
A Contribution to Collaborative Learning

Using iPads for School Children

Master’s Thesis

Submitted to

 Graz University of Technology

 in Partial Fulfilment of the Requirements for the Degree of

 Master of Science

 by

 Benedikt Kienleitner

Advisor

Assoc. Prof. PhD Martin Ebner

 Graz, November 2013

Abstract

Collaboration has a positive effect on students’ learning experiences as well as

their social interactions. The intent of this master’s thesis is to enhance the learning

experience, stimulate communication and cooperative behaviour and thus improve

learning. Making use of recent technological advancements (tablets) and gaming as a

motivational factor, a prototype application in form of a multiplayer learning game for

iPads was designed and developed. In a face-to-face setting, connecting up to four

devices, the players (learners) have to solve word puzzles in a collaborative way.

Furthermore, a web-interface for teachers provides the possibility to create cus-

tom content as well as to receive feedback of the children’s performance. A first field

study at two primary schools in Graz showed promising results for the learning be-

haviour of school children.

Kurzfassung

Kollaboration hat einen positiven Einfluss auf die Lernerfahrung von SchülerInnen

und deren soziale Interaktion. Ziel dieser Masterarbeit ist es, Kommunikation und

Kooperation durch den Einsatz neuer Technologien zu fördern und im Zuge dessen

die Lernerfahrung zu verbessern. Tablets bieten bisher noch nicht dagewesene Mög-

lichkeiten kooperatives Lernen zu unterstützten und Lerninhalte auf neue Art und

Weise zu präsentieren. Im Rahmen dieser Arbeit wurde der Prototyp eines Mehrspie-

ler-Lernspiels für iPads entwickelt. Das Spiel kann in Gruppen von bis zu vier Perso-

nen gespielt werden, die SchülerInnen sitzen dabei am selben Tisch. Ziel ist es,

Worträtsel zu lösen. Kommunikation und Zusammenarbeit sind dabei die entschei-

denden Faktoren.

Des Weiteren wurde eine Webseite für LehrerInnen entworfen, die es ermöglicht,

eigene Inhalte zu erstellen und Rückmeldung über die Leistung der SchülerInnen zu

erhalten. Eine erste Feldstudie in zwei Volkschulen in Graz lieferte vielversprechende

Ergebnisse. Das Lernverhalten der SchülerInnen wurde positiv beeinflusst, das Spiel

förderte sowohl Zusammenarbeit als auch Motivation.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

……………………………. ………….…………………………….

 date (signature)

Acknowledgements

I would like to extend my sincere gratitude to my advisor, Assoc. Prof. Martin Eb-

ner. He was always there when I had questions or needed support.

I would like to thank Behnam Taraghi for providing assistance during the devel-

opment of my application. Furthermore, my gratitude goes to the two teachers of pri-

mary schools in Graz, Aureli Silvana and Angelika Kornberger, who made it possible

to evaluate my app with their school children.

Last but not least, I would like to thank my family for supporting me during all

those years of my studies.

Table of Contents

ABSTRACT __ 2

STATUTORY DECLARATION ___ 3

ACKNOWLEDGEMENTS ___ 4

LIST OF FIGURES __ 9

LIST OF TABLES ___ 9

SOURCE CODE LISTINGS __ 10

LIST OF ABBREVIATIONS __ 11

1 INTRODUCTION ___ 12

1.1 Research Goal ___ 12

1.2 Overview of the Thesis ___ 13

2 THEORETICAL BACKGROUND ___ 14

2.1 Collaborative Learning __ 14

2.2 Educational Games __ 15

2.3 Mobile Devices in Classrooms __ 17

3 IDEA AND CONCEPT ___ 21

3.1 Methodology ___ 22

3.2 Idea and Concept __ 22

4 USER INTERFACE AND FEATURES ______________________________________ 25

4.1 Short Introduction of the Game __ 25

4.2 User Interface Design ___ 26

4.3 Menu Screen __ 29

4.3.1 Differences between Off- and Online Play __________________________________ 31

4.3.2 Features of the Web-Interface ___ 33

4.3.3 The Login Procedure ___ 33

4.4 The Connection Process ___ 35

4.5 The Game Screen __ 37

5 SYSTEM ARCHITECTURE AND IMPLEMENTATION ___________________ 39

5.1 Technical Framework ___ 39

5.1.1 iOS as a Platform __ 39

5.1.2 Programming Language, Frameworks and Libraries __________________________ 40

5.2 System Design and Architecture __ 43

5.3 Xcode and Objective C __ 44

5.3.1 Xcode ___ 44

5.3.2 Objective C ___ 44

5.3.3 Build Settings ___ 45

5.4 Detailed Description of the Implementation ____________________________________ 47

5.4.1 Connection to the Web-Interface (Class DBConnection) _______________________ 47

5.4.1.1 Class Overview ___ 47

5.4.1.2 The Delegate Protocol ___ 48

5.4.1.3 NSURLRequest ___ 49

5.4.1.4 HTTP Basic Access Authentication ______________________________________ 49

5.4.1.5 Implemetation Details ___ 50

5.4.2 User Specific Data (Class UserData) _______________________________________ 52

5.4.2.1 Class Overview ___ 52

5.4.2.2 Singleton Pattern ___ 52

5.4.2.3 Implementation Details __ 53

5.4.3 Animation (Class Animations) __ 54

5.4.3.1 Class Overview ___ 54

5.4.4 Sound (Class Sounds) ___ 56

5.4.5 The Menu Screen (Class MenuViewController) ______________________________ 57

5.4.5.1 Class Overview ___ 57

5.4.5.2 UIViewController ___ 58

5.4.5.3 Storyboard __ 58

5.4.5.4 UINavigationController ___ 58

5.4.5.5 Event Handling ___ 59

5.4.5.6 Implementation Details __ 59

5.4.6 Establishing a Connection (Class StartGameViewController)____________________ 60

5.4.6.1 Class Overview ___ 60

5.4.6.2 GameKit’s GKSession Class __ 61

5.4.6.3 Problems with GKSession and Other Frameworks _________________________ 61

5.4.6.4 Extensible Markup Language (XML) _____________________________________ 63

5.4.6.5 Implementation Details __ 64

5.5 The Game Screen (GameViewController) ______________________________________ 66

5.5.1.1 Class Overview ___ 66

5.5.1.2 Implementation Details __ 67

5.6 Debugging __ 68

6 DESIGN AND IMPLEMENTATION OF THE WEB-INTERFACE ________ 70

6.1 Description of the Database ___ 70

6.2 Description of the User Management System ___________________________________ 71

6.3 Description of the Website __ 72

6.3.1 User Interface and Features ___ 72

6.3.2 Technical Framework ___ 74

6.3.3 The Model-View-Controller Pattern _______________________________________ 74

6.3.4 Design and Architecture __ 75

6.3.4.1 Security ___ 77

6.3.4.2 Maintainability ___ 78

7 USING THE APP: RESULTS AND DISCUSSION OF THE TRIAL ________ 79

7.1 The Setting of the Test __ 79

7.2 Results ___ 79

7.3 Discussion __ 83

8 CONCLUSION ___ 84

8.1 Project Summary __ 84

8.2 Lessons Learned ___ 85

8.3 Concluding Remarks__ 85

REFERENCES ___ 87

List of Figures

FIGURE 1 ACCEPTANCE OF MOBILE DEVICES (MOORE, 1999) ADAPTED BY (CHAN, ET AL., 2006) ____ 19

FIGURE 2 GAME SETTING ___ 23

FIGURE 3 MENU SCREEN ___ 29

FIGURE 4 MENU SCREEN WITH LOGIN VIEW __ 30

FIGURE 5 COMMUNICATION BETWEEN WEB API, SERVER AND CLIENTS _______________________ 31

FIGURE 6 FLOWCHARTS OFF- ONLINE GAMING ___ 32

FIGURE 7 START GAME SCREEN __ 35

FIGURE 8 JOIN GAME SCREEN ___ 36

FIGURE 9 GAME SCREEN ___ 37

FIGURE 10 SYSTEM ARCHITECTURE ___ 43

FIGURE 11 DBCONNECTION ___ 47

FIGURE 12 DELEGATION (GAMMA, ET AL., 1994) __ 48

FIGURE 13 DELEGATE DBCONNECTION __ 49

FIGURE 14 CLASSDIAGRAM USERDATA __ 52

FIGURE 15 SINGLETON PATTERN (GAMMA, ET AL., 1994) ___________________________________ 52

FIGURE 16 CLASSDIAGRAM ANIMATIONS __ 54

FIGURE 17 CLASS DIAGRAM MENUVIEWCONTROLLER ______________________________________ 57

FIGURE 18 CLASS DIAGRAM STARTGAMEVIEWCONTROLLER _________________________________ 60

FIGURE 19 CLASS DIAGRAM GAMEVIEWCONTROLLER ______________________________________ 66

FIGURE 20 DATABASE SCHEMA __ 70

FIGURE 21 WEBSITE ___ 72

FIGURE 22 MVC PATTERN __ 75

FIGURE 23 WEBSITE ARCHITECTURE __ 76

List of Tables

TABLE 1 IOS VERSION DISTRIBUTION (NOV 22, 2013) ______________________________________ 46

TABLE 2 INTERVIEW RESULTS __ 81

Source Code Listings

LISTING 1 USER AUTHENTICATION ___ 50

LISTING 2 AUTHENTICATION REQUEST __ 51

LISTING 3 SINGLETON __ 53

LISTING 4 ACCESS SINGLETON ___ 53

LISTING 5 ANIMATIONS __ 55

LISTING 6 ADVANCED ANIMATIONS __ 56

LISTING 7 SOUND ___ 56

LISTING 8 EVENTS ___ 59

LISTING 9 DELEGATES ___ 60

LISTING 10 WORDLIST XML STRUCTURE ___ 64

LISTING 11 SEGUES __ 65

List of Abbreviations

API Application Programming Interface

HTML Hypertext Markup Language

ID Identifier

IDE Integrated Development Environment

iOS iPhone Operating System (out-dated)

MVC Model-View-Controller

PHP Hypertext Preprocessor

SOAP Simple Object Access Protocol

SQL Structured Query Language

TU University of Technology

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

1 Introduction

The last decade has provided us with amazing new and innovative technological

possibilities. New ways to deliver content and support learning have become availa-

ble, whether on the software side, most notably Web 2.0 (O'Reilly, 2007), as well on

the hardware side like the development of smartphones and tablets. In addition,

computers, and tablets in particular, offer a perfect opportunity to present learning

material in a more playful manner. Under the right circumstances, education with

learning games can have many benefits (Mann, et al., 2002).

Educational games already exist in many forms, however, only a handful of

games could be found that focus on the aspect of communication and cooperation

among peers. It has been shown in numerous studies (Johnson, et al., 2009) that

collaborative learning can have a positive effect on social behaviour as well as learn-

ing results and communication abilities (Jordan, et al., 2006) (Johnson, et al., 1999).

Due to the fact that learning is an active part of the learner where knowledge and

understanding is constructed by the learner (Holzinger, 2002), communication and

collaboration are essential factors for this process. Learning is a highly social process

and develops through conversation (Dewey, 1916) (Motschnig-Pitrik, et al., 2002).

1.1 Research Goal

Focusing on the aspect of cooperation and collaborative learning, the goal of this

research is to use digital devices to connect learners to strongly assist the communi-

cation between peers. The fundamental idea is to develop an application where

learners actively engage into collaborative work.

1.2 Overview of the Thesis

During the course of this master’s thesis, a learning game for mobile devices was

developed as well as a website for teachers to manage the learning content of the

app. Furthermore, an evaluation of the project took place in form of a field study at

two primary school classes in Graz.

The written part of this thesis is structured as following:

 Chapter 2 provides the theoretical background of the thesis, discussing

the three aspects that are the basis of the project: Collaborative learning,

educational games and mobile devices in classrooms.

 Chapter 3 will outline the idea and concept of the application.

 Chapter 4 discusses the user-interface and features of the app, providing

information on user interface design for mobile devices and designing user

interfaces for children. Each screen of the app will be presented, outlining

functionality and design.

 Chapter 5 focuses on the implementation of the iPad application. Each

class will be inspected, the technologies involved will be explained and

significant pieces of code or functions will be illustrated.

 Chapter 6 presents the website, the design and functionality as well as

details regarding the implementation, the database schema and the inter-

face to the user management system for schools.

 Chapter 7 focuses on the evaluation of the app, outlining the setting of

the field study and discussing results and outcomes.

 Chapter 8 gives concluding remarks about the project, the evaluation and

general thoughts on this field of research.

2 Theoretical Background

This chapter presents information on collaborative learning, educational games

and the use of mobile devices in classrooms.

2.1 Collaborative Learning

Learning in schools can be divided into three kinds of interaction:

 Interaction between the teacher and the students.

 Interaction between students and the curriculum materials.

 Interaction among the students.

Instructional theory has long focussed on the first two types of interaction, while

student-to-student interaction has largely been ignored. This is to some degree due

to the fact that cooperative learning is not the easiest way to teach and is viewed with

scepticism by some teachers. However, the way in which teachers structure student

learning goals determines how students interact with each other. Those interactions

are a major determinant of cognitive and affective outcomes of instruction (Smith,

1979) (Johnson, et al., 1991).

In simple terms, collaborative learning can be described as a situation in which

two or more people attempt to learn something together (Dillenbourg, 1999). They will

ask each other for information, evaluate one another’s ideas and monitor one anoth-

er’s work (Chiu, 2000). These effects, however, do not automatically appear when

students are placed together in groups. For cooperative learning to occur the groups

and learning activities must be carefully chosen (Johnson, et al., 1991) (Laughlin, et

al., 1991).

 The benefits of collaborative learning are an increase in students’ engagement

and their motivation to learn as well as a deeper understanding of learning material

(Murphy, et al., 2009) (Prince, 2004). According to Vygotsky (Vygotsky, 1978), stu-

dents who work together are capable of performing at a higher intellectual level than

working individually. Furthermore, as a result of collaboration and communication

among peers, an improvement of students' interpersonal relationships was noticed

(Johnson, et al., 2009).

