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Kurzfassung

Diese Arbeit behandelt die Reduktion von Heben und Nicken eines Straßenfahrzeuges während
eines Bremsvorganges. Das Heben, Nicken und Bremsen kann mit Hilfe von mechanischen Brem-
sen, Elektromotoren und semi-aktiven Dämpfern beeinflusst werden. Ein vereinfachtes mathema-
tisches Modell zur Beschreibung der Fahrzeugdynamik auf ebener Fahrbahn wird herangezogen,
Kurven und Steigungen werden nicht berücksichtigt. Da nur die Längsbewegung des Fahrzeuges
untersucht wird, betrachtet man das dynamische Verhalten an der Vorder- und Hinterachse.
Durch diese Aufteilung erhält man 6 mögliche Stellgrößen für die Aktoren, wobei nur 3 dynami-
sche Größen beeinflusst werden - es handelt sich um ein überaktuiertes System. Daher entsteht
ein unterbestimmtes Gleichungssystem, welches mit Hilfe der sogenannten “Control Allocation”
als Optimierungsproblem gelöst wird. Einige Methoden der Control Allocation werden vergli-
chen, wobei Active Set Algorithmen und Modifikationen genauer betrachtet und anhand von
Simulationen mit MATLAB/Simulink evaluiert werden.



Abstract

This thesis deals with the control of lift and pitch of a car while braking on a flat surface. A
simplified model of a car is used since cornering is not taken into account. Lift, pitch and braking
forces are influenced by mechanical brakes, electric motors and semi-active suspension on the
front and on the rear tires. Since there are 6 actuating signals to achieve the desired 3 virtual
forces the system is over-actuated. Finding the numerical solution of this underdetermined
set of equations is called “control allocation” and goal of this thesis. Active set methods and
modifications are discussed and simulated with MATLAB/Simulink.
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inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

5



Acknowledgement

First of all, I would like to thank my advisor Professor Martin Horn for the opportunity to work
on this topic. The meetings with him increased my motivation significantly and he always had
words of encouragement at the ready.
Many thanks go to thank Daniel Lindvai-Soos for supervising my work. He always lent a helping
hand when I did not see the forest for the trees. I appreciate his help, motivation and humor.
Special thanks to my brother Karl Rupp, who encouraged me to my studies over and over again.
He always provides me with good advice - and good jokes. Proofreading is only a tiny part of all
the help he has given me obligingly. I am proud to call such an outstanding person my brother.
A hearty thanks to Matthias Leitner for proofreading the thesis and all the understanding of
working late hours.
Finally, I want to thank my family and all of my friends who are always there for me. Thanks
for making my limited spare-time unforgettable.

6



Thesis Outline

This thesis starts with a mathematical model of a road vehicle in Chapter 1. The controller
design for the lift and pitch motions is presented. Since the system is over-actuated, control
allocation is used to generate the forces required by the controller.
Chapter 2 deals with the control allocation in general. Different methods for a linear, static
problem are discussed. Active set methods are known to work well for automotive problems
and are therefore described in detail. Small modifications of these methods including dynamic
control allocation are discussed briefly.
Chapter 3 consist of the application of the most suitable control allocation algorithms to the
mathematical model. The Simulink-Model, constraints of the actuators and settings relevant for
the simulation are outlined. Application-oriented modifications on the algorithms are discussed.
The results of the simulations are outlined in Chapter 4.
Finally an outlook on further ideas for future work and a conclusion is given in Chapter 5.
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Chapter 1

Motivation of the Work

In the last decades research on vehicle dynamics control (VDC) has been conducted extensively.
Many approaches regarding vehicle safety and maneuverability have been developed. Active
safety systems play an important role in road vehicles nowadays, e.g. ABS and ESP are used
widely in modern road vehicles. Methods to prevent rollover or to stabilize the yaw motion of
the vehicle using control allocation have been proposed, e.g. in [1], [25], and [27]. Improved
passenger comfort and reduced driver workload are to a greater or lesser extent consequences
of these techniques. The goal of this thesis is to improve the passenger comfort during braking
by suppressing lift and pitch oscillations of the car. It is important that braking is not delayed,
the longitudinal movement of the car must not be changed in order to guarantee safety. The
following section shows the lift-pitch-model of the car that is based on [15]. The resulting system
equations and the controller are outlined in this chapter.

1.1 Linearized Model of the Car

A linearized mathematical model of a car has been presented in [15] using the following assump-
tions:

• Only longitudinal movement is considered. Lateral movement, i.e. cornering and turning,
is objective of further work and not included in this thesis.

• Since only longitudinal movement is of interest, the tires are grouped into front and rear
tires. There is no differentiation into left and right tires.

• The vehicle moves on a flat track without inclination.

• Simplified driving resistances are used, aerodynamics and lift are neglected.

• Isotropic tire characteristics with no run-in behaviour are considered.

• Unsprung mass dynamics are neglected.

These simplifications yield three variables that shall be controlled to improve the comfort: lift z,
pitch θ and the velocity ẋ. Figure 1.1 shows how these variables are defined for the longitudinal
model and how they affect the car. The simulation parameters shown in this figure are defined
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Figure 1.1: Lift-pitch-model of the car as shown in [15]

in [15] and shown in Table 1.1. For the lift-pitch-model the following states are introduced:

x =


z
ż
θ

θ̇
ẋ

 , (1.1)

where z and θ are the lift and pitch variables, ż and θ̇ the corresponding velocities and ẋ is the
velocity of the car. The virtual forces, i.e. the forces and torques that shall be controlled, are
defined as

v =

Fz

Ty
Fx

 , (1.2)

where Fz stands for the lift, Ty the pitch and Fx the velocity of the vehicle. The output of the
system is given by

y =

zθ
ẋ

 . (1.3)

The system equations of the model linearized around an operating point defined by x0,v0 can
be written as

∆ẋ = A∆x + B∆v, (1.4)

∆y = C∆x,

where ∆x = x− x0, ∆v = v − v0. The initial conditions x0 are given as

x0 =


0
0
0
0

80/3.6

 , (1.5)
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which corresponds to a vehicle driving at a constant speed of 80 km/h without any lift or pitch.
This vector is also chosen as the point of interest for linearization, i.e. x0 = xs. The matrices in
1.4 derived in [15] are defined as follows:

A =


0 1 0 0 0

2(cf+cr)
−mA

2(df+dr)
−mA

2(crlr−cf lf )
−mA

2(drlr−df lf )
−mA

−bz d̃
mAm∗

0 0 0 1 0
2(crlr−cf lf )
−Jy

2(drlr−df lf )
−Jy

2(cf l
2
f+crl

2
r)

−Jy
2(drl2r+df l

2
f )

−Jy
−by d̃
Jym∗

0 0 0 0 −d̃
m∗

 , (1.6)

B =


0 0 0
1
mA

0 bz
mAm∗

0 0 0

0 1
Jy

by
Jym∗

0 0 1
m∗

 ,C =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 , (1.7)

where the individual parameters are listed in Table 1.1. The remaining parameters are abbrevi-
ations defined as

m∗ = m+ 4
Jw
r2

and

by = 2
Jw
r2

(tan(ε2,f )− tan(ε2,r)),

bz = −2
Jw
r2

(tan(ε2,f )lf + tan(ε2,rlr + 2r − 2h)),

where the so-called support angles εi are defined as shown in Figure 1.2.

Figure 1.2: Model of the car with support angles taken from [15].

So far only the virtual forces have been used in the description of the model. These virtual
forces can be generated by 6 actuators u by the following relation:

v = Hu, (1.8)
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where H is a 3 × 6 matrix. The actuators are described in more detail in Chapter 3 while the
important role of the matrix H is outlined in Chapter 2. The matrix H for this model is given
by

H =

 − tan(ε1,f ) tan(ε1,r) − tan(ε2,f ) tan(ε2,r) 1 1
(tan(ε1,f ) · lf − h) (tan(ε1,r) · lr − h) (tan(ε2,f ) · lr − h) (tan(ε2,r) · lr − h) −lf lr

1 1 1 1 0 0

 .
(1.9)

Name Abbrevation Unit Value

Vehicle Mass m kg 1725

Body Mass mA kg 0.9 ·m
Body Inertia Jy kgm2 2646

Wheel Inertia Jw kgm2 1

Dist. COG-FA lf m 1.3

Dist. COG-RA lr m 1.46

Height of COG h m 501

Spring stiff. cf N/m 24350

Spring stiff. cr N/m 40900

Damper coeff. df Ns/m 1317.5

Damper coeff. dr Ns/m 1445

Hub support angle ε1,f deg 4

Hub support angle ε1,r deg 22

Body support angle ε2,f deg 1

Body support angle ε2,r deg 5.5

Tire radius rf = rr = r m 0.3

Aerodynamic resistances d̃ Ns/m 29.1464

Table 1.1: Simulation parameters of the simulated vehicle.
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1.2 Controller Design

The design of the controller is not an objective of this thesis and therefore an existing controller
is presented. For the controller the sky-hook control design based on [10] or [9] is used. The
sky-hook technique is a common method when using semi-active suspension as is the case for
this vehicle (see Chapter 3). As shown in [9], the sky-hook law can be written as

Fsky,z = −dzSH ż (1.10)

and

Tsky,θ = −dθSH θ̇. (1.11)

