
Master’s Thesis

Design and Implementation
of a Reader/Smartcard

Fault Emulation Framework

Daniel Kroisleitner

————————————–

Institut für Technische Informatik
Technische Universität Graz

Assessor: Steger Christian Ass. Prof. Dipl. -Ing. Dr. techn.
Advisor: Steger Christian Ass. Prof. Dipl. -Ing. Dr. techn.

Druml Norbert Dipl. -Ing. BSc

Graz, im Mai 2013

Kurzfassung

RFID und dessen Nachfolger Technologien erobern mehr und mehr das alltägliche Leben.
Ein wichtiger Schlüsselfaktor für den Erfolg neuer Technologien ist das Vertrauen der
Anwender. Der Benutzer erwartet sich eine hohe Verfügbarkeit, Sicherheit und die
Wahrung der Privatsphäre. Diese Anforderungen müssen schon während der frühen
Phasen des Designs eines Systems berücksichtigt werden. Ein wichtiges Werkzeug dafür
sind Simulationen. Ein Nachteil von Simulationen ist der hohe Zeitaufwand. Speziell
bei komplexen Projekten sind umfassende Simulationen nicht mehr möglich. Um diesen
Nachteil zu umgehen wird immer häufiger auf Emulation zurückgegriffen. Diese Ar-
beit beschäftigt sich mit der Entwicklung eines Frameworks zur Analyse und Verifika-
tion von Software für RFID/NFC Systemen. Das Framework stellt dafür Modelle für
Reader, Karte und der kontaktlosen Schnittstelle zwischen diesen beiden Komponenten
zur Verfügung. Zusätzlich zur funktionalen Analyse stellt diese Emulationsumgebung
einen Mechanismus zur Injektion von Fehlern zur Verfügung. Ebenfalls inkludiert ist ein
Modul zur Leistungsabschätzung. Das Framework wird mit Hilfe eines FPGA Entwick-
lungsboard realisiert (XILINX ML605 - VIRTEX6).

Keywords:
NFC, RFID, Emulation, Wireless Communication, Kryptographie, Power Profiling, Power
Aware Computing, Prototyping Platform

Page 2

Abstract

RFID based technology conquers more and more every days life. An important fact
for the success of a technology is that people have confidence in that technology. The
user expects high reliability, security against fraud and privacy maintenance. Therefore,
reliability and security aspects must be considered during the design of such applica-
tions. Various tools have been developed to enable system verification at early design
steps. Simulations have become an important factor for design evaluation. Though a
common drawback of simulations is the high time effort. Especially for huge projects,
simulations are often not feasible. Therefore, emulation based approaches are needed.
The goal of this work is the development of an emulation framework focusing fault in-
jection and power emulation. The proposed framework includes models for reader/card
and the contactless communication channel for the emulation of RFID based systems.
Additional to the functional verification, information about the power consumption of
the system can be gained. Another important feature of the proposed framework is the
ability to inject faults into the system to emulate fault attacks and/or the occurrence of
natural faults (e.g., due to radiation sources in the environment). The whole project is
implemented on one FPGA (XILINX ML605 - VIRTEX6).

Keywords:
NFC, RFID, Emulation, Wireless Communication, Cryptography, Power Profiling, Power
Aware Computing, Prototyping Platform

Page 3

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgements

First I would like to thank Ass. Prof. Dipl. -Ing. Dr. techn. Christian Steger and
Dr. Josef Haid for enabling this thesis. I would also like to thank Norbert Druml and
Manuel Menghin for the assistance and support during the design an implementation of
the work.
Finally, I would like to thank my family for the aid over the course of my academic
studies.

Graz, March 2013 Daniel Kroisleitner

Page 5

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Goals of this Thesis . 12
1.3 Structure of this Work . 13

2 Related Work and Theory 14
2.1 Side Channel Attacks . 14

2.1.1 Introduction . 14
2.1.2 Power Analysis . 14
2.1.3 Electromagnetic Attacks . 17
2.1.4 Timing Attacks . 19
2.1.5 Countermeasures against Side Channel Attacks 19

2.2 Fault Injection . 20
2.2.1 Introduction . 20
2.2.2 Reasons for Faults . 21
2.2.3 Fault Injection Methods . 22
2.2.4 Protection Mechanisms against Faults 23

2.3 Fault Injection Platforms and Simulations 24
2.3.1 Introduction . 24
2.3.2 Classification of Fault Effects . 25
2.3.3 Saboteurs and Mutants . 25
2.3.4 Simulation based Fault Injection 28
2.3.5 Emulation based Fault Injection 28
2.3.6 Optimization of Fault Injection Campaigns 29

2.4 Power Emulation . 30
2.5 Related Projects . 31

3 Design 36
3.1 General Considerations . 36
3.2 Use Cases . 38
3.3 Requirements . 39
3.4 Overview . 40
3.5 Components and Interfaces . 42

3.5.1 Emulation Framework . 42
3.5.2 Host System . 51

Page 6

3.6 System Architecture . 53

4 Implementation 56
4.1 Tools . 56
4.2 Xilinx ML605 Prototyping Platform . 56
4.3 Advanced Microcontroller Bus Architecture AMBA 58

4.3.1 Advanced High-performance Bus 58
4.3.2 Advanced Peripheral Bus APB . 61

4.4 Gaisler IP Library . 61
4.4.1 LEON3 - High-performance SPARC V8 32-bit Processor 62
4.4.2 DSU3 - LEON3 Hardware Debug Support Unit 62
4.4.3 AHBUART- AMBA AHB Serial Debug Interface 64
4.4.4 AMBA AHB/APB . 64
4.4.5 AHBRAM - Single-port/Dual-port RAM with AHB interface . . . 65
4.4.6 AHB to DDR3 Wrapper . 65

4.5 Emulation Framework . 65
4.5.1 Processor . 66
4.5.2 Bus . 66
4.5.3 RAM . 67
4.5.4 Channel Model . 69
4.5.5 Fault Injection Unit . 71
4.5.6 Power Estimation Unit . 71
4.5.7 Debug Interface . 71

4.6 Host System . 74

5 Results 78
5.1 Emulator - Characteristics and Performance 78
5.2 Software Interface of the Emulation Framework 79
5.3 Experiments . 81

5.3.1 Power Supply - Smartcard . 81
5.3.2 Power Supply - Fault Injection . 83
5.3.3 Multiplier - Fault Injection . 84

6 Conclusion 88

7 Appendix 90
7.1 Manual . 90

7.1.1 Software Interface . 90
7.1.2 Emulation Framework . 93

Page 7

List of Figures

1.1 Use cases of the NFC technology . 11

2.1 Measuring the power consumption of a device 15
2.2 Differential Power Analysis . 18
2.3 Fault classification . 26
2.4 Saboteur placement . 26
2.5 Example fault-space . 30
2.6 VERIFY - Overview . 33
2.7 Modular Fault Injector MFI - Overview 34
2.8 Modular Fault Injector MFI - Injection Controller 34
2.9 Industrial Fault Injection Platform . 35

3.1 Architecture Choice - Two Board Approach 37
3.2 Architecture Choice - Single Board Approach 38
3.3 Emulation Framework - Overview . 40
3.4 Layer of the emulation framework . 42
3.5 Architecture of the Channel Model . 45
3.6 Smartcard - Equivalent circuit of the supply network 45
3.7 Architecture of the Fault Injection Unit 47
3.8 Principle architecture of the PPDU . 49
3.9 Principle architecture of the CADU . 50
3.10 Principle architecture of the Debug Interface 50
3.11 Fault Injection Interface - Class Diagram 52
3.12 Architecture of the emulator hardware . 54
3.13 Optional architecture of the emulator hardware 55

4.1 ML605 Developing Platform - Block Diagram 57
4.2 AMBA AHB transfer . 60
4.3 AMBA AHB write transfer with wait cycles 60
4.4 AMBA APB transfer . 62
4.5 Block diagram of the LEON3 processor 63
4.6 Overview of the Debug Support Unit . 63
4.7 AHB DDR3 memory read access . 66
4.8 AHB DDR3 memory write access . 67
4.9 Principle architecture of the AHB Multiplexer 68
4.10 Internal structure of the AHB Multiplexer 69

Page 8

4.11 Instrumented AHB to DDR3 Wrapper - Write States 73
4.12 CADU architecture . 74
4.13 CADU memory organization . 75
4.14 Relation between Fault Injection Interface application and emulator . . . 76

5.1 Software Interface - Serial Control . 79
5.2 Software Interface - Emulator Control . 80
5.3 Software Interface - Program Emulator . 80
5.4 Software Interface - CADU Control . 81
5.5 Diffie-Hellman Key Exchange - Protocol 82
5.6 Diffie-Hellman Key Exchange . 82
5.7 Diffie-Hellman Key Exchange - Optimized 83
5.8 Field Strength Scaling - Architecture . 84
5.9 Diffie-Hellman Key Exchange - Faulty Behavior 85
5.10 Asymmetric Security Protocol - Faulty Multiplication 86
5.11 Simplified LEON3 integer unit (with integrated trigger, saboteur) 87

7.1 Connect to prototyping platform . 91
7.2 Access to the Debug Interface . 91
7.3 Download software and initialize CPUs . 92
7.4 Control CPUs . 92
7.5 CADU Interface . 92
7.6 Hierarchy of the framework . 93

Page 9

List of Tables

2.1 Saboteur fault modes . 27

3.1 Emulation Framework - Dependencies . 51

4.1 AHB-UART protocol . 64
4.2 Channel Model - FIFO control register . 70
4.3 CADU Control Register . 72

5.1 Address space - Emulation Framework . 78
5.2 Device utilization - Virtex-6 . 78
5.3 Asymmetric Security Protocol - Results 87

7.1 Example configuration of a reader/card setup 92

Page 10

1 Introduction

1.1 Motivation

Contactless technology conquers more and more every days life. RFID based applica-
tions are used in passports, for access control (e.g., access to buildings, public transit),
payment, etc. Especially contactless payment systems are of great interest.The expecta-
tions to this technology are faster and more comfortable ways to pay, the improvement
of existing technologies (e.g., RFID tags instead of traditional product codes) and even
higher levels of security. Especially the combination of mobile phones and Near Field
Communication (NFC) promises various new applications (Figure 1.1).

Figure 1.1: Use cases of the NFC technology. [31]

An important fact for the success of a technology is that people have confidence in that
technology. Therefore it is important that these applications are resistant against attacks

Page 11

and that their reliability is high (the possibility of faults is low). The user expects high
reliability, security against fraud and privacy maintenance. Therefore, reliability and
security aspects must be considered during the design of such applications. Simulations
and emulation based system evaluation are important tools to meet these goals.

Simulations are a key factor during the developing of a system. These tools cover a broad
spectrum, enabling functional analysis, verification, power simulations, etc. Depending
on the type of the simulated system (e.g., software, hardware, mechanics) and the level
of abstraction, the simulation effort can be enormous.
Regarding embedded systems where the complexity is steadily increasing over the years,
traditional simulations become more and more infeasible. Especially system simulation
on a very low level of abstraction (e.g., gate-level simulations) can cover only certain as-
pects of the system behavior due to its high time effort. Considering that power analysis
and fault analysis require a low-level view on the system makes it almost impossible to
simulate larger software projects. This restriction is unacceptable if the whole system
setup (e.g., a communication protocol) should be analyzed.
Hardware accelerated emulation can bridge this gap between accurate results and low
time effort. The use of FPGA prototyping platforms promises a good solution for func-
tional, power and fault analysis of embedded systems.

Regarding RFID systems where the setup consists of several components (reader, card,
tolling infrastructure, etc.), separate simulation of the individual units are often insuffi-
cient. In order to analyze such a system, the interaction between those components must
be considered rather than testing these units independent from each other. Providing a
framework supporting the emulation of these units under authentic conditions enables a
detailed view on the performance and possible vulnerabilities of the system through the
whole developing process.

1.2 Goals of this Thesis

The goal of this work is the development of a reader-smartcard emulation framework
focusing on fault injection and power emulation. The project is part of META[:SEC:].1

Targeting RFID enabled systems, the common setup consists of a reader device and a
RFID card/tag. Additionally, the RF channel must be considered if the whole system
should be analyzed. Using simulations, the evaluation of such a setup can be challenging
and the time effort is high. An emulation based approach is therefore advantageous for
the verification of the whole setup.
Additional to the functional evaluation of the system, also the power consumption of

1Mobile Energy-efficient Trustworthy Authentication Systems with Elliptic Curve based SECurity.
Funded by the Austrian Federal Ministry for Transport, Innovation, and Technology under the FIT-
IT contract 829586.

Page 12

the system is of interest. Especially for passive RFID devices which are powered by the
field of the reader, information about the power consumption is from great importance.
Correct functionality of such devices is only possible if the power consumption does
not exceed the supplied power. Another topic of interest is the behavior of the system
under the presence of faults. Faults can be introduced into a system either due to
natural sources or intentional by an attacker hoping that the device reveals its secret
information. Especially for applications where system failure would lead to high costs
(e.g., payment applications) the analysis of the system under the presence of faults is
from great importance. Therefore, power and fault emulation are an essential part for
system evaluation.

The goal of this thesis is to provide a RFID/NFC emulation framework for software
verification. Functional verification should be possible as well as the analysis of the
application under the presence of hardware faults. Additional to the functional verifica-
tion and the fault analysis the power consumption of the system should be estimated.
Combining functional verification, fault and power analysis into one framework enables
a detailed view on the system during the design of such applications.

According to the requirements the proposed framework supports the following main
features.

• Emulation of a reader-smartcard setup concerning an active reader, a passive RFID
card/tag and the RF channel.

• Emulation of the power consumption of the system.

• Fault emulation to verify the consequences of faults introduced into the system
either by natural sources or during an attack.

1.3 Structure of this Work

Chapter 2 gives an introduction to related topics. Section 2.1 deals with side channel
attacks. Especially the concept of Differential Power Analysis is explained which is a
powerful method to observe the internal state of a device and can therefore be used to
gain secret data stored in a system. Section 2.2 gives an overview about the reasons
of faults and the thematic of fault injection where Section 2.3 deals with the simula-
tion/emulation of faults in systems. Section 2.4 gives a short introduction to the topic
of power emulation. The chapter concludes with a selection of related projects. Chapter
3 and Chapter 4 deal with the design and implementation of the emulation framework.
The results are presented in Chapter 5. The work concludes with Chapter 6 providing
an outlook and ideas for future extensions.

Page 13

2 Related Work and Theory

2.1 Side Channel Attacks

2.1.1 Introduction

Side Channel Attacks are methods to gain restricted information about a system during a
noninvasive attack. The term side channel refers to the ability to observe characteristics
of a system which carries information. With such an information an attacker might be
able to gain secret data. Carrier of such information can be the power consumption,
electromagnetic emanation or the timing behavior of the system.

The target of such an attack is for example the retrieval of the secret key of a crypto-
graphic system or to get information about the used algorithm of a system.

2.1.2 Power Analysis

The power consumption of a device can leak information about the current operations
being performed or even about data being processed on the device. This fact can be
used to attack a cryptographic system by measuring the power consumption during
cryptographic computation.
Figure 2.1 shows two possibilities to measure the power consumption of a device [23].
The first possibility is to place a resistor Rscope between the Vss pin and the ground
line. The current moving through Rscope creates a voltage. If the power consumption
is high, the higher current creates a higher voltage (higher value of Vscope). If the
power consumption is low, the lower current creates a lower voltage (lower value of
Vscope). Therefore, measuring Vscope with an oscilloscope gives information about the
power consumption of the device under attack (DUA).
The second possibility is to place a resistor Rscope between the Vcc pin and the power
supply. If the power consumption is high, the higher current creates a higher voltage
at Rscope which leads to a lower voltage Vscope. If the power consumption is low, the
lower current creates a lower voltage at Rscope which leads to a higher voltage Vscope.
Therefore, a smaller value of Vscope indicates higher power consumption and vice versa.

