
Numerical simulation framework
for multiphysical problems by the
use of the finite element method

Ralph Kutschera

Numerical simulation framework for multiphysical problems by
the use of the finite element method

Thesis

at

Graz University of Technology

submitted by

Ralph Kutschera

Institute for Fundamentals and Theory in Electrical Engineering (IGTE),
Graz University of Technology

A-8010 Graz, Austria

October 26th, 2010

c© Copyright 2010 by Ralph Kutschera

Advisor: Ao.Univ.-Prof. Dipl.Ing. Dr.techn. Christian Magele

Simulationsumgebung zur numerischen Behandlung
multiphysikalischer Probleme unter Verwendung der

Methode der Finiten Elemente

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Ralph Kutschera

Institut für Grundlagen und Theorie der Elektrotechnik (IGTE),
Technische Universität Graz

A-8010 Graz

26. Oktober 2010

c© Copyright 2010, Ralph Kutschera

Diese Arbeit ist in englischer Sprache verfasst.

Betreuer: Ao.Univ.-Prof. Dipl.Ing. Dr.techn. Christian Magele

Abstract

The finite element method (FEM) can be seen as the crowning discipline of all simulation tech-
niques used nowadays. Own software packages have been implemented at the Institute for Funda-
mentals and Theory in Electrical Engineering that realize this method and apply it to assignments in
an educational and industrial environment.
Recent researches on optimization strategies come with the need of a more flexible framework that
makes the process of automation more manageable and independent from user intervention.
This thesis introduces a new simulation framework with a modern object-oriented design, specified
user interfaces and the aspect of extensibility. It does electrostatic, magnetostatic, static current flow
and thermal model computations and allows multiphysics by coupling these models. Furthermore,
the user is supported in the process of modeling using an up-to-date algorithm that computes boolean
operations on polygons and therefor helps on setting up a geometry by defining primitives and their
relations.

Kurzfassung

Unter allen Simulationstechniken, welche heutzutage weltweit Anwendung finden, ist wohl die
Methode der Finiten Elemente (kurz FEM) die bekannteste. Das Institut für Grundlagen und Theo-
rie der Elektrotechnik verwendet seine eigenen Softwarepakete sowohl im industriellen wie auch im
akademischen Umfeld zur Berechnung gegebener Aufgaben.
Fortschreitende Forschungsergebnisse im Bereich von Optimierungsstrategien machen nun jedoch
den Einsatz von flexibleren Berechnungsanwendungen nötig, welche eine bessere Automatisierung
ohne fortlaufende Benutzerintervention ermöglichen. Diese Diplomarbeit stellt eine neue Simula-
tionsumgebung vor, welcher ein modernes objektorientiertes Design zugrunde liegt, deren Schnitt-
stellen klar definiert sind und die mit dem Bedacht auf Erweiterbarkeit umgesetzt worden ist. Es
unterstützt Berechnungen in den Bereichen Elektrostatik, Magnetostatik, statisches Strömungsfeld
und thermische Problemstellungen. Multiphysikalische Modelle können durch Kopplung simuliert
werden. Weiters wird der Anwender beim Modellierungsprozess unterstützt, indem ein aktueller Al-
gorithmus, welcher Mengenoperationen auf Polygone berechnet, integriert wurde. Dieser erlaubt den
schnellen Aufbau einer Geometrie durch Definition einfacher Primitive und deren Zusammanhänge.

Eidesstattliche Erklärung

Ich versichere hiermit, diese Arbeit selbständig verfaßt, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient zu haben.

I hereby certify that the work presented in this thesis is my own and that work performed by others
is appropriately cited.

Ralph Kutschera

Danksagung

Ein großer Dank gilt meinen Eltern Eva und Manfred, meinen Großeltern Luise und Gerhard sowie
Amalia und Franz.
Ihr wart es, die mich zur Umsetzung meines bislang größten Lebensprojektes ermutigt und mich bis
zur Fertigstellung in jeder Gegebenheit unterstützt und gefördert habt. Einen herzlichen Dank will
ich Euch dafür aussprechen!

Mein Dank gilt weiters meinen Betreuern Christian Magele und Michl Jaindl vom Institut für
Grundlagen und Theorie der Elektrotechnik an der Technischen Universität Graz.
Für die Ermöglichung dieser Diplomarbeit, deren erste Züge bereits in der Bakkalaureatsarbeit vor
wenigen Jahren enstanden, und für die großzügige Unterstützung bei der Umsetzung der vorliegenden
Arbeit möchte ich Euch danken!

Auch allen weiteren Mitarbeitern des IGTE danke ich für spannende und humorvolle Stunden im
Umfeld eines äußerst interessanten Themengebietes.

Ein großes Anliegen ist mir die Erwähnung aller Freunde vom Hafnerriegel Studentenheim.
Für eine grandiose Zeit in den ersten Jahren meines Studiums in Graz, für unzählige ausgelassene
Stunden in der CAF und im sonstigen Umfeld des Heimes bin ich Euch, im Besonderen allen Mitbe-
wohnern von C14, von Herzen dankbar!

Weiters will ich keinen meiner Freunde beim 1. Österreichischen HAPKIDO Verein Graz un-
erwähnt lassen.
Gemeinsam mit Euch hab ich gerne den schweißtreibenden, nötigen Ausgleich zu meinem Studienall-
tag gefunden. Danke!

Meinen Freunden im entfernten Wien gelten diese Zeilen.
Danke, dass Ihr trotz der Entfernung nie den Kontakt abbrechen lasst!

Allen weiteren Freunden in Graz, in der oberösterreichischen Heimat, allen Arbeitskollegen der
letzten Jahre und allen lieben Verwandten:

Daunk schen!

Contents

1. Motivation 1
1.1. Thesis definition . 1

2. State-of-the-art 5

3. MATLAB 11

4. Theoretical qualification 13
4.1. Historical retrospective . 13
4.2. Field theory . 15

4.2.1. Field . 15
4.2.2. Flux . 15
4.2.3. Sources and drains as field cause . 15
4.2.4. Divergence or source density . 16
4.2.5. Gauß’ theorem . 16
4.2.6. Eddy fields . 17
4.2.7. Curl or eddy density . 17
4.2.8. Stokes’ theorem . 18

4.3. Maxwell’s equations . 19
4.3.1. Electro- and magnetostatics - The Laplace-Poisson equation 21

4.4. Finite element Method . 23
4.4.1. Ritz-Galerkin method . 24
4.4.2. Finite Elements . 27
4.4.3. Assembly . 30
4.4.4. Integration of boundary conditions . 32

4.5. Quadrature integration . 34

5. Practical approach 35
5.1. Implementation schemata . 35
5.2. Input handling – XML, XSD . 39

5.2.1. Geometry . 40
5.2.2. Boundary Conditions . 42
5.2.3. Material . 44
5.2.4. Source . 45

5.3. Object oriented model . 47

xv

5.4. Preprocessing – PREPROCpack . 49
5.4.1. PREPROC::ProcessXMLFile() . 52

5.5. Finite element method – FEMpack . 59
5.5.1. Discretizing – FEM::discretize() . 60
5.5.2. Assembly – FEM::assemble() . 63
5.5.3. Solving – FEM::solve() . 72

5.6. Postprocessing – POSTPROCpack . 74
5.6.1. Local-to-global transformation . 75
5.6.2. Global-to-local transformation . 75
5.6.3. Determining a value of the solution – PP::Value() 77
5.6.4. 2D diagram of the solution – PP::Data() . 79
5.6.5. Determining the gradient of the solution – PP::Gradient() 79
5.6.6. Gradient considering material properties – PP::MaterialGradient() 81
5.6.7. 2D diagram of the gradient – PP::GradientData() 82
5.6.8. 2D diagram of the gradient considering material – PP::MaterialGradientData() 82
5.6.9. 2D geometry plot – PP::plotGeometry() . 84
5.6.10. 3D solution plot – PP::plotValue() . 84
5.6.11. 3D gradient plot – PP::plotGradient() . 86
5.6.12. 3D gradient plot considering material – PP::plotMaterialGradient() 86

5.7. Multiphysics . 88
5.8. Boolean operations on polygons – Martinez algorithm 92

5.8.1. Algorithm . 93
5.8.2. Example . 94
5.8.3. Adding edges to the result polygon . 95
5.8.4. Special cases . 97

6. Conclusions and outlook 99
6.1. Proof of concept . 99

6.1.1. Current flow problem . 99
6.1.2. Thermal problem . 103

6.2. MATLAB . 103
6.3. CPU time . 105
6.4. Memory usage . 107
6.5. Design . 108
6.6. Output interface . 109

A. Appendix 111
A.1. Complete XML schema definition graph . 112
A.2. Geometry setup of an iron core with air gap . 113
A.3. Setup of the hardening device current flow model 114
A.4. Setup of the hardening device thermal model . 115

Bibliography 117

List of Figures

1.1. Optimization of weakly coupled multiphysical problems 2
1.2. Setting up a problem model . 3
1.3. A detailed view to the optimization model . 4

2.1. Object-oriented finite element analysis . 7
2.2. Generalization of the element classes, source: [4] 7
2.3. Suggestion by Mai and Henneberger, source: [16] 8

4.1. Simulating a technical process . 23
4.2. Basis functions . 28
4.3. Transformation from local to global coordinates . 30

5.1. Overview of FEMtastic modules . 36
5.2. FEMtastic XML schema definition . 39
5.3. Iron core with air gap . 40
5.4. XML schema definition of the geometry . 43
5.5. Edges and boundary conditions . 44
5.6. XML schema definition of a MacroElement . 46
5.7. Example heating device and workpiece . 47
5.8. PREPROCpack UML class diagram . 50
5.9. Invalid and correct triangulation . 51
5.10. Macroelements of the hardening device . 51
5.11. Geometry containing two faces . 56
5.12. Output of the mesh2d toolbox . 57
5.13. Output of the mesh2d toolbox for the heating plate example 58
5.14. FEMtastic geometry of the heating plate example 58
5.15. FEMpack UML class diagram . 59
5.16. Triangular shape finite element with quadratic form functions 60
5.17. Parallel plate capacity . 65
5.18. Quadrature integration over the reference element 66
5.19. Solution of the potential of the hardening device . 72
5.20. POSTPROCpack UML diagram . 74
5.21. Finite elements and their circumcircles . 75
5.22. Newton-Raphson method used to find local coordinate 76
5.23. Interpolating the solution . 77

xvii

5.24. Evaluating the solution along a straight line – drawing a diagram 79
5.25. Electric potential u along a straight line . 80
5.26. Electric field Ex along a straight line . 82
5.27. Current flow Jx along a straight line . 83
5.28. T3 finite element in global space with basis functions 84
5.29. Approximated shape of a T6 finite element . 85
5.30. Solution of the hardening device example . 85
5.31. Electric field E of the hardening device . 86
5.32. Current density J within the hardening device . 87
5.33. A different view of the current density J . 87
5.34. The thermal model . 88
5.35. Geometry and mesh of the thermal problem . 91
5.36. The thermal distribution of the heating plate and the steel workpiece 91
5.37. Boolean operations on polygons – source: [17] . 92
5.38. Degeneracy – source: [17] . 93
5.39. Finding intersection points and subdividing edges 94
5.40. Determining inside and inOut flags of the edges 96

6.1. EleFAnTs: current flow model . 99
6.2. Comparison of electric potential u results (top: EleFAnTs, bottom: FEMtastic) . . . 100
6.3. Comparison of electric potential u along a straight line 100
6.4. Comparison of electric field Ex results (top: EleFAnTs, bottom: FEMtastic) 101
6.5. Comparison of electric field Ex along a straight line 101
6.6. Comparison of electric current flow Jx results (top: EleFAnTs, bottom: FEMtastic) . 102
6.7. Comparison of electric current flow Jx along a straight line 102
6.8. EleFAnTs: thermal model . 103
6.9. Comparison of temperature T (top: EleFAnTs, bottom: FEMtastic) 104
6.10. Results gained with FEMtastic . 105
6.11. FEMtastic computation steps percentage . 106
6.12. FEMtastic memory usage . 107
6.13. FEMtastic memory usage percentage . 108

A.1. Complete XML schema definition graph . 112

List of Tables

5.1. Problem types and their parameter intent . 45
5.2. Processing the XML input file . 55
5.3. Different configurations for numerical integration 67
5.4. Interpreting the solution . 78
5.5. Interpreting the gradient of the solution . 81
5.6. Interpreting the gradient of the solution considering material properties 81

6.1. Simulation results (times in seconds) . 106
6.2. Memory usage (values in KB) . 107

xix

List of Listings

5.1. FEMtastic workflow . 37

5.2. Geometry definition of an iron core . 40

5.3. Evaluation from top to bottom . 41

5.4. Example of a nested geometry definition . 41

5.5. Defining a triangle . 42

5.6. Defining boundary conditions . 42

5.7. Defining a Cauchy boundary condition . 44

5.8. Material definition . 45

5.9. Source definition . 45

5.10. Module initialization . 52

5.11. Validating and processing the XML input file . 52

5.12. Preprocessor properties . 53

5.13. Macroelement properties . 53

5.14. Processing the model . 54

5.15. Meshing the geometry . 54

5.16. Preprocessor output . 56

5.17. Interface between preprocessor and FEM module 60

5.18. Addressing a finite element’s nodes . 61

5.19. Addressing a node’s properties . 61

5.20. A Dirichlet node . 62

5.21. Coherence matrix of a finite element . 64

5.22. Quadrature integration of an anonymous function 67

5.23. Basis function . 68

5.24. Gradient of a basis function . 68

5.25. Local stiffness matrix of a finite element . 68

5.26. Local load vector of a finite element . 69

5.27. Integrating the first local stiffness matrix . 70

5.28. System stiffness matrix with intetgrated local stiffness matrix 70

5.29. Solve the FEM system of equations . 72

xxi

5.30. Final state of the FEM module . 73

5.31. Computing the solution value at continuous coordinates 78

5.32. Header of the Data() function . 79

5.33. Example of gathering the solution along a straight line 79

5.34. Multiphysics . 89

5.35. Importing data from a previous model . 90

A.1. XML-setup: iron core with air gap . 113

A.2. XML-setup: Hardening device, current flow . 114

A.3. XML-setup: Hardening device, thermal model . 115

Chapter 1

Motivation

Within the last two decades, computer-aided design (CAD) has been integrated enormously into in-
dustrial manufacturing and therefor also into the educational sector. The Institute for Fundamentals
and Theory in Electrical Engineering (IGTE) at Graz University of Technology (TUG) started with
computational numerics in the early 1980s by designing and implementing its own software tools.
The institute, therefor, is the optimal environment to become acquainted with up-to-date techniques
that are used all over the world nowadays, not only in electrical engineering.
One of these techniques – namely the finite element method – can be seen as the crowning disci-
pline of all simulation methods. It is used, as already mentioned, in electrical engineering, but rather
comes from structural analysis in aeronautics and is also used in any other engineering fraction like
thermodynamics, computational fluid dynamics and also in the financial sector.

What makes this thesis very attractive is the fact that it does not only deal with the application
of FEM onto specific assignments but also gives a deep insight into the core of this method. The
realization of it merges mathematics, algorithm design and software engineering to an interesting
piece of work whose gift is a deep understanding of how physics can be brought into a computing
machine.

1.1. Thesis definition

This thesis is part of a reaserch project at the Institute for Fundamentals and Theory in Electrical
Engineering at University of Technology, Graz, Austria. The project team works on optimization
strategies in electrical engineering. The current field of studies deals with optimizing electrical prob-
lems in two-dimensional space with regard to minimizing e.g. ohmic drop or magnetic losses of a
given arrangement. Since the early 1980’s the Electromagnetic Field Analysis Tools - a software
package in short EleFAnTs - have been developed at the institute. EleFAnTs does electromagnetic
field numerics also by means of the finite element method. Though the software has been subject
to a 25-year development period it has not emerged as the optimal tool for applying optimization
strategies. Thus, a demand has come up for alternative attempts. One of them is subject of this thesis.
Figure 1.1 shows the basic idea of the optimization strategy.

The point of origin is any given problem to be subject of optimization. An intention is that to the
choice of optimization parameters only the sky should be a limit. Thus, boundary conditions, material

1

1. Motivation

Problem

discretize

solve

postprocessing

Figure 1.1.: Optimization of weakly coupled multiphysical problems

properties or geometry might be some of many unknowns.

As a problem definition schema, XML has been chosen as the interface between the user and the
upcoming software. With the help of XML templates, problems are defined as shown in figure 1.2.

Based on an XML file the problem is discretized and solved. The solution might either be used for
the next optimization step or can also be the source for a different physical model within the same
optimization step.

Example: A static current flow model is set up in order to simulate a current flow within a heating
plate. As a result, power dissipation acts as a thermal source for a secondary thermal model (Model 1,
figure 1.1). This current flow model is base for a thermal temperature distribution simulation (Model
2, figure 1.1).

Illustration 1.3 shows a more detailed view to the project and the scope of this thesis highlighted
with a rounded rectangle. All other parts including the one of the actual optimization strategy are
carried out by other team members and can – due to its initial development state – not be mentioned
any further. Starting point herein is a fully set up and validated XML file defining any electrostatic,
magnetostatic, static current flow or thermal model coming from the controller or the model builder
respectively (shown as box ”Model 1”). The model in a further step – depicted as box ”Discretization”
– is discretized which means that the macro elements defined within the XML file will be meshed to
a triangulation and the attributes (boundary conditions, material properties, ...) are applied to the re-
sulting finite elements.
The finite element method itself will be generously discussed in this document. After the discretiza-
tion, assembly is the next execution step and results in the FEM system of equations. The solver that
evaluates the stiffness matrix and the load vector that set up the system of equations is made available
by MATLAB and yields the solution to the defined model.
The postprocessor is finally a set of routines that offers data collection and visualization to the evalu-

2

1.1. Thesis definition

Figure 1.2.: Setting up a problem model

ator that either can initialize the next optimization step or set up a different physical model within the
same optimization step.

3

1. Motivation

T
he

si
s

Figure 1.3.: A detailed view to the optimization model

4

Chapter 2

State-of-the-art

First attempts of the finite element method were done in the 1940s [14]. The method, as it is known
today, was introduced by the end of the 50s [34]. Software engineering as a discipline had not yet
emerged because computing power was available only at a small number of facilities at that time.
NASA’s NASTRAN was the first known finite element software but not publicly available. Other
code came up from plenty of university departments with different approaches. Some of them were
marketed and do still exist in a modified form [11]. Much of the code was written in procedure-
oriented FORTRAN language which was fast but did not offer as many possibilities in design as does
object-oriented programming nowadays.

Besides any software paradigms, approaching an engineering problem to be numerically examined,
involves three basic steps that are common over any finite element software [9]. These are:

• preprocessing

• solution

• postprocessing

The preprocessing might be seen as the interface between the real world, where a physical phe-
nomenon does exist or a component is to be constructed, and the computer, where it is simulated.
The preprocessor takes a description of the problem as its input and prepares a model to be solved by
means of the finite element method. This usually involves meshing the problem geometry to discrete
finite elements whereupon the solution is approximated by simple mathematical functions such as
polynomials – so called basis functions.
The solution is obtained by solving a system of linear equations (SLE) which is assembled by taking
into consideration the geometry set up by the finite elements, material definitions, source definitions
and boundary conditions.
The obtained solution is then prepared for interpretation by the postprocessor. This might include
diagrams, physical values obtained by integration or a preparation of further models for a different
physical domain. Latter one is known as multiphysics.

Also the Institute for Fundamentals and Theory in Electrical Engineering has its main focus on
numerical computations [12]. In the early 1980s, the first version of EleFAnTs - the Electromagnetic
Field Analysis Tools – was released. These are a set of programs for a numerical treatment of

5

2. State-of-the-art

electromagnetic problems. Nowadays, EleFAnTs comprises a huge amount of assignments in two
and three dimensions:

• electrostatics

• time harmonic electric fields

• current flow

• time harmonic current flow

• transient current flow

• magnetostatics

• time harmonic eddy currents

• transient eddy currents

• steady state thermal

• transient thermal

EleFAnTs is used in industry, in an educational environment and also has interfaces to the world
wide web [23, 24]. Due to its long development period and thus, its reliability, EleFanTs will be used
to prove the results of this thesis.

The programs of EleFAnTs are also written in FORTRAN and therefor – as any other programs
written with a procedural or functional paradigm [35] – suffer from some constraints in:

• maintenance

• re-usability

• code readability

• expandability

Maintenance of procedural code is not an easy task as changing or adopting a small number of code
lines often forces to rewrite an extensive code thereafter.
Re-usability is mostly not restricted to programming code itself. Documentation of design and de-
scription of the program parts and especially distributing work areas to employees is difficult because
modules often overlap.
Code readability requires coding standards. Nonetheless, many employees are working in the same
code fragments in procedural programming that, of course, incorporates individual coding, comment-
ing and documentation.
Expanding procedural code with new functionality in many cases yields parallel code because new
features are not permitted by old code. This results into code running into million of lines and, cer-
tainly, also enlarges maintenance efforts[15].

The keywords above are substantially connected to modern software engineering and are somewhat
a must-have.

In 1990, a first paper on object oriented finite element analysis was released [7] that attracted many
other code developers and brought up a multiplicity of new approaches and design recommendations
for the three steps preprocessing, solution and postprocessing of finite element analysis.

