used to write the FDT measurement test cases in
the Testbench framework.

4.2.4 Testbench

For controlling the ISO Setup as described in section 5.1.1 a software framework was
used called Testbench. This built up on the NXP Reader library and allows flexible
definition of automated test cases in C# to verify RFID Cards . The execution of
these tests is then controlled by NUnit, a unit-testing framework for .Net languages.

4.2.5 Android System Build Environment

To make a build of the Android source file Linux or Mac OS is required. To avoid
the effort of setting up an extra Linux system can be bypassed by using a virtual
machine (VM). The VMWareTM Player of VMWare Inc. is able to host a Linux
system image. There already exist system images where the Linux environment is
configured correctly for doing an Android source built. Such an image is provided by
the company Marakana and is usually used for training purposes. The actual Linux
VMWare image used in this work contain a 64Bit Ubuntu distribution. To be able
to do a full system built it is recommended to equip the VM with at least 4 GB RAM.

If the virtual machine set up is done a number of steps have to been taken to
come to a success running system on the phone:

1. Download Android Source Code
The source code of all existing android versions can be downloaded from
a git repository.

2. Built System

(a) Select make configuration
For the Nexus S the required configuration is “Crespo user debug“.

(b) Do make
A full build takes several hours

(c) Copy binaries to build output
Some libraries are not part of the open source code and have to be
added after the compilation.

CHAPTER 4. IMPLEMENTATION 47

3. Copy System to device

(a) Unlock boot loader
To be able to flash the system the boot loader has to be unlocked
as described on [Goo11b].

(b) Restart to boot loader In the boot loader environment the built
code can be sent to the device.

(c) Write the new system to the flash memory

After a restart the phone is booting the new system.

It is recommended to do all of these steps before making changes in the source
code to have a working configuration. Additionally a rebuilt after modifications are
done will than take just some minutes.

For doing the adjustments in the Android source code the Eclipse editor was used
as well.

4.2.6 Used Versions of Developing Tools

The used program versions of the development tools are the following:

LPCXpresso V 4.0.6

Eclipse Version 3.7 Indigo , ADT 17.0.0

SDK Revision 17

NDK Revision 7b

Visual Studio 2010

NUnit V 2.5.9

VM VMWareTM Player 4.0.2 and Ubuntu 11.04 64Bit

4.3 C Implementation

The C implementation was designed to show the basic performance of the protocol
implemented in software. It gives early information if such an implementation would
make sense at all. This implementation comes together with the decision for a
certain AES implementation. As described in section 2.2.2 there are already some
existing implementations. A short researches about the availabilities of the source
code of these implementations showed the code of Gladmann [Gla11] seemed to be
the perfect choice. It fulfils the requirement of availability, is well documented and
is one of the fastest implementations according to [Sha06].

CHAPTER 4. IMPLEMENTATION 48

4.3.1 Gladman Implementation

The AES implementation by Gladman [Gla11] is a good performing C implemtation.
In [Sha06] this is described as followed:

Efficient use of macros and interweaving of instructions for the decryption round
key setup allow for the excellent performance of this implementation.[Sha06]

It is designed to operate on 32bit words and has a very modular setup that al-
lows optimizing for the target environment and is controlled by a number of com-
piler options. These options give the possibility to e.g. enable assembler support
for a number of targets, unroll the round loops or use lookup tables for the round
functions.

4.3.2 Structure of Implementation

The structure of the actual protocol implementation was kept very simple. It con-
tains an initialising part where encryption and decryption structures were set up.
For reasons of simplicity the implementation does not deal with more than one
stored key and therefore the key schedule can be done in this part as well. The
other computation blocks of reader and card are grouped in methods and get called
by the main routine. In order to get the optimal performance, different compiler
settings and build options of the Gladman implementation were used. These are
the only optimization measures because the option to write code parts in assembler
would not be available for the JNI implementation on the phone.

4.4 Application Level Implementations

4.4.1 User Interface

The interface bases on an xml file design this Android XMLdesigner. As you see in
figure 4.2 it will not win a design price but it is sufficient for the purpose of this
work and fulfils the requirements of section 3.6.1. Additionally the input field for
the use case implementation is appended.

CHAPTER 4. IMPLEMENTATION 49

Figure 4.2: Screenshot Graphical User Interface

The event handling of the interface elements is done in the Main Application Class.

4.4.2 Java Implementation

Used Java Methods

Java provides a very rich portfolio of crypto functions. So it was obvious to use
library methods for the AES de- and encryption. It has to be mentioned that this
holds an uncertainty because there is no information about the actual implemen-
tation of this library function available and so they might be implemented in C as
well.

Structure

As described in section 3.6.2 the Java implementation is structured quite simple.
An actual class diagram can be seen in figure 4.3

CHAPTER 4. IMPLEMENTATION 50

myProgs.AuthPerf

ReaderSimulator
setKey(byte[]): void
StartAuthenicate(): void
AES_Auth1(byte[]): byte[]
AES_Auth2(byte[]): void
getSessionKey(): byte[]
getTimes(): long[]

AuthPerfActivity
AuthPerfActivity(): void
onCreate(Bundle): void
onClicked(View): void
Response(Intent): void
Generate_Key(): void
SetkeyZero(): void
WritetoFile(long[]): void
WritetoFile(String): void

CardSimulator
Exchange(byte[]): byte[]
AESAuth1(): byte[]
AESAuth2(byte[]): byte[]
ReadMaced(byte[]): byte[]
CalcMac(byte[],byte[]): byte[]
CMAC_GenerateK1K2(): byte[]
phCryptoSym_Sw_CMAC_LeftShift(byte[],int): byte[]
GenerateSessionKey(byte[],byte[]): byte[]
GetKeyFromStorage(int): byte[]
getSessionKey(): byte[]
getTimes(): long[]
setKey(byte[]): void
setUserID(byte): void

Figure 4.3: Application Class Diagram of Java Implementation

The authentication is then performed on a button click as seen in figure 4.4. Addi-
tionally you see in this figure that a method to write the measurement result to a
file is added. This was done in order to make the evaluation easier.

CHAPTER 4. IMPLEMENTATION 51

Figure 4.4: Sequence Diagram of Authentication with Java Implementation

4.4.3 JNI Implementation

For the implementation with the Java Native Interface the C implementation could
be totally reused. The only things to add were the profiling functions and the JNI
calls from the Java code. The rest of the application structure is quite similar to the
Java implementation with the exception that no separate card emulation class was
used any more. With respect to simplicity the JNI functions were called directly from
the application class as the class diagram in figure 4.5 shows. The authentication

CHAPTER 4. IMPLEMENTATION 52

flow is similar to the Java implementation.

com.MyApps.AuthPerfJNI

AuthPerfJNIActivity
AuthPerfJNIActivity(): void
onCreate(Bundle): void
onClicked(View): void
InitJNI(): void
SetKeyJNI(byte[]): void
SetUserIDJNI(byte): void
ProcessDataJNI(byte[]): byte[]
GetTimingsJNI(): long[]
TimeStampEval(): void
StartAuthenicate(): void
Generate_Key(): void
WritetoFile(long[]): void
WritetoFile(String): void
new View.OnClickListener()

ReaderSimulatorforJNI
ReaderSimulatorforJNI(): void
setKey(byte[]): void
AES_Auth1(byte[]): byte[]
AES_Auth2(byte[]): void
decryptAES(SecretKeySpec,byte[],IvParameterSpec): byte[]
encryptAES(SecretKeySpec,byte[],IvParameterSpec): byte[]
GenerateSessionKey(byte[],byte[]): byte[]
GetKeyFromStorage(int): byte[]
getSessionKey(): byte[]
getTimes(): long[]

Figure 4.5: Application Class Diagram of JNI Implementation

4.5 Proof of Concept Implementation

4.5.1 Stack Adaptation

The essential point of the proof of concept is the enabling of the host emulation
feature. This requires changes on certain places in the Android source code:

\external\libnfc-nxp\
This is the location where the NFC stack is implemented.

\device\samsung\crespo\nfc\
Contains the hardware setting files for the Nexus S (code name Crespo).

\framework\base\core\java\android\nfc\
Here the relevant interface definition files are located.

\packages\apps\Nfc\java\
Hosts the NFC service files with the interface implementations in Java
and C++.

The first point on the list is to enable the Host RFGate A on the PN544. Therefore
an additional EEPROM setting has to be added to the nfc hw.c file in the hardware
setting directory. These settings are written to the controller during the initializa-
tion routine as described in section 3.7.1

CHAPTER 4. IMPLEMENTATION 53

Next a pipe between the host RFGate and the PN544 RFGate has to be estab-
lished. As mentioned in section 3.7.1 the entrance point for this is the
com android nfc NativeNfcManager.cpp file where the highest level of the initial-
ization routine is implemented. During this routine a list of the available Secure
Elements is requested from the library to get a handle on them. Now to activate
the host emulation a virtual Secure Element type called phLibNfc SE Type HOST
including a handle on it was created in the NFC stack (phLibNfc SE.c). With this
handle the phLibNfc SE SetMode() method can be used to route the initialization
as seen in figure 4.6.

phLibNfc_SE_SetMode(...)

