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ABSTRACT 

Contemporary drivetrain simulation is facing new challenges, due to the rising com-

plexity of automotive functionality. Engineers rely on highly accurate simulation re-

sults, which moreover have to meet strict frame conditions, as real time performance 

and efficiency factors. 

Automotive drivetrain simulation is an intense field of research all over the world, con-

sequently several approaches were developed to handle outstanding simulation prob-

lems such as friction elements. Little research has been done in the fields of integrating 

further nonlinear elements into the total simulation. A state of the art linear drivetrain 

simulation method with an additional approach that handles friction elements is taken as 

a basis for investigating essential nonlinear elements, which improve accuracy substan-

tially. Three major elements are chosen to show impacts on the simulation results and 

study its integration potential into the total drivetrain simulation. Since nonlinear 

spring/damper elements are in some kind of forming always part of drivetrains, they are 

subject of the first investigation. Several algorithms are figured out for handling particu-

larly piecewise affine spring elements. A promising approach regarding the computation 

time and accuracy was found with the method of switching affine systems for the non-

linear spring and handling damper elements as differently parameterized clutches. Sec-

ondly, the highly nonlinear phenomenon of a collision at some point in the drivetrain, 

particularly in the gearbox, was of interest. By means of a nonlinear algorithm, which 

pre-calculates system states after a collision and appends torque inputs, collisions can be 

considered appropriately. Both of the first nonlinear elements require an approach of a 

“step size adjustment” which leads to negligible errors. Owing to the fact, that friction 

elements are already integrated into the simulation excellently, the attempt is made to 

treat the road/tire interaction as clutch model and turned out to show feasible results.  

All in all, it is possible to integrate nonlinear elements to achieve higher accuracy, but 

for a final integration into an embedded real time system, computation time has to be 

weighed against accuracy improvement. 
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1 INTRODUCTION 

As the simulation of automotive systems, in particular drivetrain simulation, takes an 

increasingly significant part in automotive engineering, effective and accurate simula-

tion approaches are required [1]. There are either methods for online simulation, where 

computation time plays an important role and offline simulation, where the focus lies on 

the accuracy of the results [2]. Since state-of-the-art drivetrain models are subject of 

increasing complexity, the approaches should be kept as simple as possible to keep 

transparency. 

Effective operative solutions exist for drivetrain modelling [3], but they so far rely on 

the linearization of several system parts. As linearization always comes with a loss of 

accuracy, methods are appreciated, which embed fundamental nonlinear behavior. As a 

matter of fact, nonlinear approaches include several challenges, especially when nonlin-

ear elements are merged into an existing modelling approach which already handles 

some nonlinear phenomena with nonlinear methods [3]. The main challenges to conquer 

with new algorithms are a large step size of time discretization, the real time necessity 

and the static friction problem of clutches. 

Main points of interest in nonlinear drivetrain modelling are nonlinear spring-damper-

mass-systems, which occur on several places in modern drivetrain topologies and repre-

sent fundamental mechanical behavior. Several nonlinearities of both, springs and 

dampers, are investigated and furthermore inspected for time discretization methods to 

be merged into existing drivetrain models. 

The thesis is structured into an essential preliminary part (chapter 2), where a simulation 

model was created, following an approach of [3], which is used as a basis for the fol-

lowing chapters that discuss possible nonlinear extensions, particularly a nonlinear 

spring and damper force function (chapter 3), a gearwheel clearance (chapter 4) and 

nonlinear tire models (chapter 5). 
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2 REDUCED SIMULATION MODEL FOR A CERTAIN 

AUTOMOTIVE TRANSMISSION SYSTEM 

2.1 INTRODUCTION 

For the purpose of creating a basic environment for the development of new features, an 

automatic automotive transmission model of a hybrid engine was chosen, which for a 

model was created, with respect to existing automotive gearbox modelling methods [3]. 

The reference model of the automotive transmission system in [3] depends on the de-

velopment environment of an encompassing large project, thus it involves a vast num-

ber of optional and extended components. For the scope of this work the model was 

implemented paying special attention to a lean model structure. As a first step the refer-

ence model was simplified and shaped according to literature [3], which describes an 

approach for real-time drivetrain modelling. The main functionality of the original mod-

el was reproduced with no divergence.  

The description of the real-time drivetrain modelling approach is structured well into 

blocks [3]. This led to the usage of MATLAB
®
/Simulink

®
 “MATLAB function blocks”, 

which embed MATLAB
®

-code into the MATLAB
®
/Simulink

®
 model. These blocks 

make it easy for developers to associate the description of the paper with the pro-

grammed MATLAB
®
/Simulink

®
  model and furthermore these blocks have the ad-

vantage of being treated as “atomic units” in Simulink. “Atomic units” are units, which 

perform their calculations not before they have loaded every input value and which de-

liver outputs simultaneously. In this way algebraic loops are revealed more likely and 

the signal flows are easy to follow.  

By means of the designed model and the paper, future developers are easily able to un-

derstand and manipulate the functionality of the drivetrain model in Simulink. 

In a modern drivetrain simulation, it is not possible to consider all nonlinear parts, due 

to the restricted computation power. In practice it is sufficient to use linear spring-

damper elements and introduce only friction elements as nonlinear components.  
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Nevertheless to increase accuracy and analyze nonlinear behavior, it is subject to inves-

tigate several nonlinear extensions of the model and compare the approaches regarding 

accuracy, implementation afford, computation time and consistency with existing mod-

els. 

Following nonlinear behavior is of major interest, since in some cases they might lead 

to fundamental differences as for example spring-damper resonance frequencies or am-

plitudes. 

2.2 MODEL DESCRIPTION 

2.2.1 FUNCTIONALITY 

Usually drivetrain models consist of simple spring-damper-mass elements with gears 

(e.g. planetary gear sets) connected to each other [4]. This configuration is well known 

[4]. The additional usage of clutches and coulomb friction and the requirement of real-

time operability (constant step size and relatively large time increments) lead to a non-

linear and complex simulation problem. 

The modeling of clutches leads to the problem of switching between locking and slip-

ping with friction in the first place. In the case of a slipping clutches a torque on the two 

connected shafts is transmitted, which solely depends linearly on the contact pressure 

(kinetic friction) and the sign of the speed difference at the clutch. If the differential 

speed of the two shafts is small enough and the accelerating moments do not tear the 

clutch apart, the clutch is set to the locking state. The clutch is set in this state as long as 

the impressed moments of the outer system do not tear the clutch apart and set it into the 

kinetic friction mode again. 

A clutch in the locking mode is defined as a rigid link and transmits precisely the 

torque, which is transmitted on any imaginary cross-section of the shaft. This means 

there is an equality of moments on each side of the clutch. (According to the conserva-

tion of the angular momentum, the sum of the moments must be zero). Rigidly connect-

ed shafts result in a system with fewer degrees of freedom and therefore a system with 

lower order. An intuitive approach of modeling these nonlinear switching would change 

the system matrix and order with any coupling operation, which leads to complex im-

plementation. 
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The solution presented by [3] avoids the problem of the changing order and system ma-

trix by using a constant system matrix for the system, where the torques of the clutches 

are used as input variables and their non-linear calculation is performed outside the sys-

tem, in a nonlinear feedback control loop. 

2.2.2 DESCRIPTION OF THE MODEL PARTS 

Preliminary it should be mentioned, that several input variables act on the system. Ex-

ternal moments are considered outside of the transmission like the electric engine torque 

τm, the combustion engine torque τe and the torque of the wheels of the vehicle τw, 

which is transmitted through the vehicle environment. In addition, the pressure of the 

clutches τC0, τC1, τC2, and τC3 is referred to as internal moments. The pressure is calcu-

lated in advance from the current, acting on a hydraulic system on the clutches. The 

pressure is passed as an absolute value. Consequently the sign of the transmitted torque 

acting on the couplings must be calculated by means of the sign of the angular speed 

differences, which is derived from the system state variables. The examined model is a 

sixth order model with state variables for the electric engine angular speed ωm, the 

combustion engine angular speed ωe, the translated wheel angular speed ωw , the trans-

lating planetary gear set ring angular speed ωR3, the final drive angular speed ωf and 

the output shaft torsion Δφ. 

The shaft torsion Δφ is calculated by means of the final drive gear ratio if, the final 

drive shaft angle φf and the wheel shaft angle φw, as shown in equation (1): 

Δφ = if
−1φf − φw. (1) 

 

Automatic transmissions of hybrid electric vehicles usually consist of at least one plane-

tary gear set, where a ring R, a sun S and planets P are connected. 

Inertias for the combustion engine Je, the electric engine J3, the final shaft Jf, the trans-

lating planetary gear set J2 and the wheel shaft Jv are parts of the mass matrix M, as seen 

in [3]. 

Figure 1 shows the drive train model used in this thesis as a basis. In the center three 

planetary gear sets are shown in a Ravigneaux configuration [1]. The planets of the gear 
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set one and two are rigidly connected to each other, as well as the electric engine and 

the ring of the gear set one. Four clutches enable different gears. The clutch C0 is used 

to uncouple the combustion engine. A spring damper system is used to model the tor-

sion of the final shaft. 

 

Figure 1: Future hybrid drivetrain model 

The calculation of the clutch torques is now carried out in the following steps: 

First, the state of each clutch is determined (slipping or locking). Therefore following 

input signals are necessary: 

a. The state of the system (state vector)  

b. All external and internal input torques.  

c. The slip speeds of each clutch depending on the state vector.  

 

The simulation model now operates in three sequential parts. First, each coupling with a 

slip speed close to zero is prone to get locked, but only if the torque, which would act 

on the clutch in the case of locking stays beyond a threshold value. Thus all clutches 

with a slip speed close to zero are set into a temporary locking mode and the reacting 

torques of the temporary locked system are calculated in the second sequential part. In 

the final part all torques which stay beyond the unlocking threshold value of the static 

friction and which are already locking candidates because of their slip speed are finally 

set into locking mode or otherwise unlocking mode for further calculations. 
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Figure 2: Top layer of the MATLAB
®
/Simulink

®
 model 
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At a second step the calculation of the acting torques on the locked clutches is per-

formed for the second time, but now not for the sake of determining locking mode. Here 

the torques are calculated for the input of the linear system, which does not embed 

clutches. Respectively calculated torques will lead to a slip-speed close to zero in the 

next step, which is exactly what the locked clutch causes. 

Finally a switching function chooses by means of the clutch states, if either the slip 

torque or the locking torque acts on the linear system input. 

2.2.3 BASIC MATHEMATICAL DESCRIPTION 

In this chapter an overview of the fundamental mathematical equations should be given, 

which are derived from [3].  

First of all, the linear part of the system can be written as 

𝐱̇ = 𝐀𝐱 + 𝐁v𝐯 + 𝐁c𝛕c  and  𝐲 = 𝐂𝐱. (2) 

The external nonlinear feedback and switching of 𝛕𝐜 realizes the sliding and locking of 

the clutches. The system is defined by the system matrix A, the input matrix for external 

torques (engines, vehicle resistance) 𝐁v, the input matrix for the clutch moments 𝐁𝐜 and 

the output matrix C, which is not important here. 

The discretization of the system with the step size Td leads to the discrete time system, 

with the discrete time system matrix 𝚽 and the input matrices 𝐇𝐯 and  𝐇𝐜: 

𝐱k+1 = 𝚽𝐱k + 𝐇v𝐯k + 𝐇c𝛕c,k and  𝐲k = 𝐂𝐱k. (3) 

The switching between sliding or locking of the clutches, and therefore the used torque 

is realized by a binary state vector for the clutches κ, which saves the current state. The 

vector holds the state of each clutch, where a logic zero means locked and a logic one 

refers to the state unlocked. Whether the torque of the clutches derived from the hydrau-

lic pressure in the slipping mode 𝛕𝐜,𝐬 or the torque of the locked system 𝛕𝐜,𝐥 is set as an 

input for the linear system, is defined as follows: 

𝛕C,k = 𝐊s,k𝛕s,k + 𝐊l,k𝛕l,k    with   𝐊s,k = diag(¬𝛋),   𝐊l,k = diag(𝛋)   (4) 
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The speed difference of each clutch can be computed with the kinematic relation be-

tween the model states 𝐱k, the mass matrix 𝐌 and the speeds of clutch primary and sec-

ondary shafts by 

𝛚𝐂,𝐤 = −𝐁C
T𝐌𝐱k. (5) 

We now want to compute the force, that is acting on the clutch 𝛕l,k, and check, if it is 

still beyond a torque, where the clutches slip apart and if this is true, this torque is set as 

an input adequately. For clutch locking a necessary condition is 𝛚𝐂,𝐤 =
!
0 and the con-

straint for these clutches to remain locked is 𝐊l,k𝛚C,k+𝟏 − 𝐊l,k𝛚C,k =
!
0, which leads to 

−𝐊l,k𝐁C
T𝐌𝐱k+1 =

!
𝟎. (6) 

Considering equation (6) and (3),  𝛕l,k can be derived as follows: 

𝛕l,k = −𝚵k[𝚽𝐱k + 𝐇k𝐯k + 𝐇c𝐊s,k𝛕s,k]   and (7) 

𝚵k = (𝐊l,k𝐁C
T𝐌𝐇c𝐊l,k + 𝐊s,k)

−1
𝐊l,k𝐁C

T𝐌. (8) 

If equation (7) is inserted into (3), the switching discrete time system can be described 

by 

𝐱k+1 = (𝐈 − 𝐇c𝐊l,k𝚵k)𝚽𝐱k + (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇v𝐯k + (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇c𝐊s,k𝛕s,k. (9) 

2.2.4 STEP SIZE ADJUSTMENT 

When simulating with fixed and large step sizes, generally a zero crossing of a slip 

speed may be located between two steps. Since the tolerance of slip speed zero is sub-

ject to be low in value, zero crossings are detected rarely and couplings will barley go 

into locked state, which leads to chattering within the signals [3]. Chattering occurs, 

because every time a zero crossing is not detected, the sign of the slip torque changes 

and acts in the opposite direction. One solution varying the step size in the case of a 

zero crossing event is a major part of [3].  

Therefore the discrete time system description in equation (10) (transition ma-

trix 𝚽(Td), input vector 𝐡(Td), sampled input value uk and step size Td) is implemented 

in delta notation [5] (equation (11) and (12)). Through prediction it is possible to detect 

zero crossings for each time step. If a zero crossing is detected between two steps, the 
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step size is changed by means of a factor, which puts the zero-crossing event approxi-

mately to the next discrete time step. By this method the clutch is prone to change its 

locking mode without chattering. In the subsequent time step, the step size has to be 

corrected in order to meet the general step size pattern by one full time step and the 

complementary “missing” time step of the previous corrected step.  

𝐱k = 𝚽(Td)𝐱k + 𝐡(Td)uk (10) 

δ𝐱k(Td) =
1

Td
((𝚽(Td) − 𝐈)𝐱k + 𝐡(Td)uk) (11) 

𝐱k+1 = 𝐱k + Tdδ𝐱k(Td) = 𝐱k + ((𝚽(Td) − 𝐈)𝐱k + 𝐡(Td)uk) (12) 

 

Figure 3 shows a graphical interpretation of the step size adjustment. The blue line 

shows the trajectory of the continuous time slip speed, which crosses zero at a certain 

point. The green dots represent the discrete time values for the slip speed with a step 

size of 2 seconds. To locate the approximate time variation for a slip speed of zero, the 

delta notation can be used by inserting the factor η, shown in equation (14), which is an 

approximation of the general equation (13), which exactly calculates the state at a time 

step (k + η)Td. Equation (13) is inappropriate to calculate η, because the transition ma-

trix 𝚽(ηT) is a nonlinear function of η. 