There are several ways to implement cooperative learning. A more formal ap-

proach would be to place students in groups and optionally assign a specific role for

each student. The teacher provides the learning material and explains the tasks,

monitors the learning activities of each group and intervenes to teach cooperative

skills and assist in learning when needed. Finally, for each student and group, the

results of learning are evaluated.

Another way is to form temporary, ad hoc groups that last for only one class peri-

od. Those activities can be used to further focus students’ attention on the learning

material and ensure that students cognitively process the material being taught. This

approach can be used any time, however, it is especially helpful when students seem

to lose focus on the lecture (Johnson, et al., 1991).

2.2 Educational Games

Information technology has changed the way we work, live, learn and entertain

ourselves. A new generation of students has emerged, their learning preferences

tend toward teamwork, experimental activities, structure and the use of technology

(Raines, 2002).

Outside school, computer games have become an integral part of young people’s

live, holding a special fascination and provoking a deep sense of engagement (Facer,

2003). Today, games are part of growing up, the average 8th grader plays video

games for approximately 5 hours a week (Oblinger, 2004). A survey performed in

2003 stated that 69% of respondents had been playing computer games since prima-

ry school (Jones, 2003). Observing this trend, the following question arises: How can

this new form of media be used for educational purposes?

Games can constitute powerful learning environments for a number of reasons

(Oblinger, 2004):

 They can support multi-sensory, active, problem-based learning.

 Games favour activation of prior knowledge. Players must use previously

gathered information in order to advance.

 Games require the transfer of learning from other venues of life. Being

able to see the connection and transfer it to a unique situation is part of

gameplay.

 They provide immediate feedback, enabling players to learn from their ac-

tions.

 They offer opportunities for self-assessment through the mechanism of

scoring and reaching different levels.

 Games are often social environments. They can be played with others and

involve large communities.

In addition, games can have a great influence on motivation. Learning in form of a

game is believed to be more learner-centered, easier, more enjoyable, interesting

and thus more effective (Kafai, 2001) (Papastergiou, 2009). Malone (Malone, 1980)

pointed out that learning can be improved through using the three crucial factors:

curiosity, fantasy and challenge.

Today there are numerous research studies carrying out the idea of using games

for learning (Zechner & Ebner, 2011) (Hannak, et al., 2012) (Ebner, et al., 2011). To

complete this section, two of those studies regarding learning games will be briefly

presented. The first game was developed at Graz University of Technology.

iGeo is an online learning game and designed for the subject geography in sec-

ondary schools. The goal of the game is to spot locations, including capitals, moun-

tains and important cities. Geographical facts are supplied along the way and a high

score list with nicknames should further motivate players (Ebner & Holzinger, 2007).

The second game was developed in Sweden and is divided into several modules

that contain highly interactive content with 60-80 hours of active learning. Subjects

such as English, mathematics, physics and business administration are set in a learn-

ing environment where the user can explore, experiment and practice. For example,

the student encounters a number of characters in the game that need the learner’s

help to solve tasks. A task could be to coach the career of a young journalist by using

statistics or to help out elderly people that need health care (Oblinger, 2004).

In both cases, students found the learning experience more engaging and

enjoyable. Furthermore, better learning results were achieved.

2.3 Mobile Devices in Classrooms

Mobile devices have become an integral part of our lives. In the first quarter of

2013 more smartphones have been sold than normal mobile phones1. Students are

already using personal devices for learning outside of school. This raises the ques-

tion: Will students who come to expect mobile personal devices outside of school

demand to use them within school? (Chan, et al., 2006)

There are two key factors for the use of mobile devices in classrooms (Liang, et

al., 2005):

 One device per student.

 A communication network that supports peer-to-peer connections and/or

internet connectivity.

In such an environment, handheld devices can have numerous educational bene-

fits, a few of them are listed below (Kloper, et al., 2002):

 Portability. The ease of movement with the device creates learning envi-

ronments that have not been possible before.

 Social interactivity through wireless communication. Peer-to-peer commu-

nication makes data exchange, face-to-face interaction and collaboration

possible.

 Customization to the individual’s path of navigation.

1
 http://www.iphone-news.org/2013/04/26/smartphones-vs-handys-erstmals-mehr-

smartphones-verkauft-apple-mit-17-3-prozent-marktanteil-48678/ (Last visited: Nov. 2013)

http://www.iphone-news.org/2013/04/26/smartphones-vs-handys-erstmals-mehr-smartphones
http://www.iphone-news.org/2013/04/26/smartphones-vs-handys-erstmals-mehr-smartphones

 Connectivity, establishing a shared environment for data collection among

distributed devices.

 Combination of digital and physical worlds.

Educational applications on mobile devices can be categorized in three main

types (Pinkwart, et al., 2003) (Chan, et al., 2006):

1. An interface to a desktop program to extend the use of a desktop applica-

tion.

2. A stand-alone application running on the mobile device allowing coopera-

tion via direct communication between the devices.

3. As a portal to a shared space that resides on a server.

In recent years there has been a trend towards an integral use of handheld devic-

es in classrooms instead of the occasional visit of computer labs. Portability and

peer-to-peer connectivity make them a perfect choice to assist cooperative learning

approaches. Thus, the collaboration of students through different mobile devices has

become an import research issue. Studies demonstrated that mobile technology can

aid or actively support collaboration (Zurita & Nussbaum, 2004).

However, technological advancement is usually faster than its adoption, especial-

ly regarding technology for educational purposes in schools. According to Rogers

(Rogers, 1995), there will always be a group of innovators who actively contribute to

the use of new technology followed by technology enthusiasts and an early majority

of pragmatic users. On the opposite side stands the late majority, people who are

generally against innovations and a group of people that do not accept innovation at

all. A study performed in 2006 has tried to roughly estimate this behaviour regarding

the acceptance of mobile in classrooms.

Figure 1 Acceptance of Mobile Devices (Moore, 1999) adapted by (Chan, et al., 2006)

According to figure 1, there will be an upsurge of changes in education during the

next two or three decades. Nevertheless, the process of adopting mobile devices or

similar technologies for the use in classrooms will most likely not happen in the mat-

ter of a few years.

Perez (Perez, 2002) offers another point of view on that matter. In his reasoning,

the introduction and incorporation of a new technology is divided into two phases.

During the installation phase, there will be a time of explosive growth which will be

followed by a period of disappointment and confusion. Finally, a turning point will be

reached which will start a period of rethinking and rerouting the development leading

to the deployment period, where the technology has reached a certain maturity. Re-

garding the adoption of mobile devices in classrooms, the development is still in its

very early stages, and a lot of time and research will have to be performed until a

certain point of maturity is reached. Still, the technology and its use for education

holds much promise and in the years to come a lot of interesting changes and oppor-

tunities will present themselves.

An example would be the development regarding mobile devices and their use for

educational purposes in developing countries. There has been a rapid growth of mo-

bile phone access during the last years in Sub Saharan Africa, especially among the

youth of South Africa. Ghana is one of the states with the highest mobile penetration

rate. Up to 90% (Dawes, 2011) of young people have access to a SIM card or mobile

device. In contrast, other technological options that might deliver educational content

are practically not available. Only 9% of Ghana’s population have access to PC’s or

laptops at home, while the ratio of mobile cellular subscriptions in general is at 74%

(ITU, 2011).

The lack of learning equipment as well as trained teachers is one of the biggest

problems. Mobile based solutions can help to compensate these issues. M-Learning

has the potential to “reach people who live in remote locations where there are no

schools, teachers, or libraries” (Ally, 2009) (Grimus, et al., 2013).

While a holistic, sustainable approach to m-Learning in Ghana has yet to be

found, the chances of a large scale adoption of m-Learning in Africa are discussed

around the world. M-learning seems to be an ideal solution to cope with the needs of

education in developing countries (Grimus, et al., 2013) (Grimus & Ebner, 2013).

During the course of this chapter, the benefits of mobile devices and other innova-

tive technologies have been pointed out on several occasions. However, as a final

remark, the risks and side effects that come along with them should be noted as well

(Chan, et al., 2006):

 Privacy issues and data security.

 The blending of informal and formal environments. This phenomenon can

already be observed at the working place when the line of formal and in-

formal work is blurred, leading to an unbalanced living situation.

 A certain dependency on the industry. More advanced devices and soft-

ware will always be more expensive and thus out of reach of economically

less developed communities.

 Environmental and ecological costs.

 Learning devices that are used to learn socially destructive contents.

Most of these issues are not directly linked to the use of handheld devices in

classrooms, but an inherent part of using computers.

3 Idea and Concept

TU Graz has been developing learning applications for iOS for several years, al-

ready starting in 2010. A number of workshops have been given on app design and

how to achieve users’ satisfaction (Ebner, et al., 2010). In addition, several studies

have provided valuable insights in the design of applications for iPads in school clas-

ses. Two points that should be improved stood out above the others (Huber & Ebner,

2013):

 Missing feedback for teachers. Mobile applications are usually standalone

programs and learning takes place as an interaction between the student

and the application, excluding the teacher from the process. There is no

possibility for the teacher to get insight into a pupil’s performance, how

many exercises are done or if the learning goals are achieved.

 Lack of collaboration. Mobile devices provide unprecedented possibilities

to enable and assist in cooperation and collaboration. While current learn-

ing applications are able to enhance individualised learning, developers of

mobile learning apps seem to have taken no special interest in this area.

As far as it could be determined only a handful of applications are available in the

App Store that actively support collaborative learning, even fewer cooperative learn-

ing games and apps that have been specifically developed for the use in classrooms.

However, a learning game called “MatheBingo2” with similar focus on collabora-

tion has been developed at the IICM3 previously to this work. Valuable insights on

technical aspects of the implementation as well as decisions regarding the design of

the app could be gathered from the project.

2
 https://itunes.apple.com/at/app/mathebingo/id568942997?mt=8 (Last visited: Nov. 2013)

3
 Institute of Information Systems and Computer Media (Graz University of Technology)

https://itunes.apple.com/at/app/mathebingo/id568942997?mt=8

Building on these experiences, the fundamental idea of this project was to devel-

op an application where learners actively engage into collaborative work and to com-

bine this with the benefits inherent to games. Furthermore, the app should provide

an interface for teachers, so that they would be able to receive feedback of the pupils’

performance and to create their own learning content fitting to the curricula of the

class.

3.1 Methodology

The practical part of this master’s thesis consists of two steps. The development

of a prototype application and website, and a field study to test and evaluate the pro-

totype. The application is a cooperative multiplayer learning game for iPads, the web-

site a user interface for teachers to create custom content and to monitor the chil-

dren’s performance.

The field study took place at two primary schools in Graz. In a proper classroom

setting, the app was tested in form of a participatory observation. Afterwards, inter-

views with a selected number of children were performed.

During the course of the next two chapters, an extensive description of the iPad

application will be provided, starting by further illustrating the concept of the app, in-

cluding a short explanation of the game mechanism. This will be followed by a de-

tailed description of the design and features, including technical background on user-

interface design for children and games. The next chapter will focus on the imple-

mentation. The technologies and frameworks involved will be outlined as well as the

system’s architecture and class design, followed by a detailed description of the im-

plementation.

3.2 Idea and Concept

 “Buchstaben Post4” is a learning game for schoolchildren between grades 1 to 4.

The aim is to teach children the correct spelling of words with a focus on collaboration

and communication between the players.

4
 https://itunes.apple.com/de/app/id736836885?mt=8 (Last visited: Nov. 2013)

https://itunes.apple.com/de/app/id736836885?mt=8

The idea is the following: Connect up to four devices in a peer to peer session.

While it is still possible to play alone, it is intended as a multiplayer game with 2 to 4

people. To achieve a level of cooperation, all players have to work together to pro-

gress to the next round. The teammates are supposed to sit on the same table. The

tablets are placed beside or in front of each other, resembling the setting of a classi-

cal board game. The following graphic is an abstract representation of such a game

setting with four players, respectively four iPads, lying in front of each other on the

same table. All players are able to see the content displayed on all tablets, so they

are able to help each other out in several ways. They can either help by discussing

the solution or actively take action by reaching out and interacting with the iPad of a

teammate. This is a unique setting, establishing a level of social interaction and the

ability to work together that has not been possible before with digital devices. It is a

great display of the advantages of tablets or mobile devices over conventional per-

sonal computers or even notebooks.

Figure 2 Game Setting

Another significant feature of the application is the following:

 Many current learning games are too general regarding their content and lack a

connection to curricula in school (Egenfeldt-Nielson, 2005). Thus, another important

aspect is to provide teachers with the opportunity to create custom content for their

children and to receive feedback. Especially school children in the first grades are

only able to read or write a limited number of different words, so the difficulty of the

game had to be adjustable to fit the curriculum of the school classes. For this purpose

a user interface for teachers in form of a website had to be designed. The website will

be outlined in chapter 6.

4 User Interface and Features

A short description of the features and game mechanism of the app will be fol-

lowed by some theoretical background on user interface design. Furthermore, a de-

tailed analysis of every screen of the app will be provided with regard to design and

functionality.

4.1 Short Introduction of the Game

As mentioned before, the game can be played in single player mode. If that’s the

case, the goal of the game is simply to guess the correct spelling of a word. A hint in

form of a sentence or a question and a number of letters are provided. The player

has to substitute the missing letters of the word to guess. This is a well-known con-

cept which already exists in numerous applications. The idea is to use that approach

and expand it in a way that would create a multiplayer application, where players not

only have to guess their own words, but help each other out as well.

The game is not competitive, which means that the players are not “punished” for

choosing a wrong letter, they can try as many times as they want. The game will not

progress to the next round until all players have finished their words. Since it is meant

to be played in a face-to-face setting, all players should be able to see the words of

their teammates. Children who finish faster are thus able to help others out.

In order to further reinforce the idea of a “common goal”, the players are confront-

ed with another challenge. While some players may possess all the missing letters of

their word, other players will not be so lucky – they have to get the missing letters

from one of their teammates.

The following sections provide a more detailed explanation of the game mecha-

nism.