Almost all publications suggest the same object-oriented architecture in the FEM kernel which is
shown in figure 2.1. It has macroelements that consist of several finite elements. In object-oriented
terminology this is a so called has-a relation. A finite element of triangular shape is set up of three

6

macroelement �nite element edge node1..* 1..* 1..*

Figure 2.1.: Object-oriented finite element analysis

Mesh Elem

Tri Tet Line

Tri3 Tri8 Tet4 Tet10 Line2 Line3

* *

Figure 2.2.: Generalization of the element classes, source: [4]

edges or four edges when it is a quadrilateral. An edge does exist of two nodes. In three dimensional
space, where a finite element could be a tetrahedra or hexahedra, this concept would be supplemented
by a face between the finite element and the edge. [8, 9, 16, 22, 29, 36]
In [22] an even more natural technique is inspired which breaks up the strict correlations from figure
2.1. Identifying the fact that a finite element is either defined by a set of nodes or a set of edges,
this is also offered within the object oriented design. The same is valid in three dimensions, where a
finite element is defined either by a set of nodes, or a set of edges or additionally by a set of faces. A
face would furthermore be given by a set of nodes or edges. Because no colossal advantages could be
identified, though, the strict hierarchy from figure 2.1 is obeyed within this thesis. The triangular finite
elements are set up by their three nodes each and the edges are created and numbered automatically.

Two basic ideas of object-oriented programming paradigm are encapsulation and inheritance. The
first one is the consolidation of stored data together with the methods that manipulate the data within
an object. The second one is the specialization of an object by inheriting its data and methods to
another object that describes the parent object more specifically.

Example: Figure 2.2 shows the concept proposed by [4]. It outlines a mesh that is a composition
of a number of general finite elements. The Elem class will hold properties and methods that are
common over any type of finite element in any dimension – e.g. the number of a finite element or the
computation of the local stiffness matrix.

7

2. State-of-the-art

Mesh Problem1 *

multiplicity

Figure 2.3.: Suggestion by Mai and Henneberger, source: [16]

The next level specializes the general Elem class. These are the Tri class for two-dimensional trian-
gular shaped finite elements, the Tet class for tetrahedrons in three dimensions and a Line class for
1-D computations. A triangular finite element can furthermore be a linear element with three nodes
and the corresponding Tri3 class or a triangular finite element with quadratic basis functions and cor-
responding six nodes and Tri6 class. Latter two types are currently supported by the implementation
introduced by this thesis.
The design of the supported implementation herein omits the second level, because only two-dimensional
computations have been implemented. The respective classes are the general FiniteElement class and
the FiniteElementT3 as well as the FiniteElementT6 class.

An in-depth suggestion is given in [16] for a general purpose object-oriented design of finite ele-
ment software with special attention to coupled problems. The problem and the mesh themselves are
treated as objects and can be linked to each other (figure 2.3). For example, one geometry mesh could
be linked to a current flow problem and a thermal problem.
To either problem (having the same mesh) different material and source definitions are taken into
consideration. E.g., for the current flow problem the material properties represent the electric con-
ductivity while the thermal conductivity must be supplied to the thermal problem. Herein, the problem
is a conglomerate of geometry, material and source definitions. Chapter 5 gives a detailed description.

Another very abstract approach can be found within the finite element class library FEMSTER
[3]. It was also motivated by the need of electromagnetic computations and is aimed to support any
kind of partial differential equation (PDE). The object-oriented design comes from a very abstract
mathematical definition of the finite element method and relies on a uniquely determined 4-tuple
(Σ,P,A,Q) where Σ is a geometric element, P is a finite element space defined on Σ, A is the set
of degrees of freedom defined on Σ and Q is a quadrature rule defined on Σ.

Implementations of object-oriented finite element software could be substantiated mainly in the
programming languages C++ and Java [16, 22, 28, 29]. Also the appliance of the Unified Modeling
Language (UML) – which is an international standard (ISO) for information technology [9] – is
being highly encouraged. The general-purpose modeling language UML is standardized and used for
object-oriented software engineering. Many proprietary as well as freely available tools supporting
UML do exist. The design for this thesis was made using the open-source tool StarUML [33].

Since March, 2008, MATLAB – the well known development environment for scientific and espe-

8

cially numerical computations – has come with native object-oriented programming support [18, 31].
It is an easy-to-learn language that contains all aspects of modern object-orientation. The IDE comes
with memory management similar to the Java runtime environment and has a very well integrated
debugger. Because no experience could be obtained in applying above design suggestions to object-
oriented MATLAB code, the idea was born to do this experiment oneself. Chapter 6 will discuss the
results.

9

Chapter 3

MATLAB

Talking about MATLAB many think of just another programming language of plenty. In fact, this is
only half of the truth. The MATrix LABoratory is an integrated development environment (IDE) for
technical algorithm design. It offers an interactive mathematical shell for doing quick calculations or
debugging purposes and a source code editor for writing bigger scripts and applications. MATLAB
moreover comes with many tools for managing code, files and data and offers a huge collection of so
called toolboxes for almost any engineering discipline.

The current version of MATLAB is 7.10 (R2010a), runs on Windows, Linux and MAC each with
32 bit and 64 bit as well. It is written in C and Java and has proprietary licensing.

MATLAB in its current development status is claimed to run specific tasks faster than compara-
tively with C or C++. It is also called a fourth generation programming language, a term that mainly
pursues marketing strategies. Some of the benefits, MATLAB offers, are:

• data visualization (2D and 3D graphics)

• data analysis

• built-in debugging

• profiling (i.e. testing for efficiency)

• interactive algorithm development

• HDF/HDF5 (a data format specifically for measurement data)

As a programming language MATLAB refers to multiple programming paradigms. It is imperative
meaning that it is formulated in statements each of which changes the program state. It is procedural.
This is often used as a synonym for imperative but introduces the concept of subroutines. A series
of statements can be executed at any point of the program. MATLAB is also an array programming
language which is a major difference to other popular programming languages. In addition to e.g.
integer and floating point types an array is also a basic type. Finally, since version 7.6 (R2008a)
released in March 2008, MATLAB comes with extensive support for object oriented programming.
That has made it so attractive for this diploma thesis.

Some of the features are:

• the classdef keyword defines a class that can have properties, methods and events

• event handling (not used herein)

11

3. MATLAB

• enhanced support by the development environment for object oriented programming

MATLAB features that were specifically used in this work are

• the superclass handle allows call-by-reference evaluation which was awkward in earlier re-
leases

• function handles allow the referencing of functions (e.g. used for the numerical quadrature
integration)

• packages allow a better modularization of an application (e.g. separation of preprocessor, FEM
and postprocessor)

• inheritance allows the specialization of classes (e.g. a finite element can be a triangle or quadri-
lateral)

• abstraction (e.g. every finite element has a Jacobian matrix but its calculation depends on the
shape)

• encapsulation is a basic object-oriented programming paradigm and defines the strict relation-
ships of data and its manipulation methods within an object

A weak point of MATLAB is that it is an interpreted programming language rather than a compiled
one which leads to heavy losses in computation speed.

12

Chapter 4

Theoretical qualification

4.1. Historical retrospective

While the nineteenth century physicist James Clerk Maxwell evolved the theoretical background of
electromagnetism, the twentieth century brought up the practical approach that is used today and
called The Finite Element Method or simply FEM. It is a numerical analysis technique in order
to obtain an approximated solution to a given engineering problem. An introduction is presented in
section 4.4.

Though nowadays FEM – sometimes also referred to as Finite Element Analysis (FEA) – mainly
emerged in the middle of the twentieth century one could say that it was already used centuries
before. Ancient mathematicians, for example, were using it to calculate the circumference of a circle
by taking the perimeter of a polygon that approximated the circle. Using an ”inner” polygon and an
”outer” polygon a lower and an upper boundary of the true circumference could be obtained and each
edge of the polygon is comparable to a finite element.

With regard to modern numerical computing the idea of FEM first came up in the years 1941 with
Russian-Canadian structural engineer Alexander Hrennikoff and 1942 with German mathematician
Richard Courant. Both independently had the idea of discretizing a second order partial differential
equation problem by meshing its domain into a finite number of subdomains. Courant was the first
to do this with triangular shape subdomains on the St. Venant torsion problem influenced by earlier
contributions of John William Strutt, 3rd Baron Rayleigh, Walther Ritz and Boris Galerkin. [14]

The basic method, as it is used today, was presented the first time by M.J. Turner, R.W. Clough,
H.C. Martin and L.J. Topp in their paper Stiffness and Deflection Analysis of Complex Structures [34]
released in 1956. In his paper The Finite Element Method in Plane Stress Analysis [27] R.W. Clough
from University of California, Berkley introduced the term finite element method. In Europe John
Argyris from University of Stuttgart gave momentum to advances in finite element science.

The finite element method in its originating time was mainly used for analysis in aircraft structure.
Olgierd Cecil Zienkiewicz, a Polish-British mathematician and civil engineer, together with Y.K.
Cheung brought up a broad interpretation and application of FEM for any type of field problems.
[19] With the awareness that the FEM equations could also be derived from the weighted residual
Galerkin method or the least squares approach the finite element method became attractive for applied
mathematics in order to solve both linear and nonlinear differential equations. This opened the door

13

4. Theoretical qualification

for applying FEM to electrical engineering, precisely: to Maxwell’s equations.

In 1965, NASA requested for proposal of the finite element software NASTRAN to which was given
a rigorous mathematical foundation in 1973 by Gilbert Strang and George Fix. [30] Finite element
software for electrical engineering is to be indebted to the work of the Estonian electrical engineer
Peter P. Silvester who released Finite Elements for Electrical Engineers [21] in 1983, still a standard
textbook on the subject.

To demonstrate the huge interest and the fast development that the finite element method has expe-
rienced, consider these facts: Subjecting FEM, in 1974 less than 10 books, in 1982 less than 40 books,
in 1990 approximately 400 books had been published. In the period from 1964 to 1991 more than
200 FEM symposia were proceeded. Searching for the terminology ”finite element” with AltaVista
search engine in 1991 brought up about 200.000 hits. Searching the same term in 2010 with Google
finds more than eight million entries. [14]

14

4.2. Field theory

4.2. Field theory

Before actually introducing Maxwell’s equations it seems advisable to take a brief reminiscence of
field theory which is a prerequisite of understanding Maxwell’s theory.

4.2.1. Field

A field is a state in space. This means that to every point of space a physical quantity is associated.
The physical quantity can either be scalar (e.g. the temperature in a room) or vectorial (e.g. the
gravitation at a certain location on the surface of the earth). Moreover there also exist tensor and
spinor fields though these are of minor importance herein.

Mathematically a scalar field is described by

u(x, y, z) = u,

where u introduces the electric potential. A vector field is described by

E(x, y, z) =

 Ex(x, y, z)

Ey(x, y, z)

Ez(x, y, z)

 = E,

where Ex, Ey and Ez are the components of the electrical field in x-, y- and z-direction.

4.2.2. Flux

Flux is the sum (integral) of lines of forces (e.g. electrical field or magnetic field) through a given
surface in space. Consider water flowing through a pipe and the magnetic field through a conductor
loop. Flux always implies a vector field and is defined as

φ =
x

a
Bda, (4.1)

where B is the magnetic induction and da the area element.

4.2.3. Sources and drains as field cause

Free electric charges cause an electric field whereupon these charges have been separated from their
neutralizing countercharges. Positive charges are sources of the electrical field whereas negative
charges are drains. Therefor one also talks about source fields.

For mathematical purposes one has to distinguish between four occurrences of electric charge:

• free charges at discrete positions (e.g. electrons q− and ions q+),

• a density of volume charge ρ and

• a density of surface charge σ

• a density of line charge τ

15

4. Theoretical qualification

Note: There is no comparable magnetic charge though there do exist sources of the magnetic field
intensity H (not of B) e.g. on ferromagnetic materials.

Now consider a closed surface ac within an electric field E that encapsulates a finite volume v. A
quantity of field vectors is ”pointing into” the surface, another quantity is ”pointing out” of it. The
electric field is caused by sources and drains inside and outside of v. We are now investigating the
flux through ac using equation (4.1):

φc =
{

∂v
Edac. (4.2)

The value of φc is called surface flux or fertility of the volume and gives information about the
volume v.

• If φc > 0 more field vectors are pointing out of the surface than into it meaning that the volume
has more sources than drains.

• If φc < 0 the volume has more drains than sources.

• If φc = 0 there are as many sources as there are drains inside the volume also permitting that
there are neither sources nor drains.

We have now gathered information about the volume in its entirety and the next arising question is
the exact position of the sources and drains within the volume. This leads to the term of divergence.

4.2.4. Divergence or source density

The fertility of a volume is an integral statement meaning that the information is gathered by summing
up all drains and sources within the volume. For the derivation of the source density (where are the
sources and drains) we do the thought experiment of shrinking the surface more and more until only
one volume element dv remains. Mathematically this is represented by limit calculation of equation
(4.2):

lim
v→0

1

v

{

∂v
Edac = divE (4.3)

The divergence is a differential (local) statement with scalar value and denotes the fertility of an
infinitesimal volume element dv. Its calculation specification in Cartesian coordinates, demonstrated
with the electrical field is:

divE =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
= ∇E (4.4)

where∇ is the Nabla operator.

4.2.5. Gauß’ theorem

By definition the divergence is the fertility of an infinite volume element. Multiplying this fertility
(per volume element) with the volume element dv itself and doing a summation (integration) of all
volume elements of a finite volume v gives the fertility of the whole volume. We did already calculate
this fertility in equation (4.2), therefor:

16

4.2. Field theory

y

v
divEdv =

{

∂v
Edac (4.5)

This is Gauß’ theorem stating that the electric flux through a surface is caused by (and therefor
equal to) the sources and drains inside of the surface.

An extension regards the different types of charges we have to take into consideration. Using the
electric displacement field D = εE with the permittivity ε, (4.5) becomes:

y

v
divDdv =

{

∂v
Ddac =

∑
qi︸ ︷︷ ︸

discrete

+
y

ρdv︸ ︷︷ ︸
volume

+
x

σda︸ ︷︷ ︸
surface

+
w
τdl︸ ︷︷ ︸

line charge︸ ︷︷ ︸
sources of the electric field

(4.6)

4.2.6. Eddy fields

In 4.2.3 source fields have been discussed. Their lines of forces (e.g. electric flux lines) start in
positive charges and end in negative countercharges and therefor have an origin (source) and a ter-
mination (drain). There do also exist fields whose lines of forces are closed and have neither an
originating point nor a terminating one. Consequently sources and drains cannot be the cause of these
fields.

An experiment conducted by Michael Faraday gives information about this type of fields. Consider
a vertically aligned conductor and a magnetic needle. Moving the needle around the conductor adjusts
the needle in tangential direction to the conductor at any point. Hence, the force is axially symmetric
and the Faraday lines of force (or magnetic flux lines) are closed. The field cause is the current flow
within the conductor. Fields of this type are called eddy fields.

Whilst for source fields the surface integral is characteristic for investigating sources and drains,
for eddy fields the line integral along the closed boundary line of an area is representative for locating
eddy causes. Finding such an integral having a value different from zero gives indication for eddy
causes. Consider the magnetic field intensity H:

Θ =
z

∂a
Hdl (4.7)

The scalar value Θ is called the circulation. It gives information as to whether there are eddy
causes within the area that is encapsulated by the closed line integral and their quantity. However, it
is an integral (global) statement of the area and therefor does not contain information about the exact
position of eddy causes. In the above case, Θ corresponds to the magnetic circuit voltage.

4.2.7. Curl or eddy density

Doing the same thought experiment that uncovered the divergence leads to the curl of an eddy field.
Instead of shrinking a volume to one volume element, the loop of the closed line integral (4.7) is
reduced until it circles only one area element da. Mathematics allows this by appliance of limit
calculation of equation (4.7):

lim
a→0

1

a

z

∂a
Hdl = (rotH) · n (4.8)

17

4. Theoretical qualification

Whilst (4.7) is an integral statement in Cartesian coordinates (4.8) is a differential statement. The
expression rotH is called curl and describes the infinitesimal rotation of a three-dimensional vector
field. It gives a vector at every point of the field whose direction is the axis of rotation and whose
length is the magnitude of rotation of the field. The right side of (4.8) introduces the normal vector
n of the area element da and makes it consistent with the left side that is a scalar expression. The
calculation specification of the curl in Cartesian coordinates is

rotH =

∣∣∣∣∣∣∣
ex ey ez
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣∣ = ∇×H (4.9)

4.2.8. Stokes’ theorem

Similarly to Gauß’ theorem the curl is the circulation of an infinitesimal area element. Again, we
multiply the circulation per area element with the area element da itself and sum up (integrate) all
area elements of a finite area a. This gives the circulation of the area which is already given with
equation (4.7). Therefor:

x

a
rotHda =

z

∂a
Hdl (4.10)

This is Stokes’ theorem. Curls are intensifying or lessening each other in small regions and com-
plement to a resulting circulation along the closed boundary of the area.

18

4.3. Maxwell’s equations

4.3. Maxwell’s equations

Having field theory returned to mind now gives the opportunity to eventually introduce James Clerk
Maxwell’s famous equations. These do

• relate the electric field to its sources: the electric charge density

• relate the magnetic field to its sources: the electric current density

• relate the electric field to the magnetic field and

• relate the magnetic field to the electric field.

The relations are described by four partial differential equations:

Gauß’ law Electric charges are the source of an electric field (or: electric charges cause an electric
field) – this is the differential statement. The field starts in positive charges and ends in negative
countercharges. And: The electric flux through a closed Gaußian surface is caused by the sources
and drains within the volume that is enclosed by the surface – this is the integral statement.

differential form integral form

divD = ρ
{

∂v
Ddac =

y

v
ρdv = Q(v)

(4.11)

Gauß’ law for magnetism In contrast to electric charges there are no comparable magnetic
charges - this is the differential statement. Magnetic lines of forces are closed and have neither an
origin nor an ending. The magnetic flux through a closed Gaußian surface is zero - this is the integral
statement. Magnetic lines of forces that ”flow into” a volume must also ”flow out” of the volume
because there cannot be sources or drains. Consequently the total flux is zero.

differential form integral form

divB = 0
{

∂v
Bdac = 0

(4.12)

Faraday’s law of induction A changing magnetic field induces an electric field. Every change
of the B-field leads to a counteracting E-field - this is the differential statement. The electrical circu-
lation along the closed boundary of an area equals the negative time varying aspect of the magnetic
flux through the area - this is the integral statement.

differential form integral form

rotE = −∂B
∂t

z

∂a
Edl = − ∂

∂t

x

a
Bda = −∂ΦB

∂t

(4.13)

19

4. Theoretical qualification

Ampére’s circuital law is the analogy to Faraday’s law of induction for magnetic fields. A
magnetic field can be generated either by electric current or a changing electric field. The eddy
causes of a magnetic field are electric current densities (e.g. currents in a conductor) and displacement
currents (e.g. when loading a capacity) - this is the differential statement. The magnetic circulation
along the closed boundary of an area is equal to the electric current and the displacement current
through the area - this is the integral statement.

differential form integral form

rotH = J +
∂D

∂t

z

∂a
Hdl =

x

a
Jda +

d

dt

x

a
Dda = I +

∂ΦD

∂t

(4.14)

Summarizing above equations in terms of free charges and currents and in terms of total charges
and currents and combing them with the material equations gives the final set of Maxwell’s equations:

Formulation in terms of total charges

divE =
ρ

ε0
(4.15a)

divB = 0 (4.15b)

rotE = −∂B
∂t

(4.15c)

rotB = µJ + µε
∂E

∂t
(4.15d)

Formulation in terms of free charges

divD = ρfree (4.16a)

divB = 0 (4.16b)

rotE = −∂B
∂t

(4.16c)

rotH = J +
∂D

∂t
(4.16d)

Material equations

D = εE ε = ε0εr (4.17a)

B = µH µ = µ0µr (4.17b)

20

4.3. Maxwell’s equations

4.3.1. Electro- and magnetostatics - The Laplace-Poisson equation

Static in general means that there is both no temporal change and no change of the energy of a system.
The corresponding mathematical notation is

∂

∂t
= 0 (4.18a)

dW = 0 (4.18b)

Applying this presumption to Maxwell’s theory gives the basic equations for electro- and magne-
tostatics:

divD = ρ (4.19a)

rotE = 0 (4.19b)

D = ε0εrE = εE (4.19c)

divB = 0 (4.19d)

rotH = J (4.19e)

B = µ0µrH = µH (4.19f)

The first three equations of (4.19) involve electrical quantities only while the last three equations
involve magnetic quantities only. The coupling between the electric and the magnetic field disappears
in a static system. This is because there is no temporal change and no current flow. Consequently the
electric and magnetic field can be treated independently from each other.

Because the electric field is irrotational – rotE = 0 – it can be described as the gradient of a scalar
potential field u:

E = − grad u,because

rotE = rot (− grad u)

= ∇× (−∇u)

= (∇×∇) · (−u) = 0.

(4.20)

With the given sources of the electric flux and assuming an isotropic permittivity ε = εrε0

divD = ε divE = ρ (4.21)

and using the scalar potential u yields the

Laplace-Poisson equation

div (grad u) = ∆u = −ρ
ε

(4.22)

21

4. Theoretical qualification

This is called the Laplace-Poisson equation with the Laplace operator ∆.

∆ = div grad =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4.23)

in Cartesian coordinates. Hence,

∆u =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = −ρ(x, y, z)

ε(x, y, z)
(4.24)

Solving this equation for electrostatic, magnetostatic, static current flow and thermal problems is
the subject of this work. Its practical implementation is the topic of the following chapter.

22

4.4. Finite element Method

Physical occurence / Technical process

Computational experiments

Implementation / Maintainance of software

NUMERICS

Physical / Technical model

Maxwell theory

Mathematical model

differential / integral equations

Mathematical examination

Solution existence and uniqueness, ...

