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Abstract

Today’s digital world is highly dependent on security enhanced systems to strengthen protection
against data theft and misuse. A hardware security module can offer such systems, amongst other things,
strong encryption, authentication and authorization as well as encryption key management.

The underlying specification for a security module plays a crucial role in its lengthy and extensive de-
velopment process. It is a valuable document needed by specification designers as well as implementers
to review design decisions and steer the advancement of future developments. During the evolution of a
specification, many thoughts and considerations are created, discarded and even lost. This information
might become helpful to fully understand concepts and design decisions, which is especially important
in the complex and sensitive field of computer security.

A vague specification can be the source of various problems: From incompatible implementations to
false assumptions which may ultimately lead to security problems. Therefore it is indispensable that a
specification is as precise and easy to understand as possible. The more people are able to understand a
specification, the more it is likely that problems in the design are discovered (early) and corrected. Espe-
cially for complex and large specifications it is highly desirable to document changes for comprehension
purposes and to spot not only serious but also annoying flaws like typing errors. Those mistakes may
very well become the origin of dangerous security problems later in the implementation.

The Trusted Platform Module (TPM) specification, which provides trusted functions to a higher
level software stack, is used as an example on how to model such an integrated design process. We
introduce a domain-specific language, called FTPM (Formal TPM), to describe TPM commands. With
a TPM specification written in FTPM we can perform simple type checks and automatically generate
different outputs. Due to the automatic creation it is guaranteed that the underlying specification and
derived outputs evolve synchronously. We show that a TPM specification drafted in FTPM is easily
readable for implementers and specification designers and inconsistencies can be detect quickly. Through
a version control system, the development history is preserved as well which can be a valuable source of
information for editors and implementers of the TPM specification.

FTPM is by no means a complete solution for different kinds of technical specifications or even for
different types of security modules. We present a workflow which stretches from the description of TPM
commands and structures in FTPM to the automatic creation of various outputs. We exemplify this work-
flow solely on the specification for TPM. Therefore, FTPM is specific to the operations described for
Trusted Platform Modules.





Kurzfassung

Unsere digitale Welt ist abhängig von speziellen Systemen mit erweiterter Sicherheitsarchitektur um
unsere Daten gegen Diebstahl und Missbrauch zu schützen. Ein Hardware-Sicherheits-Modul kann die-
sen Systemen unter anderem starke Verschlüsselung, Authentifizierung und Authorisierung sowie die
Verwaltung von kryptographischen Schlüsseln zur Verfügung stellen.

Die für die Entwicklung dieser Hardware zugrunde liegende Spezifikation spielt eine besonders
wichtige Rolle im Entwicklungsprozess. Sie ist ein wertvolles Dokument, welches von Spezifikations-
Designern und -Entwicklern zum Review verwendet und mit dessen Hilfe daher auch der weitere Ent-
wicklungsprozess gesteuert werden kann. Während des Entstehungsprozesses einer Spezifikation entste-
hen viele Gedanken und Überlegungen, wobei manche verworfen werden und andere verloren gehen.
Diese Überlegungen können jedoch hilfreich sein, eine Spezifikation vollends zu verstehen – vor allem
im komplexen und sensitiven Bereich der Computer-Sicherheit.

Eine uneindeutige Spezifikation kann der Ursprung für verschiedenste Probleme sein: Angefangen
von inkompatiblen Implementierungen bis hin zu falschen Annahmen, die im schlimmsten Fall zu Si-
cherheitslücken führen können. Daher steht außer Frage, dass eine Spezifikation so präzise und so leicht
verständlich wie möglich sein muss. Je mehr Menschen eine Spezifikation verstehen desto eher (und
schneller) werden Probleme im Design erkannt und korrigiert. Vor allem für große und komplexe Spezi-
fikationen ist es höchst wünschenswert, dass alle Änderungen nachvollziehbar sind und nicht nur schwer-
wiegende, sondern auch kleinere Mängel wie Tippfehler, korrigiert werden. Denn selbst kleine Fehler
können der Ursprung von schwerwiegenden Sicherheitslücken in der späteren Implementierung werden.

Die Spezifikation von Trusted Platform Modulen (TPMs), welche eine gesicherte und kryptographi-
sche Funktionalität für darauf aufbauende Software zur Verfügung stellt, dient dieser Arbeit als Beispiel
wie ein solcher Entwicklungsprozess modelliert werden kann. Wir stellen eine domänenspezifische Spra-
che – genannt FTPM (Formal TPM) – vor, mit der TPM Funktionsaufrufe beschrieben werden können.
Ausgehend von einer Spezifikation, die in FTPM verfasst wurde, werden einfache Typenüberprüfungen
vorgenommen und verschiedene Ausgaben erzeugt. Durch die automatische Generierung ist garantiert,
dass sich die Spezifikation und der erzeugte Quellcode synchron entwickeln. Wir zeigen, dass eine TPM
Spezifikation die mit FTPM verfasst wurde, leicht lesbar ist und ein schnelles Auffinden von Inkonsisten-
zen ermöglicht. Durch die Verwendung einer Versionskontrolle kann zudem die gesamte Entwicklungs-
geschichte für künftige Entwickler und Spezifikations-Designer zugänglich gemacht werden.

FTPM ist weder eine fertige Lösung für verschiedenste technische Spezifikationen noch für ver-
schiedene Sicherheits-Hardware. Wir stellen einen Arbeitsablauf vor, der sich von der Beschreibung von
TPM-Funktionsaufrufen and Datenstrukturen bis hin zur automatischen Erzeugung von Ausgaben er-
streckt. Da dieser Arbeitsablauf beispielhaft an der Spezifikation für TPMs entwickelt wurde ist er auch
auschließlich auf deren Design und Funktionsumfang ausgelegt.
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Chapter 1

Introduction

1.1 Problem

A system which provides a certain level of security is not trivial. Nevertheless, today’s digital world is
dependent on systems with enhanced security to protect our digital identity as well as our data against
theft, misuse and modification. One approach to protect our digital data is the usage of a dedicated
hardware chip that provides cryptographic functions which operate on (not necessarily securely) stored
data. This dedicated hardware is called a secured crypto-processor and makes it significantly harder
for malicious outsiders to read, modify or destroy data unauthorized and thus can greatly strengthen the
security of a system. Examples for such chips are smartcards, hardware security modules (HSM) or the
Trusted Platform Module (TPM).

Of course, these systems are exposed to attacks which they must withstand. The attacks can be
roughly classified into attacks against the hardware or attacks against the software. The security feature
of the hardware is to guarantee that data stored securely onto the device can never be accessed or leave
the chip unintentionally and unprotected. As attacks against the hardware are not only more complicated
but also need physical presence for execution, a secure design of the software is equally important. Most
certainly, bugs on any layer, both the hard- and the software, may compromise the security of the data.

The Trusted Platform Module (TPM) can be viewed as a special kind of a HSM, as it is permanently
integrated onto a computer’s motherboard and cannot be removed. The capabilities of a TPM include a
cryptographic coprocessor, which supports protected storage for sensitive data, integrity measurement of
the host platforms state as well as reporting this state to a third party for verification purposes.

Today, TPMs are installed in a significant percentage of newly built laptops, PCs and smartphones.
It is estimated that TPM chips are deployed in about 500 million devices worldwide [60]. These chips
follow the specification from the Trusted Computing Group (TCG) [59], which describes the design [56],
data structures [57] and available commands [58] on around 700 pages in total.

Unfortunately, the currently published TPM specification has several defects. Gürgens et al. [23]
found several errors, inconsistencies and inaccurate descriptions in some parts of the specification. Al-
though their comments lead to improvements in the following specification revisions, similar defects can
still be found in the current version of the specification. Examples for problems in the currently available
specification are presented in Chapter 4 (Figure 4.4).

Another drawback of the current TPM specification is that no public reference implementation exists.
Therefore, the feedback cycle between specification consumers and specification designers is interrupted.
This cycle is valuable to detect and correct shortcomings and problems early. Without feedback it is more
likely that those problems end up in a published revision of the specification.

Improved readability of the specification document also aids the security of the chip. Important
pieces of the specification—for example command authentication information—should be emphasized to
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2 1. Introduction

ease comprehension. Particularly, a user-friendly navigation between different parts of the specification
aids the review for readers. Currently, it is cumbersome to navigate through the hundreds of pages of
specification text, as the specification in its prevailing form does not provide any connection (hyperlinks)
between data structures and commands at all.

It is eminent that a clean specification that was thoroughly analyzed by specification designers and
implementers benefits the security of the chip. The specification is vital in the development cycle and
needs to be as precise as possible to allow designers and implementers to detect errors early. Any ambi-
guities in the specification can lead to potential errors in the resulting implementation. These ambiguities
may ultimately lead to problems like incompatibility between different implementations, misinterpreta-
tion by implementers or security issues.

1.2 Proposed solution

This thesis proposes a new development cycle for the future development and maintenance of the spec-
ification for TPM chips based on the current available version (Level 2 Version 1.2, Revision 116). The
core component of the workflow is a domain-specific language (DSL), named FTPM (Formal TPM), in
which TPM commands and structures can be described accurately.

Figure 1.1: Based on a domain-specific language (DSL) to describe TPM commands, a translator
parses and checks the specification source and directly generates various different out-
puts. A version control system (VCS) records and ensures access to the project history.
The parts this thesis concentrates on are marked by dashed lines.

The workflow is depicted in Figure 1.1 and consists of the aforementioned domain-specific language,
a translator, and a version control system (VCS). The translator reads and parses the specification, per-
forms type checks on the input and automatically produces outputs in various desired formats. We show
that this translator produces documentation as well as source and header files for the C programming
language directly from a specification written in FTPM. We furthermore focus on the flexibility of the
whole process. While additional checks performed by the parser or different output formats, for example
in Extensible Markup Language (XML) or Java source code, can be added quite easily to FTPM, we
solely focus on a first working prototype.

With FTPM we propose the following interaction between specification designer and implementer:
First, the specification is described in the FTPM language. However, certain features and details of
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the specification cannot be described with FTPM. For example, there are no language constructs for
cryptographic routines built into the language. Consequently, code cannot be generated for these details.
However, needed data structures and the essential execution steps of a TPM command can be described.
This description is subsequently translated to different output formats.

If a command requires a change during the development process, source code modified by an imple-
menter would be overwritten. We solve this problem with a simple separation of implementation details
from the basic command structure: We factor out implementation details into separate functions (see
Figure 1.2). Then, a implementer can use the generated code and needs to add the required functionality
to the functions stubs. This way, changes and details added by the implementer are not overwritten if
code is automatically re-generated with the FTPM prototype.

Figure 1.2: Stub functions are the entry point for implementers to add implementation details that
are not described with FTPM by the specification designer.

This prototype consists of a parser, which allows not only early detection of typing mistakes but
consequently eliminates errors in the resulting documentation as well. The automatic translation of
FTPM source files in different output formats leads to a closely coupled design process and most im-
portantly to a coherent documentation. Furthermore, a specification written in FTPM can provide a base
for a reference implementation through the means of automatic code generation. Important areas of the
specification, like authentication information, can be easily outlined and emphasized in FTPM, which
improves readability and aids human comprehension.

The history of the design process—another possible factor to fully understand a specification—is
stored by a Version Control System (VCS). Therefore, the thoughts and considerations, which lead to a
specific revision, are preserved for future implementers or specification designers. A VCS offers tools
to visualize changes, browse the history of the development and thus contributes to discover errors and
mistakes which may be introduced unintentionally.

FTPM is specifically developed for the problem of describing functions for a TPM. The workflow
is demonstrated on a selection of TPM commands, as a full implementation of all available commands
and structures is out of scope for a first prototype. Furthermore, it is not the goal to develop a general
purpose specification description language. FTPM strives for a clean syntax and omission of unnecessary
language constructs to keep the language as small as possible.

Moreover, this thesis does not addresses problems at the hardware layer of security modules but
rather focuses on improving the creation and maintenance of the underlying specification in order to
minimize implementation errors. Increasing the quality of a specification empowers more people to
evaluate design decisions, which is especially beneficial in the area of computer security.

Additionally, this thesis shows that inconsistencies in the TPM specification are easily detectable with
FTPM. The automatic creation of output, like source code or documentation, leads to increased quality
and may therefore avoid possible security issues. We show that TPM commands and structures written
in FTPM result in a coherent, up-to-date and well-structured documentation. Moreover, it is possible to
derive a reference implementation from it instantly, which can serve as a base for a real implementation.
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With FTPM, the specification is available in an executable form. This allows a quick adaption to
changing constraints. Likewise, it is possible to create additional tools and utilities that operate on
FTPM. This flexibility is demonstrated by our prototype with the enforcement of constraints found in
the TPM specification. These constraints are enforced by the compiler and thus automatically applied
throughout the whole specification. Moreover, as an example of additional useful tools we demonstrate
a small utility which counts the number of bytes a TPM command consumes. This information may
be important on devices with limited memory, like embedded systems, but primarily demonstrates the
gained flexibility of an executable specification.

1.3 Summary

We propose to write a specification for TPMs with a domain specific language. This language is the core
of a workflow that aims to simplify and and improve the creation and maintenance of this specification.
Thus, errors and mistakes in the specification can be detected early which ultimately aids the security of
the chip.

In summary our approach addresses the following problems:

• Access to the complete history of the development process and to the thoughts and considerations
through a VCS. Although there is a section that lists the changes between different versions of the
specification in the documentation this section is naturally not complete and has to be maintained
explicitly. A VCS provides specification designers and implementers access to the whole history
at any time and keeps track of changes automatically.

• Validation of data structures and expressions used in TPM commands. The parser discovers syn-
tactic and semantic errors in the specification ranging from simple typing mistakes to the usage of
unexpected data-structures or -components. The early detection of these errors aids the discovery
of potential serious problems.

• Strict enforcement of rules a properly implemented TPM modules has to adhere to. The specifi-
cation for TPMs is large and complex. Therefore, it is beneficial to let the parser perform checks
on data structures and commands and enforce rules which could otherwise easily be missed by an
implementer.

• Creation of a interface for implementers of the specification. While it is not possible nor intended
to automatically generate the source code for a complete implementation with every needed detail,
a solid base for a real implementation can be provided. Implementation details are separated
from fundamental execution steps and can be added by implementers later. Therefore, changes
introduced to the specification do not interfere with implementation details supplemented by the
implementer.

• Automatic generation of output (code, documentation) that evolves synchronously to the specifi-
cation. Small and profound changes in the specification are immediately reflected in the resulting
output and enforced by the parser. Especially important to implementers is an up-to-date and con-
sistent documentation. Moreover, an improved structure of the documentation eases the navigation
through the large specification and benefits comprehension.

• Increased flexibility because the specification is available in an executable format. It is easy to
generate different outputs from a specification written with FTPM. Moreover, additional tools can
give more insight to the specification if needed. For example, the byte consumption of TPM
commands can be interesting for embedded devices.
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1.4 Chapter Overview

The next chapter, Chapter 2, familiarizes the reader of this thesis with concepts of cryptography as
well as Trusted Computing and TPMs. Chapter 3 gives an overview of different approaches towards
a precise and up-to-date description of technical specifications. In Chapter 4 we demonstrate how a
specification for TPMs for selected commands and structures can be written with FTPM. We outline
improvements and detected inconsistencies together with shortcomings of the current implementation.
Then, we discuss details of FTPM language thoroughly in Chapter 5. Chapter 6 presents the technical
details of the chosen implementation as well as the possible workflow between specification designer
and implementer. Finally, Chapter 7 discusses some ideas for future work and possible research fields
for improvements of the current implementation. Moreover, the next version of specification for TPMs
and needed adaptions on FTPM are briefly discussed.
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Chapter 2

Background

The following chapter introduces basic building blocks that are needed to design a domain-specific lan-
guage for the specification of Trusted Platform Modules (TPMs). After a short motivation, we explain the
basic primitives and protocols for cryptography. Among these primitives are symmetric and asymmetric
(public-key) encryption and hashing functions. Furthermore, important algorithms, like RSA (Rives,
Shamir, Adleman) [46] and SHA-1 (Secure Hash Algorithm) [51] are briefly presented. Then, we dis-
cuss elemental concepts of Trusted Computing and especially TPMs. Next, we give a design overview
and the general usage of TPMs. Finally, we present the authorization mechanism for executing TPM
commands and gaining access to objects held by a TPM.

2.1 Cryptography

The art of cryptography is used by humans probably for thousands of years. Davies [13] mentions
evidence of some kind of cryptography back to the earliest forms of writing. One motivation for cryp-
tography is the desire to make information available to only a certain group of people and hide it securely
from others. This could be sensitive data, like credit card account information or health records, but of
course also private communication with friends and family.

The usage of new applications, especially new ways for communication and transactions in the
world wide web—for example e-money, e-banking or e-voting—require an additional layer of protec-
tion against attacks. Examples for possible attacks are the unauthorized access, usage, modification,
inspection or destruction of digitized data. Cryptography can be used for protection, as it can enable the
following desirable properties [48]:

• Confidentiality
An attacker should not be able to disclose private data.

• Integrity
An attacker should not be able to modify data unnoticed.

• Authentication
An attacker should not be able to masquerade as someone else.

• Nonrepudiation
A sender should not be able to falsely deny transmission later on.

Encryption, Signatures, Hash Functions and Cryptographic Keys are some of the building blocks of
cryptography to enforce these properties and are briefly introduced in the following sections.

7
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2.1.1 Encryption, Decryption and Keys

Encryption (E) is the process to generate a ciphertext (C) out of a message (M ). A ciphertext is a dis-
guised form of the original message, which is unreadable to a human or a computer. Decryption (D)
denotes the inverse process: The original message is recovered back from its encrypted form.
Formally, this process can be written as

EK(M) = C and

DK(C) = M as well as

DK(EK(M)) = M

The cryptographic algorithm is based on a mathematical function (or key K), which is used for
encryption (KE) and decryption (KD). If different keys are used for encryption and decryption, the
former equation can be written as:

EKE
(M) = C and

DKD
(C) = M as well as

DKD
(EKE

(M)) = M

The value of the message M as well as the cipher C is dependent on the key K: The encryption of a
message with two different keys results in dissimilar ciphertexts.

Figure 2.1 illustrates symmetric and asymmetric algorithms. A Symmetric Algorithm uses either
the same key for both operations—encryption and decryption—or the respective keys can be derived
from each other. This algorithm is visualized in Figure 2.1a, where a single key enciphers and decrypts
a message. Figure 2.1b depicts an Asymmetric or Public Key Algorithm where different keys are used
for encryption (KE) and decryption (KD).

(a) Symmetric algorithm (b) Asymmetric algorithm

Figure 2.1: Exemplary scheme of Symmetric (a) and Asymmetric (b) Algorithms. A single key is
used for encryption and decryption in the Symmetric Algorithm while an Asymmetric
(Public Key) Algorithm uses different keys.

2.1.2 Symmetric Algorithms

Symmetric algorithms either use the same key for en- and decryption or the keys can be derived from
each other. Both, the sender (S), who encrypts a message, and the receiver (R), who wants to decrypt it,
must agree on a key in order to establish a secure communication. This key has to remain secret at all
times or otherwise anyone who gains knowledge of the key is able to encrypt and decrypt messages as
well.

A symmetric algorithm provides much higher processing speeds due to less computational needs
than an asymmetric algorithm. However, there exist at least two major disadvantages with symmetric
algorithms, which concern the distribution and management of cryptographic keys:
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• Key Distribution
An additional secure channel for key distribution is needed to avoid eavesdropping of an attacker.
If an attacker is able to get hold of the key he can not only decrypt all past and future messages
encrypted with this key but also masquerade as a valid user.

• Key Management
Usually, a separate key is needed for each participant of a secure communication. In the case of n
people communicating n ∗ (n− 1)/2 keys (O(n2)) are required [67]. Schneier [48] illustrates this
by an example: A group of 100 users would need nearly 5000 different keys.

2.1.3 Asymmetric Algorithms

Asymmetric or public-key algorithms use different keys for encryption and decryption operations. The
decryption key can not be calculated from the encryption key (in reasonable time with today’s computers)
and has to remain secret. However, the encryption key can be made public – hence the term public-
key algorithm, as only the corresponding decryption key is be able to perform decryption of ciphered
messages.

The relation between the keys is established by a trapdoor function. A trapdoor function denotes a
function which is easy to compute in one direction but difficult to inverse without additional information
(the trapdoor). Without the trapdoor it is impossible to derive a private key from a given public key and
consequently no other party can gain knowledge of a private key by access to a public key.

Asymmetric algorithms do not need an additional secure channel for key distribution, as the sender
simply encrypts data with the public key of the intended receiver. Therefore, the key management prob-
lem from symmetric algorithms mentioned in 2.1.2 is greatly reduced. For n users only 2n keys are
needed, which amounts to a cost of O(n) in terms of needed keys [67]. However, in order to verify that a
public key belongs to a certain entity and to establish trust between communication parties some sort of
public-key infrastructure (PKI) is common. A PKI is capable, among other things, to manage identities
and is used for the distribution of keys. More information about PKIs can be found in [1], risks and
problems of PKIs are summarized in [15].

Unfortunately, the performance of public key algorithms is rather slow compared to symmetric al-
gorithms. Schneier [48] says, that public-key algorithms are generally at least 1000 times slower than
symmetric algorithms. Consequently, public key algorithms are often used to exchange symmetric keys
securely, which then perform the actual encryption or decryption operation. This approach is usually de-
noted by the term Hybrid Algorithm and is schematically shown in Figure 2.2. The sender has to perform
the following steps in order to send an encrypted message to a receiver with a hybrid algorithm:

1. The sender creates a (symmetric) session key KS .

2. A message M is encrypted with KS , which results in the ciphertext C.

3. KS is encrypted by the public key of the intended receiver (Kpub).

4. C and KS , which is now protected by Kpub, is sent to the receiver.

The receiver has to perform the following tasks in order to decrypt the message successfully:

1. The receiver is the only one who knows the private key (Kpriv), which belongs to the public key
(Kpub) that was used is protect the symmetric key (KS).

2. Kpriv is used to extract the symmetric session key KS .

3. The ciphertext C can be decrypted with KS , which results in the original message M .
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As the encrypted key is usually a lot smaller than the message M , this decryption process is quite
fast. After gaining the symmetric key, the performance advantage to decrypt the message with a fast
symmetric key can be utilized.

Figure 2.2: Hybrid Algorithm: A sender encrypts a message with a symmetric key. The symmetric
key is encrypted with the public key of the intented receiver. The encrypted message
and the encrypted key are sent to the receiver, who first decrypts the symmetric key
with the private portion of his asymmetric key pair and subsequently can decrypt the
message with the symmetric key.

2.1.4 Hash Functions

A hash function (hash) operates on input of arbitrary length (pre-image, P ) and converts it to an output
of fixed length (hash value or digest, h). This process is visualized by Figure 2.3 and can be written as:

h = hash(P )

Figure 2.3: Hash function

As the hash value is usually smaller than the pre-image, it can be used to verify pre-images more
efficiently: The hash value of a pre-image can attest a certain level of assurance that a given pre-image
is the same as the real pre-image.

A one-way hash function denotes a function, where it is easy to compute a hash value but compu-
tationally infeasible to generate the pre-image of a given hash value. In cryptography one-way hash
functions have to fulfill the following properties:

1. Pre-image resistance
Given a digest, it is computationally infeasible to find another message which results to the same
digest.

2. Second pre-image resistance
Given a message, it is computationally infeasible to find another message which results to the same
digest.
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3. Collision resistance
It should be computationally infeasible to find two messages, which result to the same digest.

The output of one-way hash functions is not dependent on the input. A change of a single bit in
the pre-image changes about half the bits in the resulting hash value (avalanche property) [48]. These
properties are important in the area of cryptography to increase the efficiency of encryption and decryp-
tion operations and to detect modifications on messages. Furthermore, hash functions can be used for
authentication mechanisms, which will be discussed next.

Hash Based Message Authentication

A Message Authentication Code (MAC) denotes a one-way hash function with an additional (secret) key:

hmac = hashK(P )

Figure 2.4: Hash Based Message
Authentication

Upon creation of the hash value, a secret key is added to the pre-image, as shown schematically in
Figure 2.4. Therefore, verification of the hash-value is only possible with the knowledge of the secret
key K.

2.1.5 Random Number Generation

Randomness is an important concept and has many uses in cryptography. Two common cases where
random values are needed, are key generation and Nonces (Number-used-once [36]) in authentication
protocols [16]. Stallings [50] defines ideal random values as unpredictable, statistically random and with
uniform distribution.

In order to computationally generate random numbers used for cryptography, mainly two different
approaches exist: True Random Number Generators and Pseudo Random Number Generators.
True randomness denotes unpredictability even with unlimited computing resources while pseudo ran-
domness tries to achieve unpredictability for limited computational power.

True randomness can be obtained by harvesting input from an entropy source. Sources for random
values can be collected from physical processes like surrounding noise, key strokes or radioactive decay
[50, 54]. As those values are not necessarily random, the gathered values are usually examined and post-
processed to eliminate any pattern in the result. A possible example for a post-processor is a one-way
hash function, like SHA-1 (see Section 2.1.7).

Because of the needed post-processing the cost to gain true random values can be significant [24].
The achieved throughput of true random number generators is lower compared to pseudo random number
generators, which propose a cheap, efficient alternative. Pseudo random numbers look random while
only using a small amount of true randomness (seed) and mathematical algorithms to produce a larger
amount of random values. If the seed is large enough, those random values are unpredictable with
limited computational powers. Therefore, SHA-1 or cryptographic algorithms can be seen as pseudo
random number generators, too. See [31] for a discussion of different approaches to design random
number generators.
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2.1.6 Digital signatures

Signatures on (hardcopy) documents are used as a proof of authenticity, ownership or agreements. Digital
signatures transfer those properties to digital documents or data with the use of encryption keys. While
it is possible to use symmetric encryption for digital signatures (“arbitrated digital signatures” [48]),
usually public-key schemes are used as they are more efficient in regard to the key management of the
involved parties (see Section 2.1.2).

The basic protocol for digital signatures using public-key algorithms can be formally stated as:

Signature: H = hash(M)

S = Kpriv(H)

Verification: H = hash(M) == Kpub(S)

A digital signature uses the private key from the sender. An encryption operation would use the public
key of the receiver instead (see Section 2.1.3). To circumvent performance issues on long documents,
the sender can use a one-way hash function (see Section 2.1.4) to reduce the number of bytes to sign. For
verification of the signature, the receiver first decrypts the signature with the public key of the sender.
As only one public key should be able to decrypt the message meaningful, the sender is bound to the
document with his private key. Then, the resulting hash value is used for the verification of the signed
message content: Only if a newly computed hash matches over the digest decrypted from the signature,
the signed message is unchanged. The utilization of digital signatures is depicted in Figure 2.5.

Figure 2.5: Signing and verification process with a public-key scheme. The sender encrypts the
hash of a message with a private key (Signature, S) and sends it along the message to
the receiver. The receiver decrypts the signature with the public key. This results in the
hash digest computed by the sender. If this hash is of the same value as the hash of the
message, the verification of the signature is successful.

2.1.7 Cryptographic Algorithms used in Trusted Platform Modules

The following section gives a brief overview of important algorithms and concepts that are relevant for
Trusted Computing and Trusted Platform Modules (TPM). First, we discuss the RSA algorithm. This
algorithm is widely used for encryption, decryption, signing and verification operations. Next, we present
SHA-1 hashes, which are used in the authentication and authorization mechanism in TPMs. Finally, we
introduce the concept of Key Wrapping, which is used to establish a trusted key hierarchy.
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RSA

The RSA algorithm [46] is an public-key algorithm and named after its inventors Ronald L. Rivest, Adi
Shamir and Leonard Adleman. It can be used for encryption and decryption as well as digital signatures.
The algorithm depends on the factoring problem: It is presumed that it is hard to decompose a number
that is the product of two large distinct prime numbers, back into the original factors.

The RSA algorithm works as follows [48]: First, two random large prime numbers p and q are
chosen. For security purposes p and q should have the same length. For example a RSA key of 1024 bits
length should use primes with a length of approximately 512 bits each [47].

n = pq

n will be used for the modulus of the public and private key. Then, a random encryption key e is chosen,
where e and (p− 1)(q − 1) are relatively prime. That is:

ϕ(n) = (p− 1)(q − 1)

e ≡ 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

ϕ denotes Euler’s totient function, which counts the number of positive co-primes to n. The decryption
key is computed with the extended Euclidean algorithm:

d ≡ e−1 (mod (ϕ(n))

The public key is formed by the numbers e and n, d is the private key. The encryption (c) of a message
m is performed by:

c ≡ me (mod n) (0 ≤ m < n)

If m is larger than n the message has to be divided into blocks where each block is smaller than n. The
original message m is decrypted from c with:

m ≡ cd

Regarding the above mentioned factoring problem, which is responsible for the security of RSA, it is
presumed that the factor of n is needed to calculate m from c. This would allow to decipher the original
message. Currently, no algorithm is known to solve this problem efficiently. However, a mathematical
proof that the factor of n is even needed is outstanding [48].

