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Abstract

Shadow mapping is one of the most popular algorithms for rendering shadows in computer
generated images. It offers distinctive advantages in terms of simplicity, generality and
performance, while at the same time being a natural fit for the rasterization-based
rendering systems commonly used today. But the technique is extremely vulnerable
to artifacts caused by aliasing effects, which can greatly compromise the quality of the
generated shadows. We propose a new algorithm that not only avoids the common
aliasing artifacts and delivers pixel-perfect hard shadows at interactive frame rates, but
can even take advantage of perspective aliasing for the generation of soft shadows.



Kurzfassung

Shadow Mapping ist einer der populärsten Algorithmen um computergenerierte Bilder
mit Schatten zu versehen. Die überragenden Vorteile von Shadow Mapping liegen in
seiner Einfachheit bei gleichzeitiger Generalität und hoher Performance. Zusätzlich
eignet es sich hervorragend für die Implementierung in auf Rasterisierung basierenden
Renderingsystemen. Allerdings leidet die Bildqualität der mit Shadow Mapping erzeugten
Schatten unter Aliasing Effekten. Diese Arbeit befasst sich mit einem neuen Algorithmus,
der in der Lage ist, die üblichen durch Aliasing erzeugten Artefakte zu umgehen und
exakte Schlagschatten zu liefern.



it’s not the end; it’s the beginning. . .

∞
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1 Introduction

Photons emitted from a light source travel through space until they interact with other
particles. Such interactions may, among other possibilities, lead to absorption, emission
and deflection of photons. These comparatively simple local interactions give rise to
extremely complex phenomena, as photons influenced by one particle again interact with
another particle. Information is transmitted across vast distances almost instantly. In
general, any object in a natural scene has a potential influence on the visual appearance
of any other object. The sheer number of particles that make up the physical objects in
such a scene is enormous, as is the number of photons illuminating it.

Looking at the laws of physics that govern the world we see around us, simulating the
propagation of light through an arbitrary scene as it reaches the eye of the observer
becomes a daunting task. But it is exactly this problem one has to solve in digital image
synthesis. Due to the almost incomprehensible scale of the problem, one has to resort
to—at times very crude—approximations. Especially in interactive applications, global
phenomena, i.e., all indirect influences of objects onto one another, are generally ignored
and only direct illumination is considered, greatly reducing the complexity of the problem.
But some of these global phenomena have a defining influence on the visual appearance
of a natural scene and cannot simply be ignored if visual realism is a concern. One such
phenomenon of fundamental importance to the perceived realism of a scene are shadows
(Figure 1.1).

Due to their nature as a global illumination phenomenon, fast and efficient generation
of dynamic, accurate, and high-quality shadows is still a challenging problem in com-
puter graphics, especially when interactive frame rates are to be accomplished. All
the algorithms used in digital image synthesis today basically belong to one of two
categories:

• offline algorithms rely on complete scene information being available during ren-
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(a) (b)

Figure 1.1: Two images of the same scene, once with and once without shadow to illustrate
the importance of shadows to the overall appearance of a scene.

dering, whereas

• online algorithms produce an output image while streaming scene data.

In many offline rendering algorithms, e.g., most ray-tracing-based approaches, shadows
arise naturally due to the global nature of the underlying method. But such algorithms
are generally too computationally expensive to fit into the tight budget of interactive
applications. Rendering in such applications, is usually based on online rasterization of
primitives, which lends itself more easily to efficient hardware implementation. While
rasterization enables high-performance graphics, shadows pose a challenging problem in
online rendering systems.

Figure 1.2 illustrates the basic configuration considered in shadow rendering. A single
light source illuminates a scene. An occluder blocks the direct path from the light source
to the receiver, limiting the amount of light that can reach each point on the surface
of the receiver, generating a shadow. Taking into account the physical extent of the
light source, some points on the receiver are completely occluded from the light source,
forming the umbra, while some points, the so-called penumbra, are only partly occluded
and thus still reached by some amount of direct light. A commonly made idealization is
to neglect the size of the light source, collapsing it to a point. The shadow from such
a point light does not display a penumbra region, forming a so-called hard shadow, as
opposed to the soft shadow cast by objects illuminated by a light source of non-zero size.
As usual, the illumination from multiple light sources can be computed by superimposing
the illumination of individual sources.
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Figure 1.2: The basic problem encountered in shadow rendering.

1.1 Shadow Algorithms

Due to their visual importance, much work has gone into developing algorithms that enable
the rendering of shadows in online rendering systems. A good overview of different shadow
algorithms is given by Woo et al. [WPF90], in the work by Akenine-Möller et al. [AHH08]
and, of course, in Eisemann et al. [Eis+11]. Two principal methods have proven successful
for generating shadows in online rendering systems:

• shadow volumes [Cro77] and

• shadow mapping [Wil78].

Both of these techniques work in two stages. First, a representation of the spatial volume
that is in shadow is generated. During rendering, this information is then used to identify
parts of surfaces that are in shadow. The difference between both methods lies in the
nature of the shadow-representation.
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1.1.1 Shadow Volumes

In the shadow volumes approach, a geometric representation of the volume of all points
in shadow is constructed. Silhouette edges are identified and then extruded away from
the light source, forming a surface that encloses the shadow volume. During rendering,
the number of times a viewing ray enters and leaves the shadow volume is counted before
it hits a surface. Using this information, it can then be decided whether the surface
point is in shadow or not [Cro77]. Stencil buffer techniques can be used to efficiently
implement this counting scheme on rasterization hardware [Hei91; EK03] and create a
mask for all shadowed regions in the rendered image. Using this mask, the respective
regions can then be shaded accordingly, producing pixel-perfect hard shadows.