𝐱k+η = 𝐱k + ηTdδ𝐱k(ηTd) = 𝐱k + η((𝚽(ηTd) − 𝐈)𝐱k + 𝐡(Tdη)uk) (13) 

𝐱k+η ≈ 𝐱k + ηTdδ𝐱k(Td) = 𝐱k + η((𝚽(Td) − 𝐈)𝐱k + 𝐡(Td)uk) (14) 

 

The red line in Figure 3 shows the state transition according to equation (14), if η is 

used as continuous variable between the two states k and (k+1). Since the transition is 

approximated affine by means of this method, it is now easy to approximate the slip 

speed zero time, and consequently η. The consecutive step has to be extended by (2-η) 

to keep up with the real time constraint. 
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Figure 3: Step size adjustment by delta approximation 

To compute the variation η of the step size for each clutch (equation (16)) crossing the 

zero line, following steps are necessary (Note that ηj might have unusual values and has 

to be sorted out by an algorithm, i.e.: negative, infinite): 

Enforcing a zero slip (compare to equation (5)) at η for each clutch j leads to  

(ωC,k+η)j
≈ −(𝐁C

T𝐌𝐱k+η)j =
!
0. (15) 

Substituting (14) in (15) leads to 

ηj ≈ −
(𝐁C

T𝐌𝐱k)j

(𝐁C
T𝐌Δδ𝐱k(Δ))

j

. (16) 

 

The approximation error and further discussion on this approximation can be found in 

[3] and in Appendix A. 
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If several zero crossings are detected within the next period (which is not an issue in 

practical use cases), the closest zero crossing to the previous step is chosen. 

Additionally it has to be mentioned, that step size adjustment is only necessary, if a 

clutch goes from slipping into locking mode, because otherwise the slip speed is equal 

to zero. 

2.3 RESULTS AND DISCUSSION 

The goals of an essential simplification and a minimal variation of the simulation results 

to the reference model, which is part of a huge vehicle simulation, have been achieved 

to our uttermost satisfaction. Little differences come from the implementation as “func-

tions blocks” of almost all equations and functions in the MATLAB
®
/Simulink

®
 model, 

which leads to minimal numerical aberrations. Since the differences of both simulation 

outputs are quite small for recognizing differences in the plot, the reference signal and 

the magnified differences of the reference signals and the implemented simplified sig-

nals are shown for a step size of Td = 10ms. 

 

Figure 4: Final comparison of the combustion engine rotation speed 
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Figure 4 shows the results of the combustion engine rotational speed 𝜔𝑒 for a certain 

test case, provided by the reference model and the simulation error. The input variables 

for the model comprise various gear switching actions, performed by means of input 

functions for clutch pressure, engine torques and vehicle resistance, expressed by a 

wheel torque. Obviously an outstanding error occurs at a simulation time of around 17 

seconds. Here the step size is adjusted slightly differently in both models, which leads 

to a relative high error, but which decays rapidly in the further simulation. 

 

Figure 5: Final comparison of the electric engine rotation speed 

A closer look on simulation results reveals little differences at a growing simulation 

time. Numerical differences sum up and lead to a small aberration, which is totally ac-

ceptable for further investigations. 

The resulting output functions for the reference model and the simplified reduced model 

also coincide mostly for the electric engine rotation speed ωm, shown in Figure 5 and 

for the wheel rotational speed ωw, shown in Figure 6, but also the adjustment error 

dominates here. 
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Figure 6: Final comparison of the wheel rotation speed 

Figure 6 shows, that in the investigated simulation case a short deceleration occurs. 

The step size adjustment variable η is very vulnerable to variances in the output results, 

due to its dependency on the exact time of a locking clutch in between two discrete time 

instances and consequently the plot for eta in Figure 7 is a proper tool for the issue of a 

high resolution comparison.  
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Figure 7: Final comparison of the step size adjustment factor 𝜂 

Figure 8 shows each model clutch states for the period of the simulation. The outstand-

ing simulation results of the step size adjustment variable η already assume a good con-

vergence of the clutch states. Differing clutch states in the beginning emerge from unde-

fined clutch states in the case of a slip speed of zero, an angular speed of zero and no 

torques. 
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Figure 8: Final comparison of the clutch states in either model 

Several simulation cases have been examined and resulted in similar findings. The de-

signed model is accurate, easy to understand and also easy to adapt for other purposes.  
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3 NONLINEAR SPRING-DAMPER-MASS SYSTEMS 

Consequences of nonlinear spring-damper-mass systems are of major concern [1]. Non-

linearities may include an abrupt change of the spring stiffness factor or a static friction 

component of the damper [6]. Nonlinear simulation methods must be capable of being 

integrated into existing simulation methods used by VIRTUAL VEHICLE – Research 

Center.  

In this chapter, first of all several nonlinear configurations of spring-damper elements 

are examined for their behavior in a basic spring-damper-mass system in the continuous 

time domain. The mechanical problem is easily transformable for rotational problems, 

which mathematical description fits with translational problems. 

Secondly the most relevant model configuration for VIRTUAL VEHICLE – Research 

Center is further investigated for methods of time discretization methods, with a special 

concern on partly linear systems. 

Finally the most appreciated discretization methods are furthermore investigated for 

their applicability in existing drivetrain models, with a focus on the hybrid engine mod-

el of chapter 2.  

3.1 NONLINEAR SPRING-DAMPER CONFIGURATIONS 

All spring-damper configurations emerge from the basic Kelvin-Voigt model as shown 

in [4] and [7]. The Kelvin Voight model basically consists of a parallel spring and 

damper. In other models [7] these elements are used serially or combined to build larger 

models for special configurations. Figure 9 shows the Kelvin Voight model in a funda-

mental oscillator with a single degree of freedom. 
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Figure 9: Spring-Damper-Mass System 

Since the Kelvin-Voight model is defined for linear systems further investigations lead 

to a different behavior for some parts.  

Nonlinearities may be located in both, spring or damper force function. The spring force 

is usually solely dependent on the deflection variable x. The damper force is commonly 

dependent on the speed variable ẋ, but might also have a cross dependency on the de-

flection x (mechanical design of a damper). 

An outstanding circumstance in terms of damper nonlinearities is the known problem of 

switching between viscous damping and static friction, which was part of the previous 

chapter, regarding clutches. Consequently the aim is to adapt existing solutions [3] for 

the upcoming simulation purpose. 

3.1.1 LINEAR CONFIGURATION 

So far, the spring force FSpring and damper force FDamper (also referred to 

as FSpr, FDamp) are assumed as linear functions of either the deflection x of the mass m 

or the velocity ẋ. 

FSpr,lin(x(t)) = cx(t) (17) 

FDamp,lin(ẋ(t)) = dẋ(t) (18) 

 

In the linear system theory this configuration is well known as damped harmonic oscil-

lator [5] and can be written as a linear second order system with the introduction of a 

state vector 𝐱 and an external input u. 
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𝐱(t) = [
x1(t)
x2(t)

] = [
x(t)
ẋ(t)

] (19) 

u(t) = Fext(t) (20) 

The dynamic behavior of the system can be written as a set of ordinary first order linear 

differential equations in matrix notation, with the system matrix A and the input matrix 

b as shown in (21). 

𝐱̇(t) = [
0 1

−
c

m
−
d

m

] 𝐱(t) + [
0
1

m

] u(t) = 𝐀𝐱(t) + 𝐛u(t) (21) 

Several equations and parameters describe the fundamental dynamic aspects of the sys-

tem [4]. Equations (22) to (24) show some values, which are of practical relevance. The 

damping ratio D is a measure for the damping and oscillation ability of a system [8]. A 

factor of zero is only possible if the damping factor d is equal to zero and this leads to a 

freely oscillating system.  

A factor between zero and one leads to an oscillating system with an eigenfrequency 

ωeig and a ratio D between zero and 
1

√2
 will cause a resonance frequency ωres.  

A ratio D greater than one results in high damped system with no oscillation ability, if 

not excited externally.  

D =
d

2√cm
 (22) 

ωeig = √
c

m
−

d2

4m2
    for D < 1 (23) 

ωres = √
c

m
−

d2

2m2
    for 0 < D <

1

√2
 (24) 

 

Once the system is expressed by means of those easy manageable parameters, further 

engineering work like control engineering tasks are well solvable [5]. 
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Also a time discretization for discrete simulation tasks is straight forward and leads to 

linear difference equations. 

A useful representation of system behavior, especially in the fields of nonlinear systems 

and systems with two state variables are phase plots. State plots are missing the time 

axis and therefore contain the other state variable, which eliminates the time dependen-

cy. 

Figure 10 shows the phase plot of an autonomous linear system with parameters select-

ed as in Table 1. 

Table 1: Parameters for linear damped oscillator 

𝒙(𝑡 = 0) c d m 

[
𝑚
𝑚

𝑠
] [

𝑁

𝑚
] [

𝑁

𝑚𝑠
] 

[𝑘𝑔] 

[
0.3
0
] 10 0.5 1 

 

It is remarkable that various system properties basically do not depend on the initial 

state. At first, the system is stable anyway (damping factor is always higher than zero). 

Moreover the ability of oscillating is determined by the system parameters and inde-

pendent of the initial state. A doubled initial value would lead to the exact same appear-

ance of the phase plot, excepted of the axis scaling. And for a constant time step Td a 

simple vector transformation with a constant transition matrix 𝚽(Td) describes every 

state transition of the autonomous system (equation (25)) with the state vector 𝐱̅ and a 

vector 𝐇(Td)can be found [5], which integrates an input signal u that is sampled and 

hold to a constant value for the time of Td and leads to equation (26) and the state vector 

𝐱.It is important to notice that these equations are no approximations. For a piecewise 

constant input signal u for the time of Td the equations are exact solutions. 

𝐱̅(t0 + Td) = 𝚽(Td)𝐱̅(t0) (25) 

𝐱(t0 + Td) = 𝚽(Td)𝐱(t0) + 𝐇(Td)u(t0) (26) 
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Figure 10: Trajectories of a linear damped oscillator 

3.1.2 LINEAR DAMPING FORCE AND NONLINEAR SPRING FORCE 

There are two intuitive approaches for implementing nonlinear spring force dependen-

cies. The first approach will generally be more applicable for general nonlinear spring 

force functions. It uses point symmetric polynomials for the approximation of a given 

empiric function, as seen in (27). 

 

FSpr,nlin1(x(t)) =∑c2i+1x(t)
2i+1

N

i=0

 
(27) 

 

A second approach is appropriate for a geometrical spring composition, where the de-

flection of the spring may enter N different regions Ii with an erratic change of the 

spring stiffness at transition points xi and shown in Figure 11 and equation (28). The 

index i displays the region index. However, inside a region the spring force is assumed 
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affine. Since the spring force is assumed to be symmetrical with respect to the origin, 

stiffness regions are defined for absolute deflection values.  

  

FSpr,nlin2(x(t)) = cix + sign(x) Foff,i    for x ∈ Ii, i = {0,1, … , N − 1} and 

 Ii = {
{x ∈ ℝ| xS,i < |x| ≤ xS,i+1}  if i < N − 1

{x ∈ ℝ| xS,i < |x| ≤ ∞}         if i = N − 1
 

(28) 

FDamp,lin(ẋ(t)) = dẋ(t) (29) 

 

Figure 11 shows an example for a piecewise affine spring force function with following 

parameter settings according to Table 2. The Parameter N represents the number of re-

gions used in this example. 

Table 2: Parameters for piecewise affine spring force 

𝑁 𝑥𝑆,𝑖  𝑐𝑖  𝐹𝑜𝑓𝑓,𝑖 

 [𝑚]  [
𝑁

𝑚
]  [𝑁]  

4 [0  0.05 0.1 0.15] [0.05  1  2  10] [0 − 0.047  − 0.147  − 1.347] 

 



3 Nonlinear spring-damper-mass systems 

Rudolf Reiter  29 

 

Figure 11: Piecewise affine spring force function 

 

Figure 12: Details of positive affine spring force region 2 
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The nonlinear system can be written in vector notation as follows in (30). 

𝐱̇(t) = [
0 1

0 −
d

m

] 𝐱(t) − [
0
1

m

] FSpr,nlin2(x1(t)) + [
0
1

m

] u(t) 

= 𝐀lin𝐱(t) − 𝐚nlFSpr,nlin2(x1(t)) + 𝐛u(t) 

(30) 

Given a piecewise affine spring force function the equation expands to (31), assumed 

that x ∈ Ii. 

𝐱̇(t) = [
0 1

0 −
d

m

]𝐱(t) − [
0
1

m

] (cix1 + sign(x1) Foff,i) + [
0
1

m

] u(t)

= [
0 1

−
ci
m

−
d

m

]𝐱(t) + [
0
1

m

] u(t) − [
0
1

m

] sign(x1) Foff,i 

(31) 

By an easy adding of negative regions for negative deflections x, the term sign(x1) is 

integrated into the region offset Foff,i. Now it is easy to perceive the system equation as 

piecewise affine with an added constant value for each region, which leads to equation 

(32) and will be of further interest when it comes to discretization methods. 

Assuming x ∈ Ik, the system description (32) follows. 

𝐱̇(t) = [
0 1

−
ck
m

−
d

m

] 𝐱(t) + [
0
1

m

]u(t) − [
0
1

m

] sign(x1) Foff,k

= 𝐀lin,k𝐱(t) + 𝐛u(t) + sign(x1)𝛏const,k 

(32) 

𝛏const,k = − [
0
1

m

]  Foff,k (33) 

 

As mentioned before, phase plots deliver a significant overview of the system behavior.  

In figure (27) the linear system with values according to Table 1 is compared with the 

piecewise affine system according to Table 2. Inside one region the nonlinear system 

has a affine behavior and is fully described through equation (25) and (26), provided 

that the coordinate system is shifted by the region offset Foff,i. 
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Figure 13: Comparison of linear and nonlinear trajectories 

An essential part with this category of systems is the oscillation ability. As seen in equa-

tion (22), the damping ratio is a function of the spring stiffness c and the damping factor 

d. This offers the possibility of an oscillating behavior for high deflections and a highly 

damped system for low deflections, and can be seen in time domain of this example in 

Figure 14.  

As an obvious contrast, the linear system will theoretically oscillate for all times. 

Furthermore the oscillating frequency is changing with respect to the deflection ampli-

tude, which is a reason for the lack of the possibility of using familiar methods for linear 

system analysis. 
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Figure 14: Transient function of the deflection of the linear/nonlinear system 

3.1.3 NONLINEAR SPRING FORCE AND NONLINEAR DAMPER FORCE DE-

PENDENT ON A SINGLE VARIABLE 

Another possibility to bring velocity dependent nonlinearities into the simulation is us-

ing an analog piecewise affine force curve with ND regions for the damper force in par-

ticular, but dependent on just the system velocity, according to equation (34) and plotted 

in Figure 15. 

