
Locally context-sensitive Shape
Grammars

Markus Eger

Locally context-sensitive Shape Grammars

Master’s Thesis

at

Graz University of Technology

submitted by

Markus Eger

Institute for Computer Graphics and Knowledge Visualization (CGV),
Graz University of Technology

A-8010 Graz, Austria

23 May 2013

© Copyright 2013 by Markus Eger

Advisor: Dipl.-Inform. Dr.-Ing. Univ.-Doz. Sven Havemann

Lokal Kontext-sensitive Shapegrammatiken

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Markus Eger

Institut für Computergrafik und Wissensvisualisierung (CGV),
Technische Universität Graz

A-8010 Graz

23. Mai 2013

© Copyright 2013, Markus Eger

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Dipl.-Inform. Dr.-Ing. Univ.-Doz. Sven Havemann

Abstract

Shape grammars allow simple modeling of complex structures by providing a small set of rules from
which the structures are generated. This allows the fast creation of a variety of similar, yet distinct
models. However, modeling interconnections within these structures requires an expressiveness akin to
unrestricted formal grammars, which is hard to implement for 3D structures. Furthermore, this approach
potentially introduces additional interactions which users might not expect.

In this thesis, a way that mitigates both of these drawbacks is presented by extending the shape grammar
formalism with local sub-rules, which can take context into account and therefore model interconnec-
tions. By keeping these rules local to parts of the grammar, they are easy to evaluate and provide users
with additional expressiveness while preventing unforeseen side-effects.

To demonstrate the feasibility of this approach several examples are presented. These range from simple
tile arrangements, which are already hard to describe using only context-free Shape Grammars, to a fully
detailed model of the Eiffel Tower, down to the individual rivets.

Kurzfassung

Shapegrammatiken erlauben das einfache Modellieren von komplexen Strukturen mit einer geringen An-
zahl von Regeln. Dadurch wird die schnelle Generierung von ähnlichen, jedoch trotzdem unterschied-
lichen Modellen ermöglicht. Sobald die Strukturen jedoch in sich verbunden sind, benötigt man eine
Ausdrucksstärke die mit der von uneingeschränkten formalen Grammatiken vergleichbar ist, und welche
für 3D Modelle nur schwer zu implementieren ist. Außerdem entstehen durch diesen Ansatz potentiell
vom Benutzer unerwartete Interaktionen.

In dieser Diplomarbeit wird eine Methode vorgestellt, die diese beiden Nachteile reduziert, indem der
Shapegrammatik-Formalismus um lokale Unterregeln erweitert wird, die Kontext in Betracht ziehen
können, und daher Verbindungen innerhalb des Modells abbilden können. Da die Anwendung dieser
Regeln lokal auf Teile der Grammatik beschränkt wird, wird deren Auswertung erleichtert und dem Be-
nutzer eine zusätzliche Ausdrucksstärke zur Verfügung gestellt, die aber unvorhergesehene Seiteneffekte
trotzdem minimiert.

Um die Anwendbarkeit dieses Ansatzes zu demonstrieren, werden einige Beispiele vorgestellt. Diese rei-
chen von einfachen Fliesenanordnungen, die aber mit kontext-freien Shapegrammatiken bereits schwer
zu modellieren sind, bis hin zu einem detaillierten Modells des Eiffelturms, der bis zu den einzelnen
Nieten modelliert wurde.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Place Date Signature

Eidesstattliche Erklrung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbststndig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Preface

Writing a thesis is a major undertaking, and this one was no exception. The last one and a half years of
my life were strongly influenced by bringing the Eiffel Tower to ”life”, but I would not have been able
to achieve this without the supervision of Dr. Havemann, and I’m grateful for his patience and guidance.
The other people at CGV, especially Ulrich Krispel, Wolfgang Thaller and Rene Zmugg, also have my
gratitude for discussing ideas with me and showing me how to work with the existing implementation.

Of course, the help from professionals is only half the story. The other half is the ongoing support
from my family, who supported me through all my studies. I also have to thank my friends, whom I had
to neglect more often than I would have liked to get more work done, but they were always understanding
and supportive. This thesis wouldn’t have been possible without all of them.

xiii

Contents

Preface xiii

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Structure of this Document . 2

2 Related Work 3
2.1 Shape Grammars . 3

2.1.1 Split Grammars . 6
2.1.2 Modeling Interconnected Structures . 6
2.1.3 Applications of Shape Grammars . 7
2.1.4 Procedural Modeling without Shape Grammars 8

2.2 Generative Modeling Language . 9
2.2.1 GML Execution . 9
2.2.2 GML Example . 9
2.2.3 Dictionary Stacks . 11
2.2.4 Convex Polyhedra . 11
2.2.5 Modeling Environment . 12

2.3 Split Grammars in GML . 12
2.3.1 Representing Grammar Rules in GML Code . 13
2.3.2 Simple Example: Cube Skeleton Grammar in GML 14
2.3.3 Limitations of the GML Split Grammar Implementation 15

3 Extending Shape Grammars with Context-Sensitive Sub-Rules 17
3.1 Approaching the solution . 17

3.1.1 Approach 1: Using 3D Space as ”Storage Container” 17
3.1.2 Approach 2: Defining and Using Attaching Points 18
3.1.3 Approach 3: Exchanging Information between Non-Terminal Symbols 18
3.1.4 Approach 4: Using Optimization Algorithms on Split Parameters 19
3.1.5 Towards Context-Sensitive Sub-Rules . 20

i

3.2 Context-Sensitive Sub-Rules . 21
3.2.1 Definition . 21
3.2.2 Evaluation of the Sub-Rules . 22

3.3 Extended Grammar Operations . 22
3.3.1 List of Grammar Operations . 23
3.3.2 Variable Number of Result Scopes . 24
3.3.3 Combining Grammar Operations . 25
3.3.4 Extending the Set of Grammar Operations . 25

3.4 Scope Parameters . 25
3.4.1 Defining Scope Parameters . 25
3.4.2 Scope Parameter Inheritance . 26
3.4.3 Scope-Local Coordinate Systems . 26
3.4.4 Inheriting from Multiple Scopes . 26
3.4.5 Semantic Level-of-Detail . 27

3.5 Nondeterminism in the Evaluation of the Grammar . 27
3.6 Substructure Interfaces using Labeled Non-Terminal Symbols 27

4 Implementation 29
4.1 Extensions to the Split Grammar Implementation . 29

4.1.1 Radial Split . 29
4.1.2 Scope-Local Coordinate Systems . 30

4.2 Context-Sensitive Sub-Rules . 31
4.2.1 Defining Rule Context . 31
4.2.2 Setting Scope Labels . 32
4.2.3 Implementing Lazy Evaluation of the Grammar 32
4.2.4 Scope Selection and Sub-Rules . 32

4.3 Grammar Operations . 33
4.3.1 List of Added Grammar Operations . 33

4.4 Scope Parameters . 45
4.4.1 Setting and Getting Scope Parameter Values . 45
4.4.2 Scope Parameter Inheritance . 45

5 Example Models 47
5.1 Simple Examples . 47

5.1.1 Grid Tiles with Connections . 47
5.1.2 Wooden Planks with Nails . 48
5.1.3 Grid Spanning Multiple Separate Areas . 49
5.1.4 Contour Example - Convexify . 52
5.1.5 Contour Example - Decorate . 52

5.2 Eiffel Tower . 54
5.2.1 General Structure . 54
5.2.2 Single Leg Interface . 54
5.2.3 Support Beams with Lattice Structure . 55

ii

5.2.4 Connecting Bars with Rivets . 56

5.2.5 Placing Arches . 56

5.2.6 Lower Platform . 57

5.2.7 Higher Platform Support Structure . 58

5.2.8 Common Grid in Top Part . 59

5.2.9 Campanile . 59

5.2.10 Evaluation of the Model . 60

5.2.11 Eiffel Tower Variations . 62

5.2.12 Level-of-Detail . 62

6 Conclusion 65
6.1 Summary . 65

6.2 Limitations . 65

6.3 Future work . 66

iii

iv

List of Figures

2.1 A simple shape grammar definition . 4

2.2 Shape grammar derivation . 4

2.3 A more complex shape . 5

2.4 The subshape problem . 5

2.5 A support grid of the Eiffel Tower . 7

2.6 The GML Studio IDE . 12

2.7 Evaluation of the cube skeleton grammar . 15

2.8 Tree vs. semi-lattice . 16

3.1 Connecting columns on a landscape . 18

3.2 Message passing example . 19

3.3 Optimizing split parameters . 20

3.4 A support grid of the Eiffel Tower . 21

4.1 Result of a radial split . 31

4.2 Result of the connect-convex grammar operation 34

4.3 Result of the connect-union grammar operation 36

4.4 Result of the connect-intersection grammar operation 37

4.5 Result of the connect-intersection grammar operation 38

4.6 Result of the extend-infinite grammar operation 39

4.7 Result of the extend-scope grammar operation . 40

4.8 Result of the connect-rod grammar operation . 41

4.9 The problem of coincident planes . 42

4.10 ”Find contour” example . 43

4.11 Finding contours in vertices with valence greater than 2 44

4.12 ”Convexify” example . 46

5.1 Cell grid example . 48

5.2 Planks connected with nails . 50

5.3 Multiple aligned grids . 51

5.4 Fitting an aligned grid into holes between turnstile grid cells 53

5.5 Decorating a contour outline . 53

5.6 The Eiffel Tower model . 54

5.7 Interface of a single leg of the Eiffel Tower . 55

v

5.8 Main support beams with lattice structure . 56

5.9 Rivets for Eiffel Tower connections . 57

5.10 One of the decorative arches of the Eiffel Tower, also note the lower platform, and the
grid that connects the arches with the lower platform 57

5.11 The lower platform of the Eiffel Tower . 58

5.12 The supporting structure for the higher platform . 58

5.13 Shared grid between the top parts of the Eiffel Tower 59

5.14 The campanile on top of the Eiffel Tower . 59

5.15 Comparison of the Eiffel Tower model with a blue print and a photograph 60

5.16 Comparison of the Eiffel Tower model with a blue prints of a pillar part 60

5.17 Comparison of the Eiffel Tower model with a photograph from below 61

5.18 Variants of the Eiffel Tower . 63

5.19 The different levels of detail of the Eiffel Tower . 64

vi

List of Tables

5.1 Summary of required parameters for the leg . 56

vii

viii

Chapter 1

Introduction

The creation of 3D models for the use in virtual environments has become a more and more important

task in recent years due to both the increasing size of these environments and the required level of detail.

On the other hand, the manual creation of such models by the use of 3D modeling tools like Maya [4]

or 3DS Max [3] has not decreased as much in complexity and effort. This means, the traditional ap-

proach of manual modeling does not scale well to the current and especially future requirements. As an

alternative, procedural modeling allows the creation of detailed models, which can then be used in more

ways than models created with traditional tools, for example when different levels of detail are needed,

or only parts of the model are required. It is also possible to create variations of a model easily, for ex-

ample to place multiple similiar houses in a city, without requiring to have each one modeled individually.

Several different systems for procedural modeling have emerged over the years, for example L-Systems,

which model the organic growth of plants, or shape grammars, which are able to produce complex

shapes by simple replacement rules. A specialization of shape grammars, named split grammars, operate

on named scopes, splitting them into sub-scopes and continuing on these sub-scopes. This recursive

”split-and-process” approach, which in essence makes the grammar context-free, solves the complexities

in the evaluation of general shape grammars, but also puts restrictions on the expressibility on them.

Since all sub-scopes are processed independently from each other, different parts of the model, once

split, have no way of communicating with each other any more. However, real, complex structures re-

quire interconnections between model parts, starting from rivets to hold parts together to wider spanning

connections like bridges. There are a few approches to add restricted forms of context-sensitivity to split

grammars, but since they are either mostly concerned with the prevention of occlusion, like CGAShape

[33], or only provide the ability to add connections while ignoring other possibilities context-sensitivity

could provide, like described in [26], there is still room for improvement.

This thesis describes a new approach to the problem, by adding true context-sensitivity to split gram-

mars, but restricting it to subtrees and logical rather than geometric connections. This solves issues with

the complexity of the evaluation and use, while still providing much greater expressiveness.

1

1.1 Structure of this Document

Chapter 2 gives an overview over the rich history of shape grammars, describes the recently introduced

split grammars and discusses various implementations. The implementation basis of this thesis, a split

grammar implementation written in the Generative Modeling Language (GML) is also described.

In chapter 3 the extension to split grammars is presented, which introduces context-sensitive sub-rules,

and allows the modeling of interconnections between sub-structures. The extended semantics are de-

scribed and further implications of this extension are also discussed.

Chapter 4 presents the actual implementation of this extension.

To demonstrate that the presented approach is actually capable of modeling complex structures, chapter

5, shows several example structures modeled with the new approach. The highlight of this demonstration

is a detailed model of the Eiffel Tower, down to the individual rivets. Additionally, a few variations of

the Eiffel Tower are shown.

Finally, chapter 6 discusses the limitations this new approach still has and what further steps could

be taken to overcome them.

2

Chapter 2

Related Work

2.1 Shape Grammars

Shape grammars were introduced by George Stiny and James Gips in 1971 [43], and are related to formal

grammars for languages as described by Noam Chomsky [9]. They consist of a set of terminal symbols,

a set of non-terminal symbols, a set of replacement rules, and a start shape, also called ”seed shape” in

the literature [41]. Non-terminal and terminal symbols all consist of shapes, which were defined as a

finite set of straight lines in the 2D plane in the original formulation, but the mechanism works equally

well for higher dimensions and non-straight lines.. Each rule consists of a left-hand side and a right-hand

side, where the left-hand side is any combination of elements of the set of terminal-symbols and the set

of non-terminal symbols. Figures 2.1 to 2.3 demonstrate a simple shape grammar. The application of the

grammar then matches all rules’ left-hand sides against all sub-shapes, taking any necessary geometric

transformations into account and if a match is found, it is replaced by the corresponding right-hand side,

which is also transformed in the same way. This application is then repeated on the new shape until no

more non-terminal symbols are present. In the seminal paper, the evaluation was actually performed by

drawing the shapes and performing replacements for the next drawing by hand [15]. The first computer

program to evaluate shape grammars, written by James Gips in 1975, ignored the problem of finding

matching emerging sub-shapes. Using the non-terminal symbols as markers, the derivation process can

be influenced to a great extent. Rule-sets which differ only in these markers can result in quite different

shape languages [40].