Now, the virtual forces

v =

Fz

Ty
Fx


shall be controlled for input state x. The modal skyhook control works similar to a state-
feedback-controller:

v = −Kx + Hudes

with the design matrix K. For the linear system

ẋ = Ax + Bv, (1.12)

the controller

v = −Kx + Hudes (1.13)

yields the following closed-loop structure:

ẋ = Ax−BKx + BHudes = (A−BK)x + BHudes. (1.14)

For the lift and pitch forces the corresponding column in this matrix K can be chosen to achieve
specific dynamics. This desired dominant behaviour of the dynamics of lift and pitch are chosen
to match the transfer function

G∗i (s) =
yi(s)

vi(s)
=

ki
s2 + 2ζiω0,is+ ω2

0,i

, (1.15)

which represents a system with a dominant polepair with the angular frequency ω0,i and the
damping ratio ζi. Since the braking force Fx must not be delayed or influenced, the last column
of the controller matrix K is set to zeros.
The system structure is in Luenberger control canonical form for MIMO-systems (cf. [16]) and
therefore the matrix K can be determined by comparison of coefficients. Choosing ζlift = 0.5
and ζpitch = 0.5 the resulting controller reads

K =

0 dzSH 0 d̃1 0

0 d̃2 0 dθSH 0
0 0 0 0 0

 , (1.16)

with the sky-hook parameters

dzSH = 8708.8, dθSH = 15447,

and the parameters

d̃1 = d̃2 = −793.9.

This is the controller used in the remainder of the thesis.
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Chapter 2

Control Allocation

Control allocation is used for over-actuated systems in order to solve an underdetermined set
of equations. This underdetermined set of equations describes the relation of the control input
and the different actuators. In this chapter control allocation in general is discussed and some
methods are presented. Active set methods are used to solve quadratic programs and are outlined
below.

2.1 Introduction

This section is based on [8] and describes the basics of control allocation. Control allocation
separates the actuator selection from the controller task such that the controller only takes care
of the virtual control. One benefit of the separation is that the actuator constraints can be taken
into account, actuator changes or failures can also be handled. Another advantage is that the
problem can be optimized for the specific application independently. Figure 2.1, as presented in
[8], shows the overall system with the separation of controller and control allocation.

Figure 2.1: Control Allocation from [8].

The virtual control input that is calculated by the controller is denoted by v. u is the control
input for the actuators that is calculated by the control allocation algorithm. The general
mathematical description for a system considered for control allocation reads as follows:

ẋ = f(x,v), (2.1)

v = h(x,u). (2.2)

13



In the linear case this can be written as

ẋ = Ax + Bv, (2.3)

v = Hu, (2.4)

with x ∈ Rn, u ∈ Rm, v ∈ Rk and k < m. The fact that there are more actuators than virtual
control variables is a necessary condition for the system to be over-actuated and for control
allocation to be applied.
For the position and rate constraints of the actuators the following equations must hold:

umin ≤u(t) ≤ umax, (2.5)

ρmin ≤u̇(t) ≤ ρmax. (2.6)

The inequalities apply componentwise. Rate constraints can be rewritten as position constraints
with

u(t) = max{umin,u(t− T ) + T · ρmin}, (2.7)

u(t) = min{umax,u(t− T ) + T · ρmax}, (2.8)

where T is the sampling time. This results in

u(t) ≤ u(t) ≤ u(t). (2.9)

The constraints correspond to a convex hyperbox. Dropping the time dependencies, the goal of
control allocation in the linear case is then to solve

v = Hu, (2.10)

u ≤ u ≤ u, (2.11)

where

x ∈ Rn, (2.12)

u ∈ Rm,
v ∈ Rk, k < m.

This is known as the standard constrained linear control allocation problem. H is often called
control effectiveness matrix and is of rank k.
There are 3 possible results:

• an infinite number of solutions

• only one unique solution

• no solution

In either case the control allocation should return the “best” solution considering the constraints.
For an infinite number of solutions an additional objective function may be used to pick only
one specific solution. In the algorithms below, an objective function is used that accounts for
the desired control input udes. If no solution considering the constraints is possible, a method
for minimizing the error between v and Hu is necessary to attain the “best possible” solution.
In the literature several methods for solving the control allocation problem have been proposed.
The control allocation problem in general with different approaches on static linear control al-
location is presented in [22]. In early research, control allocation has mostly been studied for
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over-actuated aircrafts, e.g. in [3], [4]. Model predictive control allocation has been shown to
be useful in many applications. Yu Luo et al. have presented several approaches on this field,
e.g. [17], [18], and [19]. Härkegard proposed an active set algorithm in [8], which most of this
thesis is based on, and showed simulations and results on aircrafts. In [23] a comparison of the
active set algorithm with the interior point method is presented. Schofield extends the active
set algorithm in [24] and concentrates on automotive examples. In [25] rollover prevention is
presented. Johansen et al. also work on nonlinear control allocation in different applications,
e.g. automotive examples in [13], [11], [26] and examples on ships in [7]. The control alloca-
tion method strongly depends on the application. Aircrafts, marine vessels and road vehicles
represent the main fields of research on these methods and yield different approaches.
In the following section some of the above mentioned methods for control allocation are discussed
in general.

2.2 Comparison of static linear Control Allocation Methods

For static, linear control allocation the following methods are outlined below:

• Weighted Pseudo-Inverse

• Direct CA

• Linear Programming

• Quadratic Programming

– Active Set Methods

I Sequential Least Squares

I Weighted Least Squares

– Fixed-Point Method

– Primal-Dual Interior-Point Method

These methods have been used in MATLAB/Simulink with the model of the car given in Chapter
1. Approaches for control allocation such as Daisy Chaining and Explicit Ganging as discussed
in [22] are not desirable for this automotive example and therefore neglected.

The Weighted Pseudo-Inverse, as discussed in [22], represents the first idea for the solution
of the control allocation task. The control allocation problem is to find

u = argmin
u

J =
1

2
uTWu (2.13)

subject to v = Hu, (2.14)

where W ∈ Rm is a matrix penalizing the errors for the individual actuators and the only design
parameter. The solution is found by

u = W−1HT (HW−1HT )−1v. (2.15)

If the constraints do not become active during the entire simulation, i.e. the unique solution lies
within the feasible region, the results are accurate. If there is no unique solution to the problem,
the results may become inaccurate since the constraints may be violated. There is no guarantee
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that the commanded control input will not exceed the constraints. Since the constraints may
be violated, this method is no proper choice for this application on road vehicles.

The Direct Control Allocation, as presented by Durham and discussed in [22], aims at finding
a real number α and a vector u1 such that

Hu1 = αv, (2.16)

u(t) ≤u(t) ≤ u(t). (2.17)

If α > 1, let u = 1
αu1, otherwise u = u1. This method thereby scales the control inputs if the

solution u∗ to v = Hu does not lie within the feasible region. This means that the vector u
has the same direction as the unconstrained solution u∗, but smaller magnitude. There are no
additional design variables to be selected. For the application in this thesis, at least a desired
control input variable should be taken into account. Maintaining the direction of the vector is
not important for this application, primarily the error v−Hu should be minimized. Therefore,
this method is not useful for the problem stated in Chapter 1.

Linear programming, as described in [22], aims at minimizing the error

J1 = ‖(v −Hu)‖1. (2.18)

The linear program uses slack variables uslack and can be posed as follows:

min
u
J1 =

[
0 0 ... 0 1 ... 1

] [ u
uslack

]
(2.19)

subject to


uslack

−u
u

−Hu + uslack

Hu + uslack

 ≥


0
−u
u
−v
v

 . (2.20)

If J1 = 0 then the virtual control v is feasible and there exists a set of control inputs uΩ that
solve the equation v = Hu. A secondary objective may be stated which takes the desired control
input for the actuators udes into account:

J2 = ‖(u− udes)‖1. (2.21)

The new linear program can then be written as

min
u∈uΩ

J2 = wT
u uslack (2.22)

subject to


uslack

−u
u

−u + uslack

u + uslack

 ≥


0
−u
u
−udes

udes

 , (2.23)

where wT
u is a vector penalizing the error u − udes. Although a linear program can be solved

faster than a quadratic one, the linear programming approach is nevertheless undesirable: As
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stated in [8], it utilizes only as few actuators as possible instead of using all to satisfy the virtual
control demand.