•…
•phHal4Nfc_ConfigParameters(…)
•…

phHal4Nfc_ConfigParameters(…)

•…
•phHciNfc_Configure(…)
•…

phHciNfc_Configure(…)

•…
•phHciNfc_Config_Emulation(…)
•…

phHciNfc_Config_Emulation(…)

•…
•phHciNfc_Emulation_Cfg(…)
•…

phHciNfc_Emulation_Cfg(…)

•…
•phHciNfc_CE_A_Initialise(…)
•…

phHciNfc_CE_A_Initialise(...)

•…

phLibNfc_SE.c

phHal4Nfc_ADD.c

phHciNfc.c

phHciNfc_Emulation.c

phHciNfc_CE_A.c

Figure 4.6: Call Trace for Initializing Host Emulation

The phHciNfc CE A class already contains a framework to do the initialization.
This was extended according to the sequence described in section 3.7.2. The actual
gate register parameter for this can be seen in table 4.1.

CHAPTER 4. IMPLEMENTATION 54

Register Value Comment

UID - The PN544 doesn’t support the defini-
tion of an UID over the Host Controller
Interface. Therefore a random UID is
used.

SAK 0x39 Allows the reader to identify the card
type. This value is taken to differ from
other PICCs.

ATQA 0x0004 Default value

FWI,SFGI 0xE8 The first half byte is the FWI and the
second the SFGi. FWI is set to max.
value, SFGI to default

Table 4.1: Card Emulation Type A Register Values

The Card Emulation Type A Gate allows even more parameters to be set e.g.
CID Support but as they are not important for this implementation they are left at
the default value.

After this initialization the PN544 should have been able to response on a Request
command of a reader. Unfortunately this was not the case because the NFC con-
troller did not accept the enabling of the pipe. So an additional step had to be taken.

With the NP544 it is not necessary to do a pipe configuration at every start up.
Usually it just has to be done once and then this configuration is stored at the chip.
Therefore it was not done for all the other pipes at a usual initialization of the NFC
controller and this blocked the enabling of the host emulation pipe. To solve this
problem a full initialization was forced by the use of existing compiler switches in
the library source code.

After this full initialization the Nexus S was able to successfully pass ISO 14443-4
activation with the configured parameters.

4.5.2 PoC Stack Level

Now that the host emulation is activated the actual functionality has to be imple-
mented. Obviously therefore the easiest way is to use the C implementation and add
this to the NFC stack. Additionally the received data from the NFC chip has to be
routed to the implementation and has to be sent back to the chip after processing
them. Fortunately the catching of the receive event is already implemented in the
source code and it is only necessary to pass the data via a method call to the C

CHAPTER 4. IMPLEMENTATION 55

implementation where the command is identified and the according authentication
part is called. Therefore the communication data blocks including the commands
can be seen in figure 4.7 for the case of an successful authentication. After processing
the data they can be sent back by raising an HCI SentData Event.

PCD PICC

1 1

0xAA Key No. -->

1 16

<-- 0xAF RndB_enc

16

0xAF RndA_enc_mod -->

1 16

<-- 0x00 RndA_enc_mod

16

RndB_enc_Mod

Figure 4.7: Structure AES Authentication Communication Blocks

4.5.3 Routing

For the PoC application level implementations it is required to pass the data from
the HCI level to the application layer and back after the processing. How this
is done is shown in figure 4.8. One important part of this work was to add the
RawSendCE() methode to NfcAdapter interface to make it available from the appli-
cation level. The other was to register the method signature of the C++ function
manually to make it callable from the NativeNfcManager.java class and reverse. For
the doRawSendCE() method this signature looks like this:

{“doRawSendCE“, “([B)V“, (void *)com android nfc NfcManager doRawSendCE}

The next point is to implement the notification of the receive event. As already ex-
plained there are two possibilities to implement this and because the easier method
showed very bad performance and for comparison the second got implemented as
well.

Intent Notification to Application Level

As mentioned earlier the first method used is the intent mechanism where the data
are transmitted by broadcasting. An intent is an asynchronous messages that has
an signature with which the application can identify and catch it. It is easy to
implement because for doing this just a new Intent containing the data has to be
created and be broadcast.

CHAPTER 4. IMPLEMENTATION 56

ph
Li
bN

fc
_S
E.
c

ph
H
al
4N

fc
.c

ph
H
ci
N
fc
_E
m
ul
at
io
n.
c

ph
H
al
4N

fc
_E
m
ul
at
io
n.
c

co
m
_a
nd

ro
id
_n

fc
_N

at
iv
eN

fc
M
an

ag
er
.c
pp

N
fc
Se
rv
ic
e.
ja
va

N
at
iv
eN

fc
M
an

ag
er
.ja

va

Ap
pl
ic
at
io
n
Le
ve
l

ph
H
ci
N
fc
_C

E_
A.
c

Da
ta

Pr
oc
es
sin

g
In
te
nt

or
Ca

llb
ac
k

•
…

•
ph

H
al
4N

fc
_H

an
dl
eE
ve
nt
(…
)

ph
H
ci
N
fc
_R

ec
v_
CE
_A

_E
ve
nt
(..
.)

•
…

•
ph

H
al
4N

fc
_H

an
dl
eE
m
ul
at
io
nE

ve
nt
(…
)

ph
H
al
4N

fc
_H

an
dl
eE
ve
nt
(…
)

•
…

•
ph

Li
bN

fc
_S
eN

ot
ifi
ca
tio

n(
…
)

ph
H
al
4N

fc
_H

an
dl
eE
m
ul
at
io
nE

ve
nt
(…

)

•
…

•
nf
c_
jn
i_
tr
an
sa
ct
io
n_

ca
llb
ac
k(
…
)

ph
Li
bN

fc
_S
eN

ot
ifi
ca
tio

n(
…
)

•
…

•
no

tif
yC
ED

at
a(
…
)

nf
c_
jn
i_
tr
an

sa
ct
io
n_

ca
llb

ac
k(
…
)

•
…

•
on

Ca
rd
Em

ul
at
io
nD

at
a(
…
)

no
tif
yC
ED

at
a(
...
)

•
…

on
Ca

rd
Em

ul
at
io
nD

at
a(…

)

•
…

•
H
CI
Se
nd

Dt
a

ph
H
ci
N
fc
_C

E_
A_

Se
nd

D
at
a_
Ev
en

t(
…
)

•
…

•
ph

H
ci
N
fc
_C

E_
A_

Se
nd

Da
ta
_E
ve
nt
(…
)

ph
H
ci
N
fc
_R

aw
Se
nd

CE
(…

)

•
…

•
ph

H
ci
N
fc
_R

aw
Se
nd

CE
(…
)

ph
H
al
4N

fc
_R

aw
Se
nd

CE
(…

)

•
…

•
ph

H
al
4N

fc
_R

aw
Se
nd

CE
(…
)

ph
Li
bN

fc
_S
E_
Ra

w
Se
nd

CE
(…

)

•
…

•
ph

Li
bN

fc
_S
E_
Ra

w
Se
nd

CE
(…
)

co
m
_a
nd

ro
id
_n

fc
_N

fc
M
an

ag
er

_d
oR

aw
Se
nd

CE
(…

)

•
…

•
do

Ra
w
Se
nd

CE
(…
)

Ra
w
Se
nd

CE
(…

)

•
…

•
Ra

w
Se
nd

CE
(…
)

Ra
w
Se
nd

In
CE

M
od

e(
…
)

F
ig

u
re

4.
8:

D
at

a
F

lo
w

af
te

r
H

C
I

R
ec

ei
ve

E
ve

n
t

fo
r

P
oC

A
p
p
li
ca

ti
on

L
ev

el
Im

p
le

m
en

ta
ti

on
s

CHAPTER 4. IMPLEMENTATION 57

Callback Notification to Application Level

Implementing a callback in a Java environment is more tricky because opposite to
C and C++ it does not work with passing function pointers. The designate way
to do something comparable is to take the indirection over an interface. For this
work an interface called INfcCENotifier was generated. It provides a declaration for
a ProcessData() method which than can be called from the NfcService.java class.
The actual implementation of this method is then done in the application.

The final implementation was done in a way that if the callback is not implemented
in the application the intent mechanism is used. This allows an easy switching
between them without recompiling the android source code.

4.5.4 SDK Adoption

The next step is to add the newly designed API to the Android SDK in order to
make it accessible from the Eclipse built environment. The Android SDK Eclipse
plug-in contains information about the available API from the android.jar file of each
platform. In order to not destroy a platform it is better to copy the desired platform
files and create a new one. In this case the desired one is called platforms/android-15
(for Android 4.0.3) in the SDK source directory. This step is similar to the proce-
dure to uncover hidden Android API methods.

To get the interface information in the needed format the class files that containing
the new API can be taken from the Android source compiler output which is located
in /out/target/common/obj/Java LIBRARIES/...
.../android stubs current intermediates/classes/android/nfc/ in the Android source
base directory. Here you can find the files INfcCENotifier.class,
INfcCENotifier$Stub.class and NfcAdapter.class with the modified and new API.
These files have to be copied to the android.jar of the new platform. More precise: to
the subdirectory /android/nfc. To allow Eclipse to distinguish between the new and
the original platform the file “build.prop“ in the platform directory has to be mod-
ified as well. Changing the line ro.build.version.sdk=15 to ro.build.version.sdk=-15
and ro.build.version.release =4.0.3 to ro.build.version.release=4.0.3.mod will do this.
Now the target platform can be changed in Eclipse to the new customized platform
and the newly created API is accessible.