The application was originally developed for Austrian school classes. It is there-

fore only available in German language. However, the design of the app allows easy

adaption to multilingual support in future versions. Apple provides a detailed manual5

on how to internationalize an application. In this case, only the help messages and

button names have to be placed in a .strings file, where Xcode stores localized string

resources. Teachers are able to create their own wordlists through the web-interface

in whatever language they choose.

The game is composed of four screens, not counting the splash (or loading)

screen. The next section addresses user interface design in general, before explain-

ing each screen and the corresponding features in detail.

4.2 User Interface Design

This section presents general guidelines and principles that were taken into con-

sideration concerning the design of the game and especially in creating interfaces for

children.

With the exception of a few elements, all graphics and animations were produced

without the help of professional designers. Therefore, several aspects of user-

interface design had to be studied carefully:

 User interface design for mobile devices and iPads in particular.

 The design of educational applications and games.

 Designing software for children.

The correct design of the user interface is one of the most important parts of an

application, in this case probably even the foremost one. Concerning games,

graphics and usability are an essential factor. This is true for every application, and

especially for mobile devices and iOS in particular, user demands are on a very high

level. Design and usability are key factors to the success of a mobile application

(Gong & Tarasewich, 2004). Users are not as lenient or patient with badly designed

interfaces as they were a decade ago. While content and features are still important

factors, they might not be considered at all because the app will be discarded after a

5
 https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPInternational/

Articles/InternatSupport.html (Last visited: Nov. 2013)

https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPInternational/%20Articles/InternatSupport.html
https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPInternational/%20Articles/InternatSupport.html

few clicks, due to the fact that time is often critical to a mobile device user (Poupyrev,

et al., 2002).

When designing graphics and interfaces for games as well as for children, factors

apart from usability and functionality have to be considered. Aesthetics are part of an

overall enjoyable user experience (Karlsson & Djabri, 2002). In addition, colour and

its manipulation are an important aspect for visual interfaces (Schneiderman, 1998).

In general, it can be said that emotion plays a large part in our interaction with objects

(Norman, 2004).

 These statements hold true for users of every age, however, more aspects

have to be considered when designing interfaces for children. Children require emo-

tional support and a feeling of success (Erikson, 1963). To achieve this, it is important

to properly guide the children through the application to avoid frustration (Gossen, et

al., 2012). In addition, positive feedback was provided whenever possible, primarily

through the use of simple graphics and animations or sounds, making the interface

more attractive for children as they prefer colourful designs with multimedia content

(Large, et al., 2002) (Naidu, 2005) (Budiu & Nielson, 2010).

The app is intended for the use in primary schools. At this age, children are read-

ing slowly and are still learning to write (Stuart, 2007). They will have limited domain

knowledge (Hutschinson, et al., 2005) and difficulties with typing using a keyboard

(Solomon, 1993). Those considerations had to be taken into account, especially re-

garding the design of the login and connection views.

Children’s fine motor skills are different than those of adults. Studies regarding

pointing tasks have shown that children’s performance is below adults by several

degrees. In most cases the target size had a significant effect on children’s accuracy

(Hutschinson, et al., 2005). This is an import fact to consider. Due to the nature of the

application, the app has more interactive content than usual. Beside buttons and

menus, the whole game screen is interactive, and dragging the letters into right posi-

tion requires precise movement.

Furthermore, children will have difficulties with thinking abstractly (Piaget, et al.,

1969). Thus, menus and similar navigation elements should not contain abstract con-

cepts and metaphors have to be carefully chosen. However, images better match

children’s cognitive skills than written words (Hackfort, 2003). Therefore, whenever

possible, icons, images or animations are used to indicate a certain functionality.

While the statements listed above hold true for every kind of application, be it a

website, desktop program or handheld app, user interface design for mobile devices

involves additional constraints and requirements. In the first place, every application

developed for the iOS should adhere to Apples iOS Human Interface Guidelines6.

However, those are of a more general nature and deal primarily with the correct use

of navigation elements in a standard app and are not really suited for this software

due to the unique interface of a children’s game.

During the last years, numerous learning applications for mobile devices were de-

veloped at TU Graz, with a special lecture for designing apps for iOS. Also, a number

of educational applications for children were developed, and several tests and studies

have taken place at Austrian iPad classes were those apps were evaluated in a

proper classroom setting. In addition, a number of workshops have been given on

app design and how to achieve users’ satisfaction (Ebner, et al., 2010). The insights

gained from those experiences have been summarized in the iPad Human Interface

Guidelines (Ebner, 2010), as well as the extended guidelines focusing on mobile

learning (Huber & Ebner , 2013). Important points for this application are:

 Aesthetic Integrity. The look of an application should incorporate its func-

tion.

 Consistency. Consistency in the user interface.

 Presentation of the content in a beautiful, often realistic way.

 Direct Manipulation. Direct Control through multi-touch gestures.

 User Control. The user should be in charge of things.

 Feedback. Immediate feedback after operations.

 Metaphors. Relation of virtual objects to real world objects.

 Start Instantly. Display a launch image that closely resembles the first ap-

plication screen.

 Create custom icons.

The following sections will focus on each screen of the application and explain the

corresponding design, functionality and features.

6
 https://developer.apple.com/library/ios/documentation/userexperience/conceptual /mobilehig/

(Last visited: Nov. 2013)

https://developer.apple.com/library/ios/documentation/userexperience/conceptual%20/mobilehig/

4.3 Menu Screen

The menu screen is the first screen that is being displayed, immediately after the

application has finished loading.

Figure 3 Menu Screen

To keep it as simple as possible, the game menu contains only two options. The

player can either start a new game (1), or join an already existing one (2). A player

icon can be selected by clicking on the corresponding picture (3). This will loop

through all available icons. Below the icon, the username is displayed (4). A single

touch on the name will open a form to login or change the username. Once changed,

the name will be stored locally on the device. The text above the icon indicates the

login status of the user. A simple fade in/out animation indicates the possibility to

change the icon/username by touching the picture/name. In retrospect, this little bit of

help was completely unnecessary, the children are obviously used to the concept of

avatars or user icons, and it took them only a few seconds to figure out how to

change their picture, very much to their delight. At this point it is worth mentioning

that player icons hold a special fascination for children, assuming that they are de-

signed according to children’s imagination. As observed during the field tests, chil-

dren love to search and identify themselves with an avatar. They can also be used as

a great motivational factor, when they are granted for certain accomplishments in the

game.

Returning to the game menu, once a player has chosen to start a new game or to

join one, he/she will be asked to sign in. This opens a login form, as depicted in the

figure below.

Figure 4 Menu Screen with Login View

To log into the game, an account at the TU Graz user management7 system is re-

quired. While it is possible to play offline, the sign in is required for several reasons.

1. To download a custom list of words prepared by the teacher.

2. To store which words a player has already finished.

7
 The user management system will be explained in section 3.3.

3. To upload data regarding the children’s performance.

Those three points will be further discussed after illustrating the possibilities a

player has when playing off- or online.

4.3.1 Differences between Off- and Online Play

Apart from technical issues, schools might restrict internet usage of pupils for several

reasons. Thus, the app was designed to work offline as well as online. In case that

only a limited number of devices are able to establish an internet connection, it is

enough for the device which acts as a server (the one that started a game) to be

connected in order for all players to benefit.

The following graphic illustrates the communication between the web API, game

server and clients.

Figure 5 Communication between Web API, Server and Clients

While the connection itself is a peer-to-peer connection between all devices, the

player who started the game takes on the role of server regarding communication

with the web API. The game server is also responsible for the distribution of words

and questions among the players. Other than that, it acts as a normal player.

For the sake of simplicity, a player will be referred to as “online” when he/she is

signed in, although it is also possible to choose not to login when the device has an

active internet connection. The following figure will further illustrate the different con-

stellations in which playing is possible.

Figure 6 Flowcharts Off- Online Gaming

Basically, there are three different situations. When the player who started the

game, hence referred to as game server or server, is not logged in (figure 6 on the

right), there is no possibility to download a custom wordpool from the web-interface.

For this case a small wordlist (around 60 word question pairs) was compiled, which is

stored locally on the device. It makes no difference if other players of the same game

are online or not, since all communication with the web-interface is relayed over the

game server.

The preferred situation would be the one depicted in the left flowchart (figure 6),

where all players are signed in. This way, they are able to play with a custom word-

pool and it is possible to upload data of their activity. However, in the third scenario,

only the game server needs to be online for all players to use the same custom

wordpool, but user data is only stored from the players who are online.

4.3.2 Features of the Web-Interface

The design and implementation of the website and API will be discussed in chap-

ter 6, this section focuses only on the main features of the web-interface regarding

the functionality of the app. The features are the following:

1. Download a custom list of words.

Teachers have the opportunity to create custom wordlists (a wordlist or

wordpool contains pairs of words and questions/hints) for the children.

2. Store which words a player has already finished.

Words are randomly drawn out of the assigned wordlist. However, words

that have been selected once have a lower probability to appear again. Also,

in order to ensure that newly added content will not be omitted, “fresh” words

have a much higher chance of being drawn.

3. Upload data of the children’s performance.

A learning application should offer feedback to the students as well as the

teachers. While technically possible to store a multitude of data of the chil-

dren’s activity, it was hard to gather useful information for this particular set-

ting. This is due to the fact that the game is highly cooperative and players are

not able to complete a word without help of others. In the end, it was decided

to log the number of completed words for every pupil and the time it took for

all players to finish one round.

4.3.3 The Login Procedure

Difficulties with the input of login credentials lead to several insights. As men-

tioned earlier, school children are reading slowly, are still learning to write (Stuart,

2007) and will have difficulties with typing using a keyboard (Solomon, 1993). Never-

theless, there was no way to completely avoid the login procedure, since users have

to be identified through some method. While the username is stored on the device so

that it will remain after closing the app, the password has to be filled in whenever the

app is launched. The children were using the devices on a regular basis, so it was

assumed that they would be familiar with password input fields. Still, some had con-

siderable difficulties in typing in the correct password. The problem was encountered

not only when testing this application, but also with another similar learning app that

required a login.

 As far as it was possible to determine, the problem resulted from the password

field’s function to blank out letters (or switch them with black dots). While the children

were able to fill in the username without problems, the missing visual feedback of the

password field unsettled them. They are used to writing a few letters and then take a

look at what they have written, which is no longer possible. Also, they would not no-

tice when they had mistyped a letter. In case they did, they had problems deleting the

right amount of letters, again due to the missing visual feedback.

While aware of the difficulties, it was not expected to pose such a challenge for

the children. Otherwise, additional options like placing a checkbox to show the pass-

word in plaintext would have been taken into consideration. This is a common feature

for handheld devices, however, due to security issues, it was not implemented. Chil-

dren would be able to see each other’s passwords easily as they would be sitting

close together. Still, it is considered as an option in future versions.

4.4 The Connection Process

The next two figures display the connection process. As illustrated earlier in figure

3 (Menu Screen), the player has two choices, either to start a new game, or to join an

already existing one.

Figure 7 Start Game Screen

Both screens are designed in similar fashion. The Start Game Screen8 (figure 7)

appears when a player opens a new game and shows the list of people which have

already joined the game. A total of three slots are available. The player who opened

the game can decide to start it whenever he/she wishes. It is also possible to start a

game without other players. In this case a confirmation dialog will appear, asking the

player if he really wants to play alone.

8
 Translation of the screen elements, from top to bottom: label “Waiting for Players, button

“Start Game”, button “Back”, button “Help”

The Join Game Screen9 (figure 8) displays a list of open games.

Figure 8 Join Game Screen

The player has to select one game and hit the “Join” button. A bubble will appear,

informing the player that he/she has successfully connected and has to wait for addi-

tional players to join the game. The game will commence once the server decides

that all players are present and starts the game.

9
 Translation of the screen elements, from top to bottom: label „All Games“, button „Join

Game“, button „Back“, button „Help“

4.5 The Game Screen

This is the main screen10 (figure 9) of the app.

Figure 9 Game Screen

The middle of the screen contains the available letters (1), below, resting on the

stone wall, is the word-to-guess (2). A hint for the word (3) is displayed in white letters

above the middle section.

 On the borders of the display, next to the railways, are the icons (4) of the

teammates located. These icons can be switched (by drag and drop), so that they

reflect the sitting position of the players on table.

At the bottom left side are two buttons, “Return” and “Help”, which are displayed

in every screen except the first one. The “Return” button will end the game and take

10
 Translation of the screen elements, from top to bottom: textfield (white) „At this time of year

it is very hot.“, yellow railway signs “Send Letter”, word-to-guess “Summer”, button “Back”,
button “Help”

the player back to the start screen. The help button displays a help message in com-

bination with arrows and images to further explain the gaming mechanism and func-

tionality of the screen.

The first goal of the game is to fill in the missing letters of the incomplete word, by

drag and dropping the letters into the right position. The second part is to help other

players finish their words by sending them letters. To do that, the player has to drag

the letter on one of the trains (5) or the area around. The icon (4) above the train rep-

resents the player the letter is sent to.

When all players have finished their words, a new round is initiated. The game

server will semi-randomly draw words out of the downloaded word-pool (with priori-

ties for new / unfinished words) and spread them among the players.

The game ends when there are no more words in the word-pool, or the player

who launched the games closes it. If any of the other players leave, the missing let-

ters will be spread among the reaming teammates and the game continues.

A few remarks on the design of the screen. Children prefer colourful designs with

multimedia content (Large, et al., 2002) (Naidu, 2005) (Budiu & Nielson, 2010). The

screen was designed in a way that would look appealing for children, yet not too

overloaded with graphics, which would be confusing. Therefore, the main area of the

screen is held in simple blue colours and free from other graphics, so that the

children can focus on the question, letters and word. To make it more entertaining,

simple animations were added whenever possible. For example, the train wagons will

move along the rails, there is an animation whenver a letter is placed in the right

place or not, another one rewarding the players when they finish a word, and so on.

All animations are accompanied by sound.

This chapter should shed some light on the thoughts and decisions regarding the

design of the application and explain the features and gaming mechanism. The next

chapter will be a technical one, focussing on the details of the implementation. Each

class will be inspected and essential pieces of code will be highlighted.