FDamp,nlin(ẋ(t)) = diẋ + sign(ẋ) Fdamp_off,i    for ẋ ∈ Ji,

i = {0,1, …ND − 1} and 

Ji = {
{ẋ ∈ ℝ| x2S,i < |x| ≤ x2S,i+1}  if i < ND − 1

{ẋ ∈ ℝ| x2S,i < |x| ≤ ∞}         if i = ND − 1
 

(34) 

 

Parameters for simulation purposes are shown in Table 2 and Table 3. 
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Figure 15: Nonlinear (piecewise affine) damper force function 

 

Table 3: Parameters for the piecewise affine damper force function 

𝑁𝑑  𝑥2𝑆,𝑖  𝑑𝑖  𝐹𝑑𝑎𝑚𝑝,𝑜𝑓𝑓,𝑖 

 [
𝑚

𝑠
]  [

𝑁𝑠

𝑚
]  [𝑁]  

4 [0  0.1 0.3 0.5] [0.025  0.5  1  5] [0   − 0.0498   − 0.1997   − 2.1997] 

 

The system differential equations are still affine inside regions depended on both coor-

dinates, which can be assumed as affine area boxes in the phase plot. Assuming that 

x1 ∈ Ii and x2 ∈ Jj the system equation for the behavior inside an affine area can be 

written as follows in (35). 
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𝐱̇(t) = [
0 1
0 0

] 𝐱(t) − [
0
1

m

] ((cix1 + sign(x1) Foff,i) + 

(djx2 + sign(x2) Fdamp_off,j)) + [
0
1

m

]u(t) 

(35) 

Repeating the previous steps for the velocity variable x2 the system can be simplified as 

shown in equation (36) and (37). The nonlinear system now is described as a set of af-

fine systems. At a transition of one region to another it is essential to shift the coordi-

nate system since linear system theory does not support constants in the differential 

equation. Assuming that x2 ∈ Jj the following equations hold: 

𝐱̇(t) = [
0 1

−
ck
m

−
dl
m

]𝐱(t) + [
0
1

m

] u(t) − [
0
1

m

] ( Foff,k + Fdamp_off,l)

= 𝐀lin,kl𝐱(t) + 𝐛u(t) + 𝛏const,kl 

(36) 

𝛏const,kl = −[
0
1

m

] ( sign(x1)Foff,k + sign(x2)Fdamp_off,l). (37) 

 

The phase plot of the autonomous system with parameters according to Table 1 is 

shown in Figure 16. It is obvious that the system has a low damping in the area around 

zero velocity. Consequently it is prone to a low damped oscillation.  

In phase plots the two nonlinear dependencies are visible in steepness of the deflection 

between two zero crossings of the velocity. If there is no nonlinear dependency of the 

damper force, the slope of the phase plot is rather congruent in the horizontal perspec-

tive as opposed to the nonlinear phase plot curve. 
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Figure 16: Phase plot of a nonlinear system in two variables 

3.1.4 NONLINEAR SPRING FORCE AND NONLINEAR DAMPER FORCE DE-

PENDENT ON TWO STATE VARIABLES 

In real mechanical systems it might be necessary to handle a deflection dependent 

damper force, due to the construction of spring damper elements. At least there might be 

a maximum deflection of the damper at which it hits construction limits. Presuming a 

symmetrical construction of the damper, the function has to be symmetric to the deflec-

tion variable x1and point symmetric to the speed variable x2. Again it is possible to use 

a piecewise affine function for both variables. For modeling coulomb friction a discon-

tinuity (e.g. signum function) at a velocity of x2 = 0 is necessary. A basic function with 

rather affine dependencies on each variable is used to demonstrate this. 

FDamp,nlin2(x1(t), x2(t)) = d0sign(x2) + dΔ|x1|x2 (38) 

For demonstration purposes parameters of Table 4 have been used. 
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Figure 17: Nonlinear damper force dependent on both variables 

Table 4: Parameters for nonlinear damper force in two variables 

𝑑0 𝑑𝛥 

[
𝑁𝑠

𝑚
]  [

𝑁𝑠

𝑚2]  

0.5 1 

 

Equation (39) denotes the system equation of the nonlinear system and its phase plot is 

shown in Figure 18. The signum function, acting as coulomb friction, leads to a static 

equilibrium point, which is not at zero position. 

𝐱̇(t) = [
0 1
0 0

] 𝐱(t) − [
0
1

m

] ((cix1 + sign(x1) Foff,i) + 

(d0sign(x2) + dΔ|x1|x2)) + [
0
1

m

]u(t) 

(39) 
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Figure 18: Phaseplot of nonlinear System with damperforce dependent on two variables 

 

3.2 DISCRETIZATION METHODS FOR A CERTAIN SPRING-

DAMPER CONFIGURATION 

When it now comes to real time simulation, a spring damper mass system is used, which 

consists of a configuration seen in chapter 3.1.2 and an additional coulomb friction ele-

ment for the damper which is added later in this chapter. The basic methods are derived 

just for the nonlinear spring force, since the damper force can be handled similar to ex-

isting methods used in the model [3]. 

A major goal for the capability of real time simulation is a short computation time of the 

numeric algorithm used to meet the dead line requirement and the ability for integration 

into the existing model [9]. Long step sizes usually lead to inaccuracy. 

Several concepts of the nonlinear integration ability are being investigated and com-

pared in terms of accuracy, algorithm performance and integration potential into the 

existing solution. Most concepts combine linear discretization methods with the addi-
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tional integration of nonlinearities by means of coordinate transformation or switching 

models. This approach leads to a straight forward integration mechanism for existing 

linear models. 

3.2.1 NUMERICAL SOLVERS FOR NONLINEAR DIFFERENTIAL EQUATIONS 

For a general nonlinear model, consisting of a set of ordinary differential equations, 

various methods are well investigated and offered in software like 

MATLAB
®
/Simulink

®
 . Variable step solvers are not suitable for an embedded real time 

software system. The step size can only be lowered until the maximum processor com-

putation capacity is reached. Variable step solvers fit the step size to signal properties. If 

the signal is about to change rapidly for instance, the step size is lowered to achieve a 

better simulation result. Since a real time embedded system always has a certain compu-

tation time reserved for a simulation algorithm, there is no point in extending the step 

size, but it is most important to estimate the maximum computation time of the solver 

method used and meet the deadline requirement to ensure the real time requirements. 

As a basis for numerical solution, the continuous nonlinear model (40) is required at 

first.  

𝐱̇(t) = 𝐟(𝐱(t)) + 𝐛u(t) (40) 

 

3.2.1.1 FIRST ORDER FIXED-STEP METHOD (EULER ALGORITHM) 

The most straight forward method to solve nonlinear equations is the first order fixed-

step method or Euler algorithm, also offered by MATLAB
®
/Simulink

®
 . It basically 

linearizes the nonlinear equation to calculate the following state vector as shown in 

equations (41) to (43). 

𝐱̇(t) = 𝐟(𝐱(t)) + 𝐛u(t) ≈
𝐱(kTd + Td) − 𝐱(kTd)

Td
 (41) 

𝐱k+1 = 𝐱(kTd + Td) 

𝐱k = 𝐱(kTd) 

uk = 𝐱(kTd) 

(42) 
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𝐱k+1 = 𝐱k + Td(𝐟(𝐱k) + 𝐛uk) (43) 

Figure 19 shows the phase plot of an example discretization with a step size of 𝑇𝑑 =

0.01𝑠 and system values according to Table 5. It is obvious that for the piecewise affine 

system this method is an easy computable approximation. 

 

Figure 19: Discretization model: Euler step. Phase plot. 

 

3.2.1.2 MATRIX EXPONENTIALS 

The fundamental ideas to this approach are derived from [10] and for calculating the 

consecutive state vector 𝐱k+1, equation (47) has to be solved. The basis of this idea is a 

matrix exponential approximation of a nonlinear equation (44) in its general form for 

one time step, seen in equation (46), where NM is a positive integer which defines the 

approximation accuracy and I is the identity matrix. Here the piecewise affine spring 

force function of (28) is used. 

d𝐱(t)

dt
= 𝐟(𝐱(t)) + 𝐠(𝐱(t))u(t) =  𝐟(𝐱(t)) + 𝐛u(t) (44) 
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d𝐱(t)

dt
= [

0 1

0 −
d

m

]𝐱(t) − [
0
1

m

] (cix1 + sign(x1) Foff,i) + [
0
1

m

] u(t), for x1 ∈ Ii (45) 

e𝐙 = lim
NM→∞

(𝐈 +
𝐙

NM
)
NM

≅ (𝐈 +
𝐙

NM
)
NM

 (46) 

We consider the time interval t ∈ [tk, tk+1) and it is supposed that u(t) = uk, t ∈

[tk, tk+1) and x(t = Tk) = xk. It is necessary to find the values for hk, 𝐉k and 𝐟k in each 

time sample time step with equation (48) to (49).  

𝐱k+1 = 𝐱k + [𝐈 0] [
𝐈 + hk𝐉k hk𝐟k
𝟎𝐓 1

]
N

[
𝟎
1
] (47) 

 

hk =
tk+1 − tk
NM

=
Td
NM

 (48) 

𝐉k = 
∂𝐟(𝐱k)

∂𝐱
+
∂𝐠(𝐱k)

∂𝐱
uk (49) 

𝐟k =  𝐟(𝐱k) + 𝐠(𝐱k)uk (50) 

In a piecewise affine function, the parameters result from an easy calculation by means 

of equations (51) and (52): 

𝐉k = [
0 1

−
ci
m

−
d

m

] , for x1 ∈ Ii. (51) 

𝐟k = [
0 1

0 −
d

m

]𝐱k − [
0
1

m

] (cix1,k + sign(x1,k) Foff,i) + [
0
1

m

] uk, for x1,k ∈ Ii (52) 

 

3.2.1.3 TAYLOR SERIES 

The basic ideas to this approach have their origin in [10]. For the solution of (44) Taylor 

series [11] are used as follows in equation (53) to (57). 

𝐱k+1 = 𝐱k +∑
Td
l

l!

∂l𝐱

∂tl

∞

l=1

|

tk

= 𝐱k +∑𝐀l(𝐱(k), u(k))

∞

l=1

Td
l

l!
  (53) 
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The vector 𝐀l can be calculated recursively with equations (54) and (55).  

𝐀1(𝐱(k), u(k)) = 𝐟(𝐱k) + 𝐠(𝐱k)uk (54) 

𝐀l+1(𝐱(k), u(k)) =
∂𝐀l(𝐱(k), u(k))

∂𝐱
[𝐟(𝐱k) + 𝐠(𝐱k)uk] (55) 

In the case of our piecewise affine function the first two A-vectors are calculated as 

follows. Further approximation is not necessary for this purpose of comparing the 

methods. We use equation (28) for the piecewise affine spring force function Fspr(x1,k) 

and get the following equations for x1,k ∈ Ii: 

𝐀1(𝐱(k), u(k)) =  [
0 1

0 −
d

m

]𝐱k − [
0
1

m

] (cix1,k + sign(x1,k) Foff,i) + [
0
1

m

] uk (56) 

𝐀2(𝐱(k), u(k)) =
∂𝐀1(𝐱(k), u(k))

∂𝐱
[𝐟(𝐱k) + 𝐠(𝐱k)uk]

=  [
0 1

−
ci
m

−
d

m

] [𝐟(𝐱k) + 𝐠(𝐱k)uk]

=

[
 
 
 

Fspr(x1,k)

m
−
d

m
x2,k +

uk
m

−
ci
m
x2,k −

d

m2
(Fspr(x1,k) − dx2,k + uk)]

 
 
 

 

(57) 

It is obvious that Taylor series require much more pre-work than the matrix exponential 

method, but once calculated, the computation effort of either algorithm is similar. 

Figure 20 and Figure 21 show the phase plot and the transient comparison of either 

method with a the computation approximation factor N=2 for both and a sample period 

of Td = 0.02s. System values have been chosen according to Table 2. 
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Figure 20: Discretization model: Matrix exponentials and Taylor series. Phase plot. 

 

Figure 21: Discretization model: Matrix exponentials and Taylor series. Transient plot. 
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Apparently the Taylor series approximation works better in this case, but it is important 

to remember that computation time is not taken into account here. Since matrix expo-

nential approximation might need a shorter computation time, higher parameter values 

for N are possible. 

3.2.2 APPROACHES FOR INTEGRATING NONLINEARITIES INTO LINEAR 

SYSTEM DISCRETIZATION 

Due to already implemented linear models with a nonlinear feedback [3], it is obvious 

to extend linear models by further nonlinear feedback mechanisms as shown in this 

chapter. 

3.2.2.1 APPROXIMATING THE NONLINEARITY AS CONSTANT FOR ONE SAMPLE PERIOD 

This approach also holds for nonlinearities that are not piecewise constant. As we saw 

in equation (30) we can write the system as a linear part and a nonlinear part. We sup-

pose that following simplification holds for one period of the sample time Td. 

FSpr,nlin(x1(t)) ≈ FSpr,nlin(x1(kTd))    for t ∈ [kTd, (k + 1)Td) (58) 

Consequently the spring force can be seen as constant input for the linear part of the 

system. 

𝐱̇(t) = [
0 1

0 −
d

m

] 𝐱(t) − [
0
1

m

] FSpr,nlin(x1(kTd)) + [
0
1

m

] u(t) 

= 𝐀lin𝐱(t) + 𝛇k + 𝐛u(t)    for t ∈ [kTd, (k + 1)Td) 

(59) 

The Laplace transformation [12] delivers an approach for solving the differential equa-

tion with the constant input variable 𝛇k as shown in equation (60) to (65). 

𝐱0 = 𝐱(t = 0) (60) 

ℒ(𝐱̇(t)) = s𝐗(s) − 𝐈x0 = 𝐀lin𝐗(s) +
1

s
𝛇k + 𝐛U(s) (61) 

(s𝐈 − 𝐀lin)𝐗(s) = 𝐱0 +
1

s
𝛇k + 𝐛U(s) (62) 

𝐗(s) = (s𝐈 − 𝐀lin)
−1𝐱0 + (s𝐈 − 𝐀lin)

−1
1

s
𝛇k + (s𝐈 − 𝐀lin)

−1𝐛U(s) (63) 
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𝚽lin(t) = ℒ−1((s𝐈 − 𝐀lin)
−1) (64) 

ℒ−1(𝐗(s)) = 𝐱(t) = 𝚽lin(t)𝐱0 +∫ 𝚽lin(t − τ)𝐛u(t)dτ
t

τ=0

+∫ 𝚽lin(τ)𝛇kdτ
t

τ=0

 (65) 

One constant calculation step can now be solved and the matrices 

𝐡(Td), 𝐋(Td)and 𝚽lin(Td) can be used to compute a fast simulation step, shown in 

equation (67). 

u(t) = uk for  t ∈ [kTd, (k + 1)Td) 

𝐱k = 𝐱(t = kTd) 

𝐱k+1 = 𝐱(t = (k + 1)Td) 

𝐡(Td) = ∫ 𝚽lin(τ)𝐛dτ
Td

τ=0

 

𝐋(Td) = ∫ 𝚽lin(τ)dτ
Td

τ=0

 

(66) 

𝐱k+1 = 𝚽lin(Td)𝐱k + 𝐡(Td)uk + 𝐋(Td)𝛇k   (67) 

 

In the consecutive step the nonlinear variable 𝛇k+1 has to be calculated from the nonlin-

ear equation, before equation (67) can be applied again. 