SHA-1

SHA-1 is an implementation of the Secure Hash Algorithm (SHA) and belongs to a “family” of hash al-
gorithms published as a Federal Information Processing Standard (FIPS-180) [51]. Another hash imple-
mentation described in this standard is referred to as SHA-2, which consists of the SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224 and SHA-512/256 algorithms. These algorithms differ in security
strength and the data size which is used during the hash process. It is planned that future FIPS publica-
tions include a SHA-3 algorithm, which uses a different structure than the other algorithms of FIPS-180
[10].

SHA-1 produces digests of messages with 160 bits, which can be used for data integrity checks
(see Section 2.1.4). Message digests are an important property in the creation and verification of digital
signatures (see Section 2.1.6) and authentication.

Today, SHA-1 provides computational security for several years. In theory, 280 operations are needed
to brute-force attack a digest of 160-bit size. A collision on hash digests, as mentionend in Section 2.1.4,
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targets hash operations by trying to find two distinct documents which result to the same hash digest. In
2005 a paper was published which discovered that collisions in SHA-1 are possible in much less than 280

operations [66]: Further improvements on this attack reduced the complexity to find a collision down to
262 operations [9]. In 2012 a attack was published which claims to reduce the amount of needed SHA-1
operations down to 257.5 [53].

Key Wrapping

The goal of Key Wrapping is to protect a (sensitive) key in untrusted environments. The key to be
protected may either be symmetric or asymmetric. For a symmetric algorithm the whole key (Ksym)
has to be protected whereas only the private portion of the key pair (Kpriv) for an asymmetric algorithm
needs to be guarded. The result of a private key (Ksym or Kpriv) encrypted with another (private) key
is called wrapped key. The wrapped key is not usable without proper decryption of its corresponding
parent key first.

It is possible to generate a whole tree hierarchy of dependent keys, where every decryption of one
key Kn needs decryption by its parent key Kn−1:

Wrap: Kwrap = E(Kn,Kn−1)

Unwrap: Kn = D(Kwrap,Kn−1)

Inside this tree key material is encapsulated. E(Kn,Kn−1) denotes the encryption of Kn with a key
Kn−1 while D(Kwrap,Kn−1) denotes the inverse process: The decryption of Kwrap with the key Kn−1.
The topmost key of a tree is called root-key (KR). This key is not protected by any other key, therefore
another mechanism is needed to ensure protection.

In a sense a hybrid algorithm, which was briefly presented in Section 2.1.3, demonstrates a key
wrapping strategy: A symmetric key is protected by the private portion of a public-key algorithm. This
way, the fast symmetric key can be transmitted to the intended receiver over an untrusted medium. More
generally this strategy can be applied when the storage of sensitive keying material on public readable
media is needed.

For example, a TPM provides protected storage (shielded location, see Section 2.2.1). Access to this
location is granted only after successful authorization. However, the storage capabilities on a TPM are
limited. Therefore, key wrapping is used to securely store keys outside a TPM and load keys on demand
prior usage. Moreover, the shielded location of a TPM can be utilized for protection of the root key.

2.1.8 Summary

This section presented basic building blocks of cryptography. After a short explanation of encryption
and decryption operations, symmetric, asymmetric as well as hybrid algorithms were introduced. We
outlined the practical usage of hybrid algorithms, which combine the speed of symmetric encryption
with the more beneficial key management of asymmetric algorithms.

Furthermore, primitives used in cryptography, like hash functions and hash based message authen-
tication, which are used to generate and verify fingerprints of digital data, were presented. Next, we
discussed the importance of randomness and random number generation.

Finally we pointed out specific algorithms and important concepts, like digital signatures, RSA,
SHA-1 and Key Wrapping strategies. Those concepts are core building blocks used in Trusted Comput-
ing and Trusted Platform Modules, which will be presented in the next section.



2.2. Trusted Platform Module Basics 15

2.2 Trusted Platform Module Basics

After the cryptographic background of Section 2.1, the following section will give a quick overview of
Trusted Computing and the role of Trusted Platform Modules (TPM). A TPM is the core technology
around the concept of the domain-specific language FTPM. Therefore, the principle design of a TPM as
well as its typical use cases are discussed. Furthermore, a more detailed look on command authorization
mechanisms, key management and storage concepts is given. The following sections will provide a solid
base for understanding FTPM and the design decisions leading to it.

2.2.1 Trusted Computing and Trusted Platform Modules

A Trusted Platform Module (TPM) is a low-cost mass-market chip which is permanently integrated
onto a computing device and thus cannot be removed. It is platform-agnostic and a core component
of Trusted Computing, which is a strategy to create more robust and secure systems with specialized
hardware. Trusted Computing and TPMs are concepts invented by the Trusted Computing Group (TCG)
[59]. The TCG is a not-for-profit organization that aims to define and promote the requirements for hard-
and software needed for Trusted Computing. Per definition of the TCG, a trusted system is one “that
behaves in the expected manner for a particular purpose” [55]. This means that a system can be trusted
if it reliably reacts similar to previous events.

TPMs are integrated in most newly built computers. A TPM can be used for the creation and secure
storage of cryptographic keys and thus provides a hardware root of trust. Furthermore, a TPM can be used
to protect the platform against attacks on its integrity by storing measurement values. These values are
used to detect unauthorized modifications. If a system is unmodified and not changed from one specific,
known state, it can be trusted to work in known boundaries and thus satisfy the TCG’s definition of a
trusted system given above.

The current version of TPMs (version 1.2) uses the following cryptographic algorithms: RSA (see
Section 2.1.7), SHA-1 (see Section 2.1.7) and HMAC (see Section 2.1.4). A TPM provides a Hard-
ware Random Number Generator (see Section 2.1.5) as well as volatile and non-volatile memory. The
functionality of a TPM is based on the following cornerstones:

• Cryptographic Keys and Key Hierarchy are used for encryption and signing arbitrary data;

• Measurement is used to record the state of a system;

• Storage is used to (securely) store keying material as well as measured values;

• Attestation is used to report the state of system to a third party.

Each of these concepts will be briefly discussed in separate sections.

Cryptographic Keys and Key Hierarchy

Before a TPM can be used, it is necessary to take ownership of it. As the module is typically disabled by
default, it has to be enabled in the host computer’s Basic Input Output System (BIOS) software. Next,
a password is created and stored in a shielded location, to which unauthorized access is prevented by
hardware mechanisms. This password generates the Storage Root Key (SRK), which is the base anchor
of trust for all operations that either need authorization. The Storage Root Key is a RSA key pair (see
Section 2.1.7) and protects all other derived keys inside the TPM. This means that if the TPM gets reset
(which deletes the SRK), all dependent encrypted data is lost. The private portion of the SRK is not
allowed to leave the TPM.
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The Endorsement Key (EK), which is also an RSA key pair, is usually created and stored inside the
TPM by the manufacturer during production time of the TPM . Its private portion is not allowed to leave
the TPM, either. If the manufacturer included a digitally signed certificate, the EK can be used to verify
genuineness of a specific TPM and thus can be used for remote authentication.

However, the direct use of an EK for unique identification of a TPM imposes a privacy problem:
All other transactions made by the user become linkable and thus compromise the anonymity of a user.
Therefore, an Attestation Identity Key (AIK) is used, which is an RSA key pair generated inside a TPM
by the owner and thus unknown to third parties. The AIK is derived by the EK. As mentioned above, the
private part of the EK is not allowed to leave the TPM. Therefore, it is possible to attest authenticity of a
TPM with the AIK.

In order to vouch genuineness of a TPM without revealing which TPM is used to cope with the
aforementioned privacy problem, the TCG proposes two solutions: First, a trusted third-party Privacy
Certification Authority (Privacy CA), which manages identity information and checks the validity of an
EK, can be used. However, the maintenance and abiding of trust to such an authority can be problematic,
as the CA has to be involved in every transaction. Consequently, high availability of the CA is needed.
Furthermore, the anonymity is now dependent on the CA but it cannot be excluded that the CA and the
remote application, which requests authentication, collude and thus the same privacy problem continues
to exist.

Therefore, in version 1.2 of the TPM specification, the TCG introduced the direct anonymous at-
testation (DAA) protocol. The DAA is a zero-knowledge protocol, which means that one party verifies
a statement to another party without revealing any additional information. In case of DAA this means
that not a certificate (EK, AIK) is used for authentication but rather a cryptographic proof that the owner
uses a genuine TPM. The DAA protocol has the following entities: a DAA Issuer (e.g. manufacturer, IT
administrator, ...), a DAA Signer (TPM) and an external party, who acts as a DAA Verifier. The protocol
works a follows: First, the a certificate for a genuine TPM is issued by the DAA Issuer to a DAA Signer.
With this certificate two things are proven:

1. The owner generated a signature which was approved by the DAA Issuer and

2. The DAA Signer is in possession of this certificate

With the possession of the certificate from the DAA Issuer, the DAA Verifier is now able to confirm the
validity of the TPM. Implementation details of the DAA protocol can be found in [7].

The key material used by TPMs uses the RSA algorithm (see Section 2.1.7). This algorithm is
capable of encryption, decryption, creation of digital signatures as well as verification. RSA keys are
utilized by a TPM mainly in four different ways, namely as:

• Signing Keys
Signing Keys are used to create digital signatures of data. The TPM enforces a separation of duty
by preventing the use of signing keys for encryption operations and vice versa.

• Storage Keys
Storage Keys are used to encrypt other keys to establish a key hierarchy (see Section 2.1.7).

• Binding Keys
Binding keys are used to bind or seal data: Binding denotes the encryption of data with a specific
storage key. Sealing means encryption of data with an additional state-constraint: The TPM has
to be in a certain state in order to decrypt the data sucessfully.

• Legacy Keys
Different keys usually have different modes of operation. Although it is possible to use legacy
keys, which can be used for every operation, they weaken the aforementioned separation of duty.
Therefore, the usage of legacy keys is deprecated.
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Figure 2.6: Example of a possible key hierarchy inside a TPM. Different applications can—
depending on given rights—use different kind of keys. All keys are ultimately depen-
dent on the SRK. The EK is used to attest that a TPM is from a certain manufacturer.

The last two remaining key types are Identity Keys and AuthChange Keys. An example for an identity
key is the AIK, whose role in the remote authentication was briefly discussed above. AuthChange Keys
were omitted in this enumeration because of their limited use in special TPM commands.

The SRK acts as a Root of Trust with regards to a key hierarchy: Every key created, loaded and
executed inside a TPM is dependent on this key. An example key hierarchy is depicted in Figure 2.6,
where different keys are utilized for different applications and use cases. However, the root anchor of
trust for these keys is always the SRK, which is stored securely inside the TPM.

Storage

A TPM features shielded locations for cryptographic keys as well as unshielded locations for insensitive
data. As storage inside a TPM is limited, it is possible to load needed data, such as keys, on demand from
unsecured storage outside the TPM. Key wrapping mechanisms, which are discussed in Section 2.1.7,
are used to protect sensitive data.

The storage area for measurement values inside the TPM is denoted by the term Platform Configu-
ration Register (PCR). A PCR is an internal register capable to store a 160 bit digest – which is exactly
the size of a SHA-1 hash (see Section 2.1.7). A TPM (version 1.2) has at least 24 PCRs, where the first
16 registers are static and the last eight are dynamic. Static registers are reset at boot time while dynamic
registers are used by special mechanisms – such as dynamic roots of trust [22]. A PCR can always be
read directly, but can never be directly modified. PCRs are an integral part to form a Chain of Trust (see
Section 2.2.1).

Measurement

The configuration of a trusted system is measured and stored. On each startup of the system, these
measurements are performed in sequence and thus form a Chain of Trust. A Chain of Trust in regard to
measurement values means that for each validation of a value m a successful validation of the preceding
measurement value m-1 is required. The adherence of this sequence offers increased security because
one single missing validation will result in the break of the Chain of Trust and thus allows to take
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Figure 2.7: Extending a previously recorded digest to reflect an intentional system modification.

countermeasures, like aborting the startup routine. Hash functions, which were briefly discussed in
Section 2.1.4, are used to calculate digests for those measurements.

An administrative action is necessary if a change in the Chain of Trust is needed—for example due
to an intentional change in the hard- or software configuration. Stored measured values from a TPM
cannot be directly overwritten but have to be extended. This Extend operation roughly works as follows:
A digest of the new system configuration is calculated (hcur). This digest is bitwise concatenated with
the previous recorded digest of a former system configuration (hprev). The resulting digest is hashed
again to produce the final digest hnext. This digest now does not only reflect the current configuration
but also implicitly keeps a history of all previous configurations as well. This concept is illustrated in
Figure 2.7 and formally denoted by:

hnext = hash(hcur||hprev)

Of course, the system has to keep an ordered list of individual measurements from old configurations
(hprev) in order to allow validation of new configuration measurements. The comparison of measurement
values cannot be performed on the same machine because of obvious reasons: If a system is compro-
mised there is no reason to trust neither reported measurements nor the software initiating measurements.
Therefore, remote attestation is used to verify the state of a system to a remote party. This remote party
can attest that a system is in a good, known state by comparing digitally signed measurement values it
received from the TPM to locally stored reference measurement values.

Attestation

The term Attestation denotes the process to prove that a system is in a trusted state. This is done by
performing the following three steps:

1. Measurement of configuration values (Chain of trust)

2. Reporting of measurements to a third party
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3. Verification of the received measurement values by the third party

Measurement values are stored in PCRs inside the TPM (see Section 2.2.1). These values get digitally
signed by an Attestation Identity Key (AIK, see Section 2.2.1), which proves that the signed statement
originates from a hardware TPM. With this information the third party can compare received with ex-
pected measurement values and thus verify the state of the system.

Summary

This section presented the core functionality a TPM can provide for Trusted Computing. First, we
discussed the concept of the key hierarchy as well as possible key types of a TPM. Next, we presented
the role of measurements to sustain trust and how to extend this trust. Finally, we introduced two other
important concepts, namely storage and attestation. In summary, a TPM can act as the Root of Trust for
three properties:

• Root of Trust for measurement
With the help of PCR records and current measurements, the state of a platform can be verified.
The history of updated configurations is traceable in the PCR registers.

• Root of Trust for reporting
The state of the platform can be reported to third parties to assure integrity and authenticity of the
platform.

• Root of Trust for storage
Sensitive data, like key material, is stored securely inside the TPM. Specific keys are not allowed
to leave the TPM at all or only in encrypted form. Therefore, data encrypted with the help of a
TPM cannot be recovered without it.

2.2.2 TPM Command mechanism

An Application Programming Interface (API) exposes the functionality of a TPM to an application. This
API, named TCG Software Stack Specification (TSS), is defined by the available commands a TPM
supports [58] as well as the needed data structures [57] for it.

Most TPM commands exposed by the TSS-API require proper authorization, which we will discuss
in the next section. Then, we introduce the concept of Rolling Nonces, which is heavily used in com-
mand authorization. Finally, we present a quick overview of the common message structure of TPM
commands.

Command Authorization

Most available TPM commands need proper authorization before execution, as they usually access or op-
erate on data securely stored inside the TPM. There are different ways to establish authorization defined
by the TCG, the two most important one being the Object-Independent Authorization Protocol (OIAP)
and the Object-Specific Authorization Protocol (OSAP).

As opposed to the Object-Specific Authorization Protocol, the Object-Independent Authorization
Protocol does not bind authorization to specific TPM entities and thus allows different commands to
read or modify almost all objects held by the TPM. Furthermore, authorized communication sessions
initiated by the Object-Independent Authorization Protocol remain open until explicitly closed by the
calling application.

Object-Specific Authorization uses a certain usage secret to validate access to requested entities. This
usage secret can be a password or a PIN-code. OSAP sessions end automatically under the following
conditions:
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• The entity for which authorization was given has been unloaded from the TPM,

• The usage-secret specific to the requested entity has been modified,

• Authorization data of keys or data stored inside the TPM has been modified, or

• The command for which the OSAP was initiated has failed.

Other authorization protocols defined by the TCG include the Delegate-Specific Authorization Pro-
tocol (DSAP), the AuthData Insertion Protocol (ADIP), the AuthData Change Protocol (ADCP) and the
Asymmetric Authorization Change Protocol (AACP) [56, Chap. 13]

Rolling Nonces

Rolling Nonces are used to determine freshness of commands sent between a higher-level software stack
and the TPM. Only parties that have knowledge about a shared secret – the Nonce (number used once
[36]) – are empowered to execute a command. These Nonces are used to avoid replay attacks, which
are used by attackers to gain more knowledge about a system. Replay attacks are carried out by in-
tercepting and resending messages to the involved parties (in this case the TPM or TSS) again. Those
attacks can lead to unwanted access to platform resources, if no countermeasures are installed. A general
introduction to replay attacks can be found in [21].

The Rolling Nonce is a random 20 byte value. Every TPM command which needs authorization
produces a new Nonce pair: A nonceEven, which is associated to the commands the TPM sends to
the software stack (TSS) and a nonceOdd, which is associated to the commands the TSS sends to
the TPM. These Nonces are used in the command authorization digest. Therefore, only the TSS that
requested authorization and the TPM that answered the requests, know each others Nonce values. No
other party should be able to calculate the accurate authorization digest and thus replay attacks can be
avoided.

Figure 2.8 demonstrate the use of Rolling Nonces in the command authorization process by showing
an excerpt of the TPM_Sign command, which is used to sign arbitrary data. The first step consists of
the TSS requesting authorization for future commands by sending an TPM OIAP (Object Independent
Authorization Protocol) request to the TPM. This causes the TPM to generate and store a nonceEven,
which is sent back to the calling TSS.

Next, the TSS generates a nonceOdd and uses both values, the nonceEven from the TPM and the
generated nonceOdd, to calculate an authorization digest (auth digest). This digest, as well as the
nonceOdd are sent to the TPM in the following request – the TPM Sign command. The TPM uses its
stored nonceEven and the received nonceOdd to calculate the auth digest itself.

If the calculated auth digest matches the received auth digest, the TPM knows that the
TSS is the one which requested authorization with the TPM OIAP command before, as only the TSS has
knowledge of the nonceEven produced by the TPM. Figure 2.8 omits the response of the TPM, which
would include the generation of a new nonceOdd and the recreation of a new auth digest. With
these values, the TSS can verify that it communicates with the intended TPM simply by calculating and
comparing the auth digest as well.

TPM Command Messages

Every TPM command sent to or from the TPM has a common message structure. This message struc-
ture consists of a header and a payload. The header includes information of the actual command to be
executed as well as authorization information. The payload contains data dependent on the current TPM
command.
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Figure 2.8: The use of Rolling Nonces in the interdependent authentication of the TPM and the
TSS. First, the TSS requests authorization of the TPM with the use of the TPM OIAP
command. The TPM produces a nonceEven value and sends it back to the TSS. The
TSS stores the received nonceEven and produces a nonceOdd value. Both values,
nonceEven and nonceOdd are used in the calculation of the authorization digest by
the TSS. This digest and the created nonceOdd value are send to the TPM with the
next command, in this case TPM Sign. To verify proper authentication of the TSS,
the TPM uses the received nonceOdd and the stored nonceEven value to calculate
the authorization digest as well. If both, the calculated and the received authorization
digest match, the TSS is authenticated against the TPM and the TPM Sign command
is executed.
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An important information inside the message header is the type of authorization required, which can
be one of three different levels: Non-authorized, Single-authorized and Dual-authorized. This infor-
mation is important to determine the correct number of authorization blocks inside a TPM command.
A Non-authorized commands does not reference any object held by the TPM. An example of a non-
authorized command is TPM Startup, which initializes a TPM. The TPM LoadKey command is a
Single-authorized command, where a single cryptographic key gets loaded into the TPM for further us-
age. An example for a Dual-authorized command is the TPM ChangeAuth command, which modifies
authorization data of keys or data stored inside the TPM.

Every available authorization block has to be successfully validated before any action is performed.
A failed authorization results in a Non-authorized message returning the failure to the calling application.

Summary

The TCG specifies different authorization protocols which validate access to resources held by the TPM.
The most important ones are the Object-Independent and the Object-Specific Authorization Protocol.

Every authorization protocol heavily uses Rolling Nonces in the authorization process between a
software stack (TSS) and a TPM. These Nonces are used to verify that posted commands are fresh and
not replayed by an attacker in order to gain deeper knowledge of the system.

Every TPM command features a common message structure, which among other information con-
tains the number of needed authorizations. Every single authorization block has to be successfully vali-
dated before an action is carried out, either by the TPM or the TSS.



Chapter 3

Related Work

The following chapter presents different existing solutions for the creation of software with a focus on
an unambiguous and up-to-date documentation. First, we introduce dedicated specification languages on
the example of the Vienna Development Method and the Z-Notation.
Next, we present literate programming, a program paradigm which emphasizes that programs are not
only interpreted by compilers but also need to be understandable to humans. Therefore, literate pro-
gramming especially targets the documentation process.
Then, we present two existing tools for automatic documentation generation—namely Doxygen and
Javadoc—followed by a short motivation for language orientated modeling with the help of domain-
specific languages in the next section.
All discussed approaches share the intention to create correct and maintainable programs, either through
a formally correct and provable specification, a tight coupling between specification text and a resulting
implementation or special focus on a concise representation. Moreover, all sections of this chapter use a
common example as an illustration of the respective approaches.

3.1 Formal specification languages

A specification provides a solid base for subsequent correct implementations. As mentioned in [2], the
former European Space Agency software engineering standards [17] highlight the importance of the
software requirements (SR) phase in the life-cycle of software:

“The SR phase is the analysis phase of a software project. A vital part of the analysis activity
is the construction of a model describing what the software has to do, and not how to do it.”

Any ambiguities in a specification can lead to potential severe errors in the resulting implementation.
Certainly, it is beneficial to find potential problems early. This can be achieved by applying special tools
and concepts during the SR phase. Simple testing for confirmation of the desired behavior—especially
for critical or highly complex systems—might not be enough. Formal methods can provide such a proof
of robustness to a certain degree through mathematical models and rigorous checks. As pointed out
by [2], such a mathematical approach seems like an obvious choice because almost all other fields of
engineering use mathematical models as well, for example Mechanical or Electrical Engineering.

Formal methods can be applied at different levels, beginning at the specification phase (Formal spec-
ification), through the actual development (Formal developement and formal verification), up to Theorem
provers. A formal specification is very generally described in [35] as an

“Expression in some formal language and at some level of abstraction, of a collection of
properties some system should satisfy.”

23
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This description names four important concepts of a formal specification, particularly:

• Formal
A formal specification consists of a certain syntax which allows precise descriptions of the problem
domain (semantics). Additionally, a formal specification also needs “rules for inferring useful
information from the specification (the proof theory)” [35].

• Abstraction
The process of developing complex systems is usually an iterative process: Starting at a high-level
description of the desired goals, this description is refined until it is specific enough that a system,
which satisfies those goals, can be implemented. The finding of a well-balanced abstraction, which
is neither too specific nor too vague, is difficult and requires experience and a deep understanding
of the problem domain.

• System
The system covers the problem domain of interest, for example a software or hardware specifica-
tion. Knowledge about this domain is not only fundamental in order to guide the development and
refinement of a specification but also to actually state what the problem is about.

• Properties
Properties refer to the ultimate goals the specification strives to achieve. Among the goals are func-
tional requirements and non-function requirements (performance, security, etc.). Complex systems
can have a large amount of such properties to consider. Therefore, it is favorable to structure the
specification in units which are interconnected through structuring relationships (specialization,
aggregation, instantiation, enrichment, use, etc.)

A formal specification can increase the level of quality for documentation as well as the resulting
implementation through the usage of these concepts. During the formalization different questions which
challenge the problem and the chosen approach are raised and therefore can lead to new and better ap-
proaches. Furthermore, a formal specification describes the approach precisely and does not leave room
for interpretations and ambiguities like a natural language might do. Subsequently, a formal specification
allows automated processing with additional tools, like theorem provers, algorithmic model checking and
generation of counterexamples.

The creation of a specification for non-trivial system is difficult and formal methods are not a widely
adopted approach. Lamsweerde [35] states that formal specifications currently suffer from similar prob-
lems early programming languages had to face: Minor adoption because of complexity. The evolution
of programming languages lead to better abstractions away from very low-level, machine-based instruc-
tions up to different programming models and paradigms (object-oriented, imperative, functional or logic
paradigm [38]).

3.1.1 Formal specifications with VDM-SL and Z-Notation

Two of the most well known specification languages are the Vienna Development Method Specification
Language (VMD-SL), which is part of the Vienna Development Method (VDM) and the Z-Notation
language. VDM was originally developed by IBM in the 1980s to be used for programming language
description and compiler design. It is a collection of techniques to model, specify and design computer-
based systems. The Z-Notation was established by Jean-Raymond Abrial in the 1980s. It also targets the
creation of precise specifications for computer systems.

VDM-SL and Z-Notation share a common ground: Both languages are based on mathematical sets,
relations and predicate expressions. VMD-SL uses concepts found in programming languages and there-
fore is more similar to programming languages, while the primarily focus of Z-Notation lies in descrip-
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tion of states. VDM-SL is standardized by the British Standards Institution (BSI) [8] and the International
Organization for Standardization (ISO) [29]. The Z-Notation is standardized by the ISO as well [28].

3.1.2 Example

This section illustrates a formal specification of a stack with VDM. Many more examples of specifi-
cations written in VDM or Z-Notation can be found in [5], differences are illustrated for example in
[25].

An informal description of the functionality of a stack is as follows: A stack is a data structure
storing elements in last in, first out (LIFO) order. Therefore, two operations are necessary: push, to put
an element on top of the stack, and pop, which removes the topmost element from the stack.
Additional operations are peek, which returns the value of the topmost element on the stack but does
not remove it, and isempty, which tests if the stack currently has stored any elements. The function
init just initializes a new stack – that means it may allocate needed resources.

In [30], a complete formal specification of this description, enhanced with allowed operations and
error states can be found. Listing 3.1 shows a property-based approach with VDM-SL:

1 init: -> Stack
2 push: N x Stack -> Stack
3 top: Stack -> Stack
4 remove: Stack -> (N U ERROR)
5 isempty: Stack -> Boolean
6

1 top(init()) = ERROR
2 top(push(N,Stack)) = N
3 remove(init()) = init()
4 remove(push(N, Stack)) = Stack
5 isempty(init()) = true
6 isempty(push(N, Stack)) = false

Listing 3.1: Function signatures (left) and semantics (right) of a stack in VDM-SL. N indicates an
element (natural numbers in this case), U indicates set union.

Listing 3.1 shows which operations an implementation has to provide: init for initializing a stack,
the helper function isempty and the essential push and pop (which is expressed in this example by
the combination of the functions top and remove). Furthermore, Listing 3.1 shows constraints on the
defined operations as well. Trying to peek an element of an empty stack yields an error because of
an underflow condition: It is not possible to return a natural number from an empty stack. The third
constraint avoids introducing another error state by extending remove to ignore empty stacks.

With the help of these constraints, room for (false) assumptions can be restricted and thus ambiguities
be minimized. Moreover, this specification leaves out unnecessary implementation details, like how
values are stored internally (array, linked list) and thus provides a good abstraction.

Formalizing such a specification not only enforces deep considerations about the system to be imple-
mented and consequently leads to a cleaner implementation but also can be used as a reference point for
proof construction. A proof shows, that an implementation works correctly (satisfies the specification)
for all valid inputs. Such a proof is not possible with a specification in a natural language.

3.1.3 Advantages and Disadvantages

The process to formalize a specification raises questions regarding the system, its properties and states.
These questions are valuable to gain a deep understanding and refine the specification to become concise
and as unambiguous as possible. Mathematical models can act as a base to prove the compliance or
noncompliance of an implementation to a specification as well as inconsistencies in the specification
itself. This provides a tremendous advantage, especially in complex systems, to catch errors early.

Unfortunately, the creation of a formal specification is highly complex and thus time-consuming and
expensive. Correctness is difficult to prove and comprehension of the resulting models is a demanding



26 3. Related Work

process even for specialists [18]. Therefore, it is currently not feasible to model huge specifications with
formal methods but rather apply them on small and critical parts of the specification.

The high complexity is the main barrier for applying formal methods on the over 700 pages of
specification for TPM chips [56, 57, 58]. Although rigorous checks are extremely beneficial for detecting
errors, formal methods do not help to broaden the comprehension of design principles to a larger group
of people due to the aforementioned complexity.

3.2 Literate programming

Another approach to combine documentation and source code is defined through Literate programming
– a programming paradigm characterized by Donald Knuth in the 1970s [32]:

“Let us change our traditional attitude to the construction of programs: Instead of imag-
ining that our main task is to instruct a computer what to do, let us concentrate rather on
explaining to human beings what we want a computer to do.”