5 System Architecture and

Implementation

5.1 Technical Framework

This section discusses why iOS was used as operating system. In addition, a

short overview of the used programming languages, frameworks and libraries will be

given. Theoretical background of the technologies that were deployed will be provid-

ed along the way.

5.1.1 iOS as a Platform

The app was developed for iOS and for iPads in particular. iOS was used as a

platform for several reasons, the two vital ones being:

1. TU Graz has a long history developing educational apps11 for iOS. The lecture

“Mobile Applications” has been held since 2010 and during the last three

years over 100 iOS applications have been developed by students, including

a considerable number auf educational apps and games.

2. While the insights of those lectures could be applied for app developed re-

garding every platform, it seems that iPads were the preferred choice of

schools during the last years and several so called “iPad classes” exist in

Austria. While other operating systems are gaining in popularity among

schools, considering that only a very limited number of schools provide tablets

for school children at all, iOS still appeared to be the most reasonable choice.

11
 All apps are available at http://app.tugraz.at/

http://app.tugraz.at/

Hypothetically, it would have been possible to develop the app as cross-platform

software. Using HTML5 as a programming language, the program would be portable

to every device that has a current internet browser installed. However, in addition to

several technical problems, it is questionable that such an implementation would

make sense at all. For a more static application HTML 5 is a great way to achieve

cross-platform availability. The app, being a game for children, has much more inter-

active content, as well as animations that would never run as smoothly in HTML 5 as

they would in a native iOS (or Android, etc.) program. Furthermore, the concept of

peer-to-peer connectivity would have to be realized in a less than optimal way. In a

native app, it is possible to use either WLAN or Bluetooth to establish a direct peer-

to-peer connection. Over HTML the communication between the devices would have

to be relayed over a webserver, thus requiring an internet connection to be able to

play.

5.1.2 Programming Language, Frameworks and Libraries

“Buchstaben Post” is a native iOS application. The programming language for iOS

is called Objective C, which is an advanced, object oriented version of the original

language “C”.

The app was developed for iPads only. As an alternative, a so called “Universal

App” could have been built, meaning that it would run on both devices, iPhones and

iPads. While this would have made the program available for a much wider range of

users, it was not possible due to user-interface restrictions. The iPhones’ screen size

is too small to display the required content.

To develop applications for iOS, Apple has provided a custom IDE12 called Xcode.

There is no other way to develop software for iOS. The IDE provides everything that

is needed to compile, debug, and test an application. For debugging purposes, Xcode

comes along with a simulator for iPhones and iPads. This means that it is possible to

test an application on a desktop computer the same way as if it would be running on

a real iPad or iPhone. However, for reasons unknown, Apple allows only one in-

stance of the simulator to be executed at the same time. For most purposes, this

would be enough, in case of a multiplayer game with 4 people it severely limits the

testing capabilities, unless you are in possession of more than one real device. This

has been a major problem throughout the whole development process of the app and

is further discussed in a dedicated section of this chapter.

12
 IDE stands for Integrated (or Interactive) Development Environment

In addition to standard resources, several other frameworks provided by Xcode

were used. They are listed below with a short explanation of each one:

 GameKit13. This framework is an essential part of Apples “Game Center”,

which is a collection of interconnected components, composed of the fol-

lowing:

o The Game Center Service is the online part of Game Center,

where it is possible to store player and game data on a destinated

server.

o The Game Kit Framework, which provides the classes necessary

for developing games.

o The Game Center application provides a centralized app that play-

ers use to access Game Center’s features.

As it can be inferred from the description above, Game Center is essen-

tially an online service and thus not an option for this application, which

should be able to function without internet connection. However, a part of

the GameKit framework can be used to establish peer-to-peer connections

over WLAN and Bluetooth. The GKSession class allows the direct connec-

tion of devices in the same network or in Bluetooth proximity and provides

a peer-to-peer connection mode as well as a server-client infrastructure.

 QuartzCore. Also known as Core Animation. It is an Objective-C frame-

work that supports image processing and video image manipulation.

 AVFoundation. The framework provides an interface for managing and

playing audio-visual media.

 CoreGraphics is an API based on the Quartz drawing engine, providing

low-level support for 2D rendering. It can handle tasks like path-based

drawing, transformations and colour management.

As mentioned before, the game can be played offline or online. In the latter case,

the user has to sign in, which requires an account at the user management system.

The website, user manager and game database will be explained in full length in the

following chapter, for the moment it should be enough to note that there exists a da-

tabase where the usernames, school classes and custom wordlists are stored.

13
 https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual

/GameKitGuide/Introduction/Introduction.html (Last visited: Nov. 2013)

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual%20%20%20/GameKitGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual%20%20%20/GameKitGuide/Introduction/Introduction.html

No direct connection to the database is established from within the app, all com-

munication is relayed over the web-interface. For this purpose, Apples URL14 Loading

System is employed. The library provides a simple interface to dispatch URL re-

quests. It was decided to encode the exchanged data in XML15.

Establishing a peer to peer connection was another challenge, from the technical

perspective as well as from a design point of view. The game was intended for school

classes where each pupil is in possession of his own tablet device. While the children

might have acquired a general proficiency in using the operating system, they will not

have a concept of how a WLAN or Bluetooth connection works, or, for that matter,

how the devices are connected at all.

To address the problem, the application is able to connect over WLAN as well as

Bluetooth. If one method is turned off or not able to establish a connection, the appli-

cation will automatically try to connect over the other medium. Luckily, the Gamekit

framework supports that kind of connection management. Only the interface had to

be adapted for the use of children. While that solved problems concerning the func-

tionality of the connection process, several technical issues regarding the connection

process of the GameKit framework had to be overcome. Through a tedious process

of trial and error during which several frameworks for Bluetooth and WLAN connec-

tion management were tested, it was confirmed that the GameKit framework was

best suited for the purpose of this application. Nevertheless, during the first field test

with more than 10 devices, new problems arose which could not be located during

the development phase of the application due to a lack of physical test devices.

14
 Uniform Resource Locator (URL)

15
 Extensible Markup Language (XML)

5.2 System Design and Architecture

Figure 10 illustrates the architecture of the system.

Figure 10 System Architecture

The app is composed of four screens (not counting the splash or loading screen),

those screens are represented through their corresponding ViewController classes. In

each ViewController, the functionality of this part (or screen) of the application is im-

plemented. DBConnection is an interface which provides methods to communicate

with the web-interface. UserData is a Singleton that stores individual data, like

username and icon. GameLogic implements functions regarding the game mecha-

nism, like word generation. The Animation class holds all the code regarding image

manipulation. Sound provides methods to play mp3 files.

5.3 Xcode and Objective C

This section provides information on Xcode, Objective C and the build settings of

the application.

5.3.1 Xcode

Xcode16 is an integrated development environment (IDE) provided by Apple. It is

available free of charge in the Mac App Store for OS X users. Xcode contains a suite

of development tools for the creation of Mac, iPhone, iPad and iPod touch applica-

tions. The supported programming languages are C, C++ and Objective C.

Xcode has a number of useful tools. For the purpose of this project the following

tools were used:

 XCode IDE for the management, compiling and debugging of source

code.

 Interface Builder for the creation of graphical interfaces.

 Instruments, which is a tool to analyse memory usage, data access and

program performance.

 iPhone/iPad Simulator for testing purposes.

5.3.2 Objective C

Objective C is an object oriented expansion of the original programming language

C. Every program that is written in C can be compiled with an Objective C compiler.

Among the most prominent features of Objective C are the following (Lee, 2013):

 Object Orientation. Complete support of object orientated principles, including

object messaging, encapsulation, inheritance, polymorphism and open recur-

sion.

16
 https://developer.apple.com/technologies/tools/ (Last visited: Nov. 2013)

https://developer.apple.com/technologies/tools/

 Object messaging. Objects can pass messages, the receiver uses the mes-

sage to invoke the corresponding method if it exists or handles it in a number

of different ways.

 Memory management. In newer versions, Automated Reference Counting

(ARC) is supported, which is an automatic memory management mechanism

(garbage collection, etc.).

 C language support. Objective C is a superset of C, meaning that all C librar-

ies can be directly accessed.

 Software libraries. Apple provides numerous software libraries which ease the

development of applications significantly.

Objective C is the primary language of the Cocoa and Cocoa Touch framework,

which is comprised of the key frameworks needed to develop applications for iOS or

Mac OS:

 Foundation Kit Framework

 UI Kit Framework

 Game Kit Framework

 iAd Framework

 Map Kit Framework

Among those, the Foundation Kit, UI Kit and Game Kit framework are used in the

app. Some of the main features of Cocoa Touch are Gesture Recognizers, Multitask-

ing and Animation17.

5.3.3 Build Settings

The app was developed and deployed for iOS 6.0 or higher, meaning that devices

which are running version 4.x or 5.x won’t be able to install the app at all. This ex-

cludes all users of the first generation iPad from installing the program, since it is not

possible to upgrade those devices above iOS version 5.1.1. However, due to apples

strict upgrade policy, only a very small amount of devices remains below version 6.x:

17
 http://en.wikipedia.org/wiki/Cocoa_Touch (Last visited: Nov. 2013)

http://en.wikipedia.org/wiki/Cocoa_Touch

Table 1 iOS Version Distribution18 (Nov 22, 2013)

iOS Version In Use

7.X 67.4 %

6.X 26.0 %

5.X 6.1 %

4.X 0.6 %

iOS is a constantly changing and evolving and with every major change of the

operating system, programming libraries and Xcode features change as well. While

this constantly adds features and improves the development environment, it also

means that programs have to be adapted continuously and that many features will

not be available in lower versions of the operating system. Due to those reasons and

considering the statistic above - 93 % of all users have iOS 6.X or higher installed – it

was decided to deploy the app for iOS 6.0 and above.

The app was developed for iPads only. It will run on all iPads above version 1 as

well as on the iPad mini. All graphics were designed for the use of Retina-Displays.

Starting with the third generation of iPads, all devices are equipped with Apple’s so

called Retina-Display, except the iPad Mini. Displays carrying that label are built with

a very high pixel density, for iPads this adds up to 264 pixels per inch at a resolution

of 2048 x 1536 on a 9.7 inch display. Thus, fore every graphic, two versions have to

be designed, one for the use with normal screens at a resolution of 1024 x 768 pixels

as well as a separate version for Retina-Displays. In addition, the available screen

size within the app varies from version 6.X to 7.X, meaning that some of the graphics

have to be available in two more versions, now already adding up to four different

image sizes. This should point out one of the difficulties in developing apps for mobile

devices. Regarding iOS, this is a minor problem, because of the limited number of

devices which are all produced by the same company. However, it is an altogether

different matter when developing for Android or other freely available operating sys-

tems, where manufactures supply us with an almost indefinite number of screen sizes

and resolutions. Usually the problem can be avoided through the use of relative lay-

outs, but this is not always possible in graphic oriented applications. This should by

no means be misinterpreted as a critic against other mobile operating systems. Nev-

18
 http://david-smith.org/iosversionstats (Last visited: Nov. 2013)

http://david-smith.org/iosversionstats

ertheless it is a fact that has to be considered when developing graphic-oriented ap-

plications for mobile devices.

5.4 Detailed Description of the Implementation

Starting with an overview of the significant methods of every class, theoretical

background on employed technologies and design patterns will be provided. After

that, important pieces of the implementation will be explained in detail.

5.4.1 Connection to the Web-Interface (Class DBConnection)

DBConnection represents the interface to the website. It provides methods to au-

thenticate the user, download the wordpool and upload which words a player has

finished.

5.4.1.1 Class Overview

Figure 11 DBConnection

The class implements the Delegate Protocol, a protocol or pattern that is very

common in the Objective C and the Cocoa framework. It is almost impossible to de-

velop applications for iOS without an understanding of the protocol, therefore it will be

explained in detail.

5.4.1.2 The Delegate Protocol

Delegation describes a powerful concept where one object assigns tasks to an-

other object, its “delegate”. This is analogous to subclasses deferring requests to

parent classes, with the difference that the receiver passes itself to the delegate to let

the delegated operation refer to the receiver (Gamma, et al., 1994).

Figure 12 Delegation (Gamma, et al., 1994)

This is an example for delegation, the Window class is in possession of an in-

stance variable of Rectangle and delegating Rectangle-specific behaviour to it.

The main advantage of delegation over inheritance or composition is that it is

easy to change the delegate at runtime. Rectangle could be easily replaced by a

class called Circle, as long as it implements the same method Area (). This would not

be possible if Window was a subclass of Rectangle (Gamma, et al., 1994).

Returning to the implementation, DBConnection both implements the delegate

protocol itself as well as the interfaces for the NSURLConnection delegates. This is

just a means of passing along tasks. In the case of this app one possible scenario

would be the following:

Figure 13 Delegate DBConnection

The diagram illustrates what happens when a user wants to sign in. The class

MenuViewController calls the function authenticateUser() of DBConnection which in

turn will call loadURL() from NSURLConnection. When the NSURLConnection object

has finished loading, the delegate method receiveData() from DBConnection will be

called and so on.

5.4.1.3 NSURLRequest

The NSURLRequest class is used to post and receive data from the web-

interface. The object represents an URL load request independent of protocol and

URL scheme. It encapsulates two basic elements of a load request: the URL to load

and the policy to use19.

5.4.1.4 HTTP Basic Access Authentication

HTTP-Authentication is a simple method to enforce access control of web re-

sources. It uses standard HTTP headers, no handshakes have to be done and it

doesn’t require cookies, session identifier or login pages. The transmitted credentials

19
 https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/

Classes/NSURLRequest_Class/Reference/Reference.html (Last visited: Nov. 2013)

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/%20Classes/NSURLRequest_Class/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/%20Classes/NSURLRequest_Class/Reference/Reference.html

are BASE64 encoded, but not encrypted or hashed in any way. Basic Access Au-

thentication provides no confidentiality protection for the transmitted credentials20.

On the server side, the request will be sent in form of a HTTP 401 Not Authorized

response code containing a WWW-Authenticate HTTP header.

The client will send the server its authentication credentials through the authoriza-

tion header, which is constructed of the username and password, encoded in Base64

and the authentication method (basic)21.