In literature Quadratic Programming is often regarded as the best method for automotive
applications of the type considered in this thesis. As stated in [8], quadratic programming utilizes
all actuators and divides them uniformly which is more desirable than the linear programming
approach.
There are several ways to solve the quadratic program. The first objective is to solve

uΩ = argmin
u

J = ‖Wv(v −Hu)‖2. (2.24)

Of this set uΩ the “best” solution can be found by the second objective function

u = argmin
uΩ

J = ‖Wu(u− udes)‖2. (2.25)

Active Set Methods are similar to simplex methods only for quadratic programs. These methods,
as presented in [8], have become very popular and are widely used. The idea of the algorithm is
to partition the control inputs u into an active set with saturated and a free set with unsaturated
control inputs. With the notation

A =

[√
γWvH
Wu

]
, (2.26)

b =

[√
γWvv

Wuudes

]
, (2.27)

a residual d is computed by

d = b−Au. (2.28)

A suboptimal solution is calculated only by the use of the free variables:

uf = A+
f d, (2.29)

where the subscript f denotes the columns corresponding to the free variables and A+
f is the

pseudo-inverse of Af. If the solution is infeasible, a step size α is calculated and the most
bounding control input is set active. If the solution is feasible the Lagrangian multipliers are
calculated:

λa = AT
a d, (2.30)

where a denotes the indizes of the active variables. The optimum is reached if all Lagrangian
multipliers λa are non-negative. Otherwise the control input corresponding to the most negative
λa,i is removed from the active set. The first tests show the best results when using active set
methods, especially the weighted least squares method is the fastest algorithm with the best
performance. Active set methods are therefore used for further simulations and are described
in more detail later in this chapter.
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The fixed-point method is also discussed in [8] and is similar to a gradient-search method. It
solves the quadratic program

min
u
J = ‖Wv(Hu− v)‖22 + γ‖Wu(u− udes)‖22 (2.31)

as follows:

uk = sat

[
(1− ε)ωHTWT

v Wvv − (ωQ− I)uk−1
]
, (2.32)

with

ε =
1

γ + 1
, (2.33)

Q = (1− ε)HTWT
v WvH + εWT

u Wu, (2.34)

where ω = ‖Q‖−1F decides the step length and ‖Q‖F denotes the Frobenius Norm of Q. This
method considers only problems where the desired control input for the actuators udes equals
zero which is not useful for the given problem set. The simulations do not yield satisfying results.

The primal-dual interior-point method is discussed in [23]. For optimization the problem is
converted to a quadratic program

min
u
J =

1

2
xTGx + fTx (2.35)

subject to x + w ≤ xmax

x ≥ 0

w ≥ 0

where

x = u− umin, (2.36)

xmax = umax − umin,

and w is a slack variable. The virtual control v, the constraints umin, umax and the control
effectiveness matrix H are given. The matrix G is defined by the control allocation problem.
The matrizes H, Wv, Wu and the vectors v, udes are used to compute G. An additional update
parameter ρ and the stopping tolerance ε must be chosen before starting the optimization. This
method is known to be a very good approach for a large number of actuators. For m > 10 this
method is proven to show better performance than the active set methods since the number of
iterations is smaller, but the computational effort per iteration is high in comparison. Since the
given problem set uses only 6 actuators, the active set method is the better choice for further
studies.

In Table 2.1 the comparison regarding consumption of time and performance of the mentioned
methods is shown. The results are average values calculated over 100 simulations.
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Method Time in s Performance

Weighted PI 1.2121 inaccurate

Direct CA 36.9668 no design parameters

SLS 4.1114 very good

WLS 2.0852 very good

FixedPoint 2.5000 udes inaccurate

InteriorPoint 7.5124 very good

LP 50.4691 good

Table 2.1: Comparison of different control allocation methods regarding time consumption and
performance.

The results correspond to those in [8]. It is shown that the active set methods “SLS” and
“WLS” implemented by Härkegard yield the best results in a minimum of time. Therefore these
methods are dealt with in the next section.
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2.3 Active Set Methods

The active set methods have become quite popular and show good results in the first tests.
Therefore, these methods are used for further tests and simulations. For the application it is
important to analyze the algorithm in order to guarantee safety for the driver of the vehicle at
all times while comfort is being improved. The methods are presented in [8] and are discussed
in this section.
An active set algorithm can solve the bounded and equality constrained least squares problem

min
u
‖Au− b‖2 (2.37)

v = Hu (2.38)

Cu ≥ U, (2.39)

efficiently by making use of the special structure with

C =

[
Im
−Im

]
, (2.40)

where Im denotes the identity matrix of size m×m and

U =

[
u
−u

]
. (2.41)

The method is called “active set” because the algorithm divides the problem into a set of
control inputs in saturation, which is called the active set A, and a set of free variables, i.e. the
variables that are not saturated. The active constraints are regarded as equality constraints,
the free constraints correspond to the inequality constraints which are disregarded. Thus, the
free variables are handled as unbounded variables during one optimization step. Optimality is
checked by the Karush-Kuhn-Tucker conditions. The main steps of the active set method in
pseudo-code are shown in Algorithm 1.
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Algorithm 1 Active Set

Given a feasible starting point u(0) and the working set W0

for i = 1 to maximum number of iterations do
solve

min‖A(u(i) + p)− b‖
pi = 0, i ∈ W

where

A =

[√
γWvH
Wu

]
, b =

[√
γWvv

Wuudes

]
.

if u(i+1) = u(i) + p is feasible then
compute Lagrangian multipliers λ
if λ > 0 then

Optimum found, return
else

Remove constraint with most negative λi
end if

else
calculate α ∈ [0, 1] such that u(i+1) = u(i) + αp is feasible
add most binding constraint to working set

end if
end for

The Lagrangian multipliers are determined by

AT (Au− b) =
[
HT CT

0

] [µ
λ

]
, (2.42)

where C0 contains the rows of C corresponding to the active constraints. It is important to
notice that at each suboptimal iteration either one free constraint becomes active or one active
constraint is set free. Active set methods are very efficient if a good estimate of the working
set W is available and the number of changes in the working set is rather small. One benefit of
the active set method is that each iteration yields a lower value of the objective function. The
iterates u(k) are always feasible, the constraints are not violated if the algorithm terminates at
a suboptimal solution. Since the problem is divided into a smaller subproblem, i.e. the equality
constrained least squares problem, the calculations during one iteration are computationally
cheap. Active set methods only pass the working set and the previous solution to the next
sampling instant. The parameters Wv, Wu, udes can be chosen properly in every time step,
even the matrix H, the virtual control v and the constraints u, u may be changed for every
optimization problem each time step. This allows for time-varying control effectiveness matrix
H(t) without further limitations.
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There are two different methods for solving the problem with active set algorithms:

• Sequential least-squares control allocation

uΩ = argmin
u

J = ‖Wv(v −Hu)‖2, (2.43)

u = argmin
uΩ

J = ‖Wu(u− udes)‖2, (2.44)

with

u ≤ u ≤ u.

• Weighted least-squares control allocation

u = argmin
u

J = ‖Wu(u− udes)‖22 + γ‖Wv(v −Hu)‖22 (2.45)

with

u ≤ u ≤ u.

These methods are applied using Algorithm 1. With γ chosen very high (e.g. 106) the weighted
least squares problem yields the same results as the sequential least squares but in fewer itera-
tions.
The following example demonstrates the sequential least squares method:

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

u1

u
2

feasible region
udes

u(0)

u(1)

u(2)

v

Figure 2.2: Example for the sequential least squares method.

The black line represents the virtual control v = Hu that must be reached in the first step
(2.43). When starting at u(0) the sequential least squares method calculates the next iterate
u(1) that lies on the black line since the virtual control v is feasible. The first objective function
is zero, the set of control inputs uΩ that is used for the second objective function consists of
the control inputs on the black line inside the feasible region. The blue dashed curves show
different levels of values for the second objective function J = ‖Wu(u− udes)‖2. In the second
step (2.44), this second objective function is minimized using the set of control inputs uΩ. The
algorithm tries to reach udes while sticking on the line v = Hu. This results in the iterate u(2)
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with the constraint u1 becoming active. In the last iteration, the Lagrangian multiplier of the
active constraints, i.e. λ1, is found to be positive and the algorithm terminates with the solution

uopt = u(2) and the working set W =

[
1
0

]
.

One drawback of the active set method is the computational complexity in worst case, which
is exponential as has been proved for simplex methods by Klee and Minty in [14]. The average
case, however, is much lower than exponential. For safety reasons it is nevertheless essential to
guarantee an upper limit of iterations.
In [8], Härkegard presents further details on the solution of the two active set methods. He
also provided the MATLAB-code (called QCAT) for the computation which is available at
http://research.harkegard.se/qcat/ .
A number of MATLAB-routines for solving quadratic programs are available. When using
quadprog, setting the option “algorithm” to “active-set” yields the desired algorithm. The
drawback of this routine is the slow computation, therefore it is to the best advantage to find a
faster way to compute the solution. For the simulations presented in Chapter 3 the MATLAB-
code provided by Härkegard is used since it is much faster than the MATLAB-routines. The
computation is presented in detail in his thesis which makes it easier to analyze the behaviour
of the algorithm in the case of failures.

2.3.1 Hotstart

One benefit of using active set methods is the use of hotstart (or warm start). Hotstart benefits
of the use of the solution of the previous time step as starting point of the current time step.
It can also be used for simplex-methods and yields fewer iterations if the bounding constraints
do not change substantially. As Schofield stated in [24], there may be trouble with hotstart
when the constraints are changing since the previous solution may no longer be feasible. The
algorithm needs a feasible starting point so the hotstart variables uk−1, Wk−1 must be checked
before starting the iterations. Härkegard requires that the previous solution is always feasible
and updates the starting point in the provided code according to the working set:

Algorithm 2 Hotstart by Härkegard

for i = 1 to m do
if W0,i == −1 then

set u
(0)
i = umin

end if
if W0,i == +1 then

set u
(0)
i = umax

end if
end for

Schofield suggests that the control input is set to its nearest boundary of the feasible region:
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Algorithm 3 Hotstart by Schofield

for i = 1 to m do
if ui ≤ umin,i then

set ui = umin,i

set Wi = −1
end if
if ui ≥ umax,i then

set ui = umax,i

set Wi = 1
end if

end for

As mentioned in [24], hotstart may also be detrimental to convergence as demonstrated by the
following example:
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(2, 3)

(4)
(1)

x1

x
2

feasible region
ustart,0
ustart,1
udes,(0)
udes,(1)
uhotstart

Figure 2.3: Example of a bad choice for hotstart.