𝛇k+1 = −[
0
1

m

] FSpr,nlin(x1((k + 1)Td)) (68) 

Figure 22 shows the MATLAB
®
/Simulink

®
 model of the corresponding implementa-

tion, but with the additional input of a nonlinear damper force, which is set to zero in 

this case. This method is useful for general nonlinear functions. The piecewise affinity 

of piecewise affine force functions is not taken into an advantage.  
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Figure 22: MATLAB
®
/Simulink

®
  model of the constant nonlinearity approximation 

As an improvement in accuracy a solution is presented, in which the nonlinear function 

is approximated with a linear function foremost and the deviation between the linear 

and nonlinear function, which is about of being smaller, is used in the feedback loop 

thus the discretization error subsides. 

Therefore following variables have to be changed in equation (58). 

FSpr,nlin(x1(t)) =
c̅

m
x1(t) + (FSpr,nlin(x1(t)) −

c̅

m
x1(t))

=
c̅

m
x1(t) + ΔFSpr,nlin(x1(t)) 

(69) 

𝐀lin = [
0 1

−
c̅

m
−
d

m

] (70) 

Δ𝛇k = − [
0
1

m

]ΔFSpr,nlin(x1(kTd)) (71) 

Equation (59) becomes the shape of equation (72) and the solution procedure is analog 

to the previous steps. 
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𝐱̇(t) = 𝐀lin𝐱(t) + Δ𝛇k + 𝐛u(t)    for t ∈ [kTd, (k + 1)Td) (72) 

In a test case the simulation was performed for a discretization time Td = 0.2 and sys-

tem parameters according to Table 1and Table 5. 

Table 5: Parameters for piecewise affine spring force in simulation case 

𝑁 𝑥𝑆,𝑖  𝑐𝑖  

 [𝑚]  [
𝑁

𝑚
]  

2 [0 0.15] [0.1  20] 

 

In a comparative study later in this chapter it will be shown, that all implemented algo-

rithms converge to the continuous time function for Td → 0. 

Figure 23 and Figure 25 show the simulation results in the state space and the time tran-

sient domain. Obviously the improvement, which uses an internal linear approximation 

of the spring stiffness, does not deliver outraging better results on the one hand. But on 

the other hand an increasing step size Td leads at a step time of Td = 0.5s to an unstable 

system only without the internal stiffness improvement (Figure 24). 
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Figure 23: Discretization model: External constant nonlinearity. Phase plot. 

 

Figure 24: Discretization model: External constant nonlinearity at stability border 
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Figure 25: Discretization model: External constant nonlinearity. Transient comparison. 

3.2.2.2 ONLINE NONLINEAR COORDINATE TRANSFORMATION 

A second approach of taking nonlinearities into account is to shift the coordinates corre-

sponding to a nonlinear function dependent on those state variables. Here the spring 

force dependent on the deflection x1 is of interest. Consequently the deflection is shifted 

in a feedback loop to reach the nonlinear result. Because the state variables are constant 

in the discrete time system for one period also the computed force is constant. 

At first an arbitrary c̅ is chosen for the system description seen in equation (70) and 

𝚽lin(Td) is computed by means of equation (64). It is important, that c̅ approximates the 

dynamic system behavior in a region, where the dynamical behavior is of uttermost in-

terest to the simulation. This can be a critical section, where the accuracy is more im-

portant or a region, where the system is likely to stay during a long time, since 𝚽lin(Td) 

describes the transition from one 𝐱k to a 𝐱k+1with the system dynamic induced by c̅. 

As seen in Figure 26, before each calculation, the coordinates are shifted according to 

equation (77), to achieve nonlinear behavior with the system description in equation 

(78). 
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FSpr,nlin,k = FSpr,nlin(x1(t = kTd)) (73) 

FSpr,lin,k = c̅x1,shifted(t = kTd) (74) 

FSpr,nlin,k =
!
FSpr,lin,k = c̅x1,shifted(t = kTd) (75) 

x1,shifted,k = x1,shifted(t = kTd),   FSpr,nlin,k = FSpr,nlin(x1(t = kTd)) (76) 

x1,shifted,k =
  FSpr,nlin,k

c̅
 (77) 

[
x1,k+1
x2,k+1

] = 𝚽lin(Td) [
x1,shifted,k
x2,k

] + 𝐡(Td)uk (78) 

 

Figure 26 shows the MATLAB
®
/Simulink

®
 model of the implemented algorithm. The 

implementation is straight forward and easy to understand, which one advantage of this 

method is. 

 

Figure 26: MATLAB
®
/Simulink

®
  model of the nonlinear coordinate shifting method. 
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Figure 27: Discretization model: Nonlinear coordinate shifting. Phase plot. 

 

Figure 28: Discretization model: Nonlinear coordinate shifting. Transient comparison. 
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Figure 27 and Figure 28 show the phase plot and the transient plot of the implemented 

algorithm. Additionally a linear system with the same system matrix 𝚽(Td) is plotted to 

figure out the similar dynamic behavior of one iteration and between the two models. 

Figure 27 shows the state variable x1 before and after the shifting operation. 

3.2.2.3 SWITCHING AFFINE MODELS 

The approach of switching affine models offers the most suitable method of handling 

piecewise affine systems, which will be shown in a comparative study. Owing to the 

constant step size Td, a subset of N affine models can represent the whole dynamic be-

havior of a piecewise affine model with one nonlinear function, where N represents the 

number of affine regions in the nonlinear function. Generally this method holds for arbi-

trary systems with multiple nonlinear systems. 

A nonlinear system can either be linearized or the nonlinear function can be given 

piecewise affine as seen in equation (28). Consider the system in equation (79) which 

represents a nonlinear system with a piecewise affine spring force dependency. Each 

region has an affine behavior between, which can be described by means of a constant 

matrix 𝚽j(Td) and 𝐡j(Td) achieved through methods seen in equation (66). Since the 

spring force function is a continuous function of the deflection x1 an offset variable 

𝛏const,j is introduced. This variable leads to a necessary coordinate transformation in the 

discrete time system, if the deflection enters another region and the system matrix is 

changed. The system comprises N different system descriptions, where N is the number 

of regions the spring force function enters. 

𝐱̇(t) = [
0 1

−
cj

m
−
d

m

]𝐱(t) + [
0
1

m

]u(t) − [
0
1

m

]  Foff,j

= 𝐀lin,j𝐱(t) + 𝐛u(t) + sign(x1)𝛏const,j      for x1 ∈ Ij 

(79) 

Ij = {
{x1 ∈ ℝ| xS,j < |x1| ≤ xS,j+1}  if j < N − 1

{x1 ∈ ℝ| xS,j < |x1| ≤ ∞}         if j = N − 1
 

j = {0,1, … , N − 1} 

(80) 

The continuity of the spring force function can be achieved as seen in (81) and (82) and 

already written in the discrete time domain notation. The unwanted part in equation (79) 
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of 𝛏const,j is handled by shifting the coordinates previously to the calculation of the next 

value 𝐱k+1 with the discrete time system matrix 𝚽j. 

𝐱shifted,k,j = 𝐱k +
sign(x1)𝛏const,j

cj
 (81) 

𝐱shifted,k+1,j = 𝚽j𝐱sifted,k,j + 𝐡juk (82) 

After the operation, the deflection has to be re-shifted, since the shifting is just carried 

out for the purpose of the calculation. 

𝐱k+1 = 𝐱shifted,k+1,j −
sign(x1)𝛏const,j

cj
 (83) 

In an affine region this calculations lead to an exact result. The only error arises on the 

transition of two regions. The value for 𝐱k+1 might be located in region (j+1) while the 

value for 𝐱kis located in region j. The longer the state variable is located in the relative 

period of the consecutive region and the higher the gradient difference of the regions is, 

the higher the error in the calculation of 𝐱k+1 will be. Therefore an algorithm was fig-

ured out, which recognizes a region transition prior to the event and carries out the tran-

sition calculation by means of another algorithm, which principles are described in the 

chapter 2.2.4. The essential idea is to set a sampling point as close to the region transi-

tion point as possible (computation time requirements) and set the region value j to its 

consecutive value, and afterwards extend the next sample point to its usual location, 

where it should be located, without an adjustment, thus requiring an extended sample 

time in the following step.  

At first a method is presented, which can estimate the time it takes for a state variable to 

cross a certain value similar to the method in [3]. Generally equation (84) is valid for 

affine systems. It describes the calculation of a consecutive step with a variation factor 

η in the step size Td. Approximation (86) is necessary for further calculations to achieve 

an analytical solution. 

𝐱k+η = 𝐱k + ηTdδ𝐱k(ηTd) (84) 

δ𝐱k(ηTd) =
1

ηTd
((𝚽(ηTd) − 𝐈)𝐱k + 𝐡(ηTd)uk) (85) 
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δ𝐱k(ηTd) ≈ δ𝐱k(Td) ≈
1

ηTd
((𝚽(Td) − 𝐈)𝐱k + 𝐡(Td)uk) (86) 

Let us assume the deflection xS,i is the value for x1, to enter a consecutive region in the 

step size variation ηTd. Then equation (87) holds, where 𝐥 = [
1
0
] selects the deflection 

state. 

𝐥T𝐱k+η =
!
xS,i (87) 

𝐥T(𝐱k + ηTdδ𝐱k(ηTd)) ≈ 𝐥
T(𝐱k + ηTdδ𝐱k(Td))

  =
!
xS,i (88) 

The step size variation η and with it the absolute time kTd + ηTd can be calculated by 

solving the problem for equation (90). 

𝐥T(𝐱k + ηTdδ𝐱k(ηTd)) ≈ 𝐥
T(δ𝐱k + ηTdδ𝐱k(Td))

  =
!
xS,i (89) 

ηTd =
xS,i − 𝐥

Tδ𝐱k
𝐥Tδ𝐱k(Td)

  (90) 

Once a step size is calculated to set the next sample time to a region transition, the ma-

trix exponential method is carried out as described in the chapter 3.2.1.2, for the two 

consecutive time steps ηTd and (2 − η)Td. 

Figure 29 shows the phase plot of the system, one time using the step size adjustment 

and one time just using the standard switching system approach. This example is nu-

merically challenging in its parameters since the step size and the stiffness value differ-

ence is extremely high, but it shows the good performance of the algorithm, if step size 

adjustment is used. 
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Figure 29: Switching affine models. Phase plot with step size adjustment comparison. 

 

Figure 30: Nonlinear coordinate shifting. Transient and step size adjustment comparison. 
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3.2.3 COMPARISON OF DISCRETIZATION METHODS 

3.2.3.1 ACCURACY WITH LARGE STEP SIZES 

Of course one major quality criteria is the accuracy of the presented solutions. As the 

step size is increased, algorithms become less accurate. Figure 31 to Figure 36 show 

three different pairs of transient plots and phase plots for three different step sizes. The 

first pair shows a very short step size to ensure all algorithms converge towards the true 

solution. The second and third pair show bigger step sizes. 

The algorithm “switching affine systems” is by far the most accurate algorithm, also 

because it is used with the step size adjustment. 

 

Figure 31: Discretization model comparison 1. Trajectory plot. 
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Figure 32: Discretization model comparison 1. Transient plot. 

 

Figure 33: Discretization model comparison 2. Trajectory plot. 
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Figure 34: Discretization model comparison 2. Transient plot. 

 

Figure 35: Discretization model comparison 3. Trajectory plot. 
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Figure 36: Discretization model comparison 3. Transient plot. 

3.2.3.2 COMPUTATION TIME 

Another essential criterion to choose an algorithm in association with real time systems 

and limited computation power, is the maximum computation time for a step. The com-

putation limitation leads to engineering decisions as for a certain processor or the cho-

sen sampling time. 

MATLAB
®
/Simulink

®
 offers possibilities to measure computation time for a simula-

tion, but it is only possible to determine the computation time per step in average, par-

ticularly on a non-real-time operating system like Windows®. A coarse overview can 

be given by determining the MATLAB
®
/Simulink

®
 computation time in a comparative 

study with the same parameter setting. Although during testing experiments it was fig-

ured out that a doubling in simulation time does not always result in a doubling in com-

putation time, which was expected initially. 

Table 7 shows the results of simulation time measurements. It its remarkable, that simu-

lation of the coordinate transforming algorithm do not require a tremendous higher 
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computation time. This circumstance results from the low computational afford in the 

algorithm implementation.  

Step size adjustment requires pretty high computational time, but also delivers a high 

accuracy. Consequently it is important dependent on the engineering problem, how to 

choose the algorithm to meet requirements. 

The highest computation time in this example is taken by the constant nonlinearity algo-

rithm. This might also origin in the MATLAB
®
/Simulink

®
 implementation, which uses 

blocks that are not used by other approaches like the coordinate transformation. 

For a higher quality of calculation time analysis, further tools and software would have 

to be used, and the algorithms would need to be programmed in a comparable pro-

gramming language, which must also be supported by the final CPU, where the algo-

rithm will be computed on.  

Table 6: Parameters for calculation time demonstration 

Parameter Unit Value 

𝑥1(𝑡 = 0) m 0.3 

𝑥2(𝑡 = 0) m 0 

𝑐𝑖 N

m
 

[1 20] 

𝑑 Ns

m
 

0.5 

𝑇𝑑 s 0.1 

 

Table 7: Computation time for different algorithms 

Methode Simualtion time in 
[s] absolute 

Simulation time 
in [ms] per step 

Linear discrete system 0.1681 0.562 

Approximating constant nonlinearity 0.4474 1.494 

Switching affine systems (var. steptime) 0.4050 1.346 

Switching affine systems (fix. steptime) 0.3864 1.282 

Coordinate transformation 0.1950 0.640 

Matrix exponentials (N=10) 0.4204 1.401 
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Figure 37: Diagram of the various step sizes of each algorithm 

 

Table 8: Additional information for switching affine systems algorithm 

Methode Number of step 
size adjustments 

Average time of 
adjustment 
step in [ms] 

Switching affine systems (var. steptime) 20 9.60 

 

3.2.3.3 ENERGY LEAKS AND STABILITY 

Another vital part of analyzing algorithms for computing differential equations of me-

chanical systems is to examine basic physical laws in its discrete numerical solution. In 

particular the system energy has to follow its physical laws. In a simple spring damper 

mass system the energy must be constant if there is no internal damping that transforms 

energy into heat. That must be also true for discrete time systems in every discretization 

point, which will be analyzed in the following chapter.  

Energy stability is not necessarily derived from the accuracy of algorithms. It might 

occur that an algorithm with a lower accuracy shows a symmetrical error distribution 

which cancel each other out and let the energy fluctuate around a mean value. On the 

other hand an algorithm might be very accurate but shows an asymmetric error distribu-

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

Si
m

u
la

ti
o

n
 t

im
e

 in
 [

m
s]

 p
e

r 
st

e
p

 Linear discrete system

Approximating constant nonlinearity

Switching affine systems (var. steptime)

Switching affine systems (fix. steptime)

Coordinate transformation

Matrix exponentials (N=10)



3 Nonlinear spring-damper-mass systems 

Rudolf Reiter  61 

tion which leads to an unstable algorithm in the worst case, if the damping values are 

low for example. 