Page 14

Figure 2.1: Measuring the power consumption of a device using a resistor and an
oscilloscope.[23]

Simple Power Analysis

Simple Power Analysis (SPA) is a technique where measurements of the power con-
sumption of a DUA are directly interpreted [25]. Because different operations consume
different amount of energy, SPA can be used to identify these operations. Using SPA, it
is also possible to get information about data being processed (e.g., the secret key of a
cryptographic algorithm).
As shown in [23], the power trace pattern of a 3DES operation can be identified. If an
attacker does not know which cryptographic operation is used, such additional informa-
tion can be helpful. Another example for SPA stated in [23], is the attack on the modular
exponentiation of the RSA algorithm. The modular exponentiation is performed using
the binary left-to-right algorithm. Because of the different power consumption of the
squaring operation and the multiplication and because the multiplication is only per-
formed when a bit of exponent is ’1’, the secret exponent can be found by analyzing the
power trace. The value of the exponent can be clearly identified in the power trace.
Because SPA needs strong data-dependent features in the power trace, SPA is not practi-
cable for situations where cryptographic operations are hidden in noise [23]. To overcome
this problem Differential Power Analysis (DPA) can be used.

Page 15

Differential Power Analysis

DPA is a powerful method to gain secret information from a set of power traces using
statistical methods. The idea of this method is that the power consumption is influ-
enced by the processed data and that information about this data can be gained using
correlation between different measurements.
Kocher et al. [23] describe an experiment where the basic principle of statistical methods
in power analysis is shown. The example uses several power traces captured during an
AES-128 operation on a smartcard. The traces were generated using randomly chosen
plain text input for every trace. Only power values from a specific time instance are
used which means that one power value per trace is required. For the experiment, the
moment when the device computes the output of the first S-box was chosen. Depending
on the LSB bit of the result, two subsets of power traces were built. For both subsets,
the distribution of the power values at the specific time event was computed. The result
shows that the distribution of both subsets is significantly different [23]. This shows that
the power consumption correlates to the LSB of the S-box computation. The results in
[23] also show that these distributions overlap, which means that single measurements
would not be sufficient to identify the value of the S-box bit. The experiment makes
clear that statistical methods can be used to gain additional information from a set of
power measurements.

Using the knowledge from the experiment, DPA can be used to attack an AES-128
cryptographic operation. Goal of the attack is to find the secret key.
The example attack from [23] attacks the AddRoundKey and the SubBytes routines
from the first round.1 Equation (2.1) shows the operation to attack where Ii is the 16-
byte intermediate value of the cipher after the SubBytes routine and Ii,n the nth byte
of Ii. K denotes the first round key and Kn the nth byte of K. Xi is the plaintext and
Xi,n denotes the nth byte of Xi. The index i indicates a specific trace in a set of power
traces. S is the S-box of the AES.

Ii,n = S[Xi,n ⊕Kn] n ∈ {0, . . . , 15} (2.1)

Kn is the nth byte of the secret key, therefore the intermediate value Ii,n is unknown.
Because Kn is a 8-bit value, there are 256 possible candidates for the nth byte of the
secret key. In order to find Kn, a test is needed which says if a guess of Kn is correct or
not. As stated in [23], this task can be solved using DPA.
In order to perform DPA on the given problem, a selection function has to be found
[23]. This selection function is used to divide the measured traces into subsets. For the
example attack on the AES-128 cipher the LSB of Ii,n was used.

1For additional information about the Advanced Encryption Standard (AES) see [30].

Page 16

An attacker now has to measure the power consumption of the cryptographic system
during the encryption. This task has to be repeated several times using randomly chosen
plain text for every measurement gaining power traces. Now the attacker has to ’guess’
one possible value for Kn. Using Kn, the attacker can compute Ii,n for every power
trace i using the same plain text as used for the measurement of trace i. Depending
on the LSB of Ii,n (the selection function) the set of power traces can be divided into
two subsets. Now, the attacker computes the average value for all time instances in
the subset, producing two average traces for each subset. Using these two traces the
difference between the subsets can be computed.
This task is repeated for every possible guess of Kn. Because Kn is a 8-bit value there are
256 possibilities. For every guess the attacker computes the difference of the averages.
In this example attack 256 difference traces must be computed. Using these difference
traces, the right guess can be identified by searching for the traces with the highest
peaks [23]. This is motivated by the experiment described above. Instead of evaluating
only one specific point in the trace as done in the experiment, DPA considers the whole
trace. This is done by computing the average trace for each subset which are then
compared. Spikes in the difference trace indicate that the trace is correlated to the
selection function because the intermediate value is manipulated by the device [23].
Therefore, higher spikes indicate stronger correlation to the selection function and are
therefore an indicator for a right guess.
Because the secret key is a 16-byte key this attack has to be repeated for every Kn to
get the whole key. Figure 2.2 shows the tasks for the example attack for two guesses.

This example attack shows the basic principle of DPA. However, in [23] also a more
general view on DPA can be found. As stated in [23], the concept of SPA and DPA can
also be applied on electromagnetic measurements performing Simple Electromagnetic
Attacks (SEMA) or Differential Electromagnetic Attacks (DEMA).
A more complex attack using power analysis is the so called High-Order DPA (HODPA)
which can be used to circumvent countermeasures against DPA [21], [28], [33].

2.1.3 Electromagnetic Attacks

Similar to power analysis, information is also leaked due to electromagnetic emanation.
Measuring the electromagnetic field of a device instead of the power consumption can be
advantageous if a measurement setup to measure the power consumption is not possible.
For example passive RFID tags where the analog front-end is integrated on the same IC
as the RFID device. In such a case the measurement of the electromagnetic field can
be a good alternative. As stated in [1], electromagnetic attacks can even perform better
than attacks using power analysis. Additionally, these attacks can be used to circumvent
countermeasures against power analysis.
The simplest way to perform an attack is to measure the electromagnetic emanation with
one antenna in the vicinity of the device. These measurements can then be interpreted

Page 17

Figure 2.2: DPA process for two guesses. The selection function divides the set of traces
into two subsets. For each subset an average trace is computed. The differ-
ence trace is used to find the correct key. [23]

applying the mechanisms used for power analysis (see Section 2.1.2). One advantage of
electromagnetic attacks in contrast to power analysis is the capability of exploiting local
information [16]. Using small probes, an attacker is able to pinpoint specific areas on a
chip (CPU, buses, etc.).
Gandolfi et al. [16] propose several attacks on cryptographic systems using simple hand-
made solenoids made of a coiled copper wire. The measurements were then amplified
and analyzed using DEMA. The experiments show that electromagnetic attacks can
yield better results than attacks using power analysis. In the experiments, the DEMA
reaches a higher SNR than DPA.
Similar experiments were proposed by Hutter et al. [20], where attacks were performed
on passive RFID tags. The experiments were performed on self-made prototypes instead
of commercial passive RFID devices. The target of the attacks was the AES algorithm.
The experiments performed by Hutter et al. also targeted the challenge of EM attacks
in the presence of an external field provided by a RFID reader.

Page 18

2.1.4 Timing Attacks

Another potential side channel leaking sensitive information is the timing behavior of a
device. Timing attacks make use of the data/key dependent runtime of a cryptographic
algorithm. Measuring this small time variations during the computation can then be used
to gain sensitive data. Such variations are caused for example by processor instructions
which run in non-fixed time, conditional statements, etc.
In [24], Kocher presented such timing attacks on implementations of Diffie-Hellman,
RSA and DSS.

2.1.5 Countermeasures against Side Channel Attacks

As shown in the sections above side channel attacks are powerful methods to attack
a cryptographic system. Therefore, countermeasures have to be found to mitigate the
threat of such attacks.
As mentioned in [23] mechanisms such as balancing, blinding and masking can be used to
reduce the threat of power analysis. Another idea is to add noise to the measurements
using circuits performing computations uncorrelated to the cryptographic operations.
As also mentioned in [23] an attacker may be able to circumvent these countermeasures
using HODPA and/or performing a higher amount of measurements. As highlighted
in [1] electromagnetic attacks can also be used to circumvent countermeasures against
power analysis. Therefore, also the electromagnetic emanation of a system must be
considered if the side channel leakage of a system should be reduced. This can for
example be done by reducing the signal strength and/or shielding [1].
Facing timing attacks, blinding mechanism or random delays added to the computations
can be used [24].
In [41], a balancing approach can be found where the problem is addressed on circuit
level to suppress the leakage of the power consumption. Even if that approach shows
that the effects of a side channel attack can be reduced, the authors also mentioned that
perfect security does not exist.

Balancing Mechanism

These mechanisms try to reduce the variations of the power consumption during com-
putations and thus information leakage. This can be done on circuit level using sophisti-
cated designs to make the power consumption of the device less dependent on data and
the operations being performed [23].
Examples for such designs can be found in [41], [35] and [39].

Page 19

Blinding Mechanism

Because many cryptographic systems use operations over a finite field, one can use
mathematical relationships to blind the computations. Equation (2.2) shows such a
relationship suitable for blinding (where φ(.) denotes the Euler’s phi function).

Ad+k·φ(P)modP = AdmodP (2.2)

Changing k randomly between computations interferes statistical tests like DPA [23].

Masking Mechanism

Similar to blinding, masking can be used for symmetric algorithms where secret constants
and intermediates are split into randomized parts [23]. Computations are then performed
on these independent parts. For the final output these partial results are reassembled.

2.2 Fault Injection

2.2.1 Introduction

The term Fault Injection is generally used for intentional faults introduced into a system.
There are several reasons why faults are injected into systems.
One reason is to test a system under the influence of faults. In order to test a system
under such conditions faults are injected into a running system. The system is then
observed. If such a fault does not lead to a failure in the system, the test has successfully
passed. If not, the system is vulnerable against such faults. Although this looks very
trivial, there is a lot of research targeting such problems. Modern ICs comprise a huge
amount of transistors. The challenge is now to find ’good’ targets for the test to get
valuable results. Another challenge is to choose the right time for injecting a fault. For
example changing one bit in the system will not produce any failure if the bit will never
be read or if the bit is overwritten before the bit is read again. To find ’good’ targets is
therefore a challenging task.
Faults injected into a running system can also be used for attacks which are often called
fault attacks. If the location of the fault is well chosen an attacker may retrieve secret
information from the system. Potential targets of such attacks are for example the
program counter or (on-chip) buses.

Page 20

2.2.2 Reasons for Faults

One important factor for faults in electric devices is radiation. The particles travel
through the device and interact with the material of the IC. This interaction can then
lead to so called soft errors if the circuit is not permanently damaged (e.g., one bit of
the memory is flipped) or can even damage the device. Soft errors are also referred to
as single event upsets (SEU). Depending on the amount of affected bits also the terms
singlebit upsets (SBU) and multibit upsets (MBU) are used.
As stated in [8], three mechanisms are dominant in the terrestrial environment. The
first mechanism introduces faults due to alpha particles (ionized helium). Such alpha
particles are emitted by impurities in the packaging material. An early work describing
the impact of packaging material on dynamic RAM can be found in [27].
A second source of faults are high-energy cosmic rays. These rays interact with the
atmosphere of the earth and produce secondary particles. These secondary particles
then travel deeper into the atmosphere and produce tertiary particles and so on. At
terrestrial level the particles then interact with the device material which causes faults.
The third source of faults are low-energy cosmic rays where faults are introduced due to
the reaction of low-energy neutrons with boron inside the device.
Although these effects can be diminished (e.g., due to purified packaging material or
shielding) the source of faults can never be eliminated.2 Therefore, additional counter-
measures have to be taken to deal with this kind of faults.
Where these three mechanisms describe the situation on terrestrial level one should also
mention that the occurrence of faults also depends on altitude, latitude and solar activ-
ity [32].
Another important factor concerning faults introduced due to radiation is the used tech-
nology. As shown in [8] the soft error rate (SER) depends on the technology scaling and
even differs for distinct components such as SRAM and DRAM. While the bit SER of
DRAMs is decreasing due to technology evolution the bit SER of SRAM has saturated.
If the increasing memory density of modern systems is considered these trends lead to
constant system SER for DRAMs and an increasing system SER for SRAMs. Similar to
memory also logic elements are sensitive to radiation. Faults happen due to single-event
transients (SET) introduced into the logic element by radiation. These glitches then
lead to an error if this wrong signal actually propagates to the input of a flip-flop/latch
during a latching clock signal [8]. The probability that such glitches are latched depends
on the propagation delay and the clock frequency. Therefore, the probability of such
errors increases with advanced technology because of the reduced propagation delay and
higher frequencies.
In order to face these problems, mechanisms are necessary to mitigate the influence of
such faults (see Section 2.2.4).

Other than natural faults introduced due radiation, faults can be injected into a system

2For a detailed view on the fault mechanisms, the physical processes and possible countermeasures see
[8].

Page 21

with the intention to retrieve secret information. In contrast to side channel attacks
(see Section 2.1) the attacker takes an action to influence the target of the attack. This
can either be invasive, by detaching the package and manipulation of the circuit or
noninvasive using radiation or temperature. Another possibility is to manipulate the
power supply to introduce faults or to perturb the clock signal. Goal of such attacks is
to change the behavior of a system (e.g., to manipulate the execution of a program or
to disable specific components).
A major difference between natural faults and intentional faults during a fault attack
is their behavior. While radiation caused faults are mostly temporary (e.g., a write on
an affected bit in memory overwrites the faulty bit) invasive intrusion can also lead to
a permanent fault (e.g., due to manipulation of the circuit). Another difference is that
fault attacks can inject more than one fault simultaneously where the probability for
multibit faults caused by natural sources is low.

Fault injection can therefore be seen as a tool to test the protection mechanisms added
to mitigate the influence of natural faults and as a method to attack cryptographic sys-
tems (fault attacks). Additionally, fault injection can be used to analyze the threat of
a potential attack (e.g., to oppose the risk of an attack to the costs of the countermea-
sure).

2.2.3 Fault Injection Methods

Generally, methods for fault injection can be divided into two classes. The first class
uses physical effects to introduce faults into a running system. The other class makes
use of simulations to analyze the impact of faults. While the first class can be used to
attack a system in order to retrieve secrete information, the second class is used to test
the vulnerability of the system in presence of faults. This information can then be used
to develop robust devices.
This section describes some possible methods to inject faults into a running system while
the concept of simulating faults is described in Section 2.3.

As described in [5] the most common methods for fault injection are the following:

• Supply voltage variations
Varying the supply voltage during runtime of the system may cause a processor to
skip an instruction. This can for example be used to omit branches. Especially for
contactless smartcards where the card is supplied by an external field, such attacks
are from interest.

• External clock variations
Similar to supply voltage variations, variations of the clock can cause the processor
to skip instructions or can lead to data misreads.

Page 22

• Temperature
The goal of this method is to vary the temperature until a threshold is reached
where the circuit or parts of the circuit does not work correctly anymore. This
can for example be used to inject random faults. As also stated in [5], this method
can be used to disable read or write operations to memory which can be exploited
due to the fact that the temperature threshold for read and write operations are
not the same. Temperature attacks can therefore be used to omit counter updates
such as used for limited resources (e.g., a cryptographic key which can be used
several times until it becomes invalid).

• White light
Exploiting the photoelectric effect of electric circuits, light can be used to introduce
faults into a detached IC.

• Laser beams
Similar to white light, laser beams can be used for fault injection. The advantage
of laser light compared to white light is that a certain part of the circuit can be
attacked more precisely.

• X-ray and ion beams
Other than fault injection with light, these methods can be used without depack-
aging the IC.

The described methods vary in effectiveness and their costs. Therefore, in order to design
robust systems against fault attacks the designer must conclude on which equipment a
potential attacker possesses.

2.2.4 Protection Mechanisms against Faults

Depending on the purpose of the protection mechanism different methods exist. While
countermeasures against natural faults are often designed for SBUs, this is not sufficient
as protection against fault attacks where multibit faults can occur. Therefore, analyzing
the threats of a system is of great importance when the system should be robust against
a certain kind of faults.

One possible mechanism against faults to protect memory is to add one bit for each data
word which stores the parity. The parity bit allows to detect one error in the data word
but fails if two errors occur. In general, if one parity bit is used only an even number
of errors can be detected. Another possibility is to use error detection and correction
EDAC or error correction codes ECC to protect the memory. Other than the parity
check, this method also allows to correct a wrong bit. This feature is implemented by
adding some bits to the data word to increase the redundancy of the information stored

Page 23

in the extended data word. Depending on the additional information provided due to
ECC one or more erroneous bits can be corrected.
Where these mechanisms are suitable to protect the integrity of the memory, additional
methods must be found to protect the combinational/sequential logic. One possibility
is to duplicate the circuit and compare their results. If the results differ from each other
an error occurred and an alarm can be triggered. If more than two instances of the same
circuit are used the result can even be corrected. Also possible is the use of complemen-
tary redundancy where the circuits produce complemented outputs. If the result is the
same on both outputs, an error occurred. The advantage of such circuits is that it can
be used for multibit faults due to the fact that fault injection with complementary effect
is complicated [5].
Besides the methods described above, also redundancy in time can be used as protec-
tion mechanism. Using this protection scheme the computation is repeated at the same
circuit and the results are then compared. Similar to the spatial implementation, errors
can be detected or even corrected if the computation is performed more than twice.
A more sophisticated technique is proposed by Moore et al. [29], where self-timed circuits
and dual-rail logic are used to improve the resistance against faults and even against side
channel attacks.
Another possible countermeasure against attacks is the use of sensors [5]. These sensors
can for example be used to detect voltage or frequency variation. Also possible are ac-
tive shields covering the entire chip. This shield consists of a metal mesh where data is
passing. If an attacker tries to modify the circuit also the data in the mesh is corrupted
and an error signal is generated.
Similar to the mechanisms implemented in hardware countermeasures can also be imple-
mented in software. Such mechanisms are for example checksums, variable redundancy
or execution redundancy [5].

