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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit Selbsttests von CPU-basierten Systemen. Für
kritische Anwendungen ist es oft nötig sicherzustellen, dass defekte Hardware nicht zu
einer Fehlfunktion des Gesamtsystems führen kann. Bei einer CPU muss zum Beispiel
ständig überprüft werden, ob die internen Register funktionstüchtig sind und ob die CPU
Instruktionen sich wie spezifiziert verhalten. Um dies zu überprüfen werden zur Laufzeit
des kritischen Programms zusätzliche Berechnungen durchgeführt welche das korrekte Ver-
halten der CPU testen. Das sind die sogenannten CPU Selbsttests.

In dieser Arbeit wird ein Überblick über Selbsttests von CPU-basierten Systemen ge-
geben. Speziell wird darauf eingegangen wie solche Tests in Safety-kritischen Systemen
auszusehen haben bzw. welche Komponenten getestet werden. Safety-kritische Systeme
sind Systeme in welchen eine Fehlfunktion zu Personenschäden führen kann. Insbesondere
werden die Tests auf den IEC 61508 Safety Standard ausgelegt. Der Hauptteil der Arbeit
spezialisiert sich auf die Tests der CPU-internen Komponenten (Registerbänke, Program
Counter, ...) und es werden CPU-Architektur unabhängige Tests vorgestellt, welche diese
CPU-internen Komponenten testen. Zur Verifikation der Tests wird ein System zur Fehle-
rinjektion entwickelt, welches gezielt Fehler in der CPU simulieren kann um die korrekte
Funktionalität der Tests zu überprüfen. Mit diesem Fehlerinjektionssystem wird für zwei
CPU Architekturen gezeigt, dass die vorgestellten Safety-Tests eine genügend hohe Fehler-
erkennung haben um sie in einem Safety-kritischen System mit Sicherheitsintegritätslevel
2 (SIL 2) nach dem IEC 61508 Standard einzusetzen.



Abstract

This thesis covers self-tests for critical CPU-based systems. For critical applications it
is necessary to ensure that faults in the hardware do not lead to overall system failures.
For CPUs this means that the correct functionality of the CPU components (e.g. internal
registers, program counter, ...) has to be checked during runtime. It has to be ensured
that the CPU works as specified. To check the CPU functionality, additional self-test
programs are executed.

This thesis gives an overview of self-tests for CPU based systems. It is described which
parts of CPU-based systems have to be tested and which faults have to be detected in
critical systems. More specifically, safety-critical systems are handled. A system is safety-
critical, if a malfunction of the system can cause human injuries or even poses a threat to
human lives. In particular, the focus is on the IEC 61508 safety standard and the tests
are designed to fit the requirements of this safety standard. The main part of this thesis
focuses on CPU architecture independent safety self-tests for the core components of the
CPU (internal registers, program counter, ...). For the verification of these safety-tests, a
fault injection system is developed and used to inject specific faults into CPU registers.
These faults should be detected by the safety-tests. This fault injection approach is applied
to two different CPU architectures to show that the proposed generic safety-tests detect
a sufficiently high number of faults to be used in systems with IEC 61508 safety integrity
level 2 (SIL 2).
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Chapter 1

Introduction

Developing safety-critical systems according to industry standards is mandatory in most
safety-critical applications. Part of the requirements for safety-critical CPU-based systems
is to ensure that the CPU functions as intended. One way to ensure that is to use self-tests
for the CPU. This thesis presents generic CPU self-tests and validates them against the
requirements of the IEC 61508 safety standard.

1.1 Motivation and Goal

Safety-critical systems are system, which pose a threat to human health of even to human
lives if they malfunction. To ensure that such malfunctions are very unlikely, safety-
critical systems are usually carefully developed and rigorously tested. Safety standards
provide requirements and guidelines to construct safety-critical systems and in industry
most safety-critical systems have to be certified according to a standard. A very prominent
safety standard is the IEC 61508 standard which is a general safety standard describing
upper limits for failures in time, depending on the system’s level of criticality. To decrease
the failures in time for a specific system component, the standard suggests to execute self-
tests for that component during runtime. Such a safety self-test can detect component
faults before they lead to an overall system failure.

For CPU-based systems for example, the IEC 61508 standard requires the execution
of self-test programs which detect a certain percentage of hardware faults. Such hardware
faults in a CPU can be random bit-flips or permanent register defects. Usually it is
rather difficult to develop such self-test programs from scratch, because this requires very
detailed knowledge about the hardware and about appropriate operations to test relevant
parts of the CPU. Also, even if such a self-test is developed, it is still very difficult to verify
that the self-test actually detects a sufficiently high amount of CPU faults, because such
faults occur very rarely and can therefore not sufficiently be observed during the regular
operation of the CPU. To simulate faults in the CPU, fault injection is usually applied
to to achieve a statistically reasonable amount of faults in order to evaluate whether the
self-tests detect enough of them.

10



1.2. OUTLINE 11

Related to CPU self-tests and fault injection, this thesis provides following three main
contributions:

• The thesis gives an introduction to safety-critical systems with focus on self-tests of
CPU-based systems. Furthermore, an introduction to the IEC 61508 safety standard
is given and the self-test requirements from the standard are described. A thorough
overview of related work on these tests is given. Furthermore, the thesis describes the
basic concept of fault injection and provides a literature overview of fault injection
frameworks.

• A fault injection system is presented which injects faults in a Modelsim simulation.
The system is specifically tailored to the safety domain and can easily be used to
verify self-tests for CPUs used in safety-critical environments.

• Generic self-test for CPUs are presented. The generic tests are CPU architecture
independent and aim to test CPU components which explicitly have to be tested
according to the IEC 61508 standard. The self-tests are simulated on two different
CPU architectures (Plasma/MIPS and LEON3) and faults are injected in this sim-
ulation to evaluate whether the fault detection ratio of the self-tests is sufficiently
high to fulfill the requirements of IEC 61508 standard to achieve Safety Integrity
Level 2 (SIL2) certification. The generic self-tests can provide safety-engineers who
have to develop CPU tests for a specific CPU with a good starting point for the
development of specific self-tests.

1.2 Outline

This thesis is structured as follows: Section 2 gives an introduction to safety-critical
systems and focuses on the IEC 61508 safety standard. In particular, self-tests for safety-
critical CPU-based systems are covered in detail. Furthermore, this section introduces
the concept of fault injection and presents related work. Section 3 provides the design for
a fault injection system which can be used to inject faults into CPU simulations. Fur-
thermore, this section shows the design of generic self-tests for CPUs. Section 4 presents
the implementation of the fault injection system specifically tailored to test safety-critical
CPU-based systems. Section 5 describes the usage of the fault injection system to vali-
date the generic self-tests against the IEC 61508 requirements for CPU self-tests. This
validation is shown for two different CPU architectures. Section 6 concludes this work
and gives an outlook of possible future work. The Appendix contains the source code for
the fault injection system, as well as the source code for the generic self-test programs.
Furthermore, the Appendix contains poster and a paper which were published based on
the work in this thesis.



Chapter 2

Technical Background and Related
Work

This section explains the topics of safety-critical systems with focus on hardware self-tests
and fault injection and covers related work on these topics.

2.1 Safety-critical Systems

This section gives an introduction to safety-critical systems, explains some of the termi-
nology, and provides an introduction to the IEC 61508 safety standard with special focus
on software-based self-tests for CPU-based systems.

2.1.1 Introduction to Safety-Critical Systems and to Safety Standards

Safety-critical systems are systems which can cause harm to their environment if they
malfunction. In particular, systems are considered as safety-critical if they can cause in-
juries to people or if they pose a threat to human lives. A computer-based system is not
safety-critical by itself; however, it can become safety-critical in context with its envi-
ronment. Such a computer-based system can then be described with the term functional
safety which is defined as follows:

Functional Safety is the part of the overall system safety which depends on the correct
functioning of safety-related systems for risk reduction. The intended functions of these
systems, i.e. the safety functions, must be executed under defined fault conditions with a
defined high probability [B0̈7].

An example for a critical computer-based system which has to keep up functional safety
can be found in a modern car. The brakes of the car are not mechanically connected to
the breaking pedal. Instead the breaking pedal sends a message to a microcontroller
which then activates the breaks. If the microcontroller does not activate the breaks due
to an error, human lives could be in danger. Therefore, the breaking system of a car is a
safety-critical system.

To ensure that systems which are developed in a safety-critical domain are of high qual-
ity and just rarely malfunction, such systems are usually developed and certified according
to a safety-standard. Sometimes this is required by law and each system developed for a

12



2.1. SAFETY-CRITICAL SYSTEMS 13

specific safety domain has to be certified. For example, the European Machinery Direc-
tive 2006/42/EC lists different safety domains and states which standards are preferred for
these domains to show that a product complies to health and safety requirements which
are required by law [ABB10]. In some other cases, it is not explicitly required by law to
certify a safety-critical product; however, in industry this is often seen as ‘best practice’.

Such safety standards are developed and maintained by standardization organizations
like the ISO (International Organization for Standardization) or IEC (International Elec-
trotechnical Commission) for example. There are different safety standards for different
safety domains. For example, the IEC 26262 standard specifically covers automotive
safety-critical systems. This standard emerged from the IEC 61508 standard which covers
safety-critical electrical, electronical, and computer-based systems in general and serves
as a basis for many other domain-specific standards. For example the EN 50128 standard
for the railway domain or the IEC 61513 standard for nuclear power plants are based on
IEC 61508. There are numerous other standards for other domains and there are also
similar standards for the same domains in which cases it depends in the local country laws
or on the local industry directives which standard has to be applied.

2.1.2 Fault, Error, Failure

This section briefly explains the terms fault, error, and failure. These terms are used
for functional safety in general. However, the following explanations are biased towards
the IEC 61508 standard.

According to the IEC 61508 safety standard [Int10], a fault is defined as follows: “An
abnormal condition that may cause a reduction in, or loss of, the capability of a functional
unit to perform a required function.” A fault is an incorrect state or process which can
cause the system to perform in an unintended manner. The fault itself does not cause
harm to anyone if it is properly handled and detected or if it does not become active
[ALRL04].

If a fault becomes active, it is called an error. According to the IEC 61508 safety
standard, an error is: “A discrepancy between a computed, observed or measured value
or condition and the true, specified or theoretically correct value or condition.” A similar
definition is given in the IEC 65A standard [Int92] (on which the IEC 61508 standard
is partly based), where an error is defined as a detected deviation from the specifica-
tion. Thus, compared to a fault, an error does already influence the specified system
functionality [vdM95].

An error becomes a failure, if the system is not capable to deliver the specified
external services anymore due to the error. This means that a failure is externally
observable and can have a negative impact on the system’s environment. IEC 61508
defines a failure as: “A failure is the termination of the ability of a functional unit to
provide a required function or operation of a functional unit in any way other than as
required.”

Figure2.1 shows the relation between faults, errors, and failures. An error is an
activated fault which might propagate and become a failure. A failure of a system
component can be seen as a fault in the context of its surrounding system [ALRL04].
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Figure 2.1: Relation between Faults, Errors, and Failures

2.1.3 IEC 61508

General Information

The IEC 61508 standard is published by the International Electrotechnical Commission
(IEC). The first version was published in 1998 and in 2010, the second edition was pub-
lished. The standard covers safety-related electrical, electronic, and programmable elec-
tronic systems in general and serves as a basis for several other domain-specific safety
standards [LPP10]. The IEC 61508 standard consists of the following parts:

• IEC 61508-1 - General requirements

• IEC 61508-2 - Requirements for electrical/electronic/programmable electronic safety-
related systems

• IEC 61508-3 - Software requirements

• IEC 61508-4 - Definitions and abbreviations

• IEC 61508-5 - Examples of methods for the determination of safety integrity levels

• IEC 61508-6 - Guidelines on the application of IEC 61508-2 and IEC 61508-3

• IEC 61508-7 - Overview of techniques and measures

For IEC 61508 safety certification it is mandatory to follow the first three parts of the
standard. Parts 4-7 just provide additional information about how to apply the first three
parts.

The Safety-Lifecycle

The safety-lifecycle describes a process framework which has to be used to achieve IEC 61508
certification. The framework describes different process phases in a product lifecycle (e.g.
requirements specification, development, maintenance, ...) and gives specific requirements
and methods how to conform with this process phases. Each phase describes a set of
outputs (e.g. test result documents) which have to be delivered for a system developed
according to the standard.

Figure 2.2 shows the IEC 61508 safety lifecycle. The initial planning phases include the
system concept definition and an overall hazard analysis. These steps result in the safety
requirements for the system. In the requirements, each safety-critical component has to be
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allocated to a Safety Integrity Level (SIL). The different planning phases require that plans
for system verification, validation, installation, and maintenance have to be constructed
before the system implementation. The realization phase can be split up in several other
phases. There are different more specific realization phases described in IEC 61508-2 for
hardware components, and in IEC 61508-3 for software components. In general, the real-
ization phases cover a development lifecycle for safety-related hardware and software. The
steps of the realization phase include requirements specification, design and development,
system integration, operation and maintenance, and safety validation including validation
planning. After the realization phase, the standard covers process phases regarding the
overall system integration, safety validation, and operation and maintenance. These steps
were already previously planned in the corresponding planning phases. Another phase in
the safety-lifecycle handles system modifications. It is interesting that software mainte-
nance is seen as system modifications. Thus, if a software bug is corrected, the system
has to be re-certified to still be safe according to the standard. This can sometimes be
counter-productive, because if a system is safety certified, usually the system developer
does not want to change it afterwards because of the high re-certification costs. Thus, if
a bug which does not have severe impact on the system, most likely this bug will not be
corrected, because if it is corrected the system is not safety certified anymore or i would
have to be re-certified. The last phase of the safety-lifecycle covers decommissioning and
disposal of the system [PKK13].

Figure 2.2: IEC 61508 Safety Lifecycle
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Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4

Suitable programming lan-
guage

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Strongly typed program-
ming language

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Language subset - - Highly Rec-
ommended

Highly Rec-
ommended

Certified tools and certified
translators

Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Tools and translators: in-
creased confidence from use

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Highly Rec-
ommended

Table 2.1: Software Design and Development Techniques and Measures [Int10]

Safety Integrity Levels

The IEC 61508 safety standard defines different Safety Integrity Levels (SILs). These
safety integrity levels represent the overall level of risk reduction for a safety-critical sys-
tem. The levels range from SIL 1 (lowest level) to SIL4 (highest level). The standard
requires different levels of safety for a system or its components, depending on the SIL.
For this, some sections of the standard contain tables which describe safety methods which
can be used to achieve a higher level of safety. Depending on the SIL, the standard then
says whether it is mandatory to apply this method or not. Figure 2.1 shows an example
for such a table for software design and development measures. If a technique or measure
is “recommended” for a SIL, then it has to be applied if there is not a good reason why it
cannot be applied. If a technique or measure is “highly recommended” then it is manda-
tory to apply it and just in rare cases an exception can be made. The specific techniques
and measures in Table 2.1 are further explained in part 7 of the IEC 61508 standard.