After that, shape grammars have been extended in several ways. One such extension has been to al-

low rules to be parameterized, resulting in rules schemas, from which concrete rules can be obtained

by assigning values to the free variables [41]. The general problem of matching emerging sub-shapes

is computationally hard. This problem is show in figure 2.4. Therefore, many shape grammar imple-

mentations opt to implement it only partially or not at all, leading to alternative formulations with re-

stricted functionality, like set-based grammars [30]. To mitigate this problem, research into the necessary

data structures and algorithms to solve the sub-shape problem was performed by Ramesh Krishnamurti

[27], [28] resulting in a shape grammar interpreter with subshape detection for 2D shapes [29]. As the

3

Terminal symbol:

Nonterminal symbol:

Rules:

Seed shape

Figure 2.1: The definition of a simple shape grammar, consisting of only one terminal and one
non-terminal symbol. The three rules can only apply to non-terminal symbols. The
”dot” is used to provide a ”marker” for non-terminal symbols.

Figure 2.2: Two different derivations using the same shape grammar. In the first, the first rule is ap-
plied, resulting in two new non-terminal symbols, to which the first rule is then applied
again. By applying the third rule to all non-terminals then terminates derivation. The
second example uses the second rule twice instead, resulting in a noticeably different
shape.

sub-shape problem is even harder for three-dimensional shapes, none of the 3D shape grammar imple-

mentation surveyed in [15] fully supports arbitrary emerging sub-shapes. It took until 2004 until such an

interpreter was finally implemented [7], which also supports curved line shapes, but it relies on user input

for parameterized rules making its use for complex structures difficult. A step in a different direction was

taken with the introduction of plit grammars, described in more detail below. Numerous other extensions

have been proposed over the years, like colors [25] or weights [42], which amount to assigning different

4

Figure 2.3: Another sample element of the shapes generated by the same shape grammar.

attributes to shapes.

In [15] Gips raises the questions which of these extensions are actually useful, and which ones are

(a) An additional rule is added to the shape grammar example from
above

(b) After three applications of the third rule, a shape matching the left hand-side of the new
rule appears. However, it consists not only of the newly inserted part, but also of one
that was already there before. In fact, that other part is a terminal symbol and could so
far be ”ignored” for rule evaluation. The ”subshape problem” is how to keep track of all
these inserted shapes in combination with the newly inserted ones.

Figure 2.4: The subshape problem

even vital to make shape grammars as a whole useful for the industry. He also mentions several other

issues, including the already discussed difficulty of dealing with emerging sub-shapes. Another point he

raises is the question of usability, since most shape grammar systems require very detailed knowledge of

their innards to be used effectively, an opinion that is also shared by Terry Knight in [24]. In this paper,

5

Knight also discusses the problem of decidability for shape grammars with different restrictions on their

rules structure.

2.1.1 Split Grammars

Split Grammars were introduced in 2003 by Wonka et al. [48] as a specialization of shape grammars.

They operate on ”scopes”, which are labeled entities with an associated box as its geometry. A ”split” op-

eration is then defined as one that decomposes that box into several smaller boxes, thereby creating new

scopes. Each grammar rule can perform such a split into any number of pieces along one of the boxes

principal directions, resulting in a derivation tree of scopes and sub-scopes. Here, non-terminal symbols

are the named scopes, while terminal symbols replace a scope with actual geometry that is placed in 3D

space.

This approach has the advantage that emerging sub-shapes are not an issue, since the rules operate on

labels rather than on the shapes themselves. However, since each split is performed only on a single

scope, they are inherently context-free. For many tasks in architecture, this is not inherently a problem,

since the split-process often models how architects work quite naturally [32]. Müller et al. show how

they use CGA Shape grammar system, which is based on Split Grammars, to model a wide variety of

buildings for a cityscape [33]. Of particular note is their ability to take context into account, to prevent

windows from being placed where adjacent building parts are located, but this is limited to the special

cases of occlusion checks, and the ability to define snap lines, as to align features, like windows and

along global axes.

Another implementation, that also serves as the basis for this thesis, was presented by Havemann et

al, and integrates shape grammars with imperative modeling [18]. Instead of writing grammar rules in a

declarative fashion, they are directly encoded in an imperative fashion in a programming language. This

allows the use of the full power of the underlying programming language where necessary, while still

preserving the basic properties of shape grammars otherwise. In [19], this approach is also elaborated

upon by showing how the use of convex polyhedra makes modeling complex architecture more natural.

Section 2.3 describes this approach in more detail.

2.1.2 Modeling Interconnected Structures

As described above, split grammars are inherently context-free, which poses certain limitations on what

can be modeled. In man-made structures, interconnections happen naturally because the structural in-

tegrity of the structure requires nails, rivets or other kinds of connectors to be placed. Also, the con-

struction process itself lends to the separate construction of distinct parts that are connected at some later

point, like building a bridge between different buildings, or placing trolley wires over a street, which is

attached to the buildings. Another subtle type of connection exists when there is an alignment between

parts of the model, for example grid bars in distinct grids that are aligned. An example of this, as it occurs

in the Eiffel Tower, is shown in figure 2.5. In CGAShape, as described by Müller et al [33], there is some

support for context-awareness. Specifically, certain planes can be used as so-called ”snap lines”. This

6

Figure 2.5: A photograph of part of the Eiffel Tower (Released under CC-BY-SA 3.0 by Benh Lieu
Song) in which the support grid of one of the platforms of the Eiffel Tower is shown.
Note how the grid bars align over the distinct grids.

means, they can be stored at some point in the grammar, and re-used at another. For a number of use-

cases this already provides sufficient control over placement in otherwise unrelated parts of the model,

and does solve the problem of grid alignment. Since the application is automatic, it does not have to be

taken into account when modeling both sub-structures. However, at least one the parts has to be aware

of this connection, and has to provide the snap lines. It is therefore impossible to take two completed

models, put them together in the same scene and simply add snap-lines. Other types of interconnections,

like bridges are also not supported at all, unless they are modeled explicitely from the start.

Another approach to this problem is presented by Krecklau et al in their paper ”Procedural Modeling

of Interconnected Structures” [26]. It allows each sub-structure to define possible points of attachment

and then take these ”attaching points” of different structures and connect them using direct matching or

even geometric queries. The implementation works by putting the attachment points into arrays, that are

simply passed as additional parameters to the rules by reference. So, while the basic concept is sound,

and allows for a great degree of flexibility, it is not truely integrated with the theory of shape grammars. It

also does not solve the problem of aligning grids. The approach described in this thesis is strongly influ-

enced by the idea of attaching points, but integrates them with the general idea of shape grammars rather

than processing them separately, which results in additional possibilities like solving the grid alignment

problem.

2.1.3 Applications of Shape Grammars

There are several applications of shape grammars [6]. The first is called generation: By performing

the derivation a shape can be generated, and, if the derivation is non-deterministic, this may be used to

generate completely new shapes that just share their basic structure with others generated by the same

structure. One practical application of this is in the creation of computer games or other virtual environ-

ments [47], where creating diverse, yet similiar 3D models often consumes a large part of the budget.

Most research into shape grammars has been performed for this application, especially for the generation

of various building models, for example for Queen Anne houses [11], Palladian architecture [44] or mass

customized housing [10]. However, shape grammars have also been used to describe the structure of

7

paintings [23], coffee machines [1] or soft drink and shampoo bottles [7].

It is also possible to use shape grammars to parse a given shape and determine if it falls into the class

of shapes described by the given grammar, similiar to how a formal grammar can be used to parse a

sentence. This can, be used to classify shapes, or simply determine whether a given shape fulfills the

required properties. For example, in [45], the authors describe how they use shape grammar parsing via

reinforcement learning to segment a facade given a picture.

Another application of shape grammars involves their synthesis. Given a number of shapes, an algo-

rithm can determine a shape grammar that describes all these shapes. The resulting grammar can then be

used for generation and parsing as described above. Mathias et al describe how they use shape grammars,

complemented by Structure-from-Motion to reconstruct 3D buildings [31].

2.1.4 Procedural Modeling without Shape Grammars

Shape grammars are not the only generative system capable of generating complex structures. Several

other systems exist, but they either specialize in the creation of natural shapes, and are therefore usually

unsuited for the creation of man-made structures, or they are too general and complex to be used for

inverse modeling. This section shall give a short overview of the alternatives.

For landscape generation, the most commonly used approach are fractal noise generators, as described

in [14]. This base approach is then often refined to make the result look more realistic by eroding parts

to account for physical phenomena like rainfall erosion or material properties [34]. There has also been

research into how to incorporate rivers in the creation of heightmaps, both by starting with a river net-

work and creating mountain ridges based on them [21], and by placing rivers during the creation of the

heightmap based on where mountains are placed [5]. These approaches are clearly not applicable to

rigid building structures, since they focus on the creation of landscapes, which are fundamentally differ-

ent from man-made structures.

Another generative model are L-Systems. They are a rewriting system similiar to shape grammars but

instead of using shapes, they originally worked with strings of symbols instead, ignoring geometry. The

resulting string is then used for drawing, for example with turtle graphics [36]. Later extensions have

added geometry-awareness, which blurs the distinction between L-Systems and shape grammars. L-

Systems are particularily well suited for modeling the natural growth of plants, which is also the field

where they originated from [37]. There are, however, also applications of L-Systems for man-made

structures like cities [35]. While it is also possible to formulate these structures using shape grammars,

the simplicity of L-Systems gives them the advantage in this field, also allowing them to be used for

inverse procedural modeling more easily [39]. However, once building models grow more complex, or-

dinary L-Systems are no able suited to model them, and the more complex shape grammars are better

suited.

8

On the other end of the complexity scale reside shape description languages like the Generative Mod-

eling Language (GML), which is described in detail below, or simply using any programming language

to generate shapes. For example, the game ”.kkrieger” procedurally generates a full 3D level, several

models and complex textures with a 96 KiB executable written in C++ and x86 assembly [46]. However,

this code is highly specialized and can not easily be adapted, nor generated by inverse modeling tasks.

2.2 Generative Modeling Language

The Generative Modeling Language (GML) is a concatenative, stack-based language, which shares its

syntax almost entirely with Postscript, but contains operators for 3D shapes rather than for typesetting

[17]. It is therefore a language for the description of three-dimensional shapes, with a runtime environ-

ment consisting of several libraries for e.g. splines, convex polyhedra or integration with OpenSG. As

a programming language with very simple rules and almost no syntax, but including all these libraries

for shape representation, it is very well suited for encoding shape grammars. In fact, a split grammar

implementation in GML was already available and served as the implementation basis for this thesis.

This implementation is described in detail in section 2.3, but first a short overview of GML is given,

which is essential for understanding the implementation.

2.2.1 GML Execution

A GML program consists of a stream of tokens, which are either data or operator names. Execution

consumes tokens from this stream and performs an action that depends on their type. Data is pushed on

an operand stack, while names are looked up in a dictionary mapping from names to arbitrary objects and

the found value is then executed. These values may be functions which can then consume values from

the stack and/or push new ones. The token ”[” is pushed onto the stack like any literal, while the token

”]” pops values from the stack until a ”[” is found, and pushes an array containing all popped values.

The tokens ”{” and ”}” proceed in the same way, except that they result in a function (an ”executable

array”). Tokens starting with a slash are interpreted as literal names and simply pushed onto the stack.

The function ”def” expects a literal name and an arbitrary object on the stack and then adds that object

under the given name to the dictionary. The ”dictionary” itself is actually a stack of dictionaries, onto

which a new one can be pushed with ”begin” and the top one can be popped with ”end”. A name

lookup then starts with the top-most dictionary on this dictionary stack, and if the name being looked for

is not found, the one below is searched. Search proceeds downwards the dictionary stack until the name

is found, or the bottom is reached, in which case a NameError is emitted. By pushing new dictionaries

onto the stack, it is possible to provide scopes for names. This name lookup in dictionary stacks is a

central point in the evaluation of the grammar, where non-terminal symbols are associated with names

in the GML implementation. A more detailed description of GML can be found on the GML homepage

[12], which also contains a wiki with a reference for all built-in operators [13]. Only the features relevant

to this thesis will be elaborated upon here.

2.2.2 GML Example

9

1 /f 1 def

2 dict begin

3 /f
4 { 2 add }
5 def

6 3 f

7 end

8 3 f

Execution proceeds as follows:

• Line 1 first pushes the name f on the operand stack, followed by the value 1. Then, the operator

def pops both and adds an entry for the name f with the value 1 to the default dictionary

• Line 2 then creates a new, empty dictionary on the operand stack, which is consumed by the

begin operator, which pushes it on the dictionary stack

• Line 3 simply pushes the name f on the operand stack

• Line 4 creates an executable array consisting of the tokens 2 and add on the operand stack. When a

{ is encountered, the interpreter is put into a so-called ”deferred” mode, where it does not interpret

subsequent tokens until the executable array is completed. Otherwise, the add operator would be

looked up and executed immediately, which is undesired. Only when the executable array is finally

executed, interpretation proceeds normally.

• Line 5 then takes the name f pushed in line 3 and the executable array pushed in line 4 from

the operand stack, and puts them in the top-most dictionary of the dictionary stack. Since line 2

pushed a new dictionary, the entry defined in line 1 is not ”lost”.

• Line 6 first pushes the value 3 on the stack, then the name f is looked up in the topmost dictionary

on the dictionary stack. Since it does contain an entry for that name, the value associated with it

is executed. This value is the executable array from line 4. To execute the array, its tokens are

executed in order, which means that first 2 is pushed on the operand stack, and then the operator

add is executed. This built-in operator takes the top two values from the operand stack, in this

case 2 and 3 and pushes their sum, in this case 5.

• Line 7 simply discards the top dictionary from the dictionary stack.