Figure 38 shows the system energy of all relevant discretization methods. Obviously 

two approaches (Coordinate transform method and matrix exponential method with a 

computation factor N=100) drift rapidly away from the desired constant value, which 

originates from a damping of zero in this simulation. The energy loss of the coordinate 

transform method is due to its computation method. One has to keep in mind that this 

simulation uses no input forces and starts at an initial deflection, thus the autonomous 

system is subject of consideration. 

Although the approach of transforming coordinates and the approach of an external non-

linear stepwise constant force are similar in their fundamental idea, no energy drift takes 

place with the second approach, which can be seen in the red curve in Figure 38. Com-

paring those two methods, this is an essential advantage.  

Taking a closer look at the more accurate calculation methods in Figure 39 a rather neg-

ligible drift in the system energy takes place, if the step size is adjusted and a more ran-

domly distribution of the energy error is seen in the switching affine models approach 

without step size adjustment. The algorithm can be seen as stable if there is at least a 

small damping in the system parameters.  

For the calculation of the discrete system energy first the continuous nonlinear system 

energy is shown in equation (91) to (93), where the velocity v and the deflection s are 

used. 

Esystem = Ekin + Epot (91) 

Ekin =
mx2

2

2
 (92) 

Epot = − ∫ Fspr(x1)dx1

x1,1

x1,0

 (93) 

The discretization leads to the following equations (94) to (96) where the index k means 

the value of the continuous variable at the time t = Tdk. Considering a partly affine 
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spring force curve, the integral of equation (93) can be written as a summation in equa-

tion (96). 

Esystem,k = Ekin,k + Epot,k (94) 

Ekin,k =
mx2,k

2

2
 (95) 

Epot,k = −∑[Fspr(x1,i)(x1,i − x1,i−1) −
Fspr(x1,i) − Fspr(x1,i−1)

2(x1,i − x1,i−1)
]

k

i=0

 (96) 

 

Figure 38: Discretization model energy comparison 
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Figure 39: Discretization model energy comparison close-up 

3.2.4 COMBINATION OF A SWITCHING SYSTEM AND STATIC FRICTION 

DISCRETIZATION WITH STEP SIZE ADJUSTMENT IN TWO COORDINATES 

As described in chapter “Comparison of discretization methods”, the implementation of 

the switching affine system algorithm with step size adjustment is generally of a high 

quality by calculating precise values and affording a low computation time. 

Since one key element of drivetrain simulations is static friction implementation by im-

plementing algorithms seen in [3], it is subject in this chapter implementing the static 

friction method into the spring damper mass system analog. Here, a step size adjustment 

is necessary in the speed variable x2 to exactly set a sampling point at the speed of zero, 

where at the switching affine system algorithm with step size adjustment requires an 

adjustment dependent on the deflection variable x1, to exactly set the sampling point to 

a region transition (see APPENDIX A for an investigation of the error made by the used 

step size adjustment approach). Basically these two adjustments work together fine, but 

it now must be possible to adapt the step size multiple times consecutively and after-

wards regain the original step raster for real time performance. Therefore it is proposed 
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in this work to use a buffer working as storage of step sizes consecutive lower than the 

value 1, and the buffer is added and cleared if no further step size adjustment is neces-

sary. A step size adjustment takes place to keep up with the real time condition, where 

the consecutive step is extended by the summation of all missing time lengths (1 −

ηj)Td. Of course a threshold value limits this buffer usage. 

 

Figure 40: Discretization model: Switching affine models. Phase plot with step size adjustment 

for static friction and region transition 

Figure 40 and Figure 41 show an illustrative example of the step size adjustment in two 

variables and the static friction implementation with values assigned according to Table 

9. The freely oscillating mass stops as the static friction force exceeds the spring force. 

It is clearly visible, that region crossings in the distance variable and zero crossings in 

the speed variable always contain a sampling point. 
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Table 9: Parameters for step size adjustment in two state variables 

𝑁 𝑥𝑆,𝑖  𝑐𝑖  𝐹𝐷𝑎𝑚𝑝0 𝑑 

 [𝑚]  
[
𝑁𝑠

𝑚
] 

[𝑁] 
[
𝑁𝑠

𝑚
] 

3 [0 0.1 0.2] [1  10 20] 0.05 0.05 

 

 

 

Figure 41: Discretization model: Nonlinear coordinate shifting. Transient plot with step size 

adjustment for static friction and region transition 

3.2.5 REACTION TO HARMONIC INPUT SIGNALS 

To verify the models reaction for input signals a harmonic input signal u = sin(ωt)is 

chosen and the switching affine systems approach will demonstrate the good perfor-

mance of the discretization method.  
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Table 10: Parameters for input signal verification 

Parameter Unit Value 

𝑥1(𝑡 = 0) m 0.1 

𝑥2(𝑡 = 0) m 0 

𝑐𝑖 N

m
 

[1 1000] 

𝑑 Ns

m
 

0 

𝑇𝑑 s 0.01 

ω  rad

s
 

1 

 

 

Figure 42: Phase plot of the system with a harmonic input force 



3 Nonlinear spring-damper-mass systems 

Rudolf Reiter  67 

 

Figure 43: Transient plot of the system with a harmonic input force 

Evaluating the performance of the algorithm it is obvious that the algorithm holds for 

input signals and particularly for this highly nonlinear system configuration. 

3.3 INTEGRATION INTO EXISTING MODELS 

3.3.1 GENERAL POINT OF VIEW 

Closing the loop of this chapter to its initial point, now the potential of the distinctive 

methods for being integrated into drivetrain models with approaches derived of [3] are 

shown. 

The characteristic of the assumed drivetrain model is its implemented approach for step-

time adjustment to set calculation points on slip speed zero crossings and the usage of 

an external logic, that calculates the torque transferred by clutches. Both base on a af-

fine system model and additionally the requirement for a real time calculation is given, 

thus requiring fixed time steps. 
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Since the damper force function is shaped the same way as the clutch force function it 

can be easily implemented as a clutch with appropriate parameter settings, shown in 

chapter 3.2.4 for the simple spring damper mass system. 

Given the specified piecewise affine curve for the spring force shown in Figure 11 and 

the resulting changes in the mathematical system description the corresponding logic 

seen in [3] has to be adapted the same way.  

Equation (7) calculates the torque of locked clutches, which is transferred, if the torque 

is seen as an external input, shown in the following equation (97). The definition of ma-

trices and derivations can be found in chapter 2.2.3. Equation (98) shows the affine 

model with the nonlinear switching torque feedback and equation (99) is representing 

the calculation for the relative step size adjustment ηj, with the approximation 

δ𝐱k(ηTd) ≈ δ𝐱k(Td). 

𝛕l,k = −𝚵k[𝚽𝐱k + 𝐇k𝐯k + 𝐇c𝐊s,k𝛕s,k] (97) 

𝐱k+1 = (𝐈 − 𝐇c𝐊l,k𝚵k)𝚽𝐱k + (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇v𝐯k + (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇c𝐊s,k𝛕s,k (98) 

ηj ≈ −
(𝐁C

T𝐌𝐱k)j

(𝐁C
T𝐌Δδ𝐱k(Td))

j

 (99) 

 

Considering now the discretization approach of the “switching affine models” described 

in chapter 3.2.2.3 used for the equations in chapter 2.2.3 these are proposed to be 

changed the following way (changes are marked in red color). 

𝛕l,k = −𝚵k[𝚽j𝐱k + 𝐇k𝐯k + (𝚽j − 𝐈)
𝛏const,j

cj
+ 𝐇c𝐊s,k𝛕s,k] (100) 

𝐱k+1 = (𝐈 − 𝐇c𝐊l,k𝚵k)𝚽𝐱k + (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇v𝐯k

+ (𝐈 − 𝐇c𝐊l,k𝚵k)𝐇c𝐊s,k𝛕s,k + (𝐈 − 𝐇c𝐊l,k𝚵k)(𝚽j − 𝐈)
𝛏const,j

cj
 

(101) 

δ𝐱k,j(Td) =
1

Td
((𝚽j − 𝐈)𝐱k + 𝐇v𝐯k + 𝐇C𝛕C,k + (𝚽j − 𝐈)

𝛏const,j

cj
) (102) 
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ηl ≈ −
(𝐁C

T𝐌𝐱k)l

(𝐁C
T𝐌Δδ𝐱k,j(Td))

l

 (103) 

Equations (100) to (103) can now be used combined with the general system equations 

of chapter 3.2.2.3. Additionally a second ηSprRegCross hast to be calculated if the step 

size is also adjusted if the nonlinear spring is about to cross into another affine region, 

as shown in chapter 3.2.4. 

A question may arise, if the implemented matrix exponential method that is used asso-

ciated with the step size adjustment on a spring stiffness region crossing works proper-

ly. The answer is, yes, if an algorithm is implemented which always adjusts the step size 

due to the smallest calculated η. If the step size is adjusted due to a zero crossing event 

in slip speed, all proven methods take place. If the step size adjustment is due to a stiff-

ness region crossing the next step can be calculated by either method, there won’t be a 

slip speed zero crossing in between. 

For implementing an approach out of chapter 3.2.1, the whole theory of [3] must be 

reworked again, because the calculation of 𝐱k+1 differs essentially and this is not part of 

this diploma thesis. 

For implementing all other approaches of chapter 3.2.2, the analog procedure of this 

chapter can be applied. 

When it comes to simulation time requirements, the method of the coordinate transfor-

mation offers the shortest execution time, particularly for the chosen simulation case 

seen in “Table 7: Computation time for different algorithms”. 

3.3.2 PARTICULAR INTEGRATION EXAMPLE 

As shown in the previous chapters the “Switching Affine Systems” approach offers out-

standing results and is consequently the method of choice for being integrated into the 

drivetrain topology for the drivetrain type “Future Hybrid Extended” (Figure 44). This 

integration procedure focuses on the basics of implementation, thus the focus lies on the 

nonlinear spring with two stiffness regions. Neither step size adjustment for the approx-

imation improvement, nor the parallel clutch, that would act as a nonlinear damper are 

of interest here. 
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The nonlinear spring comprises two affine regions within the angle δφz. The first re-

gion k2,reg1 shows a relative low stiffness value, whereas the second region k2,reg2 

shows a relative high stiffness value (k2,reg2 = 25 k2,reg1), to achieve simulation results 

where the nonlinearity is clearly visible. 

 

Figure 44: Drivetrain topology for “Future Hybrid Extended (nonlinear spring)” 

The system state vector is extended as seen in (104), compared to the drive train topolo-

gy seen in chapter 2. Added parameters are set to the values according to Table 11. 

𝐱 = [ωE ωR3 ωM ωF ωz ωw ωv iF
−1φF − φz δφz] 

𝛕c = [τC0 τC1 τC2 τC3 τcw] 
(104) 

For the integration of the nonlinear spring without step size adjustment basically two 

things have to be considered in the MATLAB
®

/Simulink
®
  model. First, two sets of 

system parameters have to be computed, based on the different spring stiffness values 

and integrated into the model, by means of a switching logic based on 𝛿φ𝑧. Secondly, 

an offset for the state vector has to be computed, to make the region transition continu-

ous. Figure 45 and Figure 46 show the MATLAB
®
/Simulink

®
 model of “Future Hy-

brid” example with the integrated switching affine system logic for integrating a nonlin-

ear spring function. 
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Figure 45: MATLAB
®
/Simulink

®
 model of hybrid drivetrain model with nonlinear spring and 

clutch locking computation. Top level. 

Three test cases have been created to demonstrate the proper function of the algorithm. 

The first and second test cases display a nonlinear spring that is soft around zero deflec-

tion and gets stiff after the region switching angle 𝛿φ𝑧,𝑠𝑒𝑐. The third test case shows a 

spring that is stiff first, and gets soft after the switching angle.   

Table 11: System parameters for extended drivetrain topology “nonlinear spring” 

𝐽𝑧  𝐽𝑤  𝐽𝑣 𝑇𝑑 

[𝑘𝑔 𝑚2] [𝑘𝑔 𝑚2] [𝑘𝑔 𝑚2] [𝑠]  

3.4093 1.5 135 0.1 

 



3 Nonlinear spring-damper-mass systems 

Rudolf Reiter  72 

 

Figure 46: MATLAB
®
/Simulink

®
 model of hybrid drivetrain model with nonlinear spring and 

clutch locking computation. Subsystem level. 

 

Table 12: System parameters for test cases “nonlinear spring” 

𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 𝛿𝜑𝑧,𝑠𝑒𝑐  𝑘2,𝑟𝑒𝑔1 𝑘2,𝑟𝑒𝑔2 

 [10−3rad]  
[
𝑁

𝑟𝑎𝑑
] [

𝑁

𝑟𝑎𝑑
] 

1 6 800 20000 

2 7 800 20000 

3 0.25 20000 800 

 

Input torques are applied according to Figure 47. Figure 48, Figure 49 and Figure 50 

show the general system behavior, which is not drastically changed by altering the 

spring stiffness value for the chosen configuration.  

The nonlinear effects can be seen in Figure 51, Figure 52 and Figure 53, which display 

the test cases of Table 12. The stiffer the second region is chosen, the more it resembles 

a collision, which is investigated in the consecutive chapter. Figure 52 shows an interac-

tion of several inertias around the first entry into the stiff region. 



3 Nonlinear spring-damper-mass systems 

Rudolf Reiter  73 

 

Figure 47: Simulation “Future Hybrid ext. nonlinear spring”: input moments 

 

Figure 48: Simulation “Future Hybrid ext. nonlinear spring”: revolution speeds 1 
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Figure 49: Simulation “Future Hybrid ext. nonlinear spring”: revolution speeds 2 

 

Figure 50: Simulation “Future Hybrid ext. nonlinear spring”: clutch states 
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Figure 51: Simulation “Future Hybrid ext. nonlinear spring”: shaft angle, test case 1 

 

Figure 52: Simulation “Future Hybrid ext. nonlinear spring”: shaft angle, test case 2 
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Figure 53: Simulation “Future Hybrid ext. nonlinear spring”: shaft angle, test case 3 
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4 GEARWHEEL CLEARANCE 

Mechanical systems in drivetrain topologies often contain gearwheels with a certain 

clearance [13]. Especially if one clearance is outstanding higher than others, it could be 

necessary to set up a nonlinear model. Depending on the dimensions of the clearance 

and the configuration of the gearwheel system, the clearance brings in nonlinear behav-

ior.  

The problem resembles the locking and sliding clutch problem of chapter 2 in its basics. 

As long as two gearwheels are rigidly connected to each other, the system acts as a sys-

tem with a single degree of freedom and fixed gear ratio set up. As soon as the rotation 

speeds diverge of each other the two shafts move free of each other as two autonomous 

systems with two degrees of freedom.  

If the two gearwheels are in an independent state and collide with each other, a collision 

takes place that is dependent on the properties of the material and which can be de-

scribed by a coefficient of restitution. To simplify the problem, in this chapter two 

masses are used with a translational movement instead of a rotational one. 

