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Kurzfassung

Chipkarten (Smart Cards) haben sich zu einem ständigem Begleiter von vielen Menschen

entwickelt und ermöglichen ihren Besitzern Leistungen der Krankenversicherung in An-

spruch zu nehmen (ecard, Österreich), Finanztransaktionen zu tätigen (EMV) oder mobil

zu telefonieren (SIM-Karte).

Um im heterogenen Umfeld von Chipkarten-Platformen die Abhängigkeit von einer

bestimmten Architektur zu verringern wurde Java Card als Abstraktionsebene eingeführt

und stellt eine Virtuelle-Maschine, samt mehrerer Bibliotheks-Klassen, zur Verfügen, wo-

durch Anwendungen (Applets) platformunabhängige realisiert werden können. Durch die

hohen Anforderungen bezüglich Sicherheit und Leistung (z.b. Energieaufnahme) sind Chip-

karten einer ständigen Weiterentwicklung unterworfen. Hierdurch ergibt sich des Weiteren

die Notwendigkeit bestehende Java Card Implementierungen laufend anzupassen und zu

erweitern.

Diese Masterarbeit beschäftigt sich mit dem Entwurf und der Implementierung eines

Java Card Betriebssystems (JCOS) welches kompatibel zu bestehenden Implementierun-

gen ist und zugleich leicht portiert und erweitert werden kann. Im Gegensatz zu einer

kommerziellen Implementierung, steht nicht die Optimierung für eine spezielle Plattform

im Vordergrund, sondern die universelle Einsetzbarkeit und eine gute Modifizierbarkeit

zum Zwecke der Design-Space-Exploration.
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Abstract

Smart cards have become a constant companion of many people. They are used to receive

health insurance benefits (ecard, Austria), to make financial transactions (EMV) or to log

into a cellular network (SIM).

Smart cards utilize a very heterogenous set of platform architectures which make it

difficult to port applications. To overcome this problem, Javacard was introduced, working

as an abstraction layer. Applications are provided with a virtual machine and a set of

mandatory library classes. Due to high demands in the field of security and performance

(especially power effectiveness) smart cards undergo a permanent advancement. Every

one of this new or enhanced platforms needs an adapted Javacard implementation.

This master thesis deals with the design and implementation of a standard conform

Javacard implementation which is easily to port and to maintain. In contrast to existing,

usually commercial, implementations, we don’t focused on optimizing for a certain plat-

form, instead we strived for versatility and expandability in order to use the outcome of

this thesis for further design space exploration.
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Chapter 1

Introduction

The long announced era of Ubiquitous Computing has finally arrived. A big part of this

development can be attributed to smart cards. They accompany us as credit cards1, health

insurance cards 2or inside our mobile phones 3. Thus every one of us usually always carries

a least one smart card.

This massive distribution of smart cards has also drawn a lot of interest into research

and development of a new generations of smart cards. Also at the Graz University of

Technology some projects engage in research on smart cards, one of them is the CoCoon

project (see Section 1.1). Our thesis will supply them with a software platform for Java

Card to allow faster and better testing of new smart card features.

1.1 The CoCoon Project

The CoCoon Project deals with codesigned countermeasures against malicious Java Card

applications. [1]

The final goal is to enable Issuer Centric Ownership of smart cards. This allows the

customers to carry only a single smart card with them which can run different application

e.g. for banking or health insurance card. The problem is, that the user can download

arbitrary Java Card application also from untrusted sources to these smart card. The

untrusted application must not be allowed to interfere with other (possible critical eg. for

financial transactions) applications.

Another aspect is to protect applications from the insecure environment a smart card

is placed in. As a smart card can get lost or can be stolen, it is quiet possible that an

attacker has physical access to the smart card.

1EMV standard for financial transactions http://www.emvco.com/
2ecard, health insurrance card in Austria http://www.chipkarte.at/
3Called subscriber identity module for registration to cellular network.

1

http://www.emvco.com/
http://www.chipkarte.at/


CHAPTER 1. INTRODUCTION 2

Figure 1.1: This figure shows the abstraction layers of the Java Card implementation used
in the CoCoon project. Our work will involve the hardware layer as we have to support
different hardware platforms and the VM respective the RE. The firewall and specific
applets are not of interest to us. [1]

As our thesis deal with implementing a Java Card RE and VM for testing purpose we

will operate in the middle layers of the Java Card stack (see figure Figure 1.1).

1.2 Motivation

As mentioned in the past section the CoCoon project explores new codesigned features for

smart cards. This implies a Hardware (HW) and a Software (SW) part. The existing HW is

defined by an ISA, a memory architecture and additional peripheries (see Section 2.3). For

the SW part only the application interface is well defined (the Java Card standard). The

implementation of the interface functionality differs for every card supplier. As smart cards

have very spare resources, these implementation are usually highly optimized to specific

platform used by the card supplier. This is very useful for smart cards in production

environment, as it allows faster transactions, but not in a development environment where

SW feature should be tested across different platforms. Another problem is that nearly

all implementation are closed source under a proprietary license which also doesn’t aid

academic research and development.

The goal of our project is to develop a Java Card implementation for academic research

which overcomes this problems. It should be designed to aid design space exploration

for both SW and HW features. To enable this, we it will place a lot of attention on

maintainability (to easily integrate new SW features) and (portability to easily test new

HW features). As the source code is developed during a master thesis it will be freely

available for research and will avoid license problems.
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1.3 Outline

Our work is partitioned in the following chapters.

Chapter 2 will give an outline other foundations and existing approaches. In Sec-

tion 2.1 we will deal with developing platform independent SW and how to best abstract

HW features. In Section 2.2 we will give an overview of VM technologies and existing

approaches of bringing VMs to embedded systems. In Section 2.3 we will focus on existing

smart cards and specially on the Java Card technology.

Chapter 3 will show premises and ideas for solving the stated problems. In Section 3.1

we will discuss the functional and nonfunctional requirements for our implementation. In

Section 3.2, Section 3.3 and Section 3.4 we will show the proposed system architecture for

our implementation, including a separation in layers and modules. In Section 3.5 we will

discuss which development tools we decided to use an why the think this tools will aid us

in meeting our design goals.

Chapter 4 will show up with specific solution for the requirements stated in Section 3.1

and based on our design decisions in Section 3.2 and Section 3.5.

Chapter 5 will show how good our implementation (described in Chapter 4) meets the

requirements stated in Section 3.1.

Chapter 6 will give a conclusion of our work and will show an outlook to possible future

development.



Chapter 2

Related Work

This chapter will deal with some foundational topics of our work. First, in Section 2.1,

we will deal with hardware abstraction concepts and we will look at existing solutions

in different fields. Subsequently, in Section 2.2, we will give an introductions to Virtual

Machine (VM)s and will present different approaches and implementations. At last, in

Section 2.3, we will explain the Java Card platform, including some foundations of smart

cards and an insight to the development process.

2.1 Hardware Abstraction

This section will focus on the attempt to hide the complexity of modern HW from ap-

plication SW (and subsequently the SW developer). We will give a short introduction

to general concepts of hardware abstraction and take a closer look to some real world

implementations.

2.1.1 Concepts

Definition

The Hardware Abstraction Layer (HAL) can be defined as SW that directly depends on

the hardware. Examples for this are the code to boot a system or code for configuration

and access to HW resources. This piece of SW is used to hide details of the architecture

from other SW parts (e.g. the Operating System (OS)). Device drivers are a related

concept, as they also abstract HW resources (usually I/O). The hardware dependent part

can be seen as part of the HAL. [2]

4
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Figure 2.1: Example of a SW stack using a HAL. HAL, Comm and OS form the HW
dependent SW layer, code for the application layer can be HW independent. [3, Page 71]

Basic Techniques

A general example for the organization of SW using a HAL can be seen in Figure 2.1. The

lowest layer is the HAL, which incorporates processor specific code (e.g. code to boot a

system, to handle interrupts or task switching) and SW routines to access present HW

resources. It depends completely on the underlying HW. The HAL provides an interface

(HAL API ) to the next layer consisting of two SW modules. One module (Comm) handles

communication with subsystems and HW components. The other module (OS ) supplies

SW routines for task scheduling, inter task communication and interrupt management.

These two modules provide an interface (HDS API ) to tasks which can be now written

in HW independent code. The HAL, the Comm and the OS form the HW dependent

SW layer. On top of this layer resides the application layer which can consists of multiple

tasks. [3, Chapter 4]

Advantages of Hardware Abstraction

As mentioned before, when using anHAL with a well defined interface, applications which

uses this interface can be developed independently of the underlying HW. This makes it

easy to port this application to a different platform as only a HAL implementing the same

interface must be provided.

Beside the reuse of SW, another advantage of using a HAL is to allow concurrent

design of HW and SW (see Figure 2.2). Usually the SW development can not start before

the HW design is finished, which will take a lot of time because of a pure sequential design

process. By defining a clear interface between the two parts, both design processes can be

done at the same time. [3, Chapter 4]
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Figure 2.2: This figure shows the advantages of using a HAL for the development process.
After application portioning and HAL interface definition the design for HW and SW can
be done at the same time. [3, Page 69]

2.1.2 Hardware Abstraction on the PC platform

One main task of a all common desktop OS is the abstraction of HW resources. This

means a reduction in complexity of the provided interfaces, for example presenting a stor-

age devices as a hierarchical file system. Thus application SW can access data through

simple open/close and read/write commands instead of dealing with mechanical and elec-

tronic properties of the device, like positioning the disk arm of a disk. This reduction

in complexity of the HW interfaces (some also call it beautification, see Figure 2.3) also

allows to exchange HW parts, without having to modify higher SW layers, as they only

use the abstract interface. [4, Chapter 1]

Figure 2.3: This figure shows how Tanenbaum sees hardware abstraction. Ugly interfaces
of HW resources are turned into beautiful OS interfaces. [4, Page 5]
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Because of this premises, Personal Computer (PC) OS make wide use of HW abstrac-

tion. For nearly all HW resources some functionality is hidden from application SW.

Examples for partial abstraction are the CPU where most of the SW runs in a restricted

mode and cannot execute all commands. The memory is seen applications as a linear vir-

tual memory which can be distributed anywhere in the physical memory. An even higher

level of abstraction is present for most other HW resources like I/O devices. As mentioned

before mass storage is accessed through a filesystem instead of device specific commands.