Interpretation of results

Comparison with e.g. EleFAnT2D

Formulation of the problem
using a potential function

Setting up an operator equation

Accumulation of a quadratic functional and
Ritz-Galerkin equations

Realization by means of finite elements

Figure 4.1.: Simulating a technical process

4.4. Finite element Method

The last section has acquainted the reader with Maxwell’s equations in three-dimensional space.
Within the next pages we do a preparation of the theory in order to develop the practical imple-
mentation. Thus the focus is now switched from three- to two-dimensional space with coordinates
x and y. As an introduction to the finite element method a first global view to the whole process of
simulating a technical process is highlighted in figure 4.1 which is leaned to [13]:

Figure 4.1 shows all steps that need to be carried out in order to come from a physical occurrence in
nature to interpretable and mathematically correct results with the help of computerized simulation.
The actual focus in this thesis is numerics whose four basic steps of application flow should be stated
once more at this point:

• Formulation of the problem using a potential function.

23

4. Theoretical qualification

• Setting up an operator equation.

• Accumulation of a quadratic functional and Ritz-Galerkin equations.

• Realization by means of finite elements.

4.4.1. Ritz-Galerkin method

Getting to know the finite element method with all mathematical aspects makes a deep insight into
variational calculus indispensable. For an understanding of the essentials of this work this is not
mandatory and the interested reader is referred to [2] and [25]. Rather, we apply the results of varia-
tional calculus to the subject Laplace-Poisson equation (4.22).

The assignment to be solved is

Au !
= f (4.25)

where A denotes a linear, symmetric and positive definite operator to the variable u and f is any
function.

Following to variational calculus assignment (4.25) can be solved by minimizing

W (u) =
1

2

x

Ω
uAudΩ−

x

Ω
ufdΩ (4.26)

Hence, assuming ū is the exact solution to assignment (4.25) then (and only then!)

W (ū) = minimum!⇐⇒ Aū = f (4.27)

Until this point, we have looked at the continuous potential function u(x, y). Because analytical
solutions do exist only to a very limited amount of impractical assignments one has to be content to
switch from continuous space to discrete space. The potential function u is now approximated with
the discrete potential function un:

u ≈ un =
n∑
i=1

aifi +
n+m∑
k=n+1

ukfk︸ ︷︷ ︸
uD

(4.28)

Some notes:

• A limited amount of discrete points m+ n in two-dimensional space is considered now.

• The index k refers tom points whose potential values uk are known from the problem definition
– so called Dirichlet points (or Dirichlet boundary conditions).

• The index i refers to n points whose potential values ai are not known and therefor subject of
the computation. The determination of the coefficients ai is the solution of the problem.

• The problem has n unknowns – therefor n is the degree of freedom of the problem.

• All potential values at continuous coordinates between this set of discrete points are interpolated
by the basis functions fk and fi respectively. Their shape is subject of an oncoming discussion.

24

4.4. Finite element Method

Before inserting the discretized potential function (4.28) into functional (4.26) two important deriva-
tives are illustrated:

∂un
∂ai

=
∂

∂ai
(uD + a1f1 + a2f2 + · · ·+ aifi + · · ·+ anfn) = fi (4.29)

∂

∂ai
(Aun) =

∂

∂ai
[A (uD + a1f1 + a2f2 + · · ·+ aifi + · · ·+ anfn)] =

=
∂

∂ai
[A (aifi)] = Afi (4.30)

Inserting (4.28) into (4.26) gives

W (un) =
1

2

x

Ω
unAundΩ−

x

Ω
unfdΩ (4.31)

Minimizing this functional gives the solution to assignment (4.25) with the discretized potential:

Aun = f with un ≈ u (4.32)

The coefficients ai are the unknowns to be determined. The functional has its minimum when all
partial derivatives in respect to the coefficients ai are zero. This is also known as the first variation δ
of the functional:

δ(W) =
∂W (un)

∂ai
= 0 i = 1, 2, . . . , n (4.33)

Hence, solving these n equations yields the solution of the problem.

Evaluating (4.33) gives

∂W (un)

∂ai
=

1

2

x

Ω

∂un
∂ai︸︷︷︸
=fi

AundΩ +
1

2

x

Ω
un

∂

∂ai
(Aun)︸ ︷︷ ︸

=Afi

dΩ−
x

Ω

∂un
∂ai︸︷︷︸
=fi

fdΩ =

=
1

2

x

Ω
fiAundΩ +

1

2

x

Ω
unAfidΩ︸ ︷︷ ︸

Symmetry: fiAun=unAfi

−
x

Ω
fifdΩ =

=
x

Ω
fiAundΩ−

x

Ω
fifdΩ =

=
x

Ω
fi (Aun − f) dΩ = 0 (4.34)

Summary:

Ritz-Galerkin equations

un = uD +

n∑
i=1

aifi (4.35a)

x

Ω
fiAundΩ =

x

Ω
fifdΩ i = 1, 2, . . . , n (4.35b)

25

4. Theoretical qualification

Considering that fi are the basis functions and f is the right side of equation (4.25). Equation
(4.35b) is equal to (4.34) with known function f brought to the right side.

Having elaborated the Ritz-Galerkin equation (4.35b) the operator A can be substituted with the
negative Laplace operator −∆ that is linear, symmetric and positive definite. Therefor the Laplace-
Poisson equation is written as

−∆u =
ρ

ε
(4.36)

Appliance of the Laplace-Poisson equation to the Ritz-Galerkin equation (4.35b) gives

x

Ω
fi(−∆un)dΩ =

x

Ω
fi
ρ

ε
dΩ i = 1, 2, . . . , n (4.37)

Bringing ε to the left side and using div grad as notation has

−
x

Ω
fi(div ε grad un)dΩ =

x

Ω
fiρdΩ i = 1, 2, . . . , n (4.38)

Note: ε is a tensor that can represent anisotropic materials. This has also been implemented into
the software. Further considerations will treat ε as a scalar dependent on a position.

By the use of partial differential integration and Green’s identity [see 13, sec. 4.2] (4.38) becomes

−
x

Ω
(grad fi)T ε grad undΩ =

x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, . . . , n (4.39)

and substituting un from (4.28)

−
x

Ω
(grad fi)T ε grad

n∑
j=1

ajfjdΩ =
x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, · · · , n (4.40)

Because uD is defined on boundary ΓD ⊆ ∂Ω only and Ω ∩ ∂Ω = ∅ it does not appear on the left
side of the equation. Index i is already used for equations (4.34) and (4.35b) respectively, thus (4.40)
introduces index j.

Considering the linearity of the Laplace operator the sum can enclose the integral:

−
n∑
j=1

aj
x

Ω
(grad fi)T ε grad fjdΩ =

x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD i = 1, 2, · · · , n (4.41)

Summing up the left and right side for all indexes i gives

n∑
i=1

n∑
j=1

aj
x

Ω
(grad fi)T ε grad fjdΩ = −

n∑
i=1

(x

Ω
fiρdΩ +

w

ΓD

fiuDdΓD

)
(4.42)

26

4.4. Finite element Method

which can also be written in matrix form:

Ka = f (4.43)

with

K =

s

Ω (grad f1)T ε grad f1dΩ · · ·
s

Ω (grad f1)T ε grad fndΩs
Ω (grad f2)T ε grad f1dΩ · · ·

s
Ω (grad f2)T ε grad fndΩ

...
. . .

...s
Ω (grad fn)T ε grad f1dΩ · · ·

s
Ω (grad fn)T ε grad fndΩ

a =

a1

a2
...
an

 and f =

−

s
Ω f1ρdΩ−

r
ΓD

f1uDdΓD

−
s

Ω f2ρdΩ−
r
ΓD

f2uDdΓD
...

−
s

Ω fnρdΩ−
r
ΓD

fnuDdΓD

 (4.44)

Some notes:

• Matrix K is an (n×n) square matrix. Coming from structural analysis it is called the stiffness
matrix.

• Vector f has n entries and is announced as the load vector.

• Setting up the stiffness matrix and the load vector is called assembly of the finite element
system of equations.

This has been a very brief inspection of the Ritz-Galerkin method that should now be introduced
as the finite element method implemented within this thesis. This inspection misses a lot of prelim-
inary mathematical examinations like the existence of a solution, its uniqueness and the demand for
its smoothness. The mathematically experienced reader can find an excellent introduction – at first
into one-dimensional, on with higher-dimensional – FEM with lots of examples and mathematical
background in book Methode der finiten Elemente für Ingenieure [13] by Michael Jung and Ulrich
Langer.

The missing part at this point is the basis functions fi and will be outlined within the next few
pages.

4.4.2. Finite Elements

Although the code implementation is prepared for any kind of finite element shapes and even for
the third dimension, the focus at the current development state – and in this work – is laid on two-
dimensional triangular shaped finite elements. As already described in 4.3.1, the static problem is
modeled within a domain Ω with boundary ∂Ω = Γ = ΓE∪ΓD (for electrostatic problems). Because
analytical solutions practically do not exist in continuous space the domain Ω is discretized in a finite
amount of subdomains – so called finite elements T (r) with r being the index of the elements.

27

4. Theoretical qualification

The discretization must provide these assumptions:

• The union of all finite elements should approximate the continuous domain Ω to its best effort:

Ω ≈
R⋃
r=1

T (r) (4.45)

• Any two finite elements T (r) and T (r′) must apply to:

T (r) ∩ T (r′) =

∅
one common node

one common edge

(4.46)

We call this discretization a triangulation. Every node of the triangulation gets a unique global
identification number.

4.4.2.1. Basis functions

Basis functions are (simple) functions that are defined for each node of the triangulation. Take any
node of the triangulation: An important characteristic of the basis function defined for this node is
that

• its value is 1 at the position of the node and

• its value is 0 at the position of any other node and

• its value is different from 0 only within the finite elements that share this node.

These basis functions will ”span” the solution over the global domain Ω. Figure 4.2 illustrates the
basis functions for two neighboring nodes P14 and P43 of a sample triangulation. The adjacent finite
elements of node P14 are highlighted.

x
y

u

1

P14

1

P43

Figure 4.2.: Basis functions

The global shape of a finite element is obtained by a projection from a local reference element.
The reference element is defined by the triangle

28

4.4. Finite element Method

T̂ = {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} (4.47)

with local coordinates ξ and η. The left diagram of figure 4.3 shows the reference element in local
space.

The three basis functions corresponding to the three local nodes α = {1, 2, 3} over this reference
triangle are

f̂α(ξ, η) =

α = 1 : 1− ξ − η
α = 2 : ξ

α = 3 : η

(4.48)

Of course, these functions are not defined arbitrarily and must also apply to certain presumptions.
A deeper investigation can be found in [13].

In order to link local coordinates (ξ, η) of the reference element to global coordinates (x, y) of the
problem domain the following transformation is applied:

(
x

y

)
= J(r)

(
ξ

η

)
+

(
x

(r)
1

y
(r)
1

)
(4.49)

with the Jacobian matrix

J(r) =

[
x

(r)
2 − x

(r)
1 x

(r)
3 − x

(r)
1

y
(r)
2 − y

(r)
1 y

(r)
3 − y

(r)
1

]
(4.50)

where (x1, y1)(r), (x2, y2)(r) and (x3, y3)(r) are the global coordinates of nodes 1, 2 and 3 of finite
element r. The structure of the Jacobian matrix J(r) is defined for each finite element and dependent
on its global deformation.

The inverse transformation from global coordinates (x, y) to local coordinates (ξ, η) is non-linear
for finite elements of higher order and cannot be stated in a similar simple form. It is described in the
section dealing with the postprocessor of the next chapter.

Figure 4.3 shows the transformation from local to global coordinates. The reference element T̂ on
the left has local nodes P̂1, P̂2 and P̂3 and represents – for example – finite element T (4) with global
nodes P2, P5 and P7 of a sample triangulation.

29

4. Theoretical qualification

1

10 ξ

η

P̂1 P̂2

P̂3

T̂

x

y

T (4)

P2

P5

P7

Figure 4.3.: Transformation from local to global coordinates

4.4.3. Assembly

With the concept of finite elements and its basis functions it is now time to develop the stiffness matrix
K and the load vector f shown in (4.44). This is called assembly.

The left side of equation (4.42) is:

n∑
i=1

n∑
j=1

aj
x

Ω
(grad fi)T ε grad fjdΩ (4.51)

The continuous domain Ω has been discretized by a triangulation – see (4.45). Thus, the integration
is approximated using all subdomains of the triangulation or the finite elements T (r), respectively:

R∑
r=1

n∑
i=1

n∑
j=1

aj
x

T (r)
(grad fi(x, y))T ε grad fj(x, y)dxdy︸ ︷︷ ︸

=0 if node Pi or node Pj /∈ T (r)

(4.52)

Considering that the basis functions are different from zero only in one node and the scope of its
adjacent finite elements it is sufficient to evaluate integration (4.52) only for nodes that belong to the
current finite element r of the outmost sum:

R∑
r=1

∑
i(r)

∑
j(r)

aj
x

T (r)
(grad fi(x, y))T ε grad fj(x, y)dxdy (4.53)

with

i(r) =
{
i : Pi ∈ T (r)

}
(4.54)

j(r) =
{
j : Pj ∈ T (r)

}
(4.55)

30

4.4. Finite element Method

Basis functions fi and fj in equation (4.53) are still formulated in global space with coordinates
x and y. If these were formulated in terms of local space it was possible to do all computations by
means of the local reference element T̂ .

A linkage between global and local nodes has to be implemented:

α↔ i = i(r)(α) (4.56)

β ↔ j = j(r)(β) (4.57)

This means: Taking a certain finite element T (r) with three global nodes the above equation states
that it is known which global node corresponds to which local node of the reference element.

With some conversions that can be reconstructed in [13, pages 208-211] equation (4.53) becomes

R∑
r=1

3∑
α=1

3∑
β=1

aβ
x

T̂
(grad f̂α(ξ, η))T ε̂ grad f̂β(ξ, η)dξdη =

R∑
r=1

K(r) (4.58)

with K(r) being the element stiffness matrix of finite element T (r):

K(r) =

3∑
α=1

3∑
β=1

aβ
x

T̂
(grad f̂α(ξ, η))T ε̂ grad f̂β(ξ, η)dξdη (4.59)

In analogy there is the element load vector f (r). Neglecting the boundary condition term on the
right side of (4.42) –

r
ΓD

fiuDdΓD – and using local scope formulation, it becomes:

f (r) =
3∑

α=1

x

T̂
f(x(ξ, η), y(ξ, η))f̂α(ξ, η)

∣∣∣det J (r)
∣∣∣ dξdη (4.60)

where x(ξ, η) respectively y(ξ, η) is the local-to-global transformation (4.49).

The association of local and global nodes is provided by the element coherence matrix C(r). It is
a (α× i) matrix and defined for every finite element r:

C(r)(α, i) =

{
1, if i is the global node number of local node α

0, otherwise
(4.61)

with (α, i) being the row and column indices.

The element stiffness matrix K is now constructed with:

K =
R∑
r=1

(
C(r)

)T
K(r)C(r) (4.62)

and the load vector f with:

f =
R∑
r=1

(
C(r)

)T
f (r) (4.63)

31

4. Theoretical qualification

The solution of the linear equation system (4.43) are the coefficients ai:

a = {a1, a2, . . . , an} = K−1f (4.64)

Practical problems usually yield several thousand to million coefficients ai and the solution cannot
simply be gathered by inverting the stiffness matrix to K−1. For small problems Newton’s method
might be sufficient to solve equation (4.64). Large problems and higher-dimension problems claim
for gradient descent methods like the conjugate gradient method and numerous varieties of it.

The solution to (4.64) is an issue to further developments beyond this thesis. In the implementation
the solution step is abandoned to MATLAB.

4.4.4. Integration of boundary conditions

Neumann boundary conditions Integrating the Neumann boundary condition term of (4.42)
into the FEM system of equations changes the load vector f as can be seen in (4.44). A similar
approach, as done setting up the load vector f , is depicted in [13] in section 4.5.3 (pages 219 et seq.).

As with the whole domain Ω, the boundary ∂Ω is partitioned into finite elements. These are not
two-dimensional triangles but one-dimensional straight lines E(e). The letter E means edge and e is
the index. There also exists a reference element Ê which is a one-dimensional straight line with local
coordinate ξ within the interval [0, 1]. It has two local nodes at ξ = 0 and ξ = 1. This construction
leads to an edge element load vector f (e):

f (e) =
2∑

α=1

w

Ê
uD(ξ)f̂α(ξ)dξ (4.65)

Together with an edge element coherence matrix C(e), that relates the two local nodes of the edge
to the global nodes of the problem discretization, the Neumann boundary conditions can be integrated
into the FEM system of equations:

f = f + C(e)T f (e) (4.66)

For Cauchy boundary conditions, also an edge element stiffness matrix must be computed and
integrated into the stiffness matrix K. The interested reader is referred to [13] for further details on
this technique.

Dirichlet boundary conditions For the demonstration of how Dirichlet boundary conditions
can be integrated, an assembled FEM system of equation with two unknown node values and one
known Dirichlet node value is imagined: k11 k12 k13

k21 k22 k23

k31 k32 k33

 ·

a1

ā2

a3

 =

f1

f2

f3

 (4.67)

Assuming ā2 as the known value, it can be brought to the right side:

32

4.4. Finite element Method

 k11 0 k13

k21 0 k23

k31 0 k33

 ·

a1

ā2

a3

 =

f1 − k12ā2

f2 − k22ā2

f3 − k32ā2

 (4.68)

Deleting the second row of the stiffness matrix and the load vector and deleting the second column
of the stiffness matrix yields the final FEM system of equations:[

k11 k13

k31 k33

]
·
{
a1

a3

}
=

{
f1 − k12ā2

f3 − k32ā2

}
(4.69)

This is called homogenizing. The general approach is:

• Set aj = uD(xj , yj) for all indices j of known coefficients.

• Correct right side of the FEM system of equations:

fi = fi −
∑
j

K(i, j)aj ∀i 6= j (4.70)

• Delete rows j of K and f and columns j of K.

33

4. Theoretical qualification

4.5. Quadrature integration

Quadrature integration is the common way to numerically approximate integral terms. Section 4.5.5
of [13] shows a deduction.

The approximation is
x

Ω
f(ξ, η)dξdη ≈

l∑
i=1

wif(ξi, ηi) (4.71)

The method is, to evaluate and sum up a function f(ξ, η) at so called supporting points. These l
points are weighted with weights wi. Table 5.3 on page 67 lists different configurations of quadrature
integration.

Of course, this chapter was only an outline of the vast theoretical complexity of the finite element
method. Anyway, it is assumed that the reader does already have experience with this topic. Therefor,
the theoretical overview should be sufficient in order to understand the actual implementation of the
algorithm that will be discussed in-depth within the next chapter.

34

Chapter 5

Practical approach

This chapter describes and discusses the practical realization of the concepts as depicted by the last
chapter. Since the initiation of the project on August 5th, 2008, the implementation was referred to as
FEMtastic. The name is derived from the word fantastic, obviously, and is thought to set the goal of
the project.

5.1. Implementation schemata

In order to obtain a solution to an electrostatic, magnetostatic, static current flow or thermal problem,
the basic approach is similar to any other finite element application. Figure 5.1 shows the schema of
FEMtastic. Each block on the left side resembles one module in FEMtastic and represents one basic
step of the solution approach.

Preprocessor The preprocessor is the leadoff interface between the user and the framework. The
user defines the assignment by providing an adequate XML file. It is interpreted by the parser (that is
depicted as the top right XML block) and its information is incorporated into the preprocessor.

The geometry of an assignment is composed of macro elements. FEMtastic is thought to be capa-
ble of building any two-dimensional geometry. This has been realized by implementing an efficient
up-to-date algorithm within MATLAB. The algorithm applies boolean operations to polygons. These
operations are union (A or B), intersection (A and B) and subtraction (A and not B). It was en-
gineered by Francisco Martı́nez, Antonio Jesús Rueda and Francisco Ramón Feito and presented in
their article A new algorithm for computing Boolean operations on polygons [17] in Computers and
Geosciences journal in 2009. The Martinez block of the diagram corresponds to the algorithm. It ap-
plies the boolean operations to the macro elements (both are defined within the XML file) and passes
back the finalized geometry to the preprocessor.

The final job of the preprocessor is to provide a triangulation of the geometry to the finite element
method. This is achieved with the MATLAB toolbox mesh2d [6] by Darren Engwirda. It uses
quadtree decomposition and Delaunay triangulation and produces meshes of very high quality. The
algorithm is described in [5]. It is a modification of [20].

35

5. Practical approach

PREPROCESSOR

FINITE ELEMENT METHOD

POSTPROCESSOR

Discretization

Assembly

Solving

Problem setup

XML

MESH 2D

MARTINEZ

Data retrieval

Visualization

0 5 10 15 20

-4

-2

0

2

4

6

8

10

12

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Matlab >> _

Figure 5.1.: Overview of FEMtastic modules

36

5.1. Implementation schemata

Finite Element Method The finite element method is the next block in the application flow. It
takes the geometry data provided by the preprocessor as its input. In a first step the input data gets
discretized. That is, for each node of the triangulation a node object is created and for each triangle a
finite element object is created. Both types of objects are linked to each other appropriately and initial
computations (e.g. the Jacobian matrices) are done.

In the following assembly step the stiffness matrix and the load vector are created by evaluating
the integrals as shown in 4.4.1 using numerical quadrature. While Neumann boundary conditions are
considered implicitly within the FEM system of equations, Dirichlet boundary conditions are worked
in using homogenization as discussed in 4.4.4.

Solving the system of equations is the last duty of the finite element method. As mentioned in
the introduction of this thesis this is completely delegated to MATLAB inbuilts. The solution are the
unknown node potential values. These officiate as the input of the final postprocessing step.