Basically a collision is an event which usually happens in an extremely short time peri-

od compared with the sample time and also can take place at any time between two 

sample steps. Therefore a step size adjustment is used similar to chapter 2 to set a sam-

ple point to the exact time of collision, afterwards the collision is computed using basic 

physical laws and material coefficients and finally the step size is extended to keep up 

with the real time requirement. 

In the end of this chapter, an outlook is given to show the possibility of an extension of 

this solution to a system with an arbitrary number of masses, combined with the re-

striction of just one collision of two masses at one time and the problems of systems 

where several masses collide with each other in one sample period. 

4.1 FUNDAMENTALS OF COLLISION COMPUTATION 

The following fundamental equations of mechanical engineering offer an approximation 

of calculating system trajectories after a collision [8]. Since a collision physically com-

prises a deformation and a rearrangement of material structures and consecutive energy 
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loss an approximation focuses on the state before (speed values v1, v2) and after (speed 

values v1
′ , v2′) the collision and describes the energy loss by a coefficient of 

tion cr, which can be obtained experimentally, seen in equation (105). 

cr =
v1
′ − v2

′

v2 − v1
 (105) 

The value range stretches from zero to one, where zero describes a fully plastic collision 

and one describes a fully elastic collision. 

The energy loss ΔE is a function of the initial speeds and the coefficient of restitution, 

seen in equation (106). 

ΔE =
m1m2

2(m1 +m2)
(v1 − v2)

2(1 − crest
2) (106) 

The speeds after the collision can be obtained by means of equation (107) and (108).  

v1
′ =

m1v1 +m2v2 −m2(v1 − v2)cr
m1 +m2

 (107) 

v2
′ =

m1v1 +m2v2 −m1(v2 − v1)cr
m1 +m2

 (108) 

4.2 TEST SYSTEM CONFIGURATION 

As a basis a system configuration with two spring-damper-mass systems is used, with 

two different idle positions  𝐱R,S1 for system 1 and  𝐱R,S2 for system 2 and with an initial 

state space vector 𝐱0 = [
𝐱0,S1
𝐱0,S2

] for both systems. The masses m1and m2 can be deflect-

ed by separate forces Fext,1, Fext,2 and are configured with two separate spring-damper 

systems with the stiffness coefficients c1, c2 and the damping coefficients d1, d2. Figure 

54 shows the configuration in the independent moving state. In the simulation the mass-

es are considered as punctual. 
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Figure 54: Two mass system configuration for collision simulation 

The continuous time system can be described by the following comprising system de-

scription, seen in equation (109), which formally combines the two autonomous sys-

tems. 

𝐱̇sys1(t) = [

0 1

−
c1
m1

−
d1
m1

] 𝐱(t) + [

0
1

m1

] Fext,1(t) + [
0

c1
m1

 xR,S1
]

= 𝐀S1𝐱S1(t) + 𝐛S1Fext,1(t) + 𝐱S1,off 

(109) 

𝐱̇sys2(t) = [

0 1

−
c2
m2

−
d2
m2

] 𝐱(t) + [

0
1

m2

] Fext,2(t) + [
0

c2
m2

 xR,S2
]

= 𝐀S2𝐱S2(t) + 𝐛S2Fext,2(t) + 𝐱S2,off 

(110) 

𝐱̇(t) = [
𝐀S1 𝟎
𝟎 𝐀S2

] 𝐱(t) + [
𝐛S1 𝟎
𝟎 𝐛S2

] [
Fext,1(t)

Fext,2(t)
] + [

𝐱S1,off
𝐱S2,off

]

= 𝐀𝐱(t) + 𝐁𝐅ext(t) + 𝐱off 

(111) 

The transformation in the discrete time domain and the sampling of the input signals 

leads to equation (112), which is used subsequently in this chapter. The constant offset 

variable for the equilibrium position 𝐱off leads to the discrete time representation 𝐱̅off. 
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𝐱k+1 = [
𝚽S1 𝟎
𝟎 𝚽S2

] 𝐱k + [
𝐡S1 𝟎
𝟎 𝐡S2

] [
Fext,1,k
Fext,2,k

] + [
𝐱̅S1,off
𝐱̅S2,off

]

= 𝚽𝐱k + 𝐇 𝐅ext,k + 𝐱̅off 
(112) 

4.3 ALGORITHM IMPLEMENTATION 

Basically the algorithm can be split into four parts. At first the step size is adjusted by 

an approximation similar to chapter 2.2, to achieve an appropriate approximation of the 

initial values (see APPENDIX A for an investigation of the error made by the used step 

size adjustment approach). Secondly the shock is calculated by basic mechanical laws. 

Afterwards the step size is extended to reach the real time grid and finally a decompos-

ing force is added, which ensures the masses do not overlap.  

The algorithm computation of both, the first part and the second part, are realized by 

means of a predicting step, which adds forces to achieve a previously calculated result. 

4.3.1 FIRST PART: STEP SIZE ADJUSTMENT AND COLLISION COMPUTA-

TION 

The collision is implemented by a fictive force and velocity input which is added at the 

time step k. Therefore a prediction for the following step k + η right after the collision 

has to be calculated in advance and the force and velocity input is computed backwards 

and added to the linear system in the time step k.  

Since the collision event generally takes place in between two sample points an approx-

imation of the state vector at the time of collision proves to be beneficial. Therefore we 

use the approximation seen in [3], which linearly computes the state vector in between 

two sample points of a discrete time system at the time t = kTd + η, seen in equation 

(115). Figure 55 shows the discrete system state without step size adjustment at time 

step (k+1). 
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Figure 55: Mass system: Consecutive position without adjustment 

 

δ𝐱k(Td) =
1

Td
((𝚽(Td) − 𝐈)𝐱k + 𝐇 𝐅ext,k + 𝐱̅off) (113) 

𝐱k+η = 𝐱k + ηTdδ𝐱k(ηTd) (114) 

𝐱k+η ≈ 𝐱k + ηTdδ𝐱k(Td) (115) 

 

The step size adjustment is aiming to adjust the step to the exact point, where the two 

masses collide with each other. Therefore a difference Δ𝐱pred.k+1 of the position varia-

bles is predicted for the consecutive step, and if this position is negative the step size is 

adjusted by η according to equation (115) and (119). Consequently the step size varia-

tion will lead to Δxk+η = 𝐜δ
T𝐱k+η = 0.  

𝐜δ
T = [−1 0 1 0] (116) 

The velocity variables v1,k+η and v2,k+η of the state vector 𝐱k+η serve as the input ve-

locities for the collision calculation, which can be found in chapter 4.1 
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Figure 56: Mass system: Consecutive position with adjustment 

After the collision calculation the velocities v1,k+η
′  and v2,k+η

′  result and the positions 

have not been changed by implication. This results in a desired vector 𝐱k+η′ (notation 

(120)) at the time step k + η and previously computed input vector 𝛕c,k at the time step 

k. Figure 56 shows the state of the mass system at the varied step k + η. 

Δxpred.k+1 = 𝐜δ
T𝐱k+1 (117) 

Δxk = 𝐜δ
T𝐱k (118) 

η =
Δxk

Δxk − Δxpred,k+1
 (119) 

𝐱k+η
′ =

[
 
 
 
x1,k+η
x2,k+η
′

x3,k+η
x4,k+η
′

]
 
 
 

 with x2,k+η
′ = v1,k+η

′  and x4,k+η
′ = v2,k+η

′  (120) 

To achieve all requirements 𝐱k+η
′  for the time step k+η, the input vector 𝛕c,k needs to 

represent a vector of the size four. For implementing the discrete time vector 𝛕c,k, first a 

continuous time input vector 𝛕c(t) is introduced for equation (112) and leads to the con-

tinuous time equation (122), where the 4x4 input matrix 𝐁C is set to 

𝐁C = 𝑑𝑖𝑎𝑔 ([1
1

m1
1

1

m2
]). (121) 

𝐱̇(t) = 𝐀𝐱(t) + 𝐁𝐅ext(t) + 𝐱̅off + 𝐁C𝛕c(t) (122) 
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Values of the input matrix 𝐁C are chosen to achieve full order and to interpret the sec-

ond and fourth entry of the input vector 𝛕c(t) as forces acting on the system. Equation 

(112) is extended by the discrete time collision input vector 𝛕c,k, the discrete time input 

matrix 𝐇c, that is derived from 𝐁C and the step size adjustment η and consequently 

leads to equation (123) and can be used for the existing algorithms with a varying η. 

𝐱k+η = 𝐱k + ηTd(
1

Td
((𝚽 − 𝐈)𝐱k + 𝐇𝐅ext,k + 𝐱̅off + 𝐇c𝛕c,k)) (123) 

With the condition 𝐱k+η =
!
𝐱k+η
′  the fictive input vector 𝛕c,k can be computed as follows 

in equation (124). 

𝛕c,k = 𝐇c
−1(

1

η
(𝐱k+η

′ − 𝐱k) − (𝚽 − 𝐈)𝐱k − 𝐇 𝐅ext,k − 𝐱̅off) (124) 

It is remarkable, that the first and the third entry of the collision input vector 𝛕c(t) and 

𝛕c,k respectively represent input signals to the differential equations for the derivations 

of the deflection ẋ1 and ẋ3, which can be considered as differential equations for the 

speed. Input signals to these equations can be interpreted as speed shifts, but not as 

forces. 

4.3.2 SECOND PART: STEP SIZE EXTENSION AND DECOMPOSING FORCE 

To keep up with the desired fixed step size, the step size has to be extended with regards 

to the previous step. Therefore we use the step size extension ηk = Td(2 − ηk−1) in the 

next step, where ηk−1 is presumed to be the step size variation of the collision step be-

fore. 

Preliminarily the following situation should raise awareness for the outstanding prob-

lem. Following the first part of the algorithm, both masses start at the same position 

with a Δxk = 0 and two velocities, which possibly are equal to each other or the masses 

drift apart of each other (Figure 57). Following the collision law of chapter 4.1, it is 

initially impossible that the velocities lead to an overlapping in the first place.  

In reality it is now possible, that the two masses collide with each other in very short 

time periods, which can be referred to as “rattling” especially in “stiff” systems or they 

might move on together in an fully plastic collision. In both cases deformation and resti-
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tution takes place which might transform energy into heat and keeps the masses apart or 

sticks them together. 

Obviously this physical behavior can hardly be implemented in a discrete time system 

with a fixed sample period. If in a misleading manner the velocities after the collision 

are used for the extended consecutive step as initial values and the system equations are 

applied straight forward, overlapping is possible in the next step, which leads to a fatal-

ly wrong physical situation (Figure 58). 

As a solution for this problem another fictive separation force 𝛕s,k is inserted before the 

extended step, which aims to keep the masses apart of overlapping (Figure 59). Notably, 

the vector 𝛕s,k is named as force vector, as opposed to the collision input vector 𝛕c,k, 

because the separation force vector 𝛕s,k contains only input signals, that act on differen-

tial equations for the derivation of a speed (i.e.: ẋ2, ẋ4). In equation (125) and equation 

(128) that relation becomes obvious by the zero entries for every equation where an 

input single does not serve as a force. 

If no energy is lost, the force on the active system must be equal to the reactive system. 

If energy is lost through rattling occurrence or deformation processes the force on the 

acting system (decelerating force) might be higher than the force on the reactive system, 

because the force on the active system takes energy away by reducing its speed and the 

force on the pushed system accelerates it, thus adding energy. The relation of the sur-

passing force on the active system to the force of the reactive system can be adjusted by 

a design parameter  ks. If no energy should be lost through this process the parameter is 

equal to one. 

𝛕s,k = [

0
1
0
−1

] τs,k = 𝐜sτs,k (125) 
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Figure 57: Mass system: State after collision calculation 

 

Figure 58: Mass system: Overlapping position after collision 

In the algorithm a flag parameter κ displays, if the two masses stick together or rattle in 

the consecutive step. Another parameter force_dir characterizes, in which direction the 

two masses are moving and consequently defines the associated pushing and breaking 

mass. If the two masses are moving from left to right in a one-dimensional horizontal 

plane, the left mass is specified as pushing system and sets the parameter force_dir = 1, 

and vice versa where force_dir = −1.  
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Figure 59: Mass system: Position with separation force 

v_dirk = sign (sign(v1,k) + sign(v2,k)) 

E_dirk = sign(v1,k
2 m1 − v2,k

2 m2) 

(126) 

force_dirk = {
v_dirk   if v_dirk ≠ 0
E_dirk                    else

 (127) 

A situation with force_dir = 0 occurs, if the outer system forces the masses to redirect 

their speeds opposite to each other (note that the initial speeds are directed into the same 

direction or apart of each other after the shock). Further calculation has to determine the 

system with the higher energy, to lower the total system energy by analogy. 

The basic condition for a separating force is a Δxk = 0 and a predicted overlapping 

 Δxk+1 < 0. If Δxk > 0, a straight forward collision is computed as mentioned before.  

An approach for the separating force with respect to the assumption of not adding ener-

gy to the system and thus adding equal forces can be seen in equation (125), where the 

same absolute value of the force is added in the opposing direction and for the same 

time. 

If energy should be lost by uneven separating forces, equation (128) takes place. 
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𝛕s,k =

{
 
 
 
 
 

 
 
 
 
 
[

0
ks
0
−1

] τs,k                 if force_dirk > 0

[

0
1
0
−1

] τs,k                  if force_dirk = 0

[

0
1
0
−ks

] τs,k                  if force_dirk < 0

 (128) 

Since the separation force and the collision force can definitely not act at the same sam-

ple step equation (129) is used for the collision step, if Δxk+1 < 0 and Δxk > 0 and 

equation (130) is used for following separating step, if Δxk+1 < 0 and Δxk = 0. In the 

separating step the step size factor η might higher than 1. 

𝐱k+η = 𝐱k + ηkTd(
1

Td
((𝚽 − 𝐈)𝐱k + 𝐇𝐅ext,k + 𝐱̅off + 𝐇c 𝛕c,k)) (129) 

𝐱k+η = 𝐱k + ηkTd(
1

Td
((𝚽 − 𝐈)𝐱k + 𝐇𝐅ext,k + 𝐱̅off + 𝐇c 𝛕s,k)) (130) 

If a system involves more than one clearance computation element, the separation and 

collision force may act simultaneously, but on different parts of the system, although 

influencing the total system behavior at the same time step. With just one clearance 

computation element implemented in the system the collision step always precedes the 

separation steps. The dependencies of guaranteed exclusion of both forces acting at the 

same time step are shown in (131). 

if ηk ≤ 1 ⋏ Δxk > 0
 
⇒ 𝛕s,k = 0 

if ηk ≥ 1 ⋏ Δxk = 0
 
⇒ 𝛕c,k = 0 

(131) 

The condition for the consecutive step to not overlap can be noted as follows in equa-

tion (132). 

Δxk+η = 𝐜δ
T𝐱k+η = [−1 0 1 0]𝐱k+η =

!
0 (132) 

It is important to mention that this demand claims no speed constraints for the step 

𝐱k+η. This means a force is requested, which acts on the two masses to separate them 

and sets them to the identical position, but neglects either speed of the masses, which 
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are naturally rattling also or equal to each other, if the masses “stick” to each other. By 

just adding “separating forces” to the corresponding difference equations it is impossi-

ble to desire both, equal speed and equal position of the masses in the consecutive step. 