In Figure 2.3 the constraints in the first time step are given by the yellow solid lines. The initial
point is set to the middle of the feasible region since there is no other initial point available.
The optimum is found in one iteration since it is in the feasible region and no variables have to
be saturated or freed. In the second time step, if hotstart is used, the initial point is chosen to
be the optimum from the previous time step, which is the blue dot udes,0. At this time step the
constraints are changed to the dashed yellow line. The new initial point when using hotstart
obviously lies outside of the feasible region and must be set to the boundaries before continuing.
In doing so, the two variables become saturated. To reach the optimum, both variables must
be freed which takes two additional iterations. Iterating in the direction of the new optimum
also takes two iterations which yields a total of four iterations. If no hotstart is used, the initial
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point is again set to the middle of the new feasible region and only takes one iteration to find
the optimum. This example shows that using hotstart with changing constraints may even yield
a higher number of iterations.

2.4 Modified Active Set

A modified active set algorithm for solving bound-constrained problems is presented in [24].
The major drawback of active set methods, i.e. the computational complexity in worst case,
is mitigated by a small change when adding constraints to the working set. The algorithm
allows for more than one constraint per iteration to become active. Only constraints that satisfy
the KKT-conditions become active, although others might be at their boundary as well. The
modified active set is outlined in pseudo-code in Algorithm 4. Only the second part of the
algorithm is slightly different from Algorithm 1.

Algorithm 4 Modified Active Set

set u(0) = (umax − umin)/2, W0 = 0
for i = 1 to maximum number of iterations do

solve

min‖A(u(i) + p)− b‖
pi = 0, i ∈ W

where

A =

[√
γWvH
Wu

]
, b =

[√
γWvv

Wuudes

]
.

if u(i+1) = u(i) + p is feasible then
compute Lagrangian multipliers λ
if λ > 0 then

Optimum found, return
else

Remove constraint with negative λi
end if

else
calculate Γ such that u(i+1) = u(i) + Γp is feasible
compute Lagrangian multipliers κ
add constraints with positive κi to working set

end if
end for

In [24] a proof is presented that this algorithm is guaranteed to terminate in 2m− 1 iterations.
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2.5 Dynamic Control Allocation

The dynamic control allocation is an extension of the methods presented above. It allows for
a distribution of control inputs in the frequency domain such that some actuators are used
for low-frequency tasks while others work in the high-frequency domain. This distribution is
implemented by considering previous samples of the control inputs:

u(t) = f(v(t),v(t− T ),u(t− T ),v(t− 2T ),u(t− 2T ), ...), (2.46)

with the sampling interval T . To penalize the change in control inputs, a new weighting matrix
W2 is introduced and the new optimization problem reads as follows:

min
u
J =‖W1(u(t)− udes(t))‖+ ‖W2(u(t)− u(t− T ))‖22

+ γ‖Wv(v(t)−Hu(t))‖22.

The higher the weighting factor W2,(i,i) the slower is the change of control input ui and therefore
the corresponding actuator only takes care of low-frequency tasks. Härkegard showed in [8] that
this optimization problem can be seen as a filter when no saturations occur. Assuming that W1

and W2 are symmetric and W in 2.48 is nonsingular, the filter can be written as:

xk+1 = Fxk + F(Eudes + Gvk) (2.47)

uk = xk + Eudes + Gvk

with

W =
√

W2
1 + W2

2 (2.48)

G = W−1(HW−1)+

F = (I−GH)W−2W2
1

E = (I−GH)W−2W2
2

The real eigenvalues of the filter are located between 0 and 1 if W1 is nonsingular. The proof can
be found in [8]. The following example shows the effect of dynamic control allocation. Assuming
that the dynamics of the actuators can be described by first-order lag elements with the time
constant ti, the transfer function of the actuator can be written as

G(s) =
1

1 + ti · s
.

Each actuator can be modelled separately. For this example the first actuator is assumed to be
the “slowest” one that cannot respond to fast changes in the control input and is therefore used
for low-frequency tasks. The time constants of the three actuators are chosen as follows:

t1 = 0.1,

t2 = 0,

t3 = 0.

The second and third actuator are arbitrarily fast and can be used over the whole bandwidth.
Given the equation

v = hTu =
[
2 1 1

]
u, (2.49)

v ∈ R, u ∈ R3, (2.50)

26



and the weights

W1 =

1 0 0
0 1 0
0 0 1

 , W2 =

3 0 0
0 1 0
0 0 1

 ,
the resulting frequency behaviour can be seen in Figure 2.4. The weighting factor W2,(1,1) has
been chosen such that the cut-off frequency equals the time constant. The first actuator is used
for low-frequency tasks.
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Figure 2.4: Example of the filtering properties of DCA.

The desired virtual control for this example is shown in Figure 2.5. It is a simple step function
from 0 to 1 at t = 1s.
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Figure 2.5: Virtual control of the DCA example.
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Figure 2.6: Control inputs of the DCA example.

The resulting control inputs for the actuators can be seen in Figure 4.10. The second and third
actuators are used for the high-frequency part, i.e. the transients of v, while the first actuator
slowly changes its control input until it reaches the steady state value. It is clear that the first
actuator has a higher steady state value since it has the highest influence on v in hT =

[
2 1 1

]
,

and the desired control input udes is 0 with equal weightings in W1.
The real eigenvalues of the resulting filter are located between 0 and 1 - the filter is stable:

λ =

0.9714
0

0.5

 .
It is important to note that this dynamic approach only works this way as long as no satura-
tions occur. As soon as one actuator saturates, the penalizing term ‖W2(u(t)− u(t− T ))‖22
becomes rather irrelevant since the main task is to ensure v = Hu. This dynamic control al-
location approach does not guarantee that the actuator dynamics are considered, it offers only
the possibility to distribute the actuators over the frequency as long as the constraints hold.
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Chapter 3

Application of Active Set Algorithms
to a Road Vehicle

This chapter presents control allocation algorithms applied to a road vehicle as outlined in
Chapter 1. The first section describes the simulation and necessary design parameters for control
allocation, the second part of this chapter is devoted to the implemented active set algorithm
and its different modifications.

3.1 Simulation

For the simulation, the vehicle starts at a velocity of 80 km/h, while the remaining states are
zero, i.e.

x0 =


0
0
0
0

80/3.6

 . (3.1)

After one second (t = 1 s) the driver hits the brake pedal and deceleration starts with 0.4 ·m · g.
m is the mass of the vehicle, g the acceleration due to gravity. In the simulation there are two
systems: a passive one that is uncontrolled and only the desired control inputs are passed on
to the actuators, and an active one where virtual controls are controlled as described in (1.12).
Control allocation is used to determine the control inputs for the actuators. The velocities of
the systems must be equal, lift and pitch of the active system should be improved compared
to the passive one. In Figure 3.1, a simplified model in MATLAB/Simulink is presented. The
step function with the deceleration gain on the left represents the driver hitting the brake pedal.
The following gain bkv calculates the desired control inputs udes. The active system is in the
upper and the passive system in the lower part. The active system requires state feedback for
the controller and uses the desired control input, previous solutions and the current state for
optimization, while the passive system passes the values for the control inputs directly to the
actuators.
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Figure 3.1: Simulink model with active and passive systems.

3.2 Definition of Control Allocation Variables

For the solution of the weighted least squares optimization problem

min
u
J = ‖Wu(u− udes)‖22 + γ‖Wv(v −Hu)‖22 (3.2)

subject to the constraints

u ≤ u ≤ u,

several variables must be defined. The controller calculates the values of the virtual control v
which consist of the following factors:

v =

Fz

Ty
Fx

 ,
where Fz represents lift, Ty pitch and Fx the velocity of the car. The control inputs of the
actuators are given by

u =



TH,f/r
TH,r/r
TB,f/r
TB,r/r
Fa,f

Fa,r

 .

The torques are split up into those produced by hub-fixed devices TH and others produced by
body-fixed devices TB. Additionally, there is a differentiation between front and rear torques,
indicated by the subscripts f and r. The semi-active suspension forces are abbreviated by Fa,
once again divided into front and rear forces. The control effectiveness matrix H is given by

H =

 − tan(ε1,f ) tan(ε1,r) − tan(ε2,f ) tan(ε2,r) 1 1
(tan(ε1,f ) · lf − h) (tan(ε1,r) · lr − h) (tan(ε2,f ) · lr − h) (tan(ε2,r) · lr − h) −lf lr

1 1 1 1 0 0

 .
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The parameters of this matrix are specified in Chapter 1 on page 11. The vectors v, u and the
matrix H are defined by the problem set. The additional design parameters are Wu, Wv, γ and
udes. These design parameters can be chosen individually. The weighting matrix Wu penalizes
the error between the control input u and the desired value udes. Similarly, the matrix Wv

penalizes the error between the achieved virtual control Hu and the desired virtual control v.
These two matrices are typically diagonal matrices, weighting each divergence separately. Thus,
the matrices are symmetric and nonsingular (i.e. no diagonal element is zero). The factor γ is
a large number in order to guarantee that the virtual control is achieved primarily. These two
design matrices are mainly chosen to be identity matrices with appropriate dimensions:

Wv = I3, (3.3)

Wu = I6, (3.4)

and the factor γ is 106. In most applications it is desirable to minimize the total control effort,
hence the desired value udes is often chosen to be zero for all control inputs. The desired control
inputs for this application are discussed in more detail in the next section.