4.5.5 PoC Application Level

After the received data is routed up to the application API and has been made
accessible it can be used from an application. For the functional part the previous
Java and JNI implementations could be totally reused but need some add-ons. For
the intent method a class is required that extends the “BroadcastReceiver“ class.
And with the Callback approach the newly created interface has to be implemented.

CHAPTER 4. IMPLEMENTATION 58

As described earlier both methods are implemented simultaneously to make a fast
switching possible. This is reflected in the class diagram for the PoC Java imple-
mentation as seen in figure 4.9.

myProgs.AuthPerf

AuthPerfActivity
AuthPerfActivity(): void
onCreate(Bundle): void
onClicked(View): void
Response(Intent): void
Generate_Key(): void
SetkeyZero(): void
WritetoFile(long[]): void
WritetoFile(String): void

CardSimulator
Exchange(byte[]): byte[]
AESAuth1(): byte[]
AESAuth2(byte[]): byte[]
ReadMaced(byte[]): byte[]
CalcMac(byte[],byte[]): byte[]
CMAC_GenerateK1K2(): byte[]
phCryptoSym_Sw_CMAC_LeftShift(byte[],int): byte[]
GenerateSessionKey(byte[],byte[]): byte[]
GetKeyFromStorage(int): byte[]
getSessionKey(): byte[]
getTimes(): long[]
setKey(byte[]): void
setUserID(byte): void

CallBackReceiver
CallBackReceiver(AuthPerfActivity): void
asBinder(): android.os.IBinder
ProcessData(byte[]): void

new INfcCENotifier.Stub()
ProcessData(byte[]): void

IntentRevceiver
IntentRevceiver(): void
onReceive(Context,Intent): void
setMyAct(AuthPerfActivity): void

ReaderSimulator
setKey(byte[]): void
StartAuthenicate(): void
AES_Auth1(byte[]): byte[]
AES_Auth2(byte[]): void
getSessionKey(): byte[]
getTimes(): long[]

Figure 4.9: Class Diagram of PoC Java

The resulting execution sequence for the PoC JNI implementation on application
level is visualised in figure 4.10.

Figure 4.10: Sequence Diagram for PoC JNI with Callback

CHAPTER 4. IMPLEMENTATION 59

4.5.6 PoC Use Case Implementation

Based on the previously PoC implementations the extension for the access man-
agement use case is done quite straightforward as the basic framework is already
set up. The additional functions are implemented as described in section 3.7.5.It is
important to mention that the response on a Select Application Command is always
0x00 which stands for success as it can be seen in figure 4.11.

PCD PICC

1 3

0x54 AID -->

1

<-- 0x00

Figure 4.11: Structure of Selcect Application Command and Response

For securing the message authenticity for the read operation a 8 CMAC with
the session key has to be calculated. Thereby the padding is done according to
ISO/IEC 9797 section 1, padding method 2 and the CMAC is calculated after NIST
special Publication 800-38D. For this block cypher method the CMAC of the re-
ceived command has to be calculated as well to work as an initial vector for the
CMAC calculation for the actual data to response.

The implemented response on a read command is a 32 byte data block that contains
a user ID and has space for other informations e.g. a “card personification“ times-
tamps as it could be used in a real access management system.The structure of the
response is illustrated in figure 4.12. As mentioned for the PoC application level
implementations the actual user ID is changeable on runtime via the user interface.
This would be possible for the PoC Stack version as well but the additional effort
would not bring any additional findings.

PCD PICC

1 1 3 3

0xBD File ID Offset Length -->

1 2 30 8

<-- 0x00 UserID Other Data MAC

Figure 4.12: Structure of Read Command and Response

Chapter 5

Experimental Results

This chapter starts with a description of the used measurement equipment. It con-
tinues with the used profiling functions and measurement corrections. Then presents
the actual measured values of the comparison devices and of the previously created
implementations. Finally the security impact of this result is highlighted.

5.1 Equipment and Tools

For this work two kinds of measurement tools were used. An external device in
form of the ISO Setup and for the internal measurement the Android Debug Bridge
(ADB) including the LogCat viewer for observing the output.

5.1.1 ISO Setup

The ISO Setup is a “modular test bench allowing to combine higher layer protocol
tests with analogue parameter variation in the contactless antenna arrangement as
specified in the ISO/IEC 10373-6 test standard.“ [GBBM08]

Its principle components can be seen in figure 5.1. The Device Under Test (DUT) it
placed on a special antenna arrangement. This consists of a reader (PCD) Antenna
that is surround by two sense coils in Helmholtz configuration which allow an exact
measurement of the electromagnetic field.

60

CHAPTER 5. EXPERIMENTAL RESULTS 61

In (20), UPP is the induced open loop voltage (peak-to-
peak), fC is the carrier frequency of 13.56 MHz, µ is the
magnetic field constant, and C is the crest-factor (relating
root mean square to peak values), which for sinusoid

wave shapes is 2 .

This relation allows to measure the alternating H-field
perpendicular to the plane of the Calibration Coil and
averaged over the coil area, as it is the case in the ISO
defined setup.

III. COMPLETE TEST BENCH

Following the main signal path, the principal function
of the test bench as shown in fig. 9 is as follows: A
laboratory Reader provides the command sequences as
digital modulation signal at logic levels (without carrier).
This signal is used to trigger the Analog Signal Generation
Block. This component, based on an FPGA, contains
sample points for amplitude over time in different
memory sections. In the typical operation case, the 13.56
MHz sine wave carrier is produced by the continuous
repetition of a small number of sample points out of the
memory, which are fed into a D/A converter followed by a
low-pass filter and buffer amplifier. Controlled by the
digital trigger signal, the Analog Block switches to a
different memory section, where a specific pulse shape,
modulated on several periods of the sine wave carrier, is
stored. At the end of each modulation pulse sequence, the

Analog Block switches back to the memory section for the
carrier. In this way, each command can be applied with
each pulse shape to the DUT. The modulated signal is
then fed into a power amplifier, which allows to control
the output amplitude. Over an attenuator (to reduce load
mismatch due to the Card detuning and loading effect on
the PCD antenna), the modulated carrier is fed into the
PCD antenna, which emits the H-field in the antenna
arrangement. The field strength of the carrier is monitored
by measurement of the induced voltage of the Calibration
Coil by a scope. The Transponder Card under Test will
receive the command and respond via Load Modulation.
The (secondary) field of the Card is picked up by the
Helmholtz arrangement of two symmetrical Sense Coils.
This signal is de-coupled by a buffer amplifier with high

input impedance (> 1MΩ // < 14 pF) and over a 50 Ohm
coaxial cable it is fed to channel 2 of the scope, and a
second amplifier with automatic gain control (AGC) feeds
the Card emission signal to the receive path of the Lab
Reader, to avoid overload at higher carrier amplitude or an
increased error rate at low amplitude.

In this way it is possible to combine higher layer
protocol tests with any pulse shape or modulation index
variation, overshoots or ringing effects. All system
components can be controlled via PC either by an
automated test system or by manual "debug" operation.

Power

Amplifier

Laboratory

Reader

Control PC

Test Software

USB Interface

Oscilloscope

H-Field Strength measurement

Pulse Shape measurement

Field

Strength

Adjustment

(Gain)

50 Ohm coaxial cable

PCD

Antenna
Sense Coil a

Calibration Coil

Sense Coil b

DUT

50 Ohm coaxial cable

1 MOhm

< 14 pF

ext.

Trigger

Analog

Block

RF Carrier

and

Modulation

Pause

digital signal

analog RF signal

AGC

pre-amplifier

3 dB Attenuator

13.56 MHz

Clock Sync.

Ferrite Band

50 Ohm1 MOhm

Figure 9. Complete test bench in detail.

REFERENCES

[1] ISO/IEC 14443-1/-2/-3/-4: 2001

[2] ISO/IEC 10373-6: 2000

[3] ISO/IEC JTC1/SC17/WG8 Homepage (www.wg8.de)

[4] T. Meier et al., Script to RFID session of Lab course
"Nachrichtentechnik 2", Dept. of Communication Networks and
Satellite Communications, Graz Univ. Tech. 2006

[5] K. Finkenzeller, RFID-Handbook, Wiley & Sons LTD, ISBN 0-470-
84402-7, 2nd edition, 2003, (http://rfid-handbook.de)

[6] D. Paret, RFID and Contactless Smart Card Applications, Wiley-
VCH, ISBN 0-470-01195-5, 1st edition 2005

CSNDSP08 - 310 - Proceedings

Figure 5.1: Complete Test Bench in Detail [GBBM08, p. 5]

For the measurements in this work a device that combines the Laboratory Reader
and the Analog Block was used. This so called “PFGA Box“ allows in combination
with the Oscilloscope and the controlling PC with the test bench software an exact
and automated measurement of the FDT. Beside this automated measurement the
mean reason for using the ISO Setup is that it is nearly impossible to measure a
period of several ms in the required resolution just on an Oscilloscope.
As mention in section 4.2.3 the used Testbench builds on a .dll written in C# which
is used by the NUnit test environment.