The most severe disadvantage of this approach is that a potentially very complex boundary-
representation (BREP) of the shadow volume has to be constructed and rendered.
Construction of the shadow volume traditionally had to be performed on the CPU. The
introduction of the geometry shader stage made it feasible to create shadow volumes
entirely on the GPU. Geometric complexity still is a problem, though, especially since
shadow volumes are prone to consist of thin but very long triangles that are inefficient
for hardware rasterization. Also, shadow volumes, by their nature, lead to high depth
complexity and thus much overdraw, making the method very easily fillrate-bound.
Apart from these efficiency issues, the fact that the shadow volume is constructed
geometrically means that information on the geometry of all shadow-casting objects
is needed. Elements such as billboards made from textured quads are commonly used
today, and geometric information on the objects they represent is generally not readily
accessible. Therefore, the shadow volumes algorithm is not capable of rendering shadows
cast by such objects. Implementations based on the stencil buffer usually rely on all
shadow-casting geometry being closed manifolds, posing further restrictions on what is
feasible input data. While shadow volumes achieve perfect hard shadows, soft shadows
are problematic. Any technique capable of rendering hard shadows can be used to
simulate soft shadows by averaging the illumination from multiple images rendered with
different light positions sampled from the surface of an area light source [Hei91]. But, in
general, many rendering passes are needed for a convincing effect, making such methods
too expensive for interactive applications. Other approaches more suitable for real-time
use such as penumbra wedges [AA02] exist, but have not been widely adopted.

Yet, in its ability to generate perfect hard shadows directly without ray-tracing, the
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shadow volumes algorithm is still somewhat unique and thus relevant today. It also
enables one to query the exact location where a viewing ray enters the shadow volume
and to estimate the distance traveled through the shadow volume. As demonstrated by
[BN08], this fact can be exploited, e.g., to generate effects such as crepuscular rays in
participating media. Without shadow volumes, one would have to resort, for example, to
comparatively expensive ray-marching techniques to achieve a similar effect.

1.1.2 Shadow Mapping

In its essence, shadow computation can be reduced to a visibility problem. Visibility
is efficiently solved in rasterization-based graphics by means of depth buffering [Cat74].
Depth buffering works by storing for each pixel in addition to a color value also the depth
of the associated sample. Whenever a new sample maps to the same pixel, its depth is
compared to the depth currently in the depth buffer. Only if the new sample is closer to
the camera, the pixel is overwritten and the new depth stored in the depth buffer. In
this way, correct visibility of opaque primitives can be guaranteed in an online rendering
algorithm.

A point is in shadow, if it is occluded from the light source. Or in other words: For a
point to be in shadow means for that point to be invisible from the point of view of
the light source. This way of looking at the problem leads to the basic idea of shadow
mapping.

To compute shadows for a given light source, we first render the scene as seen from the
point of view of this light source to fill a depth buffer. This depth buffer is usually referred
to as a shadow map. When rendering the scene from the point of view of the camera, we
can then decide for any given point whether it is in shadow or not by projecting the point
onto the shadow map and comparing its depth to the depth stored at the corresponding
location in the shadow map. If the point is farther away from the light source than the
depth in the shadow map, then it is in shadow, otherwise, it is lit. Figure 1.3 illustrates
this idea, Figure 1.4 shows an example scene with shadows generated by shadow mapping
and the shadow map used to compute the shadows in the scene.

Among the significant advantages of shadow mapping is that it can make use of the
existing rasterization pipeline in basically all of its aspects. Contrary to shadow volumes,
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shadow map

Figure 1.3: The basic shadow mapping algorithm: the scene is first rendered from the
point of view of the light source, and scene depth is stored in a shadow map.
When rendering the scene from the point of view of the camera, samples (e.g.,
those marked as 1 and 2) are projected onto the shadow map. By comparing
the depth in the shadow map to the depth of the sample as seen by the light
source, we can decide whether the sample is in shadow (2) or not (1).
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it offers quite predictable performance characteristics, as it is based on simply rendering
the scene a second time instead of constructing and rendering additional geometry.
Furthermore, there are no restrictions on the contents of the scene. Basically anything
that can be rendered can automatically also cast shadows, particularly billboards. Overall,
shadow mapping is simple to implement, very general and robust and offers reasonable
quality at high performance, making it very attractive for real-time applications, most
prominently video games.

Considering the fact that the scene has to be rendered from the point of view of the
light source, a first problem becomes apparent: the projections supported by current
graphics hardware only allow for a limited field of view. A single shadow map can thus
hold information for a spot light or a directional light, but not, e.g., an omnidirectional
light. Nonlinear projections such as parabolic mapping can be employed to overcome this
issue. While not strictly possible on standard hardware, under certain conditions, an
approximation can be sufficient [BAS02]. Also, the views of multiple shadow maps can
be combined. [Ger04] present an approach that uses cube textures to implement shadow
maps holding a depth buffer for each of the six views along each of the six principal
directions.

Artifacts

Despite its many advantages, shadow mapping suffers from a couple of problems. Precision
issues can lead to erroneous self-shadowing, often simply called shadow acne. Figure
1.5a shows an example of the problem. There are a number of potential causes for this
effect. When rendering the shadow map, the depth is computed by the rasterization
hardware, while the depth used in the shadow test is computed in the shader. These two
different arithmetic paths can lead to slightly different results due to quantization errors.
Also, values in the depth buffer are generally stored at a different precision than they are
computed. As a consequence of both of these issues, the result of the shadow test will
fluctuate across the surface that marks as closest in the shadow map, resulting in the
moiré patterns seen in Figure 1.5a.

The common solution to these issues is to apply a small depth bias either during rasteri-
zation of the shadow map or when comparing the depth values. If the bias is too small,
shadow acne will continue to show up. A large bias is typically needed to sufficiently
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Figure 1.4: A rooftop scene with complex shadows.
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(a) (b)

Figure 1.5: (a) Incorrect self shadowing due to precision issues. (b) By applying slope-
scaled depth bias, the problem can be solved.

(a) (b)

Figure 1.6: (a) Peter panning effect caused by a large, constant depth bias. (b) The same
scene with slope scaled depth bias instead.

suppress shadow acne widely enough. But a large bias will result in another detrimental
effect known as peter panning (Figure 1.6b) where objects appear to float as contact
shadows do not meet up to the contact point anymore, loosing the “grounding” effect
that we sought to achieve with shadows. Due to the hyperbolic nature of depth values, it
is hard to impossible to find a single bias that would strike a right balance between these
two effects. Yet, as can be seen in Figure 1.5b and Figure 1.6b, a slope-scaled depth bias
can. Instead of using a constant, global bias, we vary the bias based on the slope of the
polygon, applying a larger bias on steeper polygons. Since it is generally a very effective
tool in preventing such precision artifacts, slope-scaled depth bias is supported directly
by graphics hardware today.