This abstraction is done by two components of the PC OS, the kernel and a set of device

drivers. For both components various approaches exists which we will discuss in more

detail in the following sections. [4, Chapter 2 to 5]

OS Kernel

The kernel is responsible for the earlier mentioned partial abstraction of CPU and memory.

Thus it depends on the underlying HW and hides HW functionality and complexity from

other SW parts.

On all common PC OS applications are grouped into processes. Each process can utilize

a virtual CPU virtually all the time and multiple process can run virtually simultaneous.

This paradox is solved with multiprogramming which means the scheduler selects a process,

allows it to run for a certain time, safes its state to an external memory and selects and

runs another process. Because of the fast switch between multiple processes they seem to

run parallel and consistently. The process itself doesn’t have to care about this switches

and doesn’t have to know how it is supported by the physical CPU. This functionality is

hidden by the OS kernel and only an abstract API for settings like priorities is offered to

the processes. [4, Chapter 2]

Processes cannot access memory directly, instead they always see a virtual address

space of size 232 − 1 (or 264 − 1 depending on the used OS) regardless of the amount

of available physical memory. The virtual address space is organized in virtual pages

which are mapped to page frames in the physical memory by the Memory Management

Unit (MMU). Page frames are only reserved in the physical memory when a virtual page

is used. The page frames can be placed anywhere in the physical memory or can even

be loaded and unloaded dynamically by the kernel (e.g. saved to mass storage). Also in

this case, the process doesn’t have to care about it. The MMU is operated solely by the

kernel. [4, Chapter 3]
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Device Driver

On a common PC OS, application access external devices, like mass storage or I/O devices,

via device drivers. The set of all possible devices can be roughly separated in block and

character devices (network drivers are somewhere in between, see next paragraph). Both

are expected to support basic function, like read/write blocks and seek operation on the

first one and send/receive characters on the latter one. To facilitate the interchange of

device drivers, devices are further grouped into categories of similar types, like hard disks,

keyboards etc. This grouping allows the definition of a larger set of mandatory functions,

so a standard driver interface can be defined. Thus all SW expect the device driver can

be developed device independently and also some code used for the device driver can be

device independent (e.g. routines for buffering data). [4, Chapter 5]

A survey of the Linux kernel (Version 2.6.37.6, dated April 2011) found 3,217 distinct

device driver. A lot of them support multiple devices, as this pool of device driver supports

over 14,000 devices. Linux divides driver in three main categories which have additional

subcategories: character, block and network. They also found that a significant part of

device driver does not only message parsing between kernel and the device but also does

computation like checksum calculation. Many Linux drivers don’t interact directly with

HW devices, instead they use a bus (PCI, USB, etc.). This gives another opportunity for

hardware abstraction as these buses usually have a standardized interface. Device driver

can be easier isolated and used on another platform which has a similar bus interface. [5]

Fig. 1. The proposed hardware abstraction architecture

our planned future work (Section V) and conclude the
paper in Section VI. For clarity, at the very end, we
provide a list of the acronyms used in the text and their
definitions.

II. ARCHITECTURE
In our architecture (Fig. 1), the hardware abstraction

functionality is organized in three distinct layers of com-
ponents. Each layer has clearly defined responsibilities
and is dependent on interfaces provided by lower layers.
The capabilities of the underlying hardware are gradually
adapted to the established platform-independent interface
between the operating system and the applications. As
we move from the hardware towards this top interface,
the components become less and less hardware depen-
dent, giving the developer more freedom in the design
and the implementation of reusable applications.

A. Hardware Presentation Layer (HPL)
The components belonging to the HPL are positioned

directly over the HW/SW interface. As the name sug-
gests, their major task is to “present” the capabilities of
the hardware using the native concepts of the operating
system. They access the hardware in the usual way,
either by memory or by port mapped I/O. In the reverse
direction, the hardware can request servicing by signal-
ing an interrupt. Using these communication channels
internally, the HPL hides the hardware intricacies and
exports a more usable interface (simple function calls)
for the rest of the system.

The HPL components should be stateless and expose
an interface that is fully determined by the capabilities
of the hardware module that is abstracted. This tight
coupling with the hardware leaves little freedom in the
design and the implementation of the components. Even
though each HPL component will be as unique as the
underlying hardware, all of them will have a similar
general structure. For optimal integration with the rest
of the architecture, each HPL component should have:

• commands for initialization, starting, and stopping
of the hardware module that are necessary for
effective power management policy

• “get” and “set” commands for the register(s) that
control the operation of the hardware

• separate commands with descriptive names for the
most frequently used flag-setting/testing operations

• commands for enabling and disabling of the inter-
rupts generated by the hardware module

• service routines for the interrupts that are generated
by the hardware module

The interrupt service routines in the HPL components
perform only the most time critical operations (like
copying a single value, clearing some flags, etc.), and
delegate the rest of the processing to the higher level
components that possess extended knowledge about the
state of the system.
Our HPL structure eases manipulation of the hard-

ware. Instead of using cryptic macros and register names
whose definitions are hidden deep in the header files

Figure 2.4: Hardware abstraction using a three layered HAL. Application can access
device class specific features at the Hardware Adaption Layer or scarify performance and
use platform independent functions from the Hardware Interface Layer. [6]
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2.1.3 Hardware Abstraction on Embedded Systems

Hardware abstraction on embedded systems usually has to deal with limited resources in

terms of computational power and memory. Thus concepts for hardware abstraction for

the PC platform cannot be transferred one to one to embedded systems.

For wireless sensor nodes, one of the most resource restricted embedded systems, a flexi-

ble hardware abstraction with multiple levels of abstraction is proposed by Handziski et. al..

They use three layers for hardware abstraction, the two higher layers can be accessed by

applications (see Figure 2.4). The bottom layer (Hardware Presentation Layer) which is

closest to the HW is stateless and does little more than renaming HW resources. Register

access and interrupts are transformed into more convenient function calls. The second

layer (Hardware Adaption Layer) maintains state and hides the complexity of interacting

with the HW. However specific features of the underlying platform (according to a cer-

tain device class) are exposed to applications. The top layer (Hardware Interface Layer)

provides a platform independent interface. Capabilities of the underlying platform are

upgraded (simulated in SW) or downgraded (hidden from applications). As the HW will

evolve it will be necessary to introduce versioning for this layer. Application can access

HW features at the second or third layer (counting started from HW nearest layer). Perfor-

mance critical functions will sacrifice platform independence and use device class specific

functions at the second layer while less critical function may use the third layer to become

platform independent. [6]

2.1.4 Hardware Abstraction Revisited

Up to here we mainly used the same level of abstraction for all parts of our systems indif-

ferent if they were hardware dependent or independent. An obvious approach to deal with

hardware abstraction is to rise the general level of abstraction. If the application hasn’t

to be aware of the underlying HW platform it hasn’t to deal with hardware abstraction.

Compiler for High Level Languages

One of the most prevalent methods for hardware abstraction, which many aren’t even

aware of, is the use of a High Level Language (HLL). For example, when an application

is written in C++ and uses only built-in functions of the language or the standardized

library, the goal of device independence is nearly perfect met. The application will be able

to be deployed on every platform which is supported by the compiler.
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During compilation for a specific platform, compilers usually first produce a platform

agnostic intermediate code. This stage is not only used for optimization, it also allows

the support multiple back ends. A back end is responsible for generating machine code

and also contains platform specific functionality like platform specific optimizations. This

approach is applicable to a lot of SW libraries which don’t have to deal with HW issues.

[7, Chapter 1]

Virtual Machines for Hardware Abstraction

The approach presented in the previous section has the big disadvantage that applications

have to be compiled again before being deployed on a new platform. Another approach is

to define a common virtual machine which applications can address. Then only the VM

(or parts of it) have to be adopted to support a new platform.

A good example for this approach is the High-Level Language Virtual Machine (HLL-

VM) (see Section 2.2.2). HLL-VMs overcome the problem of HW dependency by pro-

viding a virtual Instruction Set Architecture (ISA) which can be easily implemented on

various HW platforms. Applications developed for a High-Level Language Virtual Ma-

chine (HLL-VM) usually only use resources provided by the VM framework (although

in common implementations it’s possible to access native functions too). Due to these

properties the binary files can be moved to a different platform without changing them.

2.2 Virtual Machines

In this section we will take a closer look at VMs. After a short introduction to the general

concepts for a VM we will focus on current trends in the development of VMs especially

in the field of embedded systems.

2.2.1 Concepts

Definition: What is a Virtual Machine?

A definition of a VM is given by Popek and Goldberg [8]. They define a VM apart from

pure SW emulators/simulators. A significant amount of the instruction of the virtual

processor has to be executed directly on the real processor rather then in a software

implementation. Formally they define this property as a mapping from the state of a real

machine to the state of a virtual machine (and also an inverse must exist).

A more generally description is given by Smith and Nair, who describe a VM as a

combination of hard- and software which runs a software in the same manner as on the

platform it was developed for. The VM can offer different resources (in type and quantity)

to the software running on it when compared to the hosting platform. [9, page 9]
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Taxonomy

VM implementations can be separated in Process and System VMs. A Process VM is

used to run user applications (thus process). Various implementations exists which can be

divided in subcategories but all have in common to provide a virtual Application Binary

Interface (ABI) to the application. A common type of process VMs are HLL-VMs like the

Java VM or the .NET framework which are also called runtimes (see Section 2.2.2) . Also

a classic OS can be seen as a process VM as it can run multiple application at the same

time and virtualize HW resources for them. [9, page 13]

A System VM supports a whole OS which can on its side run multiple process. It can

be placed directly on the HW or on top of an existing OS (hosted VM, e.g. VMWare). A

System VM can also translate a virtual ISA to a different one which makes it possible to

run a whole OS on a platform for which it wasn’t developed for (emulator) or enable HW

optimization without loosing compatibility (codesigned VM). [9, page 17]

Basic Techniques

A VM can be implemented in quite different ways, Figure 2.5 shows some basic types.

The straight forward method is the decode-and-dispatch interpretation. In this case,

a single dispatch loop performs a lookup for each instruction in the source code1 to find

the appropriate interpreter routine. This routine is invoked, executes the instruction and

then returns to the main loop. This approach has nearly no overhead in terms of memory

and startup latency but is very slow because all instructions are implemented in SW and

each instructions needs a table lookup and procedure invocation. A small improvement

is threaded interpretations. In this case no dispatch loop exists, instead the code for

finding the next instruction is placed directly at the end of the interpreter routines. This

removes the table lookup which saves execution time by using moderate more memory for

the additional code.