The SILs also define average levels of probability for a dangerous failure. Table 2.2
shows these probabilities as defined by the IEC 61508 standard. This table clearly shows
which of the SIL levels are more rigorous. SIL4 is the highest safety level and most difficult
to achieve, while SIL1 is the lowest safety level.

Safety Integrity Level Average frequency of a dangerous fail-
ure of the safety function per hour

4 ≥ 10−9to < 10−8

3 ≥ 10−8to < 10−7

2 ≥ 10−7to < 10−6

1 ≥ 10−6to < 10−5

Table 2.2: Failure Probability for Different SILs [Int10]
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Techniques and Measures

Part 7 of the IEC 61508 safety standard presents a collection of techniques and measures
which are recommended to apply for meeting the safety requirements stated in parts 1-
3 of the standard. This part of the standard also explains the aim and describes how
to apply the techniques or measures. Furthermore, the standard provides references to
more detailed descriptions. The techniques and measures are divided into the following
categories:

• Techniques and Measures to protect against random hardware failures - The applica-
tion of some of these techniques and measures is required by part 2 of the standard,
which describes hardware development. Some examples are: RAM self-tests, major-
ity voting, reference sensors.

• Techniques and Measures to protect against systematic failures - The techniques and
measures are related to project management and to the overall system design and
verification. They are not specially tailored for hardware or software development.
Some examples for the techniques and measures are: Black-box testing, checklists,
Failure modes and effects analysis (FMEA).

• Techniques and Measures to achieve software safety integrity - This part covers tech-
niques and measures related to software development and testing. Some examples
are: Coding standard, software diversity, UML.

• Techniques and Measures for ASIC design - This part covers techniques and mea-
sures for the design of ASICs as well as for testing ASICs. Some examples are:
Design for testability, validation of the soft core, burn-in tests.

The usual way to achieve safety certification for a system is to have a look at the
lists of requirements given in part 1-3 of the IEC 61508 standard. Each requirement
recommends one or more technique or measure to fulfill the requirement. Table 2.1 is
an example for techniques which are required by the standard to achieve a high quality
software design. The safety engineer has to choose appropriate techniques and measures.
If other techniques are used, it has to be well argued why this is done and it has to be
shown to the safety certification authority that the chosen technique can also fulfill the
requirement. Usually this is a lot more difficult than just choosing one of the suggested
techniques or measures.

2.2 Software-based Self-Tests for CPU-based Systems

This section introduces software-based self-tests and explains the requirements for software-
based self-tests for CPU-based systems according to IEC 61508. Furthermore, this section
presents some software-based self-tests and gives related work with focus on RAM, cache
memory, and CPU core tests.

A self-test is a process on a component where the component checks itself with built-
in measures and reports the test results [GPZ04]. Software-based self-tests require no
additional hardware and are easier to implement for existing hardware. However, of course
such software-based self-tests require additional processing time resources. In some cases,
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software-based self-tests are not as accurate as test functionality which is build in hardware
might be, because in complex systems, the software often does not have access to all parts
of the hardware and thus cannot test everything. In such cases, built-in hardware tests or
hybrid test approaches can increase the quality of the testing procedure.

2.2.1 Fault Types

In safety-critical systems it has to be ensured that low-level hardware faults are detected
and do not become systems failures. The IEC 61508 safety standard considers two different
types of hardware faults: Permanent Faults and Transient Faults. The safety standard
just handles single faults and poses no requirements regarding the detection of multiple
faults which occur simultaneously.

Permanent faults which are considered by the safety standard are permanent faults in
the hardware where, for example, a bit is stuck at a specific value. Therefore, they are
called Stuck-At Faults. An example for a stuck-at fault is an output of a flip-flop register
who’s output is always a logical 0, independent form the input combination. In this case,
a stuck-at 0 fault is present at the flip-flop. Stuck-at faults can for example origin in
gate-to-source bridging failures in CMOS logic. Further information about the origin of
stuck-at faults can be found in [Vis91].

Transient faults are triggered by environmental conditions and result in no long-term
damage in the hardware. For example, environmental radiation can cause a single bit-
flip in the hardware. If the logical value 1 is stored in a flip-flop, for example, and if
a transient fault occurs, then the logical value 0 is read when accessing the flip-flop.
However, compared to permanent faults, the electrical circuit takes no further damage
and still functions properly. Transient faults can occur if alpha particles hit a part of
the electrical circuit. Due to the decreasing size of electrical circuits, alpha particles pose
an increasing threat and more care has to be taken to properly handle transient faults
[CRP+96].

2.2.2 Safe Failure Fraction and Diagnostic Coverage

According to the safety standard [Int10], the safe failure fraction is defined as follows: “A
property of a safety related element that is defined by the ratio of the average failure rates
of safe plus dangerous detected failures and safe plus dangerous failures”. This can be
better illustrated as an equation:

SafeFailureFraction(SFF ) =

∑
λS +

∑
λDd∑

λS +
∑
λDd +

∑
λDu

=

=
noncritical failures + detected critical failures

noncritical failures + detected critical failures + undetected critical failures

(2.1)

The SFF describes the overall ratio of dangerous failures which have to be detected in
a safety-critical system. The SIL of a safety-critical system defines the maximum upper
bound for the allowed SFF (see Table reftab:sff. The upper bound for the SFF depends
on the hardware fault tolerance (HFT) of the system. The HFT is the minimum number
of faults that can cause the system to not meet its safety functionality. If, for example, a
CPU calculates a safety-critical functionality and a HFT of 1 has to be reached, then the
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CPU can be duplicated and the safety critical functionality is calculated by each of the
two CPUs separately. One hardware fault in a CPU does not influence the other CPU
and therefore a single fault cannot cause an overall system failure [SS01].

Hardware Fault Tolerance

SFF 0 1 2

< 60% SIL - SIL 1 SIL 2

60%− 90% SIL 1 SIL 2 SIL 3

90%− 99% SIL 2 SIL 3 SIL 4

> 99% SIL 3 SIL 4 SIL 4

Table 2.3: Maximum Allowed SIL for a Given Safe Failure Fraction Depending on the
Level of Hardware Fault Tolerance [Int10]

In order to increase the number of detected failures of the SFF, self-tests can check if
a system fault is present and avoid that it becomes a failure. In this way the

∑
λDd value

can be increased and the
∑
λDu value can be decreased to increase the overall SFF value.

The ratio of detected faults is called diagnostic coverage (DC) and is defined as follows:

DiagnosticCoverage(DC) =
DetectedFaults

PossibleFaults
=

∑
λD∑
λAll

(2.2)

The diagnostic coverage value is a measure for the self-tests to be evaluated and com-
pared. Before calculating the DC value, one has to know the possible faults that can
occur for a system. This can be found out by applying a failure mode and error analysis
(FMEA) which is described in detail in part 7 of the safety standard. For some compo-
nents of typical CPU-based systems, the safety standard already provides a list of fault
sources which have to be considered. These lists will be given in the following sections in
which the self-tests for specific components of CPU-based systems are covered.

2.2.3 Memory Tests and IEC 61508

This section covers IEC 61508 RAM self-test requirements as well as testing methods for
RAM memory proposed by the standard.

A long-term study on memory faults conducted by Google concludes that RAM faults
are an issue and have to be handled properly [SPW09]. In the study, several servers were
monitored regarding RAM faults which were detected by using an ECC controller for the
RAM. The paper reports that on average, there is a 8% chance for a fault to occur per
year for each RAM DIMM. This study shows that RAM faults are an actual problem and
have to be covered in the safety domain.

IEC 61508 Memory Tests Requirements

Part 2 of the IEC 61508 standard provides the requirements for memory self-tests which
are shown in Table 2.4. This table shows which fault types have to be detected if a specific
level of faults coverage is required.
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For example, if a system with a hardware fault tolerance value of 1 has to achieve SIL
3, then this system requires a SFF of at least 90% according to Table 2.3. Assuming all
failures to be critical, the system requires a DC value of at least 90%. Thus, one has to
assume the fault types in the second from right column in Table 2.4 for that system and
the tests have to detect at least 90% of these faults in order for the whole system to be
SIL 3 capable.

Requirements for diagnostic coverage claimed
Low (60%) Medium (90%) High (99%)

Invariable memory Stuck-at for data
and addresses

DC fault model
for data and ad-
dresses

All faults that af-
fect data in the
memory

Variable memory Stuck-at for data
and addresses

DC fault model
for data and ad-
dresses

Change of infor-
mation caused by
soft errors

DC fault model
for data and
addresses

Dynamic cross-
over for memory
cells

Change of infor-
mation caused by
soft-errors

No, wrong or
multiple address-
ing

Table 2.4: IEC 61508 Memory Test Requirements [Int10]

Memory Test Approaches suggested by the IEC 61508 Standard

The IEC 61508 safety standard presents different techniques to test invariable and variable
memories. The standard gives DC values that can usually be achieved with these tests.
These values provide safety engineers with a rough estimation to develop a testing concept
which has to be presented to the safety certification authority during the early safety
certification steps. However, the DC values have to be confirmed during later phases of the
safety certification through testing approaches which are further discussed in Section 2.3.

Table 2.5 presents the memory test approaches suggested by the IEC 61508 standard
for invariable memories and Table 2.6 presents IEC 61508 tests for variable memories.
The tests for invariable memories are limited to RAM tests. However, in a modern CPU
usually also a cache test is required which is covered in the following sections.
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Technique/Measure Description Achievable DC
value

Word-protection multi-
bit redundancy

Every memory word is protected by ad-
ditional redundant bits. The resulting
memory words should have a hamming
distance of at least 4. Each time the
work is read, the redundant bits have
to be checked.

Medium (90%)

Modified checksum A memory block checksum is stored.
Each time the memory is read, the
checksum is checked.

Low (60%)

Signature of one word
(8-bit)

A CRC8 checksum is calculated for a
memory block and checked when read-
ing from the memory

Medium (90%)

Signature of one word
(16-bit)

A CRC16 checksum is calculated for a
memory block and checked when read-
ing from the memory

High (99%)

Block replication The memory is duplicated and the
two memory values are compared when
reading from the memory

High (99%)

Table 2.5: IEC 61508 Memory Test Techniques/Measures for Invariable Memories [Int10]

2.2.4 RAM Test Methods

This section basically explains the memory test methods suggested by the IEC 61508
standard. Furthermore, it focuses on how these tests can be applied to modern DDR
RAM memories. The test descriptions are based on the descriptions given in the IEC 61508
standard if not referenced otherwise.

Checkerboard Test

The Checkerboard tests aims to detect static bit faults. A pattern of alternating 0s and
1s is written to the memory. The memory cells are inspected in pairs. The first address
for the pair is chosen and the second address is formed by bit-wise inverting the first
address. The content of the two cells should be the same. The cell-pairs are checked in
two test runs. In the first test run, the variable address is defined by running from lower
to higher addresses and in the second test run, the variable address runs from higher to
lower addresses. The whole test is repeated with an inverted initial memory contents.

The test requires 10n memory accesses (read or write), where n is the size of the
memory to be checked.

Walkpath Test

The Walkpath test detects static, dynamic and cross-talk faults in the memory. It requires
n+ n2 memory access steps. The following steps describe the Walkpath test:
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Technique/Measure Description Achievable DC
value

RAM test checkerboard
or march

A specific pattern is written to the
RAM and later on read to detect stuck-
at bit faults.

Low (60%)

RAM test walk-path The test initializes the RAM with a
pattern. The first RAM cell value is in-
verted and the contents of the remain-
ing cells is checked. Then the first cell
is inverted again. This is done for every
memory cell.

Medium (90%)

RAM test “galpat” or
“transparent galpat”

Tests the RAM in the same way as the
walk-path test, but additionally also
tests the currently inverted cell after
each read operation on other cells

High (99%)

RAM test Abraham The Abraham test is also known as
MATS test and consists of a specific
sequence of read and write operations
applied to the memory.

High (99%)

Parity bit for RAM Each word is extended by a parity
bit which is checked when reading the
data.

Low (60%)

RAM monitoring
with a modified Ham-
ming code, or detec-
tion of data failures
with errordetection-
correction codes (EDC)

Values saved to the memory are ex-
tended by several bits to form a code
with Hamming distance of at least 4.

Medium (90%)

Double RAM with
hardware or soft-
ware comparison and
read/write test

The data is duplicated on two different
memories. The values of the duplicated
data are compared when reading the
data.

High (99%)

Table 2.6: IEC 61508 Memory Test Techniques/Measures for Variable Memories [Int10]

• The memory range to be tested has to be uniformly initialized (all 1s or all 0s)

• One memory cell is inverted and the contents of all other cells is inspected and
checked if it changed. Then the inverted memory cell is inverted again to restore its
value. This step is repeated for all memory cells which have to be checked.
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Galpat Test

The Galpat test detects some static and a large number of coupling bit faults. It works
similar to the Walkpath test, but additionally in each step (for each inverted cell) checks
the content of the inverted cell after each read access for checking the other cells. Thus,
the Galpat RAM test requires 2n2 + n computation steps.

An alternative version of the regular Galpat test is the transparent Galpat test. This
test is similar, but does not initialize the content of the memory in the first step. Instead,
it calculates a signature (this is any value which represents the memory content like a
hash value or a CRC value for example) of the remaining RAM cells, before inverting a
cell. After inverting the cell, the signature is computed again and checked against the first
signature. Compared to the regular Galpat test this has the advantage that the memory
content is preserved. However, instead of simply looking at the pre-known content of the
RAM, a signature has to be computed which increases the overall computation steps of
the test to computing 2n signatures (each of which requires reading n memory values)
and comparing n signatures. Additionally n2 memory read steps for checking the inverted
cells are required.

Abraham Test

The Abraham test is presented in [AT78] and aims to detect stuck-at faults as well as
coupling faults. The test walks through the whole memory up and down and sets or reads
memory cells. This test is also known as the MATS march test and will be covered in
more detail in one of the following section which covers march tests. The Abraham test
takes about 30n memory accesses.

March Tests

March RAM tests are briefly mentioned in the IEC 61508 standard as an alternative to
the Checkerboard RAM test. March tests are one of the most commonly used types of
memory tests. March tests are a type of memory tests which go through the memory in
a specific order, write memory cells, and check their content. There are many different
march tests which focus to test for different types of memory faults. The march tests all
have a common structure and use a common notation.

A march test consists of a set of March Elements which describe memory operations
that have to be applied to a memory cell and the order in which the cells are traversed.
After all operations of a march element are applied to a cell, they are applied to the next
cell. A march tests consists of a set of march elements which are sequentially applied.
Table 2.7 shows the march test notation.

The following sequence of march elements describes a sample march test, the MATS
(modified algorithmic test sequence) test which is also known as part of the Abraham test:

• m (w0)

• m (r0, w1)

• m (r1)
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Symbol Description

⇑ address from 0 to n− 1

⇓ address from n− 1 to 0

m either way

w0 write 0 to the memory cell

w1 write 1 to the memory cell

r0 read a cell who’s value should be 0 (test fails if different)

r1 read a cell who’s value should be 1 (test fails if different)

Table 2.7: March Memory Test Notation

The test first writes the value 0 to all memory cells, then walks through all cells (the
order does not matter) and for each cell checks if the value is 0 and writes the value 1 into
the cell. In the last step the test goes through all cells and checks if the value of the cell
is 1. The whole test requires 4n memory access steps. Table 2.8 shows some commonly
used march tests.