5.1.2 Android Debug Bridge and LogCat

The Android Debug Bridge (ADB) is a client-server program that contains three
components [Goo11a, c.f.]:

• A client, which runs on the development machine.

• A server, which runs as a background process on the development ma-
chine

• A daemon, which runs as a background process on the device instance
[Goo11a, c.f.]:

Such a client is available in the ADT Eclipse plug-in and can receive messages from
the debug log output. These messages can be collected and viewed with LogCat.

CHAPTER 5. EXPERIMENTAL RESULTS 62

5.1.3 Time Measurement

To get the actual computation and communication durations three principles were
used.

The first one is the use of an external device like the ISO Setup. This requires
the existence of physical signals and in this case this is just useful for the overall
time consumption from end of communication of the reader device to the start of
the response sent by the card or NFC phone, which means to measure the total
Frame Delay Time (FDT).
The second principle is used to gain performance information of the C Implemen-
tation running on the LPC1343. As the attached JTAG controller allows direct
access to the CPUs clock register the differences of this value before and after the
computation can be multiplied by the CPU clock to derive the duration. Thereby
the CPU clock is assumed to be constant. These values can be gathered by the use
of debugging brake points in the code.
The third principle is for application level and proof of concept implementation
where profiling functions provided by the operating system were used. They were
introduced into the code according to the timing points described in section 3.7.4.
As in the proof of concept implementation some of these points are located in soft-
ware levels which are not accessible through the Eclipse IDE they have to read by
the use of the ADB servers log output. To minimize the influence of the time mea-
surement on the computation time the profiling values were stored to static local
variables and were handed over to the ADB daemon after the end of communication.

Under the assumption that the average durations of these functions from their start
to the fixation of the profiling value (tstart) and the return of this value (tend) are con-
stant the time consumed by this profiling function (tpro) only has to be subtracted
from the difference of this two profiling points. In the following part the notation t′x
stands for the time returned by the profiling function and tx for the corrected time
value.

tprof = tend + tstart (5.1)

Tdiff = t2 − t1 = t′2 − tend − (t′1 + tstart) (5.2)

= t′2 − t′1 − (tend + tstartt) = t′2 − t′1 − tprof

The outputs of two profiling function calls in sequence give the profiling duration.

t2 − t1 = 0 = t′2 − t′1 − tprof (5.3)

→ tprof = t′2 − t′1

CHAPTER 5. EXPERIMENTAL RESULTS 63

Stack JAVA JNI

Funcion : clock gettime() nanotime() clock gettime()

tp = 2.4 us 4.9 us 7.8 us

Table 5.1: Profiling Time Consumption

Table 5.1 shows the time consumption of the profiling functions on the different
software levels. These times have to be discounted for each profiling point. The
table also indicates that for code parts written in C and Java different profiling
functions were used:

• On Java level the system function nanotime().

• On C Level function clock gettime(CLOCK REALTIME, ...) .

• On the JNI the clock gettime() function was used as well but it turned
out that it ticks four times faster than it should. The reason for this could
not be found but it could be corrected easily be dividing the measured
values by 4.

The values in table 5.1 are the average values of fifty measurements and used to
do a systematic correct of the values measured during the authentication. As the
used profiling function for Java and C code provided different timestamps they had
to be harmonised. Therefore the time difference at the C/Java border is equally
distributed to the C/Java call and the Java/C call. The same is done for the
Java/JNI border. The time of I2C communication is segmented according to the
datareceived (Br) and sent (Bs).
The whole formulas that were used to correct the measurements are the following:

t0 = 0 (5.4)

t1 = (FDT − (t′10 − t′1 + tp,c))
Br

Bs + Br

(5.5)

ti = ti−1 + (t′i − t′i−1 −∆i) for i = 2, 4, 6, 8, 10 (5.6)

ti = t11−i + (t′i − t′11−i −∆i) for i = 7, 9 (5.7)

t3 = t2 +
(t′7 − t′2 − tp,c)− (t′6 − t′3 + tp,j)

2
(5.8)

t5 = t4 +
(t′7 − t′4 − tp,j)− (t′6 − t′5 + tp,JNI)

2
(5.9)

t11 = FDT −∆11 (5.10)

CHAPTER 5. EXPERIMENTAL RESULTS 64

Delta PoC JNI PoC JAVA PoC Stack

∆2 = ∆10 = tp,c

∆4 = ∆8 = tp,j -

∆6 = tp,JNI - -

∆7 = tp,j + 2tp,JNI tp,j -

∆9 = tp,c + 4tp,j + 2tp,JNI tp,c + 4tp,j -

∆11 = 4tp,c + 4tp,j + 2tp,JNI 4tp,c + 4tp,j 4tp,c

Table 5.2: Correction Values for Profiling

5.2 Devices for Comparison

Procedure

These devices were measured at the ISO Setup and the average of 50 measurements
is presented in table 5.3.

Results

Device PICCBlock1 PICCBlock2

[us] [us]

Reference PICC 2567 2640
JCOP+SmartMX 6221 7992

PN544 Demo board + Gemalto SIM 37293 372*

Turkcell T20 + Gemalto SIM 37389 367*

* Not total FDT

Table 5.3: Measured FDT of Comparison Devices

As expected the referent PICC is the fastest solution. If looking at the table 5.3 you
might negate this proposition because of the * marked values. For example in case
of the SIM solution on the PN544 Demo board where the PICCBlock2 a value of
372 us is indicated. This value does not represent the total FDT because the device
requests a Waiting Time Extension (WTX). During the L4 Activation this device
requests a Frame Waiting Time of ∼77,33 ms which means that the really required
FDT for the PICCBlock2 probably exceeds this value but cannot be determined
more precisely because the reader has to acknowledge the WTX command and this
depends on the performance of the reader. The marked values in the table therefore
just indicate the measured time between the WTX acknowledge and the response.

CHAPTER 5. EXPERIMENTAL RESULTS 65

All together you can see that the hardware implementation in form of the reference
PICC is at least 20 times faster than the SIM solution.
Additionally it can be said that the FDT values of the repeating measurements
did not differ much for the SIM solutions. The maximum standard deviation lies
beneath 2 % for all devices. This does not hold for the SmartMX on JCOP where
the deviation is much higher.

5.3 C Implementation

Procedure

The LPC1343 allows direct access to the ARM processors core registers. Therefore
the computation time can be easily extracted from the clock count register. As GNU
tool chain of the PLCXpresso Studio provides a set of compiler optimization set-
tings and the used Gladman implementation offers a variety of compiler switches to
optimize the performance the computation time of the different settings is presented
in table 5.4 and table 5.5.

Results

Table 5.4 shows the computation afford with the different compiler settings. They
go from 0 for “no optimization“ to s for “optimized for size“. It can be seen the
optimization level 1 could improve the performance dramatically compared to “no
optimization“ but higher optimization levels even shrink this benefit. Therefore this
setting is used for the further measurements.

Compiler Setting PICCBlock1 PICCBlock1

[cycles] [cycles]

0 12664 42603
1 2515 10182
2 2810 12174
3 2923 24362
s 2700 10811

Table 5.4: Computation Cycles for Different Compiler Settings

In table 5.5 the influence of the settings made with the Gladman implementation as
described in section 4.3.1 are shown. The first column indicates if the code for the
AES crypto rounds is unrolled and the second if pre calculated lookup tables were
used. The figures stand for the number of tables in the following order: for normal
encryption round, for last encryption round, for normal decryption round, for last
decryption round.

CHAPTER 5. EXPERIMENTAL RESULTS 66

Enabling all tables and do a full code unroll was not possible because this blows up
the code size too much and it did not fit it the LPCs 32k flash memory any more.
But this does not seem too be a problem as the best performance was achieved with
one table each.

unroll code Lookup Tables PICCBlock1 PICCBlock1

[cycles] [cycles]

no unroll 4,4,4,4 2048 7215
part unroll 4,4,4,4 1939 6906
full unroll 1,1,1,1 1808 6537
full unroll 4,1,4,1 1908 6871

Table 5.5: Computation Cycles for Different Number of Lookup Tables and Code
Unroll

5.4 Application Level Implementations

Phone state conditions

On the phone the computation performance does not only depend on the power of
the processor but also on the system state and the running background processes.
To make this state as defined as possible all measurements were performed on the
same conditions:

• Only applications of the Android 4.0.3 source code as fetched from the
repository are installed plus the particular implementation to be mea-
sured.

• The device is restarted before each measurement cycle and the measure-
ment is started after a break of a least one minute to ensure that the
boot process has been finished

• Wi-Fi, GPS, Bluetooth and Mobile data are switched off, NFC is on

• The setting of the Developer options different to default are as followed:
USB Debugging: on;
Stay awake: on;
Don’t keep activity: on

Procedure

Similar to the reference devices 50 samples were drawn in order to evaluate the
performance of the application level implementations . In addition the findings on

CHAPTER 5. EXPERIMENTAL RESULTS 67

the Gladman options with the C implementation are tested to show if they hold for
the JNI implementation as well.

unroll code Lookup Tables PICCBlock1 PICCBlock1

[us] [us]

full unroll 1,1,1,1 47 76
full unroll 4,4,4,4 61 141

Table 5.6: Computation Cycles for Different Number of Lookup Tables with JNI
Implementation

Results

The measurements presented in table 5.6 confirm that the configuration “full un-
rolled and one lookup table each“ is the fastest and therefore is used for the rest of
the measurements.
The average calculation time for PICCBlock1 and PICCBlock2 with the Java and
the JNI implementation are shown in figure 5.2. It can be seen easily that the JNI
implementation is about 40 to 50 times faster than the Java correspondent, but it
has to be mentioned that this just reflects the pure computation time and no calls
from an upper layer.