• Line 8, finally, pushes 3 on the operand stack again, and then performs a lookup for the name

f. Since the dictionary that contained the function was just discarded, the value that is found is

actually the one defined in line 1, which is 1 and therefore simply pushed on the operand stack.

• In the end, the operand stack contains, from bottom to top, the values 5, 3 and 1.

10

2.2.3 Dictionary Stacks

A dictionary stack, as used by GML for name lookups, can also be used in a more general setting, since

every inheritance relation for named values follows this pattern. For example, the derived classes in

object-oriented programming languages can override names defined by their parent class, but if they do

not, the one defined in the parent class is used. A similiar situation occurs in the derivation of shape

grammars, where each sub-scope will inherit properties of its parent scope.

GML provides dictionary stacks also as actual objects that can be created and used. A new dictionary

stack can be created with dictstack, and dictionaries pushed to and popped from it with dictstack-begin

and dictstack-end. When a name is looked up in a dictionary stack object, it is first looked up in

the topmost dictionary, then, if it is not found there, in the one right below and so on, analogous to the

interpreter’s dictionary stack. A dictionary stack object can also be pushed onto the interpreter’s dictio-

nary stack, and then behaves like all its contained dictionaries had been pushed in order, except it can

also be popped again as a single entity. One useful property of dictionary stacks is that they refer to

the contained dictionaries by reference, therefore it is possible to have the same dictionary contained in

multiple dictionary stacks. This leads to a useful pattern to implement ”inheritance”: The base object is

a dictionary stack with a single dictionary. The derived object is a dictionary stack, too, that contains a

reference to the dictionary in the parent’s dictionary stack, and a new dictionary on top of it. This allows

the derived object to define its own values for any attribute, or simply use the one of the parent.

2.2.4 Convex Polyhedra

As noted above, split grammars originally operated on box-shaped scopes, which limited their express-

ibility. It is, however, straightforward to extend the principle to more general shapes, like convex poly-

hedra. Every split operation on a convex polyhedron that uses planes as splitters results in more convex

polyhedra. Since convex polyhedra can be represented compactly they are an ideal choice for the use in

shape grammars.

The GML runtime environment contains a library of functions for the manipulation of convex poly-

hedra. It represents a convex polyhedron as the intersection of any number of halfspaces, each of which

is represented by a directed plane. To avoid numerical problems with floating point numbers, planes

are actually represented in integer coordinates. For this, the three-dimensional space is covered with a

three-dimensional grid, where each grid node can be represented in integer coordinates. A plane is then

described as a node plus a normal vector in that node. The actual size and the center of the grid can be

set up with the function cp-setupgrid.

One subtely to note with this representation is that a point in three-dimensional space can be repre-

sented as the intersection of three planes. However, since planes can also intersect in locations that are

not aligned with grid points. This means that not every point that can be obtained as the intersection

of three planes can also be represented exactly in integer coordinates. To preserve accuracy, points are

therefor represented using three planes where necessary. However, this means, that given two points rep-

11

resented as the intersection of three planes each, it is not always possible to represent a plane on which

both of these points lie. Care must therefore be taken to only use the planes that already exist if accuracy

is desired.

2.2.5 Modeling Environment

Of course it is possible to write GML programs in a simple text editor and then execute them a standalone

interpreter, but a text editor is not the ideal development environment for 3D modeling. In fact, the

IDE that was used, GML Studio, consists of two windows: One for editing text and a 3D viewer that

immediately shows the results of any change that is made. This approach allows a fast development

cycle, and immediate correction of potential problems.

Figure 2.6: The GML Studio IDE

2.3 Split Grammars in GML

As described above, an implementation of Split Grammars was the basis for this thesis. It is implemented

in GML, and each grammar rule is also represented by a GML function. To apply a rule therefore means

to call the corresponding function, which means the ”grammar tree” will be represented by the call tree.

A rule will state how to split the current scope and then call other rules, or terminal symbols. The two

main terminal symbols, used as leaves of the grammar tree, are terminal-fill, to place a convex

polyhedra at the scopes location, and terminal-void to avoid that. The short-hand names F and V

are also defined for terminal-fill, or terminal-void, respectively.

Evaluation works as follows: The system maintains a stack of scopes, where the top of the stack is

the current scope that all rules operate on. At the beginning a single scope, representing the seed scope

is pushed onto that stack. Each split-operation contained in the grammar rules then simply takes the top

of the stack, splits it into several new scopes and pushes those onto the scope stack again. These scopes

are then operated on by the rules and terminal symbols called by the currently executed rule. Rules pro-

12

ceed in the same manner recursively, but when a terminal symbol is encountered, the top of the stack is

consumed by it.

Scopes are represented as simple dictionaries, and each sub-scope inherits all entries from its parent,

but may modify them subsequently. One important set of parameters of each scope is its coordinate

system. By having it local to the scope, the same sub-structure may be built with the same rules, even if

the scopes to which they are to be applied have different orientations.

The basic grammar operation is called split-interval. It takes an array of real numbers and an

arbitrary direction as parameters and splits the current scope along that direction into as many sub-scopes

as the array has elements. For each array entry that is positive, the size of the created sub-scope in the

given direction is chosen to be that value, while negative values are used for relative splits. This works

as follows: First, the width of the parent scope in the given direction is calculated, and all absolute sizes

are subtracted from that. Then the remainder is divided by the sum of the relative sizes, which gives the

size for one ”unit” of relative size. Then, for each sub-scope that shall have relative size, that unit size

is multiplied with the the given relative size to get the absolute size. This means, for example, that the

interval [-1 -1 -1] will split a scope into three equally sized pieces, while [-1 1 -1] will

split it into one part of absolute width 1 in the middle, and two equally sized parts on either side.

2.3.1 Representing Grammar Rules in GML Code

Each grammar rule is encoded as a GML function. This function is named like the non-terminal symbol

on the left hand-side of the rule, performs the necessary split operation and then calls the necessary other

non-terminal and terminal symbols. This means that evaluation is always deterministic, since only the

function which is called for a particular non-terminal symbol is uniquely identified.

A grammar rule can be written as:

L →R [fn]

Where L is a single non-terminal symbol, fn describes the grammar operation to be performed, and

R is a number of terminal and non-terminal symbols corresponding to the number of result scopes of

the grammar function. For example, a rule to perform a split in X-direction on a non-terminal symbol

named M , resulting in three pieces, one empty space with width 1.0 in the middle and the others filled

and equally distributed over the remaining width in X-direction would be written as:

M →F V F [split-interval([−1, 1,−1], X)]

In GML, the same would be achieved by creating a function named M , that performs the split and calls

the appropiate terminal symbols:

1 /M {
2 [−1 1 −1]
3 CPX

13

4 split−interval
5 F V F

6 } def

Note that CPX refers to the X-direction of the current scope. To use the global X-direction, WPX would

have to be used instead.

Of course, to use the grammar, a seed scope has to be provided and the correct start rule be called.

This works by calling the scope-box function, that expects two opposing corners of a box and a mate-

rial number on the stack and pushes a new scope onto the stack, that uses exactly this box as its geometry.

Then, the function representing the start rule can simply be called.

2.3.2 Simple Example: Cube Skeleton Grammar in GML

To demonstrate how a grammar rules correspond to their representation in GML, a simple grammar, that

generates a cube skeleton is shown. This grammar is given as:

A →B C B [split-interval([0.05,−1, 0.05], X)]

B →F D F [split-interval([0.05,−1, 0.05], Y)]

C →D V D [split-interval([0.05,−1, 0.05], Y)]

D →F V F [split-interval([0.05,−1, 0.05], Z)]

As described above, a GML function is created for each rule. This function performs the necessary split

operation and then calls the rules representing the right hand-side of the grammar rule. Additionally, the

seed shape is created as a unit cube, and the start rule, in this case A applied to it. In GML this would be

written as:

1 /A {
2 [0 . 0 5 −1 0 . 0 5] CPX split−interval
3 B C B

4 } def

5

6 /B {
7 [0 . 0 5 −1 0 . 0 5] CPY split−interval
8 F D F

9 } def

10

11 /C {
12 [0 . 0 5 −1 0 . 0 5] CPY split−interval
13 D V D

14 } def

15

16 /D {
17 [0 . 0 5 −1 0 . 0 5] CPZ split−interval
18 F V F

14

19 } def

20

21 (0 , 0 , 0) (1 , 1 , 1) 5 scope−box
22 A

Figure 2.7 shows how this code is evaluated step by step.

Figure 2.7: Evaluation of the cube skeleton grammar

2.3.3 Limitations of the GML Split Grammar Implementation

The existing system, while powerful, poses certain restrictions on what can be modeled. Chief among

them is the difficulty when modeling connections between different parts of the created structure. Rule

calls proceed in a tree-like fashion, and siblings in this tree do not know anything about one another.

The problem with this is that many man-made structures would require this knowledge, as described in

Christopher Alexander’s famous piece ”A city is not a tree” [2]. In it, the author argues, from the point

of view of a designer, that a living city has interactions between its underlying hierarchical structure.

The ”tree” referred to in the title is not a plant, but rather the data structure, and the author argues that a

city is better modeled as a semi-lattice to account for these interactions. As an example, the paper lists a

drug store next to a traffic crossing, which has a newspaper stand outside. Clearly, the newspaper stand

belongs to the drug store hierarchically, and the traffic lights at the crossing belong to the street network

hierarchically. However, when the traffic lights are red, people are more likely to look at the exhibited

newspapers, and therefore its exact placement and value depends on the exact placement of the traffic

lights. When trying to model this using the Split Grammar implementation, a natural approach would

mirror the hierarchical structure, and would therefore suffer from exactly the same problem. Figure 2.8

illustrates this problem.

Another case where this limitation becomes noticeable is when modeling a building facade, and window

sills are to be added. Usually, window sills protude from the wall, but this is hard to add retroactively,

since the part that is outside the wall has already been split away in the beginning. To work around this,

the wall has to be made thicker from the beginning to account for the potential addition of window sills in

a completely different part of the grammar. This is contrary to how buildings are designed and therefore

surprising and confusing for the user of the grammar system. In other scenarios, like when trying to align

multiple grids, no such work-around is even possibly.

As can be seen in the paper introducing the existing implementation [18], the system allows to limit

15

(a) In a tree structure, separations between
nodes emerge naturally

(b) A semi-lattice structure allows distinct
branches to join again

Figure 2.8: Tree vs. semi-lattice

the evaluation depth. However, when modeling complex structures, different sub-structures may require

different depths of evaluation for a comparable level of detail. A better approach would therefore allow

annotations to provide a semantic level-of-detail.

16

Chapter 3

Extending Shape Grammars with Context-
Sensitive Sub-Rules

3.1 Approaching the solution

To overcome the limitations discussed in section 2.3.3, several approaches were tried and refined until

the final solution was reached. Of course, since the grammars are actually implemented in a Turing

complete programming language, any and all limitations can be overcome by scripting. However, for

inverse modeling and automatic processing of the resulting shape description, the most restrictive system

possible, that is still expressive enough for complex modeling tasks, is desired.

Starting point for approaching the solution was the existing split grammer implementation, to which

additional features were added. This section describes the approaches that did not lead to the desired

result, including their problems and limitations as well as the lessons that were learned by pursuing them

and how the contributed to the idea of locally, context-sensitive shape grammars.

3.1.1 Approach 1: Using 3D Space as ”Storage Container”

The basic implementation placed convex polyhedra in 3D space as soon as a terminal-symbol was en-

countered during derivation. The first approach was to later collect these shapes again and replace them

by a different one. This mirrors the context-sensitivity as used in formal grammars. For example, when

placing several structures supported by columns on a landscape, it may be desireable to merge adjacent

columns. This can be achieved by using a geometric query that defines what ”adjacent” means exactly,

and collects columns into groups which can then be connected. In fact, for this task this approach works

quite well, as can be seen in figure 3.1. The problem with this approach is that it does not scale well.

The difficulty in defining geometric queries for different kinds of connections and especially evaluating

grows exponentially with the model size, since all possible combinations have to be taken into account.

Note that not even in architecture a purely geometric approach is used for connections, since all parts of

a structure also have a ”purpose”, which could be interpreted as a label. It is therefore desireable to use

this additional information to support context-sensitivity.

17

Figure 3.1: Several structures supported by columns are placed on quadrilaterals. Adjacent
columns are merged into a single one using a simple geometric query to detect ad-
jacence.

3.1.2 Approach 2: Defining and Using Attaching Points

To solve difficulty of defining geometric queries of approach 1, the idea devised by Krecklau et al [26],

where each substructure declare where other structures may be attached as so called ”attaching points”,

was taken as basis. In their work, different attaching points can be connected using connection patterns

or even geometric queries, later on. The problem with this approach is that the connection process is

completely decoupled from the grammatical description of the structures, therefore creating what is in

essence a second system in addition to the grammar system. It is also not possible to model anything

but true ”connections”, as discussed in section 2.1.2. However, the idea of ”attaching points” fits very

well with the idea of named non-terminal symbols in a grammar. The problem of having a separate

system for actually creating the connections still remained, however, as there was no integrated way for

using the named non-terminals afterwards. What was needed was a way to manipulate the grammar tree

retroactively, to select the appropriate nodes and perform operations on them.

3.1.3 Approach 3: Exchanging Information between Non-Terminal Symbols

The next idea was to devise a way to operate on the non-terminal symbols. This was achieved by en-

abling each non-terminal to register ”message handlers”, which were functions associated with a message

18

name. Other non-terminals could then send messages, tagged with a name, to specific non-terminals or

broadcast them to all, and all registered message handlers that were associated with that name would

be called. The theory was that this would allow non-terminal symbols to ”negotiate” where connections

were made. Indeed, the approach allowed elegant solutions to some problems, like having a wall with

windows, and placing a rainwater gutter between the windows. This was done placing the gutter at a

fixed position and then sending a message to the windows to move themselves, as shown in figure 3.2.