Algorithm March elements

MATS m (w0);m (r0, w1);m (r1)

MATS+ m (w0);⇑ (r0, w1);⇓ (r1, w0)

MATS++ m (w0);⇑ (r0, w1);⇓ (r1, w0, r0)

MARCH X m (w0);⇑ (r0, w1);⇑ (r1, w0);m (r0)

MARCH C- m (w0);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)

Table 2.8: Commonly Used March Test Sequences [TB06]

For all march tests, there also exists a transparent march test which achieves the
same fault coverage. By replacing the write-operations of a march test by memory-flip
operations and by skipping the memory initialization, any march test can be converted
to its transparent version which has got the advantage that the initial memory content is
not lost after the test. The exact algorithm how such a test can be converted is described
in [LTW05].

March Tests for DDR-RAM memories

Conventional march tests have the problem that they do not discover coupling faults and
address faults in DDR RAM memories, because DDR memories send write commands to
a memory controller which gathers write operations and writes several cells at once. This
can mask coupling faults in a way that a regular march test cannot detect them. The
same goes for address faults, because a DDR read operation reads several cells which can
also mask faults and makes them difficult to discover by march tests.

One possible solution to this problem is to explicitly mask the write operations so that
the memory controller just writes one cell per write operation. Another solution is to shift
the start address of the memory addresses for the march test. Both solutions are described
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in detail in [SBS08] where also for DDR memories adapted test patterns for march tests
are presented.

2.2.5 Cache Test Methods

In this section basics about cache memories and an approach to use march tests for cache
memories will be discussed.

Basics about Cache Memories

The aim of the cache memory controller is to copy main memory data which is often
accessed to the cache memory to provide a quicker memory access for this data to the
CPU. If the cache memory is full, then the replacement policy tells which data in the
cache has to be overwritten. If the replacement policy can choose any location in the
cache to replace, then the cache is called fully associative. However, this approach has the
drawback, that if the CPU wants to have data, the whole cache has to be checked for that
data. Another approach is that each data address in the main memory has exactly one
dedicated memory address in the cache where it can be present. Such a cache is called
direct mapped. In this case, the CPU just has to check one cache address to see if the
data is present in the cache. However, this approach has the disadvantage that probably
several data which has to be put to the same memory location has to be stored in the
cache at a time. This leads the cache replacement algorithm to replace the data in the
cache even if other parts of the cache may still be empty.

The way a cache is normally organized is a tradeoff between the two approaches dis-
cussed above. In associative caches, a main memory address has several dedicated places
in the cache where it can be stored. For example, for a 4-way associative cache, each data
in the main memory has 4 address in the cache where it can be stored. Such an approach
is tradeoff between having to look at all cache addresses for the required data and between
not optimally using the available cache memory.

For the CPU to identify which data is present in the memory, cache data is stored in
cache data lines. Such a data line consists of the actual data and tags which are parts
of the main memory address. Figure 2.3 shows the organization of an example cache and
the mapping to main memory addresses. The main memory index-part of the address
determines in which set of the cache memory the data will be stored. The main memory
tag-part of the address determines in which set of the cache memory the data will be
stored, and the offset-part of the address determines the exact data chunk in a cache line.

Adapting March Tests for Data Cache Memories

A common technique to test cache memories with software-based self-tests is to adapt
march tests. If it is possible to have well-directed write and read commands for the cache
memory lines, then one can simply apply a march test. However, due to the indirect
access to the cache memory with a cache controller, it is difficult to come up with a
method for such well-directed accesses and the access method strongly depends on the
cache architecture (e.g. N-set associative cache).

A computer program just has direct access to the RAM memory. Thus, to test a cache,
a program has to allocate variables in RAM memory at addresses which will be stored at
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Figure 2.3: 2-set Associative Cache Memory [DPS11]

a specifically desired cache location. For example, by defining the RAM address, one can
exactly define in which cache set the data will be stored. By allocating and accessing the
variables in a specific sequence, one can also define in which of the N ways in the cache
memory, the data will be stored.

With this approach, a program can structurally access cache lines. For a march test
it is also important, that there is an order in which the cache lines are accessed for the
test. In RAM memories this order is to go from lower addresses to higher addresses and
vice versa. It does not matter whether the addresses are numerically ordered, it does just
matter that the march test accesses the data in a specific order (each cache line once) and
that the test can also access the data in the reverse order. It is usually no problem to
access the specific set of cache lines in an order, because the RAM address of the program
variable determines the set. However, to access the specific cache line in a set is more
complicated, because where exactly the cache line in a set stands, depends on the order
in which the data was first accessed. A program has to invalidate the data in a cache
set and then read N variables (for an N-way associative cache) to fill the cache set. The
order of these read operations determines in which way of the set the data is stored. Now,
the variables are mapped to exactly one cache line and march tests can be applied to the
cache memory [DPS11].

Mapping March Test Elements to Cache Memory Test Elements

To use the march test algorithms for cache memories, the simple march test elements
(⇑,⇓, w1, w0, r1, r0) have to be mapped to the actual commands which are applied to the
cache memory as to some extent already described in the section above. Figure 2.4 shows
such a formal mapping which will be furthermore used for the cache test notation. With
this mapping common march test notations can now be adapted to be used for describing
cache tests. The data backgrounds are a specific data pattern which is written or read
from the cache memory. Tests can be run with one single or with multiple data patterns.
More details on the effectiveness of running multiple tests with different patterns can be
found in [HL06].
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Figure 2.4: Mapping of March Test Commends to Cache Tests [DPS11]

MATS March Cache Test

The presented mapping from march test notation to cache tests can be used to apply an
march test algorithm for testing the cache memory. Figure 2.5 shows as an example the
MATS test adapted for cache memories.

Figure 2.5: MATS March Test for Cache Memories

Tests for the Cache Tag-Values

With the above described approach it is possible to adapt march tests for the part of the
cache which contains the data. However, as already shown in Figure 2.3, each cache line
also consists of a tag part which contains a part of the RAM memory address.

To test this part, the variables for the cache test have to be allocated in a way that
the tag-part of their addresses contains the data pattern (background) which is used for
the test. A problem is that the tag-values in the same cache set cannot be the same (in
that case an address would be loaded twice in the cache). Thus, for a march test, different
backgrounds (tags) are used within a cache line.

Another problem is that for a march test, the cache has to be walked through in a spe-
cific order and in its reverse order. However, the cache sets are usually filled sequentially.
This means that one cannot determine the order in which the tag-values in cache sets are
accessed. To tackle this problem, dummy values can be written to the cache memory until
the required part in a cache set is accessed.
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One more problem is that the cache tag cannot be read. However, usually it can be
identified if a memory access resulted in a cache hit or a cache miss. Thus, one can check
if a tag value is correct or not by checking if the correct data is delivered when accessing
the cache address or whether the access results in a cache miss. Such a cache miss could
be detected by modifying the data in the RAM memory, but not modifying it in the cache.
This could be achieved by disabling the cache, writing the value of a variable to the RAM,
and re-enabling the cache.

The above mentioned solutions now provide an approach to walk through the tag-
cache in a specific order (and its reverse order), to write data patterns to the tags, and
to detect if the patterns are incorrect. These are the required operations for a march test
and with them it is possible to apply any existing march test also to the tag-values in a
cache memory [DPS11].

Tests for the Instruction Cache

CPUs with a Harvard Architecture have a separated data and instruction cache, while
Von Neumann CPUs have one single cache for instructions and for data. The cache of
Von Neumann CPUs can be tested with the approaches described above while Harvard
CPUs have to tested in a different way.

To have specified write operations for the march test of the instruction cache, the test
program has to access a new program part which is then loaded to the cache. Such write
operations could also be realized as a memory pre-fetch if that is supported by the CPU.
Read operations are the actual execution of the code instruction. If the read operation
does not obtain the expected value, then a different instruction would be executed. Thus,
to test if the read was successful, the executed instruction output can be compared with
a pre-calculated, expected instruction output.

The instruction and tag values of the instruction cache can now be tested similar to the
data cache. The instruction value pattern can be defined by the actual instruction which
is used and the tag value can be defined by the address where the instruction is stored
in the memory. More detailed information about how to test instruction cache memories
can be found in [DPS11].

2.2.6 CPU Core Tests and IEC 61508

This section covers IEC 61508 CPU test requirements as well as testing methods for the
CPU which are proposed by the standard. The section also covers related work on CPU
self-tests.

IEC 61508 CPU Core Test Requirements

Part 2 of the IEC 61508 standard provides the requirements for CPU self-tests which are
shown in Table 2.9. This table shows which fault types have to be detected if a specific
level of fault coverage is required. The requirements focus on core parts of the CPU
like the execution of instructions, or the file registers. These CPU parts are in literature
often referred to as CPU-core components. Therefore, here related tests are furthermore
called CPU core self-tests. The CPU core test requirements in Table 2.9 just cover some
parts of the overall CPU. For example, specific CPU components like a shifter unit or an
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arithmetical unit are not explicitly addressed by the standard. Usually such components
also have to be tested if they are used in safety applications.

Requirements for diagnostic coverage claimed
Low (60%) Medium (90%) High (99%)

Register, internal RAM Stuck-at for data
and addresses

DC fault model
for data and ad-
dresses

Change of infor-
mation caused by
soft-errors

DC fault model
for data and
addresses

Dynamic cross-
over for memory
cells

Change of infor-
mation caused by
soft-errors

No, wrong or
multiple address-
ing

Coding and execution
including flag register

Wrong coding or
no execution

Wrong coding or
wrong execution

No definite fault
assumption

Address calculation Stuck-at DC fault model

Change of ad-
dresses caused by
soft-errors

No definite fault
assumption

Program counter Stuck-at DC fault model

Change of ad-
dresses caused by
soft-errors

DC fault model

Change of ad-
dresses caused by
soft-errors

Stack pointer Stuck-at DC fault model

Change of ad-
dresses caused by
soft-errors

DC fault model

Change of ad-
dresses caused by
soft-errors

Table 2.9: IEC 61508 CPU Test Requirements [Int10]

CPU Core Test Approaches suggested by the IEC 61508 Standard

The IEC 61508 safety standard presents different techniques to test the CPU core. Ta-
ble 2.10 presents the CPU core testing approaches suggested by the IEC 61508. One of
the techniques and measures for CPU core components is to use software-based self-tests.
According to the standard this method just leads to a low or medium diagnostic coverage
value. However, the tests can still be used to achieve a high DC value, if that higher DC
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value can be shown during the verification of the tests. The other techniques (such as
comparator, voter, reciprocal comparison, ...) require some kind of hardware redundancy
to be applied. This theses will focus on CPU tests which do not require any modifications
to the hardware. Therefore, from the methods shown in Table 2.10, just software-based
self-tests will be covered.

Technique/Measure Description Achievable DC
value

Comparator The output of the CPU component is
compared to a redundant unit.

High (99%)

Majority voter Multiple CPU unit results are taken as
input for a voter which decides for the
majority of the provided results

High (99%)

Self-test by software:
limited number of pat-
terns (one channel)

Data patterns serve as an input for
the CPU unit and calculations on these
patterns are checked for their correct-
ness

Low (60%)

Self-test by software:
walking bit (one chan-
nel)

CPU registers are tested by setting
them to zero, and then setting one bit
after another. After each step the reg-
ister contents is read and compared to
the expected value.

Medium (90%)

Self-test supported by
hardware (one channel)

Additional hardware to support self-
tests is integrated.

Medium (90%)

Coded processing (one
channel)

Processing units are designed with spe-
cial failure detection units.

High (99%)

Reciprocal comparison
by software

Two processing units exchange their fi-
nal and intermediate results recipro-
cally. A comparison is carried out by
each of the two units.

High (99%)

Table 2.10: IEC 61508 CPU Core Test Techniques/Measures [Int10]

2.2.7 CPU Core Tests

Literature distinguishes between two main approaches to test CPU cores [PG05], [PGSR10].

• Functional Tests - This kind of CPU testing tests at a rather high level of abstrac-
tion. The interface for functional tests is the instruction set of a CPU. The tests
apply a specific sequence of CPU instructions and judge by the outcome of these
instruction (e.g. by a register value at the end of the computations) whether the
CPU works properly, or whether a fault has occurred. The advantage of functional
CPU testing is that such tests are more portable and do not require in depth knowl-
edge about the CPU hardware. It is rather easy to set up testbeds for functional
testing, because the CPU instructions can directly be accessed by software. A main
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disadvantage of this approach is that it achieves limited fault coverage for the CPU,
because just limited information about the CPU can be used as information for
what should be and what can be tested. This means that it might not be possible
to discover some faults with this type of testing.

• Structural Tests - Structural CPU tests are on a low level of abstraction and re-
quire detailed information about the CPU hardware. Structural tests are tests which
operate on the register-transfer-level (RTL) or on the gate-level of a CPU. The tests
also apply CPU instructions for testing the CPU, but the testing instructions are
chosen based on additional information from the RTL or gate-level implementation
of the CPU. For example, if two registers are close together on the physical chip,
then it is more likely that they cause interference for one another. Thus, the CPU
test should consider to more thoroughly test the interaction between these two reg-
isters compared to registers which are physically not close to each other. Usually,
with this additional information, higher values for the fault coverage of the CPU can
be achieved. Main disadvantages of structural tests are that they require in-depth
knowledge, they require high development effort, and they are not portable to other
CPUs.

A further orthogonal classification between CPU tests is whether they are deterministic
or randomized.

• Deterministic Tests - Such tests provide a well-known fault coverage for a specific
CPU. The test always uses the same test data or test sequence and always tests the
same components. For some CPU tests, formal proves are known which confirm a
minimum fault coverage for CPU components (e.g. the multiplier) independent of
the actual architecture of the component [PGK+01]. For such a test it is not even
necessary to verify the fault coverage, which can be quite convenient.

• Randomized Tests - Such CPU tests are not deterministic and their coverage has
to be verified. Randomized tests can be tests which apply some kind of learning
mechanism to optimize the test inputs during a learning phase in order to end up
with a fixed test sequence which is then applied during operation. Randomized tests
can also be tests which simply apply random inputs for test cases (e.g. check the
multiplier by using random inputs and checking the output by diverse computation)
in order to test a lot of inputs over time.

When constructing test routines for a CPU, a standard way is to divide the CPU
into its main components (e.g. ALU) and to test these main components. For each
component the instruction set which can influence the component is analyzed. From these
instructions, the ones which are well-observable (which cause the component to produce
a reaction which is observable by using other CPU instructions) are chosen and self-tests
are build with these instructions [KGPZ02], [KPGZ02].

The CPU core tests applied in this thesis are not based on such a CPU architecture
analysis, but are simply a collection of well-known tests for CPU core components and
of commonly used test routines. The tests are non-randomized and test the CPU on a
functional level. Some of the tests have a proven minimum fault coverage and for some
other tests the fault coverage has to be verified.
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2.3 Fault Injection

In this section the reason for applying fault injection and different types of fault injection
as well as an overview of a generic architecture of a fault injection system will be explained.
Most of the content in this section about fault injection is based on [BP03].