Postprocessor The postprocessor, again, can be seen as an interface between the framework and
the user. It assists in interpreting the results and preparing data for further computations. A set of
routines provides data acquisition and visualization. Though the postprocessor is a self-contained
module, it accesses methods implemented within the FEM module. This is useful as some function-
ality can be easily programmed e.g. into finite element objects and do not need to be duplicated as
part of the postprocessor module.

Each module illustrated in 5.1 is realized as a MATLAB object. The necessary routines are exe-
cuted upon the object and it is passed to the next one. A complete application workflow is shown with
the next listing:

Listing 5.1: FEMtastic workflow

1 % example.m

2

3 % create modules

4 PREPROC = PREPROCpack.PREPROC();

5 FEM = FEMpack.FEM();

6 POSTPROC = POSTPROCpack.POSTPROC();

7

8 % Preprocessor, process XML file

9 PREPROC = ProcessXMLFile(PREPROC, ’example.xml’);

10

11 % FEM, discretize, assemble and solve

12 FEM = discretize(FEM, PREPROC); % PREPROC -> FEM

13 FEM = assemble(FEM);

14 FEM = solve(FEM);

15

16 % Postprocessor, plot a graph

17 POSTPROC = init(POSTPROC, FEM); % FEM -> POSTPROC

18 plotValue(POSTPROC);

37

5. Practical approach

The creation and initialization of the three modules is done on lines 2 to 4. The next command on
line 9 handles an XML file to the preprocessor and instructs it to process the file. The execution steps
of the first module are now finished and on line 12 one can see how the state of the preprocessor is
passed to the FEM object. There, the discretization, assemble and solve routines are executed and the
state is passed to the postprocessor as shown on line 17. Finally, the last command plotValue()
tells the postprocessor to create a graph of the solution and present it to the user.

38

5.2. Input handling – XML, XSD

MacroElementsModelFEMtastic

Geometry

BoundaryConditions

Material

Source

MacroElement
1..∞

MacroElements

Figure 5.2.: FEMtastic XML schema definition

5.2. Input handling – XML, XSD

An input XML file is used in order to define the actual problem that is subject to be solved. The
structure of this file is defined within the XML schema definition file FEMtastic.xsd. Figure A.1 in
appendix A.1 on page 112 shows the complete XML tree.

The root element must have the name FEMtastic and is shown in figure 5.2. Its children are
one or more models (problems) to be solved. Indeed, FEMtastic supports only one model at the
current development state. Of course, splitting up different models to different input XML files is a
workaround.

A model furthermore is composed of MacroElements (plural!). This is a set of containers that hold
at least one MacroElement (singular!). Typically a problem will be set up with one MacroElements
container. The motive of having more than one container is the combination of a set of macro elements
that share common properties. This has not been implemented so far.

Eventually, a MacroElement is set up of four properties:

• A polygon defines the geometry of the macroelement.

• The boundary conditions set up properties on the border (one or more edges) of the macroele-
ment.

• Depending on the type of problem the material defines

– the permittivity ε of dielectric material in electrostatic,

– the electrical conductivity σ of conducting material in static current flow,

– the permeability µ of magnetic material in magnetostatic or

– the thermal conductivity k for thermal problem setups.

• The source is used to define volume charge densities in electrostatic problems.

39

5. Practical approach

A

B

C

D

x

y

Figure 5.3.: Iron core with air gap

5.2.1. Geometry

To understand how any two-dimensional geometry can be defined, it is advisable to give a description
in this own subchapter.

Figure 5.3 shows an iron core with air gap that was constructed by applying boolean operation to
four rectangles (polygons). The complete setup without any boundary conditions or material proper-
ties can be found in appendix A.2 on page 113.

The figure shows four rectangles A, B, C and D. The iron core is the result of applying the rule
((A ∩ B) \ C) \ D. In words: Intersection of A and B minus C minus D. The appropriate XML
statement is

Listing 5.2: Geometry definition of an iron core

<Geometry>
<S u b t r a c t>
< I n t e r s e c t>
<Polygon> . . r e c t a n g l e A . . < / Polygon>
<Polygon> . . r e c t a n g l e B . . < / Polygon>

< / I n t e r s e c t>
<Polygon> . . r e c t a n g l e C . . < / Polygon>
<Polygon> . . r e c t a n g l e D . . < / Polygon>

< / S u b t r a c t>
< / Geometry>

40

5.2. Input handling – XML, XSD

The geometry is set up by combining <Polygon> primitives. The resulting geometry is also a
polygon. Possible combinations of polygons are boolean operations Union (<Add>), Difference
(<Subtract>) and Intersection (<Intersect>). The boolean operations can be nested. The only
restriction is, that the <Geometry> entry must have exactly one child that is <Add>, <Subtract>,
<Intersect> or <Polygon>.

The boolean operations are evaluated from top to bottom, hence

Listing 5.3: Evaluation from top to bottom

<S u b t r a c t>
<Polygon> . . A . . < / Polygon>
<Polygon> . . B . . < / Polygon>
<Polygon> . . C . . < / Polygon>

< / S u b t r a c t>

corresponds to (A \B) \ C. This is A minus B minus C. A more complex example would be

Listing 5.4: Example of a nested geometry definition

<S u b t r a c t>
<Polygon> . . A . . < / Polygon>
<Add>
< I n t e r s e c t>
<Polygon> . . D . . < / Polygon>
<Polygon> . . E . . < / Polygon>
<Polygon> . . F . . < / Polygon>

< / I n t e r s e c t>
<Polygon> . . G . . < / Polygon>
<Polygon> . . H . . < / Polygon>

< / Add>
<Polygon> . . B . . < / Polygon>
<Polygon> . . C . . < / Polygon>

< / S u b t r a c t>

41

5. Practical approach

This is

A \
{[(

(D ∩ E ∩ F)︸ ︷︷ ︸
intersection

∪G ∪H
)

︸ ︷︷ ︸
union

\B
]
\ C
}

︸ ︷︷ ︸
subtraction

Polygon The polygon directive is simply a set of two-dimensional coordinates that define the nodes
of the polygon.

This defines an arbitrary triangle:

Listing 5.5: Defining a triangle

<Polygon>
<Coords>
<Coord x=”−53.2 ” y=” 106 ” />
<Coord x=” 44 ” y=” 121 .803 ” />
<Coord x=”−16” y=” 199 .20 ” />

< / Coords>
< / Polygon>

Note: Polygons must have at least three nodes – needless to say. The last node defined is auto-
matically connected to the first one. The number of nodes is unlimited.

Figure 5.4 shows the XML schema definition for the <Geometry> entry.

5.2.2. Boundary Conditions

FEMtastic can handle Dirichlet, Neumann and Cauchy boundary conditions.

Listing 5.6: Defining boundary conditions

<B o u n d a r y C o n d i t i o n s>
<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 8 ” t o =” 2 ”>
<Value>

12
< / Value>

< / B ound a ry Cond i t i on>
<Bo unda ryC ond i t i o n t y p e =”Neumann” from=” 5 ” t o =” 5 ”>
<Value>

0
< / Value>

< / B ound a ry Cond i t i on>
< / B o u n d a r y C o n d i t i o n s>

This listing defines the boundary conditions for the heating device shown in figure 5.5. The edges
of the macroelement are numbered counterclockwise. Edges 1, 2 and 8 are the electrodes of the

42

5.2. Input handling – XML, XSD

Polygon

Add

Subtract

Intersect

1..∞

Add

Subtract

Intersect

Polygon

Geometry

Coord
3..∞

CoordsPolygon

Figure 5.4.: XML schema definition of the geometry

43

5. Practical approach

1

2
3

4

5

6
7

8

x

y

∂u

∂n
= 0u = 12V

Figure 5.5.: Edges and boundary conditions

device and their electric potential is defined with 12V (Dirichlet boundary condition).

The second boundary condition defined, is a Neumann boundary condition for edge 5. It might
represent a symmetry surface.

Note: You can define a range of edges with the attributes from and to. Because a polygon must
always be closed the from-value might be bigger than the to-value. In this case all edges until the last
one and beginning from the first one are accounted.

The next listing defines a Cauchy boundary condition. These are usually of interest only for thermal
problems. Beneath the <Value> entry an additional <Transition> entry is defining the transition
coefficient α of a Cauchy boundary condition.

Listing 5.7: Defining a Cauchy boundary condition

<B o u n d a r y C o n d i t i o n s>
<Bo unda ryC ond i t i o n t y p e =” Cauchy ” from=” 3 ” t o =” 4 ”>
<Value>

0
< / Value>
<T r a n s i t i o n>

5
< / T r a n s i t i o n>

< / B ound a ry Cond i t i on>
< / B o u n d a r y C o n d i t i o n s>

5.2.3. Material

Defining the material property for a macroelement yields the following piece of XML code:

44

5.2. Input handling – XML, XSD

Listing 5.8: Material definition

<M a t e r i a l>
<Value>

2 9 . 0
< / Value>

< / M a t e r i a l>

If the problem is of electrostatic type this might represent wet soil with a relative permittivity
εr = 29. For static current flow setups defining a value of 36.59E6 would represent aluminum with
an electrical conductivity σ = 36.59 · 106S/m.

This table summarizes the intent of the value corresponding to the problem type:

problem type symbol interpretation default value unit
electrostatic εr relative permittivity 1.0 non-dimensional
magnetostatic µr relative permeability 1.0 non-dimensional
static current flow σ electrical conductivity 1.0 S/m

thermal k thermal conductivity 1.0 W ·K−1 ·m−1

Table 5.1.: Problem types and their parameter intent

5.2.4. Source

The last property that can be defined for a macroelement is its source. If the <Source> entry is
defined and different from 0 the macroelement represents a volume charge density for electrostatic
problems or a thermal source. The unit of the value defined is Q

m2 .

Listing 5.9: Source definition

<Source>
<Value>

5 . 9
< / Value>

< / Source>

Figure 5.6 shows the XML schema definition for the ¡MacroElement¿ entry.

45

5. Practical approach

Geometry

BoundaryConditions

Material

Source

MacroElement

Value

Transition

BoundaryCondition
1..∞

BoundaryConditions

ValueMaterial

ValueSource

Figure 5.6.: XML schema definition of a MacroElement

46

5.3. Object oriented model

0.3 0.2 0.1 1.2 0.1 0.2 0.3

0.1

0.3

0.3

Cu Cuheating element alloy

x

y

Steel

12Vthermal isolation

Figure 5.7.: Example heating device and workpiece

5.3. Object oriented model

The next sections describe each of the FEMtastic modules in particular as shown in figure 5.1 on
page 36. The upcoming section 5.4 starts with the preprocessing module called PREPROCpack. The
modules are organized in MATLAB packages. These are a summarization of classes comparable to
Java packages. MATLAB organizes packages into folders starting with the +-sign. All classes within
the package are saved to folders starting with the @-sign. Hence, +FEMpack/@FiniteElement
is the path to the FiniteElement-class that belongs to the FEMpack-package.

Figure 5.15 on page 59, for example, shows the UML class diagram of the FEMpack package
which realizes the finite element method module. Each of the classes of all packages is shown with a
brief description on the following pages and the most important methods and attributes are discussed.
There is no way around to also studying the code which is well documented and gives additional
important information.

For an insight view of how FEMtastic works an example from industry will accompany this chapter.

Example – Hardening device: The process of hardening steel components is commonly
done by the method of annealing. A workpiece is heated up to, and kept, at a certain point of
temperature in order to effectuate desirable material properties.
Figure 5.7 shows the heating device with measurements in meters and a steel workpiece. The
heating plate is made of an alloy that is energized by two copper electrodes. The electric
connections are illustrated with red color. The voltage between the two electrodes is 12V .
The result that is asked for, is the static temperature distribution of the steel workpiece.

In order to gain the result, two subtasks will be performed:

• Setting up a static current flow model. This gives the current density and ohmic losses within
the heating plate.

• The heat emission of the heating plate is a consequence of the ohmic losses due to the current
density. This is simulated with a second static thermal model that will have the temperature
distribution within the steel workpiece as a result.

47

5. Practical approach

How this example can be modeled and computed with FEMtastic will be shown on the next pages.
A kind of ”debug run” is performed and at certain ”breakpoints” the mechanisms of FEMtastic are
explained in detail. The computation of the example is highlighted by the keyword Example subse-
quently.

48

5.4. Preprocessing – PREPROCpack

5.4. Preprocessing – PREPROCpack

The three technically independent modules PREPROCpack, XMLpack and MARTINEZ together
with the interface to the mesh2d-toolbox have been combined to form the actual preprocessing of
FEMtastic.

MATLAB has not yet complete XML support. An important feature – XPath – is missing. This
mechanism is used to address nodes in an XML tree. The XML tree is loaded into MATLAB using
the xmltree toolbox by Guillaume Flandin [10]. The XMLpack combines the toolbox with an
implementation of the missing XPath functionality and serves as an interface between MATLAB and
XML in general. It provides the necessary methods in order to read the XML input file, validate
it against the FEMtastic.xsd schema definition file and assist the preprocessor in interpreting the
problem setup.

The preprocessor state after reading the input XML file and processing it is that it knows about
macroelements and their properties and polygons that set up the geometry of the macroelements. The
polygons though have not yet been pieced together to form the macroelements. This is done by the
excellent Martinez algorithm that has been implemented for MATLAB by means of the MARTINEZ
package. (The suffix pack has been omitted as it is a standalone implementation and might also be
used for different purposes outside FEMtastic.) It performs the already discussed boolean operations
union, difference and intersection on the polygons as defined in the XML file and outputs the geometry
of a completed macroelement. This output, in fact, is a sequence of coordinates that represent the
closed boundary of the discretized domain.

Note: The Martinez algorithm is applied to polygons only. The output of the Martinez algorithm
is one completed macroelement. Currently, the user is responsible to define macroelements in a way
so they do not overlap and yet build up a consistent geometry.

The final preprocessing step is done by the mesh2d toolbox that has also been introduced so far.
It computes a triangulation for the geometry output of the Martinez algorithm and as a result provides
a set of nodes and a set of coherences. Latter one build up a consistent triangulation as demanded
by equations (4.45) and (4.46) on page 28. The mesh2d toolbox supports so called faces. Each
macroelement will be represented by exactly one face. This ensures that boundary nodes of two
macroelements are coherent. Figure 5.9 points out an invalid and a valid triangulation of two faces
whereupon the red line separates two faces (macroelements).

After the preprocessor has successfully finished its work it has saved all macroelements and their
properties as well as the triangulation. This information is passed to the FEMpack.

Example Simulating the first subtask – the static current flow model – involves two files:

• hardening device.m

• hardening device-currentflow.xml

These can be found in directory hardening device. The XML input file sets up the geometry and
properties of the hardening device only. The steel workpiece is insignificant for the static current flow
model as only the current density within the heating plate is of interest.

File hardening device-currentflow.xml sets up the geometry as shown in figure 5.10.

49

5. Practical approach

PREPROCpack

PREPROC

+MESH
+XML
+MARTINEZ
+MacroElements: MacroElement[1..*]

+PREPROC()
+ValidateXMLFile()
+ProcessXMLFile()
+Martinez()

MacroElement

+Polygon
+material
+source
+DBCs
+NBCs

+MacroElement()

XMLpack

XML

+InputFile
+Tree

+XML()
+Validate()
+ReadFile()
+GetAttribute()
+GetValue()
+GetEntries()
+GetChildren()

MARTINEZ

EventQueue

+Events: SweepEvent[1..*]

+EventQueue()

Martinez

+Memory
+EventQueue: EventQueue
+SweepQueue: SweepQueue
+SubjectPolygon: Polygon
+ClippingPolygon: Polygon

+Martinez()
+Compute()
+CreateEventQueue()
+CheckSegmentIntersection()
+DivideSegment()

Polygon

+Nodes: Coord[1..*]
+Connections

+Polygon()
+GetData()
+GetSegments()
+AddEdge()
+Find()
+Rotate()
+Translate()

SweepEvent

+id
+P: Coord
+OtherEvent: SweepEvent
+left
+polygonType
+inOut
+inside
+type

+SweepEvent()
+SweepEventComp()

SweepQueue

+Events: SweepEvent

+SweepQueue()
+Insert()
+PreviousEvent()
+NextEvent()
+DeleteEvent()

MESH2D

Figure 5.8.: PREPROCpack UML class diagram

50

5.4. Preprocessing – PREPROCpack

incorrect correct triangulation

Figure 5.9.: Invalid and correct triangulation

0.3 0.2 0.1 1.2 0.1 0.2 0.3

0.1

0.3

0.3

x

y

u = 12 V u = 0 V

macroelement 2

macroelement 1 macroelement 3

σ = 60 · 106 S
m

σ = 60 · 106 S
m

σ = 420
S

m

Figure 5.10.: Macroelements of the hardening device

51

5. Practical approach

Three macroelements build up the problem. Macroelements 1 and 3 represent the electrodes,
macroelement 2 models the heating plate of the device. The electric conductivity is σ = 60 · 106S/m

for the copper electrodes and σ = 420S/m for the heating plate made of nickel.

The MATLAB file hardening device.m contains control statements like clc or clear all as
well as file system path declarations. Furthermore a debugging backend has been implemented which
outputs messages about the current operations performed by FEMtastic. These debugging instruc-
tions are done by the command be(...) (backend). Because the reader is assumed programming
experienced, these instructions are left uncommented.

When starting a run of the MATLAB file, the first instructions of interest are:

Listing 5.10: Module initialization

1 PREPROC = PREPROCpack.PREPROC();

2 FEM = FEMpack.FEM();

3 POSTPROC = POSTPROCpack.POSTPROC();

These three commands – as already mentioned on page 38 – initiate the preprocessor, FEM and
postprocessor modules and assign the module objects returned by the constructor within the class
definitions to the variables PREPROC, FEM and POSTPROC respectively. User interaction is usually
done using one of these objects. For example plotValue(POSTPROC) will show a plot of the
results of a successful simulation.

Listing 5.11: Validating and processing the XML input file

4 [valid, ME] = ValidateXMLFile(PREPROC, xml_file, schema_file);

5 PREPROC = ProcessXMLFile(PREPROC, xml_file);

The first command, the preprocessor should execute, is ValidateXMLFile(). It validates the
XML input file hardening device-currentflow.xml against the XML schema definition file FEMtas-
tic.xsd. It is advisable to not continue working with an erroneous XML input file as the XML module
relies on a validated input stream. The second command in the above code requests the preprocessor
to prepare the input data in order to be used by the FEM module. If this command successfully termi-
nates the preprocessor’s work is completed. A deeper look to what this command does is appropriate.

5.4.1. PREPROC::ProcessXMLFile()

This command interprets the input XML file and saves the data to the preprocessor’s internal proper-
ties. The most important ones are illustrated in figure 5.8.

These are:

52

5.4. Preprocessing – PREPROCpack

Listing 5.12: Preprocessor properties

classdef PREPROC < handle

properties
% References to other modules

XML;

MARTINEZ;

% Internal properties

MacroElements;

% ... %

end

% ... %

end

• XML: A reference to the the XMLpack module.

• MARTINEZ: A reference to the Martinez algorithm toolbox.

• MacroElements: This is an array of references to MacroElement instances.

There is no special interface to the mesh2d toolbox as only the meshfaces command is needed
and called immediately where required.

For every macroelement defined in the input XML file one MacroElement object is created
and saved to the internal MacroElements array of the preprocessor. Some declarations of the
MacroElement class outline the most important properties:

Listing 5.13: Macroelement properties

classdef MacroElement < handle

properties
Polygon;

material;

source;

DBCs;

NBCs;

CBCs;

% ... %

end

% ... %

end

53

5. Practical approach

• Polygon: A polygon object that saves the geometry of the macroelement. This is one poly-
gon. It might be the result of multiple polygons, to which the Martinez algorithm was applied
to, before.

• material: Holds the material tensor which is a 2× 2 tensor that can define isotropic as well
as anisotropic material. Currently the input XML file only allows defining isotropic materials.
The copper electrodes from the example will internally be treated as:

Λ =

[
60E6 0

0 60E6

]
(5.1)

• source: Saves the source density of the material defined by the macroelement. No source has
been defined for the example macroelements, hence:

ρ = 0 (5.2)

• DBCs: An array holding Dirichlet boundary conditions of the macroelement.

• NBCs: Another array for Neumann boundary conditions.

• CBCs: And an array for Cauchy boundary conditions.

Note: Different material properties of the problem must be modeled using different macroele-
ments. The properties defined for one macroelement are valid and constant for the whole (sub)domain
of the macroelement. MATLAB allows the definition of so called anonymous functions (or function
handles). Using these will make it possible to define macroelements with varying properties. Un-
fortunately this is a desperate slow mechanism in MATLAB’s current version and has been disabled
because of its ”un”-usability. Another restriction is the use of isotropic materials only. This is because
the XML engine of FEMtastic does not interpret anisotropic material tensors at present.

The first important commands of the ProcessXMLFile() method are:

Listing 5.14: Processing the model

6 % scope: PREPROC::ProcessXMLFile()

7

8 Models = GetEntries(this.XML, ’/FEMtastic/Model’);

9 this = ProcModel(this, Models{1});

This loads the <Model> ... </Model> XML subtree and processes it. The ProcModel() routine
contains the ProcMacroElements() routine which calls the ProcMacroElement() routine,
and so on. Working off the subtree is demonstrated by table 5.2 on page 55.

After working off the XML tree FEMtastic has all information provided by the XML input file
saved to its internal object properties. The last step in responsibility of the preprocessor is to perform
the triangulation of the geometry. This is done with the help of the mesh2d toolbox.