The reverse approach of having the windows send messages to the gutter to move has the problem that

multiple messages, each adding its own constraint, would have to be taken into account. Restricting the

number of constraints that are allowed per non-terminal symbol to one worked around this issue, but the

resulting message handlers required a lot of custom code which was basically used to model the other

constraints, which was also undesireable. Also, the way a non-terminal moved ”itself” was by sending

a message to its parent requesting the split parameters to be changed, so if multiple siblings receive re-

quests, only one of them could actually request a placement change from the parent, requiring even more

code to ensure only requests that are really necessary are forwarded.

The message passing mechanism of this approach was then abandoned when it became clear that

(a) A raingutter is placed on a wall, and the
windows move to avoid it.

(b) If the raingutter is moved sufficiently, the
result does not look natural anymore.

Figure 3.2: Message passing example

the message handler would just consist of complex code, which does not really fit with a clean, minimal

formalism. However, the attempt gave important insight into how the grammar tree can be manipulated

retroactively.

3.1.4 Approach 4: Using Optimization Algorithms on Split Parameters

A different way to look at the problem is to see the split parameters as variables within certain limits,

which express the natural constraints of the construction. Further constraints modeling the interactions

between sub-parts of the structure can then be added. Some of these may actually not even be ”hard”

constraints, but just associated with a ”cost”, that should be minimized over the entirety of the constructed

structure. This is exactly the kind of problem the field of mathematical optimization tries to solve, and

several well-researched algorithms and approaches for it exist. Figure 3.3 shows how split parameters

19

were optimized such that a path avoids a column, while also minimizing the tension between the path

elements. This approach works quite well for simple problems, where the constraints can be formulated

easily, but does not scale well. Furthermore, some important issues are not addressed at all, like actually

placing a physical connection between elements, and others, like aligning multiple grids are cumbersome

to model.

(a) A straight path is placed next to a column (b) The column is moved, so that it would in-
tersect with the path. The split parameters
of the path elements are optimized such
that the tension between the elements is
minized and the column avoided using a
simple particle swarm optimization [22]

Figure 3.3: Optimizing split parameters

3.1.5 Towards Context-Sensitive Sub-Rules

All these attempts solved some, but not all sub-problems that were to be solved. However, by reexam-

ining them, another, cleaner, yet also more powerful approach was found. To come to this conclusion,

consider the grid alignment problem again (see figure 3.4).

The places where a grid is to be placed can be thought of as ”attaching points”, but instead of passing

messages directly between these non-terminals, it would be more logical if their common ancestor per-

formed the connection. After all, this is also how real structures are planned and constructed. So, instead

of ”storing” the non-terminal symbols in 3D space, their existence is made known to their ancestors,

which can then decide which non-terminals to connect and how. By allowing this connection to be an-

other application of grammar rules, the mechanism operates fully within the shape grammar formalism.

The connection operation could also modify the local split parameters if necessary, alleviating the need

for a complex optimization procedure.

20

Figure 3.4: A photograph of part of the Eiffel Tower (Released under CC-BY-SA 3.0 by Benh Lieu
Song) in which the support grid of one of the platforms of the Eiffel Tower is shown.
Note how the grid bars align over the distinct grids.

3.2 Context-Sensitive Sub-Rules

With the realization described above, the split grammar mechanism can be extended by also allowing

context-sensitive rules. However, if this was allowed at any point, it would be necessary to always

search the whole scope tree for tuples matching the left hand-side of any context-sensitive rule, which is

computationally expensive. It was therefore decided to restrict the context-sensitive rules to be local to

another rule. Since it is possible to have sub-rules of the start-rule, this does not restrict expressibility

in any way, but it allows finer-grained control for the user, and simpler evaluation. This also allows the

user to more easily avoid name clashes. Also of note is, that, in contrast to context-sensitive grammars

for languages, the context-sensitive sub-rules presented here do not take adjacence into account in any

way. This means, that even two non-terminal symbols in completely different branches of the scope tree

can be connected easily. The exact evaluation of these sub-rules is presented in section 3.2.2.

3.2.1 Definition

Given a rule L → R [fn1], which will be called the ”parent rule”, another rule A → B [fn2] can be

added as ”sub-rule”. This is then written as

L →R [fn1]

{A → B [fn2]}

As was discussed in section 2.1.1, the left hand-side of rules can usually only consists of a single non-

terminal symbol. For the local sub-rules this restriction is lifted, so A can also consist of a list of non-

terminal symbols N1N2 . . . Nn, and/or the special notation [Ni], for some or all of the non-terminals Ni.

Note, that unlike in context-free formal grammars, there are no restrictions placed on the right hand-side

of rules.

Since the number of sub-rules per parent rule is restricted to one, constructs like this are often neces-

21

sary:

L →L1 [id]

{C → D [fn3]}

L1 →R [fn1]

{A → B [fn2]}

Where id is the identity function, as shown below in section 3.3. Note that A → B will be evaluated

before C → D, as described in the next section. For the convenience of users, the same can also be

written as:

L →R [fn1]

{A → B [fn2]}

{C → D [fn3]}

3.2.2 Evaluation of the Sub-Rules

The application of a particular rule is defined to be finished if each symbol on its right hand-side is ei-

ther a terminal symbols or a non-terminal symbol and that non-terminal symbol has been completed. A

particular instance of a non-terminal symbol is defined to be completed when the rule associated with it

has been finished, and the sub-rule of that rule, if present, has also been finished. This means, a rule is

finished only once the sub-tree corresponding to this rule has been constructed completely, including all

sub-rules of referred non-terminals. Only in case a rule is finished, its corresponding sub-rule is evalu-

ated. The scopes corresponding to non-terminal symbols on the right hand-side of a rule are added as

children of the scope of the left hand-side of the rule. Together they form this rules local scope tree.

Then, for each Ni on the left hand-side of the sub-rule, a scope lookup in the local scope tree is per-

formed, and (any) one of the scopes with that name is selected. For the special form [Ni], all scopes with

that name are selected. The grammar operation may then use any of those names to refer to the selected

scopes and produce new scopes to which the labels listed on the right hand-side are then assigned and

derivation on these new scopes continues as usual.

Of course, to be able to write useful rules using multiple scopes, new grammar operations have to be

defined that can actually work with multiple input scopes. A proposed set of grammar operations is

described in section 3.3, including a description how this set can be extended easily.

3.3 Extended Grammar Operations

As described above, additional grammar operations are required, which can handle multiple input scopes

as arguments. The result of each of those operations can then again be multiple scopes. For maximum

flexibility, each of these operations also accepts an list of scopes where a single scope is expected, unless

22

otherwise noted. How this list is handled depends on the operation, but care was taken to make the result

intuitive. For example, an operation that usually operates on a single scope and returns a single scope,

will just perform its operation on each scope in the list and return the list of result scopes.

3.3.1 List of Grammar Operations

Identity Operation

In cases where scopes should be given a ”new” name, the identity operation is sometimes useful. This

is especially true if a substructure shall be used twice, but given two different names. This is possible

by introducing an additional layer. It is also necessary for rewriting rules that would require additional

sub-rules, as demonstrated above. The identify operation takes a single argument, and returns a single

result scope, which has exactly the same properties as the argument scope. For a list of input scopes, the

identity operation is performed on each of them, and a list of the results returned.

Radial Split Operation

The original version of split grammars only allowed interval splits by parallel translation of a single

plane. However, to construct arches or similar structures, it is desirable to have an operation that produces

”round” structures. The radial split allows the construction of such structures. It takes a single scope, two

planes, a point in space and an interval as its arguments . The split moves the two planes such that they

both contain the point, and then performs a spherical linear interpolation, as described in [38], between

the two normal vectors. The values in the parameter vector are used as the angle steps between the two

normals, with negative values used as relative steps, as for the straight split (see section 2.3). If the two

planes are parallel, a third plane must be given, which will be used as ”midpoint”, as to disambiguate the

arc that is described by the normal vectors.

Constructive Solid Geometry

The constructive solid geometry (CSG) operations ”union”, ”intersection” and ”difference” are provided

as grammar operations. Each takes two scopes and returns a list of scopes, corresponding to a convex

decomposition of the resulting geometry. This is necessary, since the result of a CSG operation on two

convex polyhedra is not necessarily convex itself. When operating on lists of scopes, the operations

behave as if the list was joined into a single (not necessarily convex) geometry with ”union” and the

operation applied afterwards.

Extruding Scopes

An operation that has been found to be useful (see section 5.2.4), is the ability to increase the size of the

geometry associated with a scope. This is done in two different ways:

• Extend the geometry infinitely in one direction

• Extend the geometry in all directions for some amount

23

Extending infinitely is useful when looking for overlaps in a particular direction, for example to connect

different parts with nails or rivets. Extending for a fixed amount can be used to attach a connector

to an already existing geometry. Both operations work on lists by extending each scope in the list

independently and returning a list of all result scopes.

Convex Hull Operation

This function takes a single input scope or a list of input scopes as argument and performs the convex

hull operation on them. It then returns a single scope with a geometry corresponding to that convex hull.

Collecting Child Scopes Surrounded by a Contour

When multiple convex shapes are put together, holes may appear between them. It is often useful to find

those holes and apply further rules to them. This is actually a two-part problem, since first the holes

have to be found, and since they are not necessarily convex, they have to be decomposed into convex

parts afterwards. An alternative use for the contour is to ”decorate” it by putting scopes in equal distance

along the contour.

Find Contour Operation This operation takes a list of scopes and a plane, and returns a list of

contours these scopes describe on the given plane. There will be one contour of the outline and one for

each hole, where the outline is stored as a list of edges in clockwise order, the holes as lists of edges in

counter-clockwise order, so that the ”outside” is always on the left of the edge. These contours can only

be used for the two operations ”convexify” and ”decorate”.

Convexify Operation This operation takes a contour, which is always a simple polygon, and returns

a convex decomposition of that contour, which can then be filled with convex polyhedra, creating new

scopes.

Decorate Operation This operation takes a contour, a distance and a step length and returns a list

of scopes, which are aligned along the contour with a distance of the given step length, and extending to

the given distance towards the ”outside” (left side of the contour edge).

3.3.2 Variable Number of Result Scopes

For some grammar operations it is not possible to predict the number of result scopes, especially those

involving CSG operations on complex geometries. Since the right hand-side of each rule must consist

of the same number of non-terminal symbols as the number of result-scopes returned by the operation,

this would make writing correct rules for these cases impossible. To allow the writing of rules for these

cases, the keyword ”repeat” is introduced:

L →R [fn1]

{A → repeat:B [fn2]}

The repeat-keyword states that the rule B is to be applied to all result scopes returned by fn2.

24

3.3.3 Combining Grammar Operations

Since all grammar operations that operate on scopes also take lists of scopes as arguments, and return lists

of scopes, it is desirable to use the return value of one of these operations as the argument of another. In

practice, this allows the construction of almost arbitrarily complex grammar operations as compositions

of simpler ones. In fact, this type of composition is already possible given the above definition. For

example, consider that something like this is desired:

L →R S T [split-interval([−1,−1,−1], X)]

{R S T → repeat:B [union(diff(R,S), diff(T, S))]}

The same operation can be expressed like this:

L →R,S, T [split-interval([−1,−1,−1], X)]

{R S → repeat:X [diff(R,S)]}

{S T → repeat:Y [diff(S, T)]}

{[X] [Y] → repeat:B [union(X, Y)]}

It is therefore merely convenience for the user to allow the direct composition of grammar operations,

and not an extension of the definition.

3.3.4 Extending the Set of Grammar Operations

The given set of grammar operations can be extended almost arbitrarily. If care is taken that all new

grammar operations accept both scopes and list of scopes, and return either single scopes or lists of

scopes, they can be easily integrated into the existing definition and composed arbitrarily with the existing

grammar operations. Similiar to the split-operation it is also possible to expect arguments of data types

other than scopes.

3.4 Scope Parameters

In many situations (see section 5.2.1 for examples), many rules that are almost the same, with the ex-

ception of some (usually numeric) parameter or set of parameters, are required. Of course, it is possible

to simple instantiate a new rule, including possibly changed sub-rules, for each parameter-value, for ex-

ample by having rule-1, rule-4, rule-5 for the parameter-values 1, 4 and 5, but this gets tedious

when big and/or numerous rules are involved. To improve this, parameters were introduced.

3.4.1 Defining Scope Parameters

Each rule may define arbitrarily named parameters and assign them values. Each rule may then refer to

any of its parameter by name on the right hand-side. This is written by putting all parameter assignments

above the rule where they are defined.

[p1 = v1, . . . pn = vn]

L →R [fn(p1, pn)]

25

3.4.2 Scope Parameter Inheritance

With just the ability to define parameters local to rules, the problem of similar rules has not been solved.

It must also be possible to define parameters for rules from outside, such that different references to these

rules result in them having different values for the parameters. This is solved by inheriting parameter

values to all rules referenced on the right hand-side. When a parameter is referenced, then, the name is

looked up recursively in the referring rules until one matching the name is found. To use a rule A with

specific parameter values it is therefore only necessary to set those parameters in the referring rule, and

then have A on the right hand-side. Another rule in the grammar can then set different parameter values,

and also use A on the right hand-side.

3.4.3 Scope-Local Coordinate Systems

One set of parameters that deserves special treatment is the coordinate system. To faciliate rule re-use of

structures, it is often useful to give them a local coordinate system. This way, when a structure is used

multiple times in different rotations, the rules can still refer to X-, Y- and Z-direction in the usual manner.

To make the inheritance and setting of local coordinate systems, the following coordinate system options

can be used:

• use-X, use-Y, use-Z: Use the given direction

• use-split: Use the direction in which the split was performed

• cross-X-split, cross-split-X, cross-Y-split, . . .: Perform a cross product of the

normals of the X-/Y-/Z-direction and the split direction, in the given order, and use the result as

the normal for the new direction

• auto: Derive one coordinate direction from the other two

Each option can be used for each of the three coordinate directions X, Y and Z. For example:

L →R,S, T [split(X, X = use-split, Y = use-Z, Z = auto)]

This would set the new X-direction in the direction of the split (in this case the X-direction of the parent

scope), the Y-direction in the Z-direction of the parent-scope and calculate the Z-direction based on the

X- and Y-directions. Only one coordinate direction can be declared as auto, and the options involving

the split-direction are only available for split-operations.