2.3.1 Purpose of Fault Injection

When testing the reliability or the safety of a system, it is necessary to observe the system
behavior in case of faults, because the system requirements for safety or reliability require
the system to operate or to perform a specific action in case of faults. However, in some
cases these faults occur very rarely which makes it difficult to test the system’s behavior
in case of faults.

For example, consider a system which has to detect the occurrence of RAM memory
faults. According to [SPW09], such a fault occurs with 8% probability within a year in an
average RAM DIMM. This means that on average one has to wait more than 6 years for a
single fault to occur. To provide a qualitative good statement about the quality of a RAM
fault detection mechanism, several faults (in the order of thousands) have to be observed.
Due to the low occurrence rate of the faults, it is impossible to do that. Therefore, fault
injection is applied to simulate or induce such faults.

Fault Injection can also be applied to simulate software faults. This could test the
robustness of a program against design or programming faults during the development of
the program. One example for software fault injection would be to delay the delivery of a
software routine or to simulate a failed software routine and to check if the program acts
as intended (e.g. shut down gracefully). However, the rest of this section will rather focus
on fault injection of hardware faults which is later on used to test software-based CPU
self-tests.

2.3.2 Generic Fault Injection Architecture

Figure 2.6 presents the main components which are necessary to perform fault injection.
Not all of these components are necessary for all types of fault injections, but most of
them can very well be mapped to the fault injection frameworks described in the next
sections.

• The Controller coordinates the fault injection test. It starts and stops the test
runs and retrieves the results.

• The Target System is the system which executes the functionality to be tested
while the faults are injected.

• The Fault Injector injects the fault into the target system. The type, amount, and
duration of faults is taken from the Fault Library.

• The Workload Generator provides commands (execution instructions, programs)
which the target system executes during the test run. The Workload Generator
takes these commands from its Workload Library.

• The Data Collector reads raw test data from the target system outputs.
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Figure 2.6: Typical Fault Injection Components and Interactions (based on [BP03])

• The Data Analyzer performs pre-processing of the test data.

• The Monitor watches the execution of commands on the target system and collects
the test data.

2.3.3 Hardware-Based Fault Injection

Hardware-based fault injection manipulates actual hardware during execution. The two
main approaches are the forcing technique and the insertion technique.

• The forcing technique simply overwrites a specific value in the system. An example
would be to externally set a specific voltage level to the pin of a chip.

• The insertion technique modifies a hardware component or replaces it with a faulty
component. This can invoke unintended behavior in other components. For example,
a RAM memory can be replaced with a partially malfunctioning RAM memory to
observe the program behavior when no reliable memory is present.

One man advantage of hardware-based fault injection is that the injections can be per-
formed very fast and they can be applied to the actual software running on the hardware.
Thus, the software does not have to be modified.

A main disadvantage of hardware-based fault injection is that it is tailored to a specific
hardware which makes it very difficult to port the fault injection framework to a differ-
ent platform. Often, the construction of a hardware-based injection framework is rather
complicated and requires special purpose hardware. The observability of the test results
might also be limited, because often it is impossible to monitor specific hardware states
or registers.

Table 2.11 presents some hardware-based fault injection approaches and gives a short
description of them.
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Name Description

AFIT Pin-level fault injection. The external pins
of chips are short-circuited to introduce
faults [GBS04].

RIFLE A system to deterministically inject pin-
level faults [MMS94].

FOCUS User specified faults are injected at run-
time and the propagation to the chip pins
is measured [Cho96].

FIST A RISC processor with error detection
capabilities in hardware evaluated with
a heavy-ion fault injection framework
[GOR89]

MESSALINE System which forces pin-levels [ACC+93].

MARS MARS is a time-triggered computer sys-
tem designed with high fault detection ca-
pabilities. [Fuc96].

Table 2.11: Hardware-Based Fault Injection Approaches Described in Literature

2.3.4 Software-Based Fault Injection

Software-based fault injection does not modify the hardware, but the software running
on it. For example, a network stack can be modified to duplicate packets from time to
time. This might influence other system components (e.g. router or switch hardware) in
an unintended way which can then be detected.

An advantage of software-based fault injection is that it can be performed on the actual
hardware which does not have to be modified. This makes the approach more portable
than hardware-based fault injection and is also often more easy to achieve, because no
special purpose hardware is necessary. The injections can still be performed in acceptable
speed in the order of magnitude of the software execution processing speed which is in
most cases sufficiently fast.

A disadvantage of software-based fault injection is that the software running on the
system has to be modified and that not every kind of fault can be injected, because the
faults that can be addressed directly by software might be limited. For example, in a CPU
it is not possible to set or reset every CPU register by software. Also not every register
value can be read which makes the observability of software-based fault injection limited.

Table 2.12 gives an overview of software-based fault injection approaches from litera-
ture and provides a short description of them.

2.3.5 Simulation-Based Fault Injection

Simulation-based fault injection simulates hardware and injects faults into this simulation.
For example, the hardware description language code of a CPU can be simulated with
a simulation tool while registers are modified by a fault injection component. In the
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Name Description

BOND BOND is a Windows NT tool for fault
injection. It performs deterministic and
statistical injections into program code,
registers, heap data, and system calls
[BBCP00].

XCEPTION A software-based fault injection tool with
debugging and performance monitoring
capability [CMCS04].

MAFALDA A tool to test microkernels by fault injec-
tion. Injections are done as library calls
or as software traps [RSFA99].

DOCTOR The fault injection environment generates
workloads, injects software faults, and col-
lects performance data. Memory, CPU,
and communication faults can be injected
[Han95].

EXFI Fault injection framework based on the
Trace Exception Mode of microprocessors
[BPRR98].

FIAT A distributed real-time fault injection
framework [SVS+88].

Table 2.12: Software-Based Fault Injection Approaches Described in Literature

simulation, the CPU runs a test program which monitors and detects the injected hardware
faults. This approach will be used in Chapter 3 to verify CPU self-tests.

The main advantage of simulation-based fault injection is that any type of fault can
be injected (limited to the detail-level of the simulation model) and that the results of the
fault injection are very well observable.

The main disadvantage is that a simulation model of the hardware is required. It is
also necessary to verify that the model complies with the actual hardware which will be
used. This means that the model sometimes has to be verified which can be a lot of effort.
Another disadvantage is that the simulations are a lot slower than fault injections in the
actual hardware or software.

Table 2.13 gives an overview of simulation-based fault injection approaches from liter-
ature and provides a short description of them.

2.4 Related Work

This section covers related work on deterministic and proven CPU fault tests which will be
later on used. Also indirect CPU tests will be handled. Furthermore, this section covers
related work on fault injection frameworks used in the safety domain.
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Name Description

VFIT A VHDL-based fault injection tool
[GBGG04].

MEFISTO-C A tool which can apply scan-chain imple-
mented fault injection and fault injection
based on built-in test logic [FSK98].

ALIEN Mutation testing tool for the VHDL lan-
guage [RS04].

VERIFY Extension of the VHDL language with
fault injection signals [STB97]

POWER-
MODES

A flexible VHDL fault injection and power
estimation framework specifically tailored
for testing security attributes during early
phases of chip design [KGS+12]

Table 2.13: Simulation-Based Fault Injection Approaches Described in Literature

2.4.1 Deterministic Tests for CPU Components

For the test algorithms for some specific CPU components, a test coverage for the algorithm
can be proven. An example for that is shown in [PGK+01], where a test algorithm for
the CPU multiplier unit is presented. Additionally for the multiplier test, a proof is
provided which shows that the fault coverage for the multiplier unit is higher than 99%
- independent of the actual multiplier architecture which is used by the CPU. [PGK+01]
also provides other tests for CPU components like tests for a barrel shifter and for the
ALU. A high fault coverage is shown for these tests for a specific CPU architecture, but
for these components no proof for a minimum coverage is given.

[GPH+08] focuses on testing the pipeline of the CPU. A generic approach is presented
which distributes a test program over the RAM memory in order to test the address
logic of the CPU. Specific test routines which test pipeline hazards are also described.
Additionally, an approach is described how to enhance an existing test program with the
presented pipeline tests (e.g. by distributing the program all over the RAM memory).

[Bao03] focuses on tests for peripheral CPU components. In particular, the paper
focuses on PLL tests. One approach to test the PLL is to measure the mean voltage level
of the PLL output and to compare it to a calculated mean voltage value which results
from the applied clock frequency.

In [TJD10], a CPU test approach is explained, which builds on tests for CPU compo-
nents. Theses tests are collected in a library with the aim to reuse them for other CPU
architectures. However, the paper does not provide details about the tests themselves.

To minimize the effort for developing CPU self-tests and to minimize the runtime for
CPU self-tests, [KGPZ02] presents an approach how to build low cost self-tests by just
targeting the main CPU components. The ALU and the shifter unit are identified as the
main components of the used Parwan CPU. For these two components, deterministic tests
are presented and the test coverage on the specific CPU is verified.

[Dey02] also suggests to write tests for single components of the CPU. Additionally,
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it is suggested to structurally reason about the overall fault coverage of the CPU tests by
combining the tests of the components in a fault tree. If some of the tests are redundant,
then that can be identified in the fault tree.

[CDS+00] analyzes the CPU and its components. Tests are just developed for the
main components (e.g. the ALU, the shifter). For the tests, the components are analyzed
regarding the instructions which affect them. This information is based on the hardware
description language model of the processor.

Safety-related self-tests for an ARM7 processor are presented in [TP07]. The walking
pattern method (described in the IEC 61508 standard) is used for flash and RAM memory
tests. A GALPAT test (also described in the IEC 61508 standard) is applied to the CPU
registers and custom tests are developed to test the ALU and the CPU flags. The paper
does not describe how the fault coverage of the tests is verified, but claims that the tests
achieve the required fault coverage (which is 90% in the paper).

2.4.2 Indirect CPU Testing

The so far proposed test approaches just test the core components of the CPU and do
not cover all CPU registers or elements. However, when testing the multiplier, for ex-
ample, also other components are tested. The CPU pipeline for example, will also be
tested, because each instruction has to go through the pipeline. Therefore, also other
CPU components are tests, even if the test is not specifically aimed for this component.
This approach to test parts of the CPU is called indirect testing.

[CD01] present tests for the shifter and the ALU components of a CPU. The fault
coverage of the tests for these components as well as for the whole CPU is verified. The
tests achieve 99% fault coverage for the shifter and the ALU and achieve 90% fault coverage
for the whole CPU. This shows that also other parts than just the shifter and ALU are
tested by the tests for these two components.

A similar approach is presented in [KXP+03]. A CPU is analyzed and its main com-
ponents are identified. For these main components (adder, multiplier, ...), functional tests
are written and these tests are verified. For the verification, faults are injected into the
main components as well as into other components (e.g. multiplexers, pipeline). The
results show that these components are also tested by the tests for the main components
and that for the overall processor, a fault coverage of 94.5% is achieved.

2.4.3 Safety-related CPU Fault Injection Frameworks

In [TPN07], an approach to verify self-tests for processors in safety-critical environments
is presented. The tests are developed for the memory and the CPU core of an ARM7
processor and are verified with a fault injection approach. The JTAG interface of the
processor is used to read and write CPU registers. Additionally the scan chain logic and
an internal feature to halt the processor is used to inject faults. For the injection, the
processor is halted, a register value is externally written, and the the processor continues
processing. This fault injection is applied while self-tests run on the processor in order to
see whether the tests detect the injected faults. The injection approach and the necessary
tool setup is described on more detail in the paper [TPN07].

A simulation-based verification approach for self-tests applied to safety-critical systems
is presented in [KPG+13]. The paper describes deterministic self-tests for CPU core
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components as well as a fault injection framework which is used to verify the tests. For
the fault injection approach, the hardware description language code of a Plasma/MIPS
CPU is modified. Saboteurs are included in the code to have some elements in the CPU
which can be used to modify CPU register values by the help of external triggers. The
modified code is emulated on an FPGA in order to speed up the fault injections. For the
CPU and the provided self-tests, a fault coverage of more than 90% can be verified.



Chapter 3

Design of a Fault Injection System
for the Verification of Generic
CPU Safety-Tests

In this section, an approach to verify software-based safety self-tests is presented. First, the
requirements for a fault injection system to verify safety-tests for CPUs will be presented.
Next, the general design for such a fault-injection system and the general design of the
generic CPU safety-tests is given.

3.1 System Requirements

R1 - Generic Self-Tests: A set of CPU-independent safety self-tests has to be provided.
There should not be major modifications necessary for applying the provided self-
tests to other CPU architectures.

R2 - Self-Test Verification: Self-tests for CPU have to be verified. In order to judge
whether a test works successfully, it has to be tested under faulty CPU behavior.
Due to the low error rate in regular CPUs, fault injection has to be applied to obtain
statistically relevant and observable test result data.

R3: IEC 61508 compliant self-tests: The self-tests have to comply to the require-
ments of the IEC 61508 safety standard for CPU self-tests for at least SIL2.

R4 - Simulation time: The simulation is applied once per processor to verifiy the self-
tests and perhaps once more during safety-certification if a certification authority
demands to see whether a specific test works. In the first case, a high number of
fault injections are necessary and in the second case just few fault injections are
necessary. This means that the overall simulation time will be a lot higher for the
first case. However, in the first case it does not matter very much if the simulation
takes longer (up to some weeks). In the second case the simulation should not be
longer than about one hour.

R5 - Fully automated simulation: The simulation for testing all safety-relevant CPU
parts with all necessary fault injections according to the IEC 61508 standard have to

39
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be fully automated and no human interaction must be necessary, because otherwise
injecting the faults would be a lot more effort for the operator - especially if the
simulations take quite a long time.

R6 - Easy to use: It should be easy to set up the self-test verification through fault
injection for a different CPU architecture.

3.2 Fault Injection System Design

The fault injection system injects faults into a Modelsim simulation of a CPU. The faults
are forced with Modelsim commands and the results of the fault injection are read from
GPIO pins of the CPU. Figure 3.1 shows the design of the fault injection system. Most
of the elements shown in the generic fault injection system architecture (Figure 2.6, page
33) can also be found in this figure:

• Target System - The system under test is a CPU which is simulated with Modelsim.
Just open source CPUs can be used for fault injection, because the HDL source code
has to be available for this simulation.

• Workload Generator - The software-based self-test programs are compiled for
the specific CPU and run in the simulation while the faults are injected. In this
chapter, the self-test programs specifically aimed for CPU-core tests are covered in
more detail.

• Controller - The main part of the fault injection system is a TCL script which co-
ordinates the fault injections and which interprets the CPU output. The TCL script
actually also includes the Fault Injector, Fault lib, and Monitor components.
For one simulation run, the TCL script starts the CPU simulation and after a specific
time injects a fault. The type of fault is either transient or permanent. The register
where the fault has to be injected is taken from a pre-defined list of registers which
are relevant (registers which are explicitly required to test in the IEC 61508 stan-
dard). After the fault is injected, the CPU simulation finishes its test run and signals
the TCL script that it finished by setting a GPIO pin. On a different GPIO pin, the
CPU simulation signals whether a fault was detected or not. The TCL script reads
the GPIO values to check if the test succeeded or failed. The TCL script executes
several test runs for each fault type and for each register and reports the number
of injected and the number of detected faults for each pre-defined register and fault
type. Thus, the script coordinates all fault injections and does not need any human
interference for producing a complete report about the fault detection ratio of the
predefined set of faults for the predefined set of registers.