More sophisticated methods include precoding and binary translation. Precoding

transform the initial source code an intermediate form which is better suited for emulation

but interpretation routines are still needed. In the case of binary translation, each instruc-

tion in the source code is translated into an instruction that can be directly executed on

the target platform, no interpretation routine is needed. While this is obviously the fastest

way to execute applications on a VM, it has considerable drawbacks in terms of startup

latency, memory usage and also portability. [9, Chapter 2]

1In compliance with the referenced booked, source code is used here to describe any input code to the
VM. This can also be a binary executable for an arbitrary ISA.



CHAPTER 2. RELATED WORK 12

Source code

Source code Source codeInterpreter
routines

Dispatch
loop

Source code

Precoder
Binary 

translator

Source Code Interpreter
routines

Binary translated 
target code

Source code

(b) decode-and-dispatch
interpretation 

(c) threaded
interpretation

(d) interpreting with 
precoding

(e) binary
translation

(a)

Interpreter
routines

Figure 2.5: This figure shows different possible emulation methods for VMs. They range
from pure interpretations (b and c) to partial (d) or complete (e) translation of the in-
put code. All approaches have different tradeoffs regarding startup delay, runtime delay,
additional memory usage or portability. [9, page 80]
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As seen on the above described methods, where is always a tradeoff between memory

usage, startup latency, execution time and portability. Not all VM place the same emphasis

on all attributes. For example, an embedded VM will be more critical in terms of memory

usage. On the other side a server VM will focus more on performance and for a code

signed VM portability will may be even irrelevant. Often VMs have to deal with all four

attributes. In this case, a combination of the described emulation methods is used (called

staged emulation). Usually, at the beginning all code is interpreted. After a while, when

some profiling data (eg. how often a block is executed) is collected the VM framework

choses some code blocks to be optimized. In general four stages of can be distinguished:

interpretation, basic translation, optimized block, highly optimized block. Every stage

includes more sophisticated optimization methods, needs more profiling data and also

introduces more overhead. Highly optimized blocks for example are usually only used in

very long running applications. Some VM implementations may also skip a complete stage

because it brings no benefit or can’t be implemented due HW resource restrictions. [9,

Chapter 3]

Optimization methods include reordering code blocks to support efficient caching. An-

other method is to inline procedures to avoid the overhead of a function call (although

this means additional memory is used, it’s reasonable for heavy used functions). Fur-

ther optimization can be done by constant propagation (replace variables with constants

if possible) and dead code elimination, although this is usually already done at compile

time. Generally the optimization framework has to rely on profiling information gained

from compiled code and doesn’t has access to HLL information which is disadvantage

compared to HLL compilers. HLL-VM overcome this problem with extensive use of meta

data in the byte code to provide more information for optimizing. [9, Chapter 4]

2.2.2 High Level Language Virtual Machines

A big part of the success of VMs nowadays can be attributed to so called High Level

Language Virtual Machines. As mentioned earlier the two main exponents this approach

are the Oracle Java VM (original developed by Sun) and the Microsoft .Net framework.

Both are popular SW developing tools and even expand to new areas (see Java Card,

Section 2.3) which were before dominated by native programming languages (mostly C).

HLL-VM have in common that their ISA (and subsequently the byte code) is designed

explicitly to be executed on a VM, therefore also called Virtual-ISA. This easies the

development of the VM because it doesn’t have to simulate the behavior of a silicon chip

and the abstraction can be raised to a higher level. Because a HLL-VM is a special form

of a process VM, it doesn’t has to support running a whole OS which also reduces the

functionality needed in the ISA. Functions like I/O and access to HW resources are instead
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moved to libraries. As the name implies the byte code is generated by compiling one (Java

VM2) or more (.Net) mostly object oriented HLL. [9, Capter 5 and 6]

Java

The Java VM provides the target platform for the Java language. Java is a general

purpose, concurrent and object oriented language which borrows heavily from C/C++.

To reduce error-proneness some C++ features were removed, like pointer arithmetics. It

also introduces new features like garbage collection for unused objects. Java was initially

developed for customer electronic devices, therefore it had to be able to run on a lot

of different HW platforms. The Java VM doesn’t need to know anything about the Java

HLL, instead it operates on an intermediate form referred as byte code. The byte code can

be executed using various methods like interpretation or binary translation. [10, Chapter

1]

All information the VM needs are encodes in so called class files (are not necessary

files, also this is the usual the case). Each class file represents one class or interface. Type

checking is usually done before runtime and the distinction is made through type specific

instruction (for example there are add instructions for each appropriate data type like

integer, short or floating point types). The Virtual-ISA for the Java byte code represents a

stack machine, which can be easily emulated on an arbitrary existing ISA. The published

specification for the Java VM leaves a lot of design decision to the implementer. For

example it is not specified which garbage collection algorithm should be used nor any

method for optimization to improve speed or memory usage. Rather then that, an abstract

memory layout is defined which consists of:

• Programm counter (per thread)

Points to currently executed instruction.

• Java Virtual Machine Stacks (per thread)

Stores Java VM frames. Frames are pushed/popped when a method is invoked/returned.

Each frame holds an operand stack, a field for local variables and a reference to run-

time constant pool.

• Heap (shared)

It holds all dynamically allocated object (class instances or arrays). It’s usually

garbage collected, although implementations can decide not todo so.

• Method Area (shared)

Comparable to the text segment in native executables. Contains the bytecode.

2Although multiple HLL can be used, Java is clearly the programming language of choice.
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• Runtime Constant Pool (shared)

Can be compared to symbol tables in other programming languages. Holds constants

an reference to various fields/methods.

• Native Method Stack (shared)

Used to support native methods which are implemented in a different language than

Java (usually C/C++).

Java also support exceptions on byte code level. They can be generated by an explicit

command (athrow), caused by an abnormal execution condition or by an error in the VM

(eg. running out of memory). [10, Chapter 2]

.Net

The .Net platform is a continuation of the COM (Component Object Model) platform.

COM focuses on contracts between individual programs which are expressed as type def-

initions. Microsoft describes COM as a programming model and a supporting platform.

However COM has some serious drawbacks. There is no standardized way to describe

contract definitions, two, only partial compatible, formats exists: Interface Definition

Language (IDL) and Type Library (TLB). There is no way to express dependencies of

components and the type definitions are platform dependent. The interchange between

components depends on exact knowledge of vtables and stack layout at compile time. This

make deployment on different platforms difficult.

To overcome this problems Microsoft introduced the Common Language Runtime

(CLR). CLR is an implementation of Common Language Infrastructure (CLI) specifi-

cation which Microsoft submitted to the ECMA for standardization. CLI consists of the

Common Type System (CTS), Common Intermediate Language (CIL), file and metadata

formats. Contracts for components of the CLR are described by using metadata, which

removes the need to take care of platform peculiarities. Not until a CLR component is

deployed or loaded, native binary code is produced. This includes translation of CIL to

native program code. Microsoft claims reach the performance of native developed SW.

Applications for .Net can are usually developed in C#, a language developed by Mi-

crosoft which borrows heavily from C/C++ and Java. Theoretically any programming

language is supported for which a compiler exists that can produce valid CIL code plus

metadata. Practically a small number of other languages is supported, like C++ and Vi-

sual Basic. The normal execution mode for .Net applications is called managed execution

which means that applications can be verified during runtime by the CLR. Verification

include monitoring of variables and memory. Developers are encouraged not to manage

memory or threads by themselves and should instead rely on built in functionality. [11,

Chapter 1]
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2.2.3 Low Level Virtual Machine

Another emerging field of applications for VM technologies is the Low Level Virtual Ma-

chine (LLVM). LLVM is a compiler frame work for code optimizations at all stages

(compile time, link time, runtime etc.). Most of the optimization techniques use an inter-

mediate representation which reassembles a RISC like ISA. In the following we will look

at this code representation and show how it can be used to increase portability.

LLVM defines an instruction set consisting only of 31 opcodes and features a pure load

and store architecture. All logical and arithmetic opcodes use the three-address form (take

one ore two operands and store result at given position) and can be overloaded (can be

called with different data types). LLVM is type safe and features four primitive and four

derived data types. The primitive types are bool, integer, floating point and void. The

numerical types also support different sizes (8-64 bit, single/double precision). Derived

types are pointers, arrays, structures and functions. The authors claim to be able to

reproduce HLL concepts like object orientation with this types. As LLVM is a type safe

language type conversion is only possible via a cast instruction. All memory allocation

is explicit through opcodes (even for stack variables). Function calls are implemented by

a typed function pointer. LLVM also supports exception handling of HLL via the two

opcodes invoke and unwind. The first defines a code block to unwind the stack and the

latter initiates this process.

According to the authors, the key point of the LLVM intermediate language is on the

one side to preserve high level information for optimization purpose and on the other side

to stay low level enough to support arbitrary programs. [12]

emscripten

emscripten is a LLVM to Javascript compiler/translator proposed by Mozilla. The key

goal is to allow arbitrary code which can be compiled to LLVM to be run in a Javascript

VM which is present in nearly every modern web browser. The challenge is to transform a

low-level language (LLVM) to high-level language (JavaScript) without forfeiting to much

performance. As a solution, several method are proposed to recover high-level constructs

from the low-level input. As an example the relooper is described, which constructs loops

in JavaScript out of the branch operations of LLVM. [13]

PNaCl

Another approach for portable executables is the Portable Native client proposed by

Google. The executables are distributed in the LLVM intermediate code and are trans-

lated to the target ISA on the client. As this is also a web centric approach security is

a vital aspect. Google [14] has previously already proposed techniques to sandbox native
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code which are now also used. The final goal is to provide the performance of native code

together with the portability and security of interpreted code. [15]

2.2.4 VMs on Embedded Systems

Embedded Systems pose a special challenge for VM developers. They are designed to

fulfill a certain task and often have limited hardware resources. Several attempts were

made to bring VMs to such platforms.

Most of them have in common that they use a custom byte-code. Some of them are

derived from existing general purpose VM byte codes. An example for this approach is

Mote Runner, which is designed to support multiple HLL and currently supports Java and

.Net. It is a stack based VM targeted at Wireless Sensor Nodes. Due to the domain specific

needs, it’s centered around a reactive programming model, which means that if an event

occurs a appropriate function is called. To save resources a concept similar to function

pointer is used (called Delegate by the authors) instead of interfaces or abstract classes.