The sample geometry in figure 5.11 has two faces (macroelements) and is used to demonstrate the
input arguments of the mesh2d toolbox. A demo-file can be found in folder mesh2d demo. The
toolbox is called using the command

Listing 5.15: Meshing the geometry

[p, t, f] = meshfaces(nodes, edges, faces)

54

5.4. Preprocessing – PREPROCpack

ProcModel()← <Model type=’ electrostatic ’ refinement=’0.5’>

The ProcModel() routine saves the type and refinement attributes. The type attribute is
a string either being ’electrostatic’, ’magnetostatic’, ’currentflow’ or ’thermal’. It is passed to the
FEM module as is. Currently it only influences diagram descriptions. The refinement attribute is
passed to the mesh2d toolbox and controls the density of the mesh. It is of type double where 1.0 is
the default value. A value of 0.5 yields a finer mesh, 2.0 a coarse one.
ProcMacroElements()← <MacroElements>

The<MacroElements> (plural) currently is a ”container” of at least one<MacroElement> (singular)
entry. In later versions it might be used to define properties common over all macroelements.
ProcMacroElement()← <MacroElement>

This procedure creates an object for each macroelement as shown on the previous page.
ProcGeometry()← <Geometry>

This routine creates the geometry of one macroelement. It takes use of the Martinez algo-
rithm. The creation is done by interpreting a nesting of <Add>, <Subtract>, < Intersect>
and <Polygon> statements as already shown in 5.2.1 on page 40.

ProcBoundaryConditions()← <BoundaryConditions>

In analogy to the <MacroElements> container this currently holds an enumer-
ation of possible <BoundaryCondition> entries. In later versions it is also
supposed to define common properties over all boundary conditions it contains.
ProcBoundaryCondition← <BoundaryCondition>

For the three possible types of boundary conditions (Dirichlet, Neumann, Cauchy) this
routine adds an entry to the macroelement’s DBCs, NBCs or CBCs arrays that will hold
all boundary conditions defined for the current macroelement.

ProcMaterial()← <Material>
Saves the material value to the macroelement’s material property.

TODO: FEMtastic does already handle anisotropic material. The input XML file definition
should be enhanced to also support the definition of tensors.

ProcSource← <Source>
Saves the source value to the macroelement’s source property.

Table 5.2.: Processing the XML input file

55

5. Practical approach

x

y
(0, 0) (1, 0) (2, 0)

(2, 1)(1, 1)(0, 1)

Figure 5.11.: Geometry containing two faces

The input arguments are:

• nodes: An (n× 2) matrix containing all n nodes of the whole geometry. For the geometry of
figure 5.11 this is:

nodes = [0 0;

1 0;

1 1;

0 1;

2 0;

2 1];

• edges: A (c × 2) matrix defining the c edges by supplying their respective first and second
node:

edges = [1 2; % edge 1, face 1

2 3; % edge 2, face 1, ...

3 4;

4 1;

2 5; % edge 1, face 2

5 6; % edge 2, face 2, ...

6 3;

3 2];

• faces: A cell array that contains another array for each face and has the edges that belong to
that face:

faces = {[1 2 3 4] % face 1

[5 6 7 8]}; % face 2

The result of the triangulation is shown in figure 5.12 and the output arguments p, t and f are:

Listing 5.16: Preprocessor output

56

5.4. Preprocessing – PREPROCpack

Figure 5.12.: Output of the mesh2d toolbox

p =

0 0

0 0.5000

0 1.0000

0.5000 0.5000

0.5000 0

0.5000 1.0000

1.0000 0

1.0000 0.5000

1.0000 1.0000

1.5000 0

1.5000 0.5000

1.5000 1.0000

2.0000 0

2.0000 0.5000

2.0000 1.0000

t =

2 5 4

1 5 2

4 5 8

8 5 7

6 2 4

3 2 6

4 8 6

6 8 9

8 10 11

7 10 8

11 10 14

14 10 13

12 8 11

9 8 12

11 14 12

12 14 15

f =

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

The vertices of the triangulation are the first output argument p which is a (m× 2) matrix – in this
case m = 15 vertices. The second argument t is a (t× 3) coherence matrix – e.g. the first row tells
that points 2, 5 and 4 are the vertices of triangle (finite element) 1. The third output argument f has
dimensions (t× 1) and contains the faces (macroelements) the triangles from t correspond to.

These three arguments together with the information saved within the MacroElements objects
of the preprocessor are used by the FEM module in order to set up the finite elements with their nodes
and boundary conditions.

Figure 5.13 shows the triangulation computed by the mesh2d toolbox for the heating device ex-

57

5. Practical approach

Figure 5.13.: Output of the mesh2d toolbox for the heating plate example

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8
Geometry

x [m]

y
[m

]

Figure 5.14.: FEMtastic geometry of the heating plate example

ample. The three macroelements (faces) are shown in three different colors. The geometry output of
FEMtastic is shown in figure 5.14. The green nodes are those being part of the Dirichlet boundary
defined.

58

5.5. Finite element method – FEMpack

FEMpack

FEM

+Nodes: Node[0..*]
+FiniteElements: FiniteElementT3[0..*]
+DirichletNodes: DirichletNode[0..*]
+BoundaryConditions: BoundaryConditionT3[0..*]

+FEM()
+discretize()
+assemble()
+setDBC()
+setNBC()
+setCBC()
+setMaterial()
+setSources()
+solve()

FiniteElement

+Nodes: Node
+circumcenter: Coord
+circumcenterRadius

+FiniteElement()
+Jacobian()
+localFormFunc()
+localGradientFormFunc()
+localNode()
+globalNode()
+localCoord()
+globalCoord()
+elemCoherenceMatrix()
+elemStiffnessFunc()
+elemLoadFunc()
+elemStiffnessMatrix()
+elemLoadVector()
+Value()
+Gradient()

FiniteElementT3

+FiniteElementT3()
+localFormFunc()
+Jacobian()
+localGradientFormFunc()

Node

+coord: Coord
+num
+value

+Node()
+makeToDirichletNode()

Boundary

+FiniteElement: FiniteElementT3
+sideNum
+Nodes: Node[2]

+Boundary()
+localB2FNodeNum()
+Jacobian()
+boundaryLoadFunc()
+localCoord()
+globalCoord()
+localFormFunc()
+localGradientFormFunc()
+boundaryCoherenceMatrix()

BoundaryCondition

+gFuncHandle
+transitionFuncHandle

+BoundaryCondition()
+boundaryStiffnessFunc()
+boundaryLoadFunc()
+boundaryStiffnessMatrix()
+boundaryLoadVector()

BoundaryConditionT3

+BoundaryConditionT3()
+Jacobian()

DirichletNode

+gFuncHandle

+makeToDirichlet()

Coord

+x
+y

Figure 5.15.: FEMpack UML class diagram

5.5. Finite element method – FEMpack

The FEMpack does the actual work of finding a solution to the problem specified and constructed
by means of the preprocessor. It uses the triangulation provided, applies the information saved as
macroelements to the finite elements, assembles the system of equations and solves it. The output
of this module is the value of all nodes of the triangulation. This is the electric potential for electro-
static and current flow, the magnetic scalar potential – also known as the magnetomotive force – for
magnetostatic or the temperature for thermal problems.

The FEM-class is the de facto controller of the the module (package) and the interface to the prepro-
cessor and to the user respectively. It holds the important functions discretize(), assemble()
and solve() which do the basic steps of the finite element method.

Two further classes within this package together build up the data structure for the geometry rep-

59

5. Practical approach

x

y

Figure 5.16.: Triangular shape finite element with quadratic form functions

resentation within the module. These are:

• Node and

• FiniteElement
Instances of the Node class certainly represent the point set of a triangulation and instances of

the FiniteElement class the subdomain set. Currently the subdomains are triangles each having
three vertices. This generalization is specified by the inherited FiniteElementT3 class with T3
meaning triangle with three vertices. The code also has the T6 class of finite elements implemented.
These are distorted triangles with quadratic form functions and set up by 6 nodes as shown in figure
5.16.

An instance of the Node class is simply an intersection point of the triangulation. A Node object
will also contain the value of the solution. The DirichletNode class is an inheritance (special-
ization) of the Node class. A node can be converted to a Dirichlet node meaning that it is part of the
Dirichlet boundary and its value is known a priori.
This is done using the makeToDirichletNode() routine of the Node object itself.

The Boundary class instances represent one side of a finite element each. Boundary conditions
are inherited to the basic BoundaryCondition class that is meant to represent any boundary for
any type of finite elements.

The Coord class also mentioned in figure 5.15 is implemented using a 2 × 1 MATLAB matrix
holding the x- and y− coordinate of a node.

5.5.1. Discretizing – FEM::discretize()

The description of the FEMpackmodule will be done by continuing the debug run that ”halted” at the
end of the successful preprocessing of the heating device example. The preprocessor’s output are the
three parameters p, t and f together with the properties stored in the PREPROC.MacroElements
array that holds information about all macroelements. An example has been given on page 56 for the
very simple geometry shown in figure 5.11. Figure 5.14 shows the FEMtastic geometry plot of the
hardening device. It has 478 nodes which are related to 803 finite elements.

The next statement of the code within file hardening device-currentflow.m transfers this informa-
tion from the preprocessor to the FEM module and tells the latter one to do the discretization:

Listing 5.17: Interface between preprocessor and FEM module

10 FEM = discretize(FEM, PREPROC);

60

5.5. Finite element method – FEMpack

Although the actual geometric discretization has already been done by the meshing toolbox, ”dis-
cretization” here means:

• creating a Node object for every vertex of the triangulation,

• creating a FiniteElementT3 object for every triangle, linking it to the nodes and

• applying information stored within PREPROC.MacroElements to the corresponding ob-
jects.

The first two tasks are done by the subroutine discretize_geom() within FEMpack.FEM

and are rather straight forward. This piece of pseudocode shall demonstrate what the routine does
using the preprocessor output of listing 5.16 on page 56 as an example:

for all p do
N← new Node object
N.x← p(1)

N.y← p(2)

Nodes{end + 1} ← N
end for
for all t do

F← new FiniteElementT3 object
F.Nodes{1} ← Nodes{t(1)}
F.Nodes{2} ← Nodes{t(2)}
F.Nodes{3} ← Nodes{t(3)}
FiniteElements{end + 1} ← F

end for

An important point here is, that the global numeration of each node follows the output of the
meshing toolbox. Each node has a unique global identification number and can be addressed within
the FEM module as:

Listing 5.18: Addressing a finite element’s nodes

FEM.Nodes{n}

This call returns a reference to the Node object of the node with global number n. The node’s
properties can be gathered by - e.g.:

Listing 5.19: Addressing a node’s properties

FEM.Nodes{3}.x

FEM.Nodes{3}.y

FEM.Nodes{3}.value

Note: Within the MATLAB implementation of FEMtastic, for all arrays that hold references to
other objects, MATLAB cell arrays are used. While typical arrays can hold values of type double
only, a cell of a cell array can hold any type of object including another array or cell array. The items
of a cell array are addressed using curly braces {}. This will also be considered by the upcoming
pseudocode snippets.

The value property, of course, can only be queried if the solution has been computed or the node

61

5. Practical approach

is part of the Dirichlet boundary. This can be tested against

Listing 5.20: A Dirichlet node

FEM.Nodes{3}.isDirichlet

that returns a boolean true or false value.

Another important issue is, to have a look at the initialization of a finite element. This includes the

• computation of the Jacobian matrix J(r) defined by equation (4.50) on page 29,

• computation of the inverse Jacobian matrix J−1(r) and

• computation of the Jacobi determinant detJ(r).

For T3 finite elements, these are invariants and therefor computed once for each finite element.
Further initialization is done:

• Computation of the finite elements’ circumcenter in global space and

• the radius of the circumcircle.

This is an important issue for performing the inverse global-to-local transformation and will be
discussed within the description of the postprocessor.

Storing the properties of the macroelements to the related finite elements is somewhat tricky. The
result of the meshing algorithm gives information about the macroelement each finite element belongs
to. Unfortunately it does not contain information whether a finite element is positioned on the edge
or in the interior of the problem domain. Thus, applying boundary conditions involves testing every
edge of the triangulation. Changing this behavior would demand an intervention into the meshing
toolbox mesh2d. This has not been done so far.

Transferring the information stored within the macroelements to the corresponding finite elements
is depicted with the next snippet of pseudocode:

62

5.5. Finite element method – FEMpack

for all M← MacroElements do
for all F← M.FiniteElements do

for all N1← F.Nodes do {This is N1 = 1, 2, 3 for T3 finite elements.}
N2 ← next counter-clockwise Node {(N1, N2) = (1, 2), (2, 3) or (3, 1), the edges of the
finite element}

for all B← M.DBCs do {These are the Dirichlet boundary conditions.}
if N1 lies on B then
makeToDirichletNode(N1, B.value)

end if
end for

for all B← M.NBCs do {Neumann boundary conditions.}
if (N1, N2) is part of B then
setNBC(F.N1, F.N2, B.value) {Adds current edge (N1, N2) as Neumann
boundary condition.}

end if
end for

for all B← M.CBCs do
{Do the same as with Neumann boundary conditions.}

end for
end for

end for
end for

The routine iterates through all finite elements’ edges and nodes using the object oriented model
from top to bottom (macroelement→ finite element→ edge→ node).

At this point the discretization is done. FEMtastic now ”knows” all information provided by the
XML input file and has stored it to the correct locations. Hence, the assembly of the system of
equations can be performed.

5.5.2. Assembly – FEM::assemble()

Assembly means building up the FEM system of equations which is effectively done following the
three steps:

• Building up the stiffness matrix without consideration of boundary conditions (equation (4.62),
page 31).

• Building up the load vector without consideration of boundary conditions (equation (4.63),
page 31).

• Integration of boundary conditions.

63

5. Practical approach

As a data structure for the (n × n) stiffness matrix K and the (n × 1) load vector f with n being
the number of unknowns, MATLAB sparse matrices are used. These only save values different from
zero. Because a large part of the entries of the stiffness matrix is zero, this is a storage saving data
structure. Moreover, MATLAB supports the same matrix operations to both ”typical” matrices and
sparse matrices.

The assembly without consideration of boundary conditions is demonstrated by the next pseu-
docode snippet:
K← 0 {init}
f ← 0 {init}
for r = 1 to R do {R = number of finite elements}

get C(r)

compute K(r)

compute f (r)

K← K + C(r)T ·K(r) ·C(r)

f ← f + C(r)T · f (r)

end for

This is nothing more than the implementation of equations (4.62) and (4.63) on page 31. But a
deeper insight into the computation of the element coherence matrix, element stiffness matrix and
element load vector is appropriate at this point.

These computations take place (and can be found) within the functions

• FEMpack::FiniteElement::elemCoherenceMarix()
• FEMpack::FiniteElement::elemStiffnessMatrix()
• FEMpack::FiniteElement::elemLoadFunc().

For demonstrating the results, figure 5.17 shows a representative illustration of a parallel plate
capacity. Its modeling yields 13 nodes (black numbering) and 12 finite elements (red numbering).
Dirichlet boundary conditions have been defined for the left and right border of the rectangular ge-
ometry, Neumann boundary conditions for the top and bottom border.

5.5.2.1. FiniteElement::elemCoherenceMatrix()

The element coherence matrix C(r) is a rather simple one. Its dimensions are (3×n) and it is defined
by equation 4.61 on page 31.

The element coherence matrix of finite element 1 as shown in figure 5.17 is:

Listing 5.21: Coherence matrix of a finite element

Cr =

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

64

5.5. Finite element method – FEMpack

0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2

3

4 5

6

7

89 10

1112

1

2

3 4

5

6

7

8

9

10 11

12

13

Geometry

x [m]

y
[m

]

Figure 5.17.: Parallel plate capacity

The output tells that

• local node 1 (first row) corresponds to global node 8 (eighth column),

• local node 2 corresponds to global node 7 and

• local node 3 of finite element 1 corresponds to global node 10.

The computation of this matrix is trivial.

5.5.2.2. Numerical quadrature - QuadInt()

Before actually computing the stiffness matrix and load vector of the FEM system of equations,
the application of numerical integration – as established by equation (4.71) on page 34 – is shown.
Quadrature integration is used to approximate the integrals in (4.59) and (4.60) on page 31. Also
the integral of the boundary condition term in (4.42) is evaluated using one-dimensional quadrature
integration.

Figure 5.18 shows the different quadrature integration types that are supported by FEMtastic. The
following table lists their configurations:

65

5. Practical approach

a)

f)e)

c)b)

d)

Figure 5.18.: Quadrature integration over the reference element

66

5.5. Finite element method – FEMpack

supporting points (ξi, ηi) weight w exact for polynomials of order
a) (0.5000, 0.5000) 0.5000 1

b)
(0.0000, 0.0000)

(1.0000, 0.0000)

(0.0000, 1.0000)

0.1667

0.1667

0.1667

1

c)
(0.5000, 0.0000)

(0.5000, 0.5000)

(0.0000, 0.5000)

0.1667

0.1667

0.1667

2

d)
(0.1667, 0.1667)

(0.6667, 0.1667)

(0.1667, 0.6667)

0.1667

0.1667

0.1667

2

e)

(0.0000, 0.0000)

(1.0000, 0.0000)

(0.0000, 1.0000)

(0.5000, 0.0000)

(0.5000, 0.5000)

(0.0000, 0.5000)

(0.3333, 0.3333)

0.0250

0.0250

0.0250

0.0667

0.0667

0.0667

0.2250

3

f)

(0.1013, 0.1013)

(0.7974, 0.1013)

(0.1013, 0.7974)

(0.4701, 0.4701)

(0.0597, 0.4701)

(0.4701, 0.0597)

(0.3333, 0.3333)

0.0630

0.0630

0.0630

0.0662

0.0662

0.0662

0.1125

5

Table 5.3.: Different configurations for numerical integration

The type that is used for FEMtastic currently must be hard-coded within file QuadInt.m. Because
for T3 finite elements the basis functions are of first order, it is advisable to use type a) or b) as
these give the exact integral evaluation and therefor do not additionally adulterate the approximated
solution.

Listing 5.22: Quadrature integration of an anonymous function

v = QuadInt(w, dim)

Function QuadInt() requires two input arguments. The first argument w is a MATLAB function
handle that allows to be evaluated as w(xi, eta). The second argument dim defines the dimen-
sion of the quadrature integration. Two-dimensional evaluation is performed computing the stiffness
matrix and load vector. One-dimensional evaluation is required for the boundary condition terms.

5.5.2.3. FiniteElement::elemStiffnessMatrix()

Equation (4.59) on page 31 defines the element stiffness matrix K(r). The computation for each finite
element is done as:

67

5. Practical approach

for α = 1 to 3 do
for β = 1 to 3 do

K(r)(α, β) = QuadInt((grad f̂α(ξ, η))T ε̂(r) grad f̂β(ξ, η),2)

end for
end for
The basis functions f̂α(ξ, η) (equation (4.48), page 29) and their gradients grad f̂α(ξ, η) are con-

structed with simple MATLAB functions:

Listing 5.23: Basis function

1 function phi = localFormFunc(localNodeNum, xi)

2 switch localNodeNum

3 case 1

4 phi = 1 - xi(1) - xi(2);

5 case 2

6 phi = xi(1);

7 case 3

8 phi = xi(2);

9 end
10 end

and

Listing 5.24: Gradient of a basis function

1 function gradphi = localGradientFormFunc(localNodeNum, xi)

2 switch localNodeNum

3 case 1

4 gradphi = [-1; -1];

5 case 2

6 gradphi = [1; 0];

7 case 3

8 gradphi = [0; 1];

9 end
10 end

Note: xi is a vector with xi(1) = ξ and xi(2) = η.

For the numerical integration QuadInt(), localGradientFormFunc() is being evaluated
at the supporting points (ξi, ηi) as shown prior.

For finite element 1 of the parallel plate capacity, the element stiffness matrix computes to:

Listing 5.25: Local stiffness matrix of a finite element

Kr =

0.0257 -0.0237 -0.0021

-0.0237 0.0461 -0.0224

-0.0021 -0.0224 0.0245

68

5.5. Finite element method – FEMpack

5.5.2.4. FiniteElement::elemLoadVector()

In an analogous way the element load vector, that is defined by equation (4.60) on page 31, is com-
puted:

for α = 1 to 3 do
f (r)(α) = QuadInt(f(x(ξ), y(η))f̂α(ξ, η)

∣∣det J (r)
∣∣,2)

end for
Consider the difference between function f which is the load (resp. source) as defined by the

problem setup and function f̂α which is the basis function for local node α.

Evaluating function f yields the local-to-global transformation x(r)(ξ, η) and y(r)(ξ, η). Because
the source (or load) is static over a macroelement and therefor static over a finite element, this is
trivial:

f(x(r)(ξ, η), y(r)(ξ, η)) = ρ (5.3)

And ρ is stored within the finite element as its source value.

Note: As already mentioned earlier, varying macroelement properties can be developed using
MATLAB function handles. This is also supported by FEMtastic but disabled at the moment because
of function handle’s inefficiency.

Because no sources have been defined for the parallel plate capacity the element load vector of
finite element 1 (and all others) is:

Listing 5.26: Local load vector of a finite element

fr =

0

0

0

After the computation of the element stiffness matrix and the element load vector it might be
interesting to see, how these get integrated into the system stiffness matrix K and the system load
vector f .

The algorithm on page 64 shows the integration as

K← K + C(r)T ·K(r) ·C(r)

f ← f + C(r)T · f (r)

for a finite element r. Assuming an initialized empty matrix K and load vector f the first finite
element is integrated:

69

5. Practical approach

Listing 5.27: Integrating the first local stiffness matrix

K = Cr’ * Kr * Cr =

0 0 0 * 0.0257 -0.0237 -0.0021 * 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 -0.0237 0.0461 -0.0224 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 -0.0021 -0.0224 0.0245 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

1 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

The result is:

Listing 5.28: System stiffness matrix with intetgrated local stiffness matrix

K =

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.0461 -0.0237 0 -0.0224 0 0 0

0 0 0 0 0 0 -0.0237 0.0257 0 -0.0021 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -0.0224 -0.0021 0 0.0245 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

The intent of this demonstration is to show the effects of the element coherence matrix C(r) that
”puts” the entries of the element stiffness matrix K(r) (element load vector f (r), respectively) to the
right positions of the system stiffness matrix K (or load vector f). The entries of the load vector are
all 0 because no sources have been defined. Of course, the above result demonstrates the state after
the first iteration through all finite elements.