Compared to Figure 2.6 on page 33, the fault injection system does not explicitly
include a Data Collector or Data Analyzer component, because the task of the data
collect is done by a single line of code of the TCL script (read GPIO pins) and the task of
the data analyzer is done by a single line of code of the TCL script as well (check if the
read GPIO is 0 or 1). Therefore, those two components are not explicitly mentioned in
Figure 3.1.
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Figure 3.1: Components of the Fault Injection System

3.3 Design of Generic CPU Safety-Tests

This chapter describes a set of safety self-test programs which are suitable to test for CPU
faults. The reason for just focusing on CPU-core tests and not also covering memory tests
in more detail is that for memory tests, many well known and from safety standardization
organizations accepted approaches are known (as described in section 2.2). However, for
CPU core tests no such approaches are described by the safety standard. Therefore, the
practical part of this thesis especially focuses on CPU-core tests to show and verify which
tests can achieve the safety requirements by the IEC 61508 standard.

Some of the self-test programs are taken from literature. In particular, deterministic
test programs with proven or at least experimentally known high fault coverage ratio
for some components of the CPU are taken from literature. Other test programs are
adapted from the MiBench benchmark suite. MiBench is an open source benchmark suite
which provides test programs for several application domains like automotive, security, or
networking [GRE+01]. The full source code of the test programs is given in Appendix B.

3.3.1 CPU Core Tests

The first set of test programs is taken from [PGK+01]. In that paper, several test programs
for components of the CPU core are presented. The covered components are the multiplier,
the divider, the ALU, and the shifter. According to the paper, all of the tests provide a
fault coverage of more than 99% verified for an Intel 8051 processor. For the multiplier unit,
a fault coverage of more than 99% is guaranteed, independent of the multiplier architecture
[PGK+01]. This guarantee can be given, because the paper presents a mathematical proof
that the multiplier test can achieve this fault coverage, because more than 99% of the
multiplication functionality is tested by the proposed test.

The used CPU core test program consists of overall four tests (for multiplier, divider,
ALU, and shifter). The four tests are based on [PGK+01], but are re-written in C-code
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(and not in Assembler as in [PGK+01]). The CPU core test program executes the four
tests one after another and reports a failure if any of the tests fails. In the following, the
four test programs are described:

• The basic structure of the multiplier test is shown in Figure 3.2a. 256 multiplier
inputs are calculated deterministically. The result of the 256 multiplications is ac-
cumulated in a signature register which is compared to a pre-calculated value at the
end of the test. If the signature register is equal to the pre-calculated value, the test
was successful. If it differs, a fault has occurred.

• The divider test structure is presented in Figure 3.2b. The test uses a diverse
calculation to the binary division in order to test the divider unit. A division by two
is the same as a bit-shift-right operation. The value 1 is multiplied 32 times and
then divided 32 times. After each calculation, the result is compared to the result
of the same mathematical calculation which is conducted by shifting left or right. If
any of the overall 64 results differ, the test fails which means that a fault is detected.

• The ALU test is shown in Figure 3.3a. It uses diverse calculations of logical expres-
sions with AND, OR, XOR, and NOT. These diverse calculations are applied for
different data patterns.

• The shifter test (Figure 3.3b) applies shifting operations to a deterministic input and
applies shift left and right operations to this input. The test compares the output
value of these operations to a pre-calculated signature register value. If the two
values match, the test is successful. If the two values differ, the test fails.

3.3.2 Quicksort Test

The quicksort test is a generic test which (just like the following tests) does not aim to test
a specific component of the CPU. The reason for adding such a generic test is to evaluate
whether the IEC 61508 test requirements for CPUs can be fulfilled by tests which are not
specifically developed to test CPUs, but which indirectly test the CPU functionality. The
quicksort test is based on a quicksort algorithm from the MiBench test suite. The test
initializes an unsorted array, runs the quicksort algorithm, and checks for each element in
the array whether they are in correct order. If the elements are not sorted, the test fails.
Figure 3.4a gives an overview of the test.

3.3.3 SHA-1 Test

The SHA-1 test is a generic test which just like the quicksort test does not aim to test
specific CPU components. The algorithm is based on the MiBench test suite. The test
calculates a SHA-1 hash value and compares it to to a pre-calculated SHA-1 hash value.
Figure 3.4b shows the basic structure of the SHA-1 test.
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(a) CPU multiplier test (b) CPU divider test

Figure 3.2: Basic Structure of the CPU Muliplier and Divider Tests

3.3.4 CRC Test

The CRC test is a generic test which does not aim to test specific components of the
CPU. It is based on the MiBench test suite. Two diverse CRC algorithms are used
and their results are compared. If their results differ, the test fails. The first algorithm
simply calculates a CRC by using simple logical operations without any optimization and
without any pre-calculation. The second algorithm computes a CRC value by using a pre-
calculated table which already contains CRC values for all 8-bit data. The basic structure
of the CRC-test is shown in Figure 3.5a.

3.3.5 March Test

The march test is a test for memories and is based on a program presented in [Bar99].
It aims to test permanent single faults and coupling faults of memory cells and does not
target any specific CPU components. The test initializes a memory region with some
pattern and then checks if that pattern was actually written to the memory region by
reading the values. Then, the data in the memory is inverted and the inverted values are
read and checked. If the test reads an unexpected value, it fails. Figure 3.5b shows an
overview of the march test.
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(a) ALU test (b) Shifter test

Figure 3.3: Basic Structure of the ALU and Shifter Tests
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(a) Quicksort test (b) SHA-1 test

Figure 3.4: Basic Structure of the Quicksort and SHA-1 Tests
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(a) CRC test (b) March test

Figure 3.5: Basic Structure of the CRC and March Tests



Chapter 4

Implementation of the Fault
Injection System

This chapter describes the implementation of the fault injection system. First, the used
CPU simulation testbench is described. Next, a TCL script which coordinates the fault
injections into the simulation testbench is described. The core elements of the TCL script
which inject the faults and which observe the results are covered in detail. Then, the
different software components of the fault injection test setup and their runtime behavior
are described. A the end of this chapter, a description about how to set up the testbenches
for the used CPU simulations is given.

4.1 Simulation Testbench

The Modelsim tool is used to simulate the hardware description language code of a CPU.
For some open source CPUs, a testbed with the HDL code for the CPU can be obtained
from opencores.org.

For the fault injection system, the HDL code for the testbed does not have to be
modified and can directly be used for the presented fault injection approach. The only
CPU-specific modification is that a library to read and write the GPIO pins of the specific
CPU has to be provided. However, this library is usually provided with a CPU testbed.
Thus, just the function names of the library functions have to be modified in order to
match the later on presented self-tests.

Figure 4.1 shows a screenshot of the Modelsim testbench environment. In the Modelsim
environment, every signal in the CPU can be watched if it is added to the watch window
(right side of the figure) before the simulation. However, the presented self-test verification
system does not use this approach to present results, but gives debug information (the
box at the bottom of the figure) to provide test summaries. The feature of Modelsim to
allow watching the exact values of a register over time was still interesting, because during
the development of the fault injection system this allowed easy verification whether the
operations (e.g forcing a register value) were correctly applied and actually had an effect.
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Figure 4.1: Modelsim Testbench

4.2 TCL Script

A TCL script is used to coordinate the fault injections and to send commands to the
Modelsim testbench. TCL (Tool Command Language) is a script language which is sup-
ported by several computer-aided design tools [MH97]. Also Modelsim supports TCL and
provides several TCL commands to interfere with Modelsim simulations.

Figure 4.2 describes the interaction between the TCL script (left), the Modelsim test-
bench (middle) and the self-test programs simulated by the testbench (right). The TCL
starts the testbench simulation which simulates the test programs. When a test program
starts, it signals that to the TCL script via a GPIO pin. The TCL script then injects a
fault (forces a single register value). After the test program finishes, it signals to the TCL
script via the GPIO pins whether a fault was detected or not. After the test run is finished,
the TCL script resets the simulation and triggers the next test run. The script starts a
test run for each fault type (transient, stuck-at 0, stuck-at 1), for each test program, and
for each register which is pre-configured in the script (more information about the selec-
tion of the specific register is given in Section 5). Additionally, the TCL script stores the
results for each test run (register, type of fault, whether the test was successful or not)
and reports these results by the end of the simulations. This has the advantage that the
script coordinates all test runs and makes it possible to run the test fully automatically
without any human interference required.

Figure 4.3 shows a simplified version of the TCL code which coordinates the fault
injections. The following sections give further explanations of this TCL code and of the
specific commands it uses. The actually applied TCL code is presented in Appendix A.
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Figure 4.2: Fault Injection System TCL Script

4.2.1 Forcing Modelsim Values

To inject the faults, the TCL script overrides Modelsim register values. This can be done
with the Modelsim FORCE command. The force command can be parametrized with
the duration how long the value should be forced or it can also be parametrized to just flip
a register value. For a stuck-at fault, the TCL script forces the value of a single register to
either 0 or 1 for the whole duration of the test program. For a transient fault, the script
just flips a register value at a random time during the test run. To know during which
period of time the fault has to be randomly injected, first, the test program is run without
injecting a fault. At the end of this test run, the duration the test takes is measured. This
is the maximum time for the random transient fault injection.

4.2.2 Watching Modelsim Values

To react on signal changes in the simulation, Modelsim provides the WHEN command.
The when-command takes two parameters and executes the second parameter when the
first parameter gets fulfilled. This means that the second parameter is just executed
exactly when the first arguments goes from value 0 to 1. It is not executed during a
period while the first argument just stays one. The when command is used to detect the
start and the end of the test program in order to determine the time when the fault has
to be injected.



50 CHAPTER 4. IMPLEMENTATION OF THE FAULT INJECTION SYSTEM

Figure 4.3: Simplified Version of the TCL Code

4.2.3 Reading Modelsim Values

To read GPIO values from the Modelsim simulation, the EXAMINE command is used.
This command returns the current value of a parametrized register in the simulation. The
main usage of the examine command is at the end of each test run. The examine command
is used to read the test result values (which are written to GPIO pins). Additionally, the
examine command is used during the injection of transient faults. A transient fault is
a register value flip. In order to flip a value, the value is first read with the examine
command and the inverse value is then forced to the register.

4.2.4 Execution Failures

In some cases, an execution failure occurs during the execution of the CPU tests. Such
a failure could be a CPU halt which could occur if the CPU is being put into an invalid
state due to the fault injection. If the fault injection, for example modifies the program
counter and makes it point to a memory region which does not contain CPU instructions,
such a CPU halt would occur in the simulation. In such a case, the TCL script would
not be notified that the test program ended, because it never would. However, in case
of a CPU failure, the TCL script is automatically interrupted and an error is reported,
because handling the error would require manual interferences, which is undesirable. The
TCL script uses the ONBREAK command to define a reaction for such CPU failures. If
a break occurs, simply the next test run is started.
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4.3 Software Components

The main software components are the fault injection TCL script and the CPU self-tests.
However, additionally to them, also a component is required which handles the invocation
of the self-tests and the communication of the self-tests with the GPIO pins. Figure 4.4
shows the software components.

Figure 4.4: Involved Software Components

The main program calls a routine which first sets the GPIO pins to signal the TCL
script the start of a test. Next, the routine calls one of the safety-test programs and signals
with the GPIO pins when the test is finished. Figure 4.5 shows such a test run. The test
runs are controlled by the TCL script. The script starts a test run with a specific test,
injects the fault and waits for the test results. After the results are obtained, the next test
run with the next test program is started.

Figure 4.5: Test Run Sequence
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4.4 Setting Up Processor Testbenches

This section explains how to set up the testbenches for the LEON3 and for the Plasma/MIPS
processor. Those two processors were used to simulate the self-tests while applying fault
injections.

4.4.1 LEON3 Testbench

This section describes how the self-tests are cross-compiled to be simulated on a CPU.

Obtaining the Testbench - The LEON3 testbench can be obtained from Gaisler Re-
search in the GRLIB package [Aer13]. The obtained package has to be unpacked.

Configuring the CPU - The CPU functions can be enabled or disabled via a config-
uration tool. This graphical tool can be launched from the extracted /designs/
directory with make xconfig. The tool allowed one to adjust processor features
like the cache, for example. For the cache one can adjust whether it should be active
or even its size. Figure 4.6 shows the graphical configuration tool. For the presented
simulation, no configuration of make xconfig were changed.

Figure 4.6: Xconfig Tool

Compiling the CPU - For compilation, also a graphical tool can be used. This tool
can be launched from the /designs/ directory with make xgrlib. The tool
contains a Build button which can be clicked to compile the sources. Figure 4.7
shows a screenshot of this tool.

Compiling the Programs which run on the CPU - To compile the self-test pro-
grams, a LEON3 cross-compiler has to be installed. The compiler can be acquired
from the Gaisler website. Some code (e.g. /designs/example.c can be compiled
with the following commands:

• sparc-elf-gcc example.c -o example

• sparc-elf-mkprom example -o example.exec

• sparc-elf-objcopy -O srec example.exec example.srec

Installing the Compiled Program - For the LEON3 CPU to actually run the com-
piled program, either the compiled standard program can be replaced (cp example.srec
prom.srec) or the testbench can be modified in order to load the new program
(references in the testbench.vhd file to prom.srec have to be replaced with
example.srec).
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Figure 4.7: Xgrlib Tool

Starting Modelsim - To start the simulation environment, the testbench has to be
called with the following sequence of commands:

• make clean

• make vsim

• make testbench

Running the TCL script - To start the simulation, the TCL script has to be loaded
by selecting Tools->Tcl->Execute Macro from the menu. Now the TCL script
can be selected and will start.

4.4.2 Plasma/MIPS Testbench

This section describes how the self-tests are cross-compiled to be simulated on the Plasma/MIPS
CPU. The instructions are based on [Ope13]. Compared to the LEON3 CPU it is a bit
easier, because no configurations have to be made.

Obtaining the Testbench - The Plasma/MIPS testbench can be obtained from open-
cores.org. The obtained package has to be unpacked.

Obtaining the Crosscompiler - To be able to compile programs for the Plasma/MIPS
CPU, a cross-compiler has to be set up. The instructions are based on [Eri09]. The
following tools were built:

• GNU Binutils

• GNU MPFR (Muliple-Precision Floating-point with Rounding
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• Newlib
• GNU GCC

Compiling the Program - For the compilation, simply the just compiled cross-compiler
is called with gcc -c -g example.c

Installing the Program on the Processor - The compiled file (example.txt) has
to be copied to the simulation directory of the Plasma/MIPS processor (the root
directory in the unpacked testbench) in order for the processor to simulate this
application.

Opening the Testbench - Modelsim has to be opened and the test bench.vhd file
of the Plasma/MIPS VHDL testbench has to be loaded.