3.2.1 Desired Control Input

The desired control input is the partition of braking forces. udes is given by the following
distribution of the actuators

udes =



0.66 · Tmech

0.34 · Tmech

0.66 · Tel
0.34 · Tel

0
0

 , (3.5)

where Tmech is the torque for the mechanical brakes and Tel the torque for the electric motors.
During braking the vehicle mass is mainly on the front tires of the vehicle. Consequently, the
distribution of the torques is chosen such that 66% of the braking force must be provided by the
front axle, and 34% by the rear axle. This proportion might change slightly depending on the
vehicle and application (cf. [20]). The simulations, however, use these percentages. The desired
deceleration for the vehicle in the simulation is given by 0.4 ·m ·g with the body mass m and the
gravity g. The hybrid part Tel is supposed to transfer 33% of the braking force, the mechanical
part 67%. Altogether these partly user-defined distributions yield the desired control input udes.
In summary, the desired control input calculates as

udes = 0.4 ·mg ·



b · tmech

(1− b) · tmech

b · (1− tmech)
(1− b) · (1− tmech)

0
0

 , (3.6)

where b = 0.66 is the brake balance and tmech is the proportion of the mechanical torque with
tmech = 0.67 as mentioned above. The desired values are passed on directly to the passive
system and should be achieved by the active system in steady state. This ensures that the
braking behaviour of the active system equals the passive one. The semi-active suspensions
play the major part in damping lift and pitch oscillations and are not considered in the passive
system. In the active system, however, it is clear that these forces cannot be exactly equal to
the desired values, otherwise the virtual control cannot be achieved and lift and pitch would not
be improved.
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3.3 Constraints

For control allocation the constraints play a major role. As already mentioned, one of the benefits
of separating the control tasks into controller and control allocation is that constraints can be
considered and failures can be detected. It is important to choose the constraints appropriately
and check for degeneracies, otherwise the algorithm may not terminate. For this application,
the constraints are assumed to be simply box-constrained. There are no linear dependencies, so
degenerate solutions are excluded. For the simulation of the model in Chapter 1 the following
configuration of actuators is considered:

• Brakes: hub-fixed,

• Motors: body-fixed,

• semi-active suspensions.

This configuration is rather common, e.g. used in the Mercedes-Benz SLS AMG E-Cell, see
Figure 3.2.

Figure 3.2: Mercedes-Benz SLS AMG E-Cell taken from Hambrecht, Lukas:
“Mercedes lässt tief blicken” In: autobild.de on 12 March 2013, available at:
http://www.autobild.de/artikel/mercedes-sls-amg-e-cell-technik-2895646.html

(Accessed: 12 September 2013).

Each tire has one mechanical brake, one electric motor and one semi-active suspension. Since the
tires are grouped into front and rear tires there are only 6 actuators. One should keep in mind
that in reality these actuator groups can be again divided into right and front tires. The actuators
have different constraints which partly depend on the states of the model. These dependencies
do not complicate the control allocation since in every time step all states are known and a
new optimization problem is considered. Time and state dependencies, e.g. H = H(x, t), can
be considered without further changes in the implementation. The hub-fixed mechanical brakes
can only apply negative torque:

−TH,max < TH < 0,

where the maximum torque is given as TH,max = 2400 Nm. The electric motors may apply
positive and negative torques. The maximum torque depends on the power and velocity of the
motor as shown in Figure 3.3.
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Figure 3.3: Constraints for the motors TB.

In this example of application the power is P = 28 kW with a maximum attainable force
Fmax,abs = 600 Nm. The maximum force per velocity calculates as

Fmax,vel =
P

v
, (3.7)

Fmax = min(Fmax,abs, Fmax,vel), (3.8)

where v is the velocity of the vehicle. The constraints for semi-active suspensions are displayed
in Figure 3.4. Semi-active suspensions can only counteract to the lowering vehicle. The forces
depend on the velocity at the suspension ża. Downward movement implies negative velocity and
therefore positive force since compressed dampers may be counteracted. It is not possible to
enforce the downward movement by applying negative force since semi-active suspensions are
used.
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Once the design parameters and constraints are defined, the control allocation algorithms can
be implemented and simulated on the vehicle. The following sections describe shortly how these
algorithms are implemented on the model in Chapter 1.

3.4 Active Set Method

Active set methods achieve good results in automotive field and are consequently used for the
given problem set. The design parameters are Wv, Wu, udes and γ. The usage of Härkegard’s
MATLAB-Code is straightforward and results can easily be achieved. The sequential least
squares method (abbreviated by SLS) generates the exact solution to the optimization problem.
With the weighting factor γ chosen high enough the weighted least squares method (WLS) shows
equal results. The plots of the results are therefore combined and shown in one graph in the
next chapter.

3.4.1 Hotstart

Hotstart seems at first to be a really good extension of the active set algorithm. Even when the
maximum number of iterations is limited to one or two, the algorithm still achieves the goal of
damping pitch and lift while the deceleration is not delayed. These good results are shown in
the next chapter. Nevertheless hotstart can be a problem when constraints change a lot. This is
the case with semi-active suspensions. The constraints of control input for the rear semi-active
suspension Fa,r change a lot with the movement of the car. If the car does not move up or down
anymore, the minimum and maximum value for the forces are almost the same. In the algorithm
this control input causes trouble since it occupies a lot of iterations when saturating or freeing
the optimization variable frequently.
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3.4.2 Modified Active Set Method

Simulations show that the modified algorithm as described in Algorithm 4 for the given problem
set solves the optimization in a maximum of three iterations per time step. Termination is
guaranteed after 11 iterations, even when using fast-changing constraints like the semi-active
suspensions. If the constraints are limited even further, the algorithm needs more iterations
since more variables need to be freed in the optimization. If the maximum number of iterations
is limited to less than three, the algorithm does not yield satisfying results. Since the results of
the modified active set are identical to the ones obtained from SLS and WLS, additional plots
are omitted for the sake of brevity.

3.5 Dynamic Control Allocation

The brakes are considered as “slow” actuators for the simulation with time constants chosen as

tH = 0.03,

tB = 0,

tA = 0.

The transfer function is a first-order lag element:

G(s) =
1

1 + ti · s
.

The weighting matrices for the simulation are chosen as follows:

W1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , W2 =



wH 0 0 0 0 0
0 wH 0 0 0 0
0 0 wB 0 0 0
0 0 0 wB 0 0
0 0 0 0 wa 0
0 0 0 0 0 wa

 ,

with

wH = 10
log(j)

2
+1.5+ l

2 ,

wB = 1, wa = 1.

The calculation of the weighting factor wH yields cut-off-frequencies according to tH = j · 10l.
For this example j = 3 and l = −2 applies, thus wH = 5.4772. The eigenvalues of the resulting
filter are located between 0 and 1, i.e. the filter is stable:

λ =



0
0.9653
0.9380

0.5
0
0

 .

For the simulation the constraints of the actuators are neglected. Using the weighting matrices
above the results show the expected behaviour, i.e. the motors are used for high frequencies and
the brakes for lower frequencies. If the constraints are included, the weighting matrix W2 is only
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part of the optimization problem. The major task is still to achieve the virtual control v = Hu,
hence it is possible that weighting of the matrices W1 and W2 is neglected. It is important
to note that this dynamic control allocation offers a way to divide the actuators in high- and
low-frequency parts if and only if the virtual control v is achieved. It is not guaranteed that the
slow actuator actually reacts slowly in the simulation as long as v = Hu does not hold.

3.6 Second Validation Maneuver

One benefit of separating the control task into controller and control allocation is that it is
easier to handle actuator failures. Suppose the electric motors are applying negative torques
and thereby charge the batteries of the motor. If the batteries are fully charged and the electric
motors can no longer absorb energy, these actuators can no longer account for braking. Another
example is a motor failure. In the simulation the constraints of the motors are both set to
zero, i.e. the motors no longer work at all. To see the effects on lift and pitch, this is done at
t = 1.4 s which is 0.4 s after hitting the brake pedal. The simulation shows very good behaviour,
the brakes immediately take the part of the motors. There is no undesired change in lift and
pitch movement, the virtual control can be achieved without difficulty. This result of course is
expected since the optimization problem is solved every time step.

3.7 Comparison to other Quadratic Programming Algorithms

Several algorithms exist for solving quadratic programs. MATLAB offers the routine quadprog

with several options, e.g. “active-set” can be chosen in order to solve the program. Older versions
of MATLAB use the routine qpdantz which is implemented in C with an interface for MATLAB.
This routine is rather fast and is widely used, hence it is compared to the active set algorithm
by Härkegard.