While the sampling-based nature of shadow mapping gives rise to its many advantages, at
the same time, it also is the cause for its greatest weakness: aliasing. Aliasing is generally
an issue in raster graphics, but shadow mapping offers all the ingredients to make the
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problem especially severe. The way the scene is sampled when rendering the shadow map
from the point of view of the light source and when rendering the frame from the point of
view of the camera can differ greatly. Due to perspective and projection, objects taking
up many samples in one view might take up very few or even no samples in the other
view. Aliasing is caused either by undersampling or by oversampling. Oversampling
happens where more than one shadow map sample correspond to a single sample taken
from the viewport of the observer, i.e., the sampling rate in the shadow map is higher
than the image sampling rate. This issue is well known from texturing where it is solved,
e.g., by mip-mapping [Wil83]. It is usually less of a problem with shadow mapping.
The big problem is undersampling. Undersampling occurs when many samples in the
current camera view map to a single sample in the shadow map, i.e., the sampling rate
in the shadow map is lower than in the image being generated. Figure 1.8 illustrates this
phenomenon. It is this form of aliasing that is responsible for the well known “jaggies”
as seen in Figure 1.7. An in-depth analysis of aliasing in the context of shadow mapping
can be found in [Llo+08].

The purpose of this work is to explore edge distance shadow mapping (EDSM), a new
method to cope with shadow map aliasing. We extend the basic shadow mapping
algorithm in a simple yet powerful way that allows us to combine both, the advantages
of the sampling-based approach using fast, depth buffer based visibility queries with the
advantages of using geometric features to create mathematically exact shadow borders,
but without the massive overhead of actually constructing a full boundary representation
for the entire shadow volume.
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(a)

(b)

Figure 1.7: (a) Shadow mapping is riddled by aliasing artifacts. (b) Rendering the same
scene with shadow volumes yields exact shadow boundaries.
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image plane

shadow map

Figure 1.8: Aliasing explained: the blue part of the surface projects to a larger area in
the image plane than it does in the shadow map.
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2 Related Work

As this work is about shadow mapping, we will first give a short overview on the
developments in the field. Shadow mapping was first suggested by Williams [Wil78]. The
basic shadow mapping algorithm proposed in this early work is commonly referred to as
simple shadow mapping (SSM).

2.1 Dealing with Shadow Map Aliasing

Much research has since focused on how to mitigate the effects of aliasing. There are
basically two different angles to take on the problem of aliasing in the basic shadow
mapping algorithm. One can either perform anti-aliasing on the results of the visibility
test by some means of filtering, or optimize the sample distribution in the shadow map
to better match spatial sampling frequencies and reduce aliasing in the first place. These
two kinds of approaches work independently of each other and thus can be—and usually
are—combined for the best results.

2.1.1 Anti-Aliasing

The perhaps oldest approach to provide anti-aliasing for shadow mapping is percentage
closer filtering (PCF) [RSC87]. The key idea of PCF is to not just use the nearest sample
in the shadow map, but to perform the depth comparison for a whole neighborhood and
average the results. Due to its simplicity, PCF is a standard algorithm today. In the
form of texture comparison sampling, modern graphics hardware even has native support
for performing PCF built into its texture units.
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The problem with PCF is that the operation gets more and more costly as the filter
size is increased. Unfortunately, a large filter size is typically needed to achieve the
desired visual quality across a broad range of scenes. More recent approaches have
focused on reformulating the shadow test in ways that allow the shadow map itself to
be filtered before shadow computation. Variance shadow maps (VSM) [DL06] do not
store a single depth value per pixel, but rather store the mean and mean square of a
distribution of depths. In this way, the variance of the depth distribution can efficiently
be computed over any filter region. Using the variance, an upper bound on the fraction
representing the occlusion of a shaded fragment is computed. This bound forms a good
approximation for the true occlusion. Using simple Gaussian filtering on the variance
shadow map, aliasing artifacts are strongly reduced and a reasonable shadow is generated.
Convolution shadow maps (CSM) [Ann+07] enable the filtering of a shadow map by
linearizing the shadow test. While—due to the binary shadow test—traditional shadow
mapping is inherently non-linear with respect to the stored depth values, CSMs are not.
To get to their formulation of a weighted summation of basis terms for filtering, they
assume all receivers to be parallel to the shadow map. As basis function, the Fourier
Expansion is used, leading to a multitude of Fourier basis textures representing the
convolution shadow map. Instead of linearizing the shadow test using multiple basis
functions, exponential shadow maps (ESM) [Ann+08] approximate the shadow test using
an exponential function. Due to the limited spatial and numerical resolution and due
to the applied filtering, the shadow test of ESM might lead to wrong results in some
circumstances. To counteract this problem, a manually tuned offset is used. With a
well tuned offset, ESM achieves visual quality equivalent to CSM, while being faster and
performing better at contact shadows. Compared to VSM, ESM is more forgiving with
respect to light leaking.

2.1.2 Optimizing the Sample Distribution

Many algorithms exist which try to warp the projection onto the shadow map such that the
distribution of shadow map samples when projected onto the current viewport becomes
more uniform. Perspective shadow maps (PSM) [SD02] are generated in normalized
device coordinate space, i.e., after perspective transformation, and thus distribute samples
similar to the main view. Light space perspective shadow maps (LiSPSM) solve many of
the problems of PSM, like singularities in post-projective space and missed shadow casters,
by applying a transformation that allows all lights to be treated as directional lights.
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Trapezoidal shadow maps [MT04] address the resolution problem by approximating
the eye’s frustum as seen from the light with a trapezoid to warp it onto a shadow
map. Logarithmic perspective shadow maps [Llo+08] combine a perspective projection
with a logarithmic transformation to reduce the aliasing error of perspective shadow
mapping. Rectilinear texture warping [Ros12] approaches the problem of a uniform
sample distribution by two 1D warping functions, increasing the resolution of the shadow
map based on an analysis in both, the light space and the eye space.

Plural sunlight buffers [Tad+99], parallel split shadow maps (PSSM) [Zha+06] and
cascaded shadow maps (CSM) [Eng06] recognize the fact that, due to perspective fore-
shortening, shadows closer to the camera will need a higher resolution than shadows
farther away. Multiple shadow maps are used for areas of different distance to the viewer.
A more recent refinement of these techniques is presented in [Lia+11].