Running the TCL script - To start the simulation, the TCL script has to be loaded
by selecting Tools->Tcl->Execute Macro from the menu. Now the TCL script
can be selected and will start.



Chapter 5

Verification and Evaluation of the
Safety-Tests by Fault Injection

This chapter shows the evaluation of the presented generic self-test programs for CPUs.
This chapter also describes on which processors the tests were simulated and it also de-
scribes the test results regarding fault coverage and simulation time in detail. Furthermore,
the chapter evaluates the requirements from Section 3.1 qualitatively.

The fault injection system presented in section 3.2 is used to evaluate how many faults
can be detected by the tests presented in 3.3. The overall workflow for simulating the
self-tests on a processor with the presented fault injection system is shown in Figure 5.1.
The main tasks were to set up the simulation testbench and to define the registers where
the faults have to be injected. Running the simulation itself and interpreting the results
was not very time-consuming.

Figure 5.1: Workflow for Simulating the Self-Tests

5.1 Processor Architecture

For the evaluation of the self-tests, two different processors are simulated while injecting
faults into the simulation model. A Plasma/MIPS and a LEON3 CPU are used. The
reason for choosing these two CPUs is that both CPU cores are open source and publicly
available with an easy to use testbench.

The Plasma/MIPS CPU is a 32bit RISC processor containing basic core units such
as an ALU, a multiplier, and a shifter. The CPU uses a tree stage pipeline. The
Plasma/MIPS CPU is often used in education or in scientific projects, because the source
code is small due to the limited features of the CPU and it is easily understandable, be-
cause it is clearly written and very well documented. Figure 5.2 shows an overview of the
CPU architecture.
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Figure 5.2: Plasma/MIPS Architecture (opencores.org/project,plasma)

The LEON3 CPU a 32bit processor. It is based on the SPARC-V8 architecture and
it is an open source CPU core maintained by Aeroflex Gaisler. The LEON3 processor
code is highly configurable. The processor uses a 7-stage pipeline and has got separate
data and instruction cache. Advanced features such as a memory management unit can
be configured to be included in the processor. Compared to the Plasma/MIPS processor,
the LEON3 is much more complicated due to the many possible configurations and due
to the many more features which the processor provides. Figure 5.3 shows and overview
of the main components of the LEON3 processor.

Figure 5.3: LEON3 Architecture [Aer13]
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5.2 Fault Injection Target Registers

One of the main tasks when evaluating the fault coverage of the self-tests on a specific
processor architecture was to come up with a list or relevant registers for which faults
should be injected. To obtain data of the overall test coverage for the whole processor,
it would be necessary to inject faults into all registers. However, such a fault simulation
would require much to long simulation time. Therefore, just register which are relevant
according to the IEC 61508 standard were selected. The functionality which is relevant
for safety processor tests as described in detail in Section 2.2.6 are:

• Register, internal RAM

• Coding and execution

• Address calculation

• Program counter

• Stack pointer

To test this functionality, relevant registers which are required for this functionality
were selected and the fault injection was just applied to these registers. For example,
the IEC 61508 standard requires to test the execution of instructions. To test this, fault
were injected into the registers of the execution stage of the pipeline. Such registers were
located for all of the above given functionality apart from the stack pointer. The stack
pointer is not defined on a hardware level for the examined processors, but it is defined by
the compilation toolchain. Therefore, stack pointer tests were applied on a software level.
Instead of defining the register in the TCL script, for the stack pointer test, a software
routine is written. This software simply uses an assembler command to flip a bit of the
stack pointer. The TCL script is used to trigger this test routine and to tell the test
routine which bit of the stack pointer should be flipped. The reason for also including the
stack pointer tests into the TCL script is that the stack pointer test can then be integrated
in the overall test framework which means that then all tests can be automatically run
without any human interaction.

Figure 5.4a and Figure 5.4b show which registers were used for fault injection. The
list of the exact registers is given in Appendix C.
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(a) Plasma/MIPS core
(opencores.org/project,plasma)

(b) LEON3 core [Aer13]

Figure 5.4: Overview of the Registers where the Faults are Injected

5.3 Test Results

This section presents the results of the fault injections and discusses the diagnostic coverage
and the simulation time.

5.3.1 Diagnostic Coverage

Table 5.1 shows the diagnostic coverage values for the Plasma/MIPS CPU and Table 5.2
shows the diagnostic coverage values for the LEON3 CPU. The diagnostic coverage values
were calculated with the following formula:

DiagnosticCoverage(DC) =
DetectedFaults

PossibleFaults
=

∑
λD∑
λAll

All the diagnostic coverage values in both tables show very high values of more than
90%. These are rather high values for diagnostic coverage, in particular because also
transient faults were covered. On the one hand it is not surprising that the test programs
have a high diagnostic coverage, because if a stuck-at error in the stack pointer occurs, it
is most likely that any test program would detect the error. On the other hand it is very
surprising to see that some of the test programs which were not specifically developed to
test CPU cores (for example the CRC test) achieve even a higher diagnostic coverage than
the generic core tests, which were specifically developed to test CPUs.

With a fault coverage value of more than 90%, according to the IEC 61508 standard, a
test is suitable to be used in a SIL2 environment. This means that any of the 5 presented
test programs would be qualified to be used in such a safety-critical environment. Of course
one has to be careful with this interpretation, because the fault simulations just took
place on two specific processors and could probably achieve a lower diagnostic coverage
on different processor architectures. However, the fault injections indicate that the tests



5.3. TEST RESULTS 59

Register,
Inter-
nal
RAM

Coding
and
Execu-
tion

Address
Calcu-
lation

Program
Counter

Stack
Pointer

Diagnostic
Coverage

Generic Stuck-At 100.0% 99.5% 100.0% 100.0% 100.0% 99.9%
CoreTests Transient 94.2% 96.9% 94.6% 95.3% 100.0% 96.2%

Qsort Stuck-At 84.8% 99.5% 81.7% 85.6% 100.0% 90.3%
Test Transient 97.7% 93.8% 93.8% 100.0% 100.0% 97.6%

CRC Stuck-At 100.0% 97.9% 100.0% 100.0% 100.0% 99.6%
Test Transient 99.1% 100.0% 100.0% 100.0% 100.0% 99.8%

SHA-1 Stuck-At 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Test Transient 99.2% 100.0% 97.5% 96.3% 100.0% 98.6%

March Stuck-At 85.5% 92.2% 100.0% 81.9% 100.0% 91.9%
Test Transient 97.7% 100.0% 100.0% 100.0% 100.0% 99.6%

Table 5.1: Plasma/MIPS Stuck-At and Transient Fault Diagnostic Coverage of the Generic
Test Programs

Register,
Inter-
nal
RAM

Coding
and
Execu-
tion

Address
Calcu-
lation

Program
Counter

Stack
Pointer

Diagnostic
Coverage

Generic Stuck-At 100.0% 100.0% 96.8% 100.0% 100.0% 99.4%
CoreTests Transient 87.7% 90.6% 86.0% 89.3% 100.0% 90.7%

Qsort Stuck-At 95.3% 97.7% 100.0% 70.3% 100.0% 92.7%
Test Transient 76.5% 96.9% 100.0% 96.9% 100.0% 94.1%

CRC Stuck-At 93.8% 97.3% 100.0% 85.9% 100.0% 95.4%
Test Transient 96.5% 93.8% 100.0% 93.8% 100.0% 96.8%

SHA-1 Stuck-At 100.0% 100.0% 100.0% 82.8% 100.0% 96.6%
Test Transient 96.9% 96.1% 96.7% 97.1% 100.0% 95.1%

March Stuck-At 99.3% 99.1% 98.4% 70.3% 100.0% 92.3%
Test Transient 100.0% 98.5% 100.0% 96.9% 100.0% 99.1%

Table 5.2: LEON3 Stuck-At and Transient Fault Diagnostic Coverage of the Generic Test
Programs

achieve a high coverage and it can be assumed that also on other processors this coverage
might be high. If the tests are simulated on many other open source processors and
also achieve a high coverage for them, one might even be able to argue that the test
should achieve a high coverage independently from the processor architecture. With this
argumentation one could use the tests on another processor without verifying them with
fault injection. This could be beneficial if a processor is used where the source code is not
openly available and for which therefore no tests can be simulated.

Due to the high diagnostic coverage values of the tests, they are qualified to be used in
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SIL2 environments. However, this does not mean that they are sufficient to be used for a
processor which has to be SIL2 certified for a specific environment. The IEC 61508 safety
standard gives specific parts of the CPU (e.g. stack pointer) which have to be tested,
but the standard does not say that these parts are sufficient for the whole processor.
These parts just have to be tested in any case. This means that the presented self-tests
can be used to test the basic functionality of a processor, but additional tests might still
be necessary. For example, if a processor has got an Ethernet interface on the chip, this
interface is most likely not sufficiently tested by the proposed self-test programs. However,
if this interface is used in a safety-critical environment, it also has to be tested. In such
a case, the proposed generic self-test programs can be taken to test the basic processor
functionality, and additionally specific tests for the Ethernet interface would have to be
developed.

One interesting test program is the last one: The March Test. According to the
IEC 61508 standard, such a test has to be applied to test the RAM memory of a safety-
critical system in any case. It is interesting to see that this test does not just check the
RAM memory, but also tests the CPU. It could even be argued that it would be sufficient
to just apply the memory test and have the CPU ’indirectly’ tested through these tests.
However, one has to be careful with this argumentation, because the IEC 61508 standard
says that the ALARP (As Low As Reasonably Practicable) principle always has to be
applied. This means that a measure which can reduce the probability of failure of a
safety-critical system always has to be applied if the cost to implement this measure are
reasonable when related to the hazard which would be induced when not implementing
this measure. In the case of the self-tests this would mean that even though the March Test
has a diagnostic coverage of more than 90% and therefore would be capable of being used
in a SIL2 environment, the March Test would still not be sufficient, because the Generic
Core Tests have a higher diagnostic coverage and applying them does not induce much
cost (low execution time, no development time as the program is generic). Therefore, in
any case the generic core tests (or better tests) have to be part of a safety-critical CPU if
one has the information form the presented diagnostic coverage data in Table 5.1 and 5.2.

5.3.2 Running the Tests on a Safety-Critical Device

A possible approach to build safety tests for a processor is to take all of the 5 presented
test programs and run them one after the other. According to the safety standard, a
self-test either has to be applied:

• every time before the device is involved in a safety-critical functionality (this applies
if the system has a hardware fault tolerance of 0 which means that a failure of the
device can lead to a safety-critical state)

• once every day (this applies if the system has a hardware fault tolerance of more
than 0 which means that more than one device [e.g. more than one CPU] has to fail
in order to bring the system into a safety-critical state)

For a system with hardware fault tolerance of more than one, the presented tests could
be scheduled in parallel to the regular CPU functionality and they would have to run once
a day which does not require a lot of the overall processing power.
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5.3.3 Simulation Time

The simulation ran on a computer with a 6-core 3.2GHz AMD Phenom-II CPU and 16GB
RAM. The simulation time was rather long, because the CPU is not emulated on hardware,
but the VHDL code is simulated with Modelsim in software. However, just few registers
had to be tested, because just registers explicitly relevant according to the IEC 61508
standard were considered. A test for a single fault injection which includes initializing
the CPU, starting the test, running the test, injecting the fault, finishing the test, and
reporting the test result took about 10 seconds in average. The exact test duration strongly
depends on the runtime length of the test program (e.g. the generic core tests are a lot
quicker than the SHA-1 test). For the Plasma/MIPS CPU, a single test run was about 10
times faster. This is the case, because the LEON3 CPU is much more complicated than
the Plasma/MIPS CPU. This means that many more registers have to be simulated and
therefore the overall simulation of the LEON3 CPU is slower.

These slow test times were still sufficient, because the testbench is fully automated.
This means that after the tests were parametrized (configuration of the registers where
the faults have to be injected), no more human interaction was necessary and the faults
were injected for every test program and for every bit of the register. Figure 5.5 visualizes
this. For stuck-at faults, two different test runs took place. One for stuck-at 1 and one
for stuck-at 0. A stuck-at fault was always injected for the whole duration of the test run.
For transient faults, several test runs took place, because the behavior of the test program
depends on the time when the fault is injected. Therefore, several test runs (9-10 test runs)
took place for transient faults, each at a random time during the test program. Table 5.3
calculates in detail the amount of faults which were injected for each register which is
overall 1920. When considering that a single test run on the Plasma/MIPS processor
takes about 1 second, this means that testing a single register for all the fault types and
all the test programs takes about half an hour. Such test runs for a single register of the
LEON3 CPU take even longer. For the LEON3 CPU the tests for a single register require
about 5 hours.

Figure 5.5: Sequence of the Fault Injections



62 CHAPTER 5. VERIFICATION AND EVALUATION

Stuck-At 32 (one injection for each register bit)
x 5 (number of test programs)
x 2 (stuck-at 1, stuck-at 0)

320

Transient 32 (one injection for each register bit)
x 5 (number of test programs)
x 10 (several test runs with fault injected
at a randomly different time)

1600

SUM 1920

Table 5.3: Number of Test Runs for each Register

Again, these slow test times are still sufficient, because the tests are fully automatic
and just few registers had to be tested. For both CPUs about 30 registers had to be
tested and the overall simulation took about one week. Altogether about 120,000 faults
were injected during this simulation. However, for more complex simulations (for example,
for more complex test programs) or for more exhaustive simulations (more registers, more
faults to inject), the proposed fault injection system would not be sufficient. In such a case,
the CPU would have to be simulated in hardware in order to be faster. The speedup with
such an approach would be significant (according to literature about factor 1000 [BP03]).
The disadvantage of a hardware-based simulation would be that one has to modify the
HDL code in order to inject faults. With the presented fault injection system that is not
necessary.

5.4 Discussion of the System Requirements

R1 - Generic Self-Tests: The self-test programs are written in C. Thus they are not
processor specific and can also be applied to other CPU architectures. However,
the downside of having C-code for the self tests is that the compilation step brings
uncertainties regarding the actual assembler code which is run at the target proces-
sor. However, for the specific CPU architectures covered in this thesis, this did not
matter.

R2 - Self-Test Verification: The self-tests were verified with fault injection. For every
self-test and every relevant target register, several transient and stuck-at faults were
injected for every bit.

R3: IEC 61508 compliant self-tests: The faults were injected into CPU registers rel-
evant according to the IEC 61508 standard. As required by the standard, single
bit transient and stuck-at faults were injected. On the LEON3 and Plasma/MIPS
processor, the presented self-tests achieve a fault coverage of more than 90% which
is required by the safety standard for the tests to be used in a SIL2 environment.

R4 - Simulation time: The simulation time for injecting a single fault on the used sim-
ulation hardware is between one and ten seconds depending on the test program and
on the actually simulated CPU. For verifying all relevant registers of a CPU for all



5.4. DISCUSSION OF THE SYSTEM REQUIREMENTS 63

tests this leads to an overall simulation time of about a week which is acceptable.
For just injecting specific faults to check whether a specific test works (which might
be required during safety certification), just a few seconds of simulation time are
necessary, which is acceptable as well.