All these mechanisms have in common that size and/or execution penalties must be
accepted.

2.3 Fault Injection Platforms and Simulations

2.3.1 Introduction

This section deals with the evaluation of systems under the influence of faults.
One possible method to test systems and error detection/correction mechanisms is to use
the fault injection methods described in Section 2.2.3 (e.g., due to the use of radiation or
invasive methods). One important drawback of this method is that at least a prototype
is needed. Therefore, the information about vulnerabilities of the design is not available
at the early design steps. Another disadvantage is the limited capability to monitor the
internal states of the system which is important for the understanding of an erroneous

Page 24

system behavior.
To circumvent these drawbacks one can use simulations or system emulator with inte-
grated fault injectors. Using this method, faults can be injected at arbitrary locations
and the effects can be monitored. Simulations can be done using hardware description
languages (HDL) such as VHDL, Verilog, SystemC, etc. Another possibility is to imple-
ment the system on an FPGA together with dedicated circuits necessary to introduce
faults. The advantage of an FPGA based system emulator opposed to simulations is the
improved simulation speed and therefore a higher fault injection rate.

2.3.2 Classification of Fault Effects

In the context of simulated/emulated fault injection, faults can be divided into three
classes [40].

• Failure
If the injected fault leads to a wrong behavior of the circuit (e.g., wrong or delayed
output) the fault is classified as failure.

• Silent fault
If the injected fault does not lead to a wrong behavior and disappears completely
until the testbench has finished, the fault is considered as silent. This can be
the case if the fault affects a flip-flop/memory cell which is overwritten during
execution before the value is used.

• Latent fault
If the injected fault does not lead to a wrong behavior during the execution of
the testbench but remains as a deviation of the system state compared to the
state observed during a fault free execution, the fault is classified as latent. This
class of faults depends on the testbench because if the simulation/emulation would
continue, the fault may causes a failure or a latent fault.
Figure 2.3 shows the two cases where a fault is either classified as latent fault or
as failure/silent fault depending on the duration of the testbench/experiment.

2.3.3 Saboteurs and Mutants

Using a HDL, a common method for fault injection is the usage of saboteurs or mu-
tants. Saboteurs are simple units which are used to modify signals. Therefore, these
units are placed between the signal’s source and its sink (see Figure 2.4). These units
have a signal input and a signal output. Additionally, a saboteur has certain control
inputs such as activate, mode and the clock signal. The activate signal is used to trigger

Page 25

Figure 2.3: Fault classification. a) latent fault leads to a failure b)latent fault leads
to a silent fault.

the fault. If the saboteur is disabled it behaves like a wire. If the saboteur supports
different kinds of faults also a mode signal is needed to choose which fault should be trig-
gered. Common fault modes implemented in saboteurs are stuck-at-zero, stuck-at-one,
indetermination faults, negation faults, delays, bridging faults or bit-flips. Table
2.1 gives an overview about the faults, using the definition from [18].

Figure 2.4: Saboteur placement. a) original signal b) instrumented signal using a
saboteur.

Other than saboteurs which are used to manipulate signals a mutant is a modified version
of a submodule used by the system. The mutant behaves like the original module until
the mutant is activated. If the mutant is activated, the module behaves like a faulty
version of the original unit.

Page 26

Fault Description

Stuck-at-Zero The output stays per-
manently at zero. This
fault reflects a direct
modification of the cir-
cuit where the signal is
wired to a logic zero.

Stuck-at-One The output stays per-
manently at one. This
fault reflects a direct
modification of the cir-
cuit where the signal is
wired to a logic one.

Indetermination The signal holds an un-
defined state (perma-
nent fault). This fault
reflects a direct modifi-
cation of the circuit.

Negation The signal is inverted
(permanent fault).

Delay Input to output delay
(transient fault). This
fault reflects supply
voltage variations.

Bridging Fault The input is not propa-
gated anymore (perma-
nent fault).

Bit-Flip The input is inverted
for one cycle (tran-
sient fault). This fault
reflects latched SETs
(e.g., due to radiation or
laser beam).

Table 2.1: Common fault modes used for saboteurs (the table uses the definition from
[18]).

Page 27

A common requirement of these units is that additional mechanisms are necessary to
control the activation and deactivation of the modules.

Both, saboteurs and mutants, are used in simulations and emulation based fault injec-
tion.

2.3.4 Simulation based Fault Injection

Simulations execute HDL descriptions of a system. One possible method to use simula-
tions for fault injection is to run the simulation until a specific point, change the value
of one or more signals and resume the simulation. After the simulation completed the
results can be obtained. This method works without the modification of the system
model but depends on the available commands provided by the simulator.
Another possible method for simulation based fault injection is the usage of saboteurs
and/or mutants. The system model is extended with these additional modules to allow
automated fault injection. Additionally, the fault injection campaign is independent of
the used simulator. A common method for such campaigns is to perform a golden run
where the system is simulated without the presence of faults. These results are then
stored and can be compared to the results of faulty runs to monitor the effects of the
faults. A common disadvantage of simulation based fault injection is the high time effort
especially for huge projects. Therefore, emulation based fault injection has become an
important tool to improve the validation process.

2.3.5 Emulation based Fault Injection

The principle of emulation based fault injection is the usage of hardware (usually FP-
GAs) to speedup the injection campaigns. There are different ways to exploit the ad-
vantages of FPGA based fault emulation. One method is to use global reconfiguration
or partial reconfiguration methods [3]. This method injects faults due to reconfigu-
ration of the FPGA. This can either be done by reconfiguring the whole device (global
reconfiguration) or by changing only parts of the circuit (partial reconfiguration).
Therefore, one major advantage of this method is that no modification of the original
system model is necessary. This means that no additional circuits must be added to the
system which is advantageous if the hardware resources of the used FPGA are strongly
limited. For example to inject a fault into a combinational subcircuit, which is imple-
mented as LUT on the FPGA, only the description of the corresponding LUT must be
changed.
Using global reconfiguration, the whole FPGA is reconfigured. Therefore, a mechanism
must be provided to restore the system state after the fault is injected to preserve inter-
mediate results (also see [19]). To circumvent this inter-configuration communication,

Page 28

partial reconfiguration can be used where only a part of the device is reconfigured and
therefore does not affect the whole system. The drawback of this method is that the de-
vice must possess the capability for partial reconfiguration. Therefore, this approach
is limited to a certain subset of FPGAs.
Another approach is to modify the system model in order to allow the manipulation of
certain units. Similar to simulation based fault injection, the concept of saboteurs and
mutants can be applied. As done by the simulation approach, a golden run is performed,
to get a fault free reference for the analysis. In order to perform the injection campaign
a mechanism must be implemented to trigger the fault units and to monitor the results.
An important difference between simulations and emulation based fault injection is that
the system model and the additional components used for the injection campaign must
be available in a synthesizable description.

2.3.6 Optimization of Fault Injection Campaigns

Because the evaluation of a whole system under the influence of faults requires a lot of
time, mechanisms are needed to speedup this process and to improve the effectiveness
of the fault injection campaigns. As mentioned in Section 2.3.5, hardware accelerated
methods can be used to gain better performance compared to simulation based methods.
However, speeding up the injection process is often not enough considering the huge
amount of possible injection points. Therefore, also the effectiveness of the process must
be improved rather than only increasing the speed of the campaigns.
A common method of fault injection tools is to choose the location and time of the faults
randomly from the fault-space (two dimensional space spanned by time and location).
The problem of this approach is that only a subset of these injected faults has an impact
on the system behavior. Therefore, the efficiency of the campaign is often low. For
example if a fault is injected into a memory location that is never read, the fault can
not affect the system and is therefore useless for evaluation. Similar, if a fault is injected
into a location just before a write on that memory, the fault has no effect. Figure 2.5
shows an example fault-space for memory. Fault F1 has no effect because the fault is
injected in an unused cell. Similar, F3 is useless because the cell is not read after the
fault has been injected. Also F2 has no effect because the cell is written just after the
injection. F4 and F5 are injected in the same cell before a read. Therefore, F5 would
be sufficient. If the faults are modeled as simple bit-flips, F5 may neutralize the effect
of F4 which is even worse because the effect of the fault disappears. This can lead to a
misinterpretation during the analysis phase.
The goal is therefore to identify those locations of the fault-space that influence the
system behavior.

A paper targeting the pre-analysis for software based fault injection where proposed by
Barbosa et al. [7]. This method uses the assembly code and information obtained by a
reference run of the software to find possible locations and time instances for the fault

Page 29

Figure 2.5: Example fault-space of memory. W indicates a write and R a read on the
memory cell at a distinct time instance. Injected faults are indicated by F .

injection. The idea is that faults should only be injected into resources immediately
before they are read.

Another topic of interest concerning the usage of instrumented system models (e.g.,
system models with integrated saboteurs/mutants) is how to place these additional units.
The most obvious method is to add these units by hand at the desired positions in the
model. However, this is only feasible if the amount of the units is low. Therefore,
automated mechanisms are needed for a detailed system evaluation. One approach of
automatic saboteur and mutant placement can be found in [6], where Baraza et al.
propose a method to instrument VHDL models automatically.

2.4 Power Emulation

The power consumption of a system is an important design criteria especially for bat-
tery powered devices. Therefore, knowledge about the power consumption is of great
importance even during early designs steps of a system.
In order to gain information about the power consumption during early design steps
where no prototype is available, simulations become an important tool for power eval-
uation. However, due to high costs of simulations regarding the time effort, alternative
approaches were developed. One of these approaches is power emulation [10].
The idea behind power emulation is that the functions necessary to estimate the power

Page 30

consumption of a circuit can be expressed as hardware circuits. These additional cir-
cuits can then be added to the original system to monitor the power consumption. The
concept benefits from the fact that hardware emulation platforms (e.g., FPGAs) can be
used to implement the extended system to perform the power evaluation in hardware
(hence the name power emulation). The only requirement is that the original system
and the estimation functions are available in a synthesizable description.
Coburn et al. [10] demonstrated the concept of power emulation on register-transfer level
(RTL). However, the idea can be applied at other levels of abstraction. The whole setup
consists of power models, a power strobe generator and a power aggregator. The power
models are added to every RTL component of the original circuit. These additional units
implement a linear regression based model. The inputs to the model are the input and
output transitions of the RTL component under consideration. The coefficients of the
regression model define the power consumption for a specific input or output transition
of the component. The output of the model is the estimated power consumption of the
monitored component. Equation (2.3) shows the mathematical representation of the
model for N inputs/outputs at the discrete time instance t.

power[t] = XOR(x1[t], x1[t− 1]) · Coeff1 + · · ·+
XOR(xN [t], xN [t− 1]) · CoeffN (2.3)

The power strobe generator is used to trigger the power models and the power aggregator
accumulates the estimated power consumption of all components. Additionally, a host
PC is used to read out the accumulated power values.
Similar to the approach of RTL power emulation the concept can also be applied to
higher abstraction levels. The advantage of higher level power emulation is that the
amount of necessary power models decreases which also leads to a decreased area over-
head introduced by the power emulation circuits. The drawback is that an increased
granularity also has an impact on the accuracy of the results. One such high level ap-
proach was proposed by Genser et al. [17]. Other than RTL power emulation, distinct
units like CPU, memory, etc. are considered.

2.5 Related Projects

This section gives an overview about selected projects related to the emulation framework
proposed in this work.

Kasper et al. [22] propose a low budget framework for testing system vulnerabilities of
embedded devices such as microcontroller, contactless RFID devices, etc. The project
targets the analysis of side channel attacks (e.g., SPA, DPA) and noninvasive fault injec-
tion techniques. The framework features a flexible design fulfilled due to partitioning the
platform into modules with specific purpose. The platform is divided into the following
main components.

Page 31

• Communication Module
This module is used to communicate with the DUT in order to perform use cases
for the attack/fault injection scenario. The framework provides communication
modules for different kinds of interfaces such as contactless interfaces for RFID
applications, contactbased protocols (e.g., for communication with a smartcard
of the contactbased interface) and arbitrary parallel/serial interfaces (e.g., USB,
RS-232, SPI).

• Fault Injection Module
The fault injection module is used for noninvasive fault attacks on the DUT. This
module depends on the used fault scenario. The framework combines several units
for different kinds of faults including optical fault injection, electromagnetic fault
injection, power fault injection (variations of the voltage supply) and faults due to
clock variations. All these units were implemented with low-cost, public available
components (e.g., a flash light of a photo-camera for optical faults). In order to
control these units an FPGA was proposed.

• Data Acquisition Module
The acquisition module is used to gather information about the DUT which then
can be used for side channel attacks (e.g., SPA, DPA, EMA) or to monitor the
results of a fault injection scenario. The framework proposes a PC and/or an
oscilloscope to serve for this purpose. Additionally, the PC can also be used to
control the fault injection units.

Performing fault/attack scenarios on a DUT has the drawback that at least a prototype
must be available. As mentioned in the sections above, simulation or emulation based
approaches are necessary to enable the analysis of a system in its early design steps.
Therefore, the framework also supports the replacement of the DUT with a module em-
ulating the original system.
The remainder of this section concentrates on simulations and emulation platforms tar-
geting fault injection and fault analysis.

One simulation based fault injection tool is VERIFY (VHDL-based Evaluation of Re-
liability by Injecting Faults efficiently) [37]. The concept of VERIFY is to change the
behavioral description of single components. The fault behavior is directly integrated
into the component description by defining the fault frequency and the duration of the
fault. Because the behavior of the faults is integrated directly into the model no struc-
tural component needs to be changed. Therefore, the entity description which defines the
interface of the component stays the same for the faulty and the fault-free model (e.g.,
there are no control signals necessary compared to approaches using saboteurs/mutants).
The project uses a compiler and simulator developed for VERIFY in order to handle
extensions in the VHDL language necessary for the fault description.

Page 32

Figure 2.6: VERIFY - Overview. The fault behavior is directly integrated into the com-
ponent description. The project uses a compiler and simulator developed for
VERIFY to handle extensions in the VHDL language for fault description
[37].

Another simulation based fault injection tool using VHDL models is MEFISTO-L [9].
Other than VERIFY a saboteur based approach is used. Additionally to the saboteurs
which are used to inject the faults, so called probes are used to monitor the system
and to control the fault injection process (e.g., to trigger the fault injection depending
on specific system state). The tool supports the extraction of potential target signals
from the VHDL model, automatic placement of the saboteurs and configuration of the
probes. To produce a mutated system model from the initial model MEFISTO-L uses
its own code analyzer. Other than VERIFY, MEFISTO-L does not rely on a specific
VHDL simulator.
Where the above described projects make use of simulations, FADES (FPGA-based
framework for the Analysis of the Dependability of Embedded Systems) [2] uses an em-
ulation based approach. The fault injection is done due to partial reconfiguration of the
FPGA circuits. The whole setup consists of a FPGA capable for partial reconfiguration
and a host PC to manage the injection process and to observe the behavior of the system.
FADES allows to analyze a bitstream file generated during synthesis to define injection
points (sequential and combinational logic) and to generate a list of possible observation
points. FADES also allows to choose the desired fault model such as stuck-at, delay,
bridging, etc. One major advantage of FADES is that the tool works on the final imple-
mentation of the model and is therefore independent of the used HDL. This feature also
allows to use third party IP cores where no source code is available.
Another FPGA based fault injector was proposed by Grinschgl et al. [18]. Other than
FADES, a saboteur based approach is used. The project targets a modular design for
multibit fault injection to support fault attack emulation. The setup consists of sabo-
teurs inserted into the DUT, a fault injection controller to control the saboteurs and
a PowerPC as interface to a PC (see Figure 2.7). The saboteurs are designed as such
that various fault modes can be configured. The control of all saboteurs is handled by

Page 33

the fault injection controller. This controller is responsible to configure the mode of
each saboteur and to activate and deactivate these units. In order to fulfill this task,
the fault injection controller possesses an internal memory which holds the fault pattern
(defines the attack/test scenario). This fault pattern memory allows to automate the
fault injection campaign. The general architecture of the controller is pictured in Figure
2.8. The fault injection controller itself is controlled by a PowerPC. The PowerPC is
used to load the fault pattern into the internal memory of the fault injection controller
and as interface to a host PC. A special feature of the tool is that the communication
between the fault injection controller and the PowerPC is realized by a general pur-
pose input/output (GPIO) interface which can be controlled by software. Therefore, the
PowerPC can easily be replaced by another control unit.