3.7.1 Dantzig-Wolfe-Algorithm

The Dantzig-Wolfe algorithm is similar to the simplex method. It is used for quadratic program-
ming and is described in detail in [5]. The MATLAB routine qpdantz is the implementation of
this algorithm. For usage in the simulation, the optimization problem must be reformulated:

min
1

2
uTGu + fTu (3.9)

subject to

C̃u ≤ Ũ, u ≥ u, (3.10)

where

A =

[√
γWvH
Wu

]
, (3.11)

b =

[
−√γWvv
Wuudes

]
, (3.12)

f = bTA. (3.13)
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The Hessian matrix G must be positive definite:

Ã = ATA (3.14)

G =
1

2
(ÃÃT ). (3.15)

The constraints for the minima can be passed immediately while the constraints for the maxima
must be defined via C̃ and Ũ:

C̃ = Im, Ũ = u. (3.16)

The call u = qpdantz(G,f,C̃,Ũ,u,iter max) returns the solution for u. The results are
satisfying as long as the maximum number of iterations is sufficiently high.

3.7.2 qpOases

Several algorithms for solving constrained least squares problems are already available as code,
e.g. qpOases (see http://www.kuleuven.be/optec/software/qpOASES). qpOases is written in
C but offers an interface for MATLAB and has been tested on the given model. Although
C-code is very fast, the MATLAB-routine consumes more time than the active set methods by
Härkegard. The MATLAB-call is similar to the Dantzig-Wolfe-Algorithm:
qpOASES(G,f,u,u,u0,qp opts) where G and f are the same matrizes as defined above and
u0 is the starting point for the current time step. The maximum number of iterations can be
defined in qp opts. The results are satisfying but the computation time is higher than the active
set methods.

3.8 Two-Phase Algorithm

The velocity of the active system must be equal to the velocity of the passive system. It is
necessary to guarantee that the braking force Fx is always achieved exactly. The first approach
is to use the current algorithms with a large weighting factor for the third virtual control:

Wv =

1 0 0
0 1 0
0 0 106

 , (3.17)

which ensures that the error for Fx is minimized primarily. If the constraints are more stringent
and the iterations are limited strictly, the algorithm may be forced to stop at a suboptimal
solution. Suboptimal solutions do not guarantee that the virtual force Fx is achieved, hence
this approach is not satisfying. For this reason another algorithm has been implemented that
calculates the control inputs only for the correct deceleration in the first step. If there are
enough resources left to continue the computation, the second step is entered and the other two
virtual forces are considered. This modification shall be called the two-phase algorithm and is
outlined in algorithm 5. In the first phase the problem is reduced to ensure that the virtual
braking force Fx is always achieved, even if the algorithm terminates at a suboptimum. At first
only the brakes and the electric motors are considered for control allocation:

v∗ = Fx, (3.18)

u∗ =


TH,f

TH,r

TB,f

TB,r

 . (3.19)
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The problem reduces to only one virtual control and four control inputs for the actuators. The
optimization problem for this application can be solved optimally in two iterations. Note that
these two iterations take less computation time than two iterations with the standard approach
since the optimization problem becomes significantly smaller. During these two iterations the
algorithm must not be interrupted, otherwise it is not guaranteed that the optimal solution for u∗

is returned. If the power and maximum torque of the electric motors is chosen such that none of
the control inputs becomes saturated in the first iteration, there is no need for a second iteration
in the first phase. Accordingly, if the desired value for the control inputs udes is attainable at
all times, phase 1 only takes one iteration. In phase 2 the algorithm starts with the calculated
control input u∗ and working setW from phase 1 and 0 for the remaining variables for semi-active
suspensions Fa andWFa . In each iteration the results improve until the optimum is reached as in
the methods above. An interruption in phase 2 does not violate the deceleration Fx. The reason
why the original algorithm takes more iterations are the changing constraints of the semi-active
suspensions. Since these changes may keep the algorithm busy, it may happen that the remaining
control inputs are disregarded. The algorithm can only free one active constraint per iteration,
so very often the semi-active suspension constraints are set free or active. In the modified
algorithm with two phases, the important control inputs for deceleration are calculated in the
first step, then the “problematic” control inputs Fa are considered. Therefore it is guaranteed
that the deceleration is achieved, regardless of the optimality of the solution. An outline of this
modified algorithm in pseudo-code can be seen in Algorithm 5.
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Algorithm 5 2-Phase Active Set

—– PHASE I —–
for i = 1 to 2 do

solve

min‖A(u(i) + p)− b‖
pi = 0, i ∈ W

u ∈ R4, v ∈ R
where

A =

[√
γW ∗vhT

W∗
u

]
, b =

[√
γW ∗v v

∗

W∗
uu
∗
des

]
,

if u(i+1) = u(i) + p is feasible then
compute Lagrangian multipliers λ
if λ > 0 then

Optimum found, go to PHASE II
else

Remove constraint with negative λi
end if

else
calculate Γ such that u(i+1) = u(i) + Γp is feasible
compute Lagrangian multipliers κ
add constraints with positive κi to working set

end if
end for

—– PHASE II —–
for i = 2 to maximum number of iterations do

solve

min‖A(u(i) + p)− b‖
pi = 0, i ∈ W

u ∈ R6, v ∈ R3

where

A =

[√
γWvH
Wu

]
, b =

[√
γWvv

Wuudes

]
.

continue as in Algorithm 4
end for
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Chapter 4

Results

This chapter presents the results of the different methods in the simulations explained in Chapter
3.

4.1 Sequential and Weighted Least Squares Algorithms

Figures 4.1 show that the sequential least squares (SLS) algorithm yields the same results as the
weighted least squares (WLS) algorithm. The only difference of the algorithms is the required
number of iterations: SLS takes approximately 2.4 iterations on average, while WLS only requires
1.05 iterations. The weighting matrices are chosen as Wv = I3, Wu = I6. The maximum number
of iterations is iter max = 100. The algorithm terminates at all times with the optimal solution.
Figure 4.1 shows the control inputs of the actuators. The constraints are illustrated by the black
and red lines. The desired control input udes is represented by the green line. This green line
is at the same time the control input of the passive system. The solution of the optimization
algorithms is u, which is represented by the blue dotted line. The power and maximum torque
of the electric motors are limited such that the desired value at t = 1 s can not be achieved by
the front motor. This choice is on purpose since it shows that the constraints are not violated
even though the desired value has not been reached. It is clear that the brakes and the rear
motors have to apply more torque in order to balance this error in virtual control. As soon as
the desired values can be reached, the control inputs set for these values. The constraints of the
semi-active suspensions vary strongly due to the fact that they depend on the pitch movement
of the vehicle. Nevertheless, the control inputs never exceed their constraints. In Figure 4.2
the virtual control is shown. The desired values can at all times be achieved. While the pitch
and lift factors are calculated by the controller the deceleration in Fx is the same as for the
passive system. At the step t = 1 s the constant deceleration starts. The resulting states are
presented in Figure 4.3. Lift z and pitch θ of the active system show much better behaviour,
the oscillations of these states are damped. Figure 4.4 shows the most important state of the
vehicle: the velocity. It is the same for both the passive and the active system. These results
show that while maintaining the deceleration lift and pitch can be improved significantly by the
WLS and SLS algorithms.
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Figure 4.1: Control inputs of actuators using SLS or WLS.
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Figure 4.2: Virtual control using SLS or WLS.
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Figure 4.3: Resulting states using SLS or WLS.
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ẋ
in

k
m
/h

passive
active

Figure 4.4: Velocity using SLS or WLS.
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4.1.1 Hotstart

Hotstart yields good results even when the number of iterations is limited to one. In this case,
the optimum might not be found exactly at all times. The suboptimum is only suboptimal
regarding the second objective function Wu(u−udes). Therefore, the suboptimum is very often
sufficient if only applied for a few time steps. At the sudden change of the desired variables,
i.e. at the onset of braking, only the suboptimum is reached. It takes approximately 10 time
steps (10 · 0.001s) to find the optimum of the entire optimization problem. Figures 4.5 - 4.8
show the results when using hotstart. The weighting matrices are simply Wv = I3, Wu = I6. In
order to demonstrate that the algortihm still yields adequate results, the maximum number of
iterations is limited to one. The control input for the actuators u may differ slightly from the
results without limitation for a few time steps, but the virtual control can be achieved sufficiently
and the states show satisfying behaviour.

4.1.2 Modified Active Set

As shown in Chapter 3, the modified algorithm yields the same results as the WLS or SLS
methods, but only takes at most 2m−1 iterations. For the problem at hand this means that for
the 6 actuators the maximum number of iterations iter max is guaranteed to be 2 · 6− 1 = 11
iterations. The design parameters are again chosen as Wv = I3, Wu = I6. The algorithm
shows exactly the same results as the other methods. The modified algorithm needs on average
more iterations than the WLS algorithm, but the maximum number of used iterations for the
modified algorithm is less than the maximum of the WLS method.