R5 - Fully automated simulation: The presented TCL script automates the whole
simulation and does not require any human interaction after the registers to be
tested have been defined. This means that an operator can simply call the script
and collect all test results when the whole simulation is done.

R6 - Easy to use: The fault injection system does not require any modifications in the
HDL code of the processor which makes its application very easy. This means that
somebody using the fault injection system does not require a deep understanding
of the processor source code. However, one has to define the target registers of
the processor. This means that still one has to look at the HDL code to chose the
appropriate registers. When using the fault injection system, one also does not have
to cope with the actual fault types which have to be injected according to the safety
standard, because the fault injection system already injects all necessary fault types.



Chapter 6

Conclusion

6.1 Discussion of the Results

This thesis gave an overview of the IEC 61508 standard and on software-based self-tests to
test memory components and CPU components. Furthermore, the basics of fault injection
testing were explained and different fault-injection approaches were discussed. A fault
injection system to test a set of presented generic CPU self-tests was described and fault
injections were conducted. The fault injection results were presented and the suitability
of the proposed self-test programsfor safety-critical environments was discussed.

The following points highlight the main outcomes of this thesis of which a reader could
benefit:

• The design and implementation of a fault injection system specifically tailored for
safety-tests which is very easy to handle and can easily be configured to be used
for other HDL code. This fault injection system could be used by others to verify
self-test in safety-critical domains. The main advantage of the system is that it does
not require any modification of the HDL code, but just configuration of the TCL
script which controls the fault injection and the test simulation. The software-based
simulation makes the tests very slow, however, for the safety domain this is not a
big problem, because often during safety certification just single faults have to be
injected to prove to a safety certification authority that a specific test is able to
detect specific types of faults. For such uses, the presented fault injection system
simulation speed is sufficient.

• Insight into the field of ’indirect testing’ of hardware components with tests which
are actually aimed to test other components. Most of the presented generic tests
did not aim at testing CPU components. However, it was shown that still they
achieve a high diagnostic coverage for the CPU. Sometimes such ’indirect testing’ is
used in the safety domain if direct testing is not possible. This would be the case if
the source code of a processor is not available and self-tests have to be verified. In
such a case one could take tests with proven coverage (like the presented multiplier
test) and argue for the overall CPU test coverage with indirect testing. This thesis
provided some insight into indirect testing and also presented diagnostic coverage
values for such indirect tests (like for example the March Test).
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• A set of generic test programs which can be used as a basis to construct self-tests
for processors in safety-critical environments. One of the main benefits of the thesis
for someone who wants to develop self-tests for a CPU is that the thesis provides a
set of well-proven self-tests which are even architecture independent. Of course this
architecture independence brings the uncertainty of what the compiler will make
when translating the code to a target architecture. However, for the two presented
different CPU architecture, it did not make much of a difference. In any case, the
presented tests can be taken as a starting point when developing self-tests for a
specific CPU which has to be safety-certified.

6.2 Future Work

The current state of the work provides verification results for self-tests on two different
processor architectures. However, there is plenty of ideas which could enhance this work:

• Additional CPU architectures. It would be of great interest to evaluate the self-tests
of more different CPU architectures. This would help to argue for the processor
architecture independence of the generic self-tests. If the self-tests achieve a high
coverage also for other processor architectures, then this would hint that they also
have a high coverage for CPU architectures where such simulations cannot be applied
(for example because their source code is not available).

• More self-tests. The current self-tests are based on literature or on the MiBench
test suite. It would be of interest to evaluate further self-tests to see whether other
tests are better and to see whether any of the test-programs manages to detect faults
in the by IEC 61508 required registers where faults apparently are rather simple to
detect (for example, a fault in a stack pointer is very easy to detect for any program).

• Get a safety certification authority involved. Currently, the fault injection system
and the self-tests are developed without much feedback from a safety certification
authority. At the beginning of this work, the main concept of the self-tests and the
fault injection system were discussed with TÜV Rheinland. They approved of the
concept, however, they so far did not assess it in detail and it was so far not yet
used during a safety certification. Future work on this point will be to actually use
the argumentation of the generic self-tests which indirectly test CPU components
during a safety certification.

• Use the fault injection system in different domains. It would be of interest to use the
presented system not just to test safety-critical self-tests, but also to use of for other
domains. For example, systems which have to undergo Common Criteria security
certification also require fault injection tests. The fault injection system could be
used there and it would be interesting to see whether the slow fault injections are
sufficient also for this domain.

• Emulate the tests on hardware. One of the main drawbacks of the presented fault
injection system is that the simulation time is rather long. Simulating a very complex
CPU or simulating very long test programs might be infeasible. To speed up the
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fault injections, the VHDL code could be emulated in hardware. It would be very
interesting to see how much faster the fault injections could be applied. However,
it would require major modifications of the fault injection system, because the TCL
script could not be used anymore to control and watch the simulation. Instead one
would have to communicate to the CPU hardware and react on the GPIO pin signals
of the CPU.



Appendix A

TCL Source Code

#REGISTER WHERE A FAULT IS INJECTED
set signal_to_force "/register/to/force"

#TRANSIENT OR STUCKAT OR STACK(=transient error on stack-pointer)
set fault_type "STUCKAT"

#FORCE VALUE 0 OR 1 FOR STUCK-AT
set force_value "1"

#COUNT PROCESSOR HALTS
onbreak {
set broken 1
incr broken_count
resume

}

#NEEDED FOR BINARY OUTPUT
proc dec2bin int {

binary scan [binary format I $int] B* res
set res
set res [string range $res 0 31]

}

set start_time [clock seconds]
set result ""
set result_summary ""

for {set i_modes 0} {$i_modes < 3} {incr i_modes} {
if {$fault_type != "STACK"} {
if {$i_modes == 0} {

set fault_type "STUCKAT"
set force_value "1"

}
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if {$i_modes == 1} {
set fault_type "STUCKAT"
set force_value "0"

}
if {$i_modes == 2} {

set fault_type "TRANSIENT"
}

} else {
incr i_modes
incr i_modes

}

set broken_count 0
set infinite_count 0
set found_count 0
set ok_count 0

#INJECT IN 32 REGISTERS
for {set i 0} {$i < 32} {incr i} {

set broken 0
set force_signal_element $signal_to_force
append force_signal_element "($i)"
set cycle_count 0;

#RESET OLD COMMANDS
if {$i>0} {

nowhen *
}

restart -force
run 74000

#JUST INJECT THE FAULT IF gpio(0)=high
when -label gpiowhen {sim:/tbench/gpio0_out(1) == 0} {

force -freeze sim:/tbench/gpioa_in(1) 0
noforce sim:/tbench/gpioa_in(1)
if {$fault_type != "STACK"} {

noforce sim:$force_signal_element
}
set cycle_count 0;

}

if {$fault_type == "TRANSIENT"} {
append result "$now: INJECT TRANSIENT FAULTS - $force_signal_element \n"
when -label transienttrigger {sim:/tbench/gpio0_out(1) == 1} {



69

force -freeze sim:/tbench/gpioa_in(1) 1 20000 ns -cancel 30000 ns
}

when -label transientwhen {sim:/tbench/gpioa_in(1) == 1} {
set transient_input [examine $force_signal_element]
if {$transient_input == 1} {

force -freeze sim:$force_signal_element 0 -cancel 10000 ns
force -deposit sim:$force_signal_element 0 10100 ns

}
if {$transient_input == 0} {

force -freeze sim:$force_signal_element 1 -cancel 10000 ns
force -deposit sim:$force_signal_element 1 10100 ns

}
}

}

if {$fault_type == "STUCKAT"} {
append result "$now: INJECT STUCKAT FAULTS\n"
when -label stuckatwhen {sim:/tbench/gpio0_out(1) == 1} {

force -freeze sim:/tbench/gpioa_in(1) 1
force -freeze sim:$force_signal_element $force_value

}
}

if {$fault_type == "STACK"} {
append result "$now: INJECT TRANSIENT FAULTS ON STACK\n"
when -label stackwhen {sim:/tbench/gpio0_out(5) == 1} {

force -freeze sim:/tbench/gpioa_in [dec2bin $i] -cancel 200 ns
}

}

#RUN AND INJECT FAULTS
run 7500000

#STORE INJECTION RESULTS
set pin_out [examine /tbench/tests_found]
set test_ok [examine /tbench/tests_ok]
set faults_injected [examine /tbench/test_count]
append result "$now: $i. run: injected: $faults_injected, found

$pin_out, ok: $test_ok - broken:$broken\n"

if {$broken == 0} {
if {$pin_out > 0} {

incr found_count
} else {

if {$test_ok < 2} {
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incr infinite_count
} else {

if {$test_ok > 7} {
incr infinite_count

} else {
incr ok_count
}

}
}

}
}

#PRINT FINAL RESULTS
nowhen *
echo "\n\nRESULTS: \n"
echo $result
append result_summary "\n $fault_type faults in $signal_to_force\n"
if {$fault_type == "STUCKAT"} {
append result_summary " Forced value $force_value\n"

}
append result_summary "$broken_count BREAKS\n"
append result_summary "$found_count FOUND\n"
append result_summary "$infinite_count INFINITE\n"
append result_summary "$ok_count OK \n\n"
}

set delta_time [expr [clock seconds]-$start_time]
set delta_minutes [expr $delta_time / 60]
echo $result_summary
echo "SIMULATION TIME: $delta_minutes Minuten\n"



Appendix B

Source Code of the Generic Test
Programs

B.1 Main Test Routine

int main(void)
{
UINT16 main_i;
TBSendStartOfTest(); //signal the start of the benchmark to the TB
for(main_i = 0; main_i < 10; main_i++)
{

initPIO();
stack_fault_pattern = 0;
setPIO(0x20); //to be recognized by TCL for Stack-Pointer Test
int temp = safety_test(); //CALL THE SPECIFIC TEST ROUTINE HERE
if(temp == 42) //tests ok
{

setPIO(0x4);
}
else //found fault
{

setPIO(0x8);
}

}
TBSendEndOfTest(); //signal the end of the benchmark to the TB
return 0;

}

B.2 CPU Core Tests

int test_shifter()
{

unsigned int R1 = 1;
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unsigned int R2 = 0;
unsigned int R3 = 0;
unsigned int R4 = 0x80000000;
setPIO(0x2);
while(R2 < 0x43)
{

R1 = ((R1<<R3) | (R1>>(32 - R3)));
R3 = R3ˆ0xFFFFFFFF;
R2 = R2 + 1;
if(R2>0x43)
{

initPIO();
return -1;

}
}
if(R1 != R4)
{

initPIO();
return -1;

}
initPIO();
return 42;

}

int test_mult()
{

unsigned int x = 0;
unsigned int y = 0;
unsigned int z1,z2;
unsigned long long m_res = 0;
unsigned long long temp;
unsigned int a_res = 0;
unsigned int carry = 0;
unsigned int golden_value = 0;
int count = 0;
setPIO(0x2);
while(x != 0x11111110)
{

y = 0;
while(y != 0x11111110)
{

m_res = (unsigned long long)x * (unsigned long long)y;
temp = m_res;
z1 = (unsigned int)temp;
z2 = (unsigned int)(temp>>32);
temp = temp>>32;
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a_res = z1 + z2;
temp = (unsigned long long)golden_value + (unsigned long long)a_res;
golden_value = (unsigned int)temp;
carry = (temp>>32);
golden_value = golden_value + carry;
y = y + 0x11111111;

}
x = x + 0x11111111;

}
if(golden_value==0xffffffdc)
{

initPIO();
return 42;

}
else
{
initPIO();
return -1;

}
}

int logic_test_sub(unsigned int x, unsigned int y, unsigned int z)
{

unsigned int a,b,c,d,e,f;
a = x&y;
b = x|y;
c = aˆb;
if (c != z)
return -1;

d = xˆy;
if (d != z)
return -1;

e = !(xˆy);
f = !z;
if (e!=f)
return -1;

return 42;
}

int test_logic()
{

setPIO(0x2);
unsigned int x,y,z,return_value=0;
x = 0x00000000;
y = 0x00000000;
z = 0x00000000;
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return_value = return_value + logic_test_sub(x,y,z);
x = 0xffffffff;
y = 0xffffffff;
z = 0x00000000;
return_value = return_value + logic_test_sub(x,y,z);
x = 0x00000000;
y = 0xffffffff;
z = 0xffffffff;
return_value = return_value + logic_test_sub(x,y,z);
x = 0xffffffff;
y = 0x00000000;
z = 0xffffffff;
return_value = return_value + logic_test_sub(x,y,z);
if (return_value != 4*42)
{
initPIO();
return -1;

}
else
{
initPIO();
return 42;

}
}

int test_muldiv()
{
unsigned int x = 0;
unsigned int y = 0;
unsigned int z1,z2;
int golden_value = 42;
int count = 1;
setPIO(0x2);
while(count < 100)
{

y = count;
x = x + count;
z1 = x * y;
z2 = z1 / x;
if(z2 != y)
golden_value = -1;
count = count + 1;

}
initPIO();
return golden_value;

}
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B.3 Quicksort Test

//http://www.codeuu.com/
void q_sort(int numbers[], int left, int right)
{

int pivot, l_hold, r_hold;

l_hold = left;
r_hold = right;
pivot = numbers[left];
while (left < right)
{

while ((numbers[right] >= pivot) && (left < right))
right--;

if (left != right)
{

numbers[left] = numbers[right];
left++;

}
while ((numbers[left] <= pivot) && (left < right))

left++;
if (left != right)
{

numbers[right] = numbers[left];
right--;

}
}
numbers[left] = pivot;
pivot = left;
left = l_hold;
right = r_hold;
if (left < pivot)

q_sort(numbers, left, pivot-1);
if (right > pivot)

q_sort(numbers, pivot+1, right);
}

int quick_sort_test()
{
int arr[20] = {108,102,5,1,100,107,101,6,11,109,106,

8,9,103,10,23,105,44,0,104};
int elements = 20;
q_sort(arr,0,19);
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if (arr[0]==0 && arr[1]==1 && arr[2]==5 && arr[3]==6
&& arr[4]==8 && arr[5]==9 && arr[6]==10 && arr[7]==11
&& arr[8]==23 && arr[9]==44 && arr[10]==100&& arr[11]==101
&& arr[12]==102&& arr[13]==103&& arr[14]==104&& arr[15]==105
&& arr[16]==106&& arr[17]==107&& arr[18]==108&& arr[19]==109)
{

return 42;
}
else
{

return -1;
}

}

B.4 SHA-1 Test

int shaTest()
{

SHA1Context sha;
SHA1Reset(&sha);
SHA1Input(&sha, (const unsigned char *) "abc", 3);
SHA1Result(&sha);
if( sha.Message_Digest[0]==0xA9993E36

&& sha.Message_Digest[1]==0x4706816A
&& sha.Message_Digest[2]==0xBA3E2571
&& sha.Message_Digest[3]==0x7850C26C
&& sha.Message_Digest[4]==0x9CD0D89D )

{
return 42;

}
return -1;