0 0.5 1 1.5 2 2.5 3

PICCBlock1

PICCBlock2

Time [ms]

JNI

JAVA

Figure 5.2: Average Measured Computation Times of JNI and Java Implementation

5.4.1 Multiple Repetitions

As mentioned the Dalvik VM is capable of JIT compiling. Therefore it would
be interesting if this has an effect on the computation time if performing more

CHAPTER 5. EXPERIMENTAL RESULTS 68

authentications in sequence.

Procedure

For visualising this effect the average computation times of various authentication
round from 1 to 100000 were measured 10 times each.

Results

In figure 5.3 the average computation time over the number of authentication rounds
ins shown. For having a better orientation the FDT of the reverence PICC has been
added to the figure. With 10000 repetitions the calculation time for PICCBlock1
decreases to 255 us. As this is still 5 times higher than the average computation
time achieved with the JNI implementation and as this kind of solution would have
an extremely bad energy balance it will not be taken into account for further con-
sideration.

100 101 102 103 104

500

1,000

1,500

2,000

2,500

3,000

Repetitions

C
om

p
u
ta

ti
on

T
im

e
[m

s]

AES 128 Authenication, Nexus S

PICCBlock1 Java

PICCBlock2 Java

PICCBlock1 Ref. PICC(FDT)

PICCBlock2 Ref. PICC(FDT)

Figure 5.3: Repetition Effect on JAVA Implemetation

CHAPTER 5. EXPERIMENTAL RESULTS 69

5.5 Proof of Concept Measurement

Procedure

The FDT of the PoC implementations was measured on the ISO Setup and the
evaluation of the profiling timestamps was done with the help of the LogCAT. For
each implementation the measurement was performed 50 times and was corrected
after the formalism in section 5.1.3. These measurement results are completely
displayed in Appendix B. The following section will only present an abstract of
them.

5.5.1 PoC Stack

0 5 10 15 20 25 30 35 40 45 50

PICCBlock1

PICCBlock2

Time [ms]

I2C Communication

C Communication

Calculation Time

Figure 5.4: Measured FDT of PoC Stack

Results

Figure 5.4 shows the average FDT and how it is composed. It can be seen that the
actual computation of the authentication (yellow) just consumes a very little part
of the FDT and is hardly recognizable at all. The difference in I2C communication
can be explained by the different amount of data to be transmitted.

CHAPTER 5. EXPERIMENTAL RESULTS 70

5.5.2 PoC Java

0 10 20 30 40 50 60 70 80 90 100

min

average

max

Time [ms]

PICCBlock1

I2C Communication

C Communication

Java/C Call

Java Communication

Calculation Time

Figure 5.5: Measured FDT of PoC Java with Intent Notification

Results

In figure 5.5 the differences between the shortest, the longest and the average mea-
sured FDT of the PoC Java implementation with intent notification are illustrated.
There is a quite big variance in these results which is manly driven by the intent noti-
fication mechanism (violet) and the time after entering the stack level again(purple).
The marginal influence of the authentication computation also can be seen in fig-
ure 5.5 and as shown in table 5.7 just 2.6% of the total FDT are consumed by the
pure calculation in the average case. With more than 70% the intent notification
consumes the biggest part.

CHAPTER 5. EXPERIMENTAL RESULTS 71

I2
C

C
om

m
u
n
ic
at
io
n
1

C
C
om

m
u
n
ic
a
ti
o
n
1

C
/
J
av
a
B
o
rd
er

J
av
a
C
o
m
m
u
n
ic
a
ti
o
n
1

C
a
lc
u
la
ti
on

J
av
a
C
o
m
m
u
n
ic
a
ti
o
n
2

J
av
a
/
C

B
o
rd
er

C
C
o
m
m
u
n
ic
at
io
n
2

I2
C

C
om

m
u
n
ic
at
io
n
2

F
D
T

[us]

Min 786 190 17 44724 359 234 17 10855 6677 63858
Average 804 268 24 54150 1967 1325 24 9843 6833 75238
Max 602 329 29 71334 356 212 29 17546 5118 95556

[% of FDT]

Min 1,23 0,30 0,03 70,04 0,56 0,37 0,03 17,00 10,46
Average 1,07 0,36 0,03 71,97 2,61 1,76 0,03 13,08 9,08 100,00
Max 0,63 0,34 0,03 74,65 0,37 0,22 0,03 18,36 5,36

Table 5.7: Measured FDT of PoC Java with Intent Notification for PICCBlock1

5.5.3 PoC JNI

0 20 40 60 80 100 120 140 160

min

average

max

Time [ms]

PICCBlock2

I2C Communication

C Communication

Java/C Call

Java Communication

Java/C Call

Calculation Time

Figure 5.6: Measured FDT of PoC JNI with Intent Notification

Results

The measurement on the PoC JNI implementation with intent notification shown
in figure 5.6 paint a similar picture as for the PoC Java implementation. Even if

CHAPTER 5. EXPERIMENTAL RESULTS 72

the FDT PICCBlock2 which consumes more computation time it has hardly any
impact on the total FDT.

5.6 Discussion of Measurement Results

C vs. JNI

The first point to take a closer look on is the comparison of the two implementations
written in C, the first on the LPC board and the second on the Nexus S over the
JNI. If just looking at the computation time in table 5.8 the two implementations
seem to play in the same league but if you look at the performance per MHz you
can see the influence of the OS that makes the computation about 10 to 25 times
slower.

Implementation PICCBlock1 PICCBlock2

[us] [us
MHz

] [us] [us
MHz

]

C 25 1808 91 6537
JNI 47 47000 76 76000

Table 5.8: C vs JNI

Java vs. JNI

The influence of the programming language is quite high as well. As figure 5.2
showed the JNI implementation is on average 40 to 50 times faster than the Java
implementation. Therefore it would be recommender in case of commercial use of
the host emulation.

Intent Call vs. Callback

The next point to discuss is the influence of the notification mechanism to the
application level. As already mentioned the easer to implement intent notification is
quite slow. Therefore the Callback notification was introduced. This could improve
the average performance as you can see in figure 5.7 on the example of the Poc JNI
implementation. As expected the computation starts much earlier after the reception
of data than it did with the intent mechanism but this is not totally reflected in
the overall FDT because the time between end of computation and start of the I2C
communication increased. To evaluate why this is the case a deeper analysis of the
Android source code had to be made. It turned out that sending an HCI message
does not directly trigger an I2C communication. Instead the massage is put into
a message queue. Those massages in the queue are executed by a separate thread
which is implemented in the NativeNfcManager class. These factors that influence

CHAPTER 5. EXPERIMENTAL RESULTS 73

the processing of this thread could not be determined in detail, but it seems that it
is somehow effected by the callback implementation. Additionally, the phone waits
for an 500 us guard time before sending an I2C command which is recommended by
NXP as written in a NFC stack source code comment.

0 10 20 30 40 50 60 70 80 90 100

Intent

Callback

PICCBlock1

I2C Communication

C Communication

Java/C Call

Java Communication

JNI Call

Calculation Time

0 10 20 30 40 50 60 70 80 90 100

Intent

Callback

Time [ms]

PICCBlock2

Figure 5.7: Callback and Intent Comparison for PoC JNI

Use Case Functions

If looking at the complete set of commands used for the access management use
case it also shows that the computation time is marginal compared to the rest of the
communication parts. The figure 5.8 for the PoC Stack implementation also shows
that the communication time after the actual computation of a read command is
much longer than for the other commands. This is the case because the 41 Bytes of
data are split when they are sent over the I2C interface. Therefore additional time
for the queue operating thread and guard time is consumed.

CHAPTER 5. EXPERIMENTAL RESULTS 74

0 10 20 30 40 50 60

Select APP

PICCBlock1

PICCBlock2

Read MACed

Time [ms]

PoC Stack Implementation

I2C Communication

C Communication

Calculation Time

Figure 5.8: Measured FDT for PoC Use Case on PoC Stack

A summery of the average FDTs of all PoC implementations is provided in table 5.9
which also reflects the fact the PoC Stack implementation is the fastest of all.

Commands P
O
C

S
ta
ck

P
O
C

J
av
a
In
te
n
t

P
O
C

J
av
a
C
a
ll
b
ac
k

P
O
C

J
N
I
In
te
n
t

P
O
C

J
N
I
C
a
ll
b
ac
k

[us]

Select Application 7146 52278 71237 50737 72306
PICCBlock1 20175 64265 75238 62858 75833
PICCBlock2 37168 69892 81550 68090 77164
Read MACed 49635 74741 95240 71608 93357

Table 5.9: FDTs of PoC Use Case Commands for Different PoC Implementations

CHAPTER 5. EXPERIMENTAL RESULTS 75

Comparison to Reverence Devices

Finally the focus comes to the discussion of the over all performance of the PoC
implementations compared to reference devices. Figure 5.9 shows the average and
the shortest measured FDT for PICCBlock1 of the different solutions. In case of the
PoC application level implementations the results for the callback implementations
are shown because they are the faster solutions.