3.4.4 Inheriting from Multiple Scopes

Local, context-sensitive sub-rules add another dimension to the inheritance question, since now scopes

could have multiple parents. To avoid the complexity that comes with this, the newly added scopes are

actually derived from the parent scope of the outer rule, which makes inheritance simpler. The only

exception to this rule is the coordinate system, which is inherited in an operation-defined way, as to

enable the coordinate system options described above. Even in cases where no split is performed, this

makes the behavior more intuitive, since a connection attached to some substructure would be expected

to share the coordinate system of that substructure.

26

3.4.5 Semantic Level-of-Detail

To demonstrate how this parameter-concept can be used and extended, support for level-of-detail eval-

uation has been added. It works by using a parameter called lod-level that should be defined in

the start-rule with the desired level of detail. The special operator lod can then be used to provide two

alternatives for the next level of detail. For example:

L →lod((R,S, T [split(X)]), (F))

When this rule is encountered during evaluation, the current value of the parameter lod-level is

consulted. If it is greater than 0, the first parameter is used as the right hand-side of the rule. Otherwise,

the second parameter is used. The intent behind this is to give the user the ability to define ”logical” level

of detail-steps. For example usage of this see section 5.2.12

3.5 Nondeterminism in the Evaluation of the Grammar

As described in section 3.2.2, the local, context-sensitive rules will match ”one” scope with the cor-

responding label. If there are multiple scopes with the same label, any of them is a possible match,

introducing non-determinism in the evaluation of the grammar. If a deterministic evaluation is wanted,

the user has to rename scopes accordingly to be able to uniquely identify which scopes to select.

3.6 Substructure Interfaces using Labeled Non-Terminal Symbols

A big advantage of this approach is that sub-structures can be reused and also exchanged with different

ones. For this to work, a notion of the ”interface” a substructure provides has to be formed. There are

two directions of ”information flow” in the grammar, up-wards and down-wards the scope-hierarchy.

The down-wards information flow consists of the parameter values, so each substructure has to declare

which parameters it requires to be present. The up-wards information flow consists of the scope names,

which are selected by parent-scopes in their local, context-sensitive rules. For substructures to be inter-

changeable, they have to expose all the labels the parent requires. Therefore, it is important to declare

which labels are provided by a substructure. By analysis of the grammar, it can be deduced which labels

are required by all parent rules, and only if the set of provided labels is a superset of the set of required

labels, the substructure can be inserted. See section 5.2.2 for an actual interface description.

27

28

Chapter 4

Implementation

4.1 Extensions to the Split Grammar Implementation

For the implementation of the extensions described in chapter 3, several modifications and extensions to

the existing implementation of split grammars were necessary. Some of these changes are only inciden-

tally related to the local, context-sensitive subrules, and could also be useful in a purely context-free split

grammar implementation. They are discussed in this section.

4.1.1 Radial Split

The radial split operator discussed in 3.3.1 was implemented as a GML-function. It takes four parame-

ters, two planes, S and E, a vertex v, and an interval list Ii. In case the two planes are parallel, a fifth

parameter, another plane, M , that should be in the middle of the two planes along the desired arc, is

required. The function then proceeds as follows:

1. Store the normals nS and nE of the planes S and E.

2. Determine the angle Ω between the normals nS and nE .

3. If the angle is 0 or 180: Store the normal of M as nM

4. Else: Store the angle bisector of nE and nS as nM

5. Initialize sp and sn with 0

6. For each interval Ii do:

(a) If Ii is positive: Add Ii to sp

(b) Else: Add abs(Ii) to sn

7. Set r to Ω− sp. This determines how much of the angle can be used for relative sizes

8. Set n to r/sn. This determines how much one ”unit” of relative size is in absolute terms.

9. Store 0 as the current angle αc

29

10. Set nA to nS and nB to nM

11. Set Ω0 to the angle between nA and nB . This is the angle between the start and the midpoint.

12. For each interval Ii do:

(a) If Ii is positive: Set i to Ii

(b) Else: Set i to −Ii · n, to convert it to an absolute size

(c) Add i to αc

(d) If αc is greater than Ω0: Set nA to nM and nB to nE , and subtract Ω0 from αc. This marks

the passing of the mid-point.

(e) Perform a spherical linear interpolation between nA and nB , to get the normal vector nc at

the angle αc.

(f) Emit the plane with the current normal vector nc as normal vector, and place it in the vertex

v

The list of emitted planes is then used to split the given scope into subscopes, in the same way as for

parallel splits. For example:

1 (0 , 0 , 0) (5 0 , 1 0 , 2 0) 5 scope−box
2 [20 −1 90 −1 50]
3 CPX CPZ CPZ cp−pl−flip (2 5 , 0 , 0)
4 split−radial
5 F V F V F

Here, a box of width 50 is split into 5 parts. The split is an arc between the local Z-plane and its flipped

version, therefore encompassing an angle of 180 degrees. Since the arc is not unique, the X-plane is also

given as mid-point. Also, the split is performed by rotation around the point (25, 0, 0). Of the five pieces,

the first has an angular size of 20 degrees, the third of 90 degrees and the fifth a size of 50 degrees. The

remaining two pieces each get half of the remaining angle, in this case (180−90−50−20)/2 = 20/2 =

10 degrees. Figure 4.1 shows the result of the split, when the first, third and fifth piece are filled and the

other two are empty.

4.1.2 Scope-Local Coordinate Systems

For local coordinate systems it is often convenient to allow the automatic setting of coordinate directions

in the direction of the performed split. To allow this, and the other coordinate system settings described

in section 3.4.3, special variants of the split functions, denoted by an appended -c are provided. They

take an additional first parameter, which has to be an array of three functions that are executed to set the

X-, Y- and Z-direction, respectively. For example

1 { cs−use−split cs−use−Z cs−auto }
2 [−1 −1 −1]
3 CPY

30

Figure 4.1: Result of a radial split

4 split−interval−c
5 R S R

This would perform a split in Y-direction, and set up the new coordinate systems of the sub-scopes such

that their local X-direction is the direction of the split, their local Y-direction is the Z-direction of the

parent and their local Z-direction is such that it is orthogonal to both their local X- and Y-direction.

4.2 Context-Sensitive Sub-Rules

4.2.1 Defining Rule Context

As described in section 2.3.1, in the split grammar implementation each rule was represented by a func-

tion in GML, and the correspondence to grammar rules is only incidental. Basically, a scope stack was

maintained, and all functions operated on the top of that stack. A split-operation consumed the top el-

ement of the stack and pushed new ones corresponding to the newly created scopes, which were then

consumed in their rules in turn. To implement local, context-sensitive rules, a context in form of the par-

ent rule is required after all operations and further derivation has occured. Furthermore, this can happen

on multiple levels in the scope tree. A pair of functions begin-rule and end-rule is provided that

handles opening and closing the current context. A typical rule may look like this:

1 /L {
2 begin−rule
3 [−1 −1 −1]
4 CPX

5 split−interval
6 R S R

7 end−rule
8 } def

31

The rules R and S will also be enclosed in begin-rule/end-rule-pairs. The scope to which a

begin-rule/end-rule-pair refers is called the rule-scope.

begin-rule is implemented by referring to the top element of the scope stack, as before, and us-

ing it as the beginning of a GML scope. end-rule, on the other hand, simply closes that GML scope

again. Since scopes were implemented as dictionaries in the original implementation (but note section

4.4.2), this enables access to all values defined in a scope even after it has been consumed from the

scope-stack. This is utilized by the local, context-sensitive rules to access the subscopes of the scope

where the rule is defined.

4.2.2 Setting Scope Labels

Since there is no real notion of ”current function”, and since it is entirely possible to have ”anonymous”

scopes in the sense that they don’t have a corresponding GML function, the labels for the scopes have to

be set explicitely. For this, the function set-name is provided, which takes a label from the stack and

sets the name of the rule-scope to that label. In addition to simply closing the rule-scope, end-rule

has the additional task of informing the parent-scope of all labels defined in the rule-scope. This is done

by maintaining a dictionary, mapping from names to lists of scopes, which contains all labels defined

in sub-scopes. end-rule then simply adds all entries from the rule-scope’s dictionary to its parent’s

dictionary, appending to an existing list where necessary.

4.2.3 Implementing Lazy Evaluation of the Grammar

In the original implementation, whenever a terminal-fill/F was encountered, the current scope’s

convex polyhedron was immediately placed in the scene. With local sub-rules it can now happen, that

these polyhedra are supposed to be replaced later on, which would require to remove them from the

scene again. While this is certainly possible, it is much more efficient to just store a flag that states that

a polyhedron is to be rendered, and clear it again in case it is replaced by a subrule. Then, only after the

grammar has been evaluated, all polyhedra that have the flag set, are actually rendered. To perform this

final pass, the function create has to be called with the top level scope as parameter.

In fact, even more information is conserved in the scope tree. Each scope remembers each split operation

that was performed on it, and its children, including children that are the result of subrules. Therefore,

after the grammar evaluation, the scope tree stores almost all the information that would be necessary

to re-evaluate the grammar. It would therefore be possible to retroactively change any split parameter if

desired. This is not strictly necessary for context-sensitivy, but see section 6.3 for an outlook on what

this could be used for.

4.2.4 Scope Selection and Sub-Rules

To select scopes for use in sub-rules, the functions get-scope and get-scopes are provided. As

described in section 4.2.2, a dictionary of defined labels is maintained in each scope. When selecting a

particular scope for a subrule, the name is simply looked up in the rule-scope’s dictionary, returning a list

32

of scopes. The function get-scope simply provides the first value from that list, whereas the function

get-scopes provides the whole list, which corresponds to the []-special form in the grammar rules, as

described in section 3.2.2.

4.3 Grammar Operations

All grammar operations are implemented as GML-functions taking their corresponding arguments from

the stack. As mentioned in section 3.3, both lists of scopes as well as just scopes themselves are accepted

as arguments where appropriate. This means, that both get-scope as well as get-scopes can be

used to select the parameters. For example:

1 /A get−scope
2 /B get−scopes
3 connect−intersection
4 make−scopes

Will produce the intersection between the first scope in the list of scopes labeled A, and all scopes labeled

B. This result can then be used for further grammar operations. To finalize the result, which includes

pushing the resulting scopes on the scope stack, the function make-scopes is used. Afterwards,

arbitrary rules can be applied to the produced scopes. As described in section 3.3.2, the number of

result scopes may not always be known, and indeed in this very example, it depends on how many B-

scopes exist and where they are located relative to the selected A-scope. make-scopes also provides

the system with the necessary information to support the repeat-keyword. In GML, it is written in

postfix-notation like any other looping construct and named repeat-rule, for example:

1 /A get−scope
2 /B get−scopes
3 connect−intersection
4 make−scopes
5 { C } repeat−rule

This would apply the rule C to all scopes produced by the intersection.

4.3.1 List of Added Grammar Operations

• connect-convex

– Parameters: scope-list

– Description: Results in one scope consisting of the convex hull covering all scopes in the

given list

– Sample code:

33

1 /A {
2 begin−rule
3 /A set−name
4 LF

5 end−rule
6 } def

7

8 /B {
9 begin−rule

10 /B set−name
11 LF

12 end−rule
13 } def

14

15 /S {
16 begin−rule
17 [−1 −1 −1]
18 CPX

19 split−interval
20 A V B

21

22 [
23 /A get−symbol
24 /B get−symbol
25]
26 connect−convex
27 make−scopes
28 LF

29 end−rule
30 } def

– The result can be seen in figure 4.2.

Figure 4.2: Result of the connect-convex grammar operation

• connect-union

– Parameters: scope-A scope-B

34

– Description: Results in a number scopes corresponding to the union of the two given scopes.

Both parameters may also be lists, but care must be taken that the scopes in each list are pair-

wise disjoint prior to the operation, since this is required by the underlying GML-operator.

This operation is basically only useful to join multiple scopes into a list for further process-

ing.

– Sample code:

1 /A {
2 begin−rule
3 /A set−name
4 LF

5 end−rule
6 } def

7

8 /B {
9 begin−rule

10 /B set−name
11 LF

12 end−rule
13 } def

14

15 /S {
16 begin−rule
17 [−1 −1 −1]
18 CPX

19 split−interval
20 A V B

21

22 /A get−symbol
23 /B get−symbol
24 connect−union
25 make−scopes
26 { LF } repeat−rule
27 end−rule
28 } def

– The result can be seen in figure 4.3.

• connect-difference

– Parameters: scope-A scope-B

– Description: Results in a number scopes corresponding to the difference of the two given

scopes, that is A − B. Both parameters may also be lists, but care must be taken that the

35

Figure 4.3: Result of the connect-union grammar operation, as can be seen, the result is ex-
actly the same as the input. The only difference is that all input scopes are put together
into one list of scopes.

scopes in each list are pairwise disjoint prior to the operation, since this is required by the

underlying GML-operator.

– Sample code:

1 /A {
2 begin−rule
3 [−2 −1 −2]
4 CPZ

5 split−interval
6 LV A1 LV

7 end−rule
8 } def

9

10 /A1 {
11 begin−rule
12 /A1 set−name
13 LF

14 end−rule
15 } def

16

17 /B {
18 begin−rule
19 /B set−name
20 LV

21 end−rule
22 } def

23

24

25 /S {
26 begin−rule
27 [−1 −2 −1 −2 −1]
28 CPX

29 split−interval
30 A V B V A

31

32 /A1 get−symbols

36

33 connect−convex
34

35 /B get−symbols
36 connect−difference
37 make−scopes
38 { LF } repeat−rule
39 end−rule
40 } def

The result of this code can be seen in figure

Figure 4.4: Result of the connect-difference grammar operation. First, an intersection has
to be created, which is not possible using only splits. Therefore, the two scopes named
A1 are connected using connect-convex, and the difference of this convex hull
minus the scope named B is used.

• connect-intersection

– Parameters: scope-A scope-B

– Description: Results in a number scopes corresponding to the intersection of the two given

scopes. Both parameters may also be lists, but care must be taken that the scopes in each

list are pairwise disjoint prior to the operation, since this is required by the underlying GML-

operator.