One might come up with the idea of adding another input to the velocity difference 

equations, also with the precondition of not adding energy into the system. A rudiment 

approach is discussed later. By now it is sufficient if the speed values are neglected and 

oscillate around their mean value in the case of sticking or rattling masses, which turns 

out to work pretty well. 

Solving equation (132) by means of equation (130), the separating force can be comput-

ed as follows. 

τc,k = (𝐜δ
T𝐇c

 𝐜s)
−1
𝐜δ
T(−

1

η
𝐱k
 − (𝚽 − 𝐈)𝐱k −𝐇𝐅ext,k − 𝐱̅off) (133) 
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4.4 SIMULATION RESULTS FOR THE SIMPLIFIED MODEL 

4.4.1 TEST CASES 

Several simulation examples aim to visualize the correct physical behavior and to show 

the proper functionality of the algorithm. Figure 60 shows the MATLAB
®
/Simulink

®
 

model of the basic setup with the essential step size adjustment, the collision momen-

tum calculation and the addition of the separation momentum calculation. 

 

Figure 60: MATLAB
®
/Simulink

®
 model of the two-mass-system 
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Table 13: System parameters 1 for test cases 

𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 𝑐𝑠𝑦𝑠1 𝑐𝑠𝑦𝑠2 𝑑𝑠𝑦𝑠1 𝑑𝑠𝑦𝑠2 𝑚1 𝑚2 𝑘𝑠 𝑐𝑟 

 
[
𝑁

𝑚
] [

𝑁

𝑚
] [

𝑁𝑠

𝑚
] [

𝑁𝑠

𝑚
] 

[𝑘𝑔] [𝑘𝑔]   

1 20 20 0 0 10 10 1 1 

2 20 20 0 0 10 10 1 0 

3 20 40 0 0 10 10 1 0 

4 20 40 0 0 10 10 10 0 

5 10 40 0 0 40 10 1 0 

6 20 20 1 0 20 100 10 0.9 

7 5 5 1 0.1 10 0.1 1 0.1 

 

Table 14: System parameters 2 for test cases 

𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 𝒙𝑅  𝒙(𝑡 = 0) 𝑇𝑑 

 [𝑚]  [𝑚]  [𝑠]  

1 [0 0 0 0] [−0.5 0 0 0] 0.1 

2 [0 0 0 0] [−0.5 0 0 0] 0.1 

3 [0 0 0 0] [−0.5 0 0 0] 0.1 

4 [0 0 0 0] [−0.5 0 0 0] 0.1 

5 [0 0 0 0] [−0.5 1 0 0] 0.2 

6 [0 0 0 0] [−0.3 0.1 0 0] 0.1 

7 [0 0 0 0] [−0.3 0.1 0 0] 0.1 

 

As we can see in test case 1 (Figure 61), two identical spring-damper-mass systems are 

used, where one of them is deflected initially. The restitution coefficient is set to one, 

which leads to a fully elastic collision, where one mass transfers its whole kinetic ener-

gy to the other mass that consequently leads to a sinusoidal shape of the deflection of 

the moving system if the systems are identical. The same shape would occur, if there 

was only one system without collision. It is obvious that the step size is adjusted, if a 

collision takes place, which adds a little error to the computation, each time the system 

collides.  
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Figure 61: Collision computation. Test case 1. 

Test case 2 (Figure 62) shows the same configuration as test case 1 does, but with a res-

titution factor of 0, which leads to a fully plastic collision. Additionally the system en-

ergy has been plotted, which shows the energy loss that is resulting from the collision. It 

is remarkable that the step size adjustment leads to an energy error. The error is caused 

by the approximation of the discrete time system matrix dependent on the step size. 

Since in this configuration the two mass systems are identical again, after the collision 

both masses move exactly along the same trajectories, consequently no separation force 

is needed and Δx = 0 past the collision event. Test case 3 (Figure 63) shows an unsym-

metrical configuration with doubled spring stiffness for system 2. In reality this would 

lead to a continuing force acting on the stiffer system. As one can see, no energy is lost 

since the coefficient of separation is equal to 1. As opposed to test case 3, test case 4 

(Figure 64) shows a high coefficient of separation equal to 10. Now energy is lost if the 

system sticks together, which can be referred to as deformation or rattling losses and are 

object to simulation evaluations of real systems. 
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Figure 62: Collision computation. Test case 2. 

 

Figure 63: Collision computation. Test case 3. 
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Figure 64: Collision computation. Test case 4. 

Test case 5 (Figure 65) shows a configuration where the error in the system speed is 

visible, if the two systems stick together and the algorithm computes the separation 

force, to ensure Δx = 0, but does not emphasize the system speed equality at this step. 

Consequently the systems alternately comprise a speed difference in the sampling 

points, which is physically impossible, but the error oscillates around zero. 

Test cases 6 and 7 (Figure 66 and Figure 67) show experiments with random parameters 

and visualize demonstrative examples of configurations. In test case 7, the parameters 

are chosen extremely regarding the action and reaction of the systems. System 1 com-

prises one hundred times more mass than system 2, thus it is hardly affected by system 

1. The inequality of both systems leads to a heavily oscillating speed error if the sys-

tems are sticking to each other. 
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Figure 65: Collision computation. Test case 5. 

 

Figure 66: Collision computation. Test case 6. 
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Figure 67: Collision computation. Test case 7. 

 

4.4.2 COMPUTATION TIME 

Since it is not possible to determine the exact computation time on an operating system 

that is not capable of a real time computation, a comparison of the simulation time with 

the implemented algorithms and a simulation just computing the two autonomous sys-

tems was performed. Test case 7 of chapter 4.4.1 was taken as an example. 

For the simulation without any implemented collision algorithms a simulation time of 

0.1143 seconds was measured with MATLAB
®
/Simulink

®
 whereas the addition of the 

algorithms leads to a simulation time of 0.1643 seconds, which means a computation 

increase of 43.7%. 
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4.5 INTEGRATION INTO THE DRIVETRAIN MODEL 

Since collision computation works out well in a simple two-mass-system, the applica-

bility on the “Future Hybrid Drivetrain” model of chapter 2 should be explored. 

The “Future Hybrid Drivetrain” (Figure 68) was extended by several elements, to make 

the algorithm integration easier. The extension involves the wheel inertia Jw, the clutch 

Cw, which is subject of modelling the tire slip in the consecutive chapter, the intermedi-

ate inertia Jz and the system states for wheel rotational speed ωw, the intermediate iner-

tia rotational speed ωz and the differential angle δφz = φz − φw. 

A maximum angle δφz,max for δφz is applied for positive angles to embed the collision 

algorithm. 

 

Figure 68: Drivetrain topology for “Future Hybrid Extended (clearance)” 

The state vector and the clutch torque vector are consequently extended by a state for 

the wheel rotational speed ωw and the torsion δφz, as seen in equation (104). 

The MATLAB
®
/Simulink

®
 of the total model including the nonlinear collision compu-

tation and clutch locking computation is shown in Figure 69. The model can be divided 

into three essential parts, which are marked in different colors: The linear discrete time 

system with the step size adjustment for zero slip speed approximation (marked in blue 

color), the collision computation (marked in orange color and shown in Figure 70), and 

the clutch locking computation (marked in green color and shown in Figure 71). 



4 Gearwheel clearance 

Rudolf Reiter  97 

 

Figure 69: MATLAB
®
/Simulink

®
 model of hybrid drivetrain model with clearance and clutch 

locking computation. Top level. 

 

Basically the approach of the collision computation works according to the previous 

chapters, but several special problems are encountered. 

First of all, both algorithms (clutch locking and collision computation) work with inde-

pendent step size adjustments that might compete with each other. One might develop 

numerous strategies to handle competing and intervening algorithms. Here the two ap-

proaches are simply provided with priorities. Since a collision event is totally strict and 

physically unneglectable a step size adjustment originating from a collision event is 

given priority. In the algorithm approach, a collision event is detected before the event 

and the slip speed zero step size adjustment locked consequently by a flag parameter 

“stop_fric”.  

Secondly, the parameter vectors for the algorithm computation change slightly, due to 

the state vector, which contains Δϕ already as a state variable. 
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Figure 70: MATLAB
®
/Simulink

®
 model of hybrid drivetrain model with clearance and clutch 

locking computation. Sub level: clearance computation. 

 

Figure 71: MATLAB
®
/Simulink

®
 model of hybrid drivetrain model with clearance and clutch 

locking computation. Sub level: clutch locking computation. 

. 

Furthermore it is important to consider the gear box ratio at the correct position of the 

collision and the deflection angle of collision. For simplification purposes the gar box 

ratio in the case studies has been set to “1”. 
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The simulation was computed with following values (Table 15 and [3]) for the added 

elements in drivetrain topology. The inertia of the vehicle Jv was calculated for a wheel 

with a radius of 1 meter. 

All initial values for the state vector were set to 0. 

Table 15: System parameters for extended drivetrain topology “clearance” 

𝐽𝑧  𝐽𝑤  𝐽𝑣 𝑘2 

[𝑘𝑔 𝑚2] [𝑘𝑔 𝑚2] [𝑘𝑔 𝑚2] 
[
𝑁

𝑚
] 

3.4093 1.5 135 4000 

 

Table 16: System parameters 2 for test cases 

𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 𝛿𝜑𝑧,𝑚𝑎𝑥  𝑐𝑟  𝑇𝑑 

 [𝑚]  [𝑚]  [𝑠]  

1 10−4 0 0.1 

2 10−4 1 0.1 

3 2 ∗ 10−3 0 0.1 

 

The input functions for the external moments of the electric and combustion engine as 

well as the external vehicle force and the clutch torques can be seen in the following 

Figure 72 and Figure 73. 

The separation force input matrix is set to 

𝐁c =

[
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1]

 
 
 
 
 
 
 
 

. (134) 

The first two columns represent the vectors for the separating forces, which act on ω̇z 

(index 5) and ω̇w (index 6), and the last column is used to act on the speed δφ̇z (index 

9), for the collision condition. The matrix 𝐇c, used for the discrete time system results 

of transformation of the continuous time matrix 𝐁c into the discrete time domain [5]. 
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Basically one clutch of the drivetrain is locked and consequently a gear is selected while 

a constant torque of the electric engine is supplied. The clutch locking procedure leads 

to a first deflection of the bounded angle δφz. After the clutch is locked (Figure 74) a 

spontaneous high input torque of the electric engine is added to achieve a second high 

deflection. 

Figure 75 and Figure 76 show the rotational speed of the inertias involved in the system. 

Masses left of the planetary gear set in the topology plan are referred to as “left hand 

side masses” just as the right hand side masses. The rotational speeds stay approximate-

ly the same for all three test cases since the clearance does not affect them much. 

 

Figure 72: Clearance simulation “Future Hybrid ext.”: Clutch input moments 
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Figure 73: Clearance simulation “Future Hybrid ext.”: External input moments 

 

Figure 74: Clearance simulation “Future Hybrid ext.”: Clutch states 
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Figure 75: Clearance simulation “Future Hybrid ext.”: Left hand side mass rot. speed 

 

Figure 76: Clearance simulation “Future Hybrid ext.”: Right hand side mass rot. speed. 
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Figure 77 and Figure 78 show the test cases 1 and 2 which differ in their restitution co-

efficient. Obviously the coefficient of 1 in test case 1 leads to a rattling phenomenon, 

which is portrayed by the simulation correctly. A restitution coefficient of 0 leads to a 

fully plastic collision and is physically associated with an energy loss and the abun-

dance of rattling. 

Due to the relative small maximum deflection angle in the first two test cases a further 

test case 3 should illustrate another behavior (Figure 79), with several collisions. It also 

displays part of the behavior of the spring without a maximum clearance. 
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Figure 77: Clearance simulation “Future Hybrid ext.: Test case 1 

 

Figure 78: Clearance simulation “Future Hybrid ext.: Test case 2 
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Figure 79: Clearance simulation “Future Hybrid ext.: Test case 3 
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4.6 OUTLOOK TO HIGHER ORDER SYSTEMS AND ACCURACY 

IMPROVEMENT 

4.6.1 MULTIPLE DIMENSIONS 

Though it is not necessary to implement collision simulation for more than one dimen-

sion it is easily possible to extend the used algorithm for two or three dimensions, by 

simply splitting the velocity and positions variables into all dimensions and applying the 

algorithm for each dimension. 

4.6.2 MULTIPLE MASSES 

If several masses are able to collide with each other within one sample period further 

investigation of the algorithm is needed. If we take a look at equation (130), where the 

separation force and the collision force are simply added, because they would not act in 

the same sample step, they must not be added if several masses collide, because the sep-

aration force might act on one mass pair, which sticks together, whereas the collision 

force is computed between a mass, which is about to collide in the same step.  

No problem arises, if masses collide independently of each other. 

4.6.3 ACCURACY IMPROVEMENT AFTER A COLLISION EVENT 

Equations (125), (130) and (132) compute a separation force 𝛕s,k, that guarantees the 

masses not to overlap in the consecutive step, thus Δ𝐱k+η =
!
0. As it can be seen in the 

presented examples, particularly in Figure 65 and Figure 67, the velocity is not affected 

by this requirement for Δ𝐱k+η. Since the input vector 𝛕s,k, only acts at two difference 

equations, it is conceivable to add further inputs to the system on the remaining two 

difference equations, which lead to a velocity difference of zero, thus Δvk+η =

vsys2,k+η − vsys2,k+η = x3,k+η − x1,k+η =
!
0. Unfortunately the new inputs to the system 

cannot be seen as forces, they rather represent a velocity shift, consequently the re-

quirement for this velocity shift not to add energy to the system is more sophisticated 

and leads to a series of problems which is not part of this thesis. 
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5 NONLINEAR TIRE MODEL 

5.1 INTRODUCTION 

In this chapter the integration of a nonlinear tire model by means of the existing clutch 

model is examined. Obviously a clutch acts similar than a vehicle tire, both transmit a 

friction force depending on the difference speed of the friction elements. 

Numerous tire modeling approaches exist for vehicle modelling [14]. They usually di-

verge in several classifications, depending on the method used. More theoretical model-

ing methods by means of simple or complex physical models have a high degree of fit, 

allow a high number of special experiments and deliver a high insight in the tire behav-

ior. More empirical methods that rather treat the tire as a black box, may also have a 

high degree of fit, but usually allow neither special experiments nor insight in the tire 

behavior. Because they are generally easier to apply they are widely used in the indus-

try, especially the so called “Pacejka magic formula” [14], which was developed by TU-

Delft and Volvo in the mid-eighties. 

The Pacejka magic formula (135) is basically a try to construct a formula, which can be 

fit easily into measurement data originating from real tire experiments by a parameter 

variation [15]. The Parameters D (peak value), C (shape factor), B (stiffness factor) and 

E (curvature factor) shape the curve. Parameters SV and SH shift the curve off the origin 

point. 

y(x) = D sin(C arctan(Bx − E(Bx − arctan(Bx))) (135) 

Y(X) = y(X + SH) + SV (136) 

 

The output variable Y can be used for several interesting components of a tire model, 

including the longitudinal force  Fx, the side force Fy and the aligning torque Mz. 

The input variable X resembles the longitudinal slip κ or the slip angle α.  