Figure 2.7: MFI - System Overview. The setup consists of saboteurs inserted into the
DUT, a fault injection controller to control the saboteurs and a PowerPC as
interface to a PC [18].

Figure 2.8: MFI - Controller. The controller is responsible to configure the mode of
each saboteur and to activate and deactivate these units. The fault injection
controller possesses an internal memory which holds the fault pattern [18].

Page 34

In [11], Daveau et al. present a fault injection emulation platform for industrial require-
ments enabling the verification of exhaustive fault campaigns.
The platform makes use of several FPGA prototyping platforms controlled by a host
system (PC) enabling a huge degree of parallelism. Figure 2.9 shows the architecture of
the emulator. The host system is connected to the hardware platforms in order to define
the fault scenarios. Each of the platforms includes a controller executing the fault cam-
paign and several instances of the DUT. The HW controller also serves as monitor for
the results of the campaigns. The DUT instances are composed of the actual hardware
under test and a testbench (e.g., a processor and a RAM with a test program).
In order to inject faults into the target hardware, flip flops, latches and memory are
instrumented with a mechanism allowing different fault models (stuck-at-zero, stuck-at-
one, SEUs).
The particularity of the platform is the possibility to perform campaigns in parallel at a
huge degree. The performance of the emulator was demonstrated using LEON2 proces-
sors as DUT attaining a fault injection rate of 400K faults/hour/domain, where domain
denotes a FPGA prototyping platform.

Figure 2.9: Industrial Fault Injection Platform - Overview. The platform makes use
of several FPGA prototyping platforms controlled by a host system (PC)
enabling a huge degree of parallelism [11].

Page 35

3 Design

3.1 General Considerations

The goal of this work is the development of a reader-smartcard emulation framework
focusing on fault injection and power emulation. Building an emulator for such a RFID
setup implies several considerations concerning the principle structure, accuracy and
authenticity of the emulator.
The following questions have to be considered:

1. How is the emulator divided into reader, card and the emulated contactless data
channel?

2. Which hardware is used to represent the internal configuration of reader and card?

3. How can the whole setup be controlled?

4. How can data be gathered and transferred to a host system for further computa-
tions?

An important goal of this thesis is the combination of reader, card and the contactless
channel into one emulation framework. The general structure of the emulator depends
on the available hardware (prototyping platform). The first consideration that has to be
made is therefore the used target hardware. Two distinct approaches were considered.
One possible approach uses two FPGA prototyping boards where one board is used to
emulate the reader and the other to emulate the card. The channel could be implemented
via cable to connect the two prototyping boards for data exchange. Additionally mod-
ules can be implemented on both boards to model the behavior of a contactless channel.
This approach gives also the ability to use a contactless interface instead of the contact
based connection. The advantage of a contactless interface is that the channel itself
doesn’t not have to be emulated. A disadvantage of the contactless interface is the re-
duced controllability of the channel.
The second approach uses only one prototyping platform combining the emulation of
reader, card and channel into one FPGA. The main advantage of this approach is that
the whole application resides in one prototyping board which enhances the usability
of the framework. Another advantage is the better controllability of the whole setup

Page 36

obtained by the fact that the setup uses the same clock domain. Therefore, no synchro-
nization has to be done which is not the case if the reader and the card model resides
on different hardware. A drawback is that the used FPGA platform has to be capable
to hold the whole setup which reduces the set of capable FPGA prototyping platforms.
Figure 3.1 and Figure 3.2 picture the two different approaches.
Another consideration that has to be made is how the hardware of the reader/card is
implemented. Because original reader/card hardware is not available due to disclosure
policies a substitute has to be found.
In order to use the hardware setup for emulation purpose additional modules for con-
trolling have to be implemented. The purpose of these additional units is to trigger
the emulation process, to configure the whole setup and to download the reader/card
software. Another purpose of these modules is to gather information during emula-
tion and to allow the information transfer from emulator to a host system for further
computations.

Figure 3.1: Architecture Choice - Two Board Approach. Two developing platforms are
used to implement the reader and card model. Synchronization has to be
done in order to allow instantaneous fault injection.

Taking into account the considerations mentioned above the emulator is structured as
follows. The whole setup is implemented on one FPGA developing platform exploiting
the advantages of a synchronized system with common time basis. The hardware related
design is based on the open source IP library from Aeroflex Gaisler ([14], [15]). This
library provides an implementation of the SPARC V8 architecture (LEON3 processor)
and an implementation of the AMBA1 bus. Additional to the setup of the developing
platform, JAVA applications are used to configure the emulator and to transfer data
from and to the system.

1Advanced Microcontroller Bus Architecture

Page 37

Figure 3.2: Architecture Choice - Single Board Approach. Reader and card model is
implemented on a single developing platform.

The remainder of this chapter deals with a detailed view on the design of the reader-card
emulation framework.

3.2 Use Cases

In order to identify the requirements of the reader-card emulator the following use cases
were considered.

(A) A whole RFID system setup shall be verified concerning the power consumption for
a given software implementation.

(B) A whole RFID system setup shall be verified concerning fault tolerance.

(C) The influence of faults on the power transfer between reader and card shall be
verified.

(D) Performance data for specific units in the system shall be gathered (e.g., switching
activity of distinct signals).

Flow:

• The software for reader and card is developed

• The emulator is configured (initialize reader and card registers, define fault sce-
nario, etc.)

• The software for reader and card is uploaded to specific areas in the RAM of the
emulator

Page 38

• The emulation is started

• During emulation the system gives a response about the state of the processors

• During emulation the emulator gathers information about the power consumption
of the system

• The emulator signals when the program has finished

• The gathered power and debug information is downloaded from the emulator for
further computations

3.3 Requirements

The following requirements have to be fulfilled in order to reach the design goals.

• The emulator shall model the reader, card and the behavior of the contactless
communication channel.

• The emulator shall estimate the power consumption of the reader and card hard-
ware components.

• The emulator shall be capable to model the behavior of hardware faults at arbitrary
time instances and at arbitrary locations in the modeled system.

• The emulator shall provide a mechanism to collect cycle accurate information about
the system state.

• The emulator shall be built in a modular manner.

• The emulator shall be easy expandable.

• The emulator shall implement an interface to a PC for configuration and data
exchange.

Page 39

3.4 Overview

Figure 3.3 shows an overview of the whole emulator configuration. The setup consists of
a PC (host system) responsible for configuration and post-computations and the actual
emulation framework.

Figure 3.3: Emulation Framework - Overview. The setup consists of a host system re-
sponsible for configuration and post-computations and the actual emulation
framework.

The main tasks of the host system are as follows:

• Software Development
The software for reader and card is developed following the normal design flow.
Additionally, functionality needed for the emulation process is integrated into the
implementation (e.g., start and stop commands for power tracing).

• Configuration
The emulator is programmed with the software for reader and card. This is done
by specifying the location of the program in the RAM module of the emulator. Ad-
ditionally, the program counter and the stack address is specified for each processor
on the emulator.

Page 40

• Controlling
Each processor can be started and stopped individually. During runtime the emu-
lator gives a response about the processor state. The emulator signals if a processor
has finished execution. After execution the gathered data can be downloaded from
the emulator.

• Functional Analysis
The gathered information loaded from the emulator is verified (e.g., outcome of a
cryptographic algorithm).

• Post-computation
The gathered data is processed (e.g., filtering, downsampling of the collected power
information).

• Presentation
The processed data can be plotted.

The emulation framework itself holds the model of reader and card. These models con-
sist of at least one processor, an RAM module and the bus. Additional units like a
cryptographic co-processor etc. can also be added. In order to perform the estimation
of the power consumption a Power Estimation Unit is included. This unit estimates the
power consumption for each processor during the runtime of the emulation and gener-
ates cycle accurate power values. This information is provided to the host system which
processes the data for further usage. The Fault Injection Unit is used to control the
injection of faults at arbitrary locations into the target modules. This module makes
use of saboteurs and trigger units. Trigger units are used to listen for a specific event
(e.g., an activation signal or a specific value from a counter/timer). This information
is then provided to the Fault Injection Unit. The Fault Injection Unit activates the
saboteurs depending on the information from the trigger modules and its configuration.
The saboteurs inject the faults if activated. In order to control the whole setup the
Control and Debug Interface is used. This component consists of at least the interface
to the PC and a bus for data exchange with the modules mentioned before. Optional,
this component includes a processor to perform the configuration by software (e.g., to
configure the Fault Injection Unit by a program executed by this additional processor).
Also included into the emulator is a module to provide the exchange of data between
the reader model and the card model. Together with a module modeling the behavior
of the contactless channel the link between reader and card is emulated.
The whole emulation framework is designed as such that no interaction between emulator
and host system is necessary during the emulation process. The emulator is configured
and started by the host system. The emulation is performed without operation of the
host. When the emulation has finished the gathered information can be downloaded
from the platform.

Page 41

Figure 3.4 shows the emulation framework from a different kind of view. The whole
setup can be divided into a software related part and the hardware part. The hardware
includes the components necessary to model reader/card and the contactless communi-
cation channel as well as modules for fault emulation and power estimation. The design
and implementation of these components are subject of this thesis.
The framework can be used to verify software components such as communication pro-
tocols or high-level applications running on an operating system. The implementation
of protocols and applications is not part of this thesis.

Figure 3.4: Layer of the emulation framework.

3.5 Components and Interfaces

This section deals with the requirements of the main components and its interfaces. The
section is divided into two subsections dealing with the components on the emulation
framework and the host system.

3.5.1 Emulation Framework

The emulation framework is divided into the following main components:

• Processor
Executes the reader/card software.

• Bus
System bus of the reader/card model.

• RAM
Memory of reader/card.

Page 42

• Channel Model
Emulates the behavior of a contactless communication channel.

• Fault Injection Unit
Enables the injection of faults in arbitrary hardware modules.

• Power Estimation Unit
Estimates the power consumption of reader and card.

• Debug Interface
Enables controlling and configuration of the platform via PC.

Processor

The processor executes the reader/card software. Because original hardware is not avail-
able due to disclosure policies a substitute has to be found. The emulator uses therefore
an implementation of the SPARC V8 architecture (see Chapter 4).
An important requirement for this component is that the processor provides an interface
to configure all relevant registers of the processor through the Debug Interface. Another
requirement is that the processor must implement a mechanism to start and stop exe-
cution. Additionally, an interface to the reader/card bus is necessary to provide access
to RAM, a co-processor, etc.
The processor is instantiated twice, once for the reader and once for the card model.

Bus

The bus connects all components necessary to emulate the reader and card. The main
purpose of this component is to provide an interface between the processor and the RAM
module. Additionally, the bus architecture provides an easy way to add new hardware
components if necessary (e.g., a cryptographic co-processor). The emulator makes use
of the AMBA implementation from Aeroflex Gaisler (see Chapter 4).
The bus module is instantiated twice, one for the reader the other for the card model.

RAM

Reader and card model have its own RAM module. An important requirement is that
the module can be accessed through the debug interface. This interface is necessary to
load the reader/card program into the RAM. Consequently, this module provides two
interfaces. One interface connects the RAM to the reader/card bus. The other interface

Page 43

supports the initialization of the RAM through the debug interface.
The RAM module is instantiated twice, one for the reader the other for the card model.

Channel Model

In order to emulate the contactless communication channel two aspects have to be con-
sidered. First, the data transfer between reader and card has to be possible. Second,
the physical characteristics have to be modeled.
The data transfer between reader and card is implemented as a bidirectional FIFO.
Therefore, the implementation of the FIFO has to provide an interface to the bus sys-
tem of the reader and an interface to the bus system of the card.
The emulation of the physical behavior of the contactless communication channel is more
complex. Task of the Channel Model is to emulate the power transfer from the reader
device to the card. Because in a passive RFID system the card is supplied by the field
of the reader, the applied model has to consider the field provided by the reader and
the power consumption of the card. Consequently the Channel Model has to provide an
interface to the reader bus which is used to configure the field strength defined by the
reader device. Another interface is necessary to consider the current power consumption
of the card. With this information the inductive coupling between reader and card can
be modeled. Figure 3.5 shows the principle architecture of the module.
The available supply voltage of the card is modeled with a dedicated hardware module.
According to [42], an equivalent circuit of the supply network of a contactless smartcard,
as pictured in Figure 3.6, is used. vi(t) denotes the rectified voltage provided by the
antenna of the card (the energy is provided by the reader device). v(t) represents the
voltage available for the card circuit. The capacitor C serves as buffer for the supply
voltage to suppress voltage drops where the Zener diode is used to regulate the output
voltage. The capacitor is charging/discharging depending on the energy provided by the
reader and the current power consumption of the card circuit. As stated in [42] the error
of the estimation is less than 2 %.

In order to implement this behavior in hardware, the Channel Model makes use of the
Supply Voltage Estimation Unit (SVE) adapted from [12]. The SVE unit implements the
relation given by Equation 3.1. QC [t] is the charge of capacitor C at time instance t and
∆t represents the reciprocal value of the clock frequency. Vz represents the breakdown
voltage of the reverse biased Zener diode.

v[t+ 1] =
QC [t] + vi[t]−v[t]

Ri
·∆t− i[t] ·∆t

C
if v[t] < Vz (3.1)

Page 44

Figure 3.5: Channel Model. The model provides an interface to the reader bus for field
strength configuration. Additionally, the current power consumption of the
card is considered. With this information the available supply voltage for
the card is modeled. Additionally, the model implements a bidirectional
communication channel for data exchange.

Figure 3.6: Equivalent circuit of the supply network of a contactless smartcard adapted
from [42]. vi(t) denotes the rectified voltage provided by the antenna. v(t)
represents the voltage available for the card circuit.

Page 45

Fault Injection Unit

The Fault Injection Unit is used to emulate the presence of faults. Faults can be injected
at arbitrary locations in the target hardware at arbitrary time instances. The unit is
partitioned into three parts and is adapted from [18]. The trigger units are used to
observe the current system state. These modules are connected to certain signals of
the target hardware. The results of the trigger units are provided to the fault injection
controller. This unit processes the information obtained from the trigger units. The fault
injection controller has also an interface for configuration. Depending on the information
of the trigger units and the configuration the controller activates the saboteurs. The
saboteur units are placed between a signal source and its sink. At this location the
saboteurs are able to change the signal state (e.g., bit-flip, stuck-at-zero, stuck-at-one)
observed by the sink.
The configuration of the controller has to be done either by the reader or by the card
through software. Another possibility is that the fault injection controller is programmed
through the Debug Interface. The interface of the fault injection controller can either
be connected to the reader bus, the card bus or the Debug Interface. This feature is
provided by the modular design of the emulation framework.
Figure 3.7 shows the principle structure of the Fault Injection Unit for N trigger units
and M saboteurs. The signals denoted as STx (x ∈ {1, . . . , N}) are signals used for
the trigger units. With this information a predefined fault scenario can be executed
depending on the system state. The signals denoted as SFx (x ∈ {1, . . . ,M}) are
signals where faults should occur.

Power Estimation Unit

The Power Estimation Unit is used to estimate the power consumption of the reader and
the card processor. This module estimates the power consumption in real time using a
regression based model (see Section 2.4).
The design of the estimation unit makes use of the approach from [17]. The estimation
process follows the relations (3.2) and (3.3). The estimated power consumption P̂ can be
partitioned into a static component including leakage and a dynamic component due to
switching activity of the CMOS circuits. Equation (3.3) shows the implemented linear
regression model. The vector c represents the coefficients determined during a char-
acterization process. The vector x combines the model parameters. These parameters
are derived from the state of the individual hardware components (e.g., CPU modes,
memory access) which means that no data dependent information is used. The gained
power information is provided to the Debug Unit.