5.4.1.5 Implemetation Details

The methods listed in the class diagram will now be explained in more detail.

Listing 1 User Authentication

- (BOOL) authenticateUser: (NSString*) strName Password: (NSString*) strPass-

word {

 NSString* pwdHash = [self sha256:strPassword];

NSURL *url = [NSURL URLWithString: [NSString stringWithFor-

mat:@"%@%@", strServerURL, @"authenticateUser"]];

NSMutableURLRequest __autoreleasing *request = [[NSMutableURLRequest

alloc] initWithURL: url];

 [request setHTTPMethod:@"POST"];

NSString *postString = [NSString stringWithFor-

mat:@"username=%@&password=%@", strName, pwdHash];

 . . .

NSURLConnection __autoreleasing *connection = [[NSURLConnection alloc]

initWithRequest:request delegate:self];

. . . }

The important pieces of code are marked in green. The method receives

username and password and creates an NSURLRequest. To achieve a minimum of

confidentiality, the password is hashed with the SHA256 algorithm. Next, the request

HTTP method is set to post and provide the username and password hash as string.

The request is then passed to the URLConnection object which will initialize a con-

nection. Here the delegate pattern can be seen at work. DBConnection implements

the delegate methods of URLConnection and passes its reference along to the con-

nection object. Now, when the connection starts to load the URL and receives data,

20
 http://en.wikipedia.org/wiki/Basic_access_authentication (Last visited: Nov. 2013)

21
 http://tools.ietf.org/html/rfc1945#section-10.16 (Last visited: Nov. 2013)

http://en.wikipedia.org/wiki/Basic_access_authentication
http://tools.ietf.org/html/rfc1945#section-10.16

the according delegate method in DBConnection is called and the data is passed

along as a parameter.

This will post the user credentials to the web-interface, which will try to authenti-

cate the user at the user management system of Graz University of Technology22. A

successful authentication will return the ID of the user.

 However, in order to post data to the web-interface, the application has to au-

thenticate itself via Basic HTTP authentication. A delegate method of NSURLConnec-

tion is called whenever the connection object receives an authentication challenge.

Listing 2 Authentication Request

- (void)connection:(NSURLConnection *)connection didReceiveAuthentication-

Challenge:(NSURLAuthenticationChallenge *)challenge {

 if ([challenge previousFailureCount] == 0) {

NSURLCredential *newCredential = [NSURLCredential

 credentialWithUser:app_name

 password:app_pwd

 persistence:NSURLCredentialPersistenceForSession];

 [[challenge sender] useCredential:newCredential

forAuthenticationChallenge:challenge];

 }

}

While not the most secure authentication - the login credentials are not signifi-

cantly protected - it is very easy to implement on the webserver as well as in Objec-

tive C. This snipped of code is all it takes on the client side, the part on the server

side is even smaller.

This should explain the communication between app and webserver, all other

methods in this class work the same way. For example, to download the wordpool, a

URL request posts the ID of the user and in return a XML file which contains the

wordlist assigned to the user is downloaded.

22
 The user management system is currently located at mathe.tugraz.at (Nov. 2013).

5.4.2 User Specific Data (Class UserData)

As the name implies, the class will be used to store user specific data like

username, id, icon, and so on.

5.4.2.1 Class Overview

Figure 14 Classdiagram UserData

The variables username, icon and userID will be required in every view of the

program, thus it would make sense to make them globally available. However, as

global variables are usually something to avoid, it was decided to create a class

called UserData that implements the Singleton pattern, which has some benefits over

global variables.

5.4.2.2 Singleton Pattern

The intent of the pattern is to ensure that a class has only one instance, and to

provide a global point of access to it (Gamma, et al., 1994).

The structure of the pattern is illustrated in the following diagram.

Figure 15 Singleton Pattern (Gamma, et al., 1994)

The pattern is a simple one. It defines an operation that lets the client access its

unique instance. The advantages are the following (Gamma, et al., 1994):

 Controlled access to sole instance.

 Reduced name space. Avoids polluting the namespace with global varia-

bles.

 Permits a variable number of instances (does not have to be only one).

 More flexible than class operations (i.e. static member functions).

5.4.2.3 Implementation Details

The only interesting part of code in this class is the method which returns the Sin-

gleton instance.

Listing 3 Singleton

+ (UserData *)sharedSingleton {

 @synchronized(shared)

 {

 if (!shared || shared == NULL)

 {

 shared = [[UserData alloc] init];

 }

 return shared;

 }

}

The “synchronised” keyword declares a critical section around the code block. In

multithreaded code “synchronised” guarantees that only one thread can be executing

this code block at any given time.

To access the object at some point in the program, all that has to be done is call-

ing the following method and it will return the instance.

Listing 4 Access Singleton

UserData* usrData = [UserData sharedSingleton];

More functionality was added to the UserData object besides providing access to

user variables. When the object is initialized, previously stored settings (username

and icon) are loaded from a local file.

An easy way to store data on the device in an organized way is to use information

property lists23 (plist). A plist file is a text file that is typically UTF-8 encoded and the

contents are structured using XML. Objective C provides easy read and write access.

To sum it up, the class implements the Singleton pattern, meaning that only one

instance can be created and there is a global point of access. It is used to store user

data and to read and write this data to a plist file located on the device.

5.4.3 Animation (Class Animations)

This class deals with all animated content.

5.4.3.1 Class Overview

Figure 16 Classdiagram Animations

Two different libraries for animations (UIKit and QuartzCore) are used, depending

on the kind of animation that has to be performed. Animations are probably a good

way to point out one of the greatest benefits of Xcode or Objective C and the Coca

Touch framework. As it is the case with every IDE and programming language, each

one has its unique advantages and disadvantages. Objective C has a rather uncom-

mon syntax that takes some time getting used to, for example. In any case, one of

23
 https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKey Ref-

erence/Articles/AboutInformationPropertyListFiles.html (Last visited: Nov. 2013)

https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKey%20Reference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKey%20Reference/Articles/AboutInformationPropertyListFiles.html

the big advantages certainly comes in form of the numerous libraries and frameworks

that Objective C and the Cocoa have to offer.

An animation for an image or for any subclass of UIView is set up in just a few

steps:

 Create the animation by setting parameters like duration and delay.

 Additional parameters like animation speed (linear, curve, etc.) can be set.

 Specify the animation property (more than one value possible). Properties

of UIView that can be animated are size and position, transparency and

transformations (scaling, rotation, etc.).

 Animations can be executed in sequence.

The following piece of code moves an UIImageView from its current position to a

specific point.

Listing 5 Animations

- (void) animationMoveImg: (UIImageView *) imgView toLocation: (CGPoint) lo-

cation inTime: (int) time

{

 [UIView animateWithDuration:time

 delay: 1.0

 options: UIViewAnimationCurveEaseInOut

 animations:^{ imgView.center = location; }

 completion:^(BOOL finished){ }];

}

This is all it takes to create an animation as explained above. The last option pa-

rameter “completion” makes it possible execute another animation after the current

one has finished. This way, a sequence of animations can be performed.

While it is possible to move an object from one position to another, the moving

path itself cannot be specified.

The CALayer class from the QuartzCore framework offers another way to animate

content. The class itself manages image-based content and performs animations on

that content24. It is used to create an animation that allows an image to move along a

specified path.

Listing 6 Advanced Animations

- (void) animationTrainIncLeftForView: (UIView*) animView {

 UIBezierPath *trackPath = [UIBezierPath bezierPath];

 [trackPath moveToPoint:P(0, 500)];

 [trackPath addQuadCurveToPoint:P(70, 420) controlPoint:P(70, 500)];

 [trackPath addLineToPoint:P(70, 310)];

 CALayer *lockomotive = [CALayer layer];

 . . .

[self animationAlongPath:animView afterDelay:1 withLayer:lockomotive for-

Path:trackPath inTime:3];

. . .

}

A path is defined by a starting point and multiple path segments. A segment can

be specified in form of a Bezier curve or as a straight line.

5.4.4 Sound (Class Sounds)

One way to add sounds to an app is the use of the AVFoundation framework.

Again, only a few lines of code are needed.

Listing 7 Sound

- (void) playSound:(NSString *)filename

{

NSString *path = [[NSBundle mainBundle] pathForResource:filename

ofType:@"mp3"];

audioPlayer=[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL fileURL-

WithPath:path] error:NULL];

 [audioPlayer play];

}

24
 https://developer.apple.com/library/mac/documentation/GraphicsImaging/Reference/

CALayer_class/Introduction/Introduction.html (Last visited: Nov. 2013)

https://developer.apple.com/library/mac/documentation/GraphicsImaging/Reference/%20CALayer_class/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/GraphicsImaging/Reference/%20CALayer_class/Introduction/Introduction.html

This snipped of code makes it possible to play files of the type mp3. Other for-

mats are supported as well. The reason why this piece of code was included is to

further illustrate the point from before. A lot of common tasks, especially regarding

multimedia, gesture recognition and similar activities that would otherwise be very

difficult or time consuming to implement can be created with only a few lines of code.

5.4.5 The Menu Screen (Class MenuViewController)

This class contains all the functionality regarding the menu (or start) screen of the

app.

5.4.5.1 Class Overview

Figure 17 Class Diagram MenuViewController

As it can be seen in the class diagram, MenuViewController is a subclass of

UIViewcontroller which manages all views of the associated screen. The UIViewCon-

troller is the most essential part of an application, every app contains at least one

custom subclass of it.

5.4.5.2 UIViewController

The UIViewController class provides the fundamental view-management model

for all iOS apps25. It is responsible for:

 Layout and resizing of its views.

 Adjusting the contents of the views.

 Acts on behalf of the views when the user interacts with them.

The class is tightly bound to its views and takes part in handling events.

5.4.5.3 Storyboard

Storyboard is an essential feature of Xcode that provides a visual representation

of the user interface of an app. It shows screens and its contents and the connection

between the screens. A scene (or screen) represents a view controller and its views.

Scenes are connected by segue objects, which represent a transition between two

view controllers26. Segues should be used for two things:

 To set the type of transition between to scenes (e.g. model or push).

 To pass along data between the scenes and the corresponding view con-

trollers.

The storyboard feature was introduced with iOS 5.0.

5.4.5.4 UINavigationController

The navigation controller manages the screens (view controllers) and the hierar-

chy in which they are displayed. View controllers are placed on a navigation stack.

The root view controller, which is the starting point of an app, is at the bottom, the

25
 https://developer.apple.com/LIBRARY/IOS/documentation/UIKit/Reference/ UIViewControl-

ler_Class/Reference/Reference.html (Last visited: Nov. 2013)
26

 https://developer.apple.com/library/ios/documentation/general/conceptual/Devpedia-
CocoaApp/Storyboard.html (Last visited: Nov. 2013)

https://developer.apple.com/LIBRARY/IOS/documentation/UIKit/Reference/%20UIViewController_Class/Reference/Reference.html
https://developer.apple.com/LIBRARY/IOS/documentation/UIKit/Reference/%20UIViewController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/general/conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/ios/documentation/general/conceptual/Devpedia-CocoaApp/Storyboard.html

currently displayed view controller at the top. When navigating back and forth be-

tween screens, view controllers are constantly pushed and popped from the stack27.

5.4.5.5 Event Handling

Events are objects sent to an app to inform it of user actions. Events can take on

many forms: Single-Tap, Multi-Touch and motion events, as well as events for con-

trolling multimedia. Common gestures are built into the UIKit framework and send an

action message to the target object when the event occurs. A more powerful way to

handle events are gesture recognizers. A gesture recognizer can be attached to a

view, and the entire view will act like a control element, responding to whatever ges-

ture specified28.

An example of each method will be given in the following section.

5.4.5.6 Implementation Details

There are no specifically interesting pieces of code in this class, except from

event handling. The user authentication procedure was already explained in the pre-

vious section (5.4.1). The menu view controller only provides the graphical interface

for text input in form a login view.

Listing 8 Events

- (IBAction) btnPressEvent: (id)sender { … }

This is the fastest way to handle events. All that has to be done is to link an ele-

ment (button, image, etc.) with the corresponding action method. This can be accom-

plished in the interface builder of Xcode.

In the next example, the menu view controller is added as delegate to a text field.

Whenever an event is triggered, the corresponding delegate methods will be called.

27
 https://developer.apple.com/Library/ios/documentation/UIKit/Reference/ UINavigationCon-

troller_Class/Reference/Reference.html (Last visited: Nov. 2013)
28

 https://developer.apple.com/library/ios/documentation/eventhandling/conceptual/
eventhandlingiphoneos/eventhandlingiphoneos.pdf (Last visited: Nov. 2013)

https://developer.apple.com/Library/ios/documentation/UIKit/Reference/%20UINavigationController_Class/Reference/Reference.html
https://developer.apple.com/Library/ios/documentation/UIKit/Reference/%20UINavigationController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/eventhandling/conceptual/

Listing 9 Events as Delegates

self.txtName.delegate = self;

…

- (void) keyboardDidShow: (NSNotification *) notification { … }

5.4.6 Establishing a Connection (Class StartGameViewController)

The main responsibilities of this class are to establish a connection with other

players and to download the wordpool for the game, if the player is logged in.

5.4.6.1 Class Overview

Figure 18 Class Diagram StartGameViewController

The interesting part of this class is the GKSession object, which will be explained

in detail. Some of the problems with the GKSession class will be outlined and also

which libraries could have been used as an alternative.

Before a game is initiated, the wordpool has to be downloaded via DBConnection.

It is structured in XML, thus the need to implement the NSXMLParserDelegate to

parse the XML content.

5.4.6.2 GameKit’s GKSession Class

The GKSession class is part of the GameKit framework and provides the ability to

discover and connect to nearby devices using Bluetooth or Wifi. A device is identified

by its peer ID. Peers discover other peers by using a unique string to identify the ser-

vice they implement, called a session ID.

Sessions can operate in two modes. A peer can either be configured as a server

or client, or act as both server and client. A peer configured as server broadcasts its

session ID, the client searches for other peers advertising the same session ID.