Literate programming emphasizes the readability and therefore comprehension of computer programs.
It focuses to explain what a program does for human readers, by giving the programmer the freedom
to compose parts of a program differently to what a compiler would require. Simultaneously, literate
programs can automatically rearrange the code prior to compiling to allow correct parsing. Thereby, and
by choosing expressive variable names, a program should become like literature for the reader.

3.2.1 Literate programming tools – CWEB and noweb

Originally, literate programming was introduced with the WEB [32] system. WEB consists of two tools:
A documentation language – TEX

1 – and PASCAL2 as a programming language. Those two tools are
inherent in literate programming: From one literate source it is possible to extract documentation (weave)
and executable source code (tangle). As mentioned before, one strength of literate programming is to
eliminate the strict structure a compiler might need (e.g. variable declaration in C89/ANSI C). This
helps humans, who read the documentation, to understand the intention quicker. Weaving and tangling
are usually performed by some soft of preprocessor, which extracts marked information in different order
for one or the other command.

WEB or its successors, like CWEB3 (which uses C/C++ instead of Pascal) or FWEB (which can han-
dle C/C++, Fortran, RATFOR and to some extent TEX), generate source code in a specific language.
Haskell has support for literate programming directly built-in4. However, there exist also language
agnostic literate programming tools, for example noweb5. While those tools are independent of the tar-
get language, they usually have to sacrifice some features Knuth considered part of literate programming
(pretty printing of documentation and source code, i.e. using several fonts and indentation rules), be-
cause those features are highly language-dependent. However, some of the features (like pretty printing)
can be applied subsequently by the use of different, specialized tools on the generated output as well.

The goal of literate programming is to provide better documentation in order to allow more people to
understand the intent of a computer program with the help of a consistent and complete documentation.
Knuth states that a competent programmer needs two tools: A typesetting language like TEX for docu-
mentation and a programming language for a concise implementation. A language like TEX or LATEX6

1http://www.tug.org/
2ISO 7185:1990
3http://www-cs-faculty.stanford.edu/ uno/cweb.html
4http://www.haskell.org/haskellwiki/Haddock
5http://www.cs.tufts.edu/ nr/noweb
6http://www.latex-project.org/
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allows high-quality typesetting of (mainly) technical and scientific documents. By using both tools si-
multaneously, a complete and consistent documentation can be developed. Changes made to the program
logic should (directly) lead to changes in the resulting documentation. Naturally, it still depends on the
programmer to provide meaningful documentation — or any documentation at all.

3.2.2 Example

As in Section 3.1.2, a small example is used to illustrate literate programming. For comparison, a part
of the same data structure—a stack—will be presented. The example is written in noweb notation and
the complete listing of the example can be found in Appendix A.1. Please refer to Section 3.1.2 for a
general explanation of a stack.

1 @ \section{Introduction}
2 This is a (minimal) implementation of a stack [...]
3 \begin{enumerate}
4 \item [[pop]] \\ Removes the topmost element from the stack.
5 \end{enumerate}
6

7 <<pop.c>>=
8 int pop(STACK **head)
9 {

10 if (empty(*head)) { error("Error: stack underflow"); }
11

12 STACK *top = *head;
13 int value = top->data;
14 *head = top->next;
15 free(top);
16 return value;
17 }

Listing 3.2: Excerpt of the implementation of a stack using literate programming.

As shown in the Listing 3.2, a literate program in noweb contains the implementation source code
along with the documentation. Documentation chunks are marked with @ signs on the first column until
either another documentation chunk or code chunk, marked with <<NAME>> is found. The chunks can
be crossed-referenced, reordered and can be amended by adding information for a named chunk later in
the file.

The documentation consists of pure LATEX, which empowers the programmer to use the rich typeset-
ting features. Therefore, a nicely formatted, cross-referenced documentation can be generated automati-
cally at no additional cost for the user. The documentation also automatically provides links to keywords
and function names and automatically creates an index. Moreover, noweb can output documentation
directly in LATEX and HTML.

3.2.3 Advantages and Disadvantages

With literate programming, a programmer has a tool to provide professional, structured documentation
alongside a concrete implementation. Changes introduced to the implementation can be documented in
the same source file and thus are more likely to get written down. With the use of specialized docu-
mentation systems, like LATEX, high-quality, easy to navigate documentation can be generated. This aids
comprehension of complex systems and thus reduces ambiguities.

Literate programming is still not a widely adopted approach in programming. Knuth cites Jon Bent-
ley that one reason for the relatively rare spread of literate programming might be that the percentage of
people good at programming is not necessarily good at writing [4]. While the usage of LATEX provides
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Figure 3.1: HTML-Documentation generation using noweb with the input from Listing 3.2. This
is a combined screenshot, which shows some of the features of noweb: The right
bottom column is the generated C source code – all the other fields are bits from the
generated documentation: General descriptive text, implementation source as well as
automatically created index of available keywords.

great flexibility, its syntax also disturbs the reading of the literate source file. Additionally, there are not
many tools to aid development of literate programming to this date.

Another problem lies in the two-fold step to produce executable source code: Debugging of prob-
lems becomes more complicated. Either source code has to be transferred into the literate source after
debugging a problem or the literate source file is directly used. If it is used directly, the programming
chunks of the literate source have to be extracted and compiled afterward. Therefore, line numbers in
error messages from the compiler may not be correct.

The concept to combine documentation and source code in one file and then automatically generate
different output is definitely a good approach to keep an implementation in sync with its documentation.
Many programming languages took this approach and use it actively—for example Java and Javadoc
or the aforementioned Haskell language. This approach will also be used extensively in FTPM. FTPM
strives to hide implementation details with a specialized syntax to allow a concise and easy to write
description of the needed functionality, even for non-programmers or people without a background in a
typesetting language like LATEX.
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3.3 Documentation generators

One key point of literate programming (see Section 3.2) is the tight coupling between documentation and
implementation. The combination of documentation and source code should finally lead to a better and
more complete documentation. Changes introduced to an implementation are more likely documented,
if the adaption of the documentation is either near to the actual change of the implementation or at least
in the same file.

Documentation generators use this principle of a tight coupling between implementation and docu-
mentation as well. The difference to literate programming is that their main focus lies not on a literate
documentation, where documentation is arranged primarily for human readers. They rather use the avail-
able commenting system from the target language, annotated with macros and commands to structure
the documentation. Therefore, documentation of code segments follows the rules of the used compiler
and the syntax of the target language. Then, documentation can be generated by the use of specialized
tools, which transform the enhanced comments into structured documentation.

Due to the fact that documentation generators use the comments from the target language, they
automatically work with the respective available (specialized) editors. Modern editors can also provide
additional features, like folding, which hide comments or a dot-lookup mechanism to provide a list of
suitable commands while typing.

3.3.1 Doxygen and Javadoc

As with literate programming, documentation generators can be divided into language dependent and
language agnostic tools. An example of a language agnostic tool is ROBODoc7. ROBODoc can be used
for the documentation generation of all languages which supports comments. It uses a preprocessor to
extract specially formatted comments and create documentation from it.

Examples of language dependent tools are Javadoc8 – especially written for generating API Doc-
umentation in HTML for the Java language – and Doxygen9. Doxygen primarily targets “C++, C,
Java, Objective-C, Python, IDL (Corba and Microsoft flavors), Fortran, VHDL, PHP, C#, and
to some extent D”.

Both tools – Javadoc and Doxygen – work similar: They scan source code comments for special
keywords which drive the automated generation of documentation. This keywords can be used to provide
documentation in different levels of detail (for example a brief description followed by an extensive
explanation) as well as other useful features, like version information and the date of the last change.
Additionally, this meta-data can be provided by an Version Control System (VCS), which automatically
keeps this information up to date.

3.3.2 Example

The following section presents the stack example from the previous sections (see Section 3.1.2 and
Section 3.2.2) to be extended with Doxygen annotations. Doxygen allows to use a Javadoc syntax
for it’s markup, which is shown here. The complete listing of this example can be found in Appendix A.2.

This example shows an excerpt of an informational header as well as the signature of a pop function.
The header consists of a brief introduction followed by a more detailed explanation (abbreviated, for a full
listing see Appendix A.2 or Figure 3.2). With relatively few and easy commands (@brief, @param,
@return) a high-quality documentation in various different output formats, as shown in Figure 3.2, can
be created.

7http://rfsber.home.xs4all.nl/Robo/robodoc.html
8http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
9www.doxygen.org/
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Figure 3.2: HTML-Documentation generation using Doxygen with the input from Listing 3.3. A
combined screenshot, which shows some of the features of Doxygen: Based on the
annotated comments of the C source shown in the top right corner, various different
documentation and inheritance diagrams are created.
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1 /**
2 * @file stack.h
3 *
4 * @brief A (minimal) implementation of a stack in \c C
5 * using a linked list for it's elements.
6 * The following operations are implemented on the stack:
7 * - pop <br> Removes the topmost element from the stack
8 */
9

10 /** Return (and remove) topmost element from the stack
11 *
12 * Returns and removes the topmost element from the stack.
13 * Frees any memory associated with it.
14 *
15 * @param stack The stack from which the topmost element will be returned
16 * @return int value of stack element
17 */
18 int pop(STACK **stack);

Listing 3.3: Excerpt of a C-source file annotated with Doxygen commands.

3.3.3 Advantages and Disadvantages

The concept to annotate source code comments is useful and widely adopted. Large software projects,
like Java10, Qt11 or KDE12 use a documentation generator to generate high-quality documentation for
their systems successfully. The features of Doxygen and Javadoc are extensive, ranging from easy to
navigate documentation with hyperlinks to automatic creation of inheritance diagrams.

However, we find that a language specific documentation generator combined with an actual imple-
mentation is not be the best choice for the creation of a specification of TPM chips [56, 57, 58]. FTPM
strives to leave out any unnecessary implementation details: Essential information should be clearly visi-
ble and not clobbered by a complete source listing. Therefore, FTPM combines the approach of annotated
comments for documentation with a focus on a concise syntax developed for describing the problem do-
main of TPM chips. The approach of designing dedicated languages for specific problems is presented
in the next section.

3.4 Language oriented programming

Creating specialized tools, which concentrate on one thing and and one thing only, is a a common ap-
proach to solve problems elegantly. This idea is especially widespread in the long tradition of Unix13

programs. Tools like awk14 were specifically created to extract textual data from large files easily. Af-
ter extraction, the elements can subsequently passed to other (specialized) tools, like sed15 for further
processing.

One of the authors of awk, Brian Kernighan16, refers to this tools (or programming languages) as
little languages: These are languages, which are usually used in a narrow domain, can be crafted to
match a problem well and ideally allow to write code which is understandable, easy to maintain and able

10http://www.oracle.com/technetwork/java/index.html
11http://qt.digia.com/
12http://www.kde.org
13http://www.unix.org/
14http://cm.bell-labs.com/cm/cs/awkbook/index.html
15http://www.gnu.org/software/sed/
16http://www.cs.princeton.edu/ bwk/
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solve a problem efficiently. Eric S. Raymond17 expressed the “Rule of Generalization” in his book The
art of Unix programming [44], which says:

“Avoid hand-hacking; write programs to write programs when you can.”

Raymond refers to details as a source of errors and delays because they tend to be overlooked or misin-
terpreted by humans. Therefore, good abstractions can lead to better (and more correct) specifications.
The usage of automatic code generation is preferable in almost every situation, especially if it “raises the
level of abstraction”. This is the case, when “the specification language for the generator is simpler than
the generated code, and the code doesn’t have to be hand-hacked afterwards”.

Such highly specified languages, are called domain-specific languages (DSL). As opposed to General
programming languages (GPL), like Java or C, they focus on specific problem domains. SQL18 XML19

or aforementioned awk can be considered as famous examples of successful DSLs. As noted by Brian
Kernighan, many (once originally) domain-specific languages are extended with (supposedly) useful
features [37]. Thereby, the difference to a general purpose language subsequently vanishes and thus the
DSL may lose its specific focus.

3.4.1 Domain-specific languages

Deursen et al. [14] outlines several different use cases of well known DSLs and provides a good definition
for a DSL, too:

“A domain-specific language (DSL) is a programming language or executable specifica-
tion language that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain.”

A DSL can either be a standalone tool or it may be embedded into a host language (embedded or
internal domain-specific language). For example, in [26] a DSL embedded into the Haskell program-
ming language is described, which reduces the overhead of the creation of a complete new language.
An internal DSL has the full power of its base language available and additionally there is no need to
create a parser or compiler. Furthermore, there is no symbolic barrier [20], that is the DSL not being
well integrated with a surrounding development environment. An example for a good integration in the
development environment would be syntax highlighting in a code editor or the availability of integrated
documentation tools like Javadoc (see Section Section 3.3). However, even if the syntax of a DSL is
recognized and enhanced by the development environment it is not necessarily interpreted correctly. For
instance, while syntax highlighting might be available for some language concepts it is not available for
other, more specialized constructs. Or the available documentation annotation is not completely adequate
for the currently chosen implementation.

In contrast to an internal DSL the syntax of an external DSL is not limited by a base language but
only on the capability to build a adequate parser, compiler or interpreter. The liberty to freely select
a suitable syntax for arbitrary problems comes at the price of the additional effort to build a parser,
compiler or interpreter, too. This effort is not to be underestimated but its complexity can be reduced if
specialized tools, like a compiler compiler or parser generator is used. Examples for well known parser
generators are ANTLR20 or Bison21. As the whole process of interpreting, compiling or translating
the DSL source into other output is in the hand of the DSL designer, it can be customized even further.

17http://www.catb.org/ esr/
18ISO/IEC 9075-1:2011
19http://www.w3.org/TR/REC-xml/
20http://www.antlr.org/
21http://www.gnu.org/software/bison/
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Through the representation of the DSL as an abstract syntax tree, different evaluations at runtime become
possible.

As identified by Sprinkle et al. [49], the creation of a DSL may be expedient if either enough charac-
teristics of the problem domain demand a DSL or if a single characteristic is significant enough. Among
those characteristics “repetitive elements or patterns” or “use by a domain expert” fit very well in the
problem domain to describe TPM commands. For example, almost every TPM command needs autho-
rization before it can be used. This authorization process always follows the same pattern. Another
example is the message structure of TPM commands: Every command consists of 0..n parameters for
input as well as 0..n parameters for output. This fact can be used to not only visually outline the rep-
resentation of input and output parameters in the FTPM source to allow fast recognition by readers, but
also to automatically create marshalling (see Section 4.4) code responsible to compose and decompose
input as well as output parameters in the actual executable code.

Another risk in the use of DSLs is denoted by “language cacophony” [20]: The mixture of different
languages make it hard for people to use them. As languages are hard to learn it is often easier to use just
one language as opposed to the mixture of different languages to reach the goal of accurately describing
a certain problem. This risk can be avoided if the created DSL is both, simple to understand and use and
yet powerful enough to solve the problems in the particular domain. Naturally, this is not an easy goal
and usually needs experience and probably several attempts until this is achieved.

Often, a DSL is targeted at non- or lay-programmers, which are people who would not consider them-
selves as programmers but their work is very close to actual programming. The term “lay-programmer”
is introduced in [20] and exemplified by users of working on spreadsheets. If the usage of a DSL has no
immediate gain for the people using it or it is too complicated, it will get rejected. This is not only true
for lay-programmers but of course for professional programmers as well. A DSL should enable its users
to write and review code more productive. Moreover, a DSL should always be considered as part of a
greater process. It will most likely not replace other used technologies but augment the available tools.

3.4.2 Example

The example of the previous sections (see Section 3.1.2, Section 3.2.2 and Section 3.3.2) is slightly
modified to better suit as an illustration for a DSL. This time, not the functionality but a specific (fictional)
implementation of a stack is described.

Listing 3.4, which is inspired by [20], uses an XML representation to describe certain properties of
the stack. We previously mentioned that XML can be considered a DSL itself. While XML is readable
by computers as well as humans, the creation of XML documents is not very user friendly because of its
verbosity and thus prone to typing mistakes.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <data type="stack" values="int" name="foo" capacity="100"
3 comment="A stack of Integers. Can hold up to 100 elements">
4 <value>1</value>
5 <value>42</value>
6 <value>21</value>
7 </data>

Listing 3.4: XML representation of a stack.

Listing 3.5 depicts the same functionality as Listing 3.4. However, this time yet another (fictional)
DSL is used to describe the exact same properties. We argue that the second representation is much more
readable to humans and not as prone to typing mistakes because of the reduced verbosity. Listing 3.5
is more fluent and key properties—like the name of the stack, its capacity or its type—are more visible
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than in Listing 3.4. Additionally, the source from listing Listing 3.5 can be easily translated to the XML
representation of Listing 3.4.

1 foo is Stack of Integer:
2 comment = "A stack of Integers. Can hold up to 100 elements"
3 capacity = 100
4 values = 1, 42, 21

Listing 3.5: DSL representation of a stack.

3.4.3 Advantages and Disadvantages

As there exist different general programming languages with specific strengths, there is definitely a place
for small domain-specific languages for certain problem areas. Carefully designed domain-specific lan-
guages can match a particular problem domain very well and thus improve the creation, maintenance and
readability of programs. Moreover, a concise domain-specific language can also reduce the complexity
of challenging problems. If the problem domain has (enough) significant characteristics, the creation
and usage of a domain-specific language can have tremendous advantages. However, the creation of a
domain-specific language (external or internal) is not an easy task. Deep understanding of the targeted
problem domain is required and expertise in the creation of programming languages is advantageous.

Internal DSLs facilitate the infrastructure of a host language, which is extended by special constructs
according to the capabilities of the base language. Therefore, not only the compiler or interpreter of the
host language can be used, but also available additional tools like syntax highlighting or documentation
generators. However, the possible syntax of internal DSLs is restricted by the available syntax of its base
language.

External DSLs offer the freedom of arbitrary syntax constructs tailored at very specific use case of
the problem domain. At the same time, their creation needs more effort than the creation of an internal
DSL, as a compiler, interpreter or translator has to be built, too.

No matter if the DSL is targeted at non-programmers or professionals, it will only succeed if it
provides an additional benefit. Learning another language is always difficult, therefore the DSL has to
be concise and focused on the problems it strives to solve [20].

3.5 Summary

This chapter presented an overview of existing approaches on how to improve a technical specification.
First, we introduced dedicated specification languages, which use formal methods to create a mathemati-
cal model of the problem domain and describe its properties accurately. Subsequently, different levels of
rigorous checks are possible to reduce errors and inconsistencies. However, as the utilization of formal
methods is not trivial it might be suited better at selected, small portions or critical components rather
than a large specification.

Then, we presented literate programming, which argues that both, a typesetting language for a struc-
tured and professional documentation and a programming language for a concise implementation, is
needed. Literate programming provides a mechanism to rearrange parts of the source code in such ways,
that they become more readable to humans. It is argued, that the tight coupling between source code and
specification text leads to a more accurate description and up-to-date specification.

Literate programming may not have gained a widespread use, but certainly influenced the creation
of documentation generators, which we presented by the example of Doxygen and Javadoc in the
next section. Documentation generators use annotated source to generate professional documentation.
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As with literate programming, the documentation and implementation is very tight coupled and therefore
more likely to be kept up-to-date.

Finally, we introduced domain-specific modeling and domain-specific languages. These are little
languages specifically tailored at particular problems and thus can reduce the complexity in the creation,
maintenance and review of programs. However, the complexity to create a suitable domain-specific
language is high and requires deep understanding of the targeted problem domain. If a good abstraction
of the underlying problems can be found, a domain-specific language can—possibly combined with
selected features of documentation generators—provide a useful tool for professional programmers as
well as domain experts.
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Chapter 4

Exemplified Implementation

The following chapter shows acquired experiences we made with a prototype FTPM implementation of
selected TPM commands. First, we give an overview of the implemented commands and data structures.
Then, we show how we realized the implementation of these commands in FTPM. We present the com-
plete process of translating FTPM to C source code and automatically generate documentation suitable
to be processed by the Doxygen program in detail. We use the opportunity to point out experiences
and give insights to areas of FTPM which need future improvements. Moreover, we demonstrate the
flexibility of having an executable specification available with a small utility, which outputs a summary
of used bytes for TPM commands.

4.1 Selected TPM commands and structures

We chose to implement a subset of the available TPM commands in FTPM as a first proof of concept
because a complete implementation of all available TPM commands is out of scope for this thesis. This
chapter uses parts of the following commands to show the capabilities of FTPM and how the results look
like:

TPM OIAP is a TPM command to initialize authorization of objects (Object Independent Authorization
Protocol). Most TPM commands and objects need authorization prior usage. The OIAP protocol
is used by many TPM commands to achieve proper authorization.

TPM PCRREAD returns the 20-byte digest value of a Platform Configuration Register (PCR). Stored
measurement values are an integral portion in the attestation of trust and are stored in PCRs.

TPM EXTEND updates the 20-byte digest value of a PCR to reflect configuration changes.

4.1.1 TPM OIAP

Most TPM commands and objects need proper authorization before access to its entities, such as keys, is
granted. Proper authorization is established by initiating an authorization session, which creates Nonces.
These Nonces are used to authenticate the owner of TPM objects and to authorize its usage. Furthermore,
they are important to prevent replay attacks. For a more detailed discussion of the available authorization
mechanisms as well as implementation details refer to Chapter 2.2.2.

The TPM_OIAP is an authorization command that provides an authorization that is independent of
subsequent commands. After a successful authorization with TPM_OIAP any object held by a TPM
is accessible. The command is designed for efficiency, as one successful authorization is sufficient for

37
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multiple subsequent commands. The authorization session is persistent until a TPM command fails or
the upper software stack explicitly closes the session (with the TPM Terminate Handle command).

The TPM_OIAP command does not have any incoming parameters. However, it produces the first
nonceEven, a random value of 20 bytes, and an authorization handle (4 bytes), which are used for
subsequent authorization, as outgoing parameters. As the number of concurrent authorization sessions is
limited, the TPM_OIAP command may fail, which is indicated by the return value TPM_RESOURCES.
Otherwise, the authorization was successful and thus the value TPM_SUCCESS is returned.

4.1.2 TPM PCRREAD

The TPM_PCRREAD command is related to the storage capabilities of a TPM. Measurement values
are stored in Platform Configuration Registers (PCRs) inside a TPM. These values are needed for remote
attestation of the expected system configuration (see Chapter 2.2.1). With the TPM_PCRREAD command
the stored 20-byte digest value of a previous measurement is exported to the calling application. There
is no authorization necessary for an application to read the digest values stored in the registers.

The command takes an integer value of the number for the desired PCR as input and reports back
the stored digest to the application as output. If an invalid PCR is selected, the command fails with the
TPM_BADINDEX return code.

4.1.3 TPM EXTEND

TPM_EXTEND is also a storage related command. It is the only command for modification of stored
digest values in PCRs. The extend algorithm, which includes past digests in the generation of current
configuration values is explained in detail in Chapter 2.2.1. The TPM_EXTEND command does not need
authorization prior usage.

As input parameters the command takes an index number for the PCR to extend as well as a new
digest. If the selected PCR is valid the TPM concatenates the new digest with the digest available in the
specified PCR. The newly created SHA-1 (see Chapter 2.1.7) digest is subsequently stored in the PCR
and returned to the calling application.

4.1.4 Data structures

Naturally, the TPM commands operate on data structures. These structures are specified in the TPM
Specification Part 2 [57]. There are common data structures used by all TPM commands, and structures
which are needed only by the respective command. Among the common data structures are shorthand
type definitions for various integer types (e.g. UINT8, which is used for an unsigned integer of 8 bits
size) or the declaration of various return values (e.g. SUCCESS, FAILURE, etc).

Additional data structures used by the TPM_OIAP commands are nonces and handles. A handle
is 32 bit number pointing to a resource internal to the TPM. The TPM uses the handle to unambiguously
identify an requested entity. A nonce is a digest of 20 bytes length. The storage related commands,
TPM_PCRREAD and TPM_EXTEND operate mainly on digests. In essence, these digest do not differ to
nonces: They are an array of 20 bytes. and Section 6.3.5).

4.2 Implemention in FTPM

This section exemplifies a prototype implementation of the selected commands in FTPM. The commands
are shown in Listing 4.1 to Listing 4.7. After each code listing, we will highlight important features
and discuss identified weak points. Furthermore, we immediately show achieved results. We state future
improvements for a roadmap to the next versions of FTPM.
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4.2.1 FTPM Program Header

The original specification is divided into different parts: Design [56], Structures [57] and Commands
[58]. These documents reflect different facets of the specification. We find that the overall structure is
well suited to introduce the TPM specification to the reader. However, the chosen presentation lacks
usability because different parts of the specification do not cross reference to each other. Therefore, the
implementation process can become cumbersome: The implementation workflow is heavily disturbed
if hundred of pages of specification text have to be flicked through in order to reach information about
a certain data structure. This is especially inconvenient during the implementation of a complex TPM
command.

As a consequence, one design goal of FTPM is to provide an improved usability in the navigation
and visual presentation of the TPM specification. The latter is achieved with a coherent layout while
automatic hyperlinks between different specification parts enhance the first. This way, fast movement
throughout the specification becomes possible. Currently, we concentrated our efforts on a better inte-
gration of structures and commands. Future versions of the FTPM prototype would need to focus on the
integration of the Design document in the workflow, too. Every TPM command automatically links to its
needed data structures. Moreover, data structures cross reference to any used types as well. Therefore, it
becomes much easier to look up the composition of complicated data structures.

Listing 4.1 shows the typical header of a command or structure implemented in FTPM. The first
two lines are taken from the TPM_OIAP command and are comments that hold meta information for the
documentation generation. This information is important to the automatic documentation generation as it
indicates to which part and chapter of the TPM documentation the subsequent statements belong. For the
example in Listing 4.1, the FTPM prototype therefore puts the documentation information gained from
the TPM_OIAP command in a chapter called Authorization Sessions during the actual documentation
generation process.

1 --!file commands
2 --!chapter 18 Authorization Sessions :: 18.01 TPM OIAP
3

4 include "../../structures/2_basic_definitions/2_2_defines.ftpm"
5 include "../../structures/4_types/4_4_handles.ftpm"
6 include "../../structures/5_basic_structures/5_5_tpm_nonce.ftpm"
7

8 include "helper/oiap_helper_stubs.ftpm"

Listing 4.1: Meta-comments and included files for the TPM OIAP comment. Due to the meta-
comments, the documentation is generated in a chapter with the title Authorization
Sessions in the Commands part of the specification.

Then, the next few lines of Listing 4.1 show the inclusion of needed data structures, namely basic
definitions (integer values, result codes, etc) on line 4, handles (pointer to internal resources of a TPM)
on line 5 and the data structure for Nonces on line 6 (see Chapter 2.2.2 and Chapter 4.1.1). Currently,
Line 8 includes another file, which this time is no structure but a helper file for the actual implementation
of the TPM OIAP command. This helper is used in order to not clutter the ordinal implementation with
implementation details. Moreover, this separation is used to provide an interface between specification
designers and implementers. Implementation details that cannot be modeled with FTPM can be added
in these functions. Additionally, changes brought to the specification do not interfere with custom code
from an implementer during code generation if details and principal command structure are separated
like this.

Listing 4.2 shows part of the TPM_NONCE structure, which is included on line 6 from Listing 4.1.
Again, the meta-comments on line 1 and 2 are used in the documentation process and are responsible
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1 --!file structures
2 --!chapter 05 Basic Structures :: 05.05 TPM Nonce
3

4 include "../2_basic_definitions/2_2_defines.ftpm"
5

6 --! The number of bytes for a TPM_NONCE
7 constant TPM_NONCE_SIZE is 20;
8

9 struct TPM_NONCE is (
10 --! This SHALL be the 20 bytes of random data.
11 -- When created by the TPM the value MUST be the next 20 bytes from the RNG.
12 nonce BYTE[TPM_NONCE_SIZE]
13 );

Listing 4.2: The TPM nonce structure in FTPM. A nonce is a random sequence of 20 bytes.

that documentation for this structure is generated in the Structures chapter. More precisely, the docu-
mentation ends up in a sub-chapter named TPM Nonce which is part of a larger chapter entitled Basic
Structures. Listing 4.2 also needs the basic definitions, which were included in Listing 4.1 earlier. FTPM
automatically ignores this instruction in order to prevent multiple definition of the same structures. FTPM
takes care internally to not include a file more than once (see Chapter 6.3.2 for details).

Generated C source and header files

The FTPM prototype automatically produces compilable C source code and header files. Of course, the
generation of C source implies that it is also possible to solely generate headers files from an FTPM input.
This is useful in an early stage of the development of a TPM specification to outline the design of the
modules. Every generated source contains the token “ftpm” in the filename to indicate that this file has
been automatically generated by the FTPM translator.