P̂ = P̂Static + P̂Dynamic (3.2)

Page 46

Figure 3.7: Architecture of the Fault Injection Unit for N trigger units and M saboteurs.
Signals denoted as STx (x ∈ {1, . . . , N}) are used for the trigger units.
Signals denoted as SFx (x ∈ {1, . . . ,M}) are signals where faults should
occur. The fault injection campaign is defined by the controller depending
on its configuration.

Page 47

P̂ [x[t], c] = c0 +
n∑
i=1

ci · xi x = [x1, · · · , xn], c = [c0, · · · , cn] (3.3)

The estimated power consumption is related to the used state signals x and the power
model. Therefore, the accuracy depends on the characterization process of the reader/card
processor.
The Power Estimation Unit is instantiated twice, one for the processor of the reader the
other for the processor of the card.

Debug Interface

The main tasks of the Debug Interface are to provide an interface to configure and control
the emulation and to collect power information provided by the Power Estimation Units.
Additionally, the Debug Interface can collect information about the system state. This
information is then provided to the host system. The link between the Debug Interface
and the host system is provided by UART. The Debug Interface resides between the
UART interface provided by the FPGA prototyping platform and the implementation
of the reader-card emulator. The module is implemented as bus architecture. The nodes
of the bus are those components which need a direct link to the host system together
with the interface controlling the data transfer from and to the host system. All nodes
are configured as slave except the interface controlling the data transfer to the host
system. The Debug Interface uses the AMBA bus implementation from Aeroflex Gaisler
(see Chapter 4).
In order to collect data produced during the emulation process two distinct modules
are implemented. The first one is the Power Performance Debug Unit (PPDU) which is
adapted from [26]. This module was designed to send performance statistics of a system
(e.g., power consumption) during run-time to a host PC over a 100Mbit/s Ethernet
interface. Because of the limited bandwidth and protocol overhead the transfer of cycle
accurate information is not possible. Therefore, the PPDU provides a mechanism to
aggregate the collected performance data which is then sent as one packet to the host
PC. Figure 3.8 shows the principle architecture of the PPDU. The inputs to the PPDU
are the performance values of the observed system. For each performance value an
aggregation counter is instantiated. These counters accumulate the information until a
new Ethernet frame is ready to send. The accumulated performance information is built
into packets. These packet are then inserted into the Ethernet frame.
The PPDU implements an AMBA interface to start and stop the tracing process. This
allows the configuration by software. The instructions necessary to start and to stop
the PPDU are directly inserted into the target code. Additionally, a generic interface is
provided to define the performance signals to observe.
The module is available as synthesizable VHDL model.

Page 48

Figure 3.8: Principle architecture of the PPDU.

Because cycle accurate information is not handled by the PPDU a second module is
implemented to fulfill this requirement. The idea of the Cycle Accurate Debug Unit
(CADU) is to store the debug information into memory during emulation. After the
emulation process has finished the information can be downloaded from the platform.
In order to keep the design of the CADU as simple as possible the bit size of the logged
information per cycle is fixed. Therefore, no overhead due to additional information
needed for decoding of the data is introduced. Similar to the design of the PPDU,
the CADU provides an AMBA interface to start and to stop the tracing process. This
functionality is provided by the CADU controller. During the logging, the CADU writes
a fixed amount of debug information to the memory. After the CADU is stopped the
number of logged information is also written to the memory. If the logged information
exceeds the amount of free memory the CADU is stopped and the number of logged
information is also written to the memory. With this information the logged information
can be downloaded by the host system.
Figure 3.9 shows the principle architecture of the CADU.

Page 49

Figure 3.9: Principle architecture of the CADU. During the logging process the debug
information is written to the memory. The information is then provided to
the host system.

The architecture of the Debug Interface is shown in Figure 3.10. The main component of
the module is the AMBA bus with the AMBA-UART bridge as master. All components
with a need for a direct interface to the host system are nodes of this bus. The remaining
components are the CADU and the PPDU. The CADU is connected to the bus to provide
a direct link to the host system. The PPDU has its own interface to the host and is not
connected to the remainder of the Debug Interface.

Figure 3.10: Principle architecture of the Debug Interface.

Page 50

System Dependencies

Table 3.1 gives an overview about the dependencies between the main components of
the emulation framework. The fault injection unit is omitted because the interfaces of
the trigger, saboteurs and the controller depend on the implemented use case.

Processor Processor Bus Bus RAM RAM PE PE RF Debug
Reader Card Reader Card Reader Card Reader Card IF

Processor x x x
Reader

Processor x x x
Card

Bus x x x
Reader

Bus x x
Card

RAM x x
Reader

RAM x x
Card

PE x x
Reader

PE x x x
Card

RF x x

Debug x x x x x x
Interface

Table 3.1: Dependencies between main components of the emulation framework. The
fault injection unit is omitted.

3.5.2 Host System

This section deals with the software design of the host system. Two JAVA applications
are used to communicate with the emulation setup. The first one is needed to control
and configure the whole setup and to download emulation results. The second is adapted
from [26] to capture the power traces during an emulation process.

Fault Injection Interface

The Fault Injection Interface application is used to control the whole setup and to
download the results after emulation (e.g., read results of the CADU). To enhance the
usability a graphical user interface is provided. With this application the emulation

Page 51

can be started and stopped. Additionally, access to the debug bus of the emulator is
provided. The main functionalities are as follows.

• Open and close serial connection.

• Write arbitrary data to the debug bus.

• Read data from the debug bus.

• Start and stop emulation.

• Download software for reader and card to RAM (program).

Figure 3.11 shows a simplified class diagram of the application. The design uses four
classes. The class FaultInjectorIf provides the graphical interface for the user. All com-
mands are forwarded to the Control class which abstracts the underlying functionality.
Depending on the command, the request is either handed directly to SerialInterface or
to DebugSupportUnit if the command involves the CPUs. The class DebugSupportUnit
holds all information necessary to control the emulation (e.g., initialize CPU registers,
start and stop CPU). The SerialInterface class handles the communication with the
platform.

SerialInterface

+ openSerialDevice()
+ closeSerialDevice()
+ read()
+ write()

FaultInjectorIf

+ Event Loop()
+ GUI() Control

+ openSerialDevice()
+ closeSerialDevice()
+ read()
+ write()
+ startCPU()
+ stopCPU()
+ program()

DebugSupportUnit

+ startCPU()
+ stopCPU()

1 1

1

1

1

1

1 1

Figure 3.11: Fault Injection Interface - Class Diagram.

Page 52

Ethernet Dump

The Ethernet Dump application is adapted from [26] to capture the information provided
by the PPDU during emulation. The application provides a graphical user interface to
control the capture process. When the capture process is started the application collects
all Ethernet frames sent by the PPDU. After the capture process, the PPDU packages
are extracted from the Ethernet frames. The PPDU packages are then parsed depending
on a predefined package format. The package format defines the content of a package,
which must reflect the hardware configuration (number of traced signals, signal bit width,
etc.).
After all information is extracted the data can be filtered and plotted. Additionally, the
information can be exported for further computations.

3.6 System Architecture

The architecture of the emulator is based on the AMBA bus (see Chapter 4). Depending
on the required bandwidth, the Advanced High-performance Bus (AHB) or Advanced
Peripheral Bus (APB) is used.
Because of the modular design of the emulation framework, different architectures are
possible. Figure 3.12 and 3.13 picture two different possibilities. The modular design
is enabled by the bus-based design. The advantage of the modular design is that the
framework can be adapted for specific use cases. Additionally, modules can be omitted
or added in a simple manner.
The first configuration (Figure 3.12) shows the architecture for a system where the reader
model also functions as controller for the fault injection unit and the power and debug
trace units (PPDU, CADU). This architecture has the advantage that no additional
unit is needed to configure the system. The configuration and control instructions can
be directly included into the software of the reader model.
The second configuration (Figure 3.13) shows the architecture for a system where the
fault injection unit and the power and debug trace units are controlled through the de-
bug bus. This can either be done by the host system which has full control over the
debug bus or alternative by an optional processor which is connected to the debug bus.
Beside the architectures shown, other configurations are possible. The actual architec-
ture depends on the use case. Additionally, modules can be omitted to spare the space
on the FPGA or the system can be extended by new modules.
It should be noted that the reader and card system are separated from each other.
Therefore, no unwanted interferences between the systems are introduced. Also the de-
bug bus is separated from reader and card which allows to monitor the system without
manipulation of the systems.

Page 53

Figure 3.12: Architecture of the emulator hardware.

Page 54

Figure 3.13: Optional architecture of the emulator hardware.

Page 55

4 Implementation

This chapter deals with implementation specific topics of the thesis.
First the target platform and the used IP library are described. The considerations
from Chapter 3 are refined and implementation details about the distinct modules are
provided. The chapter concludes with software related tasks necessary for controlling
and data acquisition.

4.1 Tools

Software for the LEON3 processor was compiled using the BCC - Bare-C Cross-Compiler
[13] which includes several packages (e.g., GNU GCC C/C++ compiler v3.4.4, v4.4.2).
The hardware of the emulator was synthesized using XILINX ISE 13.4. Hardware simu-
lations were performed with ModelSim 6.6g. Additionally, MATLAB R2012a was used
for post-computations and the Eclipse JAVA developing environment was used to de-
velop the software interface of the emulator.
Synthesis and simulation of the hardware was performed on a 6-core 3.2 GHz AMD
Phenom-II with 16GB of RAM.

4.2 Xilinx ML605 Prototyping Platform

This section gives an overview about the used prototyping platform ML605, developed
by Xilinx [44]. The platform provides various peripherals together with a Virtex-6
XC6VLX240T-1FFG1156 FPGA. The configuration of the FPGA is performed using
the JTAG USB port. A high-level block diagram of the ML605 is shown in Figure 4.1.
The following features of the platform are used for the implementation of the emulator.

Virtex-6 XC6VLX240T-1FFG1156

The Virtex-6 FPGA family is built on 40 nm technology and is divided into three sub-
families [45].

Page 56

Figure 4.1: ML605 Developing Platform - Block Diagram [44].

• Virtex-6 LXT supporting high-performance logic with advanced serial
connectivity

• Virtex-6 SXT supporting highest signal processing capability with advanced serial
connectivity

• Virtex-6 HXT supporting highest bandwidth serial connectivity

The used version includes 37680 slices which are composed of four LUTs, eight flip-
flops as well as multiplexers and arithmetic carry logic. Two slices form a configurable
logic block (CLB). Additionally, the Virtex-6 XC6VLX240T includes 14976 kbit of block
RAM which results in approximately 1.785 Mbyte RAM. The block RAM is arranged
in 416 dual-port blocks of 36kbits.

Page 57

512 MB Memory

The ML605 developing board includes 512 MB of DDR3 SODIMM volatile memory
available for user applications.

10/100/1000 Tri-Speed Ethernet PHY

The developing board includes an onboard PHY device for Ethernet communication
at 10, 100 and 1000 Mbit/s. The interface between FPGA and PHY device can be
configured through jumpers as GMII/MII, SGMII and RGMII.

USB-to-UART Bridge

The ML605 board includes an USB-to-UART bridge CP2103-GM from Silicon Labs [38]
for communication with a PC over an USB cable. The interface between the FPGA and
USB-to-UART bridge are established by four signal pins: Transmit (TX), Receive (RX),
Request to Send (RTS) and Clear to Send (CTS).

4.3 Advanced Microcontroller Bus Architecture AMBA

4.3.1 Advanced High-performance Bus

This section gives an introduction to the Advanced High-performance Bus (AHB) de-
fined by the AMBA 2.0 specification [4], developed by ARM Limited.
The AHB is a multi master high-performance bus which features high-bandwidth op-
erations. It is used as system backbone to connect processors, memory etc. An AHB
includes the following components:

• AHB master
Only one master at a time is allowed to use the bus actively. The AHB allows a
maximum of 16 masters.

• AHB slave
Slaves respond to a master request. They must provide status information about
the ongoing operation.

Page 58

• AHB arbiter
The arbiter is responsible to ensure that only one master uses the bus at a time.

• AHB decoder
The decoder is used to translate the address into a select signal for each slave.

The AHB supports the following features:

• Burst transfers

• Split transactions

• Single-cycle bus master handover

• Single-clock edge operation

• Non-tristate implementation

• Wider data bus configurations

Because the AMBA AHB features a non-tristate implementation the bus interconnection
is built upon a central multiplexer scheme. All bus masters drive address and control
information for the transfer they wish to perform. The arbiter is then responsible to
decide which master is forwarded to all slaves. Similar a central decoder is necessary to
route the response of a selected slave back to the masters.
If a master wants to perform a transfer, a request is generated to the arbiter. The
arbiter then chooses from all transfer requests which master is allowed to perform the
bus transfer depending on a priority scheme. Details on the priority scheme are not
defined by the AMBA specification.
A transfer consists of exactly one address cycle and at least one data cycle. The simplest
operation is a non-burst transfer which lasts two cycles after the master is granted bus
access. After the first rising clock edge the master drives the address and the control
information. At the second rising clock edge the slave samples the information provided
by the master and at the third rising clock edge the master samples the slave response.
The result is a two cycle, zero wait state transfer. If the slave is not able to perform the
master request immediately the slave has the ability to insert wait states. This is done by
a ready signal which is hold to zero as long as the master has to wait. Figure 4.2 shows
the zero wait state transfer where Figure 4.3 shows a write transfer with wait states.
Additionally the slave gives a feed back about the ongoing transfer using a response
signal. The possible values for the response signal are OKAY, ERROR, RETRY and
SPLIT. If the transfer has successfully completed the slave drives the ready signal high
and replies with the OKAY response. The ERROR response indicates a problem during
the transfer where the RETRY and SPLIT response is used to indicate that the transfer
should be repeated and provides therefore a mechanism to release the bus for other

Page 59

masters. The RETRY response indicates that the master should retry the transfer until
it completes. Only masters with higher priority will gain access to the bus. If the
SPLIT response is used the arbiter will change the priority scheme. Any other master
requesting a transfer will get bus access. In order to complete a SPLIT transfer the slave
must inform the arbiter that the transfer can be finished. The AHB provides therefore
a mechanism to release the bus if a slave is not able to handle the transfer immediately
to prevent high latencies.

Figure 4.2: Zero wait state AHB transfer: a) write transfer (write data to slave) b) read
transfer (read data from slave) [4].

Figure 4.3: AHB write transfer (write data to slave). The slave drives the ready signal
low indicating that the write operation can not be performed immediately
[4].

Page 60

4.3.2 Advanced Peripheral Bus APB

This section gives an introduction to the Advanced Peripheral Bus (APB) defined by
the AMBA 2.0 specification [4], developed by ARM Limited.
The APB bus is typically used to connect peripherals with low-bandwidth requirements
to a high-performance system backbone bus (e.g., AHB). The APB is therefore opti-
mized for minimal power consumption and reduced interface complexity. There are two
different kinds of nodes. The APB Slave which represents the peripheral modules with
an APB interface and the APB Bridge. The APB Bridge functions as bus master and
is also slave to a high-performance bus. The purpose of this unit is to convert a transfer
on a high-performance bus to an APB transfer. Only one APB Bridge is allowed per
APB.

The protocol operates on three states.

• IDLE
No transfer is required (default state).

• SETUP
If a transfer is performed the state changes to SETUP. This state lasts only one
clock cycle and sets the appropriate select signal for the slave.

• ENABLE
After SETUP the state changes to ENABLE and the enable signal is asserted. The
address, write and select signal do not change during the transition from SETUP
to ENABLE. The ENABLE state lasts also only one cycle. After ENABLE, the
state changes to IDLE if no further transfer is pending or to SETUP for another
transfer.

Figure 4.4 shows the basic write and read transfer. In order to optimize the power
consumption of the protocol the address and write signal do not change until the next
transfer.

4.4 Gaisler IP Library

This section gives an overview about the open source IP library from Aeroflex Gaisler
([14], [15]). The library includes various modules and provides reference designs for
different FPGA development platforms (including ML605). The whole library is based
on the AMBA AHB/APB.
Following, IP cores used for the emulator are discussed.

Page 61

Figure 4.4: AMBA APB transfer: a) write transfer b) read transfer [4].