Instead of altering the projection to adjust the sample distribution in a shadow map, plac-
ing samples in an irregular manner could result in perfect hard shadows. By transforming
the visible pixels from screen space to the image plane of the light source and using
these positions as sampling points, one sample is generated for every pixel in the eye’s
image [AL04]. This strategy can be implemented using an irregular z-buffer [Joh+05].
Using multiple regularly sampled layers, an irregular sampling scheme can be set on
graphics hardware [Arv07].

2.1.3 Hybrid Approaches

A third way to cope with aliasing is to apply basic shadow mapping only in areas the
algorithm can handle without problems and fall back to a different technique for regions
that shadow mapping cannot decide correctly. [CD04] use shadow mapping to quickly
determine areas that are completely in shadow or completely lit. In regions where the
depth test on the samples surrounding the projected location yields differing results,
i.e., areas where a silhouette edge crosses the shadow map, they apply shadow volumes.
While such a combination of the two techniques inherits most of the disadvantages of
shadow volumes, efficiency problems due to high depth complexity and rasterization
loads can somewhat be contained by restricting rasterization of shadow volumes to only
small areas of the screen. As such, this method can be viewed as an optimization for
shadow volumes.
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Similar to our method is shadow silhouette shadow mapping (SSSM) [SCH03]. In
addition to the depth buffer, SSSM rasterizes silhouette edges into a second buffer,
storing the coordinates of a representative point on the silhouette closest to each pixel.
During shadow rendering, using the representative points from a neighborhood around
each sample location, a piecewise-linear approximation of the true shadow silhouette
can be constructed in a shader. To do this, they rely on a scheme similar to dual
contouring [Ju+02], exploiting the fact that there is only a limited number of possible
configurations in which a contour can pass through a pixel. As long as a sufficient number
of samples are present around silhouettes, very high quality shadow boundaries can be
reconstructed in this way.

The method we are about to present could also be classified as a hybrid. We also use
conventional shadow mapping for fast shading of larger areas completely in shadow or
light while at the same time identifying areas where a silhouette edge crosses the image.
And we also rely on rasterizing silhouette edges, storing information that allows the
each edge to be reconstructed during shadow rendering. But we use a different way of
encoding this information. Like Green [Gre07], we employ a signed distance field as our
edge representation. In his work, he presents a simple and efficient method for improved
rendering of textures containing glyphs. From a high resolution image, a distance field is
generated and then stored into a channel of a lower-resolution texture. Using bilinear
texture filtering, the distance field is evaluated and improved glyph outlines are drawn.
He showed that his approach can vastly improve the quality of textures with vector based
content such as text. Similar work has been done by Qin et al. [QMK06]. To achieve
even higher quality for glyph rendering, they overlay multiple distance fields, one for
each line segment of the glyph. While computationally more expensive, this approach
does not suffer from artifacts at sharp corners as Greene’s does. As our goal is to render
shadows for dynamic scenes, precomputation is not an option. We will show how the
necessary distance information can be generated in real-time for triangle meshes.

For a more detailed discussion on the state of the art in shadow mapping, the reader is re-
ferred to the recent survey on hard shadow mapping algorithms by Scherzer et al. [SWP11]
or the book Real-Time Shadows [Eis+11].
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3 Edge Distance Shadow Mapping

Inspired by [Gre07], we propose edge distance shadow mapping (EDSM). In addition to
the conventional depth buffer, we also encode a mathematical representation of silhouette
edges passing through shadow map texels in the shadow map. Based on this encoding,
while rendering the shadow, whenever a sample falls onto a location where the simple
depth-based visibility test would yield differing results for the surrounding shadow map
texels, i.e., it falls in an area where a silhouette edge crosses the image, we can reconstruct
the silhouette edge and perform an exact test whether the sample falls inside or outside
the silhouette edge. With this method, we can actually get pixel-perfect hard shadows at
a very low cost and high performance.

Silhouette information is stored as a distance field that holds in every texel the signed
distance to the closest silhouette edge. As we will show, the distance of a point to a
straight line can accurately be reconstructed from the sampled distance field by bilinear
texture filtering. Given the signed distance of the point, it is trivial to decide whether
the point is inside or outside of the silhouette. Figure 3.1 illustrates this idea by giving
an example of a scene, the shadow map and the corresponding edge distance map.

3.1 Theoretical foundations

In the two-dimensional affine plane, a line can be defined as the set of all points that
satisfy the equation

a · x+ b · y + c = 0 (3.1)

where (x, y) ∈ R2 are the coordinates of the point, and (a, b) ∈ R2 \ {(0, 0)} and c ∈ R
are the coefficients of the line. Given any point on the line, a second point at offset
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(b) (c)

Figure 3.1: EDSM.

25



(x, y) ∆x

∆y

−λa

λb

ξb

ξa

Figure 3.2: The construction leading to our finding that the minimal distance of a point
to a line is always measured along the direction orthogonal to the line.

(∆x,∆y) ∈ R2 must satisfy

a · (x+ ∆x) + b · (y + ∆y) + c = 0

(a · x+ b · y + c)︸ ︷︷ ︸
=0

+(a ·∆x + b ·∆y) = 0

⇔ a ·∆x = −b ·∆y

to also fall on the line. This underdetermined relation is fulfilled iff ∆x = λ · b and
∆y = −λ · a for any λ ∈ R. The conclusion we draw from this finding is twofold. First,
given any point on the line, another point on the line can be found along the direction
given by (b,−a). Second, for any δ > 0, for any point (x, y) on the line, there are exactly
two points at distance δ also on the line, since

δ = ∆2
x + ∆2

y = λ2(b2 + a2)

always has exactly two solutions for λ (due to the nontriviality of (a, b)). Thus, not just
can other points of the line be found at any distance along direction (a,−b), but only
along this direction; a line is a one-dimensional entity of infinite extent. Based on this
result, we arrive at the following, parameterized description of a line as the set of all
points x(λ) given by

x(λ) = p + λd (3.2)

where p is a reference point on the line, d specifies the direction of the line and λ ∈ R is
the line parameter.
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Any point (x, y) ∈ R2 can be expressed by an offset (∆x,∆y) ∈ R2 relative to a point
(x+ ∆x, y+ ∆y) ∈ R2 on the line. As we have just seen, starting at any point on the line
with coefficients (a, b, c), another point on the line will be found at an offset (λb,−λa)
for any given λ ∈ R. As illustrated in Figure 3.2, the offset of (x, y) from such a new
point is given by (∆x + λb,∆y − λa) ∈ R2. We can then consider the distance d(λ) of
the point on the line corresponding to the parameter λ from (x, y):

d(λ) = (∆x + λb)2 + (∆y − λa)2

As this is a quadratic function, it has a single global minimum at the point where the
first derivative vanishes. The parameter λ that corresponds to the point on the line with
minimum distance to (x, y) can thus be found to be:

∂

∂λ
d(λ) = 2b∆x + 2λb2 − 2a∆y + 2λa2 != 0

λ(a2 + b2) = a∆y − b∆x

λ = a∆y − b∆x

a2 + b2

We notice that for any offset ∆x = ξ · a and ∆y = ξ · b with ξ ∈ R, the optimal parameter
λ becomes zero. This means that, starting at a point on a line, the distance to any
point along the direction (a, b) cannot be decreased by moving along the line in any
way. Intuitively, we have now found a geometric interpretation for the coefficients a and
b: they correspond to the direction orthogonal to the line, i.e., the coordinates of the
normal vector of the line.

Finally, if we plug the coordinates of the point at offset (ξ · a, ξ · b) from a point (x, y) on
the line back into (3.1), we get:

a(x+ ξ · a) + b(y + ξ · b) + c = a · x+ b · y + c︸ ︷︷ ︸
=0

+ξ(a2 + b2)

= ξ(a2 + b2)

Therefore, plugging the coordinates of any point (x, y) ∈ R2 into the function

d(x, y) = a · x+ b · y + c

c2 + b2 (3.3)

will produce the signed distance of that point to the line, i.e., a value whose absolute
gives the closest distance of that point to the line and which is positive on one side of the
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Figure 3.3: Piecewise linear approximation of a continuous signal from its sampled values
yi.

line and negative on the other. Based on the signed distance, the notion of a positive and
a negative half space can be defined as the set of all points for which the signed distance
is positive or negative respectively.

3.1.1 Bilinear Interpolation

A simple and common way to reconstruct a continuous signal from a sampled repre-
sentation is by linear interpolation. The course of the signal between two samples is
approximated by a line segment, leading to a piecewise linear approximation as illustrated
in Figure 3.3.

Given two sample values yi and yi+1 at sample locations xi and xi+1, we can compute
the interpolated value y at a location x between xi and xi+1 as

y = yi + x− xi

xi+1 − xi
(yi+1 − yi). (3.4)

The idea of linear interpolation can be generalized to two dimensions. We perform
linear interpolation first along one dimension and then again interpolate the already
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Figure 3.4: Bilinear Interpolation

interpolated values along the other dimension, leading to bilinear interpolation (Figure
3.4). By introducing the interpolation factors λ1 = x−xi

xi+1−xi
and λ2 = y−yi

yi+1−yi
, we can

write

f(x, y) = (1− λ2)((1− λ)f(xi, yi) + λ1f(xi+1, yi))

+ λ2((1− λ1)f(xi, yi+1) + λ1f(xi+1, yi+1))

= (1− λ1)((1− λ2)f(xi, yi) + λ2f(xi, yi+1))

+ λ1((1− λ2)f(xi+1, yi) + λ2f(xi+1, yi+1))

We can show that for the signed distance function (3.3), the following property holds:

d((1− λ)x1 + λx2, y) = a((1− λ)x1 + λx2) + by + c

= (1− λ)ax1 + λax2 + (1− λ+ λ)by + (1− λ+ λ)c

= (1− λ)(ax1 + by + c) + λ(ax2 + by + c)

= (1− λ)d(x1, y) + λd(x2, y)

and analogously for y. It follows that, by performing bilinear interpolation, the signed
distance to an arbitrary edge can correctly be reconstructed for arbitrary coordinates
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correctly be reconstructed from a sampled representation of the distance field.

3.2 Distance map generation

At the core of our algorithm lies the computation of the distance map. A complete
distance field for the whole image is not needed because distance information is only used
where a silhouette edge crosses the image. Therefore, an edge distance shadow map can
be produced by simply rasterizing the edge distance along silhouette edges. To do so, we
first identify silhouette edges and then construct a screen aligned quad along each edge
that we can use to rasterize the edge distance into our distance map.

3.2.1 Silhouette Detection

Given a manifold triangle mesh, we can determine if an edge is a silhouette edge as seen
from a given viewpoint by looking at the projections of the two triangles adjacent to the
edge. Let p1,p2,p3 ∈ R3 be the coordinate vectors of the three vertices of a triangle in
the projective plane P2. The determinant of the matrix

M =
[
p1 p2 p3

]
will yield the signed volume of the tetrahedron formed by the three vertices and the origin.
The winding order (clockwise or counterclockwise) of the projected triangle vertices is
determined by the sign of det M [OG97]. If the triangles in the mesh are consistently
specified in a way that retains a certain winding order, an edge will be a silhouette
edge iff the projections of the vertices of the two triangles sharing the edge appear in
different winding orders. Thus, all we have to do to find out if an edge of such a mesh
is a silhouette edge is check if the sign of the determinant det M for the two triangles
joined by that edge is different.
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3.2.2 Edge Quad Construction

After a silhouette edge has been identified, we need to construct a screen-aligned quad-
rangle. To avoid clipping errors, we have to do so in projective space. If we consider our
affine plane embedded into a real projective 2-space P2, according to (3.1), a line in this
plane is described by all points (x, y, w) ∈ R3 satisfying

a · x
w

+ b · y
w

+ c = 0

⇔ a · x+ b · y + c · w = 0, (3.5)

or in vector notation
p · c = 0, (3.6)

where p =
[
x y w

]T
∈ R3 denotes the coordinate vector of the point and c =[

a b c
]T
∈ R3 the vector of line coefficients. We note that we can scale the coef-

ficient vector by any scalar multiple without changing the equation. By solving the
system of equations we get from plugging the coordinates p1 =

[
x1 y1 w1

]T
,p2 =[

x2 y2 w2
]T
∈ R3 of two points on the line into (3.6), we can derive the line coefficients

for the line passing through these two points:

a · x1 + b · y1 + c · w1 = 0

a · x2 + b · y2 + c · w2 = 0

⇒ (a · x1 + b · y1 + c · w1)w2 = (a · x2 + b · y2 + c · w2)w1

⇔ b(y1w2 − y2w1) = a(x2w1 − x1w2)