The use of some language features is restricted, non existing but embedded system specific

features can be added to the HLL via annotations. Mote Runner also permits the use of

the language specify standard compiler which makes integration in existing development

environments easy. The generated byte code is then translated into the custom byte code.

[16]

A similar approach is taken by Shaylor et. al. for their VM. They use Java byte

code based on the CLDC standard (Java for mobile phones). Their main target is to

minimize the size of the byte code so it can be used in devices with very little memory. To

achieve this, they reduced the operand fields in the byte codes and variables are explicitly

typed. This makes it possible to remove type specific load/store instructions. The regained

opcodes are used for more load/store instructions with included index to save an additional

opcode. Further improvements include resolving references at installation time to abandon

the symbolic constant pool and optimization of object creation. Instead of creating an

object and initialize it separately which leads to the need of handling uninitialized objects,

objects are created when initialized. [17]

VMs can also be built on top of an embedded OS. Examples are the Mate VM and

TinyReef which both use custom byte codes. The latter is a register based VM, which is

claimed to be more efficient in terms of computational efficiency (earnings through faster

execution are higher than losses through larger memory footprint). TinyReef uses a fixed

size 32-bit instructions where the first eight bit are the opcode and the rest serves as

operand. [18]

The Mate VM is also tailored for sensor networks and built on top of TinyOS. Its

design goal is to support very compact but functionally rich applications. To achieve this,
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powerful byte code commands are supplied such as a single instruction to sent a message.

The VM is not intended to run any sophisticated computation, if an application needs

this, custom byte codes can be defined and the needed functionality can be implemented

in native code. The small size of the application allows to install them through the wireless

network. Mate also supports application isolation on platforms there features like virtual

memory or memory protection are not supported by the HW. [19]

An older but still interesting approach is given by Stanley-Marbell and Iftode with their

Scylla VM. It’s not a pure interpreters as most of the embedded VMs are but translates

the byte code instruction directly to native instructions (called on-the-fly-compilation).

It is designed as a virtual register machine so most byte code instructions can mapped

one to one to a native instruction. The in instruction have variable length to save space.

Scylla can optionally be placed on top of an OS, nethertheless an application only sees

the VM interface. The VM also introduce memory checks to the native code, either static

at compile time or if this isn’t possible through additional native code an runtime. [20]

2.3 The Java Card Platform

As this thesis deals with implementing a Java Card test platform this chapter will be

dedicated mostly to the Java Card standard. At the beginning we will give a short in-

troduction to smart cards in general. After this we will start exploring the Java Card

specification beginning with the language subset used for Java Card applets. In the fol-

lowing we will look at the binary formats used for Java Card and will conclude with the

runtime requirements.

2.3.1 Smart Card Foundations

Smart cards have evolved from plastic identification cards. This cards were first used in

the 1950s for financial transactions (credit card) in the US. They had only very simple

security features like a reference signature or secure printings. With greater and worldwide

distribution of credit cards, fraud and counterfeit became a seriously problem.

To overcome the security problems, but also to improve efficiency, magnetic stripe

cards were introduced. The machine-readable information on the card made it possible

to perform additional user verification (eg. the well known combination of card and PIN)

and also allows complete electronic transactions without paperwork.

With the major improvements in the semiconductor industry smart cards became fea-

sible. The first smart cards were memory cards with simple logic circuits to prevent

writing data to certain memory areas. They were used as telephone prepaid cards in

the era of phone boxes and later as health insurance cards. The next step were micro-

processor cards, which could support arbitrary applications only limited by memory and
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computational power. With the availability of cryptography on smart cards, they were

also introduced for financial transactions, first as custom solutions later in a standardized

form (EMV standard).

Due to further improvements in the field of semiconductors, energy consumption of

the chips was reduced to a level, contact less cards became possible. They drew power

and communicate through an electric field emitted by the reader. [21, Chapter 1+2]

Hardware

Smart cards are usually using a custom System on Chip (SoC) consisting of an established

micro controller Central Processing Unit (CPU), various memory types and additional

HW components.

The CPUs used for smart cards usually have 8-bit word size but also 16-bit systems

exist and even 32-bit CPUs are emerging. Most of the 8-bit CPU are based on the Intel

8051. Variants of this CPU are now available from various manufacturer, often with

specific enhancements. The 16-bit CPUs are often advancements of the 8051. The 32-bit

CPUs are usually based on an ARM core (ARM 7 or ARM Cortex).

Beside the familiar volatile RAM smart cards can feature multiple different memory

types. Classic memory types to store information when the card is off power are ROM

(read only memory) and EEPROM (electrical erasable read only memory). ROM is usually

used for basic software routines which will never change in the lifetime of a smart card.

Application data, but also application code, which has to be modified in the field, is placed

in the EEPROM. A later introduced memory type is flash, which has many similarities

with EEPROM and will may replace other nonvolatile memory types in future. Chip

designer always have to make tradeoffs when selecting memory types for a smart card

as they differ in attributes like access time and occupied chip area. RAM is always the

fastest accessible memory but needs the most chip area per storage unit. ROM needs the

least chip area per storage unit but has to be recorded during chip fabrication. EEPROM

and flash are in between regarding the chip area per storage unit and have longer access

delays.

Additional HW packed into the SoC can vary a lot. Common extensions are memory

management units which allow separating memory areas to isolate applications, I/O com-

ponents or cryptographic extensions. Modern smart cards support various symmetric key

and public key algorithm. [21, Chapter 5]

Software

Software development for smart cards is done using assembler languages and C, with

shifting more and more parts to C. Early smart cards contained only little customized
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code but soon some frequently used functions were outsourced into libraries. The libraries

could be placed in ROM because they hadn’t to be changed very often and could be reused

for different use cases. This were the predecessors of the current available Card Operating

System (COS). The available COS cover a broad range, reaching from very tiny systems,

not much more than the initially described library collection, on 8-bit CPUs to mighty

multi tasking and network capable systems on 32-bit CPUs.

Originally it wasn’t planned to load additional program code onto smart cards after

installing the basic systems. In recent years, a change of thinking occurred. The motivation

behind isn’t completely clear, but a strong argument is to fix bugs after release. The easiest

way would be to load native code in the EEPROM or a similar nonvolatile writeable

memory. However, in the world of smart cards that approach has several obstacles. First

, as mentioned in the previous section, their are a lot of different HW platforms which

prevents writing and distributing portable native code. Second and maybe even more

severe, native code poses a security thread without further adaptions. This adaptions

would have to be a sort of process isolation including a different execution mode for the

CPU and memory protection. All things that are available on other platforms, like PCs,

but usually not on smart cards. Because of these obstacles, interpreted code becomes a

viable alternative. Despite the drawbacks of interpretation (slower execution and higher

memory demand), it’s now used in two common open3 platforms: Multos and Java Card.

Interpretation overcomes the two stated problems because the foreign byte code doesn’t

have direct access to the HW, instead it’s interpreted and checked by an on card runtime

environment. [21, Chapter 13]

Communication

Communication between Card Acceptance Device (CAD) and smart card follows a master-

slave principle, it’s always initiated by the CAD. After the smart card is inserted into a

CAD it’s turned on (the contacts have to be enabled in the right order). When initialized

the card sends an Answer-to-Reset (ATR) to the CAD, which informs the CAD about

basic properties of the smart card (like supported transmission protocols). After receiving

an ATR the CAD can send a Protocol-Parameter-Select to adjust several settings of the

smart card or can start directly by sending commands to the smart.

Commands are encoded as Application Protocol Data Unit (APDU)s. Two different

forms exists, a command APDU is sent by the CAD to the smart card and a response

APDU is returned when the card has finished its work (see Figure 2.6).

The command APDU consists of a header and a body. The class byte (CLA) selects a

command set (e.g. ’8X’ for custom non standardized command set). The instruction byte

3According to Rankl and Effing, open is used here to describe smart cards which allow the execution
of foreign code. It’s not used in term of open source SW like Linux.
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Response
APDU

Command
APDU

Figure 2.6: This figure shows structure of an APDU. Parts of the figure are carried over
from Rankl and Effing. [21, Chapter 8].

(INS ) is used to select a specific command which can be augmented with two parameter

bytes (P1 and P2 ). Following the header comes an optional body. It consists of an length

field (Lc) for the following variable length data section (data) and a field with specifies

the expected length of the response (Le).

The response APDU consists of a data field (the length was specified in the command

APDU) and a status word consisting of two bytes (SW1 and SW2 ). The status word

indicates if an error occurred during processing (otherwise ’9000’ is returned which stands

for ’normal processing’). [21, Chapter 8]

2.3.2 Java Card Language Subset

Java Card is based on the Java SE and shares many properties. Despite, full support of

all features isn’t possible on resource constraint devices found in smart cards. Therefore

a subset was defined which ensures compatibility with the Java SE and doesn’t overwork

existing resources. Compatibility of course works only in one direction, Java Card applets

can be compiled and executed using Java SE, not otherwise. The subset was carefully

chosen to preserve the main attribute of the Java language, like objects and inheritance.

For supported, optionally supported and not supported features see Table 2.1.

As security is one of the main aspects of Java its also an important point for Java Card.

To save resources on the card device, the byte code verification can be done off device,

the JCRE just have to load the CAP file and execute. On device, byte code verification,

either during loading or at runtime is possible but not mandatory. Security on applet

level is provided by a context assigned to each object. Every applet and also the JCRE

possess its own context. When an applet is installed and creates an object, the object gets

assigned the context of that applet.

Java Card supports exception handling much the same as Java SE. A major difference

shows in how to handle uncaught exceptions. The Java SE VM will just hold the con-

cerning thread. As the Java Card VM is single threaded the whole VM will halt. What

happens next isn’t specified in standard and differs across implementations.
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Supported Optional Supported Not Supported

Packages Integer Data Type Dynamic Class Loading
Dynamic Object Creation Object Deletion Mechanism Security Manager
Virtual Methods Finalization
Exceptions Threads
Interfaces Cloning
Generics Access Control in Java Packages
Static Import Typesafe Enums
Runtime Invisible Metadata Enhanced for Loop

Varargs
Runtime Visible Metadata
Assertions

Table 2.1: Overview of Java language features supported, optionally supported or not
supported by the Java Card Platform. Comprehensive information about the features can
be found in [22, JCVM Spec Classic Chapter 2.2].