– Sample code:

1 /A {
2 begin−rule
3 [−2 −1 −2]
4 CPZ

5 split−interval
6 LV A1 LV

7 end−rule
8 } def

9

10 /A1 {
11 begin−rule
12 /A1 set−name

37

13 LF

14 end−rule
15 } def

16

17 /B {
18 begin−rule
19 /B set−name
20 LV

21 end−rule
22 } def

23

24 /S {
25 begin−rule
26 [−1 −2 −1 −2 −1]
27 CPX

28 split−interval
29 A V B V A

30

31 /A1 get−symbols
32 connect−convex
33

34 /B get−symbols
35 connect−intersection
36 make−scopes
37 { LF } repeat−rule
38 end−rule
39 } def

The result of this code can be seen in figure 4.5.

Figure 4.5: Result of the connect-intersection grammar operation. First, an actual inter-
section has to be created, which is not possible using only splits. Therefore, the two
scopes named A1 are connected using connect-convex, and the intersection of
this convex hull with the scope named B is used.

• extend-infinite

– Parameters: scope direction

– Description: Results in a scope that is the same as the given scope, except that all planes

parallel to the given direction are removed, which in effect extends the scope to infinity in

38

the given direction, if such a plane was present. If a list of scopes is given, the operation is

performed on each one, and the list is a result of the resulting scopes.

– Sample code:

1 /A {
2 begin−rule
3 /A set−name
4 LV

5 end−rule
6 } def

7

8 /S {
9 begin−rule

10 id

11 A

12

13 /A get−symbol
14 /PZ extend−infinite
15 make−scopes
16 { LF } repeat−rule
17 end−rule
18 } def

The result of this code can be seen in figure 4.6.

Figure 4.6: Result of the extend-infinite grammar operation

• extend-scope

– Parameters scope distance

– Description Results in a scope that is the same as the given scope, with all planes moved

outwards by the given distance. If a list of scopes is given, the operation is performed on

each one, and the list is a result of the resulting scopes.

– Sample code:

1 /A {
2 begin−rule
3 /A set−name

39

4 LF

5 end−rule
6 } def

7

8 /S {
9 begin−rule

10 id

11 A

12

13 /A get−symbol
14 3 extend−scope
15 make−scopes
16 { LF } repeat−rule
17 end−rule
18 } def

The result of this code can be seen in figure 4.7.

Figure 4.7: Result of the extend-scope grammar operation

• connect-rod

– Parameters scope-A scope-B dimensions

– Description This function serves as a demonstration on how the set of grammar operations

can easily be extended for special purposes. It takes two scopes, and a 2D vector specify-

ing the size, and connects them with a rectangular hexahedron, where the local coordinate

system is set such that the x-, y- and z-directions are parallel to the sides of the rectangular

hexahedron. The length is given by the start and end scopes, while width and height along

that length are given by the 2D vector.

– Sample code:

1 /A {
2 begin−rule
3 [−2 −1 −2]
4 CPZ

5 split−interval
6 LV A1 LV

7 end−rule

40

8 } def

9

10 /A1 {
11 begin−rule
12 /A1 set−name
13 LF

14 end−rule
15 } def

16

17 /S {
18 begin−rule
19 [−1 −4 −1]
20 CPX

21 split−interval
22 A V A

23

24 /A1 get−symbols aload

25

26 (1 , 1) connect−rod
27 make−scopes
28 LF

29

30 end−rule
31 } def

The result of this code can be seen in figure 4.8.

Figure 4.8: Result of the connect-rod grammar operation

Collecting Child Scopes Surrounded by a Contour

Polygon Representation Since planes offer more significant bits than vertices, as described in sec-

tion 2.2.4, polygons are not represented as a list of vertices, but rather as a list of planes, together with

a base plane. This allows the representation of polygons with vertices that might otherwise not be rep-

resentable exactly. Each vertex of the polygon is then represented by the intersection of two adjacent

planes in the plane list and the base plane. By convention, the list of planes is stored in clockwise di-

rection when going around the polygon. This allows the representation of ”holes” in the same way, by

storing them in counter-clockwise direction. This way, when walking along the edge of the polygon in

storage order, the ”free space” is always on the left.

41

Find Contour The algorithm is given a list of convex polyhedra c(i) and a baseplane b. It first deter-

mines all line segments that can be part of the contours, and then generates all contour-polygons on the

baseplane by joining the appropriate line segments. To determine the line segments l(i) the algorithm

proceeds as follows:

1. Add b to all ci

2. For each ci do

(a) Determine the planes pj of ci adjacent to b in clockwise order

(b) For each pj generate a line segment l, where the line is the intersection of pj and b and with

start- and end-planes pj−1 and pj+1, wrapping around as necessary

(c) Add l to the generated line segments l(i)

3. For each li do

(a) For all other lj do

i. Remove all parts where li and lj coincide from li

The last loop is necessary because the polyhedra may have common planes, which are then not part of

the outline. However, not all parts of these planes may coincide, so only parts have to be removed. Figure

4.9 shows an example. With all these line segments the contours cn(i) can now be generated as follows:

Figure 4.9: In this example, the cyan and the gray polyhedron share some planes, but since they
are fully aligned, no part of these edges will be part of the contour, and so they can
be fully removed. However, the shared planes of the cyan and the yellow polyhedron
do not fully ”cancel out”, so only a part of that edge may be removed. The resulting
contour is shown in red.

1. While there still is a line segment l(i) do

(a) Choose any line segment li

42

(b) Start a new contour cni with li as its only line

(c) Store the start point of li as start point s

(d) Store the end point of li as current point e

(e) While s 6= e do

i. Find all line segments o(j) with start point at current point e

ii. Determine the next line segment (see below) oj

iii. Add oj to the current contour cni

iv. Set the end point of oj as the current point e

In most cases, this algorithm works straightforward, care must only be taken with vertices with valence

greater than 2, that is, when multiple polyhedra touch in a single point on the baseplane b. In this case,

there are really only two sensible approaches: Either the contour encompasses all polyhedra touching

in such a point, or only one. The latter approach leads to further complications when the contours are

then used subsequently, because then multiple contours will coincide in a single point, therefore the first

option was chosen. To do that, all line segments starting at the intersection points are sorted clockwise

by angle from the current line segment, and the first one of those is used. Figure 4.11 shows an example

case.

(a) A plane is put through a complex struc-
ture, and ”find contour” is invoked.

(b) The result of the ”find contour” opera-
tion is a list of polygons, corresponding
to the outline of the convex polyhedra on
the given plane.

Figure 4.10: ”Find contour” example

43

Figure 4.11: In this example, the polyhedrons all meet in a single point. The two sensible choices
are to have either one contour for each polyhedron, or a single contour that encom-
passes all. The latter was chosen because it makes further processing easier. Note
that in practice this scenario is rare, since even if several polyhedrons appear to share
a common vertex, they may not, due to numerical issues. In such a case, there will be
several contour-polygons, but since the vertices are not exactly the same, this is not a
problem for further processing.

44

Convexify Different algorithms exist for the convex decomposition of polygons, depending on what

properties the decomposition is required to have [20], [8]. For the purpose of this implementation, the

focus was put on exactness, using the integer coordinates of the existing implementation. Since there

is no guarantee that any additional planes can even be represented by integer coordinates, only already

existing planes are used. The algorithm is given a polygon as a list of planes pi, plus a base plane b, and

performs the convex decomposition as follows:

1. For each plane pi do:

(a) Consider the vertex v described by pi, pi+1 and b (wrapping around to p0, if necessary)

(b) If v is a reflex vertex, calculate the intersections cj of pi with the polygon

(c) Of all intersections cj choose the one as d that is closest to v, and towards inside the polygon

as seen from v

(d) Split the polygon along the line vd into parts A and B

(e) Recursively convexify the parts A and B and return the union of the results.

2. If no reflex vertex is found, return the polygon itself.

4.4 Scope Parameters

4.4.1 Setting and Getting Scope Parameter Values

Since each begin-rule results in the current scope being pushed onto the dictionary stack, with

end-rule popping it again, any def that occurs in that immediate scope results in the value being

added to the current scope. This means, setting parameters for the current scope works exactly like

assigning variable values in GML, and any name is looked up in that scope. For example:

1 begin−rule
2 /width 10 def

3 [−1 −1 width]
4 CPX

5 split−interval
6 R S R

7 end−rule

4.4.2 Scope Parameter Inheritance

With the above mechanism, it is actually already possible to use the parameter values in all sub-scopes

as well, as long as no scope is used outside its parents’ function. However, local, context-sensitive rules

allow scopes to be selected anywhere above them in the hierarchy. To preserve the dictionary hierarchy,

each scope therefore needs to remember its parent scopes values as well. This is done by using dictionary

stacks rather than normal dictionaries as scopes. A dictionary stack is, as the name implies, an ordered

45

(a) A non-convex polygon, for which a con-
vex decomposition shall be computed

(b) A reflex vertex is found, and the first
plane in clockwise direction is extended
towards the inside of the polygon until it
hits the opposite side. The polygon is then
split into two parts, and the convex de-
composition repeated on both parts

(c) One of the parts is already convex, so it
is used as-is, while in the other, another
reflex vertex is found, and again the first
plane in clockwise direction is extended,
and the convex decomposition repeated
on both parts

(d) Another reflex vertex is found, a plane ex-
tended, and then all parts are convex, so
the algorithm terminates

Figure 4.12: ”Convexify” example

collection of dictionaries, with one of them designated as the ”top” of the stack. When a name is looked

up, it is first searched for in the top dictionary, and if it is not found, in the next one below that. Each

scope now consists of a copy of its parent’s dictionary stack, to which it adds a new dictionary to the

top. Since the dictionaries themselves are only referenced and not copied, each scope sees changes in its

parent’s dictionary in its own dictionary stack.

46

Chapter 5

Example Models

5.1 Simple Examples

5.1.1 Grid Tiles with Connections

One of the simplest examples that demonstrates what can be done consists of several tiles arranged in a

grid. If it is then desired to connect several - potentially different - of these tiles, the limits of context-free

Shape Grammars are reached quite quickly. Of course, it is possible to model this, by taking the connec-

tions into account from the beginning, but a more logical approach would be to model the tiles and their

connections independently from each other. The approach described in Chapter 3 provides exactly these

capabilities. As long as tiles fulfill a set interface, they can look any way that is desired, and can then

still be interconnected, by using a local, context-sensitive rule. For example, if there is a grid cell that ex-

poses four non-terminal symbols northeastcorner, northwestcorner, southeastcorner

and southwestcorner as non-terminal symbols, and it is desired to connect two adjacent grid cells

in some fashion. For this, first two cells have to be placed somewhere, for example like this:

1 begin−rule
2 id

3 cell

4 /southeastcorner /southeastcorner1 rename−symbol
5 /southwestcorner /southwestcorner1 rename−symbol
6 end−rule
7

8 begin−rule
9 id

10 cell

11 /northwestcorner /northwestcorner2 rename−symbol
12 /northeastcorner /northeastcorner2 rename−symbol
13 end−rule

In this case, the symbols for the corners had to be renamed so they can be uniquely identified later.

This is equivalent to having local subrules using the identity function, as described in 3.3.1, but the

47

implementation also allows this short-hand notation. After that, the corners of the two cells can be

connected:

1 /northwestcorner2 get−symbol
2 /southeastcorner1 get−symbol
3 (0 . 0 2 , 0 . 0 2)
4 connect−rod
5 make−scopes
6 LF

7

8 /northeastcorner2 get−symbol
9 /southwestcorner1 get−symbol

10 (0 . 0 2 , 0 . 0 2)
11 connect−rod
12 make−scopes
13 LF

The result of this calls can be seen in figure 5.1.

(a) Two simple grid cells, with the corner
connectors in orange, are connected

(b) The code for the connections does not
change at all, even if one (or both) cell is
replaced, as long as it has the same inter-
face, that is it exposes the required non-
terminal symbols

Figure 5.1: Cell grid example

5.1.2 Wooden Planks with Nails

Another problem that is simple to solve with local subrules, but hard to do without context-sensitivity

consists of two layers of planks above each other, which are to be connected where they overlap. A

simple example for this are wooden planks used in a fence where nails are to be put where the different

layers overlap. Solving this with the grammar functions presented above works as follows: The two

plank layers are expected to expose the non-terminal symbols plankx and planky respectively, which

48

contain all planks in the layer. First, all planks are extended infinitely in the direction of the overlap.

Then the intersection of these extended scopes is calculated. This intersection, is still infinitely long,

is the area where the nails have to be placed, but they should be limited to just the planks, plus some

protusion. To do this, first the original planks are extended with an offset equal to the desired protusion,

and then the infinitely long scopes are intersected with these newly extended planks, limiting the room

where the nails are placed to the overlap of the planks, extended by some offset in the overlap direction.

Then, the nails simply have be placed in the center of each of these scopes. The code to do this is:

1 /plankx get−symbols
2 /PZ extend−infinite
3

4 /planky get−symbols
5 /PZ extend−infinite
6 connect−intersection−d
7

8 /plankx get−symbols
9 /planky get−symbols

10 connect−union
11 0 . 1 extend−scope
12 connect−intersection−d
13 make−scopes
14 { make−nail } repeat−rule

Noteworthy is the use of the connect-intersection-d grammar function, since the -d-suffix

disables the previously placed planks, which would render them invisible. This is necessary because

placing the nails would create overlapping geometry, which is usually undesirable. So, in the next step,

the holes for the nails are made by using the connect-difference grammar function.