Again, this underdetermined relationship is fulfilled iff a = λ(y1w2 − y2w1) and b =
λ(x2w1 − x1w2) for any λ ∈ R. Plugging this result back into one of the initial equations
yields the last coefficient:

λ(y1w2 − y2w1) · x1 + λ(x2w1 − x1w2) · y1 + c · w1 = 0

w1(λx2y1 − λy2x1 + c) + w2(λy1x1 − λx1y1) = 0

w1(λx2y1 − λy2x1 + c) = 0
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Thus, we find the line coefficients for the line through p1 and p2 to be:

c = λ


y1w2 − y2w1

x2w1 − x1w2

y2x1 − x2y1

 .
We notice that the vector part of this expression coincides with the cross product of p1
and p2. As noted earlier, we can drop the factor λ, because any scalar multiple of the
coefficients defines the same line, leading us to:

c = p1 × p2 =


y1w2 − w1y2

w1x2 − x1w2

x1y2 − y1x2

 (3.7)

As we already know, the coefficients of the line correspond to the direction orthogonal
to the line. Therefore, after computing the line coefficients as described above, we are
already equipped with everything we need to know to calculate the corner points of a
quadrilateral enclosing our line segment.

3.2.3 Sorting of Distance Samples

We cannot allow for gaps in the silhouette as they would cause objectionable artifacts.
While it would be possible to use a more sophisticated—for example half-edge-based—data
structure than a simple indexed triangle list to provide the local topology information
necessary to generate continuous silhouette geometry, traversing such a complicated data
structure for every silhouette vertex in every frame would not be very efficient.

To always ensure connectedness of the silhouette, we construct our edge quads in such a
way that quadrangles belonging to edges that are joined at a common vertex overlap at
the corner where they meet (see Figure 3.5).

But, while we now have our silhouette edges always surrounded by quads, we need
to ensure proper sorting of the distance samples rasterized from these quads. Simply
rendering these quads in the order of the primitive stream would result in a distance
map such as the one depicted in Figure 3.6. Sorting the primitives according to a global
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v1

v2

Figure 3.5: Overlapping quads generated along a strip of silhouette edges.

min(·), while already better, is not successfull either as can be seen in Figure 3.7. Apart
from solving the sample order at corners, we will also have to account for unrelated
silhouette edges crossing each other in the current viewport.

To still achieve correct ordering of edge distance samples given all these difficulties, we
rely on a corner priority function fp:

fp(p) =

|p · e| if (p− p0) · e > 0

max
(

p−p0
‖p−p0‖

· e, |p · e|
)

otherwise
(3.8)

where p is the sample location p0 the coordinates of the corner vertex, e the vector of
line coefficients of the edge and the product p · e denotes evaluation of the signed edge
distance. Figure 3.8a shows a surface plot of this function for a certain edge direction.
We see that the function displays a more spherical shape in close proximity to a silhouette
vertex, while retaining the overall V-shape of the edge distance along the silhouette
border. Sorting fragments by smallest value according to this priority function will yield
the desired edge distance map, enabling exact reconstruction of silhouette edges during
shadow rendering as seen in Figure 3.9. See also Figure 3.8b for an illustration on how
the sorting process works.
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(a) (b)

Figure 3.6: Rendering edge quads in primitive stream order results in an incorrect distance
map (a), causing artifacts in the shadows generated based on such a distance
map (b).

(a) (b)

Figure 3.7: Sorting based on a min(·) operation yields a much better, but still not the
correct distance map (a) and also causes very noticeable artifacts in the
shadows (b).
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(a)

(b)

Figure 3.8: (a) Corner priority function for a single edge (height marks the function value
while the color visualizes the corresponding edge distance). (b) The ordering
resulting from performing a min(·) operation on the priority function of two
joined edges (one blue, the other one orange).
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(a) (b)

Figure 3.9: Sorting according to the lowest value of the priority function finally leads to
the desired result.

36



4 Implementation

4.1 Framework

As part of this thesis, an environment for the development, testing and evaluation of
shadow algorithms has been created. It features a build system, a core application, and
some utility libraries and tools that make for a very smooth and convenient developer
experience and will serve as an excellent base for future work.

Build System The build system utilizes MSBuild and some custom extensions to enable
offline compilation of HLSL shader sources as part of the build process and also integrates
seamlessly into Visual Studio. Shader binaries created in this build process are linked to
and distributed as part of the produced executable images.

Core Application Written for Microsoft Windows in C++ using the Direct3D 11 API,
the core application provides basic services such as the main rendering pipeline, scene
management and navigation, and a simple graphical user interface. Individual shadow
algorithms are implemented in the form of plug-ins that are dynamically loaded by the
core application. To facilitate rapid iteration cycles during development, the system
supports hot swapping, i.e., individual plug-ins can be modified, recompiled and reloaded
all while the application is running.

Utilities The utility libraries provide programming support for interfacing with system
APIs as well as basic 2D drawing and font rendering, reading and writing of 2D image file
formats, and graphical user interface components. Since, for performance reasons, the core
application uses a custom binary scene format, the additional tools are mainly concerned
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with reading common 3D file formats and performing the necessary preprocessing to
convert data into the custom format.

Rendering Pipeline The rendering pipeline in our application is structured into two
stages. First, the current shadow algorithm is run. Shadow algorithms get a triangle mesh
as input and render into a separate buffer the amount of light that reaches every pixel
visible in the current view. This buffer is then used in the second stage to produce the
final, shaded image. While for algorithms such as shadow mapping that could partially
be incorporated directly into the shader used to render the shadow receiver, this approach
introduces an additional rendering pass that could, in many circumstances, be avoided, it
has a some advantages in our application. First and foremost, the shadow computation
is thus decoupled from the rest of the application. Since we want to be able to plug
any shadow algorithm into the application, we need a system that enables the shadow
algorithm to vary freely and independently of the rest of the application—a feat that
would be difficult to achieve with a less general approach. Second, it enables us to
measure how long it takes for a particular algorithm to just generate shadows. Triangle
meshes serve as input for the shadow algorithms The meshes we use are all manifold,
since some algorithms, e.g., shadow volumes, only work for such topologies. Data is
presented in the form of indexed triangle lists with adjacency information; the latter is
needed by algorithms such as EDSM or shadow volumes that have to perform silhouette
detection.