5.5.2.5. Integration of boundary conditions

After the element stiffness matrices and element load vectors of all finite elements have been com-
puted, the stiffness matrix K and load vector f of the FEM system of equations exist as if there where
neither Dirichlet nor Neumann boundary conditions defined.

70

5.5. Finite element method – FEMpack

The integration of boundary conditions is done as depicted in section 4.4.4:

for e = 1 to B do {B = number of Neumann/Cauchy boundary conditions}
get C(e)

compute f (e)

compute K(e)

K← K + C(e)T ·K(e) ·C(e)

end for

for i = 1 to n do {n non-Dirichlet nodes}
correctionSum← 0

for j = n+1 to n+m do {m Dirichlet nodes}
correctionSum← K(i, j) · aj

end for
f(i)← f(i)− correctionSum

end for

The computation of K(e) and f (e) is done analogously to the computation of K(r) in 5.5.2.3 and
f (r) in 5.5.2.4 but using the one-dimensional integration terms of the edge reference element Ê:

for α = 1 to 2 do
for β = 1 to 2 do

K(e)(α, β)← QuadInt(uT (x(e)(ξ), y(e)(ξ)) · f̂β(ξ) · f̂α(ξ) ·
√
J(e)T · J(e),1)

end for
end for

and

for α = 1 to 2 do
if Neumann boundary condition then

f (e)(α)← QuadInt(uN (x(e)(ξ), y(e)(ξ)) · f̂α(ξ) ·
√
J(e)T · J(e)

else
if Cauchy boundary condition then
f (e)(α)← QuadInt(uT (x(ξ), y(ξ)) · uN (x(ξ), y(ξ)) · f̂α(ξ) ·

√
J(e)T · J(e),1)

end if
end if

end for

with uN being the boundary derivative and uT being the transition coefficient of the boundary
condition. Neumann and Cauchy boundary conditions are treated the same because the Neumann
boundary condition is a special case of the Cauchy one. The term

√
J(e)T · J(e) is called the pseudo

determinant of J(e) because for finite edge elements J(e) is a (2 × 1) matrix and therefor no inverse
is defined.

The assembly of the FEM system of equations is finished at this point with all boundary conditions
built in.

71

5. Practical approach

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
electric potential [V]

x [m]

y
[m

]

2

4

6

8

10

12

Figure 5.19.: Solution of the potential of the hardening device

5.5.3. Solving – FEM::solve()

As decided earlier, the solution of the FEM system of equations – derived by earlier steps – is not
topic of this thesis. Without considering any efficiency weaknesses it is completely abandoned to
MATLAB and will be topic of future work.

Hence, the function is a ”one-liner”:

Listing 5.29: Solve the FEM system of equations

function this = solve(this)

u = this.StiffnessMatrix \ this.loadVector;

end

Note: Of course additional state control and validation is done in the actual code.

Figure 5.19 shows the solution of the hardening device example.

72

5.5. Finite element method – FEMpack

Example After the assembly of the FEM system of equations of the hardening device example, the
MATLAB state of the FEM object might be of interest:

Listing 5.30: Final state of the FEM module

FEM =

FEMpack.FEM handle

package: FEMpack

properties:
Nodes: {1x478 cell}

numNodes: 478

FiniteElements: {1x803 cell}

numFiniteElements: 803

isDiscretized: 1

isAssembled: 1

isSolved: 1

CoherenceTable: [803x3 double]

DirichletNodes: {1x49 cell}

BoundaryConditions: []

StiffnessMatrix: [429x429 double]

loadVector: [429x1 double]

type: ’currentflow’

numNodesPerFiniteElement: 3

Due to the chosen mesh refinement the geometry has been discretized with a triangulation of 478

nodes that are connected to 803 finite elements. The next three state variables isDiscretized,
isAssembled and isSolved inform that the three basic steps of the finite element method –
discretize(), assemble() and solve() – have been carried out successfully.
The CoherenceTable matrix contains the linkage between the 803 global nodes and the 3 local
nodes of each finite element. The electrodes of the left and right side of the example are modeled
by 49 Dirichlet nodes. No Neumann or Cauchy BoundaryConditions have been defined. The
stiffness matrix has dimensions (429 × 429). This, of course, comes from the number of all nodes
minus those Dirichlet nodes whose value is known (478 − 49 = 429). The load vector also has
429 entries, naturally. The last value numNodesPerFiniteElement comes from using finite
elements of type T3. This would be 6 using T6 elements as described earlier or could also be 4 when
using quadrilateral finite elements.

73

5. Practical approach

POSTPROCpack

POSTPROC

+circumcenterXsorted
+circumcenterYsorted
+FEM: FEM

+POSTPROC()
+localCoord()
+Value()
+Gradient()
+Data()
+GradientData()
+plot()
+plot3()
+plotd3()
+plotquiver()

Figure 5.20.: POSTPROCpack UML diagram

5.6. Postprocessing – POSTPROCpack

The postprocessor implemented by the POSTPROCpack module finally helps the user interpreting
and dressing the solution. It is currently arranged by one single class within the module but also
uses class methods from the FEMpack. Especially these are the FiniteElement class and its
inheritances that provide form functions and their gradients. Furthermore the solution potential values
are saved to the Node objects.

Most important functions from the POSTPROCESSOR class are:

• Value(): This function calculates the potential value at any continuous coordinate of the
solution using the finite element basis functions to interpolate.

• Gradient(): Evaluates the gradient of the solution at any continuous coordinate.

• Data(): Gives a sequence of solution data along a straight line which can be used for dia-
grams.

• GradientData(): Gives a sequence of the solution gradient along a straight line.

• plotGeometry(), plotValue(), plotGradient(), plotMaterialGradient():
These methods plot the geometry setup in a 2D graph, the solution in a 3D graph by using the
z-axis to plot the value, as well as plotting the gradient.

Further methods can easily be implemented because any physical quantity at any point of the
problem domain is available.

Before introducing specific functions of the postprocessor, a description is given of the transforma-
tion between the global problem space and the local reference frame. This is an important mechanism
because the problem is defined in global space but most computation takes place in local space.

74

5.6. Postprocessing – POSTPROCpack

x

y

c

a
b

Figure 5.21.: Finite elements and their circumcircles

5.6.1. Local-to-global transformation

This transformation means providing a local coordinate (ξ, η) of the reference frame and obtaining a
global coordinate (x, y) of the problem domain.

The local-to-global transformation is given by equation (4.49) on page 29. It is implemented as
function globalCoord() within the FiniteElement superclass.

The Jacobian matrix J(r) for the finite element is computed at its initialization. It is static for the
currently used T3 type of finite elements and therefor needs to be computed once. Using finite ele-
ments of higher order would require a computation at every call of the function because the Jacobian
matrix will be dependent on the local coordinates that are subject of being transformed to global
coordinates. Figure 4.3 recalls the transformation.

5.6.2. Global-to-local transformation

For example, one wants to know the potential value u of the solution at global coordinates (x, y). This
involves the global-to-local transformation because the value is interpolated using the basis functions
which are implemented in the reference frame of the finite element that is subjacent to (x, y).

The inverse transformation cannot be done by just singling out local coordinates (ξ, η) of equation
(4.49) in general. This has two reasons:

• When providing global coordinates (x, y) only, it is unknown which finite element r is subja-
cent.

• Furthermore the inverse transformation becomes non-linear for higher order finite elements.
This is because the Jacobian matrix is dependent on the local coordinates: J(r)(ξ, η). Conse-
quently, also the inverse Jacobian matrix is dependent on the local coordinates: J−1

(r)(ξ, η); but
these are subject to being calculated.

The first reason rises the concept of circumcircles. The second problem is easily solved for T3
finite elements. For higher order elements a gradient descent method was implemented.

Figure 5.21 shows a sample triangulation with three finite elements highlighted and their circum-
circles. The red point demonstrates global coordinates (x, y) that are subject to being brought to a

75

5. Practical approach

ξ

η x

y

Figure 5.22.: Newton-Raphson method used to find local coordinate

local frame.

Before finding the correct inverse transformation, the correct local frame has to be found. This is
demonstrated with the next pseudocode:

k← 1
while no local coordinate found do
{Find the next circumcenter to (x, y) and tell finite element r}
r← k-Nearest-Neighbor(k, x, y)

if (x, y) is within circumcircle of finite element r then
(ξ, η)← localCoord(x, y) {global-to-local transformation}

if (ξ, η) is inside of reference element then
{found (ξ, η)}

else
{continue search}
k← k + 1

end if
end if

end while
The circumcenter and the radius of the circumcircle is computed for each finite element r at its

initialization. When a global coordinate (x, y) needs to be transformed to the local frame of a finite
element, a k-nearest-neighbor-search is performed and yields the ”k-nearest” circumcenter to (x, y).
In illustration 5.21 this is the circumcenter of finite element a. Doing a global-to-local transformation
of (x, y) is not forbidden but delivers local coordinates (ξ, η) that are outside of the reference triangle
of finite element a. The search for the correct local frame is continued with the next nearest neighbor
which is finite element b. There, a valid local coordinate results.

This algorithm can be found in function POSTPROCpack::POSTPROC::localCoord(). It
is the main function for all global-to-local computations of coordinates (x, y).

76

5.6. Postprocessing – POSTPROCpack

10 ξ

P̂1

P̂2

u1

u2

ξA

uA

u

Figure 5.23.: Interpolating the solution

The actual global-to-local transformation is illustrated in figure 5.22. Coordinates (x, y) (red dot) in
global space (right) are given. Because they cannot easily be transformed to the local frame (left), the
corresponding local coordinates are approximated using a Newton-Raphson method. Starting at local
coordinates (0.5, 0.5), they are transformed to global space and tested against the given coordinates
(x, y). A certain ε-neighborhood must be accepted as a stopping criterion. Depending on the test
against the given coordinates a new iteration of local coordinates is computed until the stopping
criterion matches. The result are the local coordinates (ξ, η) of the black dot. It is within the ε-
neighborhood in global space.

The implementation currently uses ε = 1 · 10−6m. This brings good results without remarkable
efficiency losses.

The implementation localCoord() can be found within the generalized finite element class
FEM::FiniteElement. In the special case of T3 finite elements the transformation can be done
by simply inverting equation (4.49) to (5.4) because of the static Jacobi matrix. The implementation
can be found within FEMpack::FEM::FiniteElementT3::localCoord(). It overloads
the generalization. (

ξ

η

)
= J−1

(r)

[(
x

y

)
−
(
x

(r)
1

y
(r)
1

)]
(5.4)

5.6.3. Determining a value of the solution – PP::Value()

Figure 5.23 shows an illustration of a one-dimensional finite element in local space and how the
solution is interpolated. The value of the solution is asked for a global (one-dimensional) coordinate x.
It is transformed to the local coordinate ξA of the respective local reference frame. The (dashed) basis
functions of local nodes P̂1 with computed solution value u1 and P̂2 with u2 ”span” the interpolated
(red) solution between the nodes. Summing up the values of the two basis functions at coordinate ξA
gives the solution uA.

uA(x) =
2∑

α=1

uα · f̂α(ξA) = u1 · f̂1(ξA) + u2 · f̂2(ξA) (5.5)

The same interpolation can be used for two dimensions with T3 finite elements:

77

5. Practical approach

u(x, y) =
3∑

α=1

uα · f̂α(ξ(x, y), η(x, y)) (5.6)

Figure 5.28 on page 84 shows a T3 finite element with its basis functions and the ”spanned” solution
in global space.

The implementation of T3 form functions was shown in listing 5.23 on page 68. These are:

f̂1(ξ, η) = 1− ξ − η f̂2(ξ, η) = ξ f̂3(ξ, η) = η (5.7)

The implementation of the Value() function is as simple as:

Listing 5.31: Computing the solution value at continuous coordinates

1 function [z, rho, sigma, valid] = Value(this, xi)

2 z = 0;

3 for alpha = 1:numLocalNodes

4 z = z + localFormFunc(this, alpha, xi)

5 * this.Nodes{alpha}.value;

6 end
7

8 % ... %

9 end

Note: Input argument xi is a two-dimensional vector. The output value z – the electric potential
u for electrostatic and current flow, the magnetic scalar potential Θ for magnetostatic and the temper-
ature T for thermal problems – is saved within the node objects and is the same within the local and
global frame. It does not need to be transformed, therefor.

The following table lists the interpretation of the solution depending on the type of problem:

problem type interpretation
electrostatic electric potential u [V]

current flow electric potential u [V]

magnetostatic magnetic scalar potential Θ [A]

thermal temperature T [K]

Table 5.4.: Interpreting the solution

For the sake of completeness, the basis functions of T6 finite elements are mentioned. These are
implemented within FiniteElementT6::localFormFunc():

f̂1(ξ, η) = 2ξ2 + 2η2 + 4ξη − 3ξ − 3η + 1 f̂2(ξ, η) = 2ξ2 − ξ
f̂3(ξ, η) = 2η2 − η f̂4(ξ, η) = −4ξ2 − 4ξη + 4ξ

f̂5(ξ, η) = 4ξη f̂6(ξ, η) = −4η2 − 4ξη + 4η

(5.8)

78

5.6. Postprocessing – POSTPROCpack

0.3 0.2 0.1 1.2 0.1 0.2 0.3

0.1

0.3

0.3

x

y

Figure 5.24.: Evaluating the solution along a straight line – drawing a diagram

5.6.4. 2D diagram of the solution – PP::Data()

The Data() function returns a series of solution values computed by Value() along a straight
line. Its header is:

Listing 5.32: Header of the Data() function

function d = Data(this, from, to, step)

% from: from coordinate

% to: to coordinate

% step: step size

% ... %

end

The from argument defines the starting point, the to argument the end point of a straight line. The
third argument step is the distance between two evaluation points. An example using the solution
of the hardening device:

Listing 5.33: Example of gathering the solution along a straight line

d = Data(POSTPROC, [0; .35], [2.4; .35], .01);

This gives all solution values from (0, 0.35) to (2.4, 0.35) with a step distance of 0.01. Figure 5.24
shows the evaluation along a straight line with the red arrow. The geometry was defined in figure 5.7
on page 47. A diagram of the above call shows figure 5.25.

5.6.5. Determining the gradient of the solution – PP::Gradient()

This function computes the gradient grad u(x, y) at global coordinates (x, y) of the solution u(x, y).

grad u(x, y) =

(
∂u(x,y)
∂x

∂u(x,y)
∂y

)
(5.9)

79

5. Practical approach

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

electric potential [V]

Distance from origin [m]

Figure 5.25.: Electric potential u along a straight line

It is also computed within the local reference frame at the corresponding local coordinates (ξ, η)

using the basis functions. This is the ”local” gradient, however, and must be transformed to the global
space.

The relation between the gradient at local space and global space is

grad u(x, y) = J−T(r) grad u(ξ(r)(x, y), η(r)(x, y)) (5.10)

The gradients of the basis functions are implemented as class methods of the FiniteElementT3
class for T3 finite elements. Listing 5.24 on page 68 demonstrated the implementation.

The basis functions of local nodes P̂1, P̂2 and P̂3 are:

f̂1(ξ, η) =

(
−1

−1

)
, f̂2(ξ, η) =

(
1

0

)
, f̂3(ξ, η) =

(
0

1

)
(5.11)

The transformation to global space is

3∑
α=1

uα · J−T(r) · f̂α(ξ(r)(x, y), η(r)(x, y)) (5.12)

and is implemented in function Gradient() of the superclass FiniteElement:

80

5.6. Postprocessing – POSTPROCpack

1 function g = Gradient(this, xi)

2 g = zeros(2, 1);

3 for alpha = 1:3

4 g = g + InverseJacobian(this, xi)’

5 * localGradientFormFunc(this, alpha, xi)

6 * this.Nodes{alpha}.value;

7 end
8 end

Basis function gradients for finite elements of a different type must be implemented within their
designated class. For T6 finite elements, the basis function gradients are implemented in FiniteElementT6::localGradientFunc()
as:

grad f̂1 =

(
4ξ + 4η − 3

4ξ + 4η − 3

)
grad f̂1 =

(
4ξ − 1

0

)

grad f̂1 =

(
0

4η − 1

)
grad f̂1 =

(
−8ξ − 4η + 4η

−4ξ

)

grad f̂1 =

(
4η

4ξ

)
grad f̂1 =

(
−4η

−4ξ − 8η + 4

)
(5.13)

The interpretation of the solution gradient is listed in this table:

problem type derivation interpretation of the gradient
electrostatic E = − grad u electric field E [V/m]

current flow E = − grad u electric field E [V/m]

magnetostatic H = − grad Θ magnetizing field intensity H [A/m]

thermal no interpretation

Table 5.5.: Interpreting the gradient of the solution

5.6.6. Gradient considering material properties – PP::MaterialGradient()

This function is an extension to the last one. Its implementation is the same but considers defined
material properties. The interpretation of the gradient depends on the type of problem:

problem type derivation interpretation of the gradient
electrostatic D = εE electric displacement D [C/m2]

current flow J = σE current density J [A/m2]

magnetostatic B = µH magnetic induction B [T]

thermal q̈ = −k grad T heat flux q̈ [W/m2]

Table 5.6.: Interpreting the gradient of the solution considering material properties

81

5. Practical approach

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8

9

10

electric field E [V/m]

Distance from origin [m]

Figure 5.26.: Electric field Ex along a straight line

5.6.7. 2D diagram of the gradient – PP::GradientData()

This is an analogous function to Data() and returns a two-dimensional series of gradients as shown
in equation (5.10).

Figure 5.26 shows the x-component of the electric field E of the hardening device along the same
straight line as to demonstrate the electric potential in 5.6.4.

E = − grad u (5.14)

Note: Because of the discretization, the gradient of the computed FEM solution is not continuous.
The ”hackly” look of the diagram is a consequence of this fact.

5.6.8. 2D diagram of the gradient considering material – PP::MaterialGradientData()

Also this class is implemented analogously to the last one. It outputs a gradient series considering
defined material properties. Figure 5.27 shows the x-component of the current flow J of the hardening
device along the straight line as introduced by figure 5.24.

J = σE = −σ grad u (5.15)

82

5.6. Postprocessing – POSTPROCpack

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500
current density J [A/m2]

Distance from origin [m]

Figure 5.27.: Current flow Jx along a straight line

83

5. Practical approach

P1

P2

P3

x
y

u
f1

f2

f3

Figure 5.28.: T3 finite element in global space with basis functions

5.6.9. 2D geometry plot – PP::plotGeometry()

The postprocessor is also capable of plotting two- and three-dimensional graphs. The first of them
is implemented with the plotGeometry() function. Its output of the geometry of the hardening
device example was already shown in figure 5.14 on page 58. The output consists of all nodes of
the triangulation and all edges of the finite elements. Furthermore, defined boundary conditions and
sources are highlighted. Differing material properties are currently not considered. Options consider-
ing colors, line widths, text marking and so on are currently hard-coded within the postprocessor and
can be adapted there.

5.6.10. 3D solution plot – PP::plotValue()

The plotValue() function of the postprocessor produces a 3D plot of the solution. The x- and
y-coordinates are in accordance to the geometry of the given problem. The value of the solution is
plotted along the z-coordinate using a color palette between the minimum and maximum value.

The solution shape over a finite element of T3 type is a triangle defined by the values of the finite
element nodes. This is illustrated in figure 5.28. Consequently, the plotValue() function plots
the solution by using one triangle patch. The graph, as seen by the user, equates exactly the solution
of the discretized problem model.

Other finite element types are plotted by partitioning the reference element and transforming each
partition into global space. Figure 5.29 shows this technique for a T6 finite element. The fineness of
the partitioning is hard-coded within FiniteElement::plot3() and can be adapted there.

The respective function is implemented as plot3() within FiniteElementT3 for T3 type
finite elements and as plot3() within superclass FiniteElement for all other types.

Figure 5.30 shows the solution – the electric potential u – of the hardening device in a 3D plot.

84

5.6. Postprocessing – POSTPROCpack

P̂1
P̂2

P̂3

P̂4

P̂5

P̂6

ξ

η

P1

P2

P3

P4

P5P6

x(ξ, η)

y(ξ, η)

Figure 5.29.: Approximated shape of a T6 finite element

0

0.5

1

1.5

2

2.5 0

0.5

1

0

10

20

y [m]

x [m]

electric potential [V]

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5.30.: Solution of the hardening device example

85

5. Practical approach

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
electric field E [V/m]

x [m]

y
[m

]

2

4

6

8

Figure 5.31.: Electric field E of the hardening device

5.6.11. 3D gradient plot – PP::plotGradient()

The plotGradient() function gives a 3D illustration of the gradient of the solution as introduced
in 5.6.5 and 5.6.7. The interpretation can be found in table 5.5 on page 81.

Computing the gradient was shown in 5.6.5, the plotting mechanism is analogous to 5.6.10. Figure
5.31 shows the XY -view of the gradient of the hardening device solution which equals the electrical
field E.

5.6.12. 3D gradient plot considering material – PP::plotMaterialGradient()

This function is – concerning the implementation – almost the same as the last one but considers the
material properties. The interpretation of the output depends on the problem type and is listed in table
5.6 on page 81.