}

B.5 CRC Test

// based on code from Michael Barr

unsigned int crcTable[256];

unsigned int crcSlow(unsigned char const message[], int nBytes)
{

unsigned int remainder = 0;
int byte;
unsigned char bit;
for (byte = 0; byte < nBytes; ++byte)
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{
remainder ˆ= (message[byte] << (32 - 8));
for (bit = 8; bit > 0; --bit)
{

if (remainder & (1 << (32 - 1)))
{

remainder = (remainder << 1) ˆ 0xF4ACFB13;
}
else
{

remainder = (remainder << 1);
}

}
}
return remainder;

}

void crcInit()
{

unsigned int remainder;
int dividend;
unsigned char bit;
for (dividend = 0; dividend < 256; ++dividend)
{

remainder = dividend << (32 - 8);
for (bit = 8; bit > 0; --bit)
{

if (remainder & (1 << (32 - 1)))
{

remainder = (remainder << 1) ˆ 0xF4ACFB13;
}
else
{

remainder = (remainder << 1);
}

}
crcTable[dividend] = remainder;

}
}

unsigned int crcFast(unsigned char const message[], int nBytes)
{

unsigned char data;
unsigned int remainder = 0;
int byte;
for (byte = 0; byte < nBytes; ++byte)
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{
data = message[byte] ˆ (remainder >> (32 - 8));
remainder = crcTable[data] ˆ (remainder << 8);

}
return (remainder);

}

int crcTest()
{

crcInit();
unsigned char crc_input[10];
crc_input[0] = ’T’;
crc_input[1] = ’E’;
crc_input[2] = ’S’;
crc_input[3] = ’T’;
crc_input[4] = ’C’;
crc_input[5] = ’R’;
crc_input[6] = ’C’;
crc_input[7] = ’3’;
crc_input[8] = ’2’;
crc_input[9] = ’!’;

if (crcSlow(crc_input,10) != crcFast(crc_input,10))
{
initPIO();
return -4;

}
else
{

initPIO();
return 42;

}
}

B.6 March Test

//Based on code from Michael Barr
int memTestDevice()
{

int baseAddress[100];
int nBytes = 100;
unsigned long offset;
unsigned long nWords = nBytes / sizeof(int);
int pattern;
int antipattern;
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/* Fill memory with a known pattern */
for (pattern = 1, offset = 0; offset < nWords; pattern++, offset++)
{

baseAddress[offset] = pattern;
}
/* Check each location and invert it for the second pass */
for (pattern = 1, offset = 0; offset < nWords; pattern++, offset++)
{

if (baseAddress[offset] != pattern)
{

return -1;
}
antipattern = ˜pattern;
baseAddress[offset] = antipattern;

}
/* Check each location for the inverted pattern and zero it */
for (pattern = 1, offset = 0; offset < nWords; pattern++, offset++)
{

antipattern = ˜pattern;
if (baseAddress[offset] != antipattern)
{

return -1;
}

}
return 42;

}
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List of Registers for Fault
Injection

C.1 Plasma/MIPS

# FILE-REGISTER
#/tbench/u1_plasma/u1_cpu/u4_reg_bank/data_out1
#/tbench/u1_plasma/u1_cpu/u4_reg_bank/data_out2
#/tbench/u1_plasma/u1_cpu/u4_reg_bank/reg_target_out
# DECODING
#/tbench/u1_plasma/u1_cpu/b_bus
#/tbench/u1_plasma/u1_cpu/b_busd
# EXECUTION
#/tbench/u1_plasma/u1_cpu/opcode
# PROGRAM COUNTER
#/tbench/u1_plasma/u1_cpu/pc_current
#/tbench/u1_plasma/u1_cpu/u1_pc_next/pc_new
# ADRESSING
#/tbench/u1_plasma/ram_address
#/tbench/u1_plasma/u1_cpu/u2_mem_ctrl/address_in
# INTERNAL RAM
#/tbench/u1_plasma/ram_data_r
#/tbench/u1_plasma/ram_data_w

C.2 Leon3

# FILE-REGISTER
#/testbench/cpu/l3/cpu(0)/u0/rfo_fi.data1
# DECODING
#/testbench/cpu/l3/cpu(0)/u0/p0/iu0/r.d.inst(0)
# EXECUTION
#/testbench/cpu/l3/cpu(0)/u0/p0/iu0/r.e.op1
#/testbench/cpu/l3/cpu(0)/u0/p0/iu0/r.e.op2
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# PROGRAM COUNTER
#/testbench/cpu/l3/cpu(0)/u0/p0/iu0/r.f.pc
# ADRESSING
#/testbench/cpu/l3/cpu(0)/u0/cmem0/crami.icramin.address
#/testbench/cpu/l3/cpu(0)/u0/cmem0/crami.dcramin.address
# INTERNAL RAM
#/testbench/cpu/l3/cpu(0)/u0/cmem0/cramo.icramo.data(0)
#/testbench/cpu/l3/cpu(0)/u0/cmem0/crami.dcramin.data(0)
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Publication

The work presented in this thesis was published at the 8th IEEE International Design &
Test Symposium 2013 in Marrakesh, Morocco. On the following pages, this chapter shows
the poster presented at the conference and the published paper.
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Institute for Technical Informatics, Graz University of Technology, Austria

Email: christopher.preschern@tugraz.at, nermin.kajtazovic@tugraz.at, andrea.hoeller@tugraz.at,
steger@tugraz.at, christian.kreiner@tugraz.at

Abstract—In this paper we present generic CPU self-test
programs and we check if the test programs conform to the
IEC 61508 safety standard. We use processor architecture inde-
pendent test programs to indirectly test the CPU components.
We present a fault injection framework which we use to verify
the fault detection ratio of the self-tests through simulation on a
Plasma/MIPS and on a LEON3 processor.

I. INTRODUCTION

Functional safety certification requires detailed analysis of
a system about which faults can occur and which of them
are hazardous. For complex hardware such as CPUs, self-
tests can be executed to detect hazardous faults before they
lead to a critical system failure. Most commercial CPUs are
not delivered with such self-tests, which means that when
using the CPU in the safety domain, such tests have to be
developed individually. Also, these tests have to be verified
which is usually done by injecting faults on the CPU to show
that the tests can detect these faults. This can be a tedious
task, especially if the test programs and the test verification
framework have to be built from scratch.

To decrease the effort for developing and verifying CPU
tests used in the safety domain, we present and verify a generic
test suite which indirectly tests the CPU components and fault
types described in the IEC 61508 safety standard. We argue for
the universality of the test suite by showing for two different
CPU architectures that the tests achieve a high fault detection
ratio (diagnostic coverage). We set up a testbench to simulate
the processor hardware description language (HDL) code and
run the test programs on this simulation while injecting faults
into the HDL code in order to obtain the test programs’
diagnostic coverage.

II. IEC 61508 SAFETY REQUIREMENTS FOR CPU TESTS

Table I shows which components of the CPU according to
IEC 61508 explicitly require testing and which types of faults
have to be considered. To test the 5 required CPU components,
we inject stuck-at and transient faults (soft-errors) into relevant
registers. For the Coding and execution component, the
standard requires to detect wrong or no execution. We simulate
this by injecting faults into the opcode registers. With the
amount of detected faults we calculate the diagnostic coverage
according to the following equation:

DiagnosticCoverage(DC) =
λD
λAll

=
DetectedFaults

InjectedFaults

If we reach a diagnostic coverage of more than 90%, the
test programs are capable to fulfill IEC 61508 SIL2 safety
requirements.

CPU Component Faults which have to be considered for the CPU if
90% diagnostic coverage has to be reached

Register,
internal RAM

- Stuck-at for data and addresses
- Diagnostic coverage fault model for data and addresses
- Change of information caused by soft-errors

Coding and
execution

- Wrong coding or no execution

Address
calculation

- Stuck-at
- Diagnostic coverage fault model
- Change of information caused by soft-errors

Program counter - Stuck-at
- Diagnostic coverage fault model
- Change of information caused by soft-errors

Stack pointer - Stuck-at
- Diagnostic coverage fault model
- Change of information caused by soft-errors

TABLE I. REQUIRED CPU TESTS (IEC 61508-2 TABLE A.1 [1])

III. TEST SETUP

Most existing fault injection frameworks modify HDL
code, for example to insert saboteurs, and emulate the proces-
sor source code on hardware. This requires some knowledge
about the processor source code and about how these saboteurs
work. Also, many of these fault injection frameworks have the
disadvantage that they are not publicly available.

To address these problems, we designed a fault injection
framework which does not require any modifications to the
HDL code. We simulate the HDL code with Modelsim from
Mentor Graphics and execute test programs on this simulation.
For fault injection, Modelsim provides the force command to
inject stuck-at (force -freeze) and transient (force -deposit)
faults and Modelsim provides the when and examine com-
mands to read register values. Our fault injection is coordinated
by a TCL script. For stuck-at faults, the script forces a register
value to 0 or 1 during a whole test-run. For transient faults, the
script flips a register value at a random time during the test-
run. A test-run is simulated for each combination of the test
programs and the relevant registers of the 5 CPU components.
More details and the full source code of the fault injection
framework at available at [2] and [3].

Fault simulation in software is much slower than em-
ulating the processor HDL code on a hardware. However,
our software-based self-tests are not very complicated, thus
a simulation-based approach is still feasible.

IV. GENERIC SELF-TEST

The proposed CPU test programs are written in C code.
The reason for not writing the tests in assembler code (which
is usually the case for the tests presented in literature) is that
the tests should be executable on different CPU architectures.
The drawback of having tests in C code is that the compilation
process brings uncertainty of how the actual executed code
looks like. However, with the evaluation we will show that for
different CPUs this has little effect on the test results.



For our first set of self-test programs (Generic Core-Tests),
we choose the tests presented by [4]. These CPU tests include
generic tests for the ALU, the shifter unit, the division unit,
and the multiplication unit. The tests compare results of diverse
calculations or compare results to a pre-known reference value
to detect faults.

For the next sets of test programs we use programs based
on the MiBench test suite [5], which provides tests for different
application domains such as automotive or security. We use
quicksort, CRC32, and SHA-1 test programs. The quicksort
test takes an integer array as input and sorts the array. A fault
is detected if the resulting array is not in the correct order. The
CRC32 test program uses two diverse CRC implementations
and checks if the results are the same. The SHA-1 test program
computes the SHA-1 hash value for a fixed input and detects
a fault if the SHA-1 output differs from the expected result
which is hard-coded in the program.

The last test program is a March RAM test. RAM tests have
to be applied according to the IEC 61508 safety standard to
detect faults in the RAM memory. The March RAM test writes
specific data patterns to the memory and checks if they are the
same when read. Of course this RAM test also indirectly tests
some of the CPU components, because the CPU registers and
operations are used as well. The test detects a fault if the
data read from the memory differs from the data which was
previously written.

V. APPLYING THE TESTS

A. Fault Injection Target Registers

We applied the fault injection tests to two different proces-
sors. We use the open source testbeds for the Plasma/MIPS
processor from opencores.org and for the LEON3 processor
from www.gaisler.com. The most time-consuming task was to
find appropriate registers where we want to inject the faults.
For the tests of the Register, internal RAM CPU component, we
injected faults on the bus signals and on the buffer registers
in the unit accessing the RAM. We also injected faults into
the internal register bank of the CPU. For the Coding and
execution, the Address calculation, and the Program counter
components, we injected the faults into the corresponding part
of the CPU pipeline. For the Stack pointer component, we did
not locate a specific register in the hardware, but injected the
faults with a software-level assembler-routine. The full list of
registers and the whole test setup can be found at [2].

B. Diagnostic Coverage

Table II shows the fault injection test results for the
Plasma/MIPS processor and Table III shows the results for the
LEON3 processor. We can see that all of the test programs
reach a diagnostic coverage of more than 90% which is
required for SIL2 safety certification. However, one has to take
care when intepreting the results that we did not inject faults
into all the CPU registers, but just the registers which are
explicitly mentioned by the IEC 61508 standard. The standard
takes these 5 CPU core components as a basis for testing, but
does not say that it is sufficient to just test these registers.
This means that the presented safety tests can be taken as a
basis for safety testing, but still, depending on the specific
processor, additional tests might be required. Still, it is very

Reg.,
Int.RAM

Coding,
Exec.

Address
Calc.

Program
Counter

Stack
Pointer

DC

Generic Stuck-At 100.0% 99.5% 100.0% 100.0% 100.0% 99.9%
CoreTests Transient 94.2% 96.9% 94.6% 95.3% 100.0% 96.2%
Qsort Stuck-At 84.8% 99.5% 81.7% 85.6% 100.0% 90.3%
Test Transient 97.7% 93.8% 93.8% 100.0% 100.0% 97.6%
CRC Stuck-At 100.0% 97.9% 100.0% 100.0% 100.0% 99.6%
Test Transient 99.1% 100.0% 100.0% 100.0% 100.0% 99.8%
SHA-1 Stuck-At 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Test Transient 99.2% 100.0% 97.5% 96.3% 100.0% 98.6%
March Stuck-At 85.5% 92.2% 100.0% 81.9% 100.0% 91.9%
Test Transient 97.7% 100.0% 100.0% 100.0% 100.0% 99.6%

TABLE II. PLASMA/MIPS DIAGNOSTIC COVERAGE

Reg.,
Int.RAM

Coding,
Exec.

Address
Calc.

Program
Counter

Stack
Pointer

DC

Generic Stuck-At 100.0% 100.0% 96.8% 100.0% 100.0% 99.4%
CoreTests Transient 87.7% 90.6% 86.0% 89.3% 100.0% 90.7%
Qsort Stuck-At 95.3% 97.7% 100.0% 70.3% 100.0% 92.7%
Test Transient 76.5% 96.9% 100.0% 96.9% 100.0% 94.1%
CRC Stuck-At 93.8% 97.3% 100.0% 85.9% 100.0% 95.4%
Test Transient 96.5% 93.8% 100.0% 93.8% 100.0% 96.8%
SHA-1 Stuck-At 100.0% 100.0% 100.0% 82.8% 100.0% 96.6%
Test Transient 96.9% 96.1% 96.7% 97.1% 100.0% 95.1%
March Stuck-At 99.3% 99.1% 98.4% 70.3% 100.0% 92.3%
Test Transient 100.0% 98.5% 100.0% 96.9% 100.0% 99.1%

TABLE III. LEON3 DIAGNOSTIC COVERAGE

interesting to see that the required diagnostic coverage of the
CPU components can be achieved by test programs which are
not specifically tailored to test the CPU.

VI. CONCLUSION

With this paper we investigated indirect testing of CPU
components and we provide a set of generic CPU self-tests
and a testing framework at [2]. Our test results show that the
test programs achieve a diagnostic coverage of more than 90%
which is required for SIL2 safety certification. Some tests were
not designed for CPU testing, but were rather simple programs
which can commonly be found in embedded applications.
The results show that the CPU components mentioned in
the IEC 61508 standard can indirectly be tested by these
commonly used programs like a CRC calculation or a RAM
test.

We think that the presented self-tests provide a good start
to develop safety-tests tailored for a specific CPU architecture.
With the publicly available source code and the publicly
available fault injection framework, it is easy to verify these
customized tests without too much effort. We hope that the
provided tests will successfully be used on other CPUs to
further show that these tests are generic and also achieve a
high diagnostic coverage for other CPU architectures.
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