Code generation is executed recursively. This means, that every included file to one FTPM source
is automatically processed by the FTPM compiler as well. Subsequently, code (and documentation) is
generated for every dependent file, which guarantees an up-to-date code base.

1 #ifndef FTPM_5_5_TPM_NONCE_FTPM_H
2 #define FTPM_5_5_TPM_NONCE_FTPM_H
3

4 #include "2_2_defines_ftpm.h"
5

6 #define TPM_NONCE_SIZE 20
7

8 typedef struct {
9 BYTE nonce[TPM_NONCE_SIZE];

10 } TPM_NONCE;
11

12 #endif // FTPM_5_5_TPM_NONCE_FTPM_H

Listing 4.3: A generated header file for the TPM NONCE structure. Macro guards
(#ifndef..#define..#endif) are included for every header file generated by
FTPM.

The include mechanism of FTPM, which is shown in Listing 4.1, is very similar to the include mech-
anism in the C programming language. If headers from the standard C library are needed, for example for
data types or functions, they are pulled in automatically during the generation of code. As an example,
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the generated header for Nonces is shown in Listing 4.3. A macro guard (#include guard) is generated for
every header file to prevent multiple inclusion in the resulting C code. The actual declaration of a Nonce
is straightforward: it consists of a struct which contains an array of size TPM_NONCE_SIZE of the
datatype BYTE. The datatype BYTE is defined in 2_2_defines.h as an alias for the primitive datatype
unsigned integer 8bit type in FTPM, which maps to uint8_t in the generated C source code.

Generated documentation

Figure 4.1 depicts the resulting documentation from the code snippet of Listing 4.1. With just a few lines
of FTPM, a documentation is available to specification implementers, which has the following features:

• Consistent navigation
On top of every documentation page resides a navigation bar (1) which provides fast access to the
different parts of the specification. Moreover, Doxygen generates a search-field on the top right
of the documentation page.

• Structure of the documentation
Every TPM command or structure is placed inside the chapter denoted by the meta-comments (2).
Therefore, related comments and structures can be grouped together like in the original specifica-
tion.

• Cross referenced sections The resulting documentation is deeply cross-referenced. An infor-
mational paragraph on top of the page quickly shows, which data structures are needed for the
depicted command (3). Every data type is cross referenced until it resolves to one of the primitive
data types in FTPM (see Chapter 5.2.3).

Figure 4.1: Doxygen documentation generated from meta-comments in FTPM and include files.
The main navigation bar (1) provides links to the different parts of the specification.
Commands and Structures are organized in chapters (2) of their respective parts. All
parts are cross referenced with each other to allow easy navigation (3).

Advantages

Every dependent file to a FTPM source is automatically and recursively re-generated during processing.
Therefore, the specification is always up-to-date. The biggest advantage of the meta-comments in FTPM
and the list of include files is the resulting documentation. A logical and consistent structure allows fast
navigation throughout the different parts of the specification. Moreover, every dependent structure is
listed for the reader and references to its declaration exist. In the resulting C code the FTPM prototype
automatically generates include guards to prevent multiple inclusion. Resulting source files are marked
with the token “ftpm” to indicate that these source files were automatically generated by the FTPM
prototype.
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Further improvements

Currently, the available meta-comments allow the creation of chapters with sub-chapters. For a more
complex (deeper nested) layout the comment parser of the FTPM prototype, especially the meta-comments,
has to be adapted.

The present form of the include mechanism in FTPM is rudimentary. Currently, there is no abstraction
to the physical files on the hard-disk. Furthermore, a concise notation for include files would shorten the
include paths and thus remove a possible source for typing errors. The classification of include files in
modules, like packages in Java, could improve readability through logical grouping. Furthermore, this
approach would remove the necessity of meta-comments at all and thus provide greater flexibility.

4.2.2 Informative and Descriptive Comments

After the inclusion of needed structures and helper files informative and descriptive comments of the im-
plemented TPM ordinal or structure may follow. Examples for such comments are shown in Listing 4.4,
which uses information provided from the TPM OIAP and TPM PCRREAD commands.

1 --!info
2 --\warning No informative
3 -- comment set
4

5 --!desc
6 --\warning No descriptive
7 -- comment set

1 --!info The TPM_PCRRead operation provides
2 -- non-cryptographic reporting of
3 -- the contents of a named PCR.
4

5 --!desc The TPM_PCRRead operation returns the
6 -- current contents of the named register
7 -- to the caller.

Listing 4.4: Informative and descriptive comments for the TPM OIAP (left) and TPM PCRREAD
(right) commands: If no informative or descriptive documentation text exits, the spec-
ification designer can use a Doxygen markup (\warning) to (visually) emphasize
in the generated documentation output that this section is not finished.

In Listing 4.4 the TPM OIAP command. which is taken from the official TPM specification, does
not have an informative or descriptive note in the corresponding chapter but rather has a general dis-
cussion of the the authorization mechanism in a dedicated chapter. Therefore, the implementation of
TPM OIAP in FTPM neither has an informative nor a descriptive comment. For consistency the infor-
mative and descriptive comments are included and annotated with the Doxygen keyword \warning,
which visually marks these sections in the generated documentation. This is a beneficial reminder for
specification designers to include information during the process of creating or changing a specifica-
tion version. The TPM_PCRREAD command does provide informative and descriptive texts, which are
rendered in dedicated sections. The result of Listing 4.4 is shown in Figure 4.2.

Advantages

The informative and descriptive comments are essential parts in the TPM specification. They provide
important information about the overall design, used data types and features of a TPM command. There-
fore, this information is one of the primary sources for implementers of the TPM specification.

If the documentation for the specification is automatically generated a consistent layout on every
page is guaranteed. This consistence is useful because the reader of the specification knows what to ex-
pect in each chapter and does not get surprised. If a section is still incomplete, the reader is informed with
specially marked regions. The highlighted regions immediately give hints about the status and simulta-
neously act as a reminder for specification designers to update or complete the provided information.
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(a) TPM OIAP (b) TPM PCRREAD

Figure 4.2: Examples of informative and descriptive comments in the generated Doxygen docu-
mentation: In (a) the sections are specifically marked through the Doxygen keyword
\warning. This keyword results in regions entitled “Warning” which are visually
marked with a red bar on the left side to indicate missing information.
A complete informative and descriptive comment section is shown in (b) for the
TPM PCREAD command. All comments are generated from the FTPM source of List-
ing 4.4.

Further improvements

With the current FTPM prototype, different type of comments (informative, descriptive, actions) can
be described easily. However, there is no notation to link between chapters directly in the comments.
This is useful to supply the reader with additional, related information. The TPM_OIAP command
shown in Listing 4.4 is an example where such an improvement would be beneficial, as the authorization
mechanism of TPMs is described in a dedicated chapter.

4.2.3 TPM Command declaration

The next listing, Listing 4.5 shows the incoming and outgoing parameter block of the TPM OIAP (left)
and TPM EXTEND ordinal (right). Although the TPM OIAP command does not have any visible in-
coming parameters in the implementation of FTPM, the generated documentation automatically adds the
parameter which are common to every TPM command. These additional parameters consist of a number,
which specifies the authorization type of the request (TPM_TAG), the size of the passed incoming param-
eters as well as an identification number for the ordinal (TPM_COMMAND_CODE). The omission of these
common parameters contributes to an uncluttered representation of parameters in FTPM and allows the
reader to focus on the parameters that are actually important for the implementation.

These common parameters are automatically included for the outgoing parameter as well, followed
by the other outgoing parameters distinct to the respective commands: authHandle and nonceEven
for TPM OIAP and outDigest for TPM EXTEND. As a TPM may be used concurrently by multi-
ple sessions, the authHandle is used to identify a specific authorization session. The parameter
nonceEven holds the random bytes generated by the TPM_OIAP command while the modified di-
gest after a successful execution of TPM_EXTEND is stored in outDigest. With this notation and
omission of common parameters, the list of incoming and outgoing arguments of a TPM command is
kept as short as possible.

Generated C source and header files

The FTPM prototype generates the header file shown in Listing 4.6 for the TPM command from List-
ing 4.5. Every TPM command has to return an enumeration of type TPM_RESULT. Incoming parameters
are passed by name while outgoing parameter are passed by reference. The generated TPM command in
C has the same parameters as the implementation in FTPM. This means that parameters common to every
TPM command are stripped from the generated code as well. However, at this stage these parameters are
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1 ordinal TPM_OIAP
2

3 incoming:
4

5 outgoing:
6 --! Handle that TPM creates that
7 -- points to the authorization
8 -- state.
9 authHandle TPM_AUTHHANDLE,

10

11 --! Nonce generated by TPM and
12 -- associated with [the] (sic)
13 -- session.
14 nonceEven TPM_NONCE

1 ordinal TPM_Extend
2

3 incoming:
4 --! The PCR to be updated
5 pcrNum TPM_PCRINDEX,
6

7 --! The 160 bit value representing
8 -- the event to be recorded
9 inDigest TPM_DIGEST

10

11 outgoing:
12 --! The PCR value after execution
13 -- of the command.
14 outDigest TPM_PCRVALUE

Listing 4.5: Incoming and Outgoing parameter block for the TPM OIAP (left) and TPM EXTEND
(right) commands. Even if no incoming parameter is present, the incoming block
has to be specified in FTPM for consistency. Parameter blocks in FTPM leave out
common parameters that are shared by every TPM command. These shared parameter
are generated automatically and thus contribute to a clean notation for the specification
of parameter in FTPM.

not necessary anymore. As parameters to or from a TPM are passed as a binary stream, a special code
to translate the stream into named incoming parameters and back from named outgoing parameters into
a binary stream for the upper software stack is necessary (marshalling).

It is possible to automatically create such marshalling code with FTPM during code generation. This
code would use the first 10 bytes of the passed parameter stream to detect which TPM command has
been requested. Then, based on the command name, it would split the binary stream into the necessary
parameters, accordingly. However, the implementation of the FTPM prototype does not provide any
marshalling code at this stage of development.

1 TPM_RESULT TPM_Extend(
2 /* incoming */
3 TPM_PCRINDEX pcrNum, // The PCR to be updated
4 TPM_DIGEST inDigest, // The 160 bit value representing the event
5 // to be recorded
6

7 /* outgoing */
8 TPM_PCRVALUE *outDigest // The PCR value after execution of the
9 // command.

10 );

Listing 4.6: A part of a header file automatically generated by FTPM for the TPM EXTEND com-
mand. Incoming parameters are passed by value whereas outgoing parameters are
passed by reference.

Generated documentation

The documentation generated for incoming and outgoing parameters by FTPM resembles the look from
the original specification but with several improvements: First, the types of the parameters link back
to their declaration. This is a vast improvement in the navigation especially if the number of pages for
a complex specification is as large as with the TPM specification. With a few clicks on the generated
hyperlinks all relevant data is at hand for implementers and specification designers. Figure 4.3 shows
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the generated documentation for the TPM OIAP command from Listing 4.5 with a possible navigation
through the documents marked with red arrows: A click on the parameter type TPM_NONCE in the TPM
Commands section of the documentation leads to the Structures section where the type for TPM_NONCE
is defined. There, all relevant information about this type is shown. As a TPM_NONCE consists of
an array of another user-defined type (BYTE) another link leads to the definition of BYTE, which is
defined in yet another different section of the Structures section of the documentation. As the official
TPM specification does not have hyperlinks between related chapters, a navigation like this through the
different documents can become quite tedious.

Figure 4.3: Generated documentation output for the TPM OIAP command. The red arrows show a
possible navigation through the documentation, as types in the parameter table of TPM
commands are links to the respective type definition in the TPM structure file.

Another improvement is the consistency in the visual representation which is also achieved through
the automatic generation. For example, the layout of the incoming and outgoing parameter is guaranteed
to be always in the exact same sequence: Common parameter information (parameter number and size),
HMAC information (number and size), parameter type, name and a description. If this representation
ever needs to change, a single modification in the underlying template responsible for output genera-
tion is all that is necessary to automatically adapt every affected source file. Because of the automatic
generation of documentation it is also guaranteed that every chapter follows the same structure and is
coherently formatted—from headlines to paragraphs and emphasis on certain elements (e.g. informative,
descriptive and action comments). As the current available documentation for TPM modules is hand-
crafted it does contain small mistakes. FTPM cannot prevent typing mistakes but it helps the editors to
provide a coherent representation with minimal effort and thus avoid mistakes as shown in Figure 4.4
from the current TPM specification.

Advantages

The presentation of incoming and outgoing parameters in FTPM is decisive. Unimportant parameters are
left out. With the use of dedicated blocks it becomes immediately clear for the reader, if a parameter is
either incoming or outgoing. The resulting C code uses this information as well. Comments indicate the
differentiation between incoming and outgoing parameters. Because of the automatic generation, this
distinction is consistent throughout every generated command.
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Figure 4.4: A layout error, which can be found in the current TPM specification (version 1.2, re-
vision 116) is marked with a red rectangle: The properties of last incoming parameter
from the command TPM DELEGATE LoadOwnerDelegation is wrongly written
in a single column instead of the usual layout.

The generated documentation tremendously eases the navigation through the different parts of the
specification because the type of every parameter is cross-referenced to its declaration. Moreover, every
aliased type links back to its original declaration. Thereby, implementers can browse through all relevant
places of the TPM specification for a single command. Moreover, the documentation is consistent, both
in structure and visual presentation.

Further improvements

The marshalling code for the C programming language, which parses the incoming or outgoing parameter
stream into named parameters could be generated by FTPM as well. Currently, there already exists
the possibility to generate additional, pre-defined helper functions during the automated generation of
code with StringTemplate. Functions to output debug statements are examples of installed helper
functions. A simple Makefile is another one, which is also auto-generated by FTPM. Therefore, this
additional output needs to be extended to include marshalling code for each TPM command. Moreover,
the marshalling code could also be generated automatically from the TPM commands: The command
name can be used as enumeration value and the overall size of the incoming and outgoing parameters is
(mostly) directly contained in the parameters itself.

4.2.4 FTPM Program Body

The texts for informative and descriptive comments (see Figure 4.2) ranges from small notes to multiple
lines or pages. These texts usually give an overview of the purpose as well as background information
in the informative statement. Moreover, the original TPM specification provides concrete directives for
TPM commands in a dedicated Action section. The TCG defines every text besides the informative
text to be normative. Furthermore, they may contain several keywords, like “MUST”, “MUST NOT”,
“REQUIRED”, “SHALL”, “SHALL NOT” etc, which are to be interpreted according to RFC-2119 [6].

These keywords are often used in both, informative and normative, comments throughout the specifi-
cation. Moreover, these keywords are well suited to enforce custom rules during the execution of FTPM,
too. For example, on page 118 of Part 2 of the TPM Main Specification [57] the following instruction
with regards to return codes is given:
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“When a command succeeds, the TPM MUST return TPM_SUCCESS. When a com-
mand fails, the TPM MUST return a legal error code.”

This means that every command either has to return TPM_SUCCESS, or in case of an error it must
return some other specified value of the enumeration TPM_RESULT. This is actually a rule which is
checked by FTPM. If an ordinal does not provide a result code, the parser emits the following warning:

1 [ERROR] foo.ftpm (15): the ordinal 'TPM_FOO' MUST have a return value of type
2 `TPM_RESULT'

If the result code is not known to FTPM it is not legal. This means that it has not been declared as an
valid enumeration value and therefore the following warning is printed:

1 [ERROR] foo.ftpm (15): 'NOT_A_VALID_RET_CODE' not found in 'TPM_RESULT.
NOT_A_VALID_RET_CODE'

Return codes are an example for a reasonable enforcement of custom rules by the FTPM compiler.
More of these rules are spread throughout all parts of the TPM specification, and thus it is quite easy
for implementers to unintentionally disregard a rule. The FTPM compiler is a tool for implementers and
specification designers to enforce abidance of these rules.

Listing 4.7 shows the main implementation body of TPM OIAP in FTPM. The command has essen-
tially just two directives: First, an authHandle has to be acquired. Then, the first Nonce (nonceEven)
used in any subsequent authorization during the session needs to be created.

Every comment inside an ordinal is automatically an action comment (see Chapter 5.2.1), which are
primarily used in the documentation generation. After several of such action comments (line 2 to 14)
the implementation tries to acquire a valid authorization handle via a call to the custom written function
setAuthHandle. This function is defined in the helper file oiap_helper_stubs.ftpm, which
was included at the top of the source listing (Line 8 in Listing 4.1). If the TPM does not have any
authorization handles left, the return code TPM_RESOURCES is returned. Otherwise, the implemen-
tation proceeds to the second tasks of creating a new Nonce. Line 22 again calls a custom function
(setNonceEven) for this purpose. This function is also defined in the same helper file. The possibility
to use custom function calls in FTPM allows the implementer of a TPM command to cleanly outline the
main purpose of the command. With the custom function calls setAuthHandle and setNonceEven
the command is not cluttered with implementation details and thus the main intent is perceivable more
quickly.

The command ends with another action comment (line 24 to 27). This comment is marked with the
Doxygen keyword \warning as the official specification is ambiguous at this point. In the generated
documentation this statement is visually marked and can be reviewed by the editors to improve the
provided information. As mentioned above, the last statement in every ordinal has to be a return
statement, which is shown on line 28. It indicates either a successful execution of the command or
specifies a failure code (line 17).

It is not the goal nor possible for FTPM to include every implementation detail. At some point,
the implementation effort is not feasible anymore. The helper function setNonceEven, shown in
Listing 4.8, is an example, where FTPM stops to provide support for the creation of implementation
details. While it would certainly be possible to create a nice syntactical element for the generation of
random numbers in FTPM, which are needed for a real Nonce, the abstraction level ends here and the
function is marked as a stub. However, the function still returns useful values for testing purposes:
A Nonce, which solely contains values of 0xA5 is generated. This is a default initialization vector
which is specified by the TCG and can be used by implementers of the TPM specification to test an
implementations with known values before it is released. They are a valuable mechanism to compare
computed digests or other values to spot errors in the implementation and thus a good starting point for
a real implementation from source code generated by FTPM.
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1 begin
2 --! 1. The TPM_OIAP command allows the creation of an authorization
3 -- session handle and the tracking of the handle by the TPM.
4 -- The TPM generates the handle and nonce.
5

6 --! 2. The TPM has an internal limit as to the number of handles that
7 -- may be open at one time, so the request for a new handle may
8 -- fail if there is insufficient space available.
9

10 --! 3. Internally the TPM will do the following:
11 -- * TPM allocates space to save handle, protocol identification,
12 -- both nonces and any other information the TPM needs to manage
13 -- the session.
14 -- * TPM generates authHandle and nonceEven, returns these to caller
15 if setAuthHandle(authHandle) == TPM_HANDLE_STATUS.TPM_INVALID_HANDLE
16 do
17 return TPM_RESULT.TPM_RESOURCES;
18 end;
19

20 --! 4. On each subsequent use of the OIAP session the TPM MUST generate
21 -- a new nonceEven value.
22 setNonceEven(nonceEven);
23

24 --! 5. When TPM_OIAP is wrapped in an encrypted transport session, no
25 -- input or output parameters are encrypted.
26 --\warning What are the consequences of this statement?
27 -- Is this really an **ACTION** Statement?
28 return TPM_RESULT.TPM_SUCCESS;
29 end;

Listing 4.7: Ordinal implementation of TPM OIAP. The listing shows the ordinal body, which
consists of multiple action comments (label 1 to 5), a conditional (line 15) and a call
to a helper function (line 22).

Generated C source and header files

The FTPM statements from Listing 4.7 can directly translated to valid C. FTPM provides static type
checks in order to reveal ambiguities in the TPM specification. For example, temporary helper variables
or parameter occasionally have the same name in the original specification. As the parameters described
in the specification are passed as a stream of bytes to the commands this is not a real problem. However,
self-explanatory variable names help comprehension and avoid confusion. With the FTPM prototype, the
parser is able to pinpoint multiple uses of the same names and point in the relevant lines in the source
file.

Listing 4.9 shows the translation of the helper function setNonceEven from Listing 4.8. Every
argument to a function is passed as a pointer. FTPM takes care of handling pointer notation internally,
as shown in Listing 4.9: The assignment operation inside the loop (line 7) correctly uses -> instead of a
dot to access structure pointers. Likewise a dot is rendered for locally defined structures in the resulting
C source code. Moreover, the type of the index variable (i) for the loop is generated automatically,
depending on the size of the loop. As the size of a Nonce evaluates to 20 (bytes) an uint_8_t is
adequate for the loop index.

As mentioned before, FTPM generates output for every dependent input source (include files) recur-
sively. Per default, it writes C source code and header files and a simple Makefile, which can be used
to test the generated source on syntax errors or warnings with a C compiler. Errors or warnings from
static type checks during the execution of FTPM are printed to the standard output and consist of the
filename and the line to which the error or warning belongs. An example for such an output is shown
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1 --! \todo just a stub - please provide a proper implementation
2 function setNonceEven(nonceEven TPM_NONCE)
3 begin
4 --! \todo: randomize nonce - this is an initialization vector
5 for i in 0 to TPM_NONCE_SIZE
6 do
7 nonceEven.nonce[i] := 0xA5;
8 end;
9 end;

Listing 4.8: Implementation of the helper function setNonceEven for the command
TPM OIAP. The real implementation would use random values for the Nonce, the
implementation in FTPM provides the initialization vector specified by the TCG.

1 void setNonceEven(TPM_NONCE *nonceEven )
2 {
3 /* \todo: randomize nonce - this is an initialization vector */
4 for (uint8_t i = 0; i < TPM_NONCE_SIZE; i++) {
5 nonceEven->nonce[i] = 0xA5;
6 }
7 }

Listing 4.9: Automatic handling of pointers in the generated C source. The data structure for
nonceEven is passed as a pointer (line 1), the assignment (line 5) reacts accord-
ingly. The index variable i in the for-loop (line 4) is automatically created as well.

in Listing 4.10. The first example shows a warning which is emitted if an unsigned integer variable
gets assigned a negative value. The second example demonstrates how the FTPM prototype reacts if an
undefined variable (aUndef) is used. FTPM does not stop the processing of input source if an error
is detected but continues the parsing of the source code as long as possible. Hence, as many potential
problems as possible are shown to the implementer at once.

1 aError unsigned integer 8bit := -32;
2 aUndef := "foobar";

1 [ERROR] demo.ftpm (1): aError, -32 have incompatible types in
2 'aError unsigned integer 8bit [...]'
3 [ERROR] demo.ftpm (2): Cannot resolve 'aUndef'
4 [ERROR] demo.ftpm (2): Cannot assign 'string' to 'void'

Listing 4.10: Example for warnings emitted by FTPM: Assignment of incompatible data types (line
1) and assignment to a variable, which has not been declared previously.

Generated documentation

Action comments from the FTPM source are extracted for documentation generation. They are the last
component for a complete documentation of either a TPM structure of command. As with Informative
and Descriptive commands, there is currently no notation to link between related chapters within the Ac-
tion comments. FTPM automatically arranges the Action comments as a numbered list, which describes
the necessary steps a TPM command has to carry out in sequence. Line 11 and 14 of Listing 4.7 result
in a nested list depicted in Figure 4.5. If an action comment starts with a star character (*), a sub-list is
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automatically created by the translator. The identified ambiguity in the original specification mentioned
above is visually marked with a red bar on the left side and the keyword “Warning”.

Figure 4.5: Example of action comments of the TPM OIAP command. The comments are struc-
tured as an enumerated list. A nested list is created, if the comment starts with a
star character and can be seen at directive three. Doxygen keywords, as the warning
shown in step 5, can be used to visually mark sections in the output.

Advantages

Static type checks provide a valuable source of information for specification designers. FTPM identifies
misused or undeclared variables or parameters and gives hints if a variable or parameter is declared
multiple times. In the original TPM specification the multiple declaration of helper variables and similar
parameter names occur. Moreover, it is possible to enforce rules which are contained in the informative,
descriptive or action commands throughout the specification. This approach asserts the compliance to
the defined rules in every implemented command or structure.

Further improvements

Currently, only a few custom rules which enforce program logic are implemented. As the number of
implemented commands progresses, the number of possible checks, which will then be subsequently
applied to all TPM commands and structures, increases.

Other areas of improvement consist of more built-in language features. For example, the existing
FTPM prototype has no syntactical element to set a single value for a whole array. All it takes would be
an extension in the main grammar file and an a renderer for C source code, which maps the assignment
to a call to memset, memcpy or similar existing function calls. Additionally, a static type check rule
would be advantageous, in order to prevent the assignment of incompatible types for arrays. As with
custom static rules, beneficial language features can be added if more TPM commands and structures are
implemented.

4.3 Gained flexibility through automatic output generation

A single run of the FTPM prototype produces multiple outputs concurrently. For the C programming
language we generate source code and header files as well as additional files (helper functions and a
Makefile) automatically. Because every dependent source file is processed by the FTPM compiler it is
possible to guarantee that the output is always up-to-date. The compiler cares that even multiple edits on
different parts of the specification will still result in a working implementation. Moreover, the generated
output can be changed simply. The templates used for code generation are plain text files, which can be
edited independently to the FTPM prototype.
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The FTPM language hides complex language elements, such as pointers or memory management
from the reader. These are language-dependent details that, in our opinion, should not be included in a
technical specification. At the same time, it is possible to enforce the abidance to defined rules in the
specification. With the conventional approach of a manual implementation, the abidance to these rules is
under the responsibility of the implementer. Given the sheer size of the TPM specification an automatic
validation is unarguably a better approach.

The approach taken by FTPM to produce documentation for TPM modules and structures is simi-
lar to the code generation above. We generate Markdown files which are subsequently processed by
the Doxygen documentation generator. Markdown is a plain-text format, which eases the creation of
structured text with an easy to use syntax. As with the automatic generation of C source code, docu-
mentation for one FTPM input source recursively generates the documentation of every source this input
source depends on. With this approach, the documentation of all involved objects is guaranteed to be
always up to date.

One documentation run generates multiple helper files. First, introductory texts for each of the three
main parts of TPM are generated: Design, Structures and Commands. Then, various configuration files
for Doxygen are generated:

• The main Doxygen configuration, which is adapted to contain needed configuration options for
markdown and the FTPM output.

• A Doxygen layout file, which describes the layout of the generated documentation and contains
links for easy navigation of the three parts of the official TPM specification (Design, Structures,
Commands)

• A Cascading Style Sheet (CSS) file, which is used to adapt the visual representation of
the generated documentation to closely mimic the official available specification.

Again, each of this files is available in a template file (see Chapter 6). The templates are plain text files
and thus ease modifications and furthermore guarantee a consistent visual presentation of the documen-
tation. Moreover, because of tightly cross-referencing related parts of the documentation, we achieve a
vast improvement in the possible navigation. With a few clicks on the generated hyperlinks all relevant
data is at hand for implementers and specification designers.

As the documentation of FTPM is automatically generated it is guaranteed to be up-to-date with
the source. The current workflow to generate the documentation consists of specification designers and
editors. The editors format and publish what the specification designers write. During the reformatting
of the layout errors like in Figure 4.4 can be introduced. However, it is also possible that parts of the
documentation contain old and obsolete information. If the documentation is generated directly from the
input source it is guaranteed to always contain the latest information.

In combination with Doxygen incomplete or missing elements can be indicated easily. These areas
are marked with keywords such as \warning or \todo and immediately convey the reader that this
section is not ready yet or has known problems. An example of such indication is shown in Figure 4.6.
At the very beginning of the action statements the specification designer gives a hint that this command
is not completed yet. Furthermore, a note advises future improvements: A link to the relevant section
where the important concept of locality is explained. This would definitely help to better understand
difficult sections and therefore the specification as a whole.

A complete history of all changes made to the specification, as well as the thoughts and considerations
leading to it, is possible if a version control system (VCS) is used for its storage. As FTPM sources are
plain text files they are well suited to be kept in a VCS. Together with descriptive log messages the
commits in the VCS provide a history of the development process of the TPM specification, which
is valuable for specification designers and implementers. Currently, the TPM specification provides a
Change History and a Questions Section at the start of each of the main specification parts. The history
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Figure 4.6: With the special keywords \warning and \todo, which are available in Doxygen,
areas in the documentation are easily marked as incomplete or as work-in-progress.

lists differences from previous specification revisions. The section dedicated to questions keeps a history
of design decisions. In the introduction to the TPM design, the editors explicitly state the importance of
the development history [56]:

“The question section keeps track of questions throughout the development of the spec-
ification and hence can have information that is no longer current or moot. The purpose of
the questions is to track the history of various decisions in the specification to allow those
following behind to gain some insight into the committees thinking on various points.”

This is, among the storing and distribution facilities, the exact purpose of a VCS. A VCS aids in the
automatic creation of the Change History as well as to provide an access point to the complete history
including the design decisions written as log messages.