4.4.1 LEON3 - High-performance SPARC V8 32-bit Processor

Figure 4.5 shows a block diagram of the LEON3 processor. The processor implements a
7-stage pipeline with Harvard architecture, hardware multiplier and divider, a floating-
point unit, a memory manage unit and provides an interface for a co-processor. The
cache is divided into data-cache and instruction-cache and provides an AMBA AHB
master interface. Additionally, a debug interface and multiprocessor support are pro-
vided [14]. The processor implements the SPARC V8 architecture.
The module is provided as VHDL and can be configured through generics (e.g., en-
able/disable FPU, MMU).

4.4.2 DSU3 - LEON3 Hardware Debug Support Unit

In order to debug the implemented hardware a Debug Support Unit is provided. This
unit has a direct interface to the LEON3 processor’s register. With the DSU3 the
execution on the processor can be started and stopped (the processor is in debug mode).
When the processor is halted the registers can be accessed through the DSU3.
The DSU3 implements an AMBA AHB slave interface and can be accessed by an AHB
master residing on the same bus. The DSU3 can be used together with an interface for
external communication (e.g., UART, ETHERNET, JTAG) to enable debugging from
an external host. The DSU3 is able to control up to 16 processors.

Page 62

Figure 4.5: Block diagram of the LEON3 processor [14]. Distinct features can be disabled
through generics.

Figure 4.6: Overview of the Debug Support Unit [14].

Page 63

4.4.3 AHBUART- AMBA AHB Serial Debug Interface

The AHBUART enables access to AHB from an external host through UART and can
be used to communicate with the DSU3. With this unit any address on the AHB can
be accessed. The module implements an AHB master interface for data exchange and
an APB interface for configuration (e.g., set baud rate). Additionally, if the baud rate
is not set by software, the baud rate will be discovered automatically [14].
The AHBUART implements the protocol shown in Table 4.1. The protocol starts with
an eight bit header including the command (2 bit) and the data length (6 bit) defining
the number of words (4 byte). The write command consists of the header, a four byte
AHB address and 1 to 26 words of data (defined in the header). The write access does
not return a response. The read command consists of the header and a four byte AHB
address. The read command returns the number of data words defined in the header of
the read command (1 to 26 words).

Write Command (write to AHB)

Read Command (read from AHB)

Table 4.1: AHB-UART protocol. Length defines the number of data words (4 byte)

4.4.4 AMBA AHB/APB

The Gaisler IP core library is based on the AMBA AHB/APB according to the AMBA
2.0 standard (see Section 4.3). Therefore, mostly all modules include an AHB or APB
interface. The AHB is implemented through the AHBCTRL [14] module which supports
up to 16 AHB masters and 16 AHB slaves. The APB is implemented through the
APBCTRL [14] module which supports up to 16 APB slaves and acts as an AHB to
APB bridge.
Additionally, the AMBA implementation supports a plug&play mechanism for AHB
and APB [15]. The plug&play information is implemented as read-only table mapped
to a fixed address space on the AHB (0xFFFFF000 default). This mechanism provides

Page 64

information about the nodes and their configuration on the bus. This information can
be read by software in order to detect the available hardware components.

4.4.5 AHBRAM - Single-port/Dual-port RAM with AHB interface

AHBRAM utilizes the block RAM of the used FPGA and implements an AHB slave
interface with 32 bit data width. The size of the RAM can be defined through VHDL
generics. The AHBRAM module is available as single-port and dual-port version if the
target hardware supports dual-port block RAM. If dual-port is used, read and write
collisions between the ports are not handled and must be prevented by the user. The
write access has one wait state, where the read accesses are zero-wait state.

4.4.6 AHB to DDR3 Wrapper

The Gaisler IP core reference design for the ML605 developing platform utilizes the
DDR3 RAM of the developing board. In order to access the external RAM the XILINX
Memory Interface Generator (MIG) tool [43] is used which enables the generation of a
memory interface for different XILINX FPGAs and memory.
The Gaisler ML605 reference design provides a tool chain to generate the memory inter-
face to the external RAM via MIG. Additionally, an AHB wrapper module is provided
to connect the memory interface to an AHB. The purpose of this module is to translate
the AHB access to the native interface of the RAM.
Figure 4.7 and Figure 4.8 show a simplified state diagram of a read and write access.
The module implements two state machines. The first state machine works on the sys-
tem clock domain and handles the AHB requests. These requests are translated and
provided to the second state machine. The second state machine works on the memory
clock domain and handles the communication with the memory interface.

4.5 Emulation Framework

This section refines the considerations from Section 3.5.1 and gives a detailed view on
the implementation of the emulation framework.

Page 65

Figure 4.7: AHB DDR3 memory read access. The solid lines represent state transitions.
The dashed line represents dependencies between the state machines and
the involved components. a) state machine on AHB clock domain b) state
machine on memory clock domain.

4.5.1 Processor

As mentioned in Section 3.5.1 the SPARC V8 LEON3 is used to implement the reader
and card processor. The reader processor is connected to the system bus of the reader
where the card processor is connected to the card bus. The processor is the only AHB
master in the reader/card system.
The configuration and controlling of reader and card is done via the DSU3 (see 4.4.2).
Both processors are connected to one DSU.

4.5.2 Bus

The system bus of reader and card are implemented as AHB/APB using the design
from Gaisler (see 4.4.4). The AHB is used for modules with high-bandwidth require-
ments where the APB provides access to modules with lower bandwidth. The default
configuration of the AHB includes the processor as AHB master, the RAM as AHB slave
and an AHB/APB bridge with its AHB slave interface. Additional modules can be easily

Page 66

Figure 4.8: AHB DDR3 memory write access. The solid lines represent state transitions.
The dashed line represents dependencies between the state machines and
the involved components. a) state machine on AHB clock domain b) state
machine on memory clock domain.

integrated by connecting them to the AHB or APB depending on their requirements.

4.5.3 RAM

The RAM modules hold the reader and card software applications. An important re-
quirement of the used RAM module is that access from the host system must be possible
in order to initialize the emulator. The initialization should be done via the debug inter-
face. Therefore, the module must provide two interfaces. One for the normal operation
on the system bus of reader and card and a second interface for configuration via the
debug bus.
The ML605 developing platform provides two possibilities to implement RAM. The first
possibility is to utilize the block RAM of the FPGA using the AHBRAM module pro-
vided by Gaisler (see 4.4.5). The second possibility is to exploit the external DDR3
RAM provided by the developing board. In order to exploit the full capabilities of the

Page 67

ML605 developing platform a modular approach was taken.
The design supports the usage of the block RAM as well as the usage of the exter-
nal RAM. As mentioned in Section 4.4.5 and Section 4.4.6 the Gaisler IP core library
supports modules to connect block RAM and DDR3 RAM directly to the AHB. This
simplifies the design of the reader/card RAM. However, because of the requirement of
a dual AHB interface, additional considerations have to be taken. The requirement is
fulfilled using an AHB interface multiplexer. The purpose of this module is to allow
the usage of one AHB slave interface on two distinct AHB. The general principle of the
approach is shown in Figure 4.9. The multiplexer resides between an AHB slave and
two distinct AHB. The control signal defines which bus has access to the slave. In order
to prevent a violation of the bus protocol an additional mechanism has to be provided.
Whenever a bus has access to the slave the other bus interface is wired to an unit provid-
ing a dummy response. This dummy response ensures that any master accesses results
in a response regardless if it is a response from the slave or from the slave dummy.
Figure 4.10 shows the architecture of the multiplexer. The control signal is provided
by the Debug Interface. Whenever the processors are in debug mode (the processor is
halted) the RAM is connected to the debug interface of the multiplexer. This allows
the initialization of the RAM module. When the processors are not in debug mode the
RAM is connected to the system bus of reader/card providing access to the reader/card
software application.

Figure 4.9: Principle architecture of the AHB Multiplexer. The module allows to access
an AHB slave from two different AHB. The control signal is used to select
the AHB interface to use.

Another possibility would have been to use the dual-port capabilities of the block RAM
and the DDR3 RAM. However, in order to reduce dependencies from the used developing
platform the multiplexer approach was taken. Another reason for the multiplexer ap-
proach was that the AHB wrapper for the DDR3 RAM (Section 4.4.6) does not support

Page 68

Figure 4.10: Internal structure of the AHB Multiplexer. The multiplexer allows slave
access either from the system bus or the debug bus. Whenever a bus has
access to the slave, the other bus interface is wired to an unit providing a
dummy response.

a dual AHB interface.

4.5.4 Channel Model

The Channel Model is divided into two modules. One implementing the data transfer
between reader and card. The other, modeling the power transfer from reader to the
passively powered card.

Data Transfer

The data transfer between reader and card is implemented as bidirectional FIFO and
serves as a bridge between the system bus of the reader and the system bus of the
card. The connection to the system bus is implemented via an APB interface. The
module allows the exchange of information between the reader and the card model. The
FIFO length can be defined via a VHDL generic. The FIFO width is fixed to 32 bit.
Additionally, a control register is provided to read the current state of the data transfer
(e.g., are packets available, is FIFO full). Table 4.2 shows the structure of the APB

Page 69

control register and its purpose.
The FIFOs are also equipped with saboteurs to enable the injection of faults into the
data transfer. The interface of the module provides also debug signals such read port1
and read port2 which can be used to trigger on these events for effective fault injection.

Address Offset Bit Name Length (bit) Description

0x00 0 to 31 TX/RX Register 32 A write transfer to this
register places the data
into the TX FIFO.
A read from this
register returns the
next data word from
the RX FIFO.

0x04 0 to 7 RX free slots 8 Number of free slots in
RX FIFO.

0x04 8 to 15 TX free slots 8 Number of free slots in
TX FIFO.

0x04 16 RXF 1 RX FIFO full.

0x04 17 RXE 1 RX FIFO empty.

0x04 18 TXF 1 TX FIFO full.

0x04 19 TXE 1 TX FIFO empty.

0x04 29 READY 1 Can be set by the
communication partner
via SR bit.
The purpose of this
flag is to provide
a synchronization
mechanism between
reader and card.

0x08 0 RESET 1 Resets the FIFO.

0x08 1 SR 1 Set ready flag for
communication partner.

Table 4.2: Channel Model - FIFO control register.

Power Transfer

The power transfer is modeled using the SVE unit proposed by [12]. The SVE unit
provides an APB interface to define the voltage provided by the field of the reader.
Additionally, the module makes use of the results provided by the power estimation unit
of the smartcard model. The result of the module represents the available supply voltage
of the card.

Page 70

The voltage provided from the reader can be configured by software through the APB
interface. The resulting supply voltage information can be traced using the PPDU or
CADU.

4.5.5 Fault Injection Unit

The Fault Injection Unit is adapted from [18]. The controller provides an APB interface
for configuration by software which can be connected either to the system bus of the
reader, the system bus of the card or to the debug bus. The actual placement of the
module depends on the use case. Additionally, saboteur and trigger units have to be
integrated into the system depending on the fault scenario.

4.5.6 Power Estimation Unit

The power estimation unit is adapted from [17] and is used to estimate the power con-
sumption of the reader and card processor (LEON3). The module is continuously work-
ing and performs the computations on the linear regression model depending on the
states of the processor components (e.g., pipeline, divider, multiplier). The results are
provided to the PPDU of the Debug Interface.
In order to suppress the output during the halt of the processor the result of the esti-
mation unit is gated providing a zero vector to the PPDU if the processor is inactive.

4.5.7 Debug Interface

As mentioned in Section 3.5.1 the Debug Interface consists of the debug bus, a AHB-
UART bridge, the PPDU adapted from [26] and the CADU.
The debug bus is implemented as AHB using the AMBA AHB module from Gaisler (see
Section 4.4.4). Together with the AHB-UART bridge, communication between the host
system and the debug bus is possible. The AHB-UART bridge is implemented using
the AHBUART module from Gaisler (see Section 4.4.3) and serves as the bus master.
The PPDU is adapted from [26] with its Ethernet interface and does not rely on the
remainder of the Debug Interface.
The CADU consists of a control unit to start/stop the tracing and the actual memory
for the gathered information. Following, a detailed view on the implementation of the
CADU is provided.

Page 71

CADU - Control

The CADU is controlled via software through an APB interface. Table 4.3 shows the
structure of the APB control register and its purpose. The control signals are handed over
to the CADU memory. Additionally, a 16 bit interface is provided for the information
to be logged.

Address Offset Bit Name Length (bit) Description

0x00 0 RESET 1 Resets the CADU.
Previous stored data is lost.

0x00 1 ENABLE 1 Enable CADU.
Every clock cycle a 16 bit
value is stored in the
memory until the CADU is
stopped (ENABLE = ’0’)
or the memory runs out
of free space.

0x00 2 FULL 1 Indicates if CADU memory
is full (FULL = ’1’).
No information is stored
until a reset.

Table 4.3: CADU Control Register.

CADU - Memory

The CADU memory is implemented using the external 512MB DDR3 RAM provided by
the developing board. Because of the modular design of the emulation framework (the
DDR3 RAM should also be usable as RAM for reader/card) the AHB to DDR3 wrapper
from Gaisler (see Section 4.4.6) was instrumented to provide both functionalities. With
this approach the external memory can be configured by software, either to function as
ordinary RAM or as memory for the debug information.
The state machine of the AHB to DDR3 wrapper was extended by two additional states
CADU and finish CADU (see Figure 4.11). During operation as RAM the states are
handled as normal providing read and write access from the AHB interface. If the CADU
operation is activated, the state machine changes to state CADU as soon as all pending
operations are finished. During the CADU state the information provided by the CADU
controller is stored. The CADU state is hold until the CADU is stopped or the memory
runs out of free space. During the operation as CADU memory, no write or read access
through AHB is possible. After the CADU has stopped, the AHB interface is again
unlocked and the stored data can be downloaded through the AHB interface.
Additional to the state machine changes, the interface of the AHB to DDR3 wrapper

Page 72

was extended. This interface provides access from the CADU control unit.
Figure 4.12 shows the architecture of the module. The DDR3 RAM can be used as
ordinary AHB memory as long as the CADU is inactive. The CADU operation can be
started via software through the APB interface of the CADU Controller. During this
operation the debug signals (CADU data) are forwarded to the memory and stored. The
original AHB interface of the memory is used to download the gathered information.
Using the external 512MB DDR3 RAM, the CADU is able to trace 8.95 seconds of
debug information at system frequency of 30 MHz (16 bit/cycle). Figure 4.13 shows the
memory organization of the logged data.

Figure 4.11: Instrumented AHB to DDR3 Wrapper - Write States (compare to Figure
4.8). The DDR3 RAM can be used as ordinary AHB memory as long as
the CADU is inactive. During the operation as CADU memory, no write
or read access through AHB is possible. After the CADU has stopped, the
AHB interface is again unlocked and the stored data can be downloaded.

Page 73

Figure 4.12: CADU architecture. The DDR3 RAM can be used as ordinary AHB mem-
ory or as memory for the CADU.

4.6 Host System

This sections refines the considerations from Section 3.5.2 and gives a detailed view on
the implementation of the host system.
The emulation is controlled by the host system via the Fault Injection Interface JAVA
application. The connection between the developing board and the PC is implemented
via UART. The main purpose of the application is to control the processors includ-
ing initialization of the registers. The second task of the application is to upload the
reader/card application. These requirements are fulfilled by providing access to the
Debug Interface (see Section 3.6). Using the AHBUART module provided by Gaisler,
the host system can communicate with the nodes on the AHB of the Debug Interface
including the RAM of reader and card, and the DSU3.
The processors are controlled by writing to the corresponding registers of the DSU3.
Using this mechanism the registers of each processor in the system can be accessed and
initialized. The DSU3 also provides a register to start/stop the execution on each pro-
cessor. If the processors are stopped the application has access to the debug interface
of the RAM multiplexer (Section 4.5.3). This allows the host system to upload the
reader/card application. Figure 4.14 shows the relation between the application on the
host system and the hardware modules on the emulator. Using the plug&play infor-
mation provided by the Gaisler implementation of the AMBA AHB/APB (see Section
4.4.4) the application has a detailed knowledge about the hardware on the debug bus.
After the application is connected, the plug&play information is read from the bus in-

Page 74

Figure 4.13: CADU memory organization.

cluding the address space of each module. This information allows the application to
initialize its internal representation of the hardware (e.g., where are the DSU3 registers,
how much processors are implemented on the platform). When all information is loaded
the application stops all processors on the emulator and waits for user interaction.

User Interaction

After the application is connected to the emulator the following operations are provided
to the user.

• Read/Write Debug Information
The user has read/write access to the whole address space of the debug bus. This
function allows to set the hardware registers manually for debug purpose.