0 10 20 30 40 50 60 70

PICC

SIM

PoC Stack

PoC JAVA

PoC JNI

SmartMX

2.57

37.29

20.18

64.27

62.86

6.22

2.45

37.18

4.31

35.75

10.56

1.87

Time [ms]

PICCBlock1

Average FDT

Min FDT

Figure 5.9: Comparison Devices and PoC Implemetations PICCBlock1

It can be seen that the PoC Stack implementation compete easily with the SIM
based card emulation. In the best case it even comes in the area of the reference
PICC. As expected the PoC Java solution is the slowest one. Even in ideal case it is
just slightly faster than the Gemalto SIM. And the PoC implementation performed
slightly better on average but could undercut the average PoC Stack performance
at least once.

CHAPTER 5. EXPERIMENTAL RESULTS 76

The comparison for the second PICCBlock in figure 5.10 shows a different pic-
ture. As no real FDT for the SIM solution could be measured the requested FWT
is shown in the figure to illustrate the minimum duration. Due to the higher data
exchange and higher computation effort the average FDT almost doubles compared
to PICCBlock1 but the other PoC implementations are now faster than the SIM
solution as well.

0 10 20 30 40 50 60 70 80 90

PICC

SIM

PoC Stack

PoC JAVA

PoC JNI

SmartMX

2.64

77.33

37.17

69.89

68.09

7.99

2.53

77.33

25

65.61

41.79

1.29

Time [ms]

PICCBlock2

Average FDT

Min FDT

Figure 5.10: Comparison Devices and PoC Implemetations PICCBlock2

Measurement Conclusion

The measurements presented in this chapter show some very intriguing facts. As
expected the C implementation is faster than the JNI implementation which again is
faster than the Java implementation. But the PoC implementations showed that the
influence of the actual computation time is marginal. The main time consumption is

CHAPTER 5. EXPERIMENTAL RESULTS 77

produced by the communication on the I2C bus, the notification mechanism and the
I2C massage queuing. At least one of these could be bypassed with the PoC Stack
implementation. The disadvantage of this solution is that it is less flexible than the
application level implementations but as the source code has to be changed any way
this could be diminished by routing additional functions through the system stack.
On the performance point of view it can be seen that the PoC stack implementa-
tion, which is the fastest PoC implementation, easily competes with SIM solutions
whereas performance of the hardware accelerate reference PICC will not be cached.

5.7 Impact on the Integrity of Existing RFID Sys-

tem

The previous implementations and measurements show that a state of the art NFC
mobile phone has no additional impact on the security of an existing RFID system.
This has three main reasons.

Random UID only

The PN544 NFC chip does not allow to set a specific UID over the host controller
interface. This disqualifies the device even for systems that just do a rudimentary
UID check for authentication. In state of the art access system each card uses its
own authentication key which is derived from this UID and therefore is not possible
for the Nexus-S.

Caused by the leak of NFC enabled Android smart phones with other chips this
assumption can not be made for NFC enabled smart phones in general because
other manufacture might do not block this feature. Additionally it can be spec-
ulated that in case of the PN544 the disability for specific UIDs is caused by the
firmware running on the chip because a SIM base solution would be able to set an
UID. If so this might create a security thread in collaboration with a firmware hack.

Nevertheless even if it is possible to use a specific UID with host emulation it is
not a problem per se as the other two reasons would have to kick in as well.

Need for key

Like all other card emulation device the host emulation solution has to use the right
key for the authentication. As long as the other credential used in a system prevent
a key extraction the system is save. A problem could arise for example if RFID
systems use for reasons of old card stocks a mix credential population with e.g. the
MF3ICD40 which could be hacked [OP11].

CHAPTER 5. EXPERIMENTAL RESULTS 78

Slow interface

The major part of the frame delay time is caused by the host controller interface
itself. For the second PICCBlock this delay is in the area of about 10 ms minimum.
With such a performance the host emulation can be easily distinguished from a state
of the art contacless smart card even if the authentication keys are known. This
also disqualification the NFC enabled smart phone to be used for a relay attack as
well as it wouldn’t pass any proximity check.

5.8 Usage Possibility for the Host Emulation

Even if the implementations provided in this work are not designed to be securely
used in a state of the art RFID System they show the potential of this solution.
Especially the PoC use case implementation. If the host emulation is enabled once
it allows a very flexible definition of the “cards“ functionality and full control over
the implementation. Additionally it allows in combination with the authentication
protocol a secure data exchange fully backwards compatible to existing ISO 14443
reader devices even if they do not support the NFCIP-1 transmission protocol.

Nevertheless before using a host emulation implementation some problems have
to be considered. The main problem is the untrusted execution environment. The
other point is that the system has to deal with the Random UID and therefore its
not possible to diversify the key for the phone with the UID. And of course a prox-
imity check can not be used as well.

If the first problem is solved a host emulation implementation can in principle be
used for the same areas of application as the SIM based solution is used if no fixed
UID is required.

Chapter 6

Conclusion and Future Work

This work shows the ability of a state of the art NFC enabled smart phone to
perform an AES authentication protocol by using the baseband processor and it
evaluates the performance that could be achieved for the authentication. Therefore
a number of implementations had to be provided. This started with a low level C
Implementation to show the basic performance and continued with the Java and JNI
implementation on application level to show the performance on a state of the art
smart phone. By enabling the host emulation feature of the Nexus S the previous
implementation were combined into a proof of concept. This shows different possible
implementation levels and the delays introduced by the hosting platform. Additional
the extension of this proof of concept to be able to be used for the use case of access
management showed the potential for future use of the AES authentication one the
mobile phones base band processor.

6.1 Conclusion

For doing a final conclusion we should recall the objective questions of this work
and give an answer to them:

Question: Is it possible to compute the AES based authentication protocol on
a mobile phone’s base band processor in comparable time to existing
smart card and NFC solutions?

Answer: On the one hand this can be answered with a clear “Yes“ for the existing
NFC solutions because the measurements in chapter 5 showed that the
fastest PoC Implementation consumes on average even less time than
the SIM card solution does. On the other hand it has to be answered
with a “No“ for the smart card solutions as compared to the reference
PICC the host emulation is et least 10 times slower.

79

CHAPTER 6. CONCLUSION AND FUTURE WORK 80

Question: How does the context of a mobile phone environment affect the compu-
tation time and total delays?

Answer: The main influence of the mobile phone environment are the system
delays. With the fastest implantation only 0.5 % of the total FDT on
average is caused by the actual calculations. If comparing this calcu-
lation time again to the basic C Implementation you can see that the
mobile phone platform including the operating system causes a slow-
down by the factor of 40.

Question: Can the computation on the base band processor affect the security of
systems relying on this AES based authentication?

Answer: No additional impact on the security of an existing RFID system could
be found if performing the AES authentication on the base band pro-
cessor. This assumption is based on the slow host controller interface,
the Random UID and the need for the correct authentication key as
described in section 5.7.

On a final note it has to be mentioned that even if all technical issues of section 5.7
are solved the authentication key still will be the critical component to allow possible
miss-use of card emulation. Therefore owner of those keys should be adviced to use
cards and devices with state of the art protection against unauthorized key access.
Especially this should be considered when using card emulation in a commercial
context and when keys are processed in software on the emulation device.

6.2 Future Work

For using the host emulation mode including the AES authentication in a commercial
RFID system there has to be put a lot of effort it the creation of a security aware
software design. This is worth to do if a reasonable use case is found that takes
advantage of the ability to have direct access to the computation power of the base
band processor. New NFC enabled smart phones with multi core CPUs and NFC
chips with faster host interface can increase this performance. Therefore this can
make an implementation on application level more attractive as the delay caused by
the system can be decreased. On the other side this speedup could introduce new
security threads and therefore this development should be observed in the future.

Bibliography

[ARM11] ARM Ltd. Cortex-A Series. http://mobile.arm.com/products/

processors/cortex-a/index.php, December 2011.

[BBF+03] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Mac-
chetti, and Stefano Marchesin. Efficient Software Implementation of
AES on 32-Bit Platforms. In Burton Kaliski, etin Ko, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, volume 2523 of Lecture Notes in Computer Science, pages 129–
142. Springer Berlin / Heidelberg, 2003.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis
of the Full AES-192 and AES-256. In ASIACRYPT, pages 1–18, 2009.

[BKG11] T.Ravichandra Babu, K.V.V.S.Murthy, and G.Sunil. AES Algorithm
Implementation using ARM Processor. IJCA Proceedings on Inter-
national Conference and workshop on Emerging Trends in Technology
(ICWET), (12):24–29, 2011. Published by Foundation of Computer
Science.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger.
Biclique Cryptanalysis of the Full AES. IACR Cryptology ePrint
Archive, 2011:449, 2011.