1 /plankx get−symbols
2 /planky get−symbols
3 connect−union−d
4 /nail get−symbols
5 connect−difference
6 make−scopes
7 { LF } repeat−rule

The result of this code can be seen in figure 5.2

5.1.3 Grid Spanning Multiple Separate Areas

For aesthetic reasons, it is often desired to align the bars of multiple different grids that appear in a

structure. In a normal, context-free grammar all the grids would be generated independently, resulting

in misaligned bars, since it is not possible to take other parts of the model into account. The CGA

Shape implementation allows to solve this problem by defining ”snap lines”, which the bars of all grids

can subsequently use for alignment [33]. But another way to look at the problem is that this is really

49

(a) Two layers of planks are to be connected
with nails

(b) Nails are placed in the overlapping parts

(c) If connect-difference-d is used to
make the holes for the nails, the nails
themselves also become disabled, show-
ing the holes

(d) As long as the plank layers fulfill the same
interface, any configuration of planks can
be connected using the same code

Figure 5.2: Planks connected with nails

a ”connection” between the different grids, which can be solved by local, context-sensitive rules. For

example:

1 begin−rule
2 id

3 grid−containers
4

5 /grid−here get−symbols connect−convex
6 make−scopes
7 make−grid
8

9 /grid−here get−symbols
10 /grid−beam get−symbols
11 connect−intersection

50

12 make−scopes
13 { LF } repeat−rule
14 end−rule

Here, first a rule grid-containers is called, which is expected to have non-terminal symbols called

grid-here wherever a grid shall be placed. Then, a local rule takes all these places and connects them

using a convex hull, and places a grid in this convex hull. Since that means that the grid would also

cross the boundaries between the different places where it should actually be placed, it needs to be cut

again. The grid exposes its bars as non-terminals called grid-beam, which are then intersected with

the grid-here-parts, to fit the grid exactly where it should be. Figure 5.3 shows an example.

(a) Each empty area should be fit with a grid (b) A naive approach leads to unsatisfying re-
sults, since different holes require differ-
ent grids. Even then, aligning the grids
manually is tiresome and error-prone

(c) When the grid is fit into the convex hull, it
overlaps the parting structure

(d) By calculating the intersection with the
single grid-here-parts, the grids are
restricted to where they should be

Figure 5.3: Multiple aligned grids

51

5.1.4 Contour Example - Convexify

Similiar to the tile example from above, a number of shapes is arranged in a grid. The difference is that

now the holes are to be connected. The tricky part is that the holes are not convex, so the usual functions

do not work. However, by combining the find-contour and convexify-operations it is possible

to fill the interior of each hole with convex polyhedra, and use those polyhedra for further processing.

One possibility is, like in the previous example, to fill the holes with a single grid that is aligned over

all holes. Assuming the grid tiles expose the parts enclosing the holes as non-terminals called rod, this

would be done like this:

1 /rod get−symbols
2 PZ

3 find−contour
4 convexify

5 make−scopes
6 { make−block } repeat−rule

After this, all holes would be partitioned into convex parts, each being its own scope and on each scope

the make-block rule is applied. For the purpose of this example, it is assumed the make-block rule

simply fills the scope with a single non-terminal called block. To get a grid aligned over all holes, the

procedure is exactly the same as in the previous example. First, the blocks are connected using a convex

hull, then a grid is placed there, then all grid-bars are intersected with the blocks to only leave them

in the holes:

1 /block get−symbols
2 connect−convex
3 make−scopes
4 make−grid
5

6 /grid−bar get−symbols
7 /block get−symbols
8 connect−intersection
9 make−scopes

10 { LF } repeat−rule

The result of this operation is shown in figure 5.4

5.1.5 Contour Example - Decorate

As an alternative to filling the holes with some structure, it might also be desireable to have some sort of

”decoration” along the outline. The decorate grammar function does exactly that. For example:

1 /rod get−symbols
2 PZ

3 find−contour
4 (0 . 1 , 0 . 1 , 0 . 1) 0 .075 0 .125

52

(a) An arrangement of turnstile grid cells, the
holes are outlined in blue

(b) A grid aligned over all holes

Figure 5.4: Fitting an aligned grid into holes between turnstile grid cells

5 decorate

6 make−scopes
7 { make−cylinder } repeat−rule

This will create an axis-aligned box scope with a size of 0.1 × 0.1 × 0.1 every 0.125 units along the

contour, with an offset of 0.075 towards the inside of the hole. It is then possible to call produce arbitrary

objects at that position, for example cylinders as shown in figure 5.5.

Figure 5.5: Decorating a contour outline

53

5.2 Eiffel Tower

5.2.1 General Structure

Figure 5.6: The Eiffel Tower model

When starting the model of a complex struc-

ture, it pays off to analyze which parts of

the structure are similiar to each other and

may therefore be described using a common

rule-set. Especially noteworthy for such con-

siderations are natural symmetries. In case

of the Eiffel Tower, the square structure with

4 identical quadrants leads to a natural dis-

section into four parts. Each of those four

parts consists of one leg with their lattice

structure. To simplify the grammatical de-

scription, the legs were separated into their

low, middle, higher and top parts, with the

two platforms between the lower and mid-

dle, and the middle and higher parts, respec-

tively. Each of the parts of a leg has the

same basic structure of four strong support

beams with a lattice of supporting struts between

them.

To demonstrate the advantage of having local,

context-sensitive rules, several connections that

appear naturally in the Eiffel Tower were modeled

in the Shape Grammar. For example, between the

bottom parts of adjacent legs, arches were placed. Above that, the lower platform spans all four legs, and

is supported by the arches. The middle part is reinforced by an additional grid connection right below the

higher platform. Furthermore, the lattice structure contains diagonal and vertical bars that are connected

where they overlap. Where they don’t overlap, additional supporting struts are placed. The bars are also

connected to the main beams of the legs. More subtly, the campanile features a dome that is mounted on

a square cage.

An important resource when creating the model was the book ”The 300 Meter Tower” by Gustave Eiffel,

which contains many blueprints of all important parts [16].

5.2.2 Single Leg Interface

As already discussed in 3.6, the non-terminals exposed by a substructure together with the parameters it

requires form the interface of that substructure. Figure 5.7 shows a single leg of the Eiffel Tower together

54

Figure 5.7: The interface of a single leg of the Eiffel Tower: The non-terminals shown in red are
connected with the neighbouring leg and fit with the arches. All the non-terminals
shown in cyan are connected to form the bottom platform. The orange parts are used
for the upper platform support structure. Finally, the green part on the very top is used
to only have a single lattice where two legs meet. All these connections are discussed
in detail below.

with the relevant non-terminals that are used for further processing. The second part of the interface is

what parameters the subsubstructure requires, of which a short summary is given in table 5.1. Of course,

other parameterizations, with their own advantages and disadvantages, are also possible. For example,

one problem with this parameterization is that there are dependencies between the different parameters,

especially the slopes and offsets. However, it is possible to calculate the slopes from the offsets when

setting the values.

5.2.3 Support Beams with Lattice Structure

The principal component of the Eiffel Tower is a section of the main support beams with the accompa-

nying lattice structure. There are two basic variants of this, one with and the other without a vertical bar

in the middle. Figure 5.8 shows a segment of this part.

55

Name Description

lo-height, mi-height, ... Relative heights of the single parts of the leg

lo-slope, mi-slope, ... Slopes of the single parts of the leg

lo-offset, mi-offset, ... Offsets from the center for the parts

Table 5.1: Summary of required parameters for the leg

(a) A part of the main support beams with lat-
tice structure. The lattice consists of ver-
tical, horizontal and diagonal bars, which
are connected where they overlap

(b) A simpler part of the main support beams
with lattice structure. Here, the lattice is
missing the vertical bar. This structure is
used in the upper parts of the Eiffel Tower.

Figure 5.8: Main support beams with lattice structure

5.2.4 Connecting Bars with Rivets

Then, to provide more details, the connection is fitted with rivets, or in this case, simply holes where the

rivets could then be placed, as seen in figure 5.9. This was achieved like described in section 5.1.2, just

on a much larger scale.

5.2.5 Placing Arches

The cavities below the bottom parts of adjacent legs, shown in red in figure 5.7 above, are connected,

and an arch is placed between them. The arches themselves make heavy use of the radial split operation.

Figure 5.10 shows a detailed view of an arch.

56

Figure 5.9: Holes for rivets are put where two bars overlap and have a connector.

Figure 5.10: One of the decorative arches of the Eiffel Tower, also note the lower platform, and
the grid that connects the arches with the lower platform

5.2.6 Lower Platform

The lower platform consists of multiple parts. First, the floor is simply fit in all the relevant cavities of the

lower platform part of the legs. Furthermore, a railing is mounted on the outside of each pair of adjacent

legs, with additional supports below the floor. The corner parts of this railing does not necessarily have

57

to be in a local sub-rule, but as in software development, it has been proven useful to keep related things

together. To support the floor, an additional grid is set up right below it, which connects the lower

platform with the arches, which are, as described above, themselves connections between different legs,

creating connections between connections. Figure 5.11 shows the lower platform railing. Below, in

section 5.2.10 an alternative view from below the tower is shown, where the support grid and the hole in

the platform can also be seen.

Figure 5.11: The lower platform of the Eiffel Tower

5.2.7 Higher Platform Support Structure

The higher platform is supported by additional grid structures right below it. Those grid structures

connect each pair of adjacent legs in two places. In contrast to the arches, which are placed strictly

between the legs, these grids also affect the legs themselves. This was achieved in the same way as any

other connection, by including the legs on the left hand side of the local sub-rule, similiar to the grid

example in section 5.1.3. Figure 5.12 shows how the smaller lattices are integrated between the legs, and

how a single grid is fit along the whole width.

Figure 5.12: The supporting structure for the higher platform. Note how the grid is aligned over
the whole width, and how the central lattice mirrors the structure of the other lattices.

58

5.2.8 Common Grid in Top Part

In the very top part of the Eiffel Tower, the single legs meet. If every leg contained a lattice on all four

sides there, there would be two lattices right next to each other in the center. In reality, though, the legs

”join”, and only a single lattice is placed between them. This is easily modeled using a local sub-rule, as

shown in figure 5.13

Figure 5.13: Shared grid between the top parts of the Eiffel Tower

5.2.9 Campanile

The campanile on top of the Eiffel Tower basically consists of several applications of the radial split,

forming a dome structure, on top of which a round structure is mounted. Below the dome, however, is

a grid structure on which the dome had to be mounted. This was done by creating a local sub-rule that

connects the dome to the grid twice: One connection is responsible for having the support beams outside

the grid structure, the other provides the horizontal support bars. Figure 5.14 shows the result.

Figure 5.14: The campanile on top of the Eiffel Tower

59

5.2.10 Evaluation of the Model

As mentioned above, the blue prints provided in the book ”The 300 Meter Tower” [16] were used as

basis of the model. To prove the quality of the model, several comparisons between the blue prints and

photos of the actual Eiffel Tower and renderings of the created model are shown here.

(a) The general structural blue
print of the Eiffel Tower

(b) A photograph of the Eiffel
Tower (Released under CC-
BY-SA 3.0 by Benh Lieu
Song)

(c) A rendering of the Eiffel
Tower model

Figure 5.15: Comparison of the Eiffel Tower model with a blue print and a photograph

(a) A blue print of one section of the pillars (b) A detailed view of one of the pillars

Figure 5.16: Comparison of the Eiffel Tower model with a blue prints of a pillar part

60

(a) A photograph taken from below the Eiffel Tower (Released into the public domain under
CC0)

(b) A rendering of the Eiffel Tower model

Figure 5.17: Comparison of the Eiffel Tower model with a photograph from below. Note the char-
acteristic shape of the hole in the bottom platform

61

5.2.11 Eiffel Tower Variations

One of the reasons for a procedural model is the ease with which variations of the same model can be

created. The parameterization of the model determines the design space one has when creating such

variations. Since the Eiffel Tower model is defined as four pillars with fixed parts, but variable slopes

and heights for these parts, variations along these dimensions are very easy. Figure 5.18 shows several

altered Eiffel Tower models. Since the connections are also created procedurally, they stay consistent

even when the model is changed.

5.2.12 Level-of-Detail

The description of the Eiffel Tower knows four level-of-detail levels. The coarsest version only consists

of the general structure, with four legs, and no lattices, platforms, arches or any other detail. The second

level adds a basic version of the campanile, platforms and arches, as well as the lattice structures to the

legs, but the bars in the lattice are not split into single rails and there are no connections from them to

the general structure. The next level then adds all connections between bars and adds all missing detail

to the campanile, platforms and arches. The highest level, finally, only adds rivets to the connections.

Since putting holes into convex polyhedra increases the number of required polyhedra considerably, this

leads to a massively increased rendering time. Figure 5.19 shows the different levels of detail next to

each other.

62

(a) A very simple variation, where only a part of
the pillar is replaced

(b) A more complex variation, where the slopes
are changed to give the Eiffel Tower a more
”sturdy” appearance.

(c) Another variation that can be done is changing
the different heights relative to each other. Note
especially that the pillars meet at a much higher
point than in the original model.

(d) What can also be interesting is to break the sym-
metry, for example by making one pillar shorter
than the others. This could be used to place the
Eiffel Tower on a non-planar surface, while still
maintaining structural integrity.

Figure 5.18: Variants of the Eiffel Tower
63

(a) Only the basic outline is present (b) The basic outline is fit with a simplified lattice
structure

(c) The lattice structure is refined (d) Finally, rivets are added, which are only visible
up close

Figure 5.19: The different levels of detail of the Eiffel Tower

64

Chapter 6

Conclusion

6.1 Summary

An extension for split grammars was presented, which can be used to easily model interconnections be-

tween model parts. It works by allowing each rule to have a local sub-rule that can connect multiple

non-terminals of that sub-tree. By keeping the rules local, both implementation complexity and difficul-

ties in usage are minimized. To allow these rules to perform useful operations on the selected scopes,

several grammar functions in addition to simple splits have been defined.

Locally context-sensitive sub-rules were also added to an existing split grammar implementation based

on the language GML. The implementation maintains a hierarchy of scopes, and provides functions to

perform the lookups necessary to select multiple scopes for the left hand-side of a grammar rule. The

additional grammar functions were also implemented, and can be used on the selected scopes, to create

new ones and apply further grammar rules to them. Additionally, a simple, semantic level-of-detail con-

cept was integrated with the grammar implementation.

To demonstrate the feasibility of this approach, several examples are provided, which include simple

tile arrangements and connected planks. As a proof of the full power of the extension, the Eiffel Tower

was modeled, down to the individual rivets. Several substructures were highlighted to show how and

where the extension is actually needed.