Java Card supports a slight different set of data types than Java SE. Byte and short

are fully supported, support for integer is optional and floating point data types are not

supported. Java Card supports the reference type identical to Java SE. Arrays can only

be one-dimensional. Data types in Java Card use an abstract storage unit to indicate the

size of a data type, called word. A word must be capable of holding the value of type byte,

short and reference. Two words must be able to store an integer. [22, Chapter 1 to 3]

2.3.3 Java Card Binary Format

Application developed in Java are usually (e.g. for Java SE) stored in binary files, called

class files. They consist not only of the byte code but also of interface information (types

and names) of the containing classes.

Java Card applications are first also compiled to class files, which allows to use the

standard Java compiler and all of its advantages like code checking and optimization. In

the next step the class files of a whole Java package are converted into a Java Card package.

For a successful conversion, only the language subset related to Java Card is allowed as

prior input for the compiler. The obtained file are the Java Card converted applet (CAP)

file and export file. We will explain them in the following together with the so called

application identifier (AID), which is used to identify applets.

The CAP File

Java Card packages are delivered in the so called CAP format. A CAP consists of a set

of components stored in a JAR file. Each CAP component is a stream of bytes stored in

big endian order. The first byte is a token which identifies the component type. Table 2.2
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shows all standard CAP files. A developer can define custom components which must be

tagged ranging from 128 to 255.

Java Card separates two types of packages: applet and library. Applet packages contain

at least one class which inherits from Applet. Thus it also has an Applet component (see

listing below) which is used to install it on a device (see Section 2.3.4 for details).

Component Type Tag Value File Name Remark

COMPONENT Header 1 Header.cap
COMPONENT Directory 2 Directory.cap
COMPONENT Applet 3 Applet.cap optional
COMPONENT Import 4 Import.cap
COMPONENT ConstantPool 5 ConstantPool.cap
COMPONENT Class 6 Class.cap
COMPONENT Method 7 Method.cap
COMPONENT StaticField 8 StaticField.cap
COMPONENT ReferenceLocation 9 RefLocation.cap
COMPONENT Export 10 Export.cap optional
COMPONENT Descriptor 11 Descriptor.cap
COMPONENT Debug 12 Debug.cap optional

Table 2.2: This table shows the standard components of a CAP file. They are store in a
JAR file. The first byte of a component is the tag which identifies it.

The most important components when developing a Java Card VM are described in

the following:

• Constant Pool Component

The Constant Pool component contains reference to all methods, fields and classes

used in this package. When a byte code instruction accesses any of these types it

starts with an index into the Constant Pool. The index points to a info field, which

is always four byte long. The fixed size allows direct access by calculating an offset.

If the class, field or method requested is defined inside the current package, the

Constant Pool field contains an offset into the Class (for classes, virtual methods

and instance fields), static field image (for static fields) or Method component (for

static or private methods). If the requested type is defined outside the current

package the Constant Pool entry references the Import component by tokens.

• Class Component

The Class component describes all classes defined in this package. It holds sufficient

information to create instances, to perform method or field access (method tables)

and to check cast operations (class hierarchy). For method invocation it references
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to Method component. External superclasses are referenced through the Import

component.

• Method Component

The Method component contains the byte code for all methods defined in this pack-

age. It also includes information necessary to invoke a method, like number of

parameters, number of local variables and the needed stack size.

The byte code featured in this component is also a subset off the original Java byte

code. For example it lacks functions for floating point arithmetics and concurrent

execution management.

• Staticfield Component

The Staticfield component is used to initialize all static fields defined in this package.

In the Java SE this work is done by the clinit method. Static fields are store in a

static field image, also offsets in the Constant Pool component reference there.

• Export and Import Components

These components are used to share resources across package (CAP file) borders.

The import components defines packages, which are used in the current package. The

external packages are identified by their AID. When the package managers finds the

corresponding CAP file it can use the Export Component to find the wanted class

or method.

The Export component describes all classes, static functions or fields which are of-

fered to other packages (this means they have to be public). Static fields and methods

can be accessed directly by using an offset into the static field image respectively

the Method component. Virtual methods have to be searched in the method table

of the corresponding class.

• Header and Applet Component

These components are used to identify the package (Header component) or applets

provided by this package (Applet component) by their AIDs. The Header component

additional contains a major and a minor version number and various flags. An applet

additionally has a reference to the Method component to invoke the install method.

The references between components of one package and entry/exit points for references

between packages are shown in Figure 2.7. During execution, all classes, fields or methods

are addressed through the ConstantPool. If the requested entity is in the same package the

ConstantPool supplies an offset to access it directly, otherwise if it’s in another package,

the Import Component supplies the AID of the corresponding package. Other packages

can refer to entities of this package through the Export Component. [22, Chapter 6]
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Component

Applet
Component

Class
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Method
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other CAP
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other CAP
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reference by AID (inter package)

class offs. + method/field token

class offs. + method/field token

Figure 2.7: This figure shows the references between CAP components. Starting point is
either the Constant Pool component if this is the current package or the Export component
if this package is accessed from outside (another package). When this package is deployed
on a device the Applet component directs to the install method for each application.

The Export File

The export file contains information about the public accessible API of a whole package.

It can be used to convert a package into a CAP file that is binary compatible with existing

applications which are linked to the existing export file. [22, Chapter 5]

AID - Application Identifier

AID is the mechanism for naming applets and packages in Java Card. It is defined in

ISO 7816-5. An AID consists of a 5-bit RID (resource identifier), which is assigned to

organizations by the International Organization for Standardization (ISO) and a 0- to

11-bit PIX (proprietary identifier extension) managed by the related organization. [22,

Chapter 4.2]
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2.3.4 Java Card Runtime Enviroment

The Java Card Runtime Enviroment (JCRE) consists of the Java Card Virtual Machine

(JCVM) and the Java Card API classes. We will take only a short look on JCVM in this

chapter and will focus on the functionality provided by the API.

The demands for the VM can be deduced from the binary representation of an applet

described in the last section. In Section 3.2 we will discuss a system architecture that fits

the demands of the Java Card specification and also fulfills our design goals.

In the following we will examine the major runtime functionalities, from installing

applets over to how to select and invoke an applet, to how the JCRE supports the applets

doing their tasks. At the end we will look at security an error recovering mechanism.

Installing Applets

Applets are installed on a Java Card capable smart card by calling the static method

Applet.install. The function is implemented in the JCRE class but throws an exception

and has to be overwritten by an applet. When called, the method has to create an instance

of its associated class and register it in in the JCRE via calling Applet.register. The

applet deems to be installed correctly when install calls register and no exception

occurred. register is a method supplied by the JCRE which assigns the committed AID

to the now installed applet. [23, Chapter 3]

Applets and libraries and can be put on the smart card during production process (then

it’s also possible to place them completely in the ROM) or loaded afterwards. In the latter

case an installer is needed on the card device. The Java Card specification doesn’t requests

an installer but implementers are free to provide one or multiple installer. Towards the

CAD the installer behaves like a normal applet and communicates via APDUs. It’s up to

the implementer to decide if he want’s to implement an installer in Java (and thereby as

an applet with special privileges) or in native code (and thereby part of the JCVM). [23,

Chapter 11]

Selecting and Invoking Applets

The CAD can select an applet by using special command APDUs (SELECT FILE or

MANAGE CHANNEL) and supply a valid AID. To select an applet the JCRE calls

Applet.select, a method that should be overwritten by the implementing class. This

method can do some initialization work and has to return a boolean value, true if selection

is successful or false if the applet denied being selected. When an applet is successfully

selected the current context is set to the context which belongs to the applet.

After finishing Applet.select, the JCRE calls Applet.process (also a method that

should be overwritten by the implementing class) and forwards the received APDU. The
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APDU used to select an applet is also forwarded to this function. APDUs are encapsulated

in a Java class (APDU) which allows to access fields with convenient getter and setter meth-

ods. The current applet is deselected when a new applet is selected. Applet.deselect is

called which allows the applet to do some cleanup. [23, Chapter 4]

API Support

The JCRE supports the applet with a lot of built in methods. They are grouped in several

packages. A subset of the JDK classes can be found in the packages java.io, java.lang

and java.rmi. They define classes which are well known from other Java editions like

the ubiquitous Object or a number of possible exceptions. Java card specific methods

can be found in javacard.framework and javacard.security. The first package defines

classes for basic functionality, like the abstract class Applet which every Java Card applet

inherits from, classes to deal with APDUs and AIDs and several utility methods (class

Util). Extensions can be found in the package path javacardx.*. They range from

extended length APDU over classes to access additional memory to extensions of the

utility methods provided in javacard.framework.

The JCRE provides applets a transaction mechanism. An applet can start a trans-

action by calling JCSystem.beginTransaction and finish it by calling either JCSystem.

commitTransaction (modifications are made persistent) or JCSystem.abortTransaction

(modifications are discarded). A transaction always ends if the JCRE gains back control

(by exiting one of the methods defined in Applet) .The JCRE doesn’t support nested

transaction and has, due to the limited resources of a smart card, also a limited capacity

of operations a transaction can contain. [23, Chapter 7]

Security for Applets

Additional to the Java language security features (e.g. type checking or protection at-

tributes) the JCRE has a firewall which prevents applets from interfering each other. The

specification requires a certain minimum of runtime checks but implementors are free to

include more checks as long they are transparent to applets.

As mentioned earlier, the firewall separates applets using a different context. Every

package, and the JCRE itself, has its own context. Applets from the same package also

have the same context. Every object gets the context assigned, which is active when the

object is created. Generally, access is only allowed within the same context. Context

violation is checked every time a sensitive byte code (all byte codes that access fields or

arrays or which invokes instance methods) is used.

To allow information interchange between applets where are several exceptions to this

general rule. First the JCRE works as a sort of system applet which has access to all
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existing context. This is also necessary to invoke functions like Applet.process. The

over way around are the Java Card RE Entry Point Objects which can be used to invoke

methods of the JCRE from any context. Through this, applets can use the functionality

provided by the JCRE. Exceptions are also made for global arrays and shareable interfaces.

An interface is made shareable through implementing javacard.framework.Shareable. [23,

Chapter 6]

2.4 Summary

In this chapter we gave an introduction to hardware abstraction, virtual machine design

and the Java Card platform.

We saw that hardware abstraction can be basically done straight forward and is heavily

used on the PC platform. Through abstraction usually adds some overhead, problems

occur when hardware abstraction should be done on resource constrained platforms. We

also saw that compiler and virtual machines provide a good hardware abstraction for

functions which don’t rely on special hardware features.