44



0 1 2 3

−2.000

−1.000

0

t in s

T
H
,f
in

N
m

umin
umax
udes
u

(a) u1

0 1 2 3

−2.000

−1.000

0

t in s

T
H
,r
in

N
m

(b) u2

0 1 2 3

0.−500

0

500

t in s

T
B
,f
in

N
m

(c) u3

0 1 2 3

0.−500

0

500

t in s

T
B
,r
in

N
m

(d) u4

0 1 2 3

0.−200

0

200

400

t in s

F
a
,f
in

N
m

(e) u5

0 1 2 3

0.−200

0

200

400

t in s

F
a
,r
in

N
m

(f) u6

Figure 4.5: Control inputs of actuators using hotstart.
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Figure 4.6: Virtual control using hotstart.
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Figure 4.7: States using hotstart.
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Figure 4.8: Velocity using hotstart.
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4.2 Dynamic Control Allocation

As discussed in the previous chapter, the dynamic control allocation (DCA) allows for parti-
tioning of frequency bandwitdh among the actuators. The weighting matrices for this example
are chosen as follows: Wv = I3, W1 = I6, and

W2 =



wH 0 0 0 0 0
0 wH 0 0 0 0
0 0 wB 0 0 0
0 0 0 wB 0 0
0 0 0 0 wa 0
0 0 0 0 0 wa

 ,

with

wH = 10
log(3)

2
+1.5+−2

2 = 5.4772,

wB = 1,

wa = 1.

These choices for the design parameters yield the frequency partition shown in Figure 4.9. The
time constant of the brakes is tH = 0.03, the corresponding cut-off frequency is

fH =
1

tH
=

1

0.03
= 33.33.
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Figure 4.9: Filtering behaviour of the Dynamic Control Allocation.

Without constraints the resulting control inputs in Figure 4.10 show the prioritization of the
“fast” motors and suspensions when braking starts: Since the brakes cannot react fast enough
when deceleration starts, other control inputs must take over their part. The motors are consid-
ered to be high-frequency components and apply quite high torques when the step occurs. The
semi-active suspensions also show different behaviour since constraints are neglected.
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Figure 4.10: Control inputs of actuators using DCA (no constraints).
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Figure 4.11: States using DCA.
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Figure 4.12: Velocity using DCA.
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4.3 Dantzig-Wolfe Algorithm

The Dantzig-Wolfe algorithm has also been simulated with the same choice of parameters, that is
Wv = I3, Wu = I6. Reducing the maximum number of iterations to three, the algorithm starts
having problems while the WLS method still operates as desired. If the maximum number
of iterations is large enough, this algorithm yields the same results as the active set meth-
ods. Methods similar to the simplex algorithm usually allow for the use of hotstart, while the
MATLAB-routine qpdantz does not offer the possibility for hotstart. In this simulation the
hotstart has not been implemented separately. The control inputs vary from the desired values
from the beginning which is very undesired. Nevertheless the virtual control and states can be
achieved sufficiently. Figure 4.13 shows the control inputs for the actuators which differ from
the optimal solution especially before the deceleration starts.
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Figure 4.13: Control inputs of actuators using qpdantz.
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4.4 Second Validation Maneuver

If the motors are defective or can no longer apply negative torque because the battery is fully
charged, the control inputs must be distributed accordingly. In the simulation the constraints
of the motors are simply set to zero at t = 1.4s. The parameters for the motors are

TB =

{
600 Nm, t < 1.4s
0 Nm, t ≥ 1.4s

The weighting matrices are again Wv = I3, Wu = I6 and the maximum number of iterations is
set to 50. Figure 4.14 shows the behaviour of the system for this test case.
The virtual control can not be achieved correctly as shown in Figure 4.15
Since the virtual control does not reach the desired values, the states differ from the optimal
solution, too. In Figure 4.16 and 4.17 the resulting states are presented. The results are
compared to the WLS method. Lift and pitch cannot be improved as well as with the WLS
method but are still much better than without control allocation. When motors are defective,
the most important task is to guarantee the deceleration. The velocity for the active system is
still the same, so these results are satisfactory.
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Figure 4.14: Control inputs of actuators when motors fail at t = 1.4 s.

55



0 1 2 3
−1.000

−500

0

t in s

F
z
in

N

vdes
v

(a) v1

0 1 2 3
0

1.000

2.000

t in s

T
y
in

N
m

(b) v2

0 1 2 3

−6.000

−4.000

−2.000

0

t in s

F
x
in

N

(c) v3

Figure 4.15: Virtual control when motors fail at t = 1.4 s.
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Figure 4.16: States when motors fail at t = 1.4 s.
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Figure 4.17: Velocity when motors fail at t = 1.4 s.
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4.5 Prioritization of Brake Force

Since the braking is the most important virtual force and may decide over life and death,
the braking distance must not be increased. First, WLS with hotstart has been tried with
prioritization of the braking force Fx in the weighting matrix Wv. In the second approach, the
two-phase algorithm presented in Chapter 3 is used. The control inputs have been limited even
more in order to show that the prioritization is still working. The design parameters have been
chosen as follows:

umin =
[
−4000 −4000 −300 −300 Fa,f,min Fa,r,min

]T
,

umax =
[
0 0 0 0 Fa,f,max Fa,r,max

]T
,

Wv =

1 0 0
0 1 0
0 0 1000

 , Wu = I6.

The maximum number of iterations is set to 2.

4.5.1 WLS with Hotstart

The prioritization of the third virtual control using WLS with hotstart yields good results.
Figure 4.18 shows the control inputs for the actuators. Although the constraints are more
binding, the algorithm still works satisfactorily.
Figure 4.19 shows that Fx can be achieved while the remaining virtual control variables are not
fulfilled. Again, the states in Figure 4.20 and 4.21 differ from the desired behaviour (labeled by
“WLS”) but still are improved in comparison to the passive system.
The prioritization of the third virtual control using WLS with hotstart works well. The problem
that arises is the usage of hotstart with the constraints of semi-active suspension. As already
discussed, hotstart may or may not yield good results depending on the choice of constraints.
Therefore the second approach via a two-phase algorithm is implemented and tested.
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Figure 4.18: Control inputs of actuators with prioritization of Fx using WLS with hotstart.
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Figure 4.19: Virtual control with prioritization of Fx using WLS with hotstart.
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Figure 4.20: States with prioritization of Fx using WLS with hotstart.
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Figure 4.21: Velocity with prioritization of Fx using WLS with hotstart.
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4.5.2 Two-Phase Active Set

For comparison the constraints and the weighting matrices are chosen as above:

umin =
[
−4000 −4000 −300 −300 Fa,f,min Fa,r,min

]T
,

umax =
[
0 0 0 0 Fa,f,max Fa,r,max

]T
,

Wv =

1 0 0
0 1 0
0 0 1000

 , Wu = I6.

In this example the algorithm stops after phase 1. For this application phase 1 takes two
iterations so the control inputs shown in Figure 4.22 are the resulting optimal control inputs of
phase 1. Note that although phase 1 takes two iterations, the iterations themselves are solved
faster than the original optimization problem. The semi-active suspension is not considered in
phase 1 and the corresponding control inputs are set to zero. The optimization without the
strongly changing constraints of the semi-active suspension is a quite simple problem and can
be solved easily. The two neglected virtual controls of course do not achieve their desired values
while Fx is achieved perfectly as shown in Figure 4.23.
Lift and pitch of the vehicle is almost the same as for the passive system since semi-active
suspensions are not used. The reason for the variance is that the passive system uses the
desired control inputs for the actuators as usual, constraints are not considered. The active
system considers the binding constraints for the motors and the static, desired values cannot be
achieved. Therefore the states - of course excluding the velocity - cannot be the same in this
example.
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Figure 4.22: Control inputs of actuators with prioritization of Fx using the 2-Phase-Algorithm.
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Figure 4.23: Virtual control with prioritization of Fx using the 2-Phase-Algorithm.

64



0 1 2 3
−15

−10

−5

0

t in s

z
in

m
m

passive
active

(a) x1

0 1 2 3

−40

−20

0

20

40

t in s

ż
in

m
m
/s

(b) x2

0 1 2 3

0.10

0.5

1

t in s

θ
in

◦

(c) x3

0 1 2 3

−2

0

2

4

t in s

θ̇
in

◦ /
s

(d) x4

Figure 4.24: States with prioritization of Fx using the 2-Phase-Algorithm.
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Figure 4.25: Velocity with prioritization of Fx using the 2-Phase-Algorithm.
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Chapter 5

Outlook and Conclusion

So far, the application of the modified active set methods show very satisfactory results. In
practice, however, additional problems arise and the already discussed methods may not be
sufficient. This chapter outlines some of these problems and ends with a conclusion of this
thesis.

5.1 Outlook

The methods that have been presented so far only handle the following constraints:

u ≤ u ≤ u. (5.1)

Position and rate constraints can be considered, but the algorithms presented by Härkegard and
Schofield do not take linear dependencies of constraints into account. In practice, additional
constraints arise that must be considered.

5.1.1 Linear Dependencies

One example for a linear dependency is the maximum braking force that can be achieved, i.e.

Fx,max ≤ µFz, (5.2)

where Fx is the braking force in x-direction, i.e.