4.4 Bytesize information for a TPM command

As a demonstration for a convenient tool, which becomes easily realizable because the TPM specification
is available in an executable representation with FTPM, we implemented a small utility. This utility shows
the number of bytes a TPM command at least consumes. The utility walks the abstract syntax tree and
gathers information of how many bytes a certain ordinal block consumes. Then, it prints a summary
of the values to standard output, as shown in Listing 4.11. This can be used for example to quickly
determine the I/O buffer sizes needed for TPM commands. This is advantageous particularly for devices
with limited memory, for example embedded devices.

1 Ordinal: TPM_OIAP Ordinal: TPM_PCRREAD Ordinal: TPM_EXTEND
2 --------------------- --------------------- ---------------------
3 Total: 45 Bytes Total: 44 Bytes Total: 89 Bytes
4 --------------------- --------------------- ---------------------
5 Incoming: 10 Bytes Incoming: 14 Bytes Incoming: 34 Bytes
6 Outgoing: 34 Bytes Outgoing: 30 Bytes Outgoing: 30 Bytes
7 Body: 1 Byte Body: 0 Bytes Body: 25 Bytes

Listing 4.11: Byte-count utility demonstrated on the TPM OIAP (left), TPM PCRREAD (middle)
and TPM EXTEND (right) commands: It prints the number of accumulated bytes for
input and output parameters as well as any bytes used inside ordinals or specified
helper functions.

The amount of bytes accumulated for the entry body consists of temporary variables declared in
either the ordinal itself or any specified helper functions. For the TPM OIAP command, the single byte
shown in Listing 4.11 comes from the index variable i (an unsigned integer 8bit) in the for
loop declared on the stack from Listing 4.8.
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Although the TPM command TPM OIAP does not have any input parameters, the byte count utility
incorporates the size of the common parameter header, which consists of 10 bytes: two bytes for the
type of authorization for the command and respectively four bytes for the overall size of the passed pa-
rameter as well as the TPM command code. As these parameters are common to every TPM command,
implementations written in FTPM do not explicitly include these parameters (see Section 4.2.3). How-
ever, an actual implementation needs to set and include these parameters as well and therefore they are
considered in the byte-count utility, too.

4.5 Summary

This chapter demonstrated the usage of FTPM. We provided a selection of three commands to show
how a specification for TPM components can be written with FTPM. We showed advantages as well as
shortcomings of the current FTPM prototype in detail. Moreover, we discussed the different generated
outputs for the selected commands. The output consists of executable C source code and header files,
documentation in Markdown format prepared for processing with Doxygen as well as a custom tool
to print information about used bytes of TPM commands.

We showed that the automatic generation of executable source helps to bootstrap the implementation
process of the TPM specification by providing a solid base. Moreover, the level of detail and level of
abstraction with FTPM is easily adaptable. For example, we decided that a good level of abstraction for
our implementation is the declaration of initialization vectors rather than real random values for Nonces.
Furthermore, we demonstrated our approach to separate implementation details from the specification
into (stub) functions. This strategy creates a clean interface between designer and implementer because
changes to the specification will not overwrite custom source code added by implementers during the au-
tomatic code generation. Additionally, ambiguities like using the same name for variable and parameter
names or incompatible assignments are detected by the FTPM compiler early. Most importantly, FTPM
automatically enforces the abidance to defined rules in every command or structure and thus helps an
implementer to comply.

Next, we outlined the advantages of generation the documentation from within FTPM. Most impor-
tantly the improved navigation, which greatly helps to navigate hundred of pages of complex specifica-
tion text. Furthermore, a consistent yet easy to change layout and formatting is achieved by the automatic
generation of documentation as well. Combined with a version control system the complete history of
changes and considerations is available for specification designers and implementers.

Finally, an executable specification can also be used to implement small tools and utilities quickly.
The Byte-Counter utility can be used to estimate the amount of needed bytes each TPM command con-
sumes. This utility is useful to get a list of commands which need adaption if the available memory is
limited.
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Chapter 5

Language elements

This chapter introduces syntax and semantics of the FTPM language in detail. While we will not cover
all constructs available in FTPM, we discuss the most important ones. The complete grammar is listed
in Appendix B for reference. We introduce parts of the underlying grammar with figures in the Ex-
tended Backus-Naur Form (EBNF) [27]. Furthermore, we will use short code snippets to exemplify the
language.

The structure of this chapter follows the composition of grammar for the FTPM language: After a
broad overview of the principle composition of a FTPM input source, we introduce variable declarations.
Then, the next logical breakdown consists of TPM commands, helper functions and blocks in general.
Finally, the smallest language unit we present are statements, which are responsible to drive program
logic.

5.1 General

The notation we use for the EBNF grammar in this chapter is the same as used in ANTLR, which consists
of colon as a delimiter for rule names on the left and (non-) terminal symbols on the right. Vertical
bars (|) represent alternatives and question marks (?) optional (one or zero) elements. A plus sign (+)
indicates one or many and a star (*) zero or many repetitions of the preceding symbol. Additionally,
rules can be grouped by parentheses. Names written in uppercase are lexer rules, while lowercase names
are parser rules.

At the topmost level, a valid FTPM source is either empty, consists of (possibly multiple) declarations
and exactly one TPM command. A TPM command is called ordinal in the TPM specification:

ftpm : declaration* ordinal?

While FTPM allows a combined notation of declarations and an ordinal definition, it is recommended
to separate them into different files. This does not only aid comprehension by keeping the source files
minimal but also allows to replicate the present anatomy of the TPM documentation with the FTPM
prototype.

55
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5.2 Declaration

A declaration in FTPM is either a comment, the include keyword, a variable or a function definition.
All declarations and statements in FTPM end with a semicolon.

declaration : comment | include | vardecl | funcdef;

5.2.1 Comment

In many programming languages, comments are disregarded by the parser. However, in the FTPM lan-
guage comments are an important mechanism as they drive large parts of the documentation generation.
A comment is started with two dashes and an exclamation mark (--!). Everything after this sequence of
characters is considered a comment until the end of the line. Comments which span over multiple lines
start the subsequent lines with two dashes (--) only.
comment : COMMENT_FIRST COMMENT_CONSECUTIVE*

COMMENT_SIGN : ’--’;
COMMENT_FIRST : COMMENT_SIGN ’!’ ˜(’\n’|’\r’)* ’\r’? ’\n’;
COMMENT_CONSECUTIVE: COMMENT_SIGN ˜(’\n’|’\r’)* ’\r’? ’\n’;

A comment can be optionally followed by a keyword, which is either file, chapter, info, or
desc. These keywords denote the class of a comment, which will be used in the output generation phase
(mostly documentation generation). All comment classes can be declared multiple times in one FTPM
input source. However, for the file and the chapter comments all but the last occurrences will be
ignored.

COMMENT_CLASS: ’file’ | ’chapter’ | ’info’ | ’desc’;

The file comment denotes to which of the three sections from the TPM specification the subse-
quent statements belong. Possible values are design, structures and commands. This comment sets the
name of the section per FTPM input source.

COMMENT_PART: ’design’ | ’structures’ | ’commands’;

The chapter keyword servers an similar purpose than the file keyword before. It denotes the
name of the chapter inside the respective section to which the following statements belong. Furthermore,
it can also name the current section if the text contains two colons (::). If no name is explicitly stated,
the filename of the FTPM input source is used.

An example comment, which illustrates the usage of the file and chapter classes is shown in List-
ing 5.1

1 --!file commands
2 --!chapter 13 Cryptographic Structures :: 13.05 TPM Sign

Listing 5.1: Example of file and chapter comments used for documentation generation.
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These comments will instruct the documentation generation to place any following statements in a
sub-chapter named 13.05 TPM Sign in the chapter 13 Cryptographic Structures. These chapters will end
in the document Commands, which is Part 3 of the current TPM documentation.

info and desc comments are used in the documentation generation as well. The current TPM
specification distinguishes between informative comments and normative statements. The info key-
word marks the comment as informative, while desc marks a description comment, which belongs to
the normative statements (see Listing 5.2). Both comment texts are labeled and visually outlined in the
resulting documentation output.

1 --!info This is an informative comment
2 --!desc This is a descriptive comment (normative)

Listing 5.2: Informative and Descriptive comments provide a general information.

The remaining documentation class is automatically assumed if no comment keyword is explicitly
stated and denoted as an action comment. Actions are normative statements and describe the sequence
of necessary steps a TPM command has to execute (Listing 5.3).

1 --! 1. The TPM validates the AuthData to use the key
2 -- pointed to by keyHandle.
3 --! 2. If the areaToSignSize is 0 the TPM returns TPM_BAD_PARAMETER.

Listing 5.3: Action comments are normative and describe necessary execution steps.

The list of currently available classes is kept minimal at purpose to reproduce the prevailing form
of the TPM specification. However, it is little effort to extend this list and include other keywords to
highlight different aspects of the specification in the future. With Doxygen as documentation generator,
it is furthermore possible to include special Doxygen keywords1 to format the generated documentation
text. Examples for useful keywords are @bug, @todo, @deprecated or @warning. These keywords
will visually label sections which need special attention, too.

Action comments are automatically formatted as a numbered list of normative instructions. The
numbering of the list is handled automatically. Currently, FTPM supports one level of indent to describe
individual tasks. Nested lists are created, if the comment starts with a star (*) character (Listing 5.4).

1 --! 3. Internally the TPM will do the following:
2 -- * TPM allocates space to save handle, protocol identification, both
3 -- nonces and any other information the TPM needs to manage the session.
4 -- * TPM generates authHandle and nonceEven, returns these to caller

Listing 5.4: Action comments are rendered as numbered lists in the resulting documentation. A
star character (*) is used to generate nested lists.

5.2.2 Include Keyword

The include keyword (see Listing 5.5) allows the structuring of FTPM source into different files or
modules. The processing of the include mechanism happens during the lexer phase. If the lexer finds
an include keyword the content of the denoted file is imported and the lexer continues. Implicitly

1http://www.stack.nl/˜dimitri/doxygen/commands.html
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the lexer includes a file only once to avoid parsing errors which may result because of the multiple
inclusion of the same file. This approach to prevent multiple inclusions is common in many programming
languages as well, for example Objective-C. Implementation details about the inclusion mechanism
are discussed in Chapter 6.3.2.

1 include "structures/02_basic/02_defines.ftpm"

Listing 5.5: The include-keyword imports different sources into the current file.

5.2.3 Variables and Types

Variables in FTPM can be declared in two different ways. The first possibility is to statically specify a
type. This approach is used in the declaration of structures used by the TPM. The other approach is to
declare temporary variables. These variables automatically derive their type from the assigned (static)
variable.

A static type for variables in FTPM is one of the primitive types, which is either an integer of var-
ious sizes, a boolean or a string. Moreover, FTPM allows the definition of constants (constant)
and aliases to other types with the typedef-keyword. Structures, Enumerations and Bitsets
are composed types available in FTPM.

vardef : var_declaration ’;’
| typedef_declaration
| struct_declaration
| enum_declaration
| bitset_declaration

Names and identifiers in FTPM must start with a letter or an underscore, followed by zero or more
letters, numbers or underscores. Optional square brackets ([]) indicate an array. If the array does not
contain a size specifier it is assumed to be dynamic.

var_declaration : ID vartype (’:=’ expression)?
| ID vartype ’[’ array_capacity? ’]’ (’:’ expression)?;

ID : (’a’..’z’ | ’A’..’Z’ | ’_’) (’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’_’)*;

Primitive types

Among the primitive types of FTPM are strings, which are identified by the keyword string. String
values can contain any character and have to be enclosed in double quotes. Boolean values are de-
noted by the keyword boolean and accept the usual literal values of true and false. Strings and
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Type Description

string Sequence of characters inside quotes

boolean Boolean values, either true or false

signed integer 8bit Numbers range from −128 to 127

unsigned integer 8bit 0 to 255

signed integer 16bit −32.768 to 32.767

unsigned integer 16bit 0 to 65.535

signed integer 32bit −(231) to 231 − 1

unsigned integer 32bit 0 to 232 − 1

signed integer 64bit −(263) to 263 − 1

unsigned integer 64bit 0 to 264 − 1

Table 5.1: Primitive datatypes in FTPM.

Boolean values have supportive character for the specification designer as they are not needed for actual
commands but rather accompanying tasks like the output of debug information.

The main type of FTPM are integers. There exist eight different integer types which differ in their
available bit-size: 8 bit, 16 bit, 32 bit and 64 bit. The signedness of an integer type is indicated by
the mandatory keyword signed or unsigned. Table 5.1 gives an overview of the primitive types
available in FTPM.

The syntax for declaring primitive types of FTPM is shown in Listing 5.6:

1 unsigned integer 8bit flag; signed integer 64bit big_counter;
2 boolean debug := true; unsigned integer 32bit pcrSelect[20];

Listing 5.6: Example declarations with primitive types.

Aliases for existing types are assigned via the typedef keyword. Moreover, the keyword constant
is used to create a numerical constant. After both keywords follows the name of the alias or the numerical
value, which is specified next (Listing 5.7). It is not required that an alias points to a primitive type in
FTPM. It may also point to already defined aliases.

1 typedef UINT8 is unsigned integer 8bit; typedef FOO is UINT8;
2 constant TPM_NUM_PCR is 16;

Listing 5.7: Aliases to existing types are created with typedef. A numerical constant is declared
by the keyword constant.

Composed types

FTPM also provides composed types, namely Enumerations, Structures and Bitsets. Enumerations are
a collection of elements and denoted by the keyword enumeration. After the name and the type of
the enumeration follows a list of enumeration values. These values are used as named constants The
enumeration list is enclosed by brackets and separated by commas. An optional initial value for enu-
meration values can be specified, too. The values for enumeration members are a sequence of integers.
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This sequence is either determined by the previous member and subsequently increased by one for the
current member, or an explicit initialization value is given. If no value is specified for the first element it
defaults to zero (Listing 5.8). Currently, the FTPM prototype does not check if the assigned values of an
enumeration are different to each other.

1 enum TPM_RESULT is UINT32 (
2 TPM_SUCCESS, --! value is 0
3 TPM_AUTHFAIL, --! value is 1
4 TPM_BADTAG := 30, --! value is 30
5 TPM_IOERROR --! value is 31
6

7 );

Listing 5.8: An enumeration in FTPM. Initialization values for enumeration members are optional.
If omitted, the value is increased by one from the previous value. The first value in an
enumeration defaults to 0.

A structure is a collection (record) of multiple, possibly different, data types. The declaration consists
of the keyword struct, a name for the structure and a list of structure members. Each member is
separated by commas (Listing 5.9).

1 struct TPM_STRUCT_VER is (
2 major BYTE,
3 minor BYTE,
4 revMajor BYTE,
5 revMinor BYTE
6 );

Listing 5.9: Structures are a composed type with several structure members separated by commas.

The last available composed type in FTPM is a bitset. A bitset can be considered a structure that
stores bits. Each member of the bitset stores a certain number of bits. A bitset uses a similar notation to
enumerations and structures: the keyword bitset followed by a name and type information. After an
opening bracket the members of the bitset are declared. Again, the separating character between bitset-
members is a comma. Furthermore, the members of a bitset can contain an optional assignment with
a constant, numerical expression. This numerical expression specifies the number of bits the member
seizes (Listing 5.10).

1 bitset TPM_BITSET is UINT16 (
2 member1 := 1, --! member1 holds 1 bit
3 member2 := 3 --! member2 holds 3 bits
4 );

Listing 5.10: A bitset is a structure with an optional number of reserved bits for the member.

Access to members of enumerations, structures or bitsets is established by the use of a dot operator
(.) followed by the member name. Listing 5.11 exemplifies the usage of members from composed types
in FTPM.
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1 --! Enumeration
2 return TPM_RESULT.TPM_SUCCESS;
3

4 --! Structure
5 TPM_STRUCT_VER version;
6 version.major := 1;
7 version.minor := 2;

Listing 5.11: The dot operator is used to access members of composed variables.

Implicit types

Many TPM ordinals do need several helper variables, which temporarily hold the result of an expression
or computation. In order to ease the declaration for such helpers, FTPM provides a special syntax to
create such dynamically typed variables: A temporary variable is defined through the keyword var
followed by a name and an assignment. This assignment sets the type and simultaneously initializes the
variable (Listing 5.12).

1 var R1 := TPM_STRUCT_VER.major; --! R1 is of type TPM_STRUCT_VER.major

Listing 5.12: Temporary variables use the type of the assigned variable implicitly.

5.2.4 Function Definition

The purpose of functions is to modularize program components. They encapsulate a specific part of the
program (TPM command) and thus foster the readability. Syntactically, a function consists of a name,
optional parameters and zero or more return values, followed by a statement-block (see Section 5.4).

functiondef : ’function’ ID ’(’ func_parameter? ’)’ block

The code in Listing 5.13 shows an example of a function used as a helper for the initialization of a
PCR value in the TPM_PCRRead command.

1 function setPCRValue(pcrIndex TPM_PCRINDEX, outDigest TPM_PCRVALUE)
2 begin
3 --! set the compliance vector for internal tests
4 outDigest.digest[0] := 0x15; outDigest.digest[1] := 0x8f;
5 end;

Listing 5.13: A function is used to create modular, easier to read programs.

As mentioned before, functions and ordinals have the same set of statements which are allowed to
appear inside them. This is not surprising, as an ordinal can be viewed as a specialized function, which
returns exactly one value (of type TPM_RESULT) and can only be declared once per FTPM file. Further-
more, ordinals use a special notation to declare incoming and outgoing parameters, while functions do
not have this distinction of parameter types.



62 5. Language elements

5.3 Ordinals

TPM commands are called ordinals. Each ordinal has a name and certain input and output parameters
(see Chapter 2.2.2). An exemplary specification of an ordinal in FTPM is shown in Listing 5.14.

ordinal : ’ordinal’ ID parameter_block block

5.3.1 Incoming and Outgoing Parameters

Parameters in ordinals are either incoming (passed from the upper software stack to the ordinal) or
outgoing (passed from the ordinal to the upper software stack). Every TPM command has a common
set of incoming and outgoing parameters, which are passed to every ordinal. The default incoming
parameters are an authorization tag, the parameter size of all incoming parameters and a command code.
These three parameters are also among the default outgoing parameters in addition to a command return
code.

In order to remove typing mistakes and reduce the number of visible parameters, FTPM leaves out
these common parameters. The information of these parameters is implicitly contained in the ordinal
written in the FTPM language: The authorization tag can be derived by the number of authorization
blocks (see Section 5.4.1). The parameter size depends on the number of other incoming or outgoing
parameters, the command code is the name of the TPM command and the return code is available in the
abstract syntax tree as it will be forced to exist by the parser of FTPM.

For fast recognition of incoming and outgoing parameter we chose to introduce blocks: One block
for incoming parameter denoted by the keyword incoming and another block for outgoing parameter
which is distinguished by the keyword outgoing. These blocks are mandatory even if no incoming or
outgoing parameters exist.

parameter_block : (’incoming’ | ’outgoing’) ’:’
param_declaration? ( ’,’ param_declaration )*

After the parameter blocks follows a block of statements (see Section 5.4). This block is fenced by
begin and end; keywords and a mandatory return statement (see Section 5.5), which indicates the
result type of an ordinal.

5.4 Blocks

Functions and Ordinals consist of at least one block, whereby multiple, nested blocks are possible. FTPM
does not use brackets to enclose blocks but rather marks the begin and end of a block with the keywords
begin and end respectively. As described in Section 6.3.4, FTPM uses static scoping. This means, that
the visibility of variables is limited to current and to possibly nested, inner blocks. Moreover, a variable
defined in an inner block masks a variable with the same name defined in an outer block.
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1 ordinal TPM_Extend
2

3 incoming:
4 pcrNum TPM_PCRINDEX,
5 inDigest TPM_DIGEST
6

7 outgoing:
8 outDigest TPM_PCRVALUE
9

10 begin
11 return TPM_RESULT.TPM_SUCCESS;
12 end;

Listing 5.14: An ordinal consists of name, incoming and outgoing parameters and at least one
block of statements, which is terminated by a return instruction. The parameters are
grouped in categories which allows quick recognition. Parameters common to every
TPM command are left out as they can be derived from the abstract syntax tree.
Every ordinal has at least one return statement, which indicates the result.

5.4.1 Authorization Blocks

Most TPM commands need authorization before they can be executed (see Chapter 2.2.2). FTPM uses a
special notation to describe and perform such an authorization. An auth-block provides authorization
information in a visual appealing representation. It helps readers to quickly gather the most impor-
tant information: Who? (object) needs authorization with what? (secret) under what? circumstances
(required). Therefore an authorization block in FTPM consists of the following elements: A keyword
auth, followed by three properties: .object, .secret and .required. The leading dot is used to
distinguish the properties from variable assignments. An authorization block is finalized by the keyword
end and a semicolon, like ordinary blocks (see Listing 5.15).

auth_block : ’auth’
’.’ auth_object ’;’
’.’ auth_secret ’;’
’.’ auth_required ’;’

’end’ ’;’

1 auth
2 .object := key
3 .secret := key.usageAuth;
4 .required := true;
5 end;

Listing 5.15: An authorization block quickly summarizes the properties for a successful authoriza-
tion: The key object with a certain usage secret. Additionally, it is indicated if the
authorization must be executed at all times by the keyword .required.

The same authorization information is of course available in the current TPM documentation. How-
ever, the authorization information in the documentation is not as quickly recognizable to the reader as
with the notation used in FTPM. In the current TPM specification, the three properties (object, secret,
and required) are scattered in the incoming parameter table and in the action section. In FTPM, the the
same information is represented in a dedicated, concise syntax. Figure 5.1 shows a typical authoriza-
tion information of the original TPM specification. Compared to the syntax of FTPM in Listing 5.15
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the reader of the specification has to collect the relevant information from three different places. The
incoming parameter TPM_TAG and the first action-comment (1) inform the reader that the command
requires authorization prior usage. Next, the incoming parameter list has to be scanned to find the rel-
evant key-object (2) for which authorization is required. Finally, the usage secret for the authorization
is to be found in yet a different part of the incoming parameter section: In the description column for
TPM_AUTHDATA (3).

Figure 5.1: Authorization information in the original version of the TPM specification. This ex-
ample is taken from the TPM Seal and illustrates the different locations for needed
information regarding the authorization of the command.

5.5 Statements

Various different types of statements can be declared inside a block. Next to variable and temporarily
variable definitions (see Section 5.2.3) FTPM provides control structures, loops and expressions.

5.5.1 Control structures

if statements control the program flow. In FTPM they have they following structure:

if_statement : ifstat elsifstat* elsestat? ’end’ ’;’
ifstat : ’if’ expr ’do’ statement+
elsifstat : ’elsif’ expr ’do’ statement+
elsestat : ’else’ ’do’ statement+

This means, that similar to block statements, FTPM abstains from brackets but uses a written keyword
to mark the begin of a block called do. As with expressions FTPM strives to create readable programs



5.5. Statements 65

by preferring verbose statements over a short-hand notation. The keyword end is reused from ordinary
blocks to keep the available syntax elements short.

5.5.2 Loops

Currently, only one notation for loops is present in FTPM. This comes from the fact that while loops are
most certainly needed for other TPM commands, they are not necessary for the currently implemented
subset of TPM commands. If needed, multiple variations of this basic loop can be quickly added to the
FTPM language.

A simple loop is defined as:

for_loop : ’for’ ID ’in’ expression ’to’ expression
’do’

statement+
’end’ ’;’

The loop declares a variable (ID). The type of this variable is automatically derived from the subsequent
expressions. For example, consider the following loop:

1 for idx in 1 to 10
2 do
3 myArr[idx] := 0x00;
4 end;

The variable idx is visible in the block marked by the keywords do and end. Additionally, the variable
idx is of type unsigned integer 8bit, as the expression happens to be in that range.

5.5.3 Operators and Expressions

The operators of FTPM and their precedence are shown in Table 5.2. Each of the following subsections
shows brief usage examples of these operators. The higher an operator is listed in this table, the higher is
its precedence to operators listed in rows below it. For example, this means that multiplicative operations
are executed before additive operations. Some operators allow an alternative notation. For example, the
unary negation operator can be written either as ! or as the English Word not. Both notations provide
the same functionality to negate an boolean expression and can be used interchangeable. This approach
to allow different notations is also used for example in the Ruby programming language2. Listing 5.16
compares the available notations of the unary negation operator. A boolean result from a function call
(isValid()) is negated. The left side of the example uses the shorthand notation, which is common in
many programming languages. The right side uses the alternative notation. This notation produce more
fluent code and thus aids readability.

1 if !isValidPCRIndex(pcrIndex)
2 do
3 [...]
4 end;

1 if not isValidPCRIndex(pcrIndex)
2 do
3 [...]
4 end;

Listing 5.16: Example of an unary negation operator: Depicted on the left is the shorthand notation
while the right side uses the English word not to achieve the same result.

2http://www.ruby-lang.org
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Description Operator

unary postfix () [] .

unary prefix -expr !expr (alternative: not expr) ˜expr

multiplicative * / %

additive + -

shift << >>

relational >= > <= <

equality == !=

bitwise AND &

bitwise OR |
bitwise XOR ˆ

logical AND && (alternative: and)

logical OR ‖ (alternative: or)

conditional expr1 ? expr2 : expr3

assignment :=

Table 5.2: Operators and their precedence.

Arithmetic Operators

Table 5.3 lists the arithmetic operators defined in FTPM. An exemplified usage of the operators is shown

Operator Meaning

+ Add

- Subtract

-expr Unary minus

* Multiply

/ Divide

% Modulus

Table 5.3: Arithmetic operators.

in Listing 5.17. The behavior is the same as in other programming languages and described in the table.

Equality and Relational Operators

FTPM provides the operators from Table 5.4 to test for equality and relation.

Again, the relational and equality operators work as in other programming languages (see List-
ing 5.18).
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1 foo unsigned integer 8bit := 6;
2 bar unsigned integer 8bit := 2;
3

4 foo + bar --! equals 8
5 foo - bar --! equals 4
6 -foo --! equals -6
7 foo * bar --! equals 12
8 foo / bar --! equals 3
9 foo % bar --! equals 0

Listing 5.17: Exemplified usage of arithmetic operators.

Operator Meaning

== Equal

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 5.4: Equality and relational operators.

Assignment operator

FTPM uses := as the assignment operator. We decided for the mathematical notation of := as opposed
to a single assignment character (=). This way, the assignment is more visually distinct to the equality
operator (==). Some assignments are shown in Listing 5.19.

Bitwise operators

Bitwise operators are common tools to describe low-level operations. Currently, FTPM supports the
notation for bitwise operations shown in Table 5.5. Listing 5.20 illustrates the usage of bitwise operators.

Other Operators

Table 5.6 presents the remaining operators. A function call is represented by a pair of brackets. Optional
arguments to function calls are specified inside the brackets. Access to elements of an array is represented

1 foo unsigned integer 8bit := 6;
2 bar unsigned integer 8bit := 2;
3

4 foo == bar --! evalutes to boolean false
5 foo != bar --! evalutes to boolean true
6 foo > bar --! evalutes to boolean true
7 foo < bar --! evalutes to boolean false
8 foo >= bar --! evalutes to boolean false
9 foo <= bar --! evalutes to boolean false

Listing 5.18: Exemplified usage of relational and equality operators.
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1 foo unsigned integer 8bit := 6;
2 bar unsigned integer 8bit := 2;
3

4 var tmp := foo + bar; --! creates variable named `tmp' (of type
5 -- unsigned integer 8bit) and assigns it the
6 -- value of 8
7

8 result unsigned integer 8bit;
9 result := ((foo * bar) + 1) % 2; --! the variable result gets assigned the value 1

10

Listing 5.19: Exemplified usage of the assignment and arithmetic operators.

Operator Meaning

& AND

| OR

ˆ XOR

˜ Unary bitwise complement

<< Shift left

>> Shift right

Table 5.5: Bitwise and Shift operators.

by square brackets. Arrays in FTPM are indexed from 0. Therefore the last element of an array arr with
n elements is accessed by arr[n− 1]. Members of structures, enumerations or bitsets is established by a
dot. The Ternary Operator is a shorthand notation for an if..else control flow. Listing 5.21 exemplifies
the usage of these operators.

5.6 Summary

This chapter introduced important elements of the FTPM language. First, we presented the general
structure of a FTPM file which consists of the definition of multiple structures and at most one ordinal.
While not enforced by the grammar we recommend the separation of structures and TPM ordinals to
increase readability.