Figure 5.32 shows the material considering gradient which results to the current density J of the
hardening device. The next illustration 5.33 shows the same graph with a different view. There, the
discontinuity of the gradient of the solution can be observed that leads to the ”hackly” diagrams 5.26
and 5.27.

86

5.6. Postprocessing – POSTPROCpack

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
current density J [A/m2]

x [m]

y
[m

]

1000

2000

3000

4000

Figure 5.32.: Current density J within the hardening device

2

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

y [m]

500

1000

1500

2000

2500

3000

3500

4000

x [m]

Figure 5.33.: A different view of the current density J

87

5. Practical approach

0.6

0.1

0.2

x

y

0.2

0.1 0.10.10.10.1 0.1

∂T

∂n
= 0

=k
∂T

∂n
α(T − TA)

k = 85
W

K ·m

k = 42
W

K ·m

Figure 5.34.: The thermal model

5.7. Multiphysics

The first subtask for the heating device example as defined on page 47 has been shown in detail, so
far. The intermediate result is the distribution of the current flow J.
In order to gain the final result – this is the temperature distribution or the scalar temperature field
T of the steel workpiece – a second model is to be computed. This approach of having two coupled
models in two different physical domains is called multiphysics.
Due to the current flow within the heating plate, power losses produce heat emissions. In the second
thermal model, these power losses will act as energy sources for heat.

Figure 5.34 defines the thermal subtask. Only the heating plate and the steel workpiece are mod-
eled. Thermal effects within the electrodes are neglected. The heating plate alloy is assumed with a
thermal conductivity of k = 85WK−1m−1, the steel workpiece with k = 42WK−1m−1. The bot-
tom of the heating plate is thermally isolated and also the connections to the electrodes are assumed
to have no temperature flow. This is mathematically expressed by Neumann boundary conditions
illustrated in blue color. Through the surface of the steel workpiece and the loose area of the heating
plate, a thermal exchange with the ambient environment occurs. This occurrence can be modeled
using a Cauchy boundary condition as shown with green color. The parameter α is the transport coef-
ficient and describes the thermal flow between the system and the ambient environment with ambient
temperature TA. These are α = 5.6WK−1m−2 and TA = 300K.

FEMtastic supports coupled problems with the import() function implemented within the FEM
class of the FEMpack module. It takes the results of a previously initialized POSTPROCESSOR

object and includes them right before the assembly step.

Note: The only precondition is that identical parts of both models must be at the same place.
Herein, this means that the heating plate has the same coordinates in both the current flow and the
thermal model. Different setups of macroelements or a different meshing is of no concern.

88

5.7. Multiphysics

Listing 5.34: Multiphysics

1 % THERMAL MODEL

2 PREthm = PREPROCpack.PREPROC();

3 FEMthm = FEMpack.FEM();

4

5 % preprocessing thermal model

6 PREthm = ProcessXMLFile(PREthm, xml_file_thermal);

7

8 % setting up FEM kernel

9 FEMthm = discretize(FEMthm, PREthm);

10 % importing the previous model

11 FEMthm = import(FEMthm, POSTPROC, ’current-thermal’);

12 FEMthm = assemble(FEMthm);

13 FEMthm = solve(FEMthm);

14

15 % postprocessing the thermal model

16 POSTthm = POSTPROCpack.POSTPROC();

17 POSTthm = init(POSTthm, FEMthm);

Listing 5.34 shows how the results from the current flow model are brought into the thermal model.
The POSTPROC object is the postprocessor from the first model and holds its results – namely the
current flow J. In line 9 – right before the FEM system of equations of the thermal computation is
assembled – the previous results are being incorporated. The additional parameter ’current-thermal’
defines the conversion of the previous results. It is:

p =
1

σ
JTJ (5.16)

This equation states the context between the current flow J and the power loss p in W
m3 . Latter ones

are the sources of the thermal problem.

The respective files are:

• hardening device.m

• hardening device-thermal.xml

89

5. Practical approach

Listing 5.35: Importing data from a previous model

1 function this = import(this, POSTPROC, op)

2 % where finite elements are stored

3 FE = this.FiniteElements;

4

5 if strcmp(op, ’current-thermal’);

6 % current - thermal coupling

7 for i = 1:length(FE)

8 [u, rho, sigma, valid] =

9 Value(POSTPROC, globalCoord(FE{i}, [0.33; 0.33]));

10 if valid

11 J = MaterialGradient(POSTPROC, globalCoord(FE{i},

12 [0.33; 0.33]));

13 FE{i}.loadFunc = 1/sigma * J’ * J;

14 end
15 end
16 return;
17 end
18

19 % ... %

20 end

This listing shows the import() function for T3 finite elements. The power loss is computed for
all finite elements of the current flow model (line 6) using the results from the previous model (line 7).
The Value() function (see 5.6.3 on page 77) returns a valid flag that states whether the geometry
exists in both coupled models.

The remaining part of the simulation of the thermal problem is the same as with the current flow
problem. Hence, presenting the results is the missing part. Figure 5.35 shows the geometry and the
triangulation of the thermal model, 5.36 shows the temperature distribution within the heating plate
and the steel workpiece.

90

5.7. Multiphysics

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1
Geometry

x [m]

y
[m

]

Figure 5.35.: Geometry and mesh of the thermal problem

0.6 0.8 1 1.2 1.4 1.6 1.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
temperature [K]

x [m]

y
[m

]

780

785

790

795

800

805

810

Figure 5.36.: The thermal distribution of the heating plate and the steel workpiece

91

5. Practical approach

Intersection noinUQ dna P snogyloP P − Q

P

Q

Figure 5.37.: Boolean operations on polygons – source: [17]

5.8. Boolean operations on polygons – Martinez algorithm

In order to be able to do reasonable finite element analysis it is, of course, necessary to endow the
user with mechansisms to formulate arbitrary assignment definitions. FEMtastic is aimed to apply the
finite element method to any two-dimensional geometry setup. This has been realized by a MATLAB
implementation of the algorithm presented in A new algorithm for computing Boolean operations
on polygons [17] by Francisco Martı́nez, Antonio Jesús Rueda and Francisco Ramón Feito. The
algorithm, herein, is referred to as the Martinez algorithm and was implemented independently
from FEMtastic, so it can also be used in other applications.

The implementation can be found in the +MARTINEZ MATLAB package folder and is well docu-
mented.

The algorithm applies a boolean operation to two polygons – the subject polygon P and the clipping
polygon Q. These operations are

• Union,

• Difference and

• Intersection.

The outstanding advantages of this algorithm are:

• Fast computation in time O((n + k) log(n)) with n being the number of total edges of both
polygons and k the total amount of intersections between the edges. It might therefor also be
used interacively in a future graphical user interface.

• The Martinez algorithm is not limited to a certain type of polygons. Concave and even self-
intersecting polygons are supported.

• Polygons with ”holes” are possible.

• The output is not degenerated. Degeneration means that the output is only an approximation
of the real result due to limitations of the algorithm. Figure 5.38 shows the correct result of a
boolean operation on the right side. The result on the left is degenerated because the two areas
of the real result are connected through small bands.

• Regions composed of polygon sets are possible. The result of the difference operation in figure
5.37 shows two regions. These are treated as one polygon data structure, however. This kind of
polygons might also be used as input subject or clipping polygon.

92

5.8. Boolean operations on polygons – Martinez algorithm

P

Q

P − QP − Q

Figure 5.38.: Degeneracy – source: [17]

The Martinez algorithm, thus, seems to provide optimal functionality in order to build up complex
geometry setups by defining simple polygon primitives and applying boolean operations to them.
Setting up an iron core with air gap was shown as an example in figure 5.3 on page 40. Furthermore,
the preconfiguration of FEMtastic with different geometry primitives will be done as a future work.
These might be special structures like circles, ovals, rounded rectangles and others as also provided
by EleFAnT.

5.8.1. Algorithm

The algorithm is based on the sweep line paradigm and does three tasks [17, sec. 2]:

1. Subdivide the edges of the polygons at their intersection points.

2. Select those subdivided edges that either lie inside the other polygon or that do not, depending
on the boolean operation.

3. Join the edges selected in step 2 to form the result polygon.

The algorithm was also implemented using object oriented programming. The left and right end-
points of each segment are left events and right events, respectively. These events get organized into
an event queue which is sorted by the x-coordinates of the events.
The vertical sweep line moves from left to right, starting by the left-most event. Whenever a left
event is reached, the corresponding segment is added to a sweep queue. The sweep queue holds those
segments – represented by their left event objects – that are currently intersected by the vertical sweep
line, sorted in y-direction at every time. This means, a left event is inserted into the sweep queue so
that the previous event in the queue belongs to the segment below it and the next event in the queue
to the segment above (assuming there are segments below or above).
After a new segment was inserted into the sweep queue, tests are performed, whether the segment
intersects with the segment below or above. It can be proved that all segment intersections are found
with this technique. Details are given in [17].

If an intersection between two segments is detected and these two segments do not only intersect at
their endpoints, they are properly divided at the point of intersection and the new segments are added
to the event queue – still sorted by their x-coordinates, of course.

Whenever the sweep line reaches a right event, the corresponding segment is removed from the
sweep queue. Depending on the boolean operation (union, difference or intersection) the segment is
added (or not) to the resulting polygon. This test is described in the next section 5.8.2.

93

5. Practical approach

1

3
2

4

a

b

c1

c2 c2
b1

b2

d
b2

d1

d2

c

Figure 5.39.: Finding intersection points and subdividing edges

5.8.2. Example

Figure 5.39 uses the subject and clipping polygons from figure 5.37 to demonstrate the advance of
the sweep line. The subject polygon is dashed, the clipping polygon is the solid one. The segments in
blue color are the ones that are currently in the sweep queue.

• The sweep line starts at the left-most events. These are the left events of segments a and b. The
two segments are added to the sweep queue one after another. Testing them for intersection
identifies their common endpoint 1. Because it is an endpoint ”only”, no further processing
needs to be done.

• The sweep line advances to the next events. These are two left events located at the left corner
of the subject polygon. The lower segment c is added first and tested for intersection with
its below segment b. The intersection point 2 is detected. Segment b is divided to b1 and b2,
segment c to c1 and c2. Note that b2 and c2 are self-contained segments now that have not been
added to the sweep queue so far. Four additional events are added to the event queue. These
are the right endpoint events of segments b1 and c1 and the left endpoint events of segments b2
and c2.

• The next event to be processed is the left endpoint event of segment d. The common endpoint
3 with c1 is found and no further processing is necessary.

• The right endpoints of segments b1 and c1 are the events to be processed next. The segments
are deleted from the sweep queue. Whether they are added to the resulting polygon is checked
at this point. How this decision is made is described in section 5.8.3 on the next page.

• At the same x-coordinate the two left events from segments b2 and c2 are located. Segment
c2 is added first, because it is the lower segment. No intersection with another segment can be
found.

• Inserting b2 brings up the intersection point 4 with d which is divided into d1 and d2. The right
endpoint event of d1 and the left endpoint event of d2 are added to the event queue.

• The algorithm continues in this manner and terminates after processing the last two right end-
point events which are located at the right corner of the subject polygon.

94

5.8. Boolean operations on polygons – Martinez algorithm

5.8.3. Adding edges to the result polygon

In order to determine whether a segment belongs to the result polygon, three extra flags are set for
each segment. These are [17]:

• polygon: states whether the edge belongs to the subject or clipping polygon,

• inside: indicates if the edge is inside the other polygon, and

• inOut: indicates if the edge determines an inside-outside transition into the polygon, to which
the edge belongs, for a vertical semi-line that goes up and intersects the edge.

Determining the flags is done whenever a left endpoint event is reached and the corresponding
segment is added to the sweep queue. This routine with le being a left event (segment) and ple the
previous (lower) left event of the sweep queue shows the determination of the flags:

if ple == 0 then {Case 1: no segment below}
le.inside← false
le.inOut← false

else
if le.polygon == ple.polygon then {Case 2: same polygon}

le.inside← ple.inside
le.inOut← ! ple.inOut

else {Case 3: different polygon}
le.inside← ! ple.inOut
le.inOut← ple.inside

end if
end if

Figure 5.40 shows the determination of the inside and inOut flags of the segments that are
currently within the sweep queue. The illustrated status occurs at the time when d1 (respectively its
right endpoint event) is removed from the sweep queue.

Segment a is the lowest one and is initialized with inside = inOut = false. The next
segment above a is c2 and a belongs to the clipping polygon, c2 to the other subject polygon. Case
three matches. Also testing b2 and d1 results in case three because the segments belong to the other
polygon, each.

Whether a segment belongs to the result polygon, of course, depends on the boolean operation.
This is tested whenever a segment is removed from the sweep queue because its right endpoint event
was reached. The decision is apparent – re means the right endpoint event and has the same flags
stored as the left endpoint event of the same segment:

95

5. Practical approach

d1

inside = false
inOut = false

inside = false
inOut = true

inside = true
inOut = false

inside = true
inOut = true

c2

b2

a

Figure 5.40.: Determining inside and inOut flags of the edges

96

5.8. Boolean operations on polygons – Martinez algorithm

if re.inside == true then
Segment belongs to the INTERSECTION result polygon.

end if
if re.inside == false then

Segment belongs to the UNION result polygon.
end if
if (re.polygon == ’subject’ and re.inside == false)

or (re.polygon == ’clipping’ and re.inside == true) then
Segment belongs to the DIFFERENCE result polygon.

end if

5.8.4. Special cases

The algorithm also treats special cases in an elegant way. These are vertical segments, because their
endpoints both have the same x-coordinate, and overlapping edges. The treatment is described in [17]
and omitted herein.

97

Chapter 6

Conclusions and outlook

This chapter is aimed to overlook FEMtastic once more and highlight its benefits as well as identifying
some weaknesses and suggesting ideas for future work.

6.1. Proof of concept

The correctness of the results gathered with FEMtastic and presented herein, is demonstrated by a
comparison of the same problems modeled and computed with EleFAnTs.

6.1.1. Current flow problem

Figure 6.1 shows the setup and mesh of the current flow subtask using EleFAnTs. All properties and
boundary conditions are, of course, the same. These are the left electrode with an electric potential of
u = 12V , the right one with u = 0V , the material conductivity of the electrodes with σ = 60·106S/m

and the conductivity of the heating plate with σ = 420S/m.

Figures 6.2 to 6.7 demonstrate that the results of EleFAnTs and FEMtastic are the same and therefor
considered as correct.

Figure 6.1.: EleFAnTs: current flow model

99

6. Conclusions and outlook

Figure 6.2.: Comparison of electric potential u results (top: EleFAnTs, bottom: FEMtastic)

Figure 6.3.: Comparison of electric potential u along a straight line

100

6.1. Proof of concept

Figure 6.4.: Comparison of electric field Ex results (top: EleFAnTs, bottom: FEMtastic)

Figure 6.5.: Comparison of electric field Ex along a straight line

101

6. Conclusions and outlook

Figure 6.6.: Comparison of electric current flow Jx results (top: EleFAnTs, bottom: FEMtastic)

Figure 6.7.: Comparison of electric current flow Jx along a straight line

102

6.2. MATLAB

Figure 6.8.: EleFAnTs: thermal model

6.1.2. Thermal problem

Because EleFAnTs-2D does not support a thermal model to be coupled with a current flow model, the
power loss within the heating plate of the current flow model was computed and used with the heating
plate of the thermal model as a source with a total power of 5039.97W which was the result gathered
from the current flow model. Because the current flow is fairly homogeneous within the heating plate
this can be accepted.

As expected, the results with both EleFAnTs and FEMtastic are the same. Figure 6.8 shows the
problem modeling with EleFAnTs, 6.9 compares the results.

6.2. MATLAB

MATLAB has been chosen as the development environment for some reasons. First, the object-
orientation which was introduced with version 7.6 (R2008a) in March, 2008, was an unknown terrain
and therefor interesting to discover.
A second reason is the claim that, with MATLAB programming language, engineering problems
could be solved faster than with the likewise programming languages C++ and Java [32]. This state-
ment has to be distinguished. It might be true for the overall process of developing, proof of concept
and testing a new application. On the other hand, the integration and implementation of object-
orientation into the MATLAB language not at all can be compared to typical OOP languages.
MATLAB language is still interpreted and not compiled, as are C++ and Java, and is therefor consid-
erably slower. Due to its novelty, no recent benchmarks could be found comparing ”new” MATLAB
with other OOP languages. Though, many benchmarking sites across the world wide web – e.g. [1]
– conclude that there is a factor of 50 to 100 between, in general, slow interpreted and fast compiled
programming code.
A third reason for the choice of MATLAB is its availability in plenty of educational facilities and an
affordable student version.

103

6. Conclusions and outlook

Figure 6.9.: Comparison of temperature T (top: EleFAnTs, bottom: FEMtastic)

104

6.3. CPU time

10k 20k 30k 40k 50k 60k

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

number of finite elements

tim
e

[s
]

FEMtastic computation time

solve/total
assemble
process
discretize
mesh

Figure 6.10.: Results gained with FEMtastic

Furthermore, it is an easy-to-learn language that does not require in-depth software engineers for
understanding the nature of FEMtastic.

However, taking a look to the results concludes that the term productivity does not describe FEM-
tastic in its current state. Unfortunately, the choice for MATLAB must be blamed for this.

6.3. CPU time

For obtaining significant results, the current flow model from chapter 5 was meshed with different
numbers of finite elements from 91 to 64188. The computation times of every step are cumulated to
the total time (red top line) in diagram 6.10. The x-axis depicts the number of finite elements, actual
measurements are illustrated with markers. The lines are interpolation polygons of second order.
Latter fact is an advice for an efficiently implemented algorithm, because of the stiffness matrix that
quadratically increases with the number of finite elements and therefor, also the computation time has
to increase quadratically.
Nonetheless, porting the implementation to a different programming language must be one of the next
steps in future developments.

Diagram 6.11 shows the percentage rate of the computation steps. It clarifies that the bottleneck
of the application is the MATLAB inbuilt solver which, of course, is not optimized for the FEM
system of equations and therefor is also subject of being replaced. For a stiffness matrix greater than
20k × 20k it does already consume more than 50% of total CPU time.

A great amount of time within the system assembly is consumed by homogenizing the Dirichlet

105

6. Conclusions and outlook

10k 20k 30k 40k 50k 60k
0%

25%

50%

75%

100%

number of finite elements

co
m

pu
ta

tio
n

tim
e

in
 p

er
ce

nt
ag

e

FEMtastic computation time in percentage

mesh
discretize
process
assemble
solve

Figure 6.11.: FEMtastic computation steps percentage

mesh refinement 1 0.1 0.05 0.03 0.02 0.01 0.0063 0.00625 0.005

finite elements 91 179 803 1152 3768 15906 32074 53987 64188

mesh 1.64 1.75 2.22 2.71 5.57 19.00 32.86 69.53 104.08

discretize 0.58 0.94 3.71 5.16 16.75 76.60 183.66 399.77 514.73

process 0.30 0.62 2.67 3.62 12.64 54.58 114.32 201.74 243.47

assemble 0.41 0.73 3.10 4.48 14.96 183.68 529.20 1441.48 1793.15

solve 0.05 0.12 0.29 2.61 22.95 371.44 1496.78 4201.45 5886.14

total 2.98 4.16 11.99 18.58 72.87 705.30 2356.82 6313.97 8541.57

Table 6.1.: Simulation results (times in seconds)

boundary conditions (see 4.4.4 on page 32). Removing 514 rows and columns from the stiffness
matrix with 64188× 64188 entries takes almost three times as long as assembling the actual system.

The combination of the blue, orange and yellow areas in figure 6.11 can be seen as the preprocess-
ing steps. The green and red areas together form the actual FEM computation.

The yellow, and surprisingly small, band in figure 6.11 represents the processing of all finite ele-
ments within a mesh in order to find the correct edges for Neumann and Cauchy boundary conditions
(described in 5.5.1 on page 60). This was originally expected to be very inefficiently. Nevertheless,
one could get rid of it by integrating these tests directly to the meshing algorithm.

Table 6.1 shows the detailed results of the measurements. These have been computed using an Intel
T7250 CPU with 2 GHz clock speed, 2 MB L2 cache and 2 GB of working memory.

106

6.4. Memory usage

0 10k 20k 30k 40k 50k 60k

0

5 MB

 10 MB

15 MB

20 MB

25 MB

30 MB

number of finite elements

m
em

or
y

FEMtastic memory usage

solve/peak
assemble
discretize
mesh

Figure 6.12.: FEMtastic memory usage

mesh refinement 1 0.1 0.05 0.03 0.02 0.01 0.0063 0.00625 0.005

finite elements 91 179 803 1152 3768 15906 32074 53987 64188

mesh 376 376 376 376 826 3013 4077 8438 11718

discretize 241 241 241 241 265 1118 2255 3796 4513

assemble 46 46 115 163 513 2119 4248 7137 8475

solve 49 67 337 434 1366 6422 14355 26375 15822

peak 376 376 376 434 1366 6422 14355 26375 26933

Table 6.2.: Memory usage (values in KB)

6.4. Memory usage

Data is mainly stored as the finite element objects, the node objects, the stiffness matrix and the load
vector. Additionally data is stored in some status and helper variables, of course. The stiffness matrix
is a sparse matrix and only those values different from zero are actually stored to memory. Thus,
the algorithm’s memory consumption is linearly dependent to the number of finite elements. This is
approved by figure 6.12 that shows the results from table 6.2.
The table summarizes the peak values of memory consumption of the subsequent tasks of the com-
putation. Each task’s memory is cleared after it has finished. Of course, the solver consumes the
maximum amount of memory, though it is an interesting fact that the usage is also linear.

Figure 6.13 again shows the percentage of memory consumption amongst the tasks.