[ETS08] ETSI TS 102 622: Smart Cards; UICC - Contactless
Front-end (CLF) interface; Host Controller Interface (HCI).
http://ics.nxp.com/support/documents/microcontrollers/

pdf/lpcxpresso.getting.started.pdf, 2008.

[Fin10] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applications
in Contactless Smart Cards and Identification. John Wiley & Sons,
Inc., New York, NY, USA, 3 edition, 2010.

[GBBM08] M. Gebhart, S. Birnstingl, J. Bruckbauer, and E. Merlin. Properties of
a test bench to verify standard compliance of proximity transponders.
In Communication Systems, Networks and Digital Signal Processing,
2008. CNSDSP 2008. 6th International Symposium on, pages 306 –310,
july 2008.

81

http://mobile.arm.com/products/processors/cortex-a/index.php
http://mobile.arm.com/products/processors/cortex-a/index.php
http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.getting.started.pdf
http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.getting.started.pdf

BIBLIOGRAPHY 82

[Gem10] Gemalto. Worlds First: Gemalto Integrates DESFire Transport Card
into NFC Mobile Phone. http://www.gemalto.com/php/pr_view.

php?id=704, February 2010.

[Gla07] Brian Gladman. A Specification for Rijndael, the AES Algorithm
, v3.16. http://gladman.plushost.co.uk/oldsite/cryptography_

technology/rijndael/aes.spec.v316.pdf, August 2007.

[Gla11] Brian Gladman. AES Implementation. http://gladman.plushost.

co.uk/oldsite/AES/aes-src-12-09-11.zip, September 2011.

[Goo11a] Google. ANDROID developers. http://developer.android.com/

index.html, December 2011.

[Goo11b] Google. ANDROID source. http://source.android.com/, December
2011.

[Goo11c] Google. What is Android? http://developer.android.com/guide/

basics/what-is-android.html, December 2011.

[Han06] G.P. Hancke. Practical attacks on proximity identification systems. In
Security and Privacy, 2006 IEEE Symposium on, pages 6 pp. –333,
may 2006.

[ifi11] ifixit. Nexus S Teardown. http://www.ifixit.com/Teardown/

Nexus-S-Teardown/4365/1, December 2011.

[ISO08] ISO/IEC 14443 Identification cards – Contactless integrated circuit
cards – Proximity cards, 2008.

[KvMOP11] Timo Kasper, Ingo von Maurich, David Oswald, and Christof Paar.
Chameleon: A Versatile Emulator for Contactless Smartcards. In
Kyung-Hyune Rhee and DaeHun Nyang, editors, Information Secu-
rity and Cryptology - ICISC 2010, pages 189–206. Springer Berlin /
Heidelberg, 2011.

[LR10] Josef Langer and Michael Roland. Anwendungen und Technik von Near
Field Communication(NFC). Springer, 2010.

[Mad11] Gerald Madlmayr. Uncovered: The hidden NFC po-
tential of the Google Nexus S and the Nokia C7.
http://www.nfcworld.com/2011/02/13/35913/uncovered-the-hidden-
nfc-potential-of-the-google-nexus-s-and-the-nokia-c7/, February 2011.

[MDLS08] Gerald Madlmayr, Oliver Dillinger, Josef Langer, and Josef Scharinger.
Management of Multiple Cards in NFC-Devices. In Gilles Grimaud and
François-Xavier Standaert, editors, CARDIS, volume 5189 of Lecture
Notes in Computer Science, pages 149–161. Springer, 2008.

http://www.gemalto.com/php/pr_view.php?id=704
http://www.gemalto.com/php/pr_view.php?id=704
http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/aes.spec.v316.pdf
http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/aes.spec.v316.pdf
http://gladman.plushost.co.uk/oldsite/AES/aes-src-12-09-11.zip
http://gladman.plushost.co.uk/oldsite/AES/aes-src-12-09-11.zip
http://developer.android.com/index.html
http://developer.android.com/index.html
http://source.android.com/
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://www.ifixit.com/Teardown/Nexus-S-Teardown/4365/1
http://www.ifixit.com/Teardown/Nexus-S-Teardown/4365/1
http://www.nfcworld.com/2011/02/13/35913/uncovered-the-hidden-nfc-potential-of-the-google-nexus-s-and-the-nokia-c7/
http://www.nfcworld.com/2011/02/13/35913/uncovered-the-hidden-nfc-potential-of-the-google-nexus-s-and-the-nokia-c7/

BIBLIOGRAPHY 83

[NFC11a] NFC Admin. NXP NFC Chips. http://www.nfc.cc/technology/

nxp-nfc-chips, July 2011.

[NFC11b] NFC Forum. About NFC. http://www.nfc-forum.org/aboutnfc/,
September 2011.

[NXP10a] NXP. MIFARE DESFire EV1 contactless multi-application IC Prod-
uct short data sheet. http://www.nxp.com/documents/short_data_

sheet/MF3ICDX21_41_81_SDS.pdf, December 2010.

[NXP10b] NXP. NXP NFC controller PN544 for mobile phones and portable
equipment. http://www.nxp.com/documents/leaflet/75016890.

pdf, February 2010.

[NXP11a] NXP. Getting started with NXP LPCXpresso Rev. 11.1.
http://ics.nxp.com/support/documents/microcontrollers/

pdf/lpcxpresso.getting.started.pdf, December 2011.

[NXP11b] NXP. LPC1311/13/42/43 User manual, Rev. 4. http://www.nxp.

com/documents/user_manual/UM10375.pdf, September 2011.

[NXP11c] NXP. NFC Software in a Mobil System. http://wenku.baidu.com/

view/4c4c18202f60ddccda38a024.html, September 2011.

[NXP11d] NXP. PN544 C2 User Manual Rev. 1.8. October 2011.

[OBSC10] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright.
Fast software AES encryption. In Proceedings of the 17th international
conference on Fast software encryption, FSE’10, pages 75–93, Berlin,
Heidelberg, 2010. Springer-Verlag.

[OP11] David Oswald and Christof Paar. Breaking Mifare DESFire
MF3ICD40: Power Analysis and Templates in the Real World. In
Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware
and Embedded Systems CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 207–222. Springer Berlin / Heidelberg, 2011.

[RNP10] Andreas Rohr, Karsten Nohl, and Henryk Pltz. Establishing Security
Best Practices in Access Control. http://www.srlabs.de/pub/acs,
September 2010.

[Sha06] R. Shamsuddin. A comparative study of AES implementations on
ARM processors. Master’s thesis, 2006.

http://www.nfc.cc/technology/nxp-nfc-chips
http://www.nfc.cc/technology/nxp-nfc-chips
http://www.nfc-forum.org/aboutnfc/
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/documents/leaflet/75016890.pdf
http://www.nxp.com/documents/leaflet/75016890.pdf
http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.getting.started.pdf
http://ics.nxp.com/support/documents/microcontrollers/pdf/lpcxpresso.getting.started.pdf
http://www.nxp.com/documents/user_manual/UM10375.pdf
http://www.nxp.com/documents/user_manual/UM10375.pdf
http://wenku.baidu.com/view/4c4c18202f60ddccda38a024.html
http://wenku.baidu.com/view/4c4c18202f60ddccda38a024.html
http://www.srlabs.de/pub/acs

Appendix A

Abbreviations

AES Advanced Encryption Standard
ARM Advanced RISC Machine
ATQA Answer To Request Type A
ATS Answer To Select
CE Card Emulation
DES Data Encryption Standard
DUT Device Under Test
FDT Frame Delay Time
FRI Forum Reference Implementation
FWI Frame Waiting Integer
FWT Frame Waiting Time
HAL Hardware Abstraction Layer
HCE Host Controller Em
HCI Host Controller Interface
JNI Java Native Interface
MAC Message Authentication Code
NFC Near Field Communication
OS Operating System
OSAL Operating System Abstraction Layer
PCD Proximity Coupling Device
PICC Proximity Integrated Circuit Card
PoC Proof of Concept
PPS Protocol and Parameter Selection
RATS TRequest Answer to Select
REQA Request Type A
RFID Radio Frequency Identifcation
SAK Select Acknollage
SAM Secure Access Module
SDK Source Developing Kid
SE Secure Element

A 1

APPENDIX A. ABBREVIATIONS A 2

SFGI Start Frame Guard Integer
SIM Subscriber Identity Module
SWP Single Wire Protocol
TEE Trusted Execution Environment
UICC Universal Integrated Circuit Card
UID Unique Identification Number
VM Virtual Machine
WTX Waiting Time Extension

Appendix B

Measurement Tables

B.1 PoC Stack

I2
C

C
om

m
u
n
ic
at
io
n
1

C
C
om

m
u
n
ic
at
io
n
1

C
al
cu
la
ti
on

C
C
om

m
u
n
ic
at
io
n
2

I2
C

C
om

m
u
n
ic
at
io
n
2

F
D
T

Select App [us]

Min 4036 - - 1084 1009 6129
Average 4760 - - 1196 1190 7146
Max 6052 - - 1321 1513 8886

PICCBlock1 [us]

Min 377 22 18 690 3205 4313
Average 1608 178 84 4634 13671 20175
Max 2064 159 87 7074 17546 26930

PICCBlock2 [us]

Min 12705 142 186 5418 6545 24995
Average 21121 231 199 4738 10880 37168
Max 35272 173 162 2055 18171 55833