The GKSessionDelegate protocol has to be implemented to control the behaviour

of the GKSession object. The delegate is called when remote peers are discovered, a

connection is initiated or the state of any discovered or connected peer changes.

In addition, a data handler has to be provided so that the session can forward da-

ta it receives from connected peers29.

The GameKit framework provides us with a standard user interface (GKPeerPick-

erController) for the discovery and connection procedure of devices using the

GKSession class. However, the interface is not suited for children and could not be

used for the purpose of this application.

The GKSession class is deprecated since iOS 7.0. It has been replaced by the

Multipeer Connectivity Framework. iOS 7.0 had not been released during the time

the application was developed, therefore the GKSession class is still in use. An up-

date to the Multipeer Connectivity Framework will be considered in future versions of

the app due to some of the problems with the GKSession object.

5.4.6.3 Problems with GKSession and Other Frameworks

Establishing and maintaining a connection is certainly one of the most important

parts of the application. Two factors were most important:

 A stable connection.

29
 https://developer.apple.com/library/ios/documentation/GameKit/Reference/GKSession_

Class/Reference/Reference.html (Last visited: Nov. 2013)

https://developer.apple.com/library/ios/documentation/GameKit/Reference/GKSession_%20Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/GameKit/Reference/GKSession_%20Class/Reference/Reference.html

 The discovery process of remote peers had to be reliable and fast. It

would be confusing for the children if a game would not appear after more

than a few seconds. The field study showed that children would rather

start the game again if it did not appear within less than five to ten sec-

onds.

Previous experiences (Ebner, et al., 2013) had revealed certain problems regard-

ing the GKSession library.

 The GKPeerPickerController is not completely reliable.

 Discovery of devices in the same WLAN does not always work or takes

too long (more than a minute).

The first problem was avoided by devising a custom connection interface. The

second problem is not to be found in the implementation of the GKSession class it-

self. It seems to be a network problem due to restrictions or size. Restrictions would

block broadcasting of the session ID. In in case of a bigger infrastructure with multiple

access points and a lot of users, discovering remote peers takes too long.

The GKSession class is built upon Bonjour, a protocol that allows devices or ap-

plications to find each other on the network. It provides a way for an application to tell

others what IP address and port they can connect to in order to communicate30.

To ensure that the connection problems were not caused by some fault in

GKSession’s implementation, an app was built for the sole purpose of testing the Wi-

Fi connection capabilities by directly implementing Bonjour. This did not solve the

issue and affirmed the assumption that the problem was not caused by the GKSes-

sion class, but the network itself.

The other option was to connect the devices over Bluetooth as it is supported as

well. However, there is no way to enable Bluetooth directly or indirectly from within

the application and children would have a hard time activating it on their own. In ear-

lier versions of iOS it was possible to either change settings directly from within the

app or to provide a link to the settings page. Due to a more restrictive policy and se-

curity issues, recent versions of iOS do not allow this. While those restrictions can be

bypassed, the app most likely would not pass Apple’s review process before entering

the store.

30
 http://mobileorchard.com/tutorial-networking-and-bonjour-on-iphone/ (Last visited: Nov.

2013)

http://mobileorchard.com/tutorial-networking-and-bonjour-on-iphone/

During the two field tests at school classes with 15 devices and more, another

problem was encountered. While connections over WLAN worked without problem in

both cases, enabling Bluetooth on all devices caused connection failures. The exact

cause could not be determined, it appeared to be a result of Bluetooth connections

cancelling each other out. This phenomenon did not appear with a limited number of

devices.

 To sum up the benefits and disadvantages of Game Kit’s GKSession Class:

 Provides an easy interface for developers to implement peer-to-peer con-

nectivity.

 It performs well under normal circumstances.

 Supports Bluetooth and Wi-Fi.

 When using Wi-Fi, the size of the network can be a problem.

 Bluetooth seems to work only with a limited number of devices. Otherwise

it might cause connection failures.

There is another workaround if neither Bluetooth nor Wi-Fi will work, however, it

requires a bit of technical know-how and preparation from the teacher. An iPhone or

iPad can act as a mobile hotspot, creating a WLAN access point. This can easily be

configured in the settings page. The other devices just have to connect to the newly

established network.

5.4.6.4 Extensible Markup Language (XML)

XML is a markup language much like HTML, however, it is not used to display da-

ta, but to store it. Data is presented in a hierarchical structure in the form of a text file.

A XML file contains text symbols and should be easy to read for humans.

The structure of the wordlist will serve as an example:

Listing 10 Wordlist XML Structure

<wordlist>

 <item>

 <id>1</id>

 <question>This is a question?</question>

 <word>answer</word>

 <priority>1</priority>

 </item>

</wordlist>

A XML document is composed of elements (<wordlist>, <item>, etc.) which are

marked by a start and end tag. Elements can have attributes in form of key-value

pairs (e.g. <item id=”1”>). The document will have exactly one element at the top

(root element), beneath it further elements can be nested (W3C, 2008).

5.4.6.5 Implementation Details

This section describes step-by-step what happens from the moment the class is

loaded.

 Whenever a new view controller is pushed on the navigation stack, the

method “viewDidLoad” is called. This method should be used to initialize

variables and elements before the view is displayed. The session object is

set up here.

 The following parameters will be specified:

o Session ID. Every device will have the same session ID, so that

they are able to discover one another.

o A display name. This is an optional parameter which helps users to

identify the devices. In this case, the display name contains the

user’s login name and a code for the selected user icon.

o The session mode is set to GKSessionModeServer.

o StartGameViewController is set as a delegate of GKSession.

o The session is set to be available.

o A connection timeout is defined.

 The session object is now advertising itself to any other device using the

same session ID. As shown earlier in figure 8 (JoinGameViewController),

players who are looking for open games will be able to see the game

listed in the UITableView in form of the player’s icon and username.

 When a player decides to join the game, the StartGameViewController’s

delegate method “session didReceiveConnectionRequest” will be called

with the remote peer’s ID as a parameter. If the connection is accepted,

both peers will be notified that their connection state changed to connect-

ed.

 Once all peers have connected and the player decides to start the game,

a connection to the web-interface is established and the current wordpool

is downloaded and parsed by the NSXML parser. The session objects

availability is set to false so that the device will no longer be visible to oth-

er peers and the game is initiated.

There are several ways to pass data from one view controller to another, the fol-

lowing method is the recommended one:

Listing 11 Segues

-(void)prepareForSegue: (UIStoryboardSegue *) segue sender: (id)sender {

 if([segue.identifier isEqualToString:@"toGameView"]){

GameViewController *gameview = (GameViewController*) se-

gue.destinationViewController;

 gameview.currentSession = self.currentSession;

 gameview.isServer = TRUE; } }

 A segue represents the connection between two view controllers. When switch-

ing from one view to another, the segue is performed and with it the method “pre-

pareForSegue” is called. The function will hand the parameters to the new view con-

troller before it is initiated (“viewDidLoad” method). In the marked piece of code, the

session object is passed along and then the game view is told to act as a server.

The JoinGameViewController will not be explained, because JoinGame- and

StartGameViewController are similar in most aspects. The only significant difference

is that the session object will be running in client mode and there is no need to down-

load a wordpool as it is done by the server. The client connects to the server and

waits until the server sends a “start game” message.

5.5 The Game Screen (GameViewController)

The GameViewController can act as a client or server. In the latter case it will

handle communication with the web-interface and see to the distribution of words,

among other functions regarding the game mechanism. All functions concerning

game logic that are not directly implemented in GameViewController are accumulated

in the corresponding class GameLogic.

5.5.1.1 Class Overview

Figure 19 Class Diagram GameViewController

GameViewController is the main class of the application and certainly the most

extensive one. The following section contains a step-by-step walkthrough of the class

from the point it is loaded.

5.5.1.2 Implementation Details

When a new game or new round of a game is initiated, the device that acts as

server will be responsible for:

 The process of generating words for all players.

o Drawing words. In the XML file of the wordpool exists an element

called “priority” for each item. Words (or rather word/question

pairs) according to the number of players are drawn semi-

randomly out of the wordpool. Words with higher priority have a

higher change of being drawn.

o Calculate the missing letters. The longer the word, the more letters

will be removed.

o Shuffle the letters. A certain number of letters will be spread

among the other players. How many is determined by the length of

the word-to-guess.

 Send the whole word, the incomplete word and the shuffled missing letters

to the corresponding peer.

 Start a new round. The server will be notified when a client completes his

word. When all players including the server have finished their words, a

new round of the game will be initiated. The server will upload which

words the players have finished (if they are signed in).

The client waits until it receives a word (and question, etc.) from the server, which

will trigger a new game/round. When the word is completed, a “finished” message is

sent to the server.

Although some details were left out here and there, this should cover all important

functions. The only thing left that might be worth mentioning is how the drag and drop

movement of letters and icons was implemented.

All moveable elements (views and image views) of the screen were placed in an

array. When the user first touches the screen, the event “touchesBegan” is triggered

and as a parameter the coordinates of the touch point are passed along. If the touch

point is located within one of the frames of moveable elements, the object to move is

successfully identified and can now update its position whenever “touchesMoved” is

called. The event “touchesEnded” signals the release of the screen (or object).

5.6 Debugging

A proper testing and debugging environment is one of the most important features

of an IDE. Xcode provides standard debugging features as well as a number of tools

that can help to identify memory leaks or other performance issues. In addition, the

iPhone/iPad Simulator enables developers to test their applications on desktop com-

puters. The simulator is incredibly fast and will work without delay on notebooks such

as the Macbook Air with limited resources. While more than adequate for most appli-

cations, several problems appeared due to the nature of the app:

 Debugging applications that are constantly communicating and maintaining a

connection to other devices is always a challenge. Standard debugging pro-

cedures (break points, etc.) might not work.

 In a few cases, the simulator showed different behaviour than the real device.

 Only one instance of the simulator can be executed at the same time.

 The process of deploying apps on real devices was extremely tedious due to

the restrictions of the student developer account.

The main problem was the lack of physical devices. To sufficiently test the appli-

cation, at least 4 or 5 devices would have been required. Multiple instances of the

simulator would at least partially solve the problem, but, as mentioned before, only

one instance of the simulator can be executed at the same time. Interestingly, no

proper workaround existed at the time to address this matter, at least not for the cur-

rent versions of Xcode. The next logical step would be to install Mac OS X on another

device (or virtual machine), install Xcode and start another simulator. However, this is

not so easily accomplished because, by default, OS X cannot be installed on devices

other than computers produced by Apple. Numerous workarounds exist to bypass

that restriction, in form of manipulated versions of OS X that can be installed on real

computers as well as modifications to existing virtual machine software that would

make an installation possible. All of those solutions are heavily dependent on the

hardware of the device. Plus, installing a manipulated version of OS X usually results

in the problem that it cannot be updated, thus the current version of XCode cannot be

installed. Suffice it to say that it took several days of experimenting to figure out a

way to install a legal version of OS X on a virtual machine running under Windows 7

that would properly work. It should be noted that it is possible to install OS X on a

virtual machine running in OS X. However, a minimum of 4 GB of RAM is required to

launch the VM, which has not been available on the Macbook Air used for develop-

ing.

Another matter was the process of app deployment on physical devices. Apps

can only be installed on a device with a valid provisioning profile for that device. Un-

der normal circumstances, only a developer account is needed to acquire such a pro-

file. In case of a student developer account, the process is the following:

Get the device ID, inform your supervisor that you would like to add the device for

developing purposes, wait for the supervisor to provide the new provisioning profile,

apply the profile to the new device, install the app. This drawn-out procedure makes it

impossible to quickly grab a device for testing purposes.

This part concludes the discussion of the app “Buchstaben Post”. The next chap-

ter will explain the web-interface, starting with the design of the database.

6 Design and Implementation of

the Web-Interface

The web-interface consists of three parts, the website itself, the database and an

interface to the user management.

6.1 Description of the Database

MySQL was employed as a database management system. The following graphic

illustrates the database schema with all its relations.

Figure 20 Database Schema

Teachers have classes and pools. A pool contains words from the wordlist, and is

assigned to a class. For each pupil a list of finished words and the time it took to

complete one round of the game is stored.

6.2 Description of the User Management System

The user manager is a database of local schools, containing accounts of teach-

ers, pupils and their respective school classes. The system provides an interface for

applications in form of a SOAP31 web service.

“SOAP Version 1.2 is a lightweight protocol intended for exchanging structured in-

formation in a decentralized, distributed environment.” (W3C, 2007)

 It is a W3C32 recommended protocol specification that can be used for remote

procedure calls or to exchange data between systems and relies on XML as its mes-

sage format and Application Layer protocols like HTTP for message negotiation and

transmission.

The protocol consists of three parts, an envelope, which defines what is in the

message and how to process it, a set of encoding rules for data types and a conven-

tion for representing procedure calls and responses33.

SOAP can be used in combination with WSDL34 and an XML Schema to provide

web services over the internet35.

As the name suggests WSDL is an XML-based language for describing the func-

tionality offered by a web service, or in more general terms, a format for describing

network services as a set of endpoints operating on messages containing either doc-

ument-oriented or procedure-oriented information (Christensen, et al., 2001).

PHP provides a client for SOAP servers which can be used in WSDL or non-

WSDL mode36.

31
 Simple Object Access Protocoll (SOAP)

32
 World Wide Web Consortium (W3C)

33
 http://en.wikipedia.org/wiki/SOAP (Last visited: Nov. 2013)

34
 Web Service Description Language (WSDL)

35
 http://en.wikipedia.org/wiki/Web_Services_Description_Language (Last visited: Nov. 2013)

36
 http://php.net/manual/de/class.soapclient.php (Last visited: Nov. 2013)

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://php.net/manual/de/class.soapclient.php

6.3 Description of the Website

Following the same principle as in the description of the iPad application, the

website’s user interface and features will be explained first. Afterwards the details of

the implementation will be discussed.

6.3.1 User Interface and Features

The design of the website is simple and functional.