In the following we learned something about the basics of virtual machine, includ-

ing some slightly different definitions and a taxonomy. We saw that designing a virtual

machine is always a tradeoff between startup time delay, memory usage, execution delay

and the degree of platform independence. We looked at some of the most prevalent VM

platforms (Java and .Net) and also introduced the quiet new LLVM compiler framwork.

We presented some approaches to bring VMs to very resource constrained devices, like

Wireless Sensor Nodes, which needs some adaptions and tradeoffs.

Finally we gave an introduction to the Java Card platform, preceded with an overview

of the hardware, software and communication protocols used for smart cards.
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Concept and Design

This chapter should give a better insight to the ideas behind the implementation. We will

divide the chapter in three main parts. The first will deal with the overall design goals.

This will lead us directly to the second part, where we will explain the main decision for

the SW architecture. The last part will deal with the toolchain we select to achieve our

design goals.

3.1 Design Goals

The overall goal of this thesis is to create the SW part of an test framework for new features

for JavaCard based smart cards. It is NOT intended for use in a productive environment.

For this case a lot of commercial (and thus usually closed source) implementations and

the reference implementation exists. As we have different goals, our implementation won’t

compete with the existing ones in term of performance and will lack some optimization

work usually done by them. Instead of optimizing our VM to a certain platform we have

identified three different main goals: Compliance, Portability and Maintainability.

3.1.1 Compliance

To get meaningful test results the VM should be compliant to the Java Card standard1

We don’t want to mimic an existing implementation in all details (even not the refer-

ence implementation) as we omit several platform specific performance tweaks and don’t

implement runtime checks not demanded by the standard.

As the standard leaves a lot of design decisions to the implementor we strive towards

a lean implementation of the Java Card standard. We will comply to the standard where

1The standard is defined in the Virtual Machine Specification for the Java Card Platform, the Runtime
Environment Specification for the Java Card Platform and the Application Programming Interface for the
Java Card Platform. We will use version 3.0.4 of the classic edition. All documents are available under
http://www.oracle.com/technetwork/java/javacard/specs-jsp-136430.html.

29
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it explicitly demands something and will rely on testing our implementation against the

reference implementation for not explicitly stated cases.

3.1.2 Portability

An important design goal is to support multiple HW platforms. According to Brown [24]

this attribute can be called Portability. The targeted platforms can range from a 64-bit

x86 architecture running a POSIX compatible OS (as a platform for SW development)

down to a 8051 compatible micro controller (for testing real world Java Card applications).

Porting to a different platform should require as few changes as possible in the source code.

Especially micro controller platforms are often only supported by few or even only one

compiler so the source code should be compatible with all (or at least a large set) of

currently available compilers.

To achieve this goal it will may be necessary to make tradeoffs in non-functional

attributes. Platform specific optimization (e.g. for specific memory architectures) is only

possible to a limited extend, as it would require to maintain additional code for each

platform. In such cases we will aim on preserving portability at lowest possible cost (in

terms of computational and memory efficiency).

3.1.3 Maintainability

The source code written during this thesis should be maintainable in multiple ways. Beside

the classic task to correct programming errors it should also be easy to modify and/or

to extend the source code. This target may comes in conflict with writing compact and

efficient code. In such cases we will focus more on easy readable code, which is in our

opinion the key factor for maintainability, and lesser on compact and efficient code. To

compensate drawbacks from this strategy we rely on compiler intern optimization methods

and will try encourage them in the source code (eg. inlining for small helper functions).

3.2 System Architecture

A quick outline of our system architecture can be seen in Figure 3.1. We decided to use

a three layered architecture to encapsulate different kinds of functionality. Interaction

between the layers is only done through well defined interfaces. Only the lowest layer is

platform dependent, the other can be ported by simply compiling them for the targeted

platform. Therefore multiple instances of the HAL exists to serve different platforms, as

it can be seen in the figure.

A layer is again divided into modules which are responsible for different tasks and

encapsulate functionality. This separation is done for better maintainability although the
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separation is not so strict than between different layers. There is no externally defined

interface between the modules of a single layer. Instead we try to keep interaction as

small as possible but make tradeoffs if costs (in term of code size and runtime behavior)

for abstraction are to high.

3.2.1 Hardware Abstraction Layer

The HAL consists of two parts: the interface (hal interface.h) and multiple implemen-

tations for different platforms. The code size of the implementations depends largely on

the specific platform. For example when running on top of a desktop OS it will be very

small because all needed functionality is provided by simple library calls. When running

on a micro controller like a 8051 derivative without an underlying OS, it will may be more

code necessary to supply needed functionality or to startup the device.

HAL Interface

The interface specifies functions that can be used by the OS Layer. They can be largely

grouped in the following categories.

• Communication

Functions of this category are used to send and receive bytes. The HAL doesn’t

have any insight to the content of these byte streams. As Java Card only reacts to

requests, the receive function can be invoked in blocking mode to wait until new

data is available.

• Memory Management

Functions of this category give the OS Layer information needed to access the mem-

ory. This consists of start and end address of memory areas for transient and per-

sistent memory.

• Boot

Specifies a function (start os) to start the OS Layer. After all initialization work

is done by the HAL, it calls this function to handover control to the OS Layer.

3.2.2 OS Layer

The OS Layer provides rudimentary functions of a conventional OS. They can be accessed

through an interface (defined in os interface.h). The implementation is divided into

four modules for core functionality, communication, memory management and (closely

coupled with memory management) transaction management.
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OS Interface

The interface specifies functions that be used by the VM (or by any other potential native

application). They can be largely grouped in the following categories.

• Communication

The OS Layer provides functions (read capdu and send rapdu) to send and receive

APDU messages. The function can be called in blocking mode.

• Memory Management

The OS Layer provides function quite similar to the memory management func-

tions provided by the C standard library. The available functions can allocate and

free memory areas of arbitrary size (as long as enough memory is available), either

in persistent (jcos malloc persistent and jcos free persistent) or transient

(jcos malloc and jcos free) memory area.

• Transaction Management

The OS Layer provides a rollback buffer which can be filled by calling record

transaction and supplying a memory area. When a transaction is finished, call-

ing commit transaction will make the changes permanent. Calling rollback

transaction will restore the the values present at calling record transaction.

Core OS Modul

This modul (os layer.c) takes over control from the HAL. It calls the initialization

functions of the other modules. When the whole OS Layer is ready it hands over control

to a native application (usually the VM).

Communication

This modul (comm.c) converts the byte stream received from the HAL interface to APDU

a message (byte array). It also takes a whole APDU and transfers it byte wise using the

HAL interface.

Memory Manager

The Memory Manager (memm.c) maintains a table for the transient and the persistent

memory area. As these areas differ only in start and end address, the same data structures

can be used (see Table 3.1).

To reduce memory segmentation the memory manager tries to recycle freed memory

segments. When a segment is freed it’s marked as inactive. If the requested segment fits

in an inactive segment, the segment will be reused. The surplus memory (if there is any)
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memm entry s

Var Name Type Size (bytes) Remark

state enum platform specific EMPTY, ACTIVE, INACTIVE

length uint8 1
data byte array length

Table 3.1: Data struct for memory memory entry.

remains unused. An optional feature will be defragmentation which will be invoked when

a requested segment exceeds the size of continuous memory available.

Transaction Manager

The transaction manager maintains a fixed size buffer (the size of this field also defines the

commit capacity) to store the original memory state. When a transaction is committed

the buffer is cleared and nothing else has to be done. When a transaction is rolled back

the transaction manager goes through the field and writes the values stored in the buffer

to the associated memory areas.

transm entry s

Var Name Type Size (bytes)

ptr platform independed pointer platform specific
length uint8 1
data byte array length

Table 3.2: Data struct for transaction memory entry.

The records are organized using C structs (see Table 3.2) and stored continuously in a

byte array. When a new record is added the transaction manager traverse the buffer from

the beginning and checks if the specified memory is already buffered (same position and

size, overlapping areas are treated as new ones).

The byte array is operated as a stack and grows towards its start address. In case of

a rollback, the first entry is processed at last. This ensures that memory is restored to its

original state as older records overwrite newer ones.

3.2.3 VM Layer

This layer implements a Java Card VM. It uses, aside from programming language built in

functions, only functionality provided by the OS Layer. It provides all interfaces required

by the Java Card specification. The implementation is divided into modules which are

loosely coupled. The public functions of a module are declared in the common header file
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(jcvm.h). This header file also defines data structs which are used all over the VM layer

(e.g.. structs to maintain class instances).

Core VM

This module (source file jcvm.c) implements the main functionality of the Java Card

VM. It contains the dispatch loop and holds all the VM’s runtime data (see Section 2.2.2).

Other modules are initialized and provided with helper functions by this module. The OS

Layer starts the VM by calling a function (start VM) of the core VM module.

Bytecode Interpreter

This module (source file bcode.c) implements the interpreter functions for the Java Card

byte codes. It provides a static array of function pointers which can be used to call

interpreter functions by their index. Interpreter functions always exit with a result code.

This code indicates if the instruction was executed correctly, further treatment by the

core VM module is needed (eg. in case of return statements) or if an error occurred (eg.

unsupported instruction or internal error). The byte code interpreter module is stateless,

it uses only local variable inside functions.

Object Manager

The Object Manager (objm.c) is responsible for dynamically created objects (class in-

stances and arrays) and static fields. He creates, initialize and provides function to access

these objects and fields. Internally the three different kinds of objects are administered

by specific C structs (see Section 3.3 for arrays and class instances, static field image is

included in the CAP file struct).

Arrays can be created (new array) with a given size and type. Individual elements can

accessed (get and set functions, * array field) using the index of the element. Class in-

stances can be created (new class instance) and instance fields can be accessed (get and

set functions, * instance field), both by using an index into the Constant Pool Compo-

nent (pointing at a CONSTANT Classref info or a CONSTANT InstanceFieldref info el-

ement). Static class fields are initialized (init static field) using the Static Field Com-

ponent of the respective package and accessed (get and set functions, * static field) us-

ing an index into the Constant Pool Component (pointing at a CONSTANT StaticFieldref

info element).

Java Card Runtime Component

This module provides the functionality defined in the Java Card Runtime Enviroment

(JCRE) specification [25]. It basically consists of two parts, a set of Java packages and
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a C source file (jcre.c). The Java packages serve as front-end, which can be invoked by

an applet, and will be included as CAP files. This module is described in more detail in

Section 3.4.1.