Read [us]

Min 7865 150 203 24031 3932 36181
Average 7923 178 214 37359 3961 49635
Max 4286 159 214 53706 2143 60507

Table B.1: Total Measurement Results for PoC Stack

B 1

APPENDIX B. MEASUREMENT TABLES B 2

B.2 PoC JAVA

I2
C

C
om

m
u
n
ic
a
ti
on

1

C
C
o
m
m
u
n
ic
a
ti
on

1

C
/
J
av
a
B
or
d
er

J
av
a
C
o
m
m
u
n
ic
a
ti
on

1

C
a
lc
u
la
ti
on

J
av
a
C
o
m
m
u
n
ic
at
io
n
2

J
av
a/
C

B
or
d
er

C
C
om

m
u
n
ic
a
ti
on

2

I2
C

C
o
m
m
u
n
ic
a
ti
o
n
2

F
D
T

Select App [us]

Min 3221 52 10 41292 - - 10 2629 805 48020
Average 4291 260 31 56075 - - 31 9477 1073 71237
Max 3443 284 30 79909 - - 30 16172 861 100729

PICCBlock1 [us]

Min 786 190 17 44724 359 234 17 10855 6677 63858
Average 804 268 24 54150 1967 1325 24 9843 6833 75238
Max 602 329 29 71334 356 212 29 17546 5118 95556

PICCBlock2 [us]

Min 7588 152 62 39169 584 257 62 13935 3909 65717
Average 13846 346 33 46971 3052 1041 33 9095 7133 81550
Max 28070 331 118 65598 662 819 118 868 14460 111046

Read MACed [us]

Min 2543 188 17 43927 17491 1584 17 7427 3814 77007
Average 3289 365 28 55437 4096 1531 28 25533 4933 95240
Max 3107 430 29 84728 894 254 29 33405 4660 127537

Table B.2: Total Measurement Results for PoC Java with Intent Notification

APPENDIX B. MEASUREMENT TABLES B 3

I2
C

C
om

m
u
n
ic
at
io
n
1

C
C
om

m
u
n
ic
a
ti
on

1

C
/J

av
a
B
o
rd
er

J
av
a
C
om

m
u
n
ic
at
io
n
1

C
al
cu
la
ti
o
n

J
av
a
C
om

m
u
n
ic
at
io
n
2

J
av
a
/
C

B
o
rd
er

C
C
o
m
m
u
n
ic
at
io
n
2

I2
C

C
om

m
u
n
ic
a
ti
o
n
2

F
D
T

Select App [us]

Min 3083 185 21 1516 - - 21 20245 771 25843
Average 6297 302 50 2888 - - 50 41117 1574 52278
Max 3467 280 61 5663 - - 61 71213 867 81612

PICCBlock1 [us]

Min 991 191 22 728 1757 619 22 22994 8424 35747
Average 1408 285 41 1458 3816 1932 41 43316 11969 64265
Max 4048 325 39 1637 3027 2001 39 43855 34411 89382

PICCBlock2 [us]

Min 17626 316 40 2015 6053 1658 40 28784 9080 65613
Average 15023 330 48 1995 11790 2459 48 30459 7739 69892
Max 19878 320 42 3540 9999 2095 42 34430 10240 80585

Read MACed [us]

Min 3665 45 5 208 508 3576 5 14552 5497 28063
Average 3056 236 40 1469 6635 2367 40 56315 4584 74741
Max 2778 187 26 1176 6415 2588 26 99517 4167 116880

Table B.3: Total Measurement Results for PoC Java with Callback Notification

APPENDIX B. MEASUREMENT TABLES B 4

B.3 PoC JNI

I2
C

C
om

m
u
n
ic
a
ti
on

1

C
C
o
m
m
u
n
ic
a
ti
on

1

C
/J

av
a
B
o
rd
er

J
av
a
C
o
m
m
u
n
ic
at
io
n
1

J
av
a/
J
N
I
B
or
d
er

C
a
lc
u
la
ti
on

J
N
I/
J
av
a
B
or
d
er

J
av
a
C
o
m
m
u
n
ic
a
ti
on

2

J
av
a/
C

B
or
d
er

C
C
om

m
u
n
ic
a
ti
o
n
2

I2
C

C
o
m
m
u
n
ic
a
ti
o
n
2

F
D
T

Select App [us]

Min 2309 57 4 4027 - - 76 200 4 7313 577 14567
Average 3908 252 30 51126 - - 2321 3538 30 10125 977 72306
Max 7428 287 43 82294 - - 781 1760 43 25241 1857 119733

PICCBlock1 [us]

Min 892 52 4 4843 66 18 66 258 4 6802 7585 20590
Average 844 256 50 52663 1064 26 1064 2520 50 10119 7177 75833
Max 1842 279 41 85014 493 18 493 4934 41 17865 15660 126681

PICCBlock2 [us]

Min 6407 147 19 39205 1874 57 1874 1761 19 1921 3300 56583
Average 14055 272 36 43678 470 66 470 1931 36 8910 7240 77164
Max 16080 309 30 91840 49 48 49 2040 30 2672 8284 121432

Read MACed [us]

Min 5599 298 32 46519 49 67 49 1828 32 4644 2800 61916
Average 5881 285 67 56289 1353 508 1353 1563 67 23049 2941 93357
Max 8552 305 30 93364 43 66 43 207 30 36737 4276 143653

Table B.4: Total Measurement Results for PoC JNI with Intent Notification

APPENDIX B. MEASUREMENT TABLES B 5

I2
C

C
o
m
m
u
n
ic
at
io
n
1

C
C
o
m
m
u
n
ic
at
io
n
1

C
/
J
av
a
B
or
d
er

J
av
a
C
om

m
u
n
ic
at
io
n
1

J
av
a
/
J
N
I
B
o
rd
er

C
al
cu
la
ti
o
n

J
N
I/
J
av
a
B
o
rd
er

J
av
a
C
om

m
u
n
ic
a
ti
on

2

J
av
a
/
C

B
o
rd
er

C
C
o
m
m
u
n
ic
a
ti
on

2

I2
C

C
om

m
u
n
ic
a
ti
o
n
2

F
D
T

Select App [us]

Min 4414 178 21 778 - - 29 560 21 19357 1104 26461
Average 6391 244 39 1260 - - 59 1378 39 39729 1598 50737
Max 3580 283 42 1502 - - 88 1084 42 75810 895 83325

PICCBlock1 [us]

Min 631 44 3 208 1 15 1 145 3 4139 5365 10556
Average 1559 270 36 1404 46 110 46 1681 36 44414 13255 62858
Max 3126 270 39 4736 78 115 78 1326 39 48300 26575 84684

PICCBlock2 [us]

Min 11729 151 22 769 34 441 34 591 22 21957 6042 41791
Average 15210 334 42 1789 102 487 102 1701 42 40444 7836 68090
Max 21098 309 42 2152 57 279 57 1836 42 54597 10869 91339

Read MACed [us]

Min 6019 220 70 1505 40 380 40 732 70 31720 9028 49824
Average 3083 295 46 1421 72 572 72 1373 46 60005 4624 71608
Max 3449 286 70 1519 61 492 61 1996 70 88355 5174 101534

Table B.5: Total Measurement Results for PoC JNI with Callback Notification

	Introduction
	Motivation
	Objectives
	Structure of this work

	State of the Art and Related Work
	RFID
	Basics
	Smart Card
	Near Field Communication
	Use Case: Access Management

	Crypto Algorithm
	Advanced Encryption Standard AES
	Related Work on AES Implementations

	Security Aspects of RFID Systems
	Attacks on Cryptography
	Attacks on the RFID System

	Design
	Project Plan and Tasks
	Starting Situation
	Work Flow

	Hardware and Platform Selection
	Selection of Processor
	NFC Phone
	Existing devices for Comparison

	Protocol Analysis
	Common Elements for all Implementations
	Design of C Implementation
	Design of Application Level Implementations
	Interface
	Java Implementation
	JNI implementation

	Design of Proof of Concept
	Platform Analysis
	Stack Adoptions
	Implementation Levels
	Profiling and Timestamps
	PoC Use Case

	Implementation
	Used Hardware Platforms
	LPC1343 LPCXPresso board
	Nexus S

	Used Developing Tools
	LPCXpresso IDE
	Eclipse
	Visual Studio
	Testbench
	Android System Build Environment
	Used Versions of Developing Tools

	C Implementation
	Gladman Implementation
	Structure of Implementation

	Application Level Implementations
	User Interface
	Java Implementation
	JNI Implementation

	Proof of Concept Implementation
	Stack Adaptation
	PoC Stack Level
	Routing
	SDK Adoption
	PoC Application Level
	PoC Use Case Implementation

	Experimental Results
	Equipment and Tools
	ISO Setup
	Android Debug Bridge and LogCat
	Time Measurement

	Devices for Comparison
	C Implementation
	Application Level Implementations
	Multiple Repetitions

	Proof of Concept Measurement
	PoC Stack
	PoC Java
	PoC JNI

	Discussion of Measurement Results
	Impact on the Integrity of Existing RFID System
	Usage Possibility for the Host Emulation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Abbreviations
	Measurement Tables
	PoC Stack
	PoC JAVA
	PoC JNI