Figure 21 Website

When the page is loaded, the “Home” section is displayed, which gives an over-

view of the websites functions, explaining each site. When the user clicks on one of

the links in the sidebar on the left, he/she will be asked to sign in. To login, a teacher

account at the user management system is required. Once signed in, the field in the

top left corner of the website will display the login status. To sign out or change the

user, the “Logout” button has to be pressed.

The functionality of each page or section will be outlined with a few sentences:

 Home. This page offers quick help and introduces each section of the

homepage. If a teacher does not have an account at the usermanager, a

link provides access to the registration page of the usermangers website.

A download link to the app store is provided as well.

 Add Words. In this section, teachers can add words to a wordpool. A word

and question have to be typed in. Once a number of word/question pairs

have been entered, the user has to press “Submit” and the words will be

uploaded to the database.

 Show Words. The user can select a wordpool and the corresponding

words will be displayed in a table view. Words can be removed by select-

ing a checkbox for the corresponding word. Once all words have been

marked, they can be deleted by pressing the “Delete Words” button.

 Manage Pools. As the name implies, this part of the website deals with the

management of wordpools. Wordpools can be created or deleted. A word-

pool has to be assigned to a school class in order to be used. If no word-

pool is assigned to a class, the class won’t be able to play when they are

signed in. They are still able to play offline, though.

 Statistics. Shows how the children have performed while playing/learning

with the app. For every pupil of the selected class, the time it took to com-

plete a round of the game and the number of words he has finished is dis-

played.

 Import / Export. Every teacher has his own wordpools. A teacher will not

be able to see or manipulate the wordpools of other teachers. While this is

a desired functionality (to avoid chaos, etc.), most likely teachers will be

using similar lists of words. Besides, they should have the possibility to

save the wordpool in case the user account is changed. For this reason an

import/export function was implemented. The user can download the se-

lected wordpool in form of a .csv file and .csv files of the same structure

can be imported. The files can be viewed and manipulated with every text

editor that can process .csv files, for example, Microsoft Excel.

 Help. This section offers help about the use of the website as well as the

iPad app. Besides a textual explanation, a video tutorial of both the web-

site and the game was added.

 View Page in English/German. Besides the international version of the

website in English, a local version in German Language exists as well.

 Logout. Displayed only when logged in, the user is able to logout or

change the user if needed.

6.3.2 Technical Framework

The website was implemented in HTML, Javascript and PHP, using a PHP

framework called CodeIgniter37.

 HTML or HyperText Markup Language is used to structure and display

content like text or images in a web browser. It is the main markup lan-

guage for creating web pages.

 PHP, now standing for Hypertext Preprocessor, is a server-side scripting

language designed for web development.

 Javascript is a scripting language that allows client-side scripts to interact

with the user, control the browser or to alter the content of the document.

 CodeIgniter is an easy to use, lightweight web application framework to

build dynamic web sites in PHP. Besides providing a rich set of libraries

for commonly needed tasks it is based on the popular Model-View-

Controller pattern38, which will be explained in more detail.

6.3.3 The Model-View-Controller Pattern

The Model-View-Controller (MVC) pattern is a software design pattern that di-

vides an application into three kinds of components, the controller, model and view,

thus separating the representation of information from the user’s interaction (Krasner

& Pope, 1988).

37
 http://ellislab.com/codeigniter (Last visited: Nov. 2013)

38
 http://ellislab.com/codeigniter/user-guide/overview/at_a_glance.html (Last visited: Nov.

2013)

http://ellislab.com/codeigniter
http://ellislab.com/codeigniter/user-guide/overview/at_a_glance.html

The graphic illustrates the pattern in its simplest form. A view requests information

from the model that it needs for generating an output, the controller sends commands

to update the model’s state. The model notifies its associated views and controllers

when there has been a change in its state.

Figure 22 MVC Pattern

The modularity of components facilitates reuse and maintainability.

6.3.4 Design and Architecture

CodeIgniter is loosely based on the MVC pattern. Controller and views are nec-

essary parts of a website, the model is optional. Regarding communication between

the three components, the implementation of this website deviates a bit from the

standard pattern, as depicted in the figure below.

Figure 23 Website Architecture

As intended by the MVC pattern, the views of the website contain all the code for

the presentation of the web page. There is a “login view” which displays a sign in

form, a “show words view” which displays the corresponding section of the page, and

so on.

When the user requests or submits data, the view will post a request to the as-

signed controller. The controller decides which methods to call from the model and

passes along the data. The Login Controller is responsible for the login process only.

The Main Controller handles all interaction with the website and the App Controller

represents the interface to the iPad app.

The Database Model handles communication with the MySql database and con-

tains all SQL queries. The Usermanager Model connects to the SOAP webservice of

the Usermanager. After retrieving data from the database or webservice, the model

passes it along to the controller and the controller will in turn update the views.

All code regarding the business logic of the website is implemented in the control-

ler, the models only contains the functions necessary to communicate with either

endpoint. This way, the website is easier to maintain. Most likely, when changes are

required, they will only affect the SQL queries or communication with the Userman-

ager and not the logic of the website.

6.3.4.1 Security

Security is always an important issue regarding web applications. This section

explains the mechanisms that were put into place to provide a sufficient measure of

security.

The login process works as following:

 After username and password are entered, a SHA-256 hash of the pass-

word is generated. The credentials (username, password, and an addi-

tional string) are forwarded to the Usermanager for verification. The addi-

tional string contains a hash of the username, password, app ID and app

key for verification purposes.

 In case of a successful authentication, the Usermanager will return a mes-

sage containing the ID, role (student, teacher) and name of the user. The

message can be verified using the public key of the Usermanager.

 The login status of the user is stored in the user’s session variable and is

encrypted. CodeIgniter does not utilize native PHP sessions, it generates

its own session data. Session data can be encrypted, making the data

highly secure and impervious to manipulation39.

The login procedure from the iPad app follows the same principle and generates

a SHA-256 hash of the password.

SQL injections are another matter of concern. SQL injections are insertions of

malicious code into an entry field for execution. To prevent this from happening, input

strings should be escaped, which will remove symbols that could be interpreted as

SQL code. CodeIgniter provides its own string escape function40. Every query input is

escaped in that matter.

Last but not least, the database contains as little information of the user as possi-

ble. Only user ID and username are stored. The password, real name and other per-

sonal data remains at the Usermanager.

39
 http://ellislab.com/codeigniter%20/user-guide/libraries/sessions.html (Last visited: Nov.

2013)
40

 http://ellislab.com/codeigniter/user-guide/database/queries.html (Last visited: Nov. 2013)

http://ellislab.com/codeigniter%20/user-guide/libraries/sessions.html
http://ellislab.com/codeigniter/user-guide/database/queries.html

6.3.4.2 Maintainability

The website should be easily maintainable, which is one of the reasons why Co-

deIgniter is used. The MVC pattern greatly improves maintainability. Furthermore,

CodeIgniter provides config files where all information regarding the configuration of

the website and database is stored and easily accessible.

7 Using the App: Results and

Discussion of the Trial

The field study took place at two primary schools in Graz. Both schools have so

called “iPad classes”, in which every pupil is in possession of his/her own device. The

first trial was performed at primary school Hirten, the second one at University of

Teacher Education Styria. The field study took place in second grade classes, com-

posed of 15 and 18 pupils. The children are used to working with the device and are

proficient for their age. The trial was conducted as a participatory observation, fol-

lowed by an interview with a group of children.

7.1 The Setting of the Test

The app was installed beforehand to save time. Every child had his own iPad in

front of them. The players of each team were either sitting side by side or in front of

each other. The test was split into two phases. First, the game was played in groups

of two, afterwards in groups of four. Due to the nature of the game, a four player set-

ting is more challenging and might have been too confusing for the beginning.

7.2 Results

The main part of the field study was the participatory observation. After a short

explanation, the children could play the game for about an hour, while the teachers

provided help when they were stuck or had questions.

Here is an overview of the positive and negative aspects (in that order) of the trial:

 The children quickly understood the concept of the game.

 While having some problems with the login and connection process, the

game itself (game screen) was easy to use.

 There was steady communication between the players. This had been one

of the main goals, but as a result the noise in the classroom was above

the usual level, especially when the game was played in groups of four.

While not necessarily negative, it is an aspect that has to be considered

when employing the game.

 In almost every case, the children cooperated very well. When one player

could not finish a word, he/she got help from his teammate. Or he/she

tried to help his/her partner to finish his/her word and would then receive

help him/herself. Some of the children were actively helping or grabbing

letters by reaching out to their neighbor’s iPad.

 The children generally seemed to enjoy the game and the resulting team-

work.

 They were motivated by finishing a word or round of the game.

 Sometimes words were challenging or unknown to the children or the hint

or question was too vague. Yet they were very flexible in finding solutions,

discussing among themselves and only asking for help when they could

not reach a conclusion.

 Some groups were more competitive than others, trying to solve the puz-

zle as quickly as they could. One group even made a contest who could

finish his/her word first.

 Another aspect worth mentioning is that the children actually tried to guess

the word by reading the hints, and not just by looking at the word itself or

just randomly trying out letters. This is to some degree due to the concept

of the game. Since the letters were spread among the players, in order to

ask for specific letters, they had to guess the word correctly. Nevertheless,

sometimes they would resort to random trying, but this was mostly the

case when the question or hint was too vague.

 The main problem was of technical nature and appeared in form of con-

nection failures as a result of establishing a connection over Bluetooth.

The devices had both Bluetooth and WLAN activated (in case WLAN

would not work due to network restrictions). In previous tests with only a

limited number of devices (a maximum of four) these settings seemed to

work well. Somehow, the Bluetooth framework appeared to be unable to

cope with a multitude of connection requests, cancelling each other out.

Disabling Bluetooth on all devices fixed the problem.

 The connection process posed some more difficulties. Due to the eager-

ness of the children to play, some of them were connecting to random

players (instead of the one they were sitting next to), while others would

not wait long enough for their partners to find the game or until it appeared

in the in the list of available games (about 1-5 seconds delay). This, in

combination with the technical problem mentioned above, lead to some

confusion in the first minutes of the trial.

 As explained before, players have to sign in to receive custom wordlists.

Filling in the correct password (a combination of letters and numbers,

about 8-10 symbols long) was a challenge for some of the children, and

they had to try several times.

 For a few pupils the difficulty was too high. They had trouble in reading

and understanding the questions and spelling the words.

 In some cases children found it difficult to place the letter at the right posi-

tion, because their dragging movement was not precise enough.

After observing the children’s performance, a short interview with a handful of pu-

pils, one of each group of players, was conducted. For this purpose, a number of

questions and statements had been prepared. The children were asked to discuss

the questions by themselves. Then, as a group, they had to show us if they agreed

with a statement or not (by putting down smileys ranging from happy to sad). The

prepared questions and answers are summed up in the following table:

Table 2 Interview Results

Question Answer41

Did you like to play together? 1

Was the app easy to use? 1-2

Did you learn new words? 1

Was the difficulty of the game (words) ok? 1-3

Would you like to play again? 1

41
 “1“ equals a very happy smiley, “5” a sad smiley.

Discussion of the interview:

 Question 1. Playing and learning together is the main goal of the game.

All children agreed that it was fun to do so.

 Question 2. Most of the children found it easy to use, some of them were

a bit unsure. As a group, the answer was 1, however, after asking if there

were any problems, some said that it was a bit confusing to start a game

and find players. To some degree this was the result of problems with

Bluetooth cancelling out connections in the first trial.

 Question 3. The wordlist contained a few words previously unknown to

the children. In most cases, they were able to guess the new word by

themselves.

 Question 4. The opinions of the children differed somewhat about this

point, ranging from easy to sometimes difficult. This was mainly due to two

reasons: First, the wordlist used for the tests was the standard wordlist of

the app, and not customized for the school classes’ curriculum. Therefore,

some words were unknown or difficult. Second, one of the school classes

consisted of non-native German-speaking children, and their state of

knowledge differed from one pupil to another. Surprisingly, this did not

create any problems and enriched the testing environment, because it

demonstrated how well the children were working together. Pupils with

better reading and writing skills were supporting the other players.

 Question 5. The children all agreed that they would like to play again

soon.

 Afterwards, the children were asked to talk about their experience with the game.

The discussion affirmed the results of the observation, the children saying that they

enjoyed playing together and had a lot fun. Some of them found the words a bit diffi-

cult. Among the most prominent statements were “We had fun” and “We would like to

play some more”. About a week after the test, further feedback was received from

attending teacher, stating that the children chose to play “Buchstaben Post” (out of

other learning games and activities) during their “free work time”.

7.3 Discussion

The project is focussed on cooperation among peers and how to incorporate new

technology and gaming into a classroom setting. Regarding this area of expertise,

first field studies rendered practical feedback and the basis for further assumptions.

In summary it can be said that:

 The app fostered communication and collaboration.

 Given the right setting, children need little to no encouragement to support

each other and work together.

 The presentation of learning content as a game is more enjoyable for chil-

dren and motivates them to “play again”.

 There are still a few technical difficulties that need to be addressed.

While the encountered problems were of minor nature and can easily be fixed, fu-

ture work and more sophisticated studies need to be conducted regarding the learn-

ing results of the game compared to pure learning applications or traditional learning

schemes.

8 Conclusion

The combination of wireless network technology and mobile devices has opened

countless new ways to deliver content and exchange data. In the personal sector,

those technologies (smartphones, tablets, etc.) have become omnipresent. Beyond

private use, the potential for schools and educational purposes is incredible. Never-

theless, due to a number of reasons (missing experience, cost, etc.) mobile devices

are still rarely employed, and customized learning applications for schools are limited.

8.1 Project Summary

Focusing on the aspect of cooperation and collaborative learning, the goal of this

project is to use digital devices to connect learners to strongly assist the communica-

tion between peers. The fundamental idea was to develop an application where

learners actively engage into collaborative work.

The realization of the project consists of two parts.

 The development of a prototype application and website. The application

is a cooperative multiplayer learning game for iPads, the website an inter-

face for teachers to create custom content and to monitor the children’s

performance.

 A field study to test and evaluate the prototype. The trials took place at

two primary schools in Graz where the app was tested in a proper class-

room setting.

The results of the field study look promising. The app supports and actively ena-

bles cooperative behaviour and collaborative learning. Children are highly motivated

to use this kind of application and they enjoy the resulting teamwork.