4.2 EDSM Implementation

For this work, we implemented the EDSM algorithm on triangle meshes. The edge
distance shadow map is rendered in two passes. First, a conventional depth buffer is
rendered. To prevent incorrect self shadowing, we apply a slope scaled depth bias.

4.2.1 Distance Map Generation

To generate the distance map, we use a geometry shader to spawn screen-aligned quads
along triangle edges. These quads are then rendered using a pixel shader that calculates
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the distance of the interpolated fragment position to the corresponding silhouette edge
and writes it into the render target.

While we could simply rasterize the edge distance for all edges, to keep the number of
quads as low as possible, we generate quads only for silhouette edges. Silhouette detection
is performed in projective space as described in section 3.2.1. As the geometry shader
will be called for all primitives, we also perform backface culling to ensure that only
one quad is generated per silhouette edge. For increased parallelism, we also make use
of geometry shader instancing to launch one instance of the geometry shader for each
triangle edge instead of handling the individual edges sequentially. We found that this
can slightly increase performance in geometry-heavy scenes.

Our initial idea of simply exploiting the blending functionality of the output merger
stage to apply a global min(·) operation on all fragments as a cheap and efficient way of
determining the distance to the silhouette edge closest at each pixel turned out not to
be fruitful. A big part of the problem owes to the fact that we always have to maintain
connected silhouettes. The edge distance of the quads necessarily overlapping each other
at corners cannot be decided by a simple min(·) operation. Thus, we resort to the strategy
described in section 3.2.3. We implement the fragment sorting based on our priority
function using depth buffering. The priority function is computed at the fragment level
and the value written to the fragment depth. Depth buffering will then ensure that
the fragment with the minimum priority value ends up in the distance map. Figure ??
illustrates the importance of the issue. Since we already rely on depth buffering to solve
the ordering of fragments at corners, we cannot also use it to ensure correct ordering of
overlapping edges. Therefore, we sample the depth buffer that has already been created
in the first pass and issue a fragment kill if the edge would fail the depth test to take
care of overlapping edges and remove occluded edges.

4.2.2 Shadow Computation

When rendering the scene from the current point of view, we now use the depth map and
distance map generated in the previous pass. We project points onto the shadow map
as usual. To decide whether the projected position is completely in shadow, completely
outside of the shadow or falls on a silhouette edge, we exploit texture comparison filtering.
Texture comparison filtering will return a value of 1 in areas where all neighboring
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samples pass the depth test, 0 where all of then fail the test and a value between 0 and
1 if the sample falls on a silhouette edge, thus providing a quick, hardware accelerated
neighborhood check. In the case that the sample falls on a silhouette edge, we further
sample the distance map using bilinear texture filtering to reconstruct the signed edge
distance at the current position.
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5 Results

For comparison with our method, we also implemented simple shadow mapping (SSM),
shadow mapping with percentage closer filtering (PCF), shadow silhouette maps (SSSM),
and shadow volumes (SV). Just like in our EDSM implementation, we use the geometry
shader stage to construct the edge quadrilaterals for the SSSM algorithm. Texture gather
operations allow us to further optimize some of the more expensive texture lookups found
in SSSM on modern hardware. We also use geometry shaders to construct the shadow
volume in the SV algorithm directly on the GPU. Our shadow volumes implementation
is based on the z-fail method (also known as “Carmack’s reverse”), and we make use of
homogeneous coordinates to project and rasterize the necessary back-cap at infinity as
described in [EK03].

Experiments were conducted on a NVIDIA GeForce GTX 560 Ti graphics card in a host
PC driven by an Intel Core i7-2600K CPU running at 3.4GHz with 8GB RAM. Each
measurement represents a sample after a burn-in period of 100 frames; data was collected
using Direct3D 11 queries.

5.1 Performance

Two different scenes were used to evaluate algorithm performance. Both of them are
depicted in Figure 5.1. The jenga scene consists of 17848 triangles while the phaeno
scene consists of 505270 triangles. These two different setups were chosen to investigate
the influence of geometric complexity on the overall result. As we can see in Figure
5.2, shadow volumes are by far the slowest method in both scenes. EDSM and SSSM
generally show the same performance. As we would expect, SSM is the fastest method,
but EDSM and SSSM are still comparatively cheap when we consider shadow volumes.
When comparing the number of primitives processed during the shadow rendering (Figure
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(a) Jenga (b) Phaeno

Figure 5.1: The test scenes used in our evaluation. The jenga scene (a) consists of 17848
triangles, the phaeno scene (b) of 505270 triangles.
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Figure 5.2: Time needed by different algorithms to update the shadow map and render a
shadow.

5.3), the extreme additional geometric complexity due to the shadow volumes becomes
apparent. Keep in mind that EDSM and SSSM both need two passes to generate their
shadow map. The number of pixel shader invocations (Figure 5.4) can serve as a rough
estimate for fillrate demands, but one has to be careful as, due to optimizations such as
early depth culling, the real overhead of high overdraw is not correctly represented. Also,
SSM does not need a pixel shader to be run during shadow map generation, as it can
simply use the depth output by the rasterizer directly.

5.2 Visual Quality

Figure 5.5 compares the visual results of our method with SSM and hardware PCF in
a situation of extreme aliasing. While the other techniques display badly jagged edges,
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Figure 5.3: Number of primitives that had to be processed during different stages of the
algorithms investigated in our evaluation.
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Figure 5.4: Number of pixel shader invocations as a rough estimate of rasterization
pressure.
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EDSM is still able to reconstruct an exact hard shadow. SSSM yields almost identical
results and suffers from the same kinds of aliasing artifacts as EDSM.

5.2.1 Artifacts

Since we rely on sampling, our algorithm is also affected by aliasing. But the effects of
aliasing manifest differently and, potentially, in visually less severe ways compared to
conventional shadow mapping.

Due to the way we construct our edge quads, they undergo perspective foreshortening
not only in longitudinal, but also in lateral direction. Perspective aliasing causes less
and less edge distance samples to be available in the neighborhood of distant silhouette
edges until edge reconstruction breaks down due to insufficient information (Figure 5.6).
Constructing the quads in post-projective space would help to mitigate this problem,
but give rise to other problems like handling primitive clipping correctly. Foreshortening
in longitudinal direction leads to the same aliasing problems and naturally cannot be
avoided. Level of detail methods would, for example, be needed to cope with this kind of
aliasing by adapting the scene geometry to the viewport of the light.