Then, we detailed the include and comment mechanism and discussed the structure of variable dec-
larations along with the possible types. We presented the notation to declare primitive and composed
types as well as alias to existing types or numerical constants. Next, we introduced the syntax for ordi-

Operator Meaning

() Function call

[] Array access operator

expr1 ? expr2 : expr3 Ternary operator;executes expr2 if expr1 is true or else expr3 is executed

. Member access to Enumerations, Structures or Bitsets

Table 5.6: Other operators.
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1 constant bitmask is 0x0f;
2 foo unsigned integer 8bit := 0x22;
3

4 if((foo & bitmask) == 0x02) --! AND
5 do [...]
6

7 if((foo & ˜bitmask) == 0x20) --! AND NOT
8 do [...]
9

10 if((foo | bitmask) == 0x2f) --! OR
11 do [...]
12

13 if((foo ˆ bitmask) == 0x2d) --! XOR
14 do [...]
15

16 if((foo << 4) == 0x220) --! Shift left
17 do [...]
18

19 if((foo >> 4) == 0x02) --! Shift right
20 do [...]

Listing 5.20: Bitwise and Shift operators.

1 arr signed integer 8bit[30]; --! array of 30 8-bit integers
2 myArray[0] := 0x00; --! assign 0x00 to array element on
3 -- position 0
4 myArr[29] := funcCall(myArr[0]); --! call function `funcCall' with the
5 -- element on position 0
6

7 --! simple enumeration specifing two values
8 enumeration MY_ENUM is unsigned integer 8bit (
9 VAL0 := 0x00,

10 VAL1 := 0x01
11 );
12

13 myArr[1] := MY_ENUM.VAL1; --! assign VAL1 (0x00) to myArr[1]

Listing 5.21: Example of function call, array and composed structure access operators.

nals and functions as well as incoming and outgoing parameters. We showed our approach to represent
authorization information, which is readable and concise.

Finally, we demonstrated how blocks, statements and expressions make the smallest logical unit of
the FTPM language. FTPM provides arithmetic operators and control structures like if-statements and
loops, which are similar to most programming languages.
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Chapter 6

Tools, Design and Implementation

The following chapter explains the design and implementation of the FTPM prototype in detail. First,
we present a general overview of FTPM and for what specific problems it was designed. Next, we give
a generic overview of the selected methods and tools used in the implementation. Then, we provide
an detailed insight into each phase an input source code traverses when it is processed by the FTPM
executable. Those phases consist of details from parsing FTPM input source, to implemented static type
checks, up to the automatic generation of various output formats. Moreover, we discuss the interaction
between the most important components from the implementation of the FTPM prototype.

6.1 General overview of FTPM

A TPM is a dedicated hardware security chip with specialized features for cryptographic purposes (see
Chapter 2.2). It has a cryptographic co-processor, which is used in encryption, decryption and signing
operations. It also has key-management and storage facilities, which are needed to load different types
of key material as well as to store sensitive and insensitive data inside the TPM. Furthermore, a TPM
is capable to store measurements, which then are subsequently used to build a chain-of-trust. These
measurements can be reported to a third party, which is then able to verify the state of the system by
comparing the reported measurement values to previously stored values. With this process, called remote
attestation, a certain level of trust can be assured.

These key features of a TPM do provide a certain level of security. However, history has proven
that every system, no matter what level of security it provides, is prone to some attacks (known or
unknown). Game consoles, like the XBOX or Playstation, smartphones like the iPhone or HDCP, which
is a protection scheme to prevent creation of digital copies audio and video material, are examples where
the producer made special efforts to prevent consumers to use the devices in any other way than intended.
However, bugs in the implementation could eventually be utilized to break the security of the devices
and allowed the installation of custom software or hardware modifications. An overview of devices, the
deployed security and the time span until the security was broken as well how it was broken can be found
in [11].

When looking at hardware security chips in general, there exist the following four primary attacks,
as identified by Kömmerling et al. [33], which naturally apply to TPM chips as well:

• Microprobing techniques operate directly on the chip surface for observation, manipulation and
interference;

• Eavesdropping techniques monitor connections and electromagnetic radiation;

• Fault generation techniques “use abnormal environmental conditions to generate malfunctions
in the processor that provide additional access”; and
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• Software attacks “exploit security vulnerabilities found in the protocols, cryptographic algo-
rithms, or their implementation”.

This classification can be further simplified to attacks against the hardware and attacks against the
software. The hardware has to guarantee that data stored securely on the device can never be accessed
or leave the chip unintentionally or unprotected. Countermeasures against physical modification, eaves-
dropping and fault generation techniques must be provided. The software side provides access to data and
functions stored on the hardware, therefore its design is at least as crucial as the hardware design itself.
Especially as the software layer is a much more reachable target than the more complicated hardware
attack vectors. Bugs on both layers render the security features of the chip most certainly useless.

We show that a domain-specific language (FTPM, Formal TPM) is well suited to create and main-
tain the specification of Trusted Platform Modules [56, 57, 58]. The more people are able to read and
understand the specification, the more likely design errors and bugs can be found and removed which
ultimately aids the security of the device. It enables specification writers and programmers to compose
data structures and TPM commands consistently and prevents syntax errors early. The clean syntax of
FTPM accelerates comprehension of complicated and security-relevant specification text. An automated
translator can produce various different outputs directly from specification text written in FTPM. This
automatic output generation can, among others, produce high-quality documentation. A well-prepared
documentation is an important cornerstone for identification of security problems and hence crucial in
the feedback cycle between specification designers and implementers of TPM modules.

The approach of a domain-specific language does not only allow a direct and automatic generation
of various output but also a specifically tailored syntax for highly complex procedures, which fosters
comprehension. The maintenance of complex software is one of the most effort-consuming activities
in the whole software-life-cycle [52]. While maintenance is responsible for up to 80% of the cost of
software, a significant percentage (up to 50-60%) is used for proper comprehension of the software
[12]. Naturally, understanding software and its functionality is a prerequisite for designing a system with
robust, enhanced security.

We use FTPM to implement a subset of the TPM specification, as the complete specification is out
of scope for this thesis due to its extensiveness. Furthermore, we provide a translator for FTPM source
to the C programming language. We summarized the advantages of automatic code generation through
a domain-specific language shortly in Chapter 3.4. Moreover, FTPM is capable to produce high-quality
documentation in various output formats. Currently, this is achieved by preparing FTPM source files for
the Doxygen documentation generator (see Chapter 3.3). However, other output generation is easily
realizable as well because the specification is available in an executable form. Therefore, FTPM is exten-
sible to support the creation of different documentation formats like XML or DocBook1. Additionally,
programming languages other than Cmay be convenient to construct rapid prototypes to test the function-
ality of a TPM command. The extended flexibility of having an executable specification is demonstrated
by a byte-counter, which sums the amount of bytes by analyzing the TPM command signature and used
temporary variables. This might be useful for devices where memory is limited, for example embedded
systems.

6.2 Tools

The FTPM prototype consists of a domain-specific language which allows the description of TPM com-
mands, which are called ordinals in the official TPM specification, as well as data structures. A parser
reads FTPM source files and performs checks on syntax and semantics. Afterward, a translator takes the
parsed FTPM source and produces different outputs. We implement a translator to the C programming
language as well as documentation in various different output formats (HTML, LATEX, etc). The translator

1http://docbook.org
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to the C programming language is written from scratch while we facilitate the powerful capabilities of
Doxygen for documentation generation (see Chapter 3.3). Each step in this process is described in more
detail in the following sections.

6.2.1 ANTLR

The FTPM language is implemented as an external domain-specific language. This means that an external
parser for the syntax of FTPM is needed. While the flexibility of an external domain-specific language is
advantageous, the creation of the needed tools (parser, compiler, interpreter, translator etc.) is extensive
(see Chapter 3.4). ANTLR is a parser generator, which is a tool that aids in the creation for building a
parser, compiler or interpreter for a formal language, written by Terence Parr2.

Figure 6.1: Example Abstract Syntax Tree which
shows part of a parsed TPM PCRRead
command using the FTPM language.

ANTLR offers a special notation (see Sec-
tion 6.3.3) to easily create grammars for parsers
and lexers as well as the creation of an abstract
syntax tree (AST). This tree is the starting point
for custom written checks on syntax and semantic
of FTPM input files. Furthermore, a set of APIs
(application programming interfaces) is provided
to interact, modify and query the AST at different
stages during parsing. For example a part of the
AST of the FTPM language for the TPM PCRead
command is shown in Figure 6.1.

ANTLR can process context-free grammars,
written in the Extended Backus-Naur Form
(EBNF) [27]. It is a recursive descent, top-
down, LL(∗) parser. That means, it parses input
from Left-to-right, constructs a Leftmost deriva-
tion and per default is not restricted in the looka-
head of input tokens (*). For a detailed discussion
on ANTLR and LL(∗) see [42, 40].

While ANTLR does support a variety of different target languages3, we chose to implement the parser
for the FTPM prototype in Java, as this is also the language ANTLR itself is written in and thus seems
to provide the most stability and features.

6.2.2 StringTemplate

The final processing step in the FTPM prototype consists of output generation. A translator walks the
AST, which was constructed, inspected and modified in previous stages during parsing, and emits various
different output. We use StringTemplate4 as template engine for most of our output creation. A
template engine allows the creation of structured, reusable text without the need to recompile the program
upon textual modifications. StringTemplate is written by Terrence Parr as well and therefore has
a tight integration to ANTLR. It has a similar syntax for the creation of templates to what ANTLR uses
for the creation of abstract syntax trees. Furthermore, it enforces a strict separation of model and view,
where no program logic (model) can be used inside the output templates (view). This strict separation
allows the complete creation of various different outputs with a single-point-of-change: the template.
Moreover, StringTemplate features inheritance between templates. This means, that a specialized

2http://www.cs.usfca.edu/˜parrt
3http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets
4http://www.stringtemplate.org/
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template can inherit common parts of a more generic template and thus eases the creation of new custom
templates.

Automatic output generation

For the creation of output in the C programming language a specialized template, which directly trans-
lates FTPM to C source code, is used. A simple Makefile, which provides a mechanism to quickly
create executable code, and helper functions in a separate files, are generated automatically as well by the
translator. For documentation output the first step consists of translating FTPM source to Markdown5

syntax. Markdown is a plain text format, which provides basic formatting commands and is especially
easy to read and to easy write. The next stage generates configuration files, which allow subsequent
runs of Doxygen (see Chapter 3.3) to further process the generated output. Doxygen creates pleasant
looking and well structured output in HTML as well as LATEX.

By facilitating the power of Doxygen and Markdown, specification writers can produce coherent,
high-quality output easily, as shown in Figure 6.2.

Figure 6.2: Output produced after FTPM input was translated to multiple Markdown files which
then got processed by Doxygen.

6.2.3 Other utilities

The FTPM prototype is written in Java. As stated above, it uses ANTLR (Version 3.4) for the construc-
tion of a parser and StringTemplate (Version 4.0) for the creation of various different outputs: C
source code, a simple Makefile, Markdown files for documentation, Doxygen configuration files,
etc. In order to use Doxygen for the automatic creation of documentation, at least version 1.8.2 has to
be installed. Moreover, we use Apache Ant6 as a build tool for the FTPM executable and Apache
Commons CLI7 for parsing command line options passed to FTPM.

6.3 Implementation

This section presents the technical implementation of the FTPM prototype. The implementation can be
roughly divided into six phases, as shown in Figure 6.3. First, an FTPM input file (alongside with the

5http://daringfireball.net/projects/markdown/
6http://ant.apache.org
7http://commons.apache.org/cli
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desired options) is passed to the program. The input source is read into memory and broken into tokens
by the lexer. Then, the tokens are arranged by the parser to form an abstract syntax tree (AST). This
AST is the starting point for up to three remaining phases: symbol table generation, static type checks
and (optional) output emission. Each of these phases walk the AST generated by the parser. Depending
on the current phase the walker gathers information about AST nodes, modifies the underlying tokens or
generates output. Next, we discuss each phase of the implementation in detail. The main grammar as
well as an overview of the directory structure can be found in Appendix B.

Figure 6.3: The phases a FTPM input file traveres: After reading from the file system, the input
source gets tokenized by the lexer. The tokens are then arranged to an abstract syntax
tree (AST) by the parser. Next, the AST is traversed multiple times for different duties:
Symbol generation, static type checking and finally automatic output generation.

6.3.1 Phase 1: Start

The starting point of our prototype is the processing command-line options. Currently, the FTPM program
accepts a variety of options for different output generation, as shown in Listing 6.1

1 usage: java -jar FTPM.jar file1.ftpm [file2.ftpm ...] [--bytes]
2 [-d <arg>] [--debug] [-h] [-o <directory>] [-s <directory>]
3 [-t <target>] [-v]
4

5 --bytes print used bytes for an ordinal
6 -d,--documentation <arg> available documentation generation
7 targets: doxygen
8 --debug print various debug information
9 -h,--help show help

10 -o,--output-dir <directory> where to write generated output files
11 -s,--spec-directory <directory> parse all ftpm-files in this directory
12 -t,--target <target> available code generation targets: c,h
13 -v,--version show version info and exit

Listing 6.1: Available command-line options of FTPM.

The only mandatory argument for the FTPM executable is a FTPM input source: At least one input
file has to be specified. Multiple FTPM sources may be specified either by explicitly passing them to the
FTPM executable or by using the option --spec-directory. This option processes all files ending
with .ftpm in the given directory.
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The supported output emitters are controlled by the options --bytes, --target and
--documentation. The option --bytes prints the number of bytes an ordinal consumes. For this
purpose, the size of each parameter passed to an ordinal (input or output) as well as the sum of bytes
used by temporary variables is accumulated.

The --target and --documentation options control the other available output generation,
namely source code and documentation. Currently available code targets are C source (c) and header
(h) files. The creation of C sources automatically causes the creation of header files as well. For docu-
mentation generation the only available option for now is doxygen. If this target is specified, the FTPM
prototype will generate various Markdown files as well as Doxygen configuration files. Subsequent
runs of the doxygen command on these generated files produces documentation in HTML and LATEX.

The --debug option causes FTPM to be more verbose while processing the input files. Information
about the symbol table (see Section 6.3.4) and static type checks (see Section 6.3.5) are printed to the
standard output. Moreover, the final AST is saved in the dot format8, which is used to describe graphs
and can subsequently be viewed with external programs.

6.3.2 Phase 2: Lexer

After all command line options are processed, the program reads the specified FTPM input source into
memory. Then, a lexer divides the input stream into defined tokens (see Appendix B). For the lexer and
parser of FTPM an ANTLR combined grammar is used. A combined grammar contains the definition
for the lexer as well as the parser in one file and can be found in Ftpm.g.

If the FTPM file contains an include-keyword (see Chapter 5.2.2) the lexer first checks if it already
processed the specified file. If it was processed by the lexer earlier, it is simply ignored. Otherwise, the
currently processed file is placed on a stack and the lexer starts processing the new, to-be-included file.
When the end of a file is reached by the lexer, any previously saved FTPM file is retrieved from the stack
and the lexing continues until the stack is empty and no other file is to be processed.

This mechanism prevents multiple inclusion and consequently multiple definition of the same vari-
ables or functions. However, this also implies that circular dependencies between different modules
(mutual recursion) are not possible with FTPM.

Currently, the FTPM prototype is case-sensitive. However, a future optimization to FTPM is to remove
this constraint to ease the creation of FTPM source files regardless of preferences in notation. As there is
no option to automatically generate a case-insensitive lexer for in ANTLR in the used version (3.4), this
could be achieved by either specifying all keywords case insensitive directly in the lexer or by extending
the class ANTLRFileStream to treat everything as either upper or lower case9.

6.3.3 Phase 3: Parser

The parser is fed with tokens produced by the lexer from the previous phase (see 6.3.2). The primary
purpose of this phase is to construct an abstract syntax tree (AST). The AST is the central starting point
for all subsequent analysis (symbol table management and static type checking) and output emission
runs.

The parser can be found in Ftpm.g. This is an ANTLR grammar file and uses a special notation for
the construction of an AST (see Figure 6.4): The symbol -> explicitly denotes the start of a tree con-
struction rule (“rewrite rule”). The character ˆ labels the root node, which, in this case, is an imaginary
token named VAR_DECL.

Imaginary tokens are defined at the top of the file Ftpm.g and used to construct AST nodes with
tokens not found by the lexer. The usage of imaginary tokens aids to differentiate between similar

8http://www.graphviz.org/doc/info/lang.html
9http://www.antlr.org/wiki/pages/viewpage.action?pageId=1782
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syntactical constructs or specifically mark a subtree inside the AST. Moreover, grammars in subsequent
phases become easier to read and write, as imaginary tokens provide a clear reference.

1 i UINT16 := 4 + 2;

1 var_declaration
2 : ID vartype (ASSIGN expression)?
3 -> ˆ(VAR_DECL ID vartype expression?)

Figure 6.4: FTPM source for a variable declaration (top-left) and the corresponding ANTLR gram-
mar (bottom-left). During processing the parser constructs the AST node shown on the
right: VAR DECL, an imaginary token, is the root node for variable declarations. The
subtree for a variable declaration starts with a name, followed by a type and an optional
expression, which holds the initial value for the variable.

An alternative notation for AST construction, which is used mainly in the expression rules in Ftpm.g,
is shown in Figure 6.5: Instead of the -> symbol, the AST is constructed inside the grammar rule with
the ˆ operator. While this notation is shorter, neither a reordering nor an explicit inclusion of imaginary
tokens is possible.

The resulting AST from Figure 6.5 also shows the usage of another imaginary token (EXP), which
was created by a grammar rule prior to logical_or_expression. The EXP node is used to clearly
group expression nodes. A subsequent tree-walker (see Section 6.3.4 or Section 6.3.5) then not has to
differentiate between possible expression types again but simply looks for EXP nodes to recognize the
start of an expression.

1 if (i == 0 or i > 10)
2 do
3 [...]
4 end;

1 logical_or_expression
2 : logical_and_expression (ORˆ logical_and_expression)*
3 ;

Figure 6.5: A different notation for AST construction using ANTLR: Instead of the -> operator,
the symbol ˆ is used inside the grammar rule (next to the keyword OR) to denote the
root node. The FTPM source on the top left is, amongst other rules, processed by the
grammar rule logical or expression (bottom left). The resulting AST is shown
on the right side: A root node labeled IF, followed by an imaginary node labeled EXP
followed by the actual expression nodes.

6.3.4 Phase 4: Symbol table management

After the construction of an AST (see Section 6.3.3), all the following phases walk the nodes of the
tree and perform different actions. The first tree-walking phase consists of generating a symbol table,
which will be used for static type checks of the next phase (Section 6.3.5). ANTLR has built-in support
to construct tree-walkers from grammars. The tree-walker grammar for symbol table management is
defined in SymTabTreeWalker.g.
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With regards to symbol table management, FTPM uses static scoping, which means that each block
provides its own scope of visibility. Consequently this means that variables defined in a deeper scope
mask variables with the same name from an outer scope. Moreover, a variable defined in an outer scope
cannot access variables which are defined in an inner scope but the opposite is possible.

Static scoping can be found in many general purpose programming languages, like C or Java. An-
other approach would be dynamic scoping. In dynamic scoping variables are looked up in the calling
stack if not found locally. Common Lisp is an example for a programming language which uses dy-
namic scoping.

While dynamic scoping is more flexible than static scoping, FTPM uses the latter for several reasons.
First, we find that statically scoped programs are easier to read than an equivalent dynamic scoped pro-
gram. As the source for a complete TPM specification can get quite large, dynamic scoping could be the
source of hard-to-find problems: If, for example, a submodule of a TPM ordinal wrongly alters the value
of a variable defined in some other ordinal. Moreover, we perform several static type checks with FTPM,
which would be more difficult to implement with dynamic scoping. Furthermore, FTPM is syntactically
closer to languages with static scoping. As one goal of FTPM is to directly generate C source code, static
scoping seems like a natural approach as well.

For the actual Symbol-Table Management the classes GlobalScope and LocalScope, which
are defined in the Java package ftpm.symtab, are used. Both classes implement the interface Scope
(Scope.java), which has a name, an (optional) enclosing scope and methods to define and resolve
symbols (see Figure 6.6). Because of the possible enclosing scope, recursive lookup of symbol defined
in outer scopes is easily achievable. Common functionality for both concrete classes is provided by the
abstract base class BaseScope, which is defined in the same Java package.

The concrete symbols are all defined in the java package ftpm.symtab. The design of the classes
for symbol table management and static type checks is taken from [41]. A basic overview of the avail-
able classes as well as their hierachy is shown in Figure 6.6. Each Symbol is defined in a Scope and has a
Type. Some symbols, namely EnumSymbol, StructSymbol, BitsetSymbol, FunctionSymbol
and OrdinalSymbol derive from the class ScopedSymbol. ScopedSymbol is the base class for
symbols which provide their own scope for its members. The Type of a class is either a built-in type
(BuiltInTypeSymbol), thus signed or unsigned integers, strings or booleans (see Chapter 5.2.3), or
a user defined type (TypeDefSymbol or UserDefSymbol).

As stated above, this phase consists of walking the AST and simultaneously create symbols. The
created symbols are stored inside the AST nodes (FtpmAst.java). Additionally each symbol has a
reference to the its corresponding AST node. This way, access to information that either class holds can
be easily provided if needed.

In many implementations of programming languages, comments are disregarded by the lexer and
consequently not processed by the parser. However, vital functionality for the automatic generation of
documentation in FTPM is contained inside the comments. Therefore, comments in FTPM are treated
like normal tokens and are stored as AST nodes. After the creation of symbols, another tree-walker
(FtpmCommentsTreeWalker.g) is used to assign possible comments to their corresponding sym-
bols. If the found comment can be assigned to a symbol it is stored inside the base symbol class
(Symbol.java). If the comment belongs to the whole file, it is stored in a separate structure (Meta-
Comment.java). For an overview of different comment types see Chapter 5.2.1.

6.3.5 Phase 5: Static type checks

The next phase consists of a tree-walker, FtpmTypeCheckTreeWalker.g, which performs sev-
eral checks on the available AST nodes. The actual implementation of static checks reside in the class
SymbolTable (SymbolTable.java). The result type of static type checks on expression, for ex-
ample binary operations like and, is stored in the root expression node (see Figure 6.5). This way, the
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Figure 6.6: UML Diagram of the available classes related to symbol table management in FTPM.
The colored background indicates different groups of classes: Classes related to scopes
have a purple background. A red background denotes classes which hold type infor-
mation. The green background block shows classes which store various information
related to symbols.

result of expressions is passed upwards through the tree and available for subsequent type checks.

In order to allow the computation of static type checks on different, but compatible types, FTPM
internally promotes (casts) certain types if possible. The calculation of a promotion is performed in
SymTabTypeMgmt. This type promotion eases subsequent checks, which depend on equal types.
FTPM currently carries out only simple type promotion, or more precisely promotion of integer types
without loosing information. Information is not lost, if a narrow type is promoted to a wider type, for
example promoting an unsigned integer 8bit to unsigned integer 16bit. However,
the reverse is not feasible. Consider the following example:

1 foo unsigned integer 8bit;
2 foo := -1 - 4294967295;

First a variable with the name foo is declared with the type unsigned integer 8bit. This type
is used for unsigned (non-negative) numbers, ranging from 0 to 255. Then, in the assignment the num-
ber -1, which internally is of type signed integer 8bit and the number 4294967295, which
is of type unsigend integer 32bit are declared. In order to check, if the assignment to the
variable foo is feasible, the following type promotions are calculated by FTPM: Both numbers, -1
and 4294967295, get promoted to a type of signed integer 64bit because the result of the
expression happens to be in this number range. Then, the AST node for the arithmetic expression
( -1 - 4294967295) is assigned this computed type. Subsequently, the static type checker verifies
if the types (unsigned integer 8bit and signed integer 64bit) are compatible, which
clearly they aren’t. Therefore, this check results in the warning:
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1 [WARN] foobar.ftpm (52): Cannot assign 'signed integer 64bit' to 'unsigned integer
8bit'

Currently, failed checks performed in this phase do not terminate the execution of the program. Only
a warning is emitted, which shows the failed check as well as the respective filename and line number.
Moreover, the currently available type checks in the FTPM prototype should be improved and extended,
as currently only the most basic checks are implemented. Especially the constraints found in the TPM
specification are suited to be implemented as proper type checks. For example the definition of Boolean
types, which are defined as unsigned integer of 8-bit size in section 2.2.2 of Part 2 of the TPM Main
Specification, provides the following comment [57]:

“Boolean incoming parameter values other than 0x00 and 0x01 have an implementation
specific interpretation. The TPM SHOULD return TPM BAD PARAMETER.”

If the FTPM prototype enforces a check like the above it would automatically be enforced in every
implemented TPM command.

6.3.6 Phase 6: Output generation

The final phase of FTPM consists of the automatic generation of various different outputs. The sequence
for output creation is depicted in Figure 6.7: After the initial phases, which processed the input—starting
with the lexer, which produced tokens from the given input stream (see Section 6.3.2), followed by the
parser, which created an AST (see Section 6.3.3) that subsequently got traversed by various tree-walkers
(see Section 6.3.4 and Section 6.3.5)—the FTPM prototype is ready to produce output.

Overview

An OutputFactory (OutputFactory.java) knows which kind of outputs are available. The
parser queries the available outputs from the factory and requests the creation of an Output object,
which is implemented as an abstract class. An Output can use one (or more) templates or use alter-
native ways for output generation (e.g. process the raw AST nodes from the parser itself). The output
creation uses a decorator design pattern: Each output has to implement a write method, which returns
a String. The OutputFactory simply calls the write method and decides whether to write the
returned String to the standard output or to a specified file. Additionally, each output can specify
dependent output object, which should be created as well. Examples for such dependent objects are
Makefiles or Doxygen configuration files and.

The classes involved in the output generation are shown in more detail in with the UML diagram
in Figure 6.8. The class Parser (Parser.java) is the main processing point of FTPM. Output
related classes are bundled in and below the directory src/ftpm/output. Every output target ei-
ther implements the interface OutputGenerationTargetTemplate or the more generalized in-
terface OutputGenerationTarget. The interface OutputGenerationTarget is usesful for
classes which produce their output without a template. It is used mainly for debugging classes, which
print tokens or debug information to the standard output (OutputLexerTokens.java or Output-
StaticTypes.java), or write the abstract syntax tree in the dot format to a file (OutputAST-
Dot.java) in order to analyze the generated AST with an external viewer. The class OutputByte-
size is not used for debugging purposes but rather to print the bytes an TPM command requires to the
standard output.

The interface OutputGenerationTargetTemplate does not differ very much from Output-
GenerationTargetmentioned above. It does only add two methods to the interface: getTemplate-
DirName() and getTemplateFileName(). These methods are used by OutputTemplate to
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Figure 6.7: Basic schema of output generation in FTPM: After the initial phases (1-4, green back-
ground), output can be generated through the use of an Output Factory (blue). Output
objects either use templates or directly process the AST nodes from the parser. Then,
output is written to an Output Location (red background), which can be the Standard
Output or a specified File.

load and process a specified StringTemplate file. Code and documentation generation are examples
for this classes of output targets, which can be found in
OutputCode C.java, OutputCode H.java and OutputDocDoxygen.java.

Templates

The actual processing of a StringTemplate closely mimics any other tree-walking with ANTLR.
However, the -> notation, which was used to build AST nodes in the parser, now calls StringTemplate
definitions. These definitions are the foundation for output emission using templates. Moreover, FTPM
uses the available inheritance mechanism of StringTemplate. A new template does not have to pro-
vide definitions for all available template calls but rather overrides only the ones needed by this specific
template. As the default action in the top-level template does not emit any output at all, specific templates
can be kept short. For example, the template for C header files does not need to implement the template
for a function body as it is merely interested in the function declaration and thus is much shorter than the
template for C source code.

The grammar for template aided output generation can be found in
FtpmOutput.g. Output emission can be controlled by two kinds of renderers. The first kind of ren-
derer is passed to the tree grammar and decides if a certain attribute is passed to the template at all. Cur-
rently, the class SameSourceTemplateRenderer (SameSourceTemplateRenderer.java),
which implements the interface TemplateRenderer, is used for this task. As the name suggests, this
class only emits output if the current attribute in the AST comes from the currently processed file. This
way, the file structure from the input is transferred to the output: A file A.ftpm, that includes B.ftpm,
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Figure 6.8: Excerpt of the classes responsible for various output generation: An OutputFactory
governs the available output emitters. Emitters either use templates, like Documen-
tation (Doxygen) or Code (C source and header files) or process the AST directly
(OutputStaticTypes, OutputByteSize, ...).
Every Output implements the interface OutputGenerationTarget, which provides a
write method. Upon creation of the output, this method gets called on the provided
Output channel (StdOut or a File).

will produce the files A.c and B.c and not a single file which combines both input sources. However,
with this strategy, the AST has to be walked for every input file separately, even when most of the in-
put is discarded and only a small portion of the AST is used for output emission. Therefore, a future
optimization of FTPM is to walk the AST only once and generate output for different files simultaneously.