• Program
The user can initialize the RAM modules by defining the start address of the RAM
and a binary file.

• Initialize Processor
The user can initialize the registers of the processor by defining the program counter
and the stack address.

• Start/Stop Processor

• Export Binary Dump
The user can export RAM content by defining the start address and the length in
byte. The data is loaded from the emulator and written to a file.

Page 75

Figure 4.14: Relation between the Fault Injection Interface application and emulator.
The host system has read/write access to the whole address space of the
debug bus.

• Read CADU Data
Similar to the export of the RAM content, the application supports the automatic
export of CADU data. The application reads the number of collected bytes (see
Memory Organization Figure 4.13) and exports the gathered information to a file
for further computations.

Software Architecture

As mentioned in Section 3.5.2 the application is implemented with four classes.

• FaultInjectorIf
This class provides the graphical user interface and the event loop. All user in-
teraction is forwarded to the Control class. The FaultInjectorIf verifies all user
input and gives response if the provided input values (e.g., addresses, data length)
are out of bounds.
Additionally, the FaultInjectorIf class implements a monitor thread, which reads
continuously the state of the processors (e.g., running, stopped, error).

Page 76

• Control
The Control class receives the verified user interaction from the FaultInjectorIf
class and abstracts the underlying functionality. Depending on the command, the
request is either handed to the DebugSupportUnit or directly provided to the
SerialInterface class. If interaction with the DSU3 of the emulator is necessary
(e.g., start/stop CPU), the request is handed to the DebugSupportUnit. If the
command involves only read/write commands (e.g., program RAM, read/write
arbitrary data) the request is forwarded to the SerialInterface.

• SerialInterface
The SerialInterface class abstracts the underlying PHY and provides commands
such as write, read, open, close on the physical interface. The class uses the RXTX
[36] open source library for serial ports in JAVA.

• DebugSupportUnit
This class receives DSU3 related commands from the Control class.
The DebugSupportUnit holds an internal structure of the DSU3 registers and
translates the commands into read/write requests which are forwarded to the
SerialInterface class.
The DebugSupportUnit performs all necessary task, hiding complexity from the
upper classes (e.g., performing cache flushes, correct initialization of the CPU reg-
isters).

Additional to the Fault Injection Interface, the Ethernet Dump application from [26]
(see Section 3.5.2) is used. The Ethernet Dump application uses the Ethernet interface
and has a direct connection to the PPDU.

Page 77

5 Results

5.1 Emulator - Characteristics and Performance

The system clock of the emulator and the modeled systems (reader/card) is 30 MHz.
The clock of the external DDR3 RAM is 400 MHz. Table 5.1 shows the address space
of the emulator and Table 5.2 provides an overview on the utilization of the VIRTEX-6
FPGA.
One should note that the architecture depends on the use case of the emulation. There-
fore, address space and utilization vary depending on the actual configuration. The
provided data is captured form the default configuration also used for the experiments
in Section 5.3.

Component System address Debug bus

Reader RAM 0x40000000 - 0x40080000 0x40000000 - 0x40080000

Reader APB 0x80000000 -

Card RAM 0x40000000 - 0x40080000 0x60000000 - 0x60080000

Card APB 0x80000000 -

DDR3 RAM - 0xA0000000 - 0xC0000000

Table 5.1: Address space - Emulation Framework.

Component Slices LUTs

Reader model 3829 7574

Card model 3834 7576

Channel model 699 1068

Control (DSU3, Debug bus, etc.) 1110 1979

(Control with DDR3 RAM) 4748 7927

Fault controller 526 839

Power estimation 255 515

Table 5.2: Device utilization - Virtex-6. Trigger and saboteurs are omitted.

Page 78

5.2 Software Interface of the Emulation Framework

This section shows the results of the software interface provided to control and configure
the emulation setup. Figures 5.1 to 5.4 show the graphical user interface of the applica-
tion.

Figure 5.1: Serial Interface. Allows the user to choose a serial port to connect to the
platform. The interface also provides a direct read/write access to the de-
bug bus of the emulator. Additionally, a function is provided to export the
content of the RAM to a file.

Page 79

Figure 5.2: Control. Allows the user to start/stop the processors. The application au-
tomatically detects all processors on the emulator and provides a control
interface for each. Additionally, the state of each processor is shown.

Figure 5.3: Program. Allows the user to define the program to download. The user has
to define the program counter and the stack address to use in the system.
Additionally, the user has to define the address on the debug bus where the
RAM is mapped to (RAM start).

Page 80

Figure 5.4: CADU. Allows the user to export the content of the CADU to a file.

5.3 Experiments

This section demonstrates some use cases showing the capabilities of the emulation
framework.

5.3.1 Power Supply - Smartcard

To demonstrate the capability of emulating a full RFID reader-card system, the follow-
ing use case is considered.
A Diffie-Hellman key exchange protocol should be analyzed regarding its power con-
sumption. Figure 5.5 shows the principle of the Diffie-Hellman protocol. The reader
chooses suitable values for p (prime number) and g (primitive root mod p) and com-
putes A (a is a secret kept by the reader). These values are transmitted to the card. The
card computes B with its own secret b and the shared secret K. The card responses with
B. Using B, the reader can compute the shared secret K. For suitable values p and g,
the reader and the card compute the same shared secret K which can be used as key for
a symmetric cypher. Eavesdropping the channel does not provide enough information
to reconstruct the shared secret.

Figure 5.6 shows the result of the emulation performing the computations necessary
for the protocol. All computations are done in software. P̂R(t) represents the estimated

Page 81

Figure 5.5: Diffie-Hellman Key Exchange - Protocol.

power consumption of the reader, P̂SC(t) represents the estimated power consumption of
the smartcard. Additionally, the supply voltage v̂(t) of the card is emulated depending
on vi(t). vi(t) is the voltage provided by the reader through the contactless interface.
VZ denotes the Zener voltage and VT the minimal supply voltage threshold. P̂Z(t) is
the estimated power consumed by the Zener diode (see Figure 3.6). The Zener Diode
serves as a simple voltage regulator for the supply voltage of the smartcard. Therefore,
the lower P̂Z(t), the more efficient the reader/card system.
The results pictured in Figure 5.6 are gained with a constant voltage vi(t) provided by
the field of the reader. This configuration leads to an inefficient use of the available
energy. The surplus energy received by the card is transformed into heat at the Zener
diode, acting as shunt to protect the card circuit.

0

0.5

1

Key exchange

P
o
w

e
r

[N
o
rm

.]

P̂R (t)

0

0.5

1

P
o
w

e
r

[N
o
rm

.]

P̂SC (t)

0

0.5

1

P
o
w

e
r

[N
o
rm

.]

P̂Z (t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

V
o
lt
a
g
e
 [
V

]

Time [Normalized]

vi(t)
v̂(t)
VT
VZ

Figure 5.6: Diffie-Hellman Key Exchange.

Page 82

In order to use the available energy more efficient, the reader can adapt the emitted field
depending on the needs of the card. Knowing that the card has a low power consumption
when it is idle, implies that the reader can reduce the field strength during this time.
Figure 5.7 shows the results of the same use case, adapting the field strength according
to the needs of the card. The reader supplies the card with less energy during idle
time and increases the field if computational effort of the card is required. The results
show that P̂Z(t) can be reduced to zero, without endangering the integrity of the cards
computations (v̂(t) always above VT). One should note that this experiment shows the
ideal case. In a real setup also the distance variations between the reader and card has
to be considered. Therefore, P̂Z(t) can only be minimized.

0

0.5

1

Key exchange

P
o
w

e
r

[N
o
rm

.]

P̂R (t)

0

0.5

1

P
o
w

e
r

[N
o
rm

.]

P̂SC (t)

0

0.5

1

P
o
w

e
r

[N
o
rm

.]

P̂Z (t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

V
o
lt
a
g
e
 [
V

]

Time [Normalized]

vi(t)
v̂(t)
VT
VZ

Figure 5.7: Optimized Diffie-Hellman Key Exchange.

5.3.2 Power Supply - Fault Injection

The experiment above shows that adapting the field strength according to the actual
power consumption of the card can improve the efficiency of the whole system. This
implies that the reader has a mechanism to control the emitted field strength.
The following experiment aims to emulate a scenario where this mechanism is compro-
mised. Even due to an attacker manipulating the reader system or due to an internal
hardware failure.
Figure 5.8 shows the simplified internal configuration of a supposed mechanism to regu-

Page 83

late the field strength. The reader device includes a register which defines the strength
of the emitted field together with the RX/TX buffer etc. The card harvests the energy
provided by the reader in order to supply its computational circuits.
The goal of this experiment is to show the effects of a simple bit fault in the register
defining the field strength.

Figure 5.8: Field Strength Scaling - Architecture.

Figure 5.9 shows the result of the experiment. As in the experiment described above,
reader and card perform a Diffie-Hellman protocol. The fault injection unit of the em-
ulator is configured to inject a single bit fault into the field strength register of the
reader. The effect of this single bit fault can be clearly identified in the resulting em-
ulation output. Where the supply voltage v̂(t) was always above the threshold voltage
VT in the fault-free scenario, the single bit fault causes a significant drop of the supply
voltage on the card. The supply voltage v̂(t) drops below the minimal required voltage
VT endangering the operational stability of the smartcard if no precaution is taken to
prevent computations during undersupply. Even if the card provides a mechanism to
protect the computational circuit during the undersupply (e.g., by scaling down the sys-
tem frequency), the protocol is affected by the fault (e.g., due to small timing variations).

5.3.3 Multiplier - Fault Injection

Rahimi et al. [34] show that variations in the operating conditions such as temperature
or supply voltage of an integrated system can lead to an erroneous behavior (e.g., due to
variation of the critical path). The experiments were performed on a LEON3, examining

Page 84

0

0.5

1

Key exchange

P
o
w

e
r

[N
o
rm

.]

P̂R (t)

0

0.5

1

P
o
w

e
r

[N
o
rm

.]

P̂SC (t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

V
o
lt
a
g
e
 [
V

]

Time [Normalized]

vi(t)
v̂(t)
VT
VZ

Figure 5.9: Diffie-Hellman Key Exchange. A single bit fault in the hardware of the reader
causes a significant drop of the supply voltage on the card.

the integer unit of the processor and were aimed to identify vulnerabilities of the instruc-
tion set at specific corner cases (e.g., low/high temperature). For example, the multiply
instruction fails with a probability of 4.2% for certain conditions1 or even higher if the
conditions are changed. This result makes clear that fault emulation and analysis are
important factors during the design of a system. Especially if security relevant data is
processed, erroneous behavior of one component can lead to vulnerabilities affecting the
whole system. The following use case shows the capabilities of the emulation framework
regarding fault analysis and is motivated by the work of [34].
The setup of the use case is pictured in Figure 5.10. A simple protocol between a smart-
card and a reader device is examined. The protocol works as follows. The smartcard
should transmit a secret to the reader device. This secret can either be a secret message
read from the memory or a key for a symmetric cypher which has to be generated. This
secret is then encrypted with an asymmetric cryptographic algorithm. In the test sce-
nario a cypher based on the modular exponentiation algorithm is used which encrypts
the secret with the public key of the reader. The encrypted secret is then transmitted
together with the result of a cyclic redundancy check (CRC).
The reader decrypts the message using its secret key and performs a CRC on the de-
crypted data. If the result of the CRC equals the CRC received from the smartcard an

1 The experiment was performed with a supply voltage of 1.1V at a temperature of 125◦C and a cycle
time of 0.82ns

Page 85

error-free transfer can be assumed. If no error is detected, the message from the card
can be processed or if the protocol is used for key-exchange, the following data transfer
can be done using a symmetric cypher. In this use case all computations are done by
software meaning that no additional hardware units are used (e.g., a cryptographic co-
processor).
The goal of the experiment is to examine the behavior of the protocol under the pres-
ence of faults. As target for the faults, the multiplier unit of the LEON3 integer unit on
the smartcard was chosen. Because of the fact that the exponentiation algorithm is the
only component which uses the multiplier, the introduced faults affect only the result
of the encryption. The number of the multiplications depend on the input data of the
algorithm.

Figure 5.10: Asymmetric Security Protocol - Faults during multiplication lead to erro-
neous behavior.

In order to perform the fault injection process the integer unit of the LEON3 was ex-
tended. A simplified view on the architecture of the integer unit is given in Figure 5.11.
The main components of the unit are the pipeline with its cache interface, a divider and
the multiplier. The multiplier was extended with a trigger and a saboteur enabling the
manipulation of the multiplication result. These units can be controlled and configured
through the fault injection controller. The trigger unit observes the control signals of
the multiplier. Whenever a multiplication is performed, the controller is informed. The
fault injection controller then decides depending on its configuration if a fault should be
introduced. If a fault should be introduced the saboteur is activated which alters the
multiplication result. The experiment was performed twice with different configurations.
One experiment consists of 100000 runs of the protocol described above using a secrete
message of 128 byte. During one run, exactly one bit in a multiplication result was
altered. The position of the faulty bit and the multiplication to alter were chosen ran-
domly. This means that during one run, one randomly chosen multiplication is modified.
First, the effect of a stuck-at-one fault was examined (during one multiplication, one bit

Page 86

Figure 5.11: Simplified architecture of the LEON3 integer unit (with integrated trigger
and saboteur).

of the output of the multiplier was set to ’1’). Second, the effect of a stuck-at-zero fault
was examined (during one multiplication, one bit of the output of the multiplier was set
to ’0’). The results of the experiment are summarized in Table 5.3.
The stuck-at-one faults resulted in 83535 erroneous computations. This means that this
kind of fault had effect on 83.54% of the 100000 runs. The remaining runs were com-
puted without error. This can be explained by the simple fact that an error is only
introduced if the original bit was zero.
The whole setup was repeated with a stuck-at-zero configuration of the fault injection
unit. Other than the stuck-at-one experiment, this setup resulted in only 15427 (15.43%)
erroneous computations. The results strongly depend on the data being processed dur-
ing the faulty computation.
The experiment makes clear that the used fault model has a significant influence on the
results when a system is analyzed. Another result of the experiment is the performance
of the CRC. The computations were verified using a 16 bit and a 32 bit CRC. The
CRC32 had a detection rate of 100% were the CRC16 algorithm lead to 0.02% wrong
results.
One should note that the implemented fault injection mechanism provides a high effi-
cient solution for fault analysis. The trigger-saboteur approach enables the analysis of
every injected fault. This is possible due to the fact that a fault is only injected if it has
an impact on the system behavior. In contrast to traditional approaches where faults are
injected randomly, every fault leads potentially to a deviation from normal behavior of
the system. One should also note that once the multiplier is extended with trigger and
saboteurs, arbitrary algorithm can be tested on their fault behavior without additional
effort.

Fault Errors Errors (%) CRC16 CRC32

stuck-at-one 83535 83.54 83517 (99.98%) 83535 (100%)

stuck-at-zero 15427 15.43 15427 (100%) 15427 (100%)

Table 5.3: Asymmetric Security Protocol - Results.

Page 87

6 Conclusion

The goal of the thesis was to develop a RFID/NFC emulation framework for software
verification. One important requirement was that the framework combines models for
reader and card enabling the emulation of the whole system setup. Another requirement
was that a model of the contactless channel should be included. The emulation of faulty
hardware components as well as the estimation of the power consumption of the system
should be possible.
The framework is designed in a high modular manner providing a concept for reader/card
emulation rather than a fixed system solution. The framework is easy scalable and does
not rely on a specific hardware/developing platform. Therefore, the framework can be
easily adapted to fit the requirements of the preferred hardware solution. The framework
allows functional analysis and verification, the emulation of the power consumption and
the analysis of vulnerabilities due to hardware faults or attacks.

The whole project is implemented on one FPGA prototyping platform and is built upon
the open source IP library from Gaisler. The framework combines a model for the
reader device, a card model and a model of the contactless communication channel.
Additionally, a mechanism is provided for efficient fault injection and the models are
equipped with power estimation units. In order to control the emulator, a software
interface is provided. This interface enables to start/stop the emulation, configuration
of the models and a simple access to the produced emulation data.

The project makes the following contributions:

• The framework provides models for reader/card and the contactless communication
channel.

• The setup is structured into a host system and the actual emulation framework
implemented on a prototyping platform. The host system is used to configure
and control the emulator. The framework itself is designed to work without host
interaction during the emulation process.

• The emulator enables functional analysis and verification.