Apart from aliasing, the algorithm produces artifacts at sharp corners as depicted in
Figure 5.7. Since min(·) is a nonlinear operator, our assumptions that allowed for edge
distance to be reconstructed by bilinear filtering do not hold around areas where the
distance fields of multiple edges meet. To avoid this problem, instead of computing a
combined minimum distance field, one would have to store the distance fields of all the
individual edges, interpolate and perform the inside/outside check separately, and then
combine the results, e.g., by a logical AND.

We find it interesting to note that perspective aliasing can lead to such nonlinearities
too. Perspective causes edges to move closer to one another as the move away from the
viewer. Once they get so close that there are less than the necessary two pixels around
each edge, the reconstruction by bilinear filtering breaks down again (Figure 5.8).
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(a) SSM

(b) PCF

(c) EDSM

Figure 5.5: Quality Comparison
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(a)

(b)

Figure 5.6: The effects of undersampling in EDSM.
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(a) EDSM (b) ground truth

Figure 5.7: Corner nonlinearity.

(a) EDSM (b) ground truth

Figure 5.8: Overlapping edge nonlinearity.
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6 Conclusion

The purpose of this work was to serve as a proof of concept to see if the EDSM algorithm
could work and future research be justified. We were able to show that our algorithm
can compete with other current methods to generate hard shadows in rasterization-based
rendering systems. It is able to provide pixel perfect hard shadows at a low additional
cost compared to standard shadow mapping and runs significantly faster than shadow
volumes.

Our algorithm depends on an edge distance map from the point of view of the light
source, which can, as demonstrated in this work, efficiently be produced on current
graphics hardware. The method we have shown here needs adjacency information on
the input geometry so that silhouette detection can be performed. Shadow volumes
generally require all input geometry to be closed manifolds, while standard shadow
mapping imposes, no such restrictions on the input geometry at all. It is worth noting
that silhouette detection in our implementation purely serves as an optimization step
and is not strictly necessary. Also, contrary to shadow volumes, our approach can work
for object representations of non-geometric nature, as long as a concept of edge distance
can somehow be defined and an edge distance map computed.

While our algorithm performed similar compared to shadow silhouette maps in the test
scenarios we used, we would like to point out a number of advantages of our approach.
First and foremost, we exploit texture hardware to perform edge reconstruction, whereas
SSSM relies on a more complicated dual contouring approach. Second, the distance to
the closest edge is computed as a side effect of the edge representation we use. This can
be used to generate plausible soft shadows or at least smoothen shadow borders akin
to PCF, but by using a kernel function and without performing any additional filtering.
Again, our algorithm does not need an explicit edge, only a distance field is needed.
Such a distance field could, e.g., be precomputed for a billboard as done in [Gre07] and
[QMK06], and as a result, shadows be cast by such scene elements.
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Figure 6.1: Edge distance can be used in EDSM to generate soft shadow boundaries with-
out performing any expensive filtering save for the single, bilinear interpolation
used to reconstruct edge distance.

Using a kernel function that models the shape of the light source, mapping edge distance
and location to illumination strength, very cheap yet plausible soft shadows similar to
smoothies [CD03] become a possibility (Figure 6.1).

Another important aspect of EDSM is its potential for simple and efficient hardware
implementation. Actually, due to the way rasterization is usually implemented on current
graphics hardware, edge distance already has to be computed during rendering anyway.
The information exists in the GPU, it is simply not exposed to the user. We think that
having access to the signed edge distance at the fragment level would prove to be of great
value not only to us. Great interest seems to have sparked around custom screen-space
anti-aliasing techniques lately and having access to this kind of information, especially as
it would come at almost no cost, would appear to be very useful in general. Together
with an option for conservative rasterization—another feature that is often called for, see
for example [HAO05]—EDSM could already be supported almost entirely by graphics
hardware. The final piece in the puzzle would be some support for ensuring correct
ordering of distance samples. Fully programmable blending is nowadays available at least
on some hardware, but even, e.g., a pre-blend modifier that would enable the use of the
absolute value of its argument in blending operations might already be sufficient.

6.1 Future Work

While the algorithm looks promising, much work is still to be done. More clever ways of
sorting fragments during distance map generation are needed to cope with artifacts caused
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by incorrect ordering. A ground-truth method of the algorithm could be implemented
based on fragment-level linked-lists as presented in [Yan+10]. Using more than one
channel to store the distance to more than one edge could yield a sufficient and still very
fast approximation of this ground truth algorithm.

To improve performance, it would be desirable to find a technique that allows for rendering
the depth and distance maps in a single pass. The render target array feature of modern
graphics might be able to give us a way to achieve this goal.

It seems possible to devise a scheme that allows for hardware tessellation to be used
instead of the geometry shader, which might perform better under higher geometry
loads.

The use of the hardware rasterizer might actually not be the most efficient way to create
the distance map. Performing silhouette detection and especially rasterizing depth using
quads along silhouette edges is a fast way to map our algorithm to current graphics
hardware. Alternatively, the general purpose computation facilities of the GPU could be
utilized either through compute shaders or the use of more powerful APIs such as OpenCL
or CUDA. Distance map rasterization could thus be implemented in software on the GPU.
A specialized software approach might even prove superior. Small, elongated triangles
do not pose the most efficient workload for modern rasterization hardware. Also, the
hardware pipeline has to obey primitive ordering, which is not strictly necessary in our use
case, because we have to enforce correct ordering at the fragment level anyway. Further,
determination of silhouette edges could likely be skipped, as it is just an optimization to
keep the number of generated quads as low as possible in our current implementation.
This would also lift any remaining restrictions on the input geometry.

Apart from these approaches, hardware multisampling could maybe also be exploited to
produce a fast approximation.

A completely different approach might be to use GPU implementations of image-based
algorithms that generate distance fields; but since they would have to run on already
rasterized output, such ventures will likely prove fruitless, as essential information is
already lost at that stage.

Last, but not least, it would be interesting to explore the capabilities to generate plausible
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soft shadows based on applying kernel functions to the edge distance in more detail.
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