The second kind of renderer is responsible for the representation of AST nodes inside the template.
StringTemplate does not allow logic inside the template as it would break the model-view-controller
pattern [45, 34], which is an underlying design principle of the engine [39]. However, a template may
use a renderer to control how the output looks like. An example for such a renderer can be found
in BuiltInTypeSymbolRenderer.java, which maps FTPM variable type definitions to equiv-
alent C type definitions (see Listing 6.2) and additionally cares that needed header file (in this case
stdint.h and stdbool.h) are included in the final output as well. This renderer is installed for

1 unsigned integer 8bit -> uint8_t
2 unsigned integer 16bit -> uint16_t
3 unsigned integer 32bit -> uint32_t
4 unsigned integer 64bit -> uint64_t
5 boolean -> bool

1 signed integer 8bit -> int8_t
2 signed integer 16bit -> int16_t
3 signed integer 32bit -> int32_t
4 signed integer 64bit -> int64_t
5 string -> char*

Listing 6.2: StringTemplate renderer, which provides a mapping between variable types
available in FTPM and available in C.

the class BuiltInTypeSymbol. The template passes every object of this class to the renderer, which
cares for the correct mapping.
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Example

This chapter concludes with a short but complete example of translating a code snippet in FTPM to valid
C source code. We will illustrate the output mechanism described above and show intermediate results
and important components. The example is depicted from Listing 6.3 to Listing 6.6.

First, Listing 6.3 declares a variable in FTPMwith the name i. This variable is of the type unsigned
integer 16bit, which is a built-in type of FTPM (see Chapter 5.2.3). Additionally, the variable is
also initialized with the expression 4 + 2.

1 i unsigned integer 16bit := 4 + 2;

Listing 6.3: Declaration of a variable in FTPM.

This statement is first processed by the lexer and parser resulting in an AST representation. Then this
AST is traversed by tree-walkers, which build a symbol table (FtpmSymTabTreeWalker.g), process
comments ( FtpmCommentsTreeWalker.g) and perform static type checks (FtpmStaticType-
Checker.g). Then, a final tree-walker is responsible for output generation.

Listing 6.4 shows an excerpt of the rule in the tree grammar of FtpmOutput.g, which processes
variable declarations. The rule states that a variable declaration in FTPM is made up of an imaginary root
node VAR DECL, which was inserted by the parser during AST creation. Under this root node follows an
identifier, a type and an optional expression. The template definition inside the rule, which is also called
var declaration, is only called if the method renderAttribute returns true (Disambiguating
Semantic Predicate). This method is responsible for the rendering of AST nodes from the same file only,
which was mentioned above. If the nodes come from the currently processed file, the template definition
var declaration is called. If not, the second -> operator matches, which purposely discards the
AST nodes.

1 var_declaration
2 : ˆ(VAR_DECL i=ID t+=vartype (v+=expression_root)?)
3 -> { renderAttribute($i) }? var_declaration(name={$i}, type={$t},

opt_value={$v})
4 -> // empty on purpose

Listing 6.4: Tree grammar rule in FtpmOutput.g for a variable declaration

The template definition for var declaration is shown in Listing 6.5. It is a simple String-
Template definition which has three input parameters: a name, a type and an optional value. The rule
arranges this three parameters to valid C, which prints the type of variable first and then its name. If a
value is passed to the rule as well, an additional assignment operator followed by the value is printed.
The statement is finalized by a semicolon.

1 var_declaration(name, type, opt_value) ::= <<
2 $type$ $name$$if(opt_value)$ = $opt_value$$endif$;
3 >>

Listing 6.5: StringTemplate definition for the creation of C output for a variable declaration
in FTPM.

The final output is shown in Listing 6.6. As in this case the object of type happens to be of type
BuiltInTypeSymbol, the corresponding BuiltInTypeSymbolRenderer is implicitly called
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by the template. This renderer maps the type unsigned integer 16bit to the type uint16_t
(see Listing 6.2). Moreover, the needed header file for this type, stdint.h, is included in the final
output as well.

1 #include <stdint.h>
2

3 uint16_t i = 4 + 2;

Listing 6.6: Example output in C of the variable declaration in FTPM from Listing 6.3

Every output class extends the abstract class Output. Through this class an output location can be
set. Upon calling the method Output.write() the returned string is either written to standard output
or to a specified file. Moreover, an output class can specify dependent output targets, which will be
written subsequently as well. In order to not circularly write the same files multiple times, the Output
class keeps track of the files that were already written. Through the design described above, the creation
of output for FTPM is reduced to the lines of code depicted in Listing 6.7.

1 // target: OutputCode_C.IDENTIFIER, OutputDocDoxygen.IDENTIFIER, ...
2 // inputfile: the ftpm source file
3 // nodes: AST produced by the parser
4 Output o = outFactory.createOutput(target, inputfile, nodes);
5 o.setOutputLocation(new OutputLocationFile());
6 o.write();

Listing 6.7: Java call in Parser.java to create an output of type target with nodes processed
by the parser for the file named inputfile.

An excerpt of the method, which is called by the write method from Listing 6.7 is shown in
Listing 6.8. First, the corresponding template file gets loaded by TemplateLoader. Afterward,
a renderer—BuiltInTypeSymbolRenderer—is registered to render objects of type BuiltIn-
TypeSymbol in the loaded template. Finally, the class OutputTemplate walks the AST nodes
produced by the parser with the tree-grammar FtpmOutput.g and applies the passed template. The
result is returned to the caller, which may write it to a file or print it to the standard output.

1 public String generate()
2 {
3 StringTemplateGroup template = new TemplateLoader(TEMPLATE_DIR_NAME,

TEMPLATE_FILE_NAME, TemplateLoader.Category.CODE).getTemplate();
4

5 BuiltInTypeSymbolRenderer typeRenderer = new BuiltInTypeSymbolRenderer();
6 template.registerRenderer(BuiltInTypeSymbol.class, typeRenderer);
7

8 // apply template
9 TemplateRenderer templRenderer = new SameSourceTemplateRenderer(

getInputSourceName());
10 OutputTemplate ot = new OutputTemplate(nodes, template, templRenderer);
11 return ot.applyTemplate().toString();
12 }

Listing 6.8: Excerpt of the Java call in OutputCode C.java to apply a template to AST nodes.
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6.4 Summary

This chapter presented the technical details of the implementation of the FTPM prototype. After a general
overview of FTPM and used libraries and tools we presented the implementation of the FTPM program in
detail. We thoroughly discussed each phase a FTPM input source traverses, which consists of processing
command-line options, lexical analysis and parsing the created tokens. After the creation of a symbol
table several type checks are performed on the created abstract syntax tree. Finally, the FTPM input is
translated to various different outputs. We implemented FTPM as a statically typed language because
of possible unintentional side-effects and affinity to the C language because of the chosen output target.
Furthermore, we showed how the automatic generation of various output formats is implemented. Fi-
nally, we illustrated the whole process with all discussed phases on a simple but complete example of
generating C source code out of FTPM.
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Chapter 7

Outlook – TPM 2.0

The TCG already started to work on the next major version of the TPM specification: TPM 2.0. This
chapter outlines a few notable design decisions of the upcoming version. We discuss where FTPM can
be used directly with the next version of the TPM specification and where the specification differs and
thus has to be adapted. Next, we propose ideas for improving FTPM that arose during the development
of FTPM to describe our vision of an optimized workflow for the creation of the next TPM specification.

7.1 Next version of the TPM specification

The TPM specification continues to evolve. Currently, the Trusted Computing Group works on the
release of the next version of the specification. A public review draft for this next specification has
been posted in October 20121, which will be the base for the TPM specification version 2. This TPM
specification consists of Part 1: Architecture [61], Part 2: Structures [62], Part 3: Commands [63] and
Part 4: Supporting Routines [64].

Again, the complete specification is comprehensive. It consists of about 1400 pages spread over all
four parts. In order to completely understand the specification, it is necessary to understand all four parts.
Internally many things will change with this new specification version. Besides logical adjustments,
like an interface to use cryptographic algorithms other than SHA-1 and RSA or reworked authorization
methods, the TCG explicitly states that automatic processing of the specification text is encouraged:

“The information in this document is formatted so that it may be converted to standard
computer language formats by an automated process. The purpose of this automated process
is to minimize the transcription errors that often occur during the conversion process.”

Moreover, the next version of the TPM specification includes a reference implementation in C. While
this is definitively a great help for implementers it also introduces a new level of complexity to the
specification: Source code inside the specification text. The choice for the programming language C to
demonstrate the implementation of data structures and commands for a hardware module seems obvious.
However, C itself is a low-level, general purpose programming language. Memory allocation and pointer
arithmetic are common operations in C and interfere with the readability of the specification. Besides the
complexity of the TPM specification, the additional complexity of the program language demands close
attention and great care by the implementer. Moreover, if a different language for an implementation of
TPMs is needed, a reference implementation in C is not directly usable.

FTPM on the other hand tries to provide a lean language for describing TPM commands and struc-
tures. It strives to draw attention to important parts of the specification (e.g. authorization, parameter

1http://www.trustedcomputinggroup.org/resources/trusted platform module specifications in public review
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blocks) and hide complex operations with a specialized syntax at the same time. The changes introduced
to the next version of the specification for TPMs mean that FTPM needs adaption to reflect these changes.
However, as we see it, the next version of the specification of TPM can also be realized in FTPM. More-
over, automatic processing is already the corner stone of FTPM and thus highly appropriate. Additionally,
our approach of an executable TPM specification hides complex details of the implementation, which are
now part of the specification text (e.g. memory allocation and pointer arithmetic).

7.2 Ideas for Future Work

FTPM is able to produce arbitrary output. Currently, the translator of FTPM is able to produce C source
and header files as well as documentation with Doxygen. The documentation mimics the currently
available specification structure but additionally improves the usability with hyperlinks between different
parts. Chapter 4 already mentioned possible improvements in few areas:

• A better notation for include files, which reduces the probability of typing errors and eliminates
the need for meta comments. This optimization results in greater flexibility in the documentation
generation, too.

• A notation to create links between related chapters in comments of FTPM. A more tightly refer-
enced specification alleviates navigation. This aids comprehension of a complicated specification
as the reader is pointed to all related information at once.

• Automatic generation of marshalling code. The information to create code which translates a
binary stream sent by the upper software stack to a TPM into parameters for a specific code and
back is already contained in the current notation of FTPM. However, the marshalling code is not
implemented in our FTPM prototype, yet.

Another improvement, which was not mentioned in the previous chapter, concerns the documen-
tation generation. If hyperlinks are not only generated for data types in the parameter blocks but also
automatically for every named variable in the action comments of the specification text, related informa-
tion is even more connected. As the symbol table is available to the translator, an obvious solution to this
problem is to try to look up every single comment text in it. If an entry is found, a link to the definition
of the type is generated.

As mentioned in Chapter 3.4.1, the creation of a domain-specific language is complex and time
consuming. Therefore, this thesis chose only a few commands and structures of the TPM specification
for a first prototype. However, in our opinion the most important thing FTPM needs is extensive testing:
More TPM commands need to be implemented in FTPM in order to detect possible shortcomings of the
language that we are not aware of. It is evident that FTPM cannot be regarded to be finished without
a complete implementation of all commands. Until then, it is uncertain, if FTPM in its current form is
really adequate to create a specification for TPMs.

Of course, the FTPM language itself can be further refined to better suit the specification design pro-
cess. Currently, there exist some rough edges, like the include mechanism mentioned in Chapter 4.2.
However, the language itself evolves with the implementation of more commands and with more exten-
sive testing. Most importantly, the more commands are implemented, the more custom rules, which are
found throughout the specification text, can be enforced by the FTPM compiler. If the abidance to this
rules is checked by a computer program it is easier for an implementer to comply.

Furthermore, additional tools to aid the development of TPM commands are useful. Besides the
generation of marshalling code, good editor support is definitely a must to reach adaption of FTPM. While
not strictly necessary, syntax highlighting or code completion are a tremendous relief for programmers.
A file to get rudimentary syntax highlighting for the VIM editor can be found in Appendix C.1.
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It is also imaginable to elaborate on the workflow associated with the creation of a specification for
TPMs: An specialized editor provides an environment well suited to create TPM commands. This editor
ideally provides syntax-highlighting and code completion. The execution of the FTPM tool informs the
creator of found problems. When the implementer is satisfied with the command, structure or text, the
source code is transferred into a Version Control System. Then, the editor is obliged to enter a com-
mit message, which ideally describes the conducted changes in detail. When the specification reaches
a certain maturity a revision or major version can be created, directly from the VCS. This way, a com-
plete workflow, along with an exhaustive history, is made available to implementers and specification
designers.

7.3 Summary

This chapter gave a short overview of the next version of the TPM specification. The upcoming ver-
sion has put effort into providing a document which can be automatically processed in order to avoid
transcription errors. Coincidentally, this was one motivation for the creation of FTPM. The upcoming
version of the TPM specification provides a reference implementation in C. While a reference imple-
mentation is an important help for implementers, it also introduces a new level of complexity through
the use of a low-level, general purpose programming language. The complexity of the C programming
language hides important parts of the specification and is not very useful for implementers who target a
different language. FTPM minimized the complexity with a specialized syntax. There are no pointers or
memory allocation necessary. It emphasizes important parts of a command, like incoming and outgoing
parameters or authorization information. Moreover, different outputs directly from FTPM are realized
easily.

Next, we proposed future improvements to FTPM. We pointed out that currently the language cannot
be considered stable or feature complete as long as only a small subset of TPM commands is imple-
mented. Further testing is necessary to uncover problematic areas in the language. Moreover, we pro-
posed areas which need further work. We mentioned improvements for the include mechanism, tighter
integration of related chapters and support by tools outside of FTPM (e.g. an editor with syntax high-
lighting). Finally, we also gave our vision of an optimized workflow for the creation of a specification
text, which is centered around FTPM.
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Chapter 8

Concluding Remarks

In this work we presented FTPM, which is a domain-specific language specifically tailored to describe
TPM commands and data structures. In Chapter 1 we first introduced to the problem and subsequently
proposed our solution. We mentioned problems like inconsistencies, poor visual representation or that
no reference implementation of TPMs is publicly available. This is especially problematic as TPMs are
widespread available devices and aim to provide a certain level of security. Then, we proposed a new
tool for writing and maintaining the specification of TPMs: FTPM, which strives for a concise syntax
that emphasizes important elements and hides unnecessary complexity at the same time. We wanted to
create different output automatically and directly from a specification written in FTPM.

Chapter 2 provided background information on the problem area. We gave an overview of the pur-
pose of a TPM, its capabilities and the used underlying cryptographic routines. The main topics pre-
sented in cryptography were encryption, decryption and digital signatures. We discussed advantages and
disadvantages of symmetric and asymmetric algorithms and outlined the importance of (true) random
number generation for cryptography as a whole and especially for a dedicated hardware chip that is re-
sponsible to manage trust. After an introduction to hash functions we discussed the used cryptographic
algorithms currently deployed in a TPM. Furthermore, we mentioned the basic cornerstones of a TPM:
Cryptographic Keys, Measurement, Storage and Attestation. Moreover, we discussed the authorization
mechanism and the concept of Rolling Nonces, which are widely used concepts in TPMs.

The next chapter, Chapter 3, presented related technologies in the problem area. We first covered
dedicated specification languages, like VDM-SL or Z-Notation. While formal specification languages
provide a solid base to prove compliance or noncompliance they are also difficult in such a complex sce-
nario like the TPM specification. Moreover, the resulting mathematical models are often understood by
specialists in contrast to our stated goal of making the specification more readable. Then, we discussed
Literal programming, which tries to combine a written specification with executable source code. Docu-
mentation generators like Doxygen or Javadoc, which we discussed next, follow a similar approach
where specification text and source code is physically close together. The benefit of such an approach
is that it is arguably more likely that code and specification text evolve synchronously. Finally, we dis-
cussed the usage of domain-specific languages. We stated that the specification of TPMs is well suited
for a domain-specific language because of “repetitive elements or patterns” can be found and it will be
“used by a domain expert” [49]. We illustrated each of the approaches discussed in the chapter by an
example as well as discussed advantages and disadvantages.

Then, Chapter 4 presented the capabilities of FTPM on real examples. We provided an exempli-
fied implementation for three TPM commands: TPM_OIAP, TPM_PCRREAd and TPM_EXTEND. We
showed the input in the FTPM language and its results: C source code and documentation suitable to be
processed by Doxygen. We highlighted the advantages of our approach, which can be summarized as
follows:
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• Generation of code and documentation, which ensures that these parts of the specification evolve
synchronously and are always up-to-date. Specification designers and implementers can (re-) cre-
ate the complete documentation and large parts of C source code and header files automatically,
on demand and at any time (even during the development process). Access to the specification to
as many people as possible increases the chance to detect design errors and security flaws.

• Validation of data structures and expressions used in TPM commands, which ensures that changes
to one part of the specification do not accidentally break the specification in another part unnoticed.
The parser can report the unexpected use of data types to the specification designer.

• Enforcement of a semantic policy throughout the specification. Given the size of the TPM specifi-
cation (either version 1.2 or 2.0) it is easy for implementers to accidentally disregard stated rules.
If the rules are monitored by the parser it is possible to warn the user upon violation.

We also showed the improvements we could achieve to the documentation if it is automatically generated
by FTPM: Cross-referencing related chapters results in a fast navigation through the hundreds of pages of
specification text. We find this a valuable addition and used it extensively during the creation of the FTPM
prototype: As soon as the needed data structures for our sample commands were available in FTPM we
rather used the generated documentation than the official specification to look up needed information.

Because the FTPM language is written in plain text it is very suitable to be stored in a version control
system (VCS). A VCS provides access to the complete history of the specification and to the thoughts
and motivations during the development process. This may be an important source to understand the
intentions but can also be used to automatically generate a chapter that includes changes from one version
of the specification to the next.

The next chapters, Chapter 6 and Chapter 5 gave a complete overview of how our solution works.
Chapter 5 introduced the FTPM language. We discussed the most important syntactical constructs and
outlined the thoughts that led to FTPM in its current form. Furthermore, this chapter detailed special
constructs in FTPM that in our opinion improve the presentation of the specification. Examples are the
notation for needed incoming and outgoing parameters or authorization information. Another example is
the omission of unneeded parameters in TPM commands that are common to every command. Further-
more, we demonstrated syntactic elements in the FTPM language that aim to group related information
and subsequently ease recognition. We presented the notation for authorization blocks as an example for
such elements.

In Chapter 6 we gave insight to the used technologies that were used in our prototype implementation.
We introduced used tools and concepts, like ANTLR as parser generator and templates for structured
output generation with StringTemplate. Furthermore, we detailed the different processing phases
that are necessary to translate an input FTPM source to final outputs like source code and documentation.
We presented the most important classes involved in processing of the syntax tree as well as relationships
between them. Then, we also showed extensively how we implemented our approach to emit structured
text and how the template mechanism works.

Finally, Chapter 7 gave an outlook on the next version of the specification of TPM, which is cur-
rently created. As a first draft of the specification became available during the creation of this thesis we
shortly discussed the major changes this next version will introduce. Furthermore, we briefly contem-
plated which modifications to FTPM are necessary in order to become fully functional for this next TPM
specification version. Moreover, we also stated disadvantages and shortcomings of the current FTPM pro-
totype. We summarized our proposed changes to FTPM and recapitulated our suggested solution from
Chapter 1: A complete workflow dedicated to the creation and modification of the TPM specification.



Appendix A

Source Code Listings for Examples pre-
sented in Related Work

This appendix provides a full listing of the presented example implementation of a stack used with
Literate Programming (see Chapter 3.2.2) and Doxygen (see Chapter 3.3.1).

A.1 Literate programming using noweb

If noweb is installed and the code listing is saved in a file called stack.nw, the following simplistic
Makefile can be used to extract documentation (in LATEXor html) as well as C source and header files.

1 doc-html:
2 noweave -filter l2h -index -autodefs c -html stack.nw > stack.html
3

4 doc-latex:
5 noweave -index -latex stack.nw > stack.tex
6

7 code:
8 notangle -Rstack.h stack.nw > stack.h
9 notangle -Rstack.c stack.nw > stack.c

10 notangle -Rtest.c stack.nw > test.c

1 @ \section{Introduction}
2 This is a (minimal) implementation of a stack
3 in \textsf C using a linked list for it's elements. \\
4 The following operations are implemented on the stack:
5 (for possible errors see Section \ref{secterr})
6 \begin{enumerate}
7 \item [[push]] \\
8 Pushes an element on top of the stack \\
9 \item [[pop]] \\

10 Removes the topmost element from the stack \\
11 \item [[peek]] \\
12 Returns (but does not remove) the topmost element from the stack \\
13 \item [[empty]] \\
14 Tests if the stack is currently empty (boolean)
15 \item [[error]] \\
16 Prints an error message and aborts the program
17 \end{enumerate}
18

19 @
20 \section{License}
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21 The implementation is based on the Wikipedia Example of a #
22 Stack\footnote{http://en.wikipedia.org/wiki/Stack\_(abstract\_data\_type)}
23

24 <<license>>=
25 This software is in the public domain.
26

27 @
28 \section{Error conditions - Over- and underflow}
29 \label{secterr}
30 The following error conditions may arise:
31 \begin{enumerate}
32 \item Overflow: No more space on the heap to allocate a new element
33 \item Underflow: Pop or peek operation on an empty stack
34 \end{enumerate}
35

36

37 @
38 \section{Implementation}
39 The program has the following outline:
40 <<stack.c>>=
41 /*
42 <<license>>
43 */
44 <<includes>>
45

46 <<error.c>>
47 <<empty.c>>
48 <<peek.c>>
49 <<pop.c>>
50 <<push.c>>
51

52

53 @
54 \section{Interface}
55 The program provides the following public visible functions:
56 <<stack.h>>=
57

58 <<data structure>>
59

60 <<error.h>>
61 <<empty.h>>
62 <<peek.h>>
63 <<pop.h>>
64 <<push.h>>
65

66

67 @
68 \section{Test}
69 The following shows example usage:
70 <<test.c>>=
71 <<test>>
72

73

74

75

76 <<data structure>>=
77 typedef struct stack {
78 int data;
79 struct stack *next;
80 } STACK;
81

82
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83 <<error.h>>=
84 /* Print out error message and exit */
85 void error(char *msg);
86

87 <<empty.h>>=
88 /* Test if STACK 'stack' is empty */
89 int empty(STACK *stack);
90

91 <<peek.h>>=
92 /* Return (but do not remove) topmost element from STACK 'stack' */
93 int peek(STACK *stack);
94

95 <<push.h>>=
96 /* Push element 'value' on top of STACK 'stack' */
97 void push(STACK **head, int value);
98

99 <<pop.h>>=
100 /* Return (and remove) topmost element from STACK 'stack' */
101 int pop(STACK **head);
102

103

104

105 <<includes>>=
106 #include "stack.h"
107

108 #include <stdio.h>
109 #include <stdlib.h>
110

111 <<error.c>>=
112 void error(char *msg)
113 {
114 fprintf(stderr, "Error: %s\n", msg);
115 abort();
116 }
117

118 <<empty.c>>=
119 int empty(STACK *stack)
120 {
121 return stack == NULL;
122 }
123

124 <<peek.c>>=
125 int peek(STACK *stack)
126 {
127 return stack->data;
128 }
129

130 <<push.c>>=
131 void push(STACK **head, int value)
132 {
133 /* create a new node */
134 STACK *node = malloc(sizeof(STACK));
135

136 if (node == NULL){
137 error("Error: no space available for node");
138 }
139

140 /* initialize node */
141 node->data = value;
142 node->next = empty(*head) ? NULL : *head; /* insert new head if any */
143 *head = node;
144 }
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145

146 <<pop.c>>=
147 int pop(STACK **head)
148 {
149 /* stack is empty */
150 if (empty(*head)) {
151 error("Error: stack underflow");
152 }
153 /* pop a node */
154 STACK *top = *head;
155 int value = top->data;
156 *head = top->next;
157 free(top);
158 return value;
159 }
160

161 <<test>>=
162 #include "stack.h"
163 #include <stdio.h>
164

165 static void reportStatus(STACK *stack)
166 {
167 fprintf(stdout, "Stack empty now? %s\n", empty(stack) ? "Yes" : "No");
168 }
169

170 int main(int argc, char **argv)
171 {
172 STACK *stack;
173

174 reportStatus(stack);
175

176 fprintf(stdout, "Pushing '1' on stack.\n");
177 push(&stack, 1);
178 reportStatus(stack);
179

180 fprintf(stdout, "Peeking stack: %d\n", peek(stack));
181 reportStatus(stack);
182

183 fprintf(stdout, "Poping Stack: %d\n", pop(&stack));
184 reportStatus(stack);
185

186 return 0;
187 }

A.2 Documentation generator: Doxygen

After Doxygen is installed, a configuration file has to be created with

doxygen -g

Optionally, this configuration file can be adapted. Subsequent runs of

doxygen

will result in outputs similar to Figure 3.2

1 /**
2 * @file stack.h
3 *
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4 * @brief A (minimal) implementation of a stack in \c C using a linked list
5 * for it's elements.
6 *
7 * The following operations are implemented on the stack:
8 * @see Errors
9 * - push <br>

10 * Pushes an element on top of the stack
11 * - pop <br>
12 * Removes the topmost element from the stack
13 * - peek <br>
14 * Returns (but does not remove) the topmost element from the stack
15 * - empty <br>
16 * Tests if the stack is currently empty (\c boolean)
17 * - error <br>
18 * Prints an error message and aborts the program
19 *
20 * @todo Finish Document
21 *
22 * @author martin.kapeundl@student.tugraz.at
23 * @date sept 2012
24 */
25

26 /** Stack data structure (linked-list, integer only)
27 *
28 * This Stack implementation uses a linked list for it's elements
29 * and operates only on integer values.
30 * The actual value of the stack element is held in \c data,
31 * the \c next pointer points to the next (lower) element in the stack
32 *
33 * @param data int actual data held by this stack variable
34 * @param next pointer to next element in stack
35 */
36 typedef struct stack {
37 int data;
38 struct stack *next;
39 } STACK;
40

41

42 /** Print out error message and exit
43 *
44 * Prints an error message (to \c stderr) and calls \c abort()
45 *
46 * @param msg Error message to be printed out on \c stderr
47 */
48 void error(char *msg);
49

50

51 /** Test if stack is empty
52 *
53 * Tests if the stack denoted by \c stack is currently empty
54 * Returns 0 for false, any other value for true
55 *
56 * @param stack The stack to test
57 * @return int 0 false, everything else true
58 */
59 int empty(stack *stack);
60

61

62 /** Return (but do not remove) topmost element from the stack
63 *
64 * Returns the value of the topmost element from stack but
65 * does not remove the element (unlike pop())
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66 *
67 * @param stack The stack from which the topmost value will be returned
68 * @return int value of stack element
69 */
70 int peek(STACK *stack);
71

72

73 /** Return (and remove) topmost element from the stack
74 *
75 * Returns and removes the topmost element from the stack.
76 * Frees any memory associated with it.
77 *
78 * @param stack The stack from which the topmost element will be returned
79 * @return int value of stack element
80 */
81 int pop(STACK **stack);
82

83

84 /** Push element \c value on top of the stack
85 *
86 * Pushes an element with value \c value on top of the stack
87 * Allocates memory for a new element.
88 *
89 * @param stack The stack onto which the element will be pushed
90 * @param value The value to push onto the stack
91 */
92 void push(STACK **stack, int value);
93



Appendix B

FTPM Language

This appendix first gives a short overview of the java project. Then, the main ANTLR grammar files for
the FTPM language (see Chapter 5) is given.

B.1 Directory structure

The FTPM program is organized into several directories. The names of the top-level directories in the
program are:

antlr-generated contains java classes for the lexer, parser and tree-walkers. These files are auto-
matically generated by ANLTR and should not be edited directly.

lib contains third party libraries as Java Archive (jar) files. Currently, ANTLR and Commons CLI are
used.

src contains all Java classes needed for FTPM. The main method can be found in Ftpm.java, the
starting point for the lexer, parser and tree-walkers is in Parser.java. Inside the src folder,
the logic is organized into several sub directories: ast (AST construction), output (several
classes for various output generation), parser (ANTLR grammar files), symtab (symbol and
symbol table management) and util (helper classes and utilities).

templates contains StringTemplate files for each available output generation. The templates
are organized into sub-directories for code- and documentation-generation, respectively.

B.2 Grammar

This section shows a simplified ANTLR grammar for FTPM. We removed comments as well as helper
functions in order to highlight the main aspects of the grammar. For the same reason, tree construction
rules are omitted as well. First, the parser is printed. Lowercase names indicate parser rules while
uppercase names are used for Lexer rules. After the parser the complete lexer grammar is printed as
well. Again, unnecessary implementation details and comments have been removed.