8.2 Lessons Learned

Developing applications for children can be a challenging task. Especially the de-

sign of the user interface requires a lot of care and attention to details. While today’s

generation of school children is familiar with mobile devices and quick to grasp the

concepts of an application, their approach to new applications is a fundamentally dif-

ferent one than that of adults. Where adults are cautious and deliberate, children are

curious and eager to begin. This lead to two insights:

 Children are quick to discover all kinds of functionality.

 Complex procedures pose a challenge. Children are unlikely to read or lis-

ten to advice before trying something out.

On the software side, several things are worth mentioning:

 With XCode and the Cocoa framework, Apple provides a rich developing

environment, including a lot of features and libraries that help considera-

bly in the development of an application.

 While the restrictive policy of the operating system enhances stability and

security, it also limits programmer’s options in dealing with problems.

 XCode’s ability to test applications which connect several devices is se-

verely limited due to the fact that only one instance of the simulator can

be executed at a time.

8.3 Concluding Remarks

The project is focussed on cooperation among peers and how to incorporate new

technology and gaming into a classroom setting. First field tests rendered practical

results and it can be stated that this study is a step towards collaboration through

mobile devices.

Certainly, this field of research has much to offer. Regarding the project, several

things come to mind:

Further studies have to be performed, especially concerning the learning results

of the application and how it compares to conventional learning methods. Consider-

ing the social aspect, several questions arise:

Does cooperation during the game affect the social behaviour in the classroom?

Does it have a positive influence on the children and the class? Does it help them to

work together in general, and not only when using the application?

From a technological point of view, the possibilities are numerous. To begin with,

the concept of the game could be expanded. As the field study demonstrated, chil-

dren very much like playing or learning together. Tablets or similar devices make it

possible to sit together and communicate in a direct manner. Building on that con-

cept, a number of learning games or applications could be developed that focus on

collaborative learning and social interaction. Also, the number of connected devices

is not limited in any way. It is possible to connect more or even all devices in a class-

room. An assignment could be split into smaller parts, and while the whole class

works on finishing that assignment, groups of children can pick one of several tasks

and work together in solving it.

The possibilities are numerous and fascinating and with the rapid advancement of

mobile technologies, more and more ways to enhance the learning experience will be

possible to realize - not only of school children, but for learners of every kind and age.

References

Ally, M. (2009). Mobile Learning Transforming the Delivery of Education and Training.

Issues in Distance Education series, pp. 2;29.

Budiu, R., & Nielson, J. (2010). Usability of Websites for Children: Design Guidelines

for Targeting Users Ages 3-12 Years. Nielson Norman Group Report.

Chan, T. W., Roschelle, J., HSI, S., Sharples, M., BrownT, Patton, C., et al. (2006).

One-to-One Technology-Enhanced Learning: An Opportunity for Global

Research Collaboration. Res. Practice Tech. Enhanced Learning, 1(3).

Chiu, M. M. (2000). Group Problem-Solving Process: Social Interactions and

Individual Actions. Journal for the Theory of Social Behaviour, 1, pp. 27-49.

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (20011). Web

Services Description Language (WSDL) 1.1. Accessed November 2013 at

http://www.w3.org/TR/wsdl

Consortium, W. W. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition).

Accessed November 2013 at http://www.w3.org/TR/REC-xml/

Dawes, L. (2011). Shaping the Future - Realising the potential of informal learning

through mobile. http://www.gsma.com/mobilefordevelopment/wp-

content/uploads/2012/05/mLearning_Report_230512_V2.pdf: GSMA,

Mastercard Foundation.

Dewey, J. (1916). Democracy and Education. An introduction to the philosophy of

education (Reprint 1997). Rockland (NY): Free Press.

Dillenbourg, P. (1999). Collaborative Learning: Cognitive and Computational

Approaches. Advances in Learning and Instruction Series. New York, NY:

Elsevier Science, Inc.

Ebner, M. (2010). iPad Human Interface Guidelines. Accessed November 2013 at

http://itunes.tugraz.at/media/items/iphone_application_development-apple_ttt-

2010-08/1281959367-hci_ipad.pdf

Ebner, M., & Holzinger, A. (2007). Successful implementation of user centered game

based learning in higher education: An example from civil engineering.

Computers & Education, 3(49), pp. 873-890.

Ebner, M., Böckle, M., & Schön, M. (2011). Game Based Learning in Secondary

Education: Geographical Knowledge of Austria. World Conference on

Educational Multimedia, Hypermedia and Telecommunications, (pp. 1510-

1515).

Ebner, M., Kolbitsch, J., & Stickel, C. (2010). iPhone / iPad Human Interface Design.

Human-Computer Interaction in Work & Learning, Life & Leisure, pp. 489-492.

Ebner, M., Schön, S., Khalil, H., & Zuliani, B. (2013). Cooperative Face-to-Face

Learning with connected Mobile Devices - The Future of Classroom Learning?

Egenfeldt-Nielson, S. (2011). Beyond Edutainment: Exploring the Educational

Potential of Computer Games. lulu.com.

Erikson, E. (1963). Children and society. WW Norton & Company.

Facer, K. (2003). Computer games and learning. Accessed November 2013 at

http://admin.futurelab.org.uk/resources/documents/discussion_papers/Compu

ter_Games_and_Learning_discpaper.pdf

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns. Elements

of Reusable Object-Oriented Software.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns. Elements

of Reusable Object-Oriented Software.

Gong, J., & Tarasewich, P. (2004). Guidelines for handheld mobile device interface

design. In Proceedings of the 2004 DSI Annual Meeting.

Gossen, T., Nitsche, M., & Nürnberger, A. (2012). Search user interface design for

children: challanges and solutions. EuroHCIR2012.

Grimus, M., & Ebner, M. (2013). M-Learning in Sub Saharan Africa Context - What is

it about. Proceedings of World Conference on Educational Multimedia,

Hypermedia and Telecommunications 2013, (pp. 2028-2033).

Grimus, M., Ebner, M., & Holzinger, A. (2013). Mobile Learning as a chance to

enhance education in developing countries - on the example of Ghana.

mLearn 2012 Conference Proceedings, 955, pp. 340-345.

Hackfort, D. (2003). Studientext Entwicklungspsychologie 1: Theoretisches

Bezugssystem, Funktionsbereiche, Interventionsmögilchkeiten. Vandenhoeck

& Ruprecht.

Hannak, C., Pilz, M., & Ebner, M. (2012). Fun - A Prerequisite for Learning Games.

Proceedings of World Conference on Educational Multimedia, Hypermedia

and Telecommunications 2012 (pp. 1292-1299). Chesapeake, VA: AACE.

Holzinger, A. (2002). Multimedia Basics. Volume 2: Cognitive Fundamentals of

Multimedial Information Systems. New Delhi: Laxmi-Publications, Available in

German by Vogel Publishing.

Hourcade, J. P., Bederson, B. B., Druin, A., & Guimbretiere, F. (2004). Differences in

pointing task performance between preschool children and adults using mice.

ACM Transactions on Computer-Human Interaction, 11(4), pp. 357-386.

Huber, S., & Ebner, M. (2013). iPad Human Interface Guidelines for M--Learning. In

Handbook of mobile learning (pp. 318-328). Z.L. Berge and L.Y. Muilenburg

(Eds.).

Hutschinson, H., Druin, A., Bederson, B. B., Reuter, K., Rose, A., & Weeks, A. C.

(2005). How do I find blue books about dogs? The errors and frustrations of

young digital library users. Proceedings of the 11th International Conf. on

Human-Computer Interaction (HCII 2005). Mahwah, NJ: Lawrence Erlbaum

Associates.

ITU. (2011). Statistics of the International Telecommunications Union: Measuring the

Information Society. http://www.itu.int/ITU-D/ict/publications/idi/index.html.

Johnson, D. W., & Johnson, R. T. (1999). Making Cooperative Learning Work.

Theory Into Practice, 38(2), pp. 67-73.

Johnson, D. W., & Johnson, R. T. (2009). An Educational Psychology Success Story:

Socal Interdependence Theory and Cooperative Learning. Educational

Researcher, 38(5), pp. 365-379.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Cooperative Learning:

Increasing College Faculity Instructional Productivity. The George Washington

University: School of Education and Human Development.

Jones, S. (2003). Let the Games Begin. Gaming Technology and Entertainment

among College Students. WASHINGTON, D.C: http://www.pewinternet.org/.

Jordan, D. W., & Metais, J. (2006). Social skilling through cooperative learning.

Educational Research, 39(1), pp. 3-21.

Kafai, Y. B. (2001). The Educational Potential of Electronic Games: From Games-To-

Teach to Games-To-Learn. Accessed November 2013 at

http://culturalpolicy.uchicago.edu/papers/2001-video-games/kafai.html

Karlsson, P., & Djabri, F. (2002). Analogue Styled User Interfaces: An Exemplified

Set of Principles Intended to Improve Aesthetic Qualitites in Use. Proceedings

of the 35th Hawaii International Conference on System Sciences.

Kloper, E., Squire, K., & Jenkins, H. (2002). Environmental Detectives: PDAs as a

Window into a Virtual Simulated World. Proceedings of the IEEE International

Workshop on Wireless and Mobile Technologies in Education (pp. 95-98). IEE

Computer Society.

Krasner, G., & Pope, S. T. (1988). A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System. ParcPlace Systems.

Large, A., Beheshti, J., & Rahman, T. (2002). Design criteria for children's Web

portals: The users speak out. Journal of the American Society for Information

Science and Technology, 53(2), pp. 79-94.

Laughlin, P. R., VanderStoep, S. W., & Hollingshead, A. B. (1991). Collective versus

individual induction: Recognition of truth, rejection of error, and collective

information processing. Journal of Personality and Social Psychology, 61, pp.

50-67.

Lee, K. (2013). Pro Objective-C. Apress.

Liang, J. K., Liu, T. C., Wang, H. Y., Chang, B., Deng, Y. C., Yang, J. C., et al.

(2005). A few design perspectives on one-on-one digital classroom

environment. Journal of Computer Assisted Learning, 21(3), pp. 181-189.

Malone, T. W. (1980). What makes things fun to learn? Heuristics for designing

instructional computer games. Proceedings of the 3rd ACM SIGSMALL

Symposium and the 1st SIGPC Symposium on small systems, (pp. 162-169).

Mann, B. D., Eidelson, B. M., Fukuchi, S. G., Nissman, S. A., Robertson, S., &

Jardins, L. (2002). The development of an interactive game-based tool for

learning surgical management algorithms via computer. The American

Journal of Surgery, 183(3), pp. 305-308.

Moore, G. A. (1999). Crossing the Chasm, Marketting and Selling High-Tech

Products to Mainstream Customer (revised edition). New York: HarperCollins

Publishers.

Motschnig-Pitrik, R., & Holzinger , A. (2002). Student-Centered Teachings Meets

New Media: Concept and Case Study. IEEE Journal of Technology & Society,

5, pp. 160-172.

Murphy, P. K., Wilkinson, I. A., Soter, A. O., Hennessey, M. N., & Alexander, J. F.

(2009). Examining the Effects of Classroom Discussion on Students'

Comprehension of Text: A Meta-Analysis. Journal of Educational Psychology,

3, pp. 740-764.

Naidu, S. (2005). Evaluation the usability of educational websites for children.

Usability News, 7(2).

Norman, D. (2004). Emotional Design. New York: Basic Books.

Oblinger, D. (2004). The next generation of educational engagement. Journal of

Interactive Media in Education, pp. 1-18.

O'Reilly, T. (2007). What is Web 2.0?: Design Patterns and Business Models for the

Next Generation Software. Communications & Strategies, 65, pp. 17-37.

Papastergiou, M. (2009). Digital Game-Based Learning in high school Computer

Science eduction: Impact on educational effectiveness and student

motivation. Computers & Education, 52(1), pp. 1-12.

Perez, C. (2002). Technological revolution and financial capital - the dynamic bubbles

and golden ages. UK: Edward Elgar Publishing Limited.

Piaget, J., Inhelder, B., & Inhelder, B. (1969). The psychologie of the child. Basic

Books.

Pinkwart, N., Hoppe, U., Milrad, M., & Perez, J. (2003). Educational scenarios for

cooperative use of personal devices. Journal of Computer Assisted Learning,

19(3), pp. 383-391.

Poupyrev, I., Maruyama, S., & Rekimoto, J. (2002). Ambient Touch: Designing Tactile

Interfaces for Handheld Devices. Proceedings of the 15th annual ACM

symposium on User interface software and technology, (pp. 51-60).

Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of

Engineering Education, 93(3), pp. 223-231.

Raines, C. (2002). Managing Millennials. Accessed November 2013 at

http://www.generationsatwork.com/articles_millenials.php

Rogers, E. M. (1995). Diffusions of innovation. New York: The Free Press.

Schneiderman, B. (1998). Designing the User Interface - Strategies for Effective

Human-Computer Interaction. Addison Wesley.

Smith, K. (1979). Learning Together and Alone: Cooperation, Competition, and

Individalization. 25th Annual NACTA Conference, (pp. 23-26). University of

Minnesota, St. Paul.

Solomon, P. (1993). Children's information retrieval behavior: A case analysis of an

OPAC. Journal of the American Society for Information Science(44), pp. 245-

264.

Stuart, A. (2007). When should kids learn to read, write, and do math? Accessed

November 2013 at http://children.webmd.com/features/when-should-kids-

learn-read-write-math

Vygotsky, L. (1978). Mind in society: The development of higher psychological

processes. Cambridge: Harvard University Press.

W3C. (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

Accessed November 2013 at http://www.w3.org/TR/soap12-part1/

W3C. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition).

Zechner, J., & Ebner, M. (2011). Playing a Game in Civil Engineering. 14th

International Conference on Interacti e olla orati e earnin

11th International Conference Virtual University (vu'11, (pp. 417-422).

Zurita, G., & Nussbaum, M. (2004). Computer supported collaborative learning using

wirelessly interconnected handheld computers. Computers & Education, 42,

pp. 289-314.