107

6. Conclusions and outlook

10k 20k 30k 40k 50k 60k
0%

25%

50%

75%

100%

m
em

or
y

us
ag

e
in

 p
er

ce
nt

ag
e

FEMtastic memory usage in percentage

mesh
discretize
assemble
solve

number of finite elements

Figure 6.13.: FEMtastic memory usage percentage

6.5. Design

The design has proved to be very flexible in general. It makes a clear distinction between the modules
and uses the object-oriented principles of encapsulation and inheritance very well. It was attempted to
gather a high factor of cohesion between the classes and therefor reduce the amount of encapsulated
data. This lead to a design which, of course, cannot make the demand of being the perfect design,
but exposed to be enormously adaptive in making changes along the process of implementation,
when some design tweaks were disclosed. Furthermore it also has already proved its capability of
extendability. This was ascertained when the second T6 type of finite elements was brought into the
system, which took only a few hours of implementation time.

As already mentioned, it is inevitable to port the implementation to a different programming lan-
guage than MATLAB. However, an outstanding characteristic of MATLAB is that vectors and matri-
ces are basic types which makes it different from any other programming language. These flexibilities,
primarily need to be reviewed and also ported in a certain way to a different programming environ-
ment. As this will probably change the future design slightly, some additional hints are stated here
which came up during the process of evaluation.

The actual modeling – namely bringing a real world problem into computer space – is done with
three steps in FEMtastic:

• Formulating a real world problem in XML language.

• Preprocessing the XML file.

• Making objects out of the preprocessor status within the FEM module.

108

6.6. Output interface

Within the first step it was discovered that the XML module and the PREPROCpack module are
very balanced to each other. The preprocessor rebuilds the hierarchy of the XML tree. This is not
generally poor but will make it a little bit difficult to construct further input interfaces. IGES (Initial
Graphics Exchange Specification) [26] should be mentioned as one of possible interfaces here. It is
a free, manufacturer independent data format that is widely used for interchange among computer-
aided-design products.
Within the FEMpack module all finite elements and their coherences with the nodes are saved. Un-
fortunately the information of macroelements is lost within this module and consequently also for
the postprocessing module. This incorrect decision was made due to the fact that for the actual FEM
solution, macroelements are of no concern and only the scope of finite elements is of importance.
Thus, the suggestion is given to move the hierarchy of macroelements, finite elements, edges and
nodes to an independent data structure that can exist auxiliary to other modules and implement re-
spective interfaces as shown in [16].

6.6. Output interface

No words have been lost within this thesis concerning the output interface. The exterior optimization
strategy and its implementation is still subject of initial development and no interface specifications
have been done, so far. Thus, all data diagrams and functions from the postprocessor are considered
to be the current output interface.

109

111

Appendix A

Appendix

A.1. Complete XML schema definition graph

M
ac

ro
E

le
m

en
t

1.
.∞

M
ac

ro
E

le
m

en
ts

M
od

el
FE

M
ta

st
ic

C
oo

rd
3.
.∞

C
oo

rd
s

Po
ly

go
n

A
dd

Su
bt

ra
ct

In
te

rs
ec

t

1.
.∞

A
dd

C
oo

rd
3.
.∞

C
oo

rd
s

Po
ly

go
n

A
dd

Su
bt

ra
ct

In
te

rs
ec

t

1.
.∞

Su
bt

ra
ct

C
oo

rd
3.
.∞

C
oo

rd
s

Po
ly

go
n

A
dd

Su
bt

ra
ct

In
te

rs
ec

t

1.
.∞

In
te

rs
ec

t

C
oo

rd
3.
.∞

C
oo

rd
s

Po
ly

go
n

G
eo

m
et

ry

Va
lu

e

Tr
an

si
tio

n

B
ou

nd
ar

yC
on

di
tio

n
1.
.∞

B
ou

nd
ar

yC
on

di
tio

ns

Va
lu

e
M

at
er

ia
l

Va
lu

e
So

ur
ce

M
ac

ro
E

le
m

en
t

Figure A.1.: Complete XML schema definition graph
112

A.2. Geometry setup of an iron core with air gap

Listing A.1: XML-setup: iron core with air gap
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<FEMtas t i c x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

xs i :noNamespaceSchemaLoca t ion =” FEMtas t i c . xsd ”>
<Model t y p e =” e l e c t r o s t a t i c s ” r e f i n e m e n t =” . 8 ”>

<MacroElements>
<MacroElement>

<Geometry>
<S u b t r a c t>

<I n t e r s e c t>
<Polygon>

<Coords>
<Coord x=”−5” y=”−5” />
<Coord x=”−5” y=” 5 ” />
<Coord x=” 5 ” y=” 5 ” />
<Coord x=” 5 ” y=”−5” />

</ Coords>
</ Polygon>
<Polygon>

<Coords>
<Coord x=”−9” y=” 0 ” />
<Coord x=” 0 ” y=” 9 ” />
<Coord x=” 9 ” y=” 0 ” />
<Coord x=” 0 ” y=”−9” />

</ Coords>
</ Polygon>

</ I n t e r s e c t>
<Polygon>

<Coords>
<Coord x=”−3” y=”−3” />
<Coord x=”−3” y=” 3 ” />
<Coord x=” 3 ” y=” 3 ” />
<Coord x=” 3 ” y=”−3” />

</ Coords>
</ Polygon>
<Polygon>

<Coords>
<Coord x=”−6” y=”−1” />
<Coord x=”−6” y=” 1 ” />
<Coord x=”−2” y=” 1 ” />
<Coord x=”−2” y=”−1” />

</ Coords>
</ Polygon>

</ S u b t r a c t>
</ Geometry>

</ MacroElement>
</ MacroElements>

</ Model>
</ FEMtas t i c>

113

A.3. Setup of the hardening device current flow model

Listing A.2: XML-setup: Hardening device, current flow
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<FEMtas t i c x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

xs i :noNamespaceSchemaLoca t ion =” FEMtas t i cDes ign . xsd ”>
<Model t y p e =” c u r r e n t f l o w ” r e f i n e m e n t =” 1 . 5 ”>

<MacroElements>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 0 ” y=” 0 ” />
<Coord x=” 0 . 3 ” y=” 0 ” />
<Coord x=” 0 . 5 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />
<Coord x=” 0 . 5 ” y=” 0 . 4 ” />
<Coord x=” 0 . 3 ” y=” 0 . 7 ” />
<Coord x=” 0 ” y=” 0 . 7 ” />

</ Coords>
</ Polygon>

</ Add>
</ Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 1 ”>
<Value>12</ Value>

</ B ound a ry Cond i t i on>
<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 7 ” t o =” 8 ”>

<Value>12</ Value>
</ B ound a ry Cond i t i on>

</ B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>60E6</ Value>
</ M a t e r i a l>

</ MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

</ Coords>
</ Polygon>

</ Add>
</ Geometry>
<M a t e r i a l>

<Value>420</ Value>
</ M a t e r i a l>

</ MacroElement>
<MacroElement>

<Geometry>
<Add>

<Polygon>
<Coords>

<Coord x=” 2 . 1 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 ” />
<Coord x=” 2 . 4 ” y=” 0 . 7 ” />
<Coord x=” 2 . 1 ” y=” 0 . 7 ” />
<Coord x=” 1 . 9 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 9 ” y=” 0 . 3 ” />

</ Coords>
</ Polygon>

</ Add>
</ Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i o n t y p e =” D i r i c h l e t ” from=” 1 ” t o =” 3 ”>
<Value>0</ Value>

</ B ound a ry Cond i t i o n>
</ B o u n d a r y C o n d i t i o n s>
<M a t e r i a l><Value>60E6</ Value></ M a t e r i a l>

</ MacroElement>
</ MacroElements>

</ Model>
</ FEMtas t i c>

114

A.4. Setup of the hardening device thermal model

Listing A.3: XML-setup: Hardening device, thermal model
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<FEMtas t i c x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

xs i :noNamespaceSchemaLoca t ion =” FEMtas t i c . xsd ”>
<Model t y p e =” t h e r m a l ” r e f i n e m e n t =” 1 . 5 ”>

<MacroElements>
<MacroElement>

<Geometry>
<Polygon>

<Coords>
<Coord x=” 0 . 6 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 3 ” />
<Coord x=” 1 . 8 ” y=” 0 . 4 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 6 ” y=” 0 . 4 ” />

</ Coords>
</ Polygon>

</ Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i on t y p e =” Cauchy ” from=” 3 ” t o =” 3 ” >

<Value>300</ Value>
<T r a n s i t i o n>5 . 6</ T r a n s i t i o n>

</ B ound a ry Cond i t i on>
<Bo unda ryC ond i t i on t y p e =” Cauchy ” from=” 5 ” t o =” 5 ”>

<Value>300</ Value>
<T r a n s i t i o n>5 . 6</ T r a n s i t i o n>

</ B ound a ry Cond i t i on>
<Bo unda ryC ond i t i on t y p e =”Neumann” from=” 1 ” t o =” 2 ”>

<Value>0</ Value>
</ B ound a ry Cond i t i on>
<Bo unda ryC ond i t i on t y p e =”Neumann” from=” 6 ” t o =” 6 ”>

<Value>0</ Value>
</ B ound a ry Cond i t i on>

</ B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>85</ Value>
</ M a t e r i a l>

</ MacroElement>
<MacroElement>

<Geometry>
<Polygon>

<Coords>
<Coord x=” 0 . 7 ” y=” 0 . 4 ” />
<Coord x=” 0 . 7 ” y=” 0 . 6 ” />
<Coord x=” 0 . 8 ” y=” 0 . 6 ” />
<Coord x=” 0 . 9 ” y=” 0 . 8 ” />
<Coord x=” 1 . 5 ” y=” 0 . 8 ” />
<Coord x=” 1 . 6 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 6 ” />
<Coord x=” 1 . 7 ” y=” 0 . 4 ” />

</ Coords>
</ Polygon>

</ Geometry>
<B o u n d a r y C o n d i t i o n s>

<Bo unda ryC ond i t i on t y p e =” Cauchy ” from=” 1 ” t o =” 7 ”>
<Value>300</ Value>
<T r a n s i t i o n>5 . 6</ T r a n s i t i o n>

</ B ound a ry Cond i t i on>
</ B o u n d a r y C o n d i t i o n s>
<M a t e r i a l>

<Value>42</ Value>
</ M a t e r i a l>

</ MacroElement>
</ MacroElements>

</ Model>
</ FEMtas t i c>

115

Bibliography

[1] Dan Ballard. Primes results for x86 vs. ppc vs. arm. URL http://www.mindstab.net/

wordpress/archives/184. [Online; accessed, 23-October 2010]. 103

[2] Oszkár Bı́ró. Simulation statischer Felder - Vorlesungsskript. Institut für Grundlagen und The-
orie der Elektrotechnik, 2009. 24

[3] P. Castillo, R. Rieben, and D. White. Femster: an object oriented class library of discrete dif-
ferential forms. volume 2, pages 972 – 975 vol.2, jun. 2003. doi: 10.1109/APS.2003.1219397.
8

[4] M.C. Costa, J.-L. Coulomb, and Y. Marechal. An object-oriented optimization library for finite
element method software. Magnetics, IEEE Transactions on, 36(4):1057 –1060, jul. 2000. ISSN
0018-9464. doi: 10.1109/20.877623. xvii, 7

[5] Darren Engwirda. Unstructured Mesh Methods for the Navier-Stokes Equations. School of
Aerospace Engineering, The University of Sydney, 2005. Undergraduate Thesis. 35

[6] Darren Engwirda. MESH2D - Automatic Mesh Generation, 2009. URL
http://www.mathworks.de/matlabcentral/fileexchange/

25555-mesh2d-automatic-mesh-generation. [Online; accessed 20-July-2010]. 35

[7] B.W.R. Forde, R.O. Foschi, and S.F. Stiemer. Object-oriented finite element analysis. Comput-
ers & Structures, 34(3):355–374, 1990. 6

[8] H. Fujio. The feelfem system: a repository system for the finite element method. page 8 pp.,
apr. 2003. doi: 10.1109/IPDPS.2003.1213461. 7

[9] E. Gomez, J.A. Fuentes, A. Gabaldon, and J. Roger-Folch. Fem applied to electromagnetism:
effective object-oriented software design. page AU9, 2002. doi: 10.1109/INTMAG.2002.
1000754. 5, 7, 8

[10] Guillaume Flandin. XMLTree: an XML toolbox for MATLAB, 2008. URL http://www.

artefact.tk/software/matlab/xml/. [Online; accessed 30-August-2010]. 49

[11] S.R.H. Hoole and T. Arudchelvam. Reverse engineering as a means of improving and adapting
legacy finite element code. pages 227 –232, dec. 2009. doi: 10.1109/ICIINFS.2009.5429859. 5

[12] IGTE. Institute for Fundamentals and Theory in Electrical Engineering, 2010. URL http:

//www.igte.tugraz.at. [Online; accessed 15-October-2010]. 5

[13] Jung, Michael; Langer, Ulrich. Methode der finiten Elemente für Ingenieure. Teubner, 2001.
ISBN 3-519-02973-1. 23, 26, 27, 29, 31, 32, 34

[14] Kenneth H. Huebner. The Finite Element Method for Engineers. Wiley, 4 edition, 2001. ISBN
0471370789. 5, 13, 14

117

http://www.mindstab.net/wordpress/archives/184
http://www.mindstab.net/wordpress/archives/184
http://www.mathworks.de/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation
http://www.mathworks.de/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation
http://www.artefact.tk/software/matlab/xml/
http://www.artefact.tk/software/matlab/xml/
http://www.igte.tugraz.at
http://www.igte.tugraz.at

[15] R. I. Mackie. Object oriented methods–finite element programming and engineering. pages 133
– 138, 1995. 6

[16] W. Mai and G. Henneberger. Object-oriented design of finite element calculations with respect
to coupled problems. Magnetics, IEEE Transactions on, 36(4):1677 –1681, jul. 2000. ISSN
0018-9464. doi: 10.1109/20.877765. xvii, 7, 8, 109

[17] Francisco Martı́nez, Antonio Jesús Rueda, and Francisco Ramón Feito. A new algorithm for
computing boolean operations on polygons. Computers and Geosciences, 35(6):1177–1185,
2009. ISSN 0098-3004. doi: http://dx.doi.org/10.1016/j.cageo.2008.08.009. xviii, 35, 92, 93,
95, 97

[18] Stuart McGarrity. Object-oriented programming in matlab. URL http://www.

mathworks.de/mason/tag/proxy.html?dataid=11440&fileid=54059. [On-
line; accessed, 16-October-2010]. 9

[19] Olgierd Cecil Zienkiewicz, Y.K. Cheung. The Finite Element Method in Structural and Contin-
uum Mechanics. McGraw-Hill, 1 edition, 1967. 13

[20] Per-Olof Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB. SIAM Review,
46:2004, 2004. 35

[21] Peter P. Silvester, Ronald L. Ferrari. Finite Elements for Electrical Engineers. Cambridge
University Press, 3 edition, 1996. 14

[22] M. Popescu, I. Munteanu, C.-G. Constantin, and D. Ioan. An object oriented data structure for
field analysis. Magnetics, IEEE Transactions on, 34(5):3403 –3406, sep. 1998. ISSN 0018-
9464. doi: 10.1109/20.717801. 7, 8

[23] K. Preis, I. Bardi, O. Biro, R. Hoschek, M. Mayr, and I. Ticar. A virtual electromagnetic
laboratory for the classroom and the www. Magnetics, IEEE Transactions on, 33(2):1990 –
1993, mar. 1997. ISSN 0018-9464. doi: 10.1109/20.582690. 6

[24] K. Preis, O. Biro, T. Ebner, and I. Ticar. An electromagnetic field analysis tool in education.
Magnetics, IEEE Transactions on, 38(2):1317 –1320, mar. 2002. ISSN 0018-9464. doi: 10.
1109/20.996336. 6

[25] Kurt Preis. Simulation mechatronischer Systeme - Vorlesungsskript. Institut für Grundlagen und
Theorie der Elektrotechnik, 2007. 24

[26] The U.S. Product Data Association (US PRO). http://www.uspro.org/documents/iges5-
3 fordownload.pdf. URL http://www.uspro.org/documents/IGES5-3_

forDownload.pdf. [Online; accessed, 26-October 2010]. 109

[27] R. W. Clough. The Finite Element Method in Plane Stress Analysis. In Proceedings of 2nd
ASCE Conference on Electronic Computation, Pittsburgh, PA, September 1960. 13

[28] V. Reinauer, T. Wendland, C. Scheiblich, R. Banucu, and W.M. Rucker. Object-oriented devel-
opment and runtime investigation of 3-d electrostatic fem problems in pure java. pages 1 –1,
may. 2010. doi: 10.1109/CEFC.2010.5481836. 8

[29] E.J. Silva, R.C. Mesquita, R.R. Saldanha, and P.F.M. Palmeira. An object-oriented finite-
element program for electromagnetic field computation. Magnetics, IEEE Transactions on,
30(5):3618 –3621, sep. 1994. ISSN 0018-9464. doi: 10.1109/20.312724. 7, 8

118

http://www.mathworks.de/mason/tag/proxy.html?dataid=11440&fileid=54059
http://www.mathworks.de/mason/tag/proxy.html?dataid=11440&fileid=54059
http://www.uspro.org/documents/IGES5-3_forDownload.pdf
http://www.uspro.org/documents/IGES5-3_forDownload.pdf

[30] Strang, Gilbert; Fix, George. An Analysis of The Finite Element Method. Prentice Hall, 1973.
ISBN 0130329460. 14

[31] Inc. The MathWorks. Latest features in matlab. URL http://www.mathworks.de/

products/matlab/whatsnew.html. [Online; accessed, 16-October-2010]. 9

[32] Inc The Mathworks. Introduction to object-oriented programming in matlab. URL http://

www.mathworks.de/mason/tag/proxy.html?dataid=4364&fileid=18842.
[Online; accessed, 23-October-2010]. 103

[33] The StarUML development community. StarUML. URL http://staruml.

sourceforge.net/. [Online; accessed, 02-October-2009]. 8

[34] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp. Stiffness and deflection analysis of
complex structures. J. Aeronautical Society, 23, 1956. 5, 13

[35] Yang Xiang and Wanlei Zhou. The design and development of an integrated system for object-
oriented finite element computing. pages 201 – 204, 2002. doi: 10.1109/ICAPP.2002.1173574.
6

[36] D. Yergeau, R.W. Dutton, and R.J.G. Goossens. An oo-pde solver for tcad apps. Potentials,
IEEE, 21(2):25 –29, apr. 2002. ISSN 0278-6648. doi: 10.1109/45.997973. 7

119

http://www.mathworks.de/products/matlab/whatsnew.html
http://www.mathworks.de/products/matlab/whatsnew.html
http://www.mathworks.de/mason/tag/proxy.html?dataid=4364&fileid=18842
http://www.mathworks.de/mason/tag/proxy.html?dataid=4364&fileid=18842
http://staruml.sourceforge.net/
http://staruml.sourceforge.net/

	1 Motivation
	1.1 Thesis definition

	2 State-of-the-art
	3 MATLAB
	4 Theoretical qualification
	4.1 Historical retrospective
	4.2 Field theory
	4.2.1 Field
	4.2.2 Flux
	4.2.3 Sources and drains as field cause
	4.2.4 Divergence or source density
	4.2.5 Gauß' theorem
	4.2.6 Eddy fields
	4.2.7 Curl or eddy density
	4.2.8 Stokes' theorem

	4.3 Maxwell's equations
	4.3.1 Electro- and magnetostatics - The Laplace-Poisson equation

	4.4 Finite element Method
	4.4.1 Ritz-Galerkin method
	4.4.2 Finite Elements
	4.4.3 Assembly
	4.4.4 Integration of boundary conditions

	4.5 Quadrature integration

	5 Practical approach
	5.1 Implementation schemata
	5.2 Input handling – XML, XSD
	5.2.1 Geometry
	5.2.2 Boundary Conditions
	5.2.3 Material
	5.2.4 Source

	5.3 Object oriented model
	5.4 Preprocessing – PREPROCpack
	5.4.1 PREPROC::ProcessXMLFile()

	5.5 Finite element method – FEMpack
	5.5.1 Discretizing – FEM::discretize()
	5.5.2 Assembly – FEM::assemble()
	5.5.3 Solving – FEM::solve()

	5.6 Postprocessing – POSTPROCpack
	5.6.1 Local-to-global transformation
	5.6.2 Global-to-local transformation
	5.6.3 Determining a value of the solution – PP::Value()
	5.6.4 2D diagram of the solution – PP::Data()
	5.6.5 Determining the gradient of the solution – PP::Gradient()
	5.6.6 Gradient considering material properties – PP::MaterialGradient()
	5.6.7 2D diagram of the gradient – PP::GradientData()
	5.6.8 2D diagram of the gradient considering material – PP::MaterialGradientData()
	5.6.9 2D geometry plot – PP::plotGeometry()
	5.6.10 3D solution plot – PP::plotValue()
	5.6.11 3D gradient plot – PP::plotGradient()
	5.6.12 3D gradient plot considering material – PP::plotMaterialGradient()

	5.7 Multiphysics
	5.8 Boolean operations on polygons – Martinez algorithm
	5.8.1 Algorithm
	5.8.2 Example
	5.8.3 Adding edges to the result polygon
	5.8.4 Special cases

	6 Conclusions and outlook
	6.1 Proof of concept
	6.1.1 Current flow problem
	6.1.2 Thermal problem

	6.2 MATLAB
	6.3 CPU time
	6.4 Memory usage
	6.5 Design
	6.6 Output interface

	A Appendix
	A.1 Complete XML schema definition graph
	A.2 Geometry setup of an iron core with air gap
	A.3 Setup of the hardening device current flow model
	A.4 Setup of the hardening device thermal model

	Bibliography