B.2.1 Parser

1 parse
2 : (declaration)* (ordinal)?
3 ;
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4 declaration
5 : include
6 | vardef
7 | functiondef
8 | comment
9 ;

10

11 include
12 : INCLUDE
13 ;
14

15 comment
16 : COMMENT_FIRST COMMENT_CONSECUTIVE*
17 ;
18

19

20 // variable definitions
21 vardef
22 : var_declaration SCOLON -> var_declaration
23 | typedef_declaration
24 | struct_declaration
25 | enum_declaration
26 | bitset_declaration
27 ;
28

29 // Variable declaration
30 var_declaration
31 : ID vartype (ASSIGN expression)?
32 | ID vartype OBRACKET array_capacity? CBRACKET (ASSIGN expression)?
33 ;
34

35 array_capacity
36 : (a=INT | a=ID)
37 ;
38

39 vartype
40 : primitive_type
41 | STRUCT ID
42 | BITSET ID
43 | ID
44 ;
45

46 primitive_type
47 : INTEGER
48 | BOOLEAN
49 | STRING
50 ;
51

52 // Typedef
53 typedef_declaration
54 : TYPEDEF ID IS vartype SCOLON
55 | TYPEDEF ID IS vartype OBRACKET array_capacity? CBRACKET SCOLON
56 | (TYPEDEF | CONSTANT) ID IS INT SCOLON
57 ;
58

59 // Struct
60 struct_declaration
61 : STRUCT ID IS OPAREN struct_declaration_list? CPAREN SCOLON
62 ;
63

64

65
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66 struct_declaration_list
67 : struct_member (COMMA struct_member)* -> struct_member+
68 ;
69

70 struct_member
71 : comment* ID vartype
72 | comment* ID vartype OBRACKET array_capacity? CBRACKET
73 ;
74

75 // Enum
76 enum_declaration
77 : ENUM ID IS vartype OPAREN enumerator_list CPAREN SCOLON
78 ;
79

80 enumerator_list
81 : enumerator (COMMA enumerator)*
82 ;
83

84 enumerator
85 : comment* ID (ASSIGN INT)?
86 ;
87

88 // Bitset
89 bitset_declaration
90 : BITSET ID IS vartype OPAREN bitset_declaration_list CPAREN SCOLON
91 ;
92

93 bitset_declaration_list
94 : bitset_declarator (COMMA bitset_declarator)*
95 ;
96

97 bitset_declarator
98 : comment* ID (ASSIGN INT)?
99 ;

100

101 // Function defintions
102 functiondef
103 : FUNCTION ID OPAREN func_parameter? CPAREN block
104 ;
105

106 func_parameter
107 : param_declaration (COMMA param_declaration)*
108 ;
109

110 // Ordinals
111 ordinal
112 : ORDINAL ID parameter_block block
113 ;
114

115 // Parameter
116 parameter_block
117 : incoming_parameter_block
118 outgoing_parameter_block
119 ;
120

121 incoming_parameter_block
122 : INCOMING_BEGIN COLON param_declaration? (COMMA param_declaration)*
123 ;
124

125 outgoing_parameter_block
126 : OUTGOING_BEGIN COLON param_declaration? (COMMA param_declaration)*
127 ;
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128 param_declaration
129 : comment* ID vartype
130 | comment* ID vartype OBRACKET CBRACKET
131 ;
132

133 block
134 : BEGIN statement* END SCOLON
135 ;
136

137 // Statements
138 statement
139 : auth_block
140 | block
141 | var_declaration SCOLON
142 | tmp_var_declaration SCOLON
143 | if_statement
144 | loop
145 | builtin_functions SCOLON
146 | stmt_expressions
147 | return_stmt
148 | comment
149 ;
150

151 stmt_expressions
152 : lhs ASSIGN expression SCOLON
153 | postfix_expression SCOLON
154 ;
155

156 auth_block
157 : AUTH
158 DOT auth_object SCOLON
159 DOT auth_secret SCOLON
160 DOT auth_required SCOLON
161 END SCOLON
162 ;
163

164 auth_object
165 : { input.LT(1).getText().equals("object")}?
166 'object' ASSIGN expression
167 ;
168

169 auth_secret
170 : { input.LT(1).getText().equals("secret")}?
171 'secret' ASSIGN expression
172 ;
173

174 auth_required
175 : { input.LT(1).getText().equals("required")}?
176 'required' ASSIGN expression
177 ;
178

179 return_stmt
180 : RETURN expression? (COMMA expression)* SCOLON
181 ;
182

183 tmp_var_declaration
184 : TMP_VAR a=ID ASSIGN b=ID(DOT ID)*
185 | TMP_VAR a=ID ASSIGN b=ID OBRACKET expr CBRACKET
186 | TMP_VAR a=ID ASSIGN b=ID OPAREN c+=expression_list CPAREN
187 ;
188

189
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190 // expressions
191 lhs
192 : postfix_expression
193 ;
194

195 expression
196 : expr
197 ;
198

199 // expression without EXP root node
200 expr
201 : conditional_expression
202 ;
203

204 conditional_expression
205 : ( logical_or_expression)
206 ( QMARK expression COLON conditional_expression
207 ;
208

209 logical_or_expression
210 : logical_and_expression ( (OR | OR_SHORT) logical_and_expression)*
211 ;
212

213 logical_and_expression
214 : inclusive_or_expression ( (AND | AND_SHORT) inclusive_or_expression)*
215 ;
216

217 inclusive_or_expression
218 : exclusive_or_expression (BOR exclusive_or_expression)*
219 ;
220

221 exclusive_or_expression
222 : and_expression (BXOR and_expression)*
223 ;
224

225 and_expression
226 : equality_expression (BAND equality_expression)*
227 ;
228

229 equality_expression
230 : relational_expression ((EQUALS | NEQUALS) relational_expression)*
231 ;
232

233 relational_expression
234 : shift_expression ((LT | GT | LTEQUALS | GTEQUALS) additive_expression)*
235 ;
236

237 shift_expression
238 : additive_expression ((LSHIFT|RSHIFT) additive_expression)*
239 ;
240

241 additive_expression
242 : multiplicative_expression ((ADD | SUBTRACT) multiplicative_expression)*
243 ;
244

245 multiplicative_expression
246 : power_expression ((MULTIPLY | DIVIDE | MODULUS) power_expression)*
247 ;
248

249 power_expression
250 : unary_expression (POW unary_expression)*
251 ;
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252 unary_expression
253 : op=SUBTRACT unary_expression
254 | (op=EXCL | op=EXCL_SHORT) unary_expression
255 | op=BNOT unary_expression
256 | postfix_expression
257 ;
258

259 postfix_expression
260 : primary
261 (
262 ( r=OPAREN expression_list CPAREN
263 | r=OBRACKET expr CBRACKET
264 )
265 | r=DOT ID
266 )*
267 ;
268

269 primary
270 : ID
271 | INT
272 | CHARS
273 | TRUE
274 | FALSE
275 | OPAREN expr CPAREN
276 ;
277

278 // Language constructs: if, loop,...
279 if_statement
280 : ifstat elsifstat* elsestat? END SCOLON
281 ;
282

283 ifstat
284 : IF expression DO statement+
285 ;
286

287 elsifstat
288 : ELSIF expression DO statement+
289 ;
290

291 elsestat
292 : ELSE DO statement+
293 ;
294

295 loop
296 : for_loop
297 ;
298

299 for_loop
300 : FOR ID IN i=expression TO e=expression DO statement+ END SCOLON
301 ;
302

303 builtin_functions
304 : debug_functions
305 ;
306

307 debug_functions
308 : PRINTLN OPAREN expression? CPAREN
309 ;
310

311 expression_list
312 : expression (COMMA expression)*
313 ;
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B.2.2 Lexer

1 // LEXER
2 PRINTLN : 'println';
3 PRINT : 'print';
4 ASSERT : 'assert';
5 INCLUDE : 'include' (WS)? CHARS;
6 FUNCTION : 'function';
7 ORDINAL : 'ordinal';
8 IS : 'is';
9 IF : 'if';

10 DO : 'do';
11 ELSIF : 'elsif';
12 ELSE : 'else';
13 FOR : 'for';
14 IN : 'in';
15 TO : 'to';
16 LOOP : 'loop';
17 TRUE : 'true';
18 FALSE : 'false';
19

20 // Datatypes
21 TYPEDEF : 'typedef';
22 CONSTANT : 'constant';
23 ENUM : 'enum';
24 STRUCT : 'struct';
25 BITSET : 'bitset';
26 STRING : 'string';
27 BOOLEAN : 'boolean';
28

29 fragment MODIFIER : 'signed' | 'unsigned';
30 fragment BITSIZE : '8bit' | '16bit' | '32bit' | '64bit';
31

32 INTEGER : MODIFIER (WS)+ 'integer' (WS)+ BITSIZE;
33

34 INCOMING_BEGIN : 'incoming';
35 OUTGOING_BEGIN : 'outgoing';
36

37 BEGIN : 'begin';
38 END : 'end';
39

40 OR : 'or';
41 OR_SHORT : '||';
42 AND : 'and';
43 AND_SHORT : '&&';
44

45 BNOT : '˜';
46 BOR : '|';
47 BXOR : 'ˆ';
48 BAND : '&';
49 LSHIFT : '<<';
50 RSHIFT : '>>';
51

52 EQUALS : '==';
53 NEQUALS : '!=';
54 GTEQUALS : '>=';
55 LTEQUALS : '<=';
56

57 POW : 'ˆˆ';
58 EXCL : 'not';
59 EXCL_SHORT : '!';
60 GT : '>';
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61 LT : '<';
62 ADD : '+';
63 SUBTRACT : '-';
64 MULTIPLY : '*';
65 DIVIDE : '/';
66 MODULUS : '%';
67 OBRACKET : '[';
68 CBRACKET : ']';
69 OPAREN : '(';
70 CPAREN : ')';
71 SCOLON : ';';
72 ASSIGN : ':=';
73 COMMA : ',';
74 QMARK : '?';
75 COLON : ':';
76 RETURN : 'return';
77 TMP_VAR : 'var';
78 DOT : '.';
79 AUTH : 'auth';
80

81 // Fragments
82 fragment DIGIT : '0'..'9';
83 fragment INTNR : DIGIT+;
84 fragment HEX_DIGIT : (DIGIT | 'a'..'f' | 'A'..'F');
85 fragment HEXNR : ('0x'|'0X') (HEX_DIGIT)+;
86

87 // Datatypes
88 INT : ('-')? (INTNR | HEXNR);
89

90 CHARS : '"' (˜('"' | '\\') | '\\' .)* '"'
91 | '\'' (˜('\'' | '\\') | '\\' .)* '\'';
92

93 //IDENTIFIER
94 ID : ('a'..'z' | 'A'..'Z' | '_') ('a'..'z' | 'A'..'Z' | '0'..'9' | '_')*;
95

96 // COMMENTS
97 fragment COMMENT_SIGN: '--';
98 fragment COMMENT_EXCL_MARK: '!';
99

100 COMMENT_FIRST
101 : COMMENT_SIGN COMMENT_EXCL_MARK a=˜('\n'|'\r')* '\r'? '\n'
102 ;
103

104 COMMENT_CONSECUTIVE
105 : COMMENT_SIGN ˜('\n'|'\r')* '\r'? '\n'
106 ;
107

108 // WHITESPACE
109 WS: ( ' ' | '\t' | '\r' | '\n' | '\u000C');
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Support Files

This appendix lists supportive files used for the development of FTPM files. We list syntax and indent files
for the VIM editor, which can be used as a base for other editors to provide correct syntax highlighting
and indentation. The complete grammar of FTPM can be found in Appendix B.

C.1 VIM

C.1.1 VIM Indent

The following is a minimal configuration file which provides correct indentation for the creation of FTPM
source code with the VIM editor.

1 " Vim indent file
2 " Language: Ftpm
3 " Author: Martin Kapeundl <martin.kapeundl@student.tugraz.at>
4

5 " Only load this indent file when no other was loaded.
6 if exists("b:did_indent")
7 finish
8 endif
9 let b:did_indent = 1

10

11 setlocal shiftwidth=2
12 setlocal tabstop=2
13 setlocal indentexpr=GetFtpmIndent()
14 setlocal autoindent
15 setlocal comments=:--
16 setlocal ignorecase
17

18 " indent for these keywords (ignore case)
19 setlocal indentkeys+==˜ordinal,=˜incoming,=˜outgoing,˜=begin,=˜if,=˜do,=˜else,=˜

elsif,=˜end,=˜auth
20

21 " Make comments that cover multiple lines have
22 " start with comment sign at the beginning of each new line
23 setlocal fo=croq
24

25 " do not indent include directives
26 let s:no_indent = 'ˆ\s*\<\(include\)\>'
27

28 " Only define the function once.
29 if exists("*GetFtpmIndent")
30 finish
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31 endif
32

33 function! GetFtpmIndent()
34 " current line number
35 let lnum = v:lnum
36 " At start of file use zero indent
37 if lnum == 1
38 return 0
39 endif
40

41 " get current and previous line
42 let curline = getline(lnum)
43 let prevline_num = prevnonblank(lnum-1)
44 let prevline=getline(prevline_num)
45 let ind=indent(prevline_num)
46

47 " do not indent include directives
48 if curline =˜s:no_indent
49 return 0
50 endif
51

52 " Add a shiftwidth to statements following ordinal, incoming,...
53 if prevline =˜? 'ˆ\s*\<\(ordinal\|incoming\|outgoing\|begin\|do\|else\|auth\)

\>'
54 let ind = ind + &sw
55 endif
56

57 " Subtract a shiftwidth from else, elsif,end
58 if curline =˜? 'ˆ\s*\(else\|elsif\|end\|begin\|outgoing\)\>'
59 let ind = ind - &sw
60 endif
61

62 return ind
63 endfunction

C.1.2 VIM Syntax

The following file provides basic syntax highlighting for constructs written in the FTPM language with
the VIM editor.

1 " Minimal VIM syntax file
2 " for the 'FTPM' Language
3 " Author: Martin Kapeundl
4 " Date: August 2011
5

6 if exists("b.current_syntax")
7 finish
8 endif
9

10 syn case ignore
11

12

13 syn match include1 "include \".*\""
14

15 syn region comment1 display oneline start='--' end='$'
16 \ contains=commentkeywords1,@Spell
17

18 syn keyword commentkeywords1 TODO FIXXME
19 syn match commentkeywords1 "!\(file | chapter\|desc\|info\|document\)"
20
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21 syn keyword type1 typedef enum struct bitset string signed var
22 syn keyword type1 unsigned integer 8bit 16bit 32bit 64bit
23 syn keyword type1 boolean true false constant
24

25 syn keyword statement1 println print assert function is
26 syn keyword statement1 ordinal if do elsif else for in to loop
27 syn keyword statement1 incoming outgoing begin end return while
28 syn keyword statement1 not and auth
29 syn match statement1 "\.\(object\|secret\|required\)"
30

31 syn region string1 start='"' end='"'
32

33 hi def link comment1 Comment
34 hi def link commentkeywords1 Todo
35 hi def link type1 Type
36 hi def link statement1 Statement
37 hi def link include1 PreProc
38 hi def link string1 Constant
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Appendix D

TPM commands implemented in FTPM

This appendix lists the TPM commands we demonstrated in Chapter 4, which consists of TPM_OIAP,
TPM_PCRREAD and TPM_EXTEND. An overview of the purpose and functionality of these commands
can be found in Chapter 4.1. We list only the TPM commands and defined helper functions but omit
needed TPM structures due to the lack of space. We first list the main command source which is then
followed by the helper implementations.

D.1 TPM OIAP

1 --!file commands
2 --!chapter 18 Authorization Sessions :: 18.01 TPM OIAP
3

4 include "../../structures/2_basic_definitions/2_2_defines.ftpm"
5 include "../../structures/4_types/4_4_handles.ftpm"
6 include "../../structures/5_basic_structures/5_5_tpm_nonce.ftpm"
7

8 include "helper/oiap_helper_stubs.ftpm"
9

10 --!info
11 --\warning No informative comment set
12

13 --!desc
14 --\warning No descriptive comment set
15

16 ordinal TPM_OIAP
17

18 incoming:
19

20 outgoing:
21 --! Handle that TPM creates that points to the authorization state.
22 authHandle TPM_AUTHHANDLE,
23

24 --! Nonce generated by TPM and associated with session.
25 nonceEven TPM_NONCE
26

27 begin
28 --! 1. The TPM_OIAP command allows the creation of an authorization session
29 -- handle and the tracking of the handle by the TPM. The TPM generates
30 -- the handle and nonce.
31

32 --! 2. The TPM has an internal limit as to the number of handles that may be
33 -- open at one time, so the request for a new handle may fail if there
34 -- is insufficient space available.
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35

36 --! 3. Internally the TPM will do the following:
37 -- * TPM allocates space to save handle, protocol identification, both
38 -- nonces and any other information the TPM needs to manage the session.
39 -- * TPM generates authHandle and nonceEven, returns these to caller
40 if setAuthHandle(authHandle) == TPM_HANDLE_STATUS.TPM_INVALID_HANDLE
41 do
42 return TPM_RESULT.TPM_RESOURCES;
43 end;
44

45 --! 4. On each subsequent use of the OIAP session the TPM MUST generate a
46 -- new nonceEven value.
47 setNonceEven(nonceEven);
48

49 --! 5. When TPM_OIAP is wrapped in an encrypted transport session, no input
50 -- or output parameters are encrypted.
51 --\warning What are the consequences of this statement?
52 -- Is this really an **ACTION** Statement?
53 return TPM_RESULT.TPM_SUCCESS;
54 end;

1 include "../../../structures/2_basic_definitions/2_2_defines.ftpm"
2 include "../../../structures/4_types/4_4_handles.ftpm"
3 include "../../../structures/5_basic_structures/5_5_tpm_nonce.ftpm"
4

5 --! internal structures for a TPM
6 constant TPM_MAX_SESSION is 20;
7

8 --! \todo internally the TPM must keep track of the nonce values
9 curNonceEven TPM_NONCE;

10 curNonceOdd TPM_NONCE;
11

12 --! \todo just a test stub
13 --!return @ftpm_get_random_bytes(newNonce);
14 function setAuthHandle(authHandle TPM_AUTHHANDLE)
15 begin
16 authHandle := 0x00;
17 return TPM_HANDLE_STATUS.TPM_VALID_HANDLE;
18 end;
19

20 --! \todo just a test stub
21 function setNonceEven(nonceEven TPM_NONCE)
22 begin
23 --! \todo: randomize nonce - this is an initialization vector
24 for i in 0 to TPM_NONCE_SIZE
25 do
26 nonceEven.nonce[i] := 0xA5;
27 end;
28 end;

D.2 TPM PCRREAD

1 --!file commands
2 --!chapter 16 Integrity Collection and Reporting :: 16.02 TPM PCRRead
3

4 include "../../structures/2_basic_definitions/2_2_defines.ftpm"
5 include "../../structures/5_basic_structures/5_4_tpm_digest.ftpm"
6
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7 include "helper/pcrread_helper_functions.ftpm"
8

9 --!info The TPM_PCRRead operation provides non-cryptographic reporting of
10 -- the contents of a named PCR.
11

12 --!desc The TPM_PCRRead operation returns the current contents of the
13 -- named register to the caller.
14

15 ordinal TPM_PCRRead
16

17 incoming:
18 --! Index of the PCR to be read
19 pcrIndex TPM_PCRINDEX
20

21 outgoing:
22 --! The current contents of the named PCR
23 outDigest TPM_PCRVALUE
24 begin
25 --! 1. Validate that pcrIndex represents a legal PCR number
26 -- On Error, return TPM_BADINDEX
27 if !isValidPCRIndex(pcrIndex)
28 do
29 return TPM_RESULT.TPM_BADINDEX;
30 end;
31

32 --! 2. Set outDigest to TPM_STCLEAR_DATA->PCR[pcrIndex]
33 setPCRValue(pcrIndex, outDigest);
34

35 --! 3. Return TPM_SUCCESS
36 return TPM_RESULT.TPM_SUCCESS;
37 end;

1 include "../../../structures/2_basic_definitions/2_2_defines.ftpm"
2 include "../../../structures/5_basic_structures/5_4_tpm_digest.ftpm"
3

4 --! Defined in 7_4_tpm_permanent_data
5 constant TPM_NUM_PCR is 16;
6

7 --!TODO autogenerated stub
8 function isValidPCRIndex(idx TPM_PCRINDEX)
9 begin

10 return idx <= TPM_NUM_PCR;
11 end;
12

13 --!TODO autogenerated stub
14 function setPCRValue(pcrIndex TPM_PCRINDEX, outDigest TPM_PCRVALUE)
15 begin
16 --! compliance vector
17 outDigest.digest[0] := 0x15; outDigest.digest[1] := 0x8f;
18 outDigest.digest[2] := 0x1d; outDigest.digest[3] := 0x6a;
19 outDigest.digest[4] := 0x35; outDigest.digest[5] := 0x8f;
20 outDigest.digest[6] := 0x50; outDigest.digest[7] := 0x51;
21 outDigest.digest[8] := 0x2a; outDigest.digest[9] := 0x81;
22 outDigest.digest[10] := 0x08; outDigest.digest[11] := 0xcf;
23 outDigest.digest[12] := 0xe6; outDigest.digest[13] := 0xec;
24 outDigest.digest[14] := 0xd0; outDigest.digest[15] := 0xf9;
25 outDigest.digest[16] := 0x07; outDigest.digest[17] := 0xc5;
26 outDigest.digest[18] := 0xc6; outDigest.digest[19] := 0x7c;
27 end;
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D.3 TPM EXTEND

1 --!file commands
2 --!chapter 16 Integrity Collection and Reporting :: 16.01 TPM Extend
3

4 include "../../structures/2_basic_definitions/2_2_defines.ftpm"
5 include "../../structures/5_basic_structures/5_4_tpm_digest.ftpm"
6 include "../../structures/7_internal_data_held_by_tpm/7_3_tpm_stany_flags.ftpm"
7

8 include "helper/extend_helper_functions.ftpm"
9

10 --!info This adds a new measurement to a PCR
11

12 --!desc Add a measurement value to a PCR
13

14

15 ordinal TPM_Extend
16

17 incoming:
18 --! The PCR to be updated
19 pcrNum TPM_PCRINDEX,
20

21 --! The 160 bit value representing the event to be recorded
22 inDigest TPM_DIGEST
23

24 outgoing:
25 --! The PCR value after execution of the command.
26 outDigest TPM_PCRVALUE
27

28 begin
29 --! 1. Validate that pcrNum represents a legal PCR number.
30 -- On error, return TPM_BADINDEX.
31 if pcrNum > TPM_NUM_PCR
32 do
33 return TPM_RESULT.TPM_BADINDEX;
34 end;
35

36 --! 2. Map L1 to TPM_STANY_FLAGS -> localityModifier
37 var L1 := getLocalityModifier();
38

39 --! 3. Map P1 to TPM_PERMANENT_DATA -> pcrAttrib [pcrNum]. pcrExtendLocal
40 var P1 := getExtendLocal(pcrNum);
41

42 --! 4. If, for the value of L1, the corresponding bit is not set in the bit
map P1, return

43 -- TPM_BAD_LOCALITY
44 --@todo: not implemented
45 if not isBitSet(L1, P1)
46 do
47 return TPM_RESULT.TPM_BAD_LOCALITY;
48 end;
49

50 --! 5. Create c1 by concatenating (TPM_STCLEAR_DATA -> PCR[pcrNum] || inDigest
).

51 -- This takes the current PCR value and concatenates the inDigest
parameter.

52 h1 TPM_DIGEST;
53 createAndStoreDigest(h1, pcrNum, inDigest);
54

55 --! 6. Create h1 by performing a SHA-1 digest of c1.
56 --! 7. Store h1 to TPM_STCLEAR_DATA -> PCR[pcrNum]
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57

58

59 --! 8. If TPM_PERMANENT_FLAGS -> disable is TRUE or
60 -- TPM_STCLEAR_FLAGS -> deactivated is TRUE
61 -- * Set outDigest to 20 bytes of 0x00
62 if isTPMPermanentFlagsDisabled() or isTPMStClearFlagsDisabled()
63 do
64 setOutDigest0(outDigest);
65 --! Else
66 -- * Set outDigest to h1
67 else
68 do
69 setOutDigest(outDigest, h1);
70 end;
71

72 return TPM_RESULT.TPM_SUCCESS;
73 end;

1 include "../../../structures/2_basic_definitions/2_2_defines.ftpm"
2 include "../../../structures/5_basic_structures/5_4_tpm_digest.ftpm"
3 include "../../../structures/7_internal_data_held_by_tpm/7_3_tpm_stany_flags.ftpm"
4 include "../../../structures/7_internal_data_held_by_tpm/7_4_tpm_permanent_data.

ftpm"
5 include "../../../structures/7_internal_data_held_by_tpm/7_5_tpm_stclear_data.ftpm

"
6 include "../../../structures/8_pcr_structures/8_8_tpm_pcr_attributes.ftpm"
7

8 --! internal data held by tpm
9 my_tpm_stany_flags TPM_STANY_FLAGS;

10 my_tpm_permanent_data TPM_PERMANENT_DATA;
11 my_tpm_stclear_data TPM_STCLEAR_DATA;
12

13 --!TODO autogenerated stub
14 function getLocalityModifier()
15 begin
16 return my_tpm_stany_flags.localityModifier;
17 end;
18

19 --!TODO autogenerated stub
20 function getExtendLocal(pcrNum TPM_PCRINDEX)
21 begin
22 return my_tpm_permanent_data.pcrAttrib[pcrNum].pcrExtendLocal;
23 end;
24

25 --!TODO autogenerated stub
26 function isBitSet(L1 UINT32, P1 BYTE)
27 begin
28 return true;
29 end;
30

31 --!TODO autogenerated stub
32 function createAndStoreDigest(h1 TPM_DIGEST, pcrNum TPM_PCRINDEX, inDigest

TPM_DIGEST)
33 begin
34 h1 := my_tpm_stclear_data.PCR[pcrNum];
35 end;
36

37 --!TODO autogenerated stub
38 function isTPMPermanentFlagsDisabled()
39 begin
40 return true;
41 end;
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42

43 --!TODO autogenerated stub
44 function isTPMStClearFlagsDisabled()
45 begin
46 return true;
47 end;
48

49 --!TODO autogenerated stub
50 function setOutDigest0(outDigest TPM_DIGEST)
51 begin
52 --! compliance vector
53 outDigest.digest[0] := 0x00; outDigest.digest[1] := 0x00;
54 outDigest.digest[2] := 0x00; outDigest.digest[3] := 0x00;
55 outDigest.digest[4] := 0x00; outDigest.digest[5] := 0x00;
56 outDigest.digest[6] := 0x00; outDigest.digest[7] := 0x00;
57 outDigest.digest[8] := 0x00; outDigest.digest[9] := 0x00;
58 outDigest.digest[10] := 0x00; outDigest.digest[11] := 0x00;
59 outDigest.digest[12] := 0x00; outDigest.digest[13] := 0x00;
60 outDigest.digest[14] := 0x00; outDigest.digest[15] := 0x00;
61 outDigest.digest[16] := 0x00; outDigest.digest[17] := 0x00;
62 outDigest.digest[18] := 0x00; outDigest.digest[19] := 0x00;
63 end;
64

65 --!TODO autogenerated stub
66 function setOutDigest(outDigest TPM_DIGEST, h1 TPM_DIGEST)
67 begin
68 --! compliance vector
69 outDigest.digest[0] := h1.digest[0]; outDigest.digest[1] := h1.digest[1];
70 outDigest.digest[2] := h1.digest[2]; outDigest.digest[3] := h1.digest[3];
71 outDigest.digest[4] := h1.digest[4]; outDigest.digest[5] := h1.digest[5];
72 outDigest.digest[6] := h1.digest[6]; outDigest.digest[7] := h1.digest[7];
73 outDigest.digest[8] := h1.digest[8]; outDigest.digest[9] := h1.digest[9];
74 outDigest.digest[10] := h1.digest[10]; outDigest.digest[11] := h1.digest[11];
75 outDigest.digest[12] := h1.digest[12]; outDigest.digest[13] := h1.digest[13];
76 outDigest.digest[14] := h1.digest[14]; outDigest.digest[15] := h1.digest[15];
77 outDigest.digest[16] := h1.digest[16]; outDigest.digest[17] := h1.digest[17];
78 outDigest.digest[18] := h1.digest[18]; outDigest.digest[19] := h1.digest[19];
79 end;



Bibliography

[1] Adams, C. and S. Lloyd [2003]. Understanding PKI: Concepts, Standards, and Deployment Con-
siderations. Technology series, Sams. ISBN 9780672323911. http://books.google.at/books?

id=ERSfUmmthMYC. (Cited on page 9.)

[2] Aichernig, Bernhard K. and Peter Lucas [1999]. Formale Methoden in der Praxis. In Unterlagen
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