Fx,i = TH,i + TB,i, (5.3)

with i ∈ {f, r} for the front or rear wheels. µ is the tire-surface friction coefficient and Fz is the
force corresponding to the wheel load. Equation (5.2) states that the maximum braking force
Fx,max cannot take arbitrarily large numbers, but is limited by the slip of a tire on the road
and the wheel load, see [20]. For the active system the wheel load force Fz at time step k is
calculated by

Fz,i = Fstatic,i + Fsp,i + Fdamp,i + F
(k−1)
a,i + Fsusp,i. (5.4)

The static part Fstatic,i is defined as

Fstatic,f = mg
lr

lr + lf
, (5.5)

Fstatic,r = mg
lf

lr + lf
. (5.6)
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The spring forces Fsp,i and damping forces Fdamp,ki read

Fsp,i = 2(ciz + ciliθ), (5.7)

Fdamp,i = 2(diż + diliθ̇). (5.8)

Fa,i corresponds to the force on the semi-active suspension calculated by the optimization in the
previous time step:

F
(k−1)
a,f = u

(k−1)
5 , (5.9)

F (k−1)
a,r = u

(k−1)
6 . (5.10)

The additional suspension force Fsusp,i is calculated as follows:

Fsusp,f = tan(ε1,f ) ·
T
(k−1)
H,f

r
+ tan(ε2,f ) ·

T
(k−1)
B,f

r
(5.11)

= tan(ε1,f ) · u(k−1)1 + tan(ε2,f ) · u(k−1)3 , (5.12)

Fsusp,r = tan(ε1,r) ·
T
(k−1)
H,r

r
+ tan(ε2,r) ·

T
(k−1)
B,r

r
(5.13)

= tan(ε1,r) · u(k−1)2 + tan(ε2,r) · u(k−1)4 . (5.14)

The constraints can be written as

Cu ≤ U, (5.15)

with

C =



I6
−I6

1 0 1 0 0 0
0 1 0 1 0 0
−1 0 −1 0 0 0
0 −1 0 −1 0 0

 , U =



umin

−umax

−µFz,f

−µFz,r

−µFz,f

−µFz,r

 . (5.16)

With these additional constraints the algorithms have to be adapted. The working set has to
be extended, a simplified calculation of the Lagrangian multipliers is no longer possible. The
code presented by Härkegard can no longer be used directly, since linear constraints must be
taken into account. Other methods for solving active set algorithms may be applied, but other
problems may arise (e.g. inverting matrices). For solving this new problem, a modification of
the problem in Chapter 3 has been made. The constraints can be rewritten as

0 = u1 + u3 − µFz,f, (5.17)

0 = u2 + u4 − µFz,r. (5.18)

New artificial control inputs are introduced:

u∗ =



TH,f

TH,r

TB,f

TB,r

Fa,f

Fa,r

u7
u8


. (5.19)
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The linear dependencies now read

0 = u1 + u3 − u7, (5.20)

0 = u2 + u4 − u8, (5.21)

with the new constraints

−µFz,f ≤ u7 ≤ µFz,f, (5.22)

−µFz,r ≤ u8 ≤ µFz,r. (5.23)

The new virtual forces are

v∗ =


Fz

Ty
Fx

0
0

 . (5.24)

The control effectiveness matrix H changes to

H∗ =


H 0

1 0 1 0 0 0 −1 0
0 1 0 1 0 0 0 −1

 . (5.25)

Other parameters such as the working set W, the desired control input udes, etc. have to be
adopted accordingly. One drawback of this approach is that the additional constraints are defined
by the control effectiveness matrix H. Constraints must always hold in the active set methods.
Virtual forces may not always be achieved and it is possible that the equations in (5.20) do
not hold when using this modification. In practice there holds Fx ≤ µFz, and it is impossible
that these additional constraints are violated. Therefore, the weighting of the artificial control
inputs u7, u8 is chosen rather high. Nevertheless, this approach is not satisfying. The additional
constraints may still be violated in the simulation while in practice this violation can never
happen. Another problem arises when using Schofield’s algorithm: the proof that the algorithm
terminates in 2m − 1 iterations does no longer hold. The algorithm uses all iterations possible
(defined by iter max) at some time steps. The algorithm was tested on the following settings:

Wv =


I3

103

103

 , Wu = I8.

The maximum number of iterations is set to 50. The road-tire friction factor was chosen as
µ = 0.4. The control inputs for the mechanical brakes and electric motors and the additional
constraints are shown in Figure 5.1. The control inputs do not violate the constraints because of
the high weighting factors for the artificial variables. In practice this problem must be considered
accordingly. Other methods and algorithms may be chosen to solve the problem.
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Figure 5.1: Control inputs of actuators with additional constraints.
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5.1.2 Nonlinear Constraints

Adding linear constraints already shows that there are limitations to the application of the
algorithms presented by Härkegard and Schofield. If the problem shall be extended to a vehicle
with lateral movement, the constraints become nonlinear according to Kamm’s circle (cf. [20]):√

F 2
x + F 2

y ≤ µFz. (5.26)

This equation states that if the velocity in x-direction is too high, the vehicle cannot move
according to the curve in x- AND y-direction. Using nonlinear constraints, the previously
mentioned methods can no longer be used. A nonlinear optimization problem arises that reads

min
x

f(x)

s. t. g(x) = 0 (5.27)

h(x) ≤ 0.

As described in [12], there are several approaches to nonlinear control allocation. One approach
of handling nonlinearities is sequential quadratic programming as presented in [21]. In sequential
quadratic programming, the objective function is quadratically approximated locally around
x(k). A new quadratic program arises where the constraints are linearized, too. The resulting
optimization problem reads

min
s

1

2
sTG(k)s + Of(x(k))T s

s. t. Ogi(x
(k))T s + gi(x

(k)) = 0 i = 1, ..., p (5.28)

Ohi(x
(k))T s + hi(x

(k)) ≤ 0 i = 1, ..., q

with the search direction s. G(k) is an approximation of the Hessian matrix of the objective
function f(x) at x(k). The matrix G(k) > 0 is symmetric and is typically updated after each
iteration, using e.g. the BFGS formula, cf. [6]. The new iterate x(k+1) is found by

x(k+1) = x(k) + αksk, (5.29)

where sk is the solution of (5.28) at step k that can be solved by the common methods solving
quadratic programs. αk can be found by a line search using a penalty function, e.g. the L1 exact
penalty function

Φ(x, σ) = f(x) + σ

(
p∑
i

|gi(x)|+
q∑
i

max{0, hi(x)}
)
, (5.30)

or using a barrier function, e.g. the logarithmic barrier function

Φ(x, τ) = f(x)− τ
p∑
i

ln(−hi(x)), (5.31)

which should be minimized. The algorithm continues until some termination criterium is fulfilled.
The quadratic program is strictly convex and therefore has a solution if the Hessian matrix H(k)

is positive definite. Note that SQP methods only find local solutions to nonlinear programs,
cf. [2]. If the linearized constraints are infeasible, there exists no solution at all. The choice of
operating point plays an important role. If x(k) is too remote from the optimum the standard
algorithm may fail to converge. Clearly, the termination of the algorithm depends on many
factors. Further details on sequential quadratic programming are discussed in [6].
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5.1.3 Nonlinear Control Allocation

Nonlinear control allocation formulations are necessary for example if a time-varying lineariza-
tion does not provide accurate approximations. The objective function as well as the constraints
may be nonlinear. If the linear effector model

v = H(x, t) · u, (5.32)

is used and the control allocation problem is viewed as static, then H(x, t) is clearly defined
for each time step, so the same methods for linear control allocation already mentioned can be
applied. If the control effectiveness matrix H(x, t) may become rank-deficient, i.e. it has no
longer full rank for example due to the use of sine or cosine functions, the problem becomes
underactuated and the system may no longer be controllable, see [13]. In [13] a new optimization
problem is defined, which makes the control allocation more robust and avoids near-singular
configurations. For the problem at hand this case of singularity does not occurr, the angles
cannot become so small that singularity avoidance is necessary.
If the effector model is nonlinear, i.e.

v = h(x, t,u), (5.33)

there also exist several approaches for solving the problem, as summarized in [12].
Some other nonlinear methods are

• Piece-wise Linear Control Allocation (MILP)

• Lyapunov-Design

• Adaptive Dynamic Control Allocation (tire-road friction estimation)

• Direct Nonlinear Allocation.

It is impossible to provide a general approach to nonlinear control allocation, the choice strongly
depends on the application.

5.2 Conclusion

Summarizing this work, control allocation algorithms have been discussed and implemented on
a simplified model of a road vehicle. The lift and pitch motions of the vehicle can be improved
significantly compared to the passive system while considering constraints of the actuators.
Active set algorithms are widely used in automotive applications and have been confirmed to
yield very robust and appropriate results. The following active set methods have been studied
in more detail:

• Härkegard’s algorithm

• Schofield’s algorithm

• 2-Phase algorithm.

Härkegard’s algorithm shows very adequate results. The drawback of this algorithm, which is the
exponential computational effort in the worst case, can be eliminated by Schofield’s modification,
ensuring termination after at most (2m−1) iterations. The braking distance of the passive system
must not be increased and the corresponding virtual force Fx can be prioritized accordingly.
However, it is desirable to guarantee that the braking force is achieved at all times. Therefore,
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an algorithm consisting of two phases has been implemented. This algorithm considers lift and
pitch forces only if the braking force is achieved properly. Additionally, linear dependencies have
been studied. In order to avoid a violation of these constraints, further work on the computation
of the active set methods is necessary.
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