In this thesis only the longitudinal force Fx dependent on the longitudinal slip κ is of 

interest. The longitudinal slip κ is defined as follows in (137). The revolution speed Ω0 

represents the angular speed of the tire without any slip, thus Ω0 =
Vx

re
, with vx as the 
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vehicle speed and re as the effective tire radius. The wheel angular velocity Ω is bigger 

than Ω0 during acceleration and smaller than Ω0 during braking. A κ of 0 depicts a free 

rolling tire without external forces and a κ of -1 is associated with a full break.  

κ = −
Ω0 − Ω

Ω0
= −

ΔΩ

Ω0
 (137) 

The definition of the slip leads to a limitation, since the case of Ω0 = 0 is not permitted 

since it would lead to κ → ∞. 

 

Figure 80: Tire model “Pacejka magic formula” for a chosen parameter set. 

Figure 80 shows the Pacejka magic formula for the parameter set, based on empirical 

data for try tarmac (B=10, C=1.9, D=1, E=0.97) [16]. The longitudinal force is depend-

ent on the slip speed ΔΩ and the free rolling wheel speed Ω0, which is proportional to 

the vehicle speed. Obviously the magic formula corresponds well with the signum func-

tion, which would be created by a substituted clutch in the model (Figure 81), but only 

for high vehicle speeds vx and consequently Ω0. For low speeds Ω0 the curve changes 

drastically its shape, and the signum function leads to major errors in the simulation. 
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Figure 81: Tire model “Clutch” for a chosen parameter set. 

  



5 Nonlinear tire model 

Rudolf Reiter  110 

5.2 SIMULATION COMPARISON 

For a comparison of the effects in the extended drive train topology of a hybrid engine, 

first the MATLAB
®
/Simulink

®
 model with the integrated magic formula is used for 

the simulation (Figure 83) and secondly the friction is approximated by the clutch 𝐂𝐰 

itself (Figure 82), with a constant pressure to achieve the best fit of the Pacejka magic 

formula, with the parameter set (B=10, C=1.9, D=800Nm, E=0.97). 

 

Figure 82: Drivetrain topology for “Future Hybrid Extended (wheel friction - clutch)” 

 

Figure 83: Drivetrain topology for “Future Hybrid Extended (wheel friction – magic formula)” 

Parameters as well as the vehicle resistance torque τv are chosen according to Table 15 

and [3]. The vehicle resistance torque τv is a function of the squared speed vv
2, the roll-

ing resistance, the breaking force and the road inclination. Latter two are set two zero 

for this comparative study. 

The Pacejka magic formula for the tire-road interaction gets the following shape (equa-

tion (138)). 

τCw(ωv, ωw) = D sin(C arctan(B (−
ωv −ωw
ωv

)

− E(B (−
ωv −ωw
ωv

) − arctan(B (−
ωv −ωw
ωv

))))) 

(138) 
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The comparative simulation study reveals the following: As long as the slip speed is 

close to zero, particularly inside the two maximum ridges of the magic formula, which 

occur by varying the absolute slip speed ΔΩ (Figure 80), the clutch modelling of the 

Pacejka magic formula delivers an excellent performance. As soon as the absolute slip 

speed exceeds the peak value in either direction the simulation results diverge drastical-

ly in the first consideration, especially for a low free rolling speed Ω0, thus a low vehi-

cle speed. 

For the purpose of figuring out the performance four simulation cases have been applied 

(Figure 84 to Figure 92). The first case starts at an initial high vehicle velocity, but all 

other parts of the drivetrain start with a zero velocity, which leads to an initial high 

wheel slip. The drivetrain is accelerated quickly to the appropriate stationary decelera-

tion due to the vehicle resistance. For a certain time on gear box clutch is closed and a 

torque of the electric engine is applied to accelerate the vehicle. The revolution speeds 

of both simulation variations equal each other very close. 

The second case (Figure 87, Figure 88) shows acceleration with a low initial speed and 

a wheel slip just before the remarkable slip, where the transmitted wheel/road force de-

creases with a rising slip. The third test case shows a wheel slip which overruns drasti-

cally. It is remarkable that the applied torque was increased just by about 1% in this test 

case. Obviously the implemented clutch does not deliver converging results. 

The last test case (Figure 91, Figure 92) shows a repeating acceleration with a high slip. 

Finally the revolution states of both systems show just a little error. 

Taking a closer look to the simulation results the wheel speeds of both simulations di-

verge during the extraordinary high wheel slip (Figure 90), because less friction force 

can be transferred to the road. But since the input energy is equal in both simulations 

and most of the model parts are described linearly the system states of both models con-

verge to each other pretty well at the end (Figure 88, Figure 90 and Figure 92). A con-

siderable nonlinear factor is the drag friction resistance of the vehicle, which is definite-

ly nonlinear. But the only case where this nonlinearity influences the final simulation 

results remarkably, would be a situation where the vehicle accelerates for a vast distance 

with an extremely high torque and consequently overrunning wheels, or performs a full 

break with slipping wheels. Since the first case can be usually excluded from ordinary 



5 Nonlinear tire model 

Rudolf Reiter  112 

vehicle simulations and the second case is only desired for certain cases, the simulation 

by means of clutch for the road-tire interaction works out rather well.  

 

Figure 84: Tire model integration: Comparative simulation 1. Input torques. 
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Figure 85: Tire model integration: Comparative simulation 1. Clutch states. 

 

Figure 86: Tire model integration: Comparative simulation 1. Revolution speeds. 
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Figure 87: Tire model integration: Comparative simulation 2. Input torques. 

 

Figure 88: Tire model integration: Comparative simulation 2. Revolution speeds. 
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Figure 89: Tire model integration: Comparative simulation 3. Input torques. 

 

Figure 90: Tire model integration: Comparative simulation 3. Revolution speeds. 
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Figure 91: Tire model integration: Comparative simulation 4. Input torques. 

 

Figure 92: Tire model integration: Comparative simulation 4. Revolution Speeds. 
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6 RESULTS 

Several methods have been developed to integrate nonlinear elements into state-of-the-

art drivetrain simulations, with an emphasis on real time constraints, accuracy im-

provement and compatibility to existing simulation strategies [3].  

The integration of typical nonlinear damper elements [4], which is part of chapter 3 and 

the integration of a nonlinear tire model by means of an existing clutch modeling ap-

proach [3], which is the content of chapter 5, is straight forward to implement and basi-

cally offers the possibility of extending drivetrain simulations by new elements. 

Nonlinear spring elements can be integrated into discrete time drivetrain simulations by 

several methods, which differ in their accuracy, implementation affords and computa-

tion time and which is the main part of chapter 3. For piecewise affine spring force 

functions, methods have been found, which are highly accurate and rather low in their 

computation time and integration afford. 

Collisions might occur in drivetrains, if gear wheels have a high clearance or if shaft 

elements collide according to the construction and extraordinary circumstances. Since 

collisions are highly nonlinear and affect the system behavior exceptionally high, the 

implemented algorithm offers a possibility of taking collision events into account.  

Generally, this thesis focuses on the theoretical approaches of integrating nonlinear el-

ements. When it comes down to the implementation on a specific embedded system, it 

is still affordable to consider the computation power of the certain hardware used and 

the capability of extending the simulation algorithm by nonlinear computation features. 
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7 APPENDIX 

APPENDIX A INVESTIGATING THE TRANSITION MATRIX AP-

PROXIMATION ERROR 

This chapter deals with the error made by the approach of approximating a discrete time 

transition matrix δ𝚽(tη) = (𝚽(t η) − 𝐈) in delta notation linearly by a known transient 

matrix 𝚽(Td) for a basic step size Td, where tη = ηTd and η ∈ ℝ| 0 < η ≤ 2. 

Let us first take a look at the calculation of a discrete consecutive step in delta notation 

(equations (139) to (141)). The exact system state vector 𝐱k+η at the time tη is comput-

ed in delta notation in equation (140) and the approximated state vector 𝐱k+η
′  is calcu-

lated by means of equation (141). 

δ𝐱k(ηTd) =
1

Td
(δ𝚽(ηTd)𝐱k + 𝐡(ηTd)uk) (139) 

𝐱k+η = 𝐱k + ηTdδ𝐱k(ηTd) = 𝐱k + ((𝚽(ηTd) − 𝐈)𝐱k + 𝐡(ηTd)uk) (140) 

𝐱k+η ≈ 𝐱k+η
′ = 𝐱k + ηTdδ𝐱k(Td) = 𝐱k + η((𝚽(Td) − 𝐈)𝐱k + 𝐡(Td)uk) (141) 

For further investigations the error determination focuses on the autonomous system, 

with uk ≡ 0 ∀k ∈ ℤ, since the influence of the approximation of 𝐡(ηTd) would be add-

ed to the approximation of  δ𝚽(ηTd). Consequently the equations are reduced to the 

following: 

𝐱k+η = 𝐱k + ((𝚽(ηTd) − 𝐈)𝐱k) (142) 

𝐱k+η ≈ 𝐱k+η
′ = 𝐱k + η((𝚽(Td) − 𝐈)𝐱k). (143) 

In Figure 93 the approximation of a continuous trajectory x(t) by the delta term varia-

tion can be shown at the step xk = 1. As it can be seen above, for the variation η = 1 

the approximation becomes exact, because then δ𝚽(ηTd) = ηδ𝚽(Td). The approxima-

tion is used for η-values from zero to two. 
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A spring damper mass system for demonstration purposes has been chosen according to 

Table 17, where the basic step size Td is chosen in different fractions of the system res-

onance period Tres. 

Table 17: System parameters for delta term approximation  

𝑐𝑠𝑦𝑠  𝑑𝑠𝑦𝑠 𝑚  𝒙(𝑡 = 0) 𝑇𝑑 

[
𝑁

𝑚
] [

𝑁𝑠

𝑚
] 

[𝑘𝑔] [𝑚]  [𝑠]  

10 5 1 [0 0] [0.1 0.2 0.5]Tres = [0.031 0.093  0.154] 

 

 

Figure 93: Approximation of x(t) by a linear delta term variation 

The error made by the approximation can be described by the error difference matrix 

Δ𝚽app(η, Td)  in equation (144), which can be derived from the relative error e2,rel(η) 

in the L2-norm (Euclidian norm),that can be seen in equation (145). It is sufficient to 

represent the error e1(η, Td) by an upper bound e1,max(η, Td), based on the Cauchy-

Schwarz inequality [2],  
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Δ𝚽app(η) = δ𝚽(ηTd) − ηδ𝚽(Td) (144) 

e1(η, Td) =
‖𝐱k+η

′ − 𝐱k+η‖2
‖𝐱k‖2  

=
‖Δ𝚽app(η, Td)𝐱k‖2

‖𝐱k‖2  

 (145) 

e1(η, Td) ≤ e1,max(η, Td) =
‖Δ𝚽app(η, Td)‖2

‖𝐱k‖2

‖𝐱k‖2
= ‖Δ𝚽app(η, Td)‖2

 (146) 

Figure 94 shows the Euclidian norm of the upper bound of the error made by the de-

scribed approximation. Obviously the error becomes the highest, if the variation 𝜂 

comes close to the value 2 and generally becomes higher if step sizes are closer to the 

resonance frequency of the system, with fres =
1

Tres
. The step size is limited by the 

Shannon sampling theorem. 

For the purpose of estimating analytically the absolute error for the autonomous system, 

the transition matrix 𝚽(Td) of the continuous time system 𝐱̇ = 𝐀𝐱, and the step size Td 

can be computed by means of a power series of the exponential function first, as seen in 

[17] and equation (147): 

𝚽(Td) =∑
𝐀vTd

v

v!

∞

v=0

. (147) 

Furthermore, equations (142) and (143) can be written as 

𝐱k+η = 𝐱k + ((𝚽(ηTd) − 𝐈)𝐱k) = 𝐱k + (∑
𝐀v(ηTd)

v

v!

∞

v=0

− 𝐈) 𝐱k (148) 

𝐱k+η
′ = 𝐱k + η((𝚽(Td) − 𝐈)𝐱k) = 𝐱k + η(∑

𝐀vTd
v

v!

∞

v=0

− 𝐈) 𝐱k. (149) 
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Figure 94: Norm of the upper bound error by using the linear delta term approximation 

For further calculations (148) can be written as 

𝐱k+η   = 𝐱k + (𝐈 + 𝐀ηTd +∑
𝐀v(ηTd)

v

v!

∞

v=2

− 𝐈) 𝐱k 

= 𝐱k + (𝐀ηTd +∑
𝐀v(ηTd)

v

v!

∞

v=2

)𝐱k. 

(150) 

Equation (149) can be written similarly as 

𝐱k+η
′ = 𝐱k + η(𝐈 + 𝐀Td +∑

𝐀vTd
𝑣

v!

∞

v=2

− 𝐈) 𝐱k 

          = 𝐱k + (𝐀ηTd + η∑
𝐀vTd

𝑣

v!

∞

v=2

)𝐱k. 

(151) 
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The absolute error Δ𝐱k+η can now be written as 

 Δ𝐱k+η = 𝐱k+η
′ − 𝐱k+η = η∑

𝐀vTd
𝑣

v!

∞

v=2

−∑
𝐀v(ηTd)

v

v!

∞

v=2

 (152) 

As a result, the term 𝐀ηTd is canceled, which leads to smaller error order in the end. 

Another error is interesting in terms of the used step size adjustment. Generally an ap-

proximation is calculated for the step k with  0 < ηk < 1 and ηk+1 = 2 − ηk. That 

means the approximation is used twice, where it shortens the step size in the first place 

and then extends it. Here an upper bound error e2,max(η) can be shown for the autono-

mous system, that shows the Euclidian norm of the total error made by those two steps. 

𝐱k+2 = 𝐱k+1 + (𝚽(Td) − 𝐈)𝐱k+1                                                   

= 𝐱k + (𝚽(Td) − 𝐈)𝐱k + (𝚽(Td) − 𝐈)(𝐱k + (𝚽(Td) − 𝐈)𝐱k)

= 𝐱k + 2(𝚽(Td) − 𝐈)𝐱k + (𝚽(Td) − 𝐈)
2𝐱k 

(153) 

𝐱k+2 ≈ 𝐱k+2
′ = 𝐱k+η

′ + (2 − η)(𝚽(Td) − 𝐈)𝐱k+η
′  

= 𝐱k + η(𝚽(Td) − 𝐈)𝐱k
+ (2 − η)(𝚽(Td) − 𝐈) (𝐱k + η(𝚽(Td) − 𝐈)𝐱k) 

 = 𝐱k + 2(𝚽(Td) − 𝐈)𝐱k
 
+ 2η(𝚽(Td) − 𝐈)

2𝐱k
− η2(𝚽(Td) − 𝐈)

2𝐱k 

(154) 

e2(η) =
‖𝐱k+2

′ − 𝐱k+2‖2
‖𝐱k‖2

≤                      

e2,max(η) = |−1 + 2η − η 
2|‖(𝚽(Td) − 𝐈)

2‖2  

(155) 

 

From equation (155) the dependency on η can be seen in Figure 95, if a constant step 

size Td is chosen. It is remarkable that the matrix δ𝚽(Td) leads to a significant higher 

error and goes in with the power of two. 
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Figure 95: Error norm with using two consecutive step size adjustments 
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