Package Loader

This module (source file package loader.c) allows to access information stored in the

CAP file in a convenient way. It resolves references from the Constant Pool Component

of the CAP file into structs for methods, fields, etc.. Structs to access CAP information

are defined in a header file (cap data structs.h) which is also part of this module.

3.2.4 JCEP Lib

The files falling under this term are not really a distinct module. They are more a sort of

library and language extensions to aid the goal of platform independence. The header file

jeep common.c defines various data types, which behave similar across different platforms

(regarding size and numerical representation). Only primitive datatypes which are used in

everyday programming (e.g.. pointer or signed numerical) are defined, no special purpose

structs. The file will be included in all source files of the project.

The source file jcos lib.c defines a rudimentary standard library to be independent

from libraries supplied by the development environment. These functions are declared in

the header file described above.

3.3 Data structs

Beside the system architecture, data formats, which are used to store information during

execution, are a major design decision. In the following we will describe the most prevalent

of them in more detail. We will implement them using C structs or unions. Several of

them are shared across multiple modules, mostly in form of pointers.

3.3.1 VM Value

VM variables of all types (byte, short, reference) are stored in an union (called value u)

consisting of the respective C data types (8- and 16-bit integer and pointer). The union

ensure platform independence as the size of a pointer varies across different platforms.

3.3.2 VM Frame

The VM frame, which is used to store runtime information, is represented using a struct

called vm frame s. We already introduced it for Java SE in Section 2.2.2. Java Card uses
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only a subset of the frame elements from Java SE. On the other side we will add some

elements to the VM frame, which we think are are closely related to the currently executed

method, like the current context.

Table 3.3 shows and explains the content of the VM frame used in our implementation.

local vars and op stack reference to the same memory area. Local variables and the

operand stack can be placed in the same memory area in interleaved form as the length of

both is known at compile time. Before a method invocation, arguments are pushed onto

the stack and can subsequently be used as local variables.

vm frame s

Name Type Description)

local vars value p local variables used inside a method
op stack value p operand stack used inside a method
op stack base value p base pointer for operand stack
vm pc ptr byte code program counter
current cap cap file p CAP file this method belongs to
current context cap file p currently active context (specified via package)

Table 3.3: Data struct for a VM frame.

3.3.3 VM Method

This struct represents a method which can be executed by this VM (see Table 3.4). The

fields are extracted from the Method Component of the CAP file. Arguments and the

return values are communicated through the operand stack.

method s

Name Type Description)

max stack value p stack size, read from CAP file
flags value p method flags, read from CAP file
max locals cap file p number of local variables, read from CAP file
nargs cap file p number of arguments, read from CAP file
bcode ptr pointer to byte code

Table 3.4: Data struct for a method. It contains all information the VM needs to execute
it.

3.3.4 VM Object

This struct stores field values and meta data of a class instance or arrays (see Table 3.5).

Meta data include the type (class object or primitive/reference type array), the length,
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the owning context and a number of flags. Field values can be an array of a specific type

or the fields of a class instances. In the latter case the field is of type value u.

obj s

Name Type Description)

type uint8 object type according to VM specs
field ptr pointer to class fields or array
length uint16 number of fields/array elements
cap cap file p type info (not used for primitive arrays)
cinf class info p type info (not used for primitive arrays)
context cap file p owning context
super obj p pointer to super class (only for class instances)
flags obj flags access flags

Table 3.5: Data struct for dynamically created VM objects.

3.4 Runtime Features

This section will describe some concepts for requested and more sophisticated features in

more detail. It should be seen as an extension of the previous section. As the following

features need support from multiple components they don’t fit in the structure we used

to explain the system architecture. Instead we will portion them in appropriate groups,

state the requirements and show there and how they will be implemented.

3.4.1 Native Extensions

Requirements

Java Card provides rich functionalities for applets running on a smart card. The JCRE

specification requests a set of mandatory features, which we already introduced in Sec-

tion 2.3.4. A Java Card implementation must support them to comply with the Java Card

specification. Some of this features are transparent to applets, but most of them have to

be accessed through a set of Java classes.

Some methods in this libraries need access to VM resources which aren’t exposed to

usual applets, like access to I/O ports (included in javacard.framework.APDU) or to

control transactions (included in javacard.framework.JCSystem).

Concept

To fulfill these requirements we will split this functionality into two parts. One part will

be implemented in Java (in multiple packages aka CAP files) and the other part will be
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implemented in C (source file jcre.c). The structure and the way how method/function

calls are forwarded can be seen in Figure 3.2.

Classes and methods which don’t need access to any special resource will be imple-

mented straight forward in Java. This includes interfaces, abstract classes and methods

that do only computation on VM data types. They are converted using the export files

delivered with the Java Card Development Kit (JCDK) to be binary compatible with

existing applets.

Methods which need access to VM intrinsics have at least a Java proxy method. To

switch to the native context, the JCRE method calls a corresponding static method in class

jcep.Native. This will trigger the VM to execute the invokestatic byte code which

can be intercepted. The VM will recognize an invoke on the classjcep.Native. This class

doesn’t contain any code, all methods are only stubs. We decided to introduce a second

layer of static methods (the JCRE classes already consists mostly of static methods) where

we can intercept method calls, because it makes the interception of method invocation

much easier. Due to this we don’t need to mark individual methods as native, instead we

only have to watch for attempts to access a certain package.

The VM launches the byte code execution through a special static method (CardMgr

.main). Before invoking this method, the initial VM frame is created. It holds the

base pointer to the mixed operand/variable-stack. When creating a new frame the stack

pointer will only be raised to reserve memory for local variables and the operand stack of

the invoked method.

3.4.2 Card Manager

Requirements

When (re)starting a Java Card device, a default applet is required to be active. It should

be capable of accepting the APDUs intended to select an installed applet. In the following

it should select the requested applet by invoking Applet.select and forward incoming

APDUs through calling Applet.process. In the case of selecting another applet during

a single session it should also call Applet.deselect.

Additionally this applet should serve as an entry point for byte code execution. To-

gether with the functions described in Section 3.4.1, it should serve as a connector between

the Java and the native environment.

Concept

In our implementation, the Card Managers (class path jcos.cardmanager.CardMgr),

together with some native helper functions (source file jcre.c), will do the above described

job.
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As a first step the OS Layer starts the VM by calling the C function start vm.

This function prepares the stack and hands it over to the initial method of the Card

Managers. In the following the Card Managers waits for an incoming APDU by calling

Native.readAPDU. This method triggers a call of the native function read apdu native

which blocks execution of the VM until a full APDU is received through the OS Interface.

The native function is supplied with a byte array, which is handed down to the OS Layer to

serve as a buffer for the incoming APDU. Through this arrangement, no further memory

or copying is needed.

The Card Managers maintains a list of all installed applets. When receiving an APDU,

intended to select an applet, the Card Managers looks for an applet with the requested

AID. If a suitable applet is found, the applet is selected using the methods defined in the

applet super class. Figure 3.3 shows the relations between applets, the Card Managers

and the other parts of the JCRE in a class diagram.

3.4.3 Transaction Management

Requirements

The Java Card platform supplies applets with a transaction mechanism. Applets can

modify multiple fields during a transaction and rely on the fact that either all fields

are modified correctly or all remain in their previous state. The amount of fields that

can be modified during a transaction depends on the buffer capacity of the transaction

mechanism. If a field is modified and the buffer is exceeded and the transaction is aborted.

Section 2.3.4 describes transaction together with other JCRE capabilities.

All features stated above only refer to persistent variables which include arrays, in-

stance fields and static fields. Local variables or the stack content are only temporary

variables which are always deleted after each session and therefor are not included in the

transaction mechanism.

Concept

Hereunder only a few byte codes (listed in Table 3.6) are critical for the transaction

mechanism. Every time one of these instructions is executed the VM checks if a transaction

is in progress (indicated through a global variable . In that case the transaction record

function of the OS Layer is called and supplied with the appropriate memory location (see

Section 3.2.2 for interface definitions and implementation).

Commits and rollbacks can be initiated through the class API. Automatic rollbacks

will be initiated on deselecting an applet, when an uncaught exception occurs or on power-

on-reset.
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Byte Code Description

<t>astore store a single element in an array
putfied <t> set instance field
putfied <t> this set instance field in associated object
putfied <t> w set instance field (using lager index)
putstatic <t> set static field

Table 3.6: This table contains byte codes which are critical for transactions. They mod-
ify fields in the persistent memory which must be restored to their original value if a
transaction is approved. <t> is a wildcard for a Java Card byte code data type. This
includes byte, short and reference (int is optional and we don’t support it in our
implementation).

As all read and write operations to dynamic (and thus also persistent) objects are

handled by the Object Manager we will intercept write attempts there and record the

original values using the transaction mechanism of the OS interface.

3.4.4 Applet Firewall

Requirements

We already introduced the minimal requirements for the Java Card firewall in Section 2.3.4

and explained how applets are separated using a package specific context. In sum, every

object gets assigned a context and byte codes can only access objects assigned the same

context as the current one.

To allow useful information exchange (and complicate the implementation) several ad-

ditional rules exist. First there are a number of exception to the general only-same-context

rule. The JCRE, as it has a similar role as an OS, can access objects regardless of their

context. This is necessary to invoke applets and deliver APDUs (calling Applet.process).

Arrays and interfaces can be marked as global (calling JCSystem.makeGlobalArray) re-

spectively shareable (implementing the interface javacard.framework.Shareable), which

also means they can be accessed from any context. At last also public methods of the

JCRE (called Java Card RE Entry Point Objects) can be invoked from any context, as

they are indented to be used by all applets.

Another rule which has to be enforced by the firewall regards Temporary Java Card

RE Entry Point Objects. This are objects, belonging to the context of the JCRE, which

cannot be stored in persistent fields (class instance fields or static fields).
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Byte Code Description Check for

getfield class instance field access context
putfied class instance field access context, temporary entry point obj
invokevirtual method invokation context, context change
invokeinterface method invokation context, context change
throw exception handling context
<T>aload array value access context
<T>astore array value access context, temporary entry point obj
arraylength array meta data access context
checkcast class instance meta data access context
instanceof class instance meta data access context
putstatic class static field access temporary entry point obj

Table 3.7: This table shows byte codes which are critical to enforce firewall rules. De-
pending on the specific byte code different rules have to be enforced.