• The emulator supports modules for real time power emulation.

Page 88

• The emulator includes a mechanism for efficient fault injection and fault analysis.

Future Work

The emulator can be easily extended exploiting the bus structure of the framework. The
following extensions are conceivable:

• Adding support for data dependent power analysis.
Currently the power estimation only considers control signals to model the power
consumption. In order to provide a system feasible for side channel attacks such
as DPA, also data dependent power information is necessary.
This requirement can be fulfilled by extending the regression based power model
with a data dependent term. Together with the CADU, cycle accurate power
information can be gathered feasible for DPA.

• Integration of a real wireless interface. The substitution of the channel model
with a real contactless interface is feasible in order to improve the realism of the
emulation. However, this substitution would also lead to a system, which is less
controllable (assuming the channel as black box). Additionally, repeatability of
experiments is difficult due to changing conditions (e.g., environment).

• Integration of various cryptographic hardware.

Page 89

7 Appendix

7.1 Manual

7.1.1 Software Interface

In order to use the Fault Injector Interface application install the RXTX library [36]
and the driver for the USB-to-UART Bridge device of the ML605 prototyping platform
(see [44])

Connect to prototyping platform
After the application has started the control window for the serial interface appears
(Figure 7.1). Select the port to connect and press the Open Device button. Use the
Refresh button to update the list of available devices.

Access to the Debug Interface
When the application is connected to the prototyping platform the user has access to
the Debug Interface of the emulation framework (Figure 7.2). Define a start address,
the amount of words (word = 4 bytes) and press the Read button to read data from
the Debug Bus. Use the Export to F ile button to export the data into a file. Data can
be written to the Debug Bus by defining a data word and the address (Write Word
button). The application can be disconnected by using the Close Device button.

Download software and initialize CPUs
Switch to the Program window in order to download software (Figure 7.3). Define the
start address (PC), stack address (Stack) and the binary file (Binary F ile) with the
program. Additionally, the address of the RAM on the Debug Bus has to be set (RAM
start) which defines the address mapping. This task has to be done for each processor
in the system.

Example:

Setup: The system setup consist of a reader and a card model. The RAM of both
models reside from address 0x40000000 to 0x40080000. The RAM of the reader model
is mapped to the address space from 0x40000000 to 0x40080000 of the Debug Bus. The

Page 90

Figure 7.1: Connect to platform. Figure 7.2: Access Debug Interface.

RAM of the card model is mapped to the address space from 0x60000000 to 0x60080000
of the Debug Bus.

Initialization: According to the setup, the system is initialized as pictured in Table 7.1.

Control CPUs
Switch to the Control window in order to start/stop the CPUs on the platform (Figure
7.4). The CPUs can be controlled independent from each other. Additionally, the status
of each CPU is shown.

CADU Interface
The information collected by the CADU can be downloaded using the CADU control
window (Figure 7.5). The user has to define the start address of the CADU memory.
The information can be exported to a file using the Export to file button.

Page 91

Figure 7.3: Initialize CPUs.

Reader Card

PC 0x40000000 0x40000000

Stack 0x40080000 0x40080000

RAM start 0x40000000 0x60000000

Table 7.1: Example configuration.

Figure 7.4: Control CPUs. Figure 7.5: CADU Interface.

Page 92

7.1.2 Emulation Framework

The emulation framework is directly integrated into the open IP library from Aeroflex
Gaisler [14]. Figure 7.6 shows the hierarchy of the framework.

Figure 7.6: Hierarchy of the framework.

Hierarchy:

• leon3-xilinx-ml605
Includes the top module of the VHDL project (leon3mp.vhd).

• cadu
Contains the control unit for the Cycle Accurate Debug Unit (CADU).

• mfi
Contains all modules of the Modular Fault Injector (MFI) such as fault controller,
trigger and saboteur units.

• misc
Contains the AHB slave multiplexer module. This module can be used to connect
an AHB slave to two different AHB.

• rf channel
Contains all modules necessary to enable the data exchange between a reader model
and a card model.

• pe
Contains all modules of the Power Estimation Unit (PE).

Page 93

• ppdu
Contains the Power Performance Debug Unit (PPDU) project.

• sve
Contains all modules for the Supply Voltage Estimation Unit (SVE).

The whole framework is build upon the AMBA AHB/APB implementation from Aeroflex
Gaisler. Therefore, all provided modules implement an AHB or APB interface. The
following example shows the instantiation of an AHB RAM module.

ahbram0 : ahbram

generic map (hindex => 3,

haddr => CFG_AHBRADDR,

tech => CFG_MEMTECH,

kbytes => CFG_AHBRSZ)

port map (rstn,

clkm,

ahbsi,

ahbso(3));

ahbsi and ahbso are vectors of signals defined by the Aeroflex Gaisler IP library. These
signals are connected to all other modules on the bus and the AHB arbiter. The hindex
parameter defines the index of the module on the bus.
The emulation framework defines three buses. One for the reader model, one for the
card model and a third one for the debug interface. The corresponding signal pairs
are ahbsi 1b/ahbso 1b, ahbsi 2b/ahbso 2b and ahbsi/ahbso. Using these signals, new
modules can be easily added to the reader model, the card model or to the debug bus.

Page 94

Bibliography

[1] Dakshi Agrawal, Bruce Archambeault, Josyula Rao, and Pankaj Rohatgi. The EM
Side - Channel(s). Cryptographic Hardware and Embedded Systems - CHES 2002,
pages 29–45, 2003.

[2] David De Andres, Juan Carlos Ruiz, Daniel Gil, and Pedro Gil. Fades: A fault
emulation tool for fast dependability assessment. In Field Programmable Technology,
2006. FPT 2006. IEEE International Conference on, pages 221–228, Dec. 2006.

[3] L. Antoni, R. Leveugle, and B. Feher. Using run-time reconfiguration for fault
injection applications. Instrumentation and Measurement, IEEE Transactions on,
52(5):1468–1473, Oct. 2003.

[4] ARM Limited. AMBA Specification v2.0, 1999.

[5] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, Feb.
2006.

[6] J.C. Baraza, J. Gracia, D. Gil, and P.J. Gil. Improvement of fault injection tech-
niques based on VHDL code modification. In High-Level Design Validation and
Test Workshop, 2005. Tenth IEEE International, pages 19 – 26, Nov. - Dec. 2005.

[7] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson. Assembly-
level pre-injection analysis for improving fault injection efficiency. In Proceedings of
the 5th European conference on Dependable Computing, EDCC’05, pages 246–262,
Berlin, Heidelberg, 2005. Springer-Verlag.

[8] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor technolo-
gies. Device and Materials Reliability, IEEE Transactions on, 5(3):305– 316, Sept.
2005.

[9] J. Boue, P. Petillon, and Y. Crouzet. MEFISTO-L: A VHDL-based fault injection
tool for the experimental assessment of fault tolerance. In Fault-Tolerant Comput-
ing, 1998. Digest of Papers. Twenty-Eighth Annual International Symposium on,
pages 168–173, June 1998.

Page 95

[10] J. Coburn, S. Ravi, and A. Raghunathan. Hardware accelerated power estimation.
In Design, Automation and Test in Europe, 2005. Proceedings, pages 528 – 529 Vol.
1, Mar. 2005.

[11] J.-M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche. An industrial
fault injection platform for soft-error dependability analysis and hardening of com-
plex system-on-a-chip. In Reliability Physics Symposium, 2009 IEEE International,
pages 212–220, 2009.

[12] N. Druml, C. Steger, R. Weiss, A. Genser, and J. Haid. Estimation based power
and supply voltage management for future rf-powered multi-core smart cards. In
Design, Automation Test in Europe Conference Exhibition, 2012, pages 358 –363,
Mar. 2012.

[13] Aeroflex Gaisler. BCC - Bare-C Cross-Compiler User’s Manual. Version 1.0.41,
July 2012.

[14] Aeroflex Gaisler. Grlib ip core user’s manual. Version 1.1.0 - B4113, January 2012.

[15] Aeroflex Gaisler. Grlib ip library user’s manual. Version 1.1.0 - B4113, January
2012.

[16] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Anal-
ysis: Concrete Results Cryptographic Hardware and Embedded Systems - CHES
2001. volume 2162 of Lecture Notes in Computer Science, chapter 21, pages 251–
261. Springer Berlin / Heidelberg, Berlin, Heidelberg, Sept. 2001.

[17] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss. An emulation-based
real-time power profiling unit for embedded software. In Systems, Architectures,
Modeling, and Simulation, 2009. SAMOS ’09. International Symposium on, pages
67–73, July 2009.

[18] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, and J. Haid. Modular fault
injector for multiple fault dependability and security evaluations. In Digital System
Design (DSD), 2011 14th Euromicro Conference on, pages 550–557, Sept. 2011.

[19] Brad L. Hutchings, Michael J. Wirthlin, and I Overview. Implementation ap-
proaches for reconfigurable logic applications. In In International Workshop on
Field-Programmable Logic and Applications, pages 419–428. Springer, 1995.

[20] Michael Hutter, Stefan Mangard, and Martin Feldhofer. Power and em attacks
on passive 13.56 MHz RFID devices. In Proceedings of the 9th international work-
shop on Cryptographic Hardware and Embedded Systems, CHES ’07, pages 320–333,
Berlin, Heidelberg, 2007. Springer-Verlag.

Page 96

[21] Marc Joye, Pascal Paillier, and Berry Schoenmakers. On second-order differential
power analysis. In Cryptographic Hardware and Embedded Systems - CHES 2005,
7th International Workshop, pages 293–308. Springer, 2005.

[22] Timo Kasper, David Oswald, and Christof Paar. Transactions on computational sci-
ence X. chapter A versatile framework for implementation attacks on cryptographic
RFIDs and embedded devices, pages 100–130. Springer-Verlag, Berlin, Heidelberg,
2010.

[23] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, Apr.
2011.

[24] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, RSA, DSS,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK,
UK, 1996. Springer-Verlag.

[25] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael Wiener, editor, CRYPTO’ 99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397, Berlin, Heidelberg, Dec. 1999. Springer Berlin Heidelberg.

[26] Michael Lackner. Design and implementation of a multi-core power and perfor-
mance emulation platform. Master’s thesis, Institute for Technical Informatics,
Graz University of Technology, 2010.

[27] Timothy C. May and Murray H. Woods. A new physical mechanism for soft errors
in dynamic memories. In Reliability Physics Symposium, 1978. 16th Annual, pages
33–40, Apr. 1978.

[28] Thomas S. Messerges. Using second-order power analysis to attack dpa resistant
software. In Proceedings of the Second International Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’00, pages 238–251, London, UK, UK,
2000. Springer-Verlag.

[29] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving
smart card security using self-timed circuits. In Asynchronous Circuits and Systems,
2002. Proceedings. Eighth International Symposium on, pages 211 – 218, Apr. 2002.

[30] National Institute of Standards and Technology (NIST). FIPS Publication 197:
Advanced Encryption Standard (AES), Nov. 2001.

[31] NFC Forum. Essentials for Successful NFC Mobile Ecosystems, Oct. 2008.

Page 97

[32] E. Normand and T.J. Baker. Altitude and latitude variations in avionics SEU and
atmospheric neutron flux. Nuclear Science, IEEE Transactions on, 40(6):1484–
1490, Dec. 1993.

[33] E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential
power analysis. Computers, IEEE Transactions on, 58(6):799–811, June 2009.

[34] A. Rahimi, L. Benini, and R.K. Gupta. Analysis of instruction-level vulnerability
to dynamic voltage and temperature variations. In Design, Automation Test in
Europe Conference Exhibition, 2012, pages 1102–1105, 2012.

[35] S. Rammohan, V. Sundaresan, and R. Vemuri. Reduced complementary dynamic
and differential logic: A CMOS Logic Style for DPA-Resistant Secure IC Design. In
VLSI Design, 2008. VLSID 2008. 21st International Conference on, pages 699–705,
Jan. 2008.

[36] RXTX. http://rxtx.qbang.org. Visited Apr. 2013.

[37] V. Sieh, O. Tschache, and F. Balbach. VERIFY: Evaluation of reliability using
VHDL-models with embedded fault descriptions. In Fault-Tolerant Computing,
1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual International Sympo-
sium on, pages 32–36, June 1997.

[38] SILICON LABS. Single-Chip USB to UART Bridge CP2103, 2010. (1.0).

[39] Vijay Sundaresan, Srividhya Rammohan, and Ranga Vemuri. Power invariant se-
cure IC design methodology using reduced complementary dynamic and differential
logic. In Very Large Scale Integration, 2007. VLSI - SoC 2007. IFIP International
Conference on, pages 1–6, Oct. 2007.

[40] M.G. Valderas, M.P. Garcia, R.F. Cardenal, C. Lopez Ongil, and L. Entrena. Ad-
vanced simulation and emulation techniques for fault injection. In Industrial Elec-
tronics, 2007. ISIE 2007. IEEE International Symposium on, pages 3339–3344,
June 2007.

[41] I. Verbauwhede, K. Tiri, D. Hwang, and P. Schaumonr. Circuits and design tech-
niques for secure ics resistant to side-channel attacks. In Integrated Circuit Design
and Technology, 2006. ICICDT ’06. 2006 IEEE International Conference on, pages
1–4, 2006.

[42] M. Wendt, M. Grumer, C. Steger, R. Weiss, U. Neffe, and A. Muehlberger. System
level power profile analysis and optimization for smart cards and mobile devices.
In Proceedings of the 2008 ACM symposium on Applied computing, SAC ’08, pages
1884–1888, New York, NY, USA, 2008. ACM.

Page 98

[43] XILINX. Memory Interface Solutions User Guide UG086, Sept. 2010. (v3.6).

[44] XILINX. ML605 Hardware User Guide UG534, Oct. 2012. (v1.8).

[45] XILINX. Virtex-6 Family Overview DS150, Jan. 2012. (v2.4).

Page 99

	1 Introduction
	1.1 Motivation
	1.2 Goals of this Thesis
	1.3 Structure of this Work

	2 Related Work and Theory
	2.1 Side Channel Attacks
	2.1.1 Introduction
	2.1.2 Power Analysis
	2.1.3 Electromagnetic Attacks
	2.1.4 Timing Attacks
	2.1.5 Countermeasures against Side Channel Attacks

	2.2 Fault Injection
	2.2.1 Introduction
	2.2.2 Reasons for Faults
	2.2.3 Fault Injection Methods
	2.2.4 Protection Mechanisms against Faults

	2.3 Fault Injection Platforms and Simulations
	2.3.1 Introduction
	2.3.2 Classification of Fault Effects
	2.3.3 Saboteurs and Mutants
	2.3.4 Simulation based Fault Injection
	2.3.5 Emulation based Fault Injection
	2.3.6 Optimization of Fault Injection Campaigns

	2.4 Power Emulation
	2.5 Related Projects

	3 Design
	3.1 General Considerations
	3.2 Use Cases
	3.3 Requirements
	3.4 Overview
	3.5 Components and Interfaces
	3.5.1 Emulation Framework
	3.5.2 Host System

	3.6 System Architecture

	4 Implementation
	4.1 Tools
	4.2 Xilinx ML605 Prototyping Platform
	4.3 Advanced Microcontroller Bus Architecture AMBA
	4.3.1 Advanced High-performance Bus
	4.3.2 Advanced Peripheral Bus APB

	4.4 Gaisler IP Library
	4.4.1 LEON3 - High-performance SPARC V8 32-bit Processor
	4.4.2 DSU3 - LEON3 Hardware Debug Support Unit
	4.4.3 AHBUART- AMBA AHB Serial Debug Interface
	4.4.4 AMBA AHB/APB
	4.4.5 AHBRAM - Single-port/Dual-port RAM with AHB interface
	4.4.6 AHB to DDR3 Wrapper

	4.5 Emulation Framework
	4.5.1 Processor
	4.5.2 Bus
	4.5.3 RAM
	4.5.4 Channel Model
	4.5.5 Fault Injection Unit
	4.5.6 Power Estimation Unit
	4.5.7 Debug Interface

	4.6 Host System

	5 Results
	5.1 Emulator - Characteristics and Performance
	5.2 Software Interface of the Emulation Framework
	5.3 Experiments
	5.3.1 Power Supply - Smartcard
	5.3.2 Power Supply - Fault Injection
	5.3.3 Multiplier - Fault Injection

	6 Conclusion
	7 Appendix
	7.1 Manual
	7.1.1 Software Interface
	7.1.2 Emulation Framework