6.2 Limitations

While the Eiffel Tower certainly looks impressive, there are several limitations, and certain things that

still can not be modeled easily. Since the symbol lookups are performed by name rather than by location,

some kinds of connections are difficult to model, for example connecting two sides of a gallery by the

shortest possible bridge. In the current implementation, it would be necessary to explicitely state which

parts of the gallery are to be linked.

Another issue are dependencies between parameters. In the current implementation it is very easy to

65

accidentally introduce such dependencies, and when one of the parameters is changed later, the model

”breaks”. For example, in the model of the Eiffel Tower, the various angles of the support beams actually

depend very strongly on one another. Since the basis for the model was the book containing blueprints

for all parts, these angles could be chosen correctly, but it is very hard to change them retroactively, and

create different variations of the model in that regard.

Finally, usability is still a concern, too. Limitating context-sensitivity to local parts of the tree cer-

tainly helps, and allows the development of parts in a self-contained way, while guaranteeing that later

integration will actually work. However, some connections, and usually the most prominent ones, are

actually defined on the highest level, therefore requiring to be ”local” to the start-rule anyway. It is then

tedious to always require everything to be constructed just to see that a big arch is not placed properly. A

well thought out definitions of the different levels of detail reduces this issue somewhat, and the level-of-

detail support was actually mainly added to aid development. As with all complicated design processes,

the first model needs a lot more time to be completed than subsequent ones, since many ”tricks” and

patterns have to be learned first. However, the addition of context-sensitivity feels natural, and once its

potential has been grasped, allows for very elegant solutions for some problems.

What context-sensitivity can not provide, though, is to retroactively change the structure of sub-parts.

For example, it is not possible to change split intervals based on what a structure is connected with.

Since the grammar is actually written as code in a programming language, most of these problems can

be worked around by leaving the confines of the shape grammar formalism and simply write code. Of

course, being able to do this is an advantage of this approach, but it is not always an option, especially

in reverse modeling tasks. Therefore, care must be taken that the formalism is expressive enough for a

wide range of problems.

6.3 Future work

To mitigate the limitations discussed above, several improvements can still be made on the basic princi-

ple. It is certainly possible, to also include geometric queries, rather than just allowing the selection of

sub-scopes by name. In fact, some of the provided grammar functions, like the CSG-operations, already

fulfill this rule to some extend. Therefore, other such grammar functions could be provided for specific

requirements. The selection process could also be made more general by providing the ability to select

scopes matching some parameters.

On the other hand, solving the problem with parameter dependencies is a much harder problem. Since

parameters can be defined and used for anything, it is impossible for a computer to decide if something

is a dependency or just a coincidence. Here, further research into how to annotate and restrict dependen-

cies, and resolve unwanted ones would be required.

Improving usability is also not an easy endeavor. As already stated in [15], basically all existing im-

66

plementations suffer from the same issues in one way or another. The implementation presented here has

the additional issue that it is not a ”pure” shape grammar, but basically a language extension and also

restriction, so all the issues that come with programming are also present. The grammar representation is

fairly regular, though, and it is therefore easy to imagine a specialized tool to be implemented, with which

only code strictly conforming to the rules of the shape grammar can be produced, and subsequently also

edited again.

Another possible extension to the presented method comes from the fact that the evaluation proceeds

lazily. In every layer of the tree, the information about what operation was performed and which sub-

scopes resulted from that operation, is stored. Any subsequent pass over this tree can then manipulate

these parameters and even re-evaluate them, effectively allowing to change splits retroactively. Simple

experiments, where a stairwell is moved depending on where a column was placed, have already been

performed, but a remaining question is how this fits with the general framework of the shape grammar.

67

68

Bibliography

[1] Manish Agarwal and Jonathan Cagan. A blend of different tastes: The language of coffee makers.

1996.

[2] Christopher Alexander et al. A city is not a tree. utg., 1974.

[3] Autodesk. 3d studio max.

[4] Autodesk. Maya.

[5] Farès Belhadj and Pierre Audibert. Modeling landscapes with ridges and rivers: bottom up ap-

proach. In Proceedings of the 3rd international conference on Computer graphics and interactive

techniques in Australasia and South East Asia, pages 447–450. ACM, 2005.

[6] Scott Chase. Shape grammar implementations - the last 35 years, 2010.

[7] Hau H Chau, XIAOJUAN Chen, ALISON McKAY, and ALAN de PENNINGTON. Evaluation of

a 3d shape grammar implementation. Design computing and cognition, 4:357–376, 2004.

[8] Bernard Chazelle and David P Dobkin. Optimal convex decompositions. Computational Geometry,

4(5):63–133, 1985.

[9] Noam Chomsky. Syntactic structures. de Gruyter Mouton, 2002.

[10] Rodrigo Coutinho Correia, José Pinto Duarte, and António Menezes Leitão. Malag: a discursive

grammar interpreter for the online generation of mass customized housing. In Proc. 4th Int. Conf.

Design Computing and Cognition, 2010.

[11] Ulrich Flemming. More than the sum of parts: the grammar of queen anne houses. Environment

and Planning B: Planning and Design, 14(3):323–350, 1987.

[12] Institute for Computer Graphics and TU Graz Knowledge Visualization. Gml homepage, http:

//www.generative-modeling.org/.

[13] Institute for Computer Graphics and TU Graz Knowledge Visualization. Gml wiki, http://

hydra.cgv.tugraz.at/gmlwiki/index.php?title=Main Page.

[14] Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic models. Com-

munications of the ACM, 25(6):371–384, 1982.

69

http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://hydra.cgv.tugraz.at/gmlwiki/index.php?title=Main_Page
http://hydra.cgv.tugraz.at/gmlwiki/index.php?title=Main_Page

[15] James Gips. Computer implementation of shape grammars. In NSF/MIT Workshop on Shape

Computation, 1999.

[16] Bertrand Lemoine Gustave Eiffel. The 300 Meter Tower. Taschen Verlag, 2008.

[17] Sven Havemann and Dieter W Fellner. Generative mesh modeling.

[18] Bernhard Hohmann, Sven Havemann, Ulrich Krispel, and Dieter Fellner. A gml shape grammar

for semantically enriched 3d building models. Computers & Graphics, 34(4):322–334, 2010.

[19] Bernhard Hohmann, Ulrich Krispel, Sven Havemann, and Dieter Fellner. Cityfit: High-quality

urban reconstructions by fitting shape grammars to images and derived textured point clouds. In

Proceedings of the 3rd ISPRS Workshop. Citeseer, 2009.

[20] J Mark Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing,

14(4):799–817, 1985.

[21] Alex D Kelley, Michael C Malin, and Gregory M Nielson. Terrain simulation using a model of

stream erosion, volume 22. ACM, 1988.

[22] James Kennedy and Russell Eberhart. Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on, volume 4, pages 1942–1948. IEEE, 1995.

[23] Joan L Kirsch and Russell A Kirsch. The structure of paintings: formal grammar and design.

Environment and Planning B: Planning and Design, 13(2):163–176, 1986.

[24] Terry W Knight. Shape grammars: six types. Environment and Planning B, 26:15–32, 1999.

[25] TW Knight. Color grammars: designing with lines and colors. Environment and Planning B:

Planning and Design, 16(4):417–449, 1989.

[26] Lars Krecklau and Leif Kobbelt. Procedural modeling of interconnected structures. In Computer

Graphics Forum, volume 30, pages 335–344. Wiley Online Library, 2011.

[27] Ramesh Krishnamurti. The arithmetic of shapes. 1980.

[28] Ramesh Krishnamurti. The construction of shapes. 1981.

[29] Ramesh Krishnamurti. Sgi: a shape grammar interpreter. User Manual The Open University

(Milton Keynes, England), 1982.

[30] IK Li and LM Kuen. A set-based shape grammar interpreter, with thoughts on emergence. In First

International Conference on Design Computing and Cognition Workshop, 2004.

[31] Markus Mathias, Andelo Martinovic, Julien Weissenberg, and Luc Van Gool. Procedural 3d build-

ing reconstruction using shape grammars and detectors. In 3D Imaging, Modeling, Processing,

Visualization and Transmission (3DIMPVT), 2011 International Conference on, pages 304–311.

IEEE, 2011.

70

[32] William J Mitchell. The logic of architecture: Design, computation, and cognition. MIT press,

1990.

[33] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural mod-

eling of buildings, volume 25. ACM, 2006.

[34] F Kenton Musgrave, Craig E Kolb, and Robert S Mace. The synthesis and rendering of eroded

fractal terrains. In ACM SIGGRAPH Computer Graphics, volume 23, pages 41–50. ACM, 1989.

[35] Yoav IH Parish and Pascal Müller. Procedural modeling of cities. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 301–308. ACM, 2001.

[36] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan. Development models of

herbaceous plants for computer imagery purposes. In ACM SIGGRAPH Computer Graphics, vol-

ume 22, pages 141–150. ACM, 1988.

[37] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, James S Hanan, F David Fracchia, Deborah R

Fowler, Martin JM de Boer, and Lynn Mercer. The algorithmic beauty of plants, volume 2.

Springer-Verlag New York, 1990.

[38] Ken Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH computer graphics,

19(3):245–254, 1985.

[39] Ondrej Št’ava, Bedrich Beneš, R Měch, Daniel G Aliaga, and Peter Krištof. Inverse procedural

modeling by automatic generation of l-systems. In Computer Graphics Forum, volume 29, pages

665–674. Wiley Online Library, 2010.

[40] George Stiny. Two exercises in formal composition. Environment and Planning B, 3(2):187–210,

1976.

[41] George Stiny. Introduction to shape and shape grammars. Environment and planning B, 7(3):343–

351, 1980.

[42] George Stiny. Weights. Environment and Planning B, 19:413–430, 1992.

[43] George Stiny and James Gips. Shape grammars and the generative specification of painting and

sculpture. Information processing, 71(1460-1465), 1972.

[44] George Stiny, William J Mitchell, et al. The palladian grammar. Environment and Planning B,

5(1):5–18, 1978.

[45] Olivier Teboul, Iasonas Kokkinos, Loıc Simon, Panagiotis Koutsourakis, and Nikos Paragios.

Shape grammar parsing via reinforcement learning. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 2273–2280. IEEE, 2011.

[46] .theprodukkt. .kkrieger.

71

[47] Benjamin Watson, Pascal Muller, Peter Wonka, Chris Sexton, Oleg Veryovka, and Andy Fuller.

Procedural urban modeling in practice. Computer Graphics and Applications, IEEE, 28(3):18–26,

2008.

[48] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant architecture, vol-

ume 22. ACM, 2003.

72

	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Structure of this Document

	2 Related Work
	2.1 Shape Grammars
	2.1.1 Split Grammars
	2.1.2 Modeling Interconnected Structures
	2.1.3 Applications of Shape Grammars
	2.1.4 Procedural Modeling without Shape Grammars

	2.2 Generative Modeling Language
	2.2.1 GML Execution
	2.2.2 GML Example
	2.2.3 Dictionary Stacks
	2.2.4 Convex Polyhedra
	2.2.5 Modeling Environment

	2.3 Split Grammars in GML
	2.3.1 Representing Grammar Rules in GML Code
	2.3.2 Simple Example: Cube Skeleton Grammar in GML
	2.3.3 Limitations of the GML Split Grammar Implementation

	3 Extending Shape Grammars with Context-Sensitive Sub-Rules
	3.1 Approaching the solution
	3.1.1 Approach 1: Using 3D Space as ''Storage Container''
	3.1.2 Approach 2: Defining and Using Attaching Points
	3.1.3 Approach 3: Exchanging Information between Non-Terminal Symbols
	3.1.4 Approach 4: Using Optimization Algorithms on Split Parameters
	3.1.5 Towards Context-Sensitive Sub-Rules

	3.2 Context-Sensitive Sub-Rules
	3.2.1 Definition
	3.2.2 Evaluation of the Sub-Rules

	3.3 Extended Grammar Operations
	3.3.1 List of Grammar Operations
	3.3.2 Variable Number of Result Scopes
	3.3.3 Combining Grammar Operations
	3.3.4 Extending the Set of Grammar Operations

	3.4 Scope Parameters
	3.4.1 Defining Scope Parameters
	3.4.2 Scope Parameter Inheritance
	3.4.3 Scope-Local Coordinate Systems
	3.4.4 Inheriting from Multiple Scopes
	3.4.5 Semantic Level-of-Detail

	3.5 Nondeterminism in the Evaluation of the Grammar
	3.6 Substructure Interfaces using Labeled Non-Terminal Symbols

	4 Implementation
	4.1 Extensions to the Split Grammar Implementation
	4.1.1 Radial Split
	4.1.2 Scope-Local Coordinate Systems

	4.2 Context-Sensitive Sub-Rules
	4.2.1 Defining Rule Context
	4.2.2 Setting Scope Labels
	4.2.3 Implementing Lazy Evaluation of the Grammar
	4.2.4 Scope Selection and Sub-Rules

	4.3 Grammar Operations
	4.3.1 List of Added Grammar Operations

	4.4 Scope Parameters
	4.4.1 Setting and Getting Scope Parameter Values
	4.4.2 Scope Parameter Inheritance

	5 Example Models
	5.1 Simple Examples
	5.1.1 Grid Tiles with Connections
	5.1.2 Wooden Planks with Nails
	5.1.3 Grid Spanning Multiple Separate Areas
	5.1.4 Contour Example - Convexify
	5.1.5 Contour Example - Decorate

	5.2 Eiffel Tower
	5.2.1 General Structure
	5.2.2 Single Leg Interface
	5.2.3 Support Beams with Lattice Structure
	5.2.4 Connecting Bars with Rivets
	5.2.5 Placing Arches
	5.2.6 Lower Platform
	5.2.7 Higher Platform Support Structure
	5.2.8 Common Grid in Top Part
	5.2.9 Campanile
	5.2.10 Evaluation of the Model
	5.2.11 Eiffel Tower Variations
	5.2.12 Level-of-Detail

	6 Conclusion
	6.1 Summary
	6.2 Limitations
	6.3 Future work