Concept

As mentioned before, the foundation of the firewall is the context each object gets assigned.

The context is stored in the object struct (field context in obj s). The currently active

context is assigned to the newly created object (byte code new for class instances and

new array for arrays). The current active context is stored in the VM frame (vm frame s)

and is usually inherited from the calling method. An exception would be if a method of

an shareable interface or if a public method of the JCRE is invoked. In this case the next

active context would be the context of the object the invoke is executed on (or the JCRE

context which all JCRE classes share).

To enforce the firewall rules stated above, certain byte code have to check if the re-

quested operation is allowed. Table 3.7 shows all relevant byte code and checks which

have to be done. Most prevalent is to check if an accessed object has the same context

as the currently active one. In the case an object of a different context can be accessed

(invoking a method) a context change has to be initiated. The permission to perform a

context change is controlled by the flags in the object struct.

Another check that has to be performed is for temporary entry point objects. The

present of such an object is also indicated by a flag (temp epo). This checks will be

performed in the respective byte codes (maybe together with helper functions).
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3.5 Software Tools Selection

This chapter will discuss some tools we consider to use in our work. We will separate them

in two parts, first we will discuss some tools we will use to implement the specification

and design goals. Afterwards we will introduce tools to check the correctness of our

implementation.

3.5.1 Development Tools

The tools used for developing have a huge impact on how portable a SW is. The most

important ’tool’ is the programming language. A programming language, if chosen with

care, will do most of the work to abstract the underlying platform. As we work mostly

with embedded platforms, it is obvious to use C as the language of choice. To ensure

compatibility with different compilers we choose to use a quiet old revision, namely C902.

As C is intended for very low level programming some extensions are necessary to use

it as a platform independent programming language. Most of the language features will

work similar across very different platforms, from 64-bit CPUs with GBs of RAM down to

8-bit CPUs with only a few KB of RAM. This holds for all control flow statements such as

if conditions or loops. More difficult are data types as their size can vary across different

compiler implementations and also byte ordering (endianes) isn’t covered by C.

To overcome this limitations we introduced custom extensions (data types and li-

braries) to the standard C. They will be supplied through the Common module. They

can be largely grouped as followed.

• Custom Data Types

To ensure the same behavior across different platforms (compilers) we will define

custom primitive data types for signed (intX) and unsigned (uintX) numerical val-

ues. They are available with 8-bit, 16-bit and 32-bit size. We also define a pointer

to a byte field (ptr).

• Custom Library

For portability and also memory efficiency we won’t link a large library into our

project there we only need a few functions. Instead we chosen to implement them

in project specific library (jcos lib.c). This library will supply basic functions like

copying or comparing memory areas.

• Keywords

Different compiler also use different keywords for example for packed structs. This

2Standardized as ANSI X3.159-1989 ’Programming Language C.’. As the standard has been withdrawn
and replaced with a newer one we used [26] as reference.
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keywords will be supplemented with generic expressions in the source code and the

final expression will be defined in the common header file.

Some of this extensions will have to be adapted to each platform or compiler. Whereby

they are more dependent on the compiler implementation then on the target platform.

Multiplatform compiler such as GCC will need less or even no modification. In contrast

a different compiler for the same target platform (e.g. x86 running Linux can be targeted

with a lot of different compilers) may also need modification.

3.5.2 Test Framwork

To ensure the correctness of our implementation we will provides separate test cases for

layers, modules and interfaces. This method is called unit testing. A lot of test frameworks

support unit testing for different languages. We decided to use googletest, which is a C++

framework, but can integrate C code.

googletest organizes SW tests in test cases. Individual tests can be defined by using

the C++ macro TEST(test case name, test name). The first parameter specifies the

name of test case and the second parameter the individual test. Inside of such a test two

different types of assertions are possible. ASSERT * aborts the current function if it fails,

whereby EXPECT * continuous execution even in case of a failure. Both exist in various

forms for binary comparison (equal, greater, lower etc.) or to test for boolean values

(TRUE,FALSE).

To initialize and reuse a test environment, tests can be assigned to a test fixture (using

macro TEST F(test case name, test name)). To initialize the test fixture the test case

name has to be the name of a class which inherits from ::testing::Test. This class has

to be defined before the first test and can initialize and cleanup the environment using

the class constructor/destructor or implementing the methods SetUp() and TearDown().

Although this allows the developer to reuse a test environment, the class instance isn’t

shared across different test. Every time TEST F is invoked a new environment object is

created and changes made in tests aren’t preserved.

The googletest framework invokes all test cases defined by the macros described above

and prints the results (see Figure 3.5). In the case of an error additional information is

printed. The developer can implement it’s own main function or the use one supplied by

the framework.
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3.6 Summary

In this chapter we presented our approaches for implementing a Java Card VM. Before

presenting our ideas for the implementation we described the predefined design goals in

Section 3.1.

In the following we described the system architecture in Section 3.2. We proposed

a three layer design with lean interfaces between the layers. Only one layer (the HAL)

should contain platform specific code, the other two should be HW independent. The well

defined interfaces allows to easily exchange a layer.

In Section 3.3 we described the data structs used for representing VM internals. This

includes a simple C unit to treat the different VM data types and more complex structs

to handle VM frames, methods and dynamic objects (class instances and arrays).

Section 3.4 looks at some more sophisticated features, for which the description don’t

fit in the previous sections. They are all related to the VM layer but are distributed over

multiple modules or layers. This includes the native libraries, the transaction mechanism

and the applet firewall.

At last, in Section 3.5, we anticipate a short description of the tools we will use during

implementation. As the development tools have a strong influence on the outcome we

regarded it necessary to address this topic hear. We presented programming language and

the test framework we will use, namely C90 and googletest.
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Figure 3.1: This figure shows the layered architecture of the system and the modules inside
a layer.
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Figure 3.2: This figure shows how library methods are called. Applets can invoke methods
in the JCRE Java part in the same way as invoking methods in any package. The JCRE
Java part uses native binding to invoke a C functions in jcre.c, which can subsequently
access all VM resources via C function calls.
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Figure 3.3: This figures shows the Card Manager and a part of the JCRE. The Card
Managers maintains a list of all installed applets. Every applet (see examples) must be
derived from class javacard.framework.Applet. The Card Manager forwards incoming
APDUs to the Applets. Applets can use the native functions through the JCRE classes.
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Figure 3.4: This figure shows the toolchain workflow. The hardware independent code (OS
Layer and Java Card VM) is supplemented with the hardware dependent code (the specific
HAL implementation). This servers as input for the compiler suite. Some compilers (like
GCC) support multiple platforms. The generated binary can the be deployed on a HW
platform either with or without an OS.

Figure 3.5: This figure shows a sample output from googletest. The output on the right
sight shows a test run with all tests succeeded. On the left side the side is the output with
an error. googletest supplies additional information like the name of the test case and the
line number.
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Implementation

This section will describe the major aspects occurred during the implementation. First

we will describe the tools we used and why we used them. Afterwards we will show how

some use cases are handled. At the end we will describe the test cases we will use to show

the correctness of our implementation.

4.1 Development Tools

In this section we will describe the tools we used for our implementation. We already gave

an outlook to the development tool we would use in Section 3.5. Now we will extend the

description with additional tools we selected during the implementation process.

4.1.1 Eclipse

Eclipse started as a closed source IDE developed by IBM. Today it’s a platform for a broad

range of software products. This includes IDEs for many different languages including the

Java Development Tools (JDT) and the C/C++ Development Tools (CDT). Eclipse also

provides a foundation for non-IDE applications, called the Rich Client Platform. The

wide field of applications is made possible by an architecture where nearly everything is

a plugin, even the JDT is not privileged in comparison to other programming language

plugins. [27]

The development of Eclipse is overseen by the Eclipse Foundation. It is a non-profit

organization which is funded by its members (include companies like Google, Novell, IBM

and many more) and led by a Board of Directors. [28]

We used Eclipse together with the CDT throughout the implementation and the JDT

for parts of the JCRE. We chose Eclipse because of its code editor (includes live code

competletition and checking) in general and its good support for C.

48
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4.1.2 GCC

The GNU Compiler Collection (GCC) is a set of compilers for multiple programming

languages including C/C++, Objective-C and ADA. GCC can produce machine code

for different processors. Language dependent parts are called front-ends while processor

dependent parts are called back-ends. [29]

The prevalence of the GCC on a wide array of target platforms and for different

input languages let us chose it as the main compiler for development. The C front-end

also provides a strict mode (compiler argument -std=c89) to enforce the use ANSI C

compatible (see Section 3.5) input code.

4.1.3 Netbeans

Netbeans is a Java based IDE and supports development in different programming lan-

guages. Among them are most notable Java but also PHP and C/C++. It can be enhanced

with plugins, for example to build Java Card applets directly within the IDE. Altogether

Netbeans is comparable to Eclipse. [30]

We used Netbeans, in addition to Eclipse, because of the better support for Java Card

development. We didn’t found a comparable Java Card development plugin for Eclipse.

4.1.4 Java Card Development Kit

The JCDK is provided by Oracle for developing Java Card applets. It contains a converter

tools which transforms Java class files into CAP files and a simulator to test these applets.

The export files (see Section 2.3.3) of the JCRE classes are also included and can be used

to implement a custom but compatible JCRE. [31]

We used the JCDK to convert our JCRE classes together with the supplied export

files and to convert our test applets.

4.1.5 codavaj

codavaj is freely available (under Apache License V2.0) reverse engineering tool to convert

JavaDoc into Java source files including class definitions and method stubs. It supports

Java 6 including Generic and Annotations. [32]

We used codavaj to generate class definitions and method stubs for the JCRE classes.

This not only saves as time for rewriting the class definitions by hand but also eliminates

transcriptions errors.
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4.1.6 Keil

Keil is a set of SW tools for developing embedded systems applications. It include the

IDE uVision, compilers for different processors and a debugger/simulator. The compiler

for 8051 processors is termed C51. [33]

We used Keil uVision to port our implementation to a 8051 compatible platform.

4.2 Test and Analysis Tools

In this section we will describe tools we used to verify the functional and non-functional

requirements.

4.2.1 googletest

googletest is a testing framework based on xUnit (which is derived from JUnit). We

already described it’s capabilities in Section 3.5. [34]

We used googletest to for unit testing of our implementation. This should help us to

avoid general programming errors. It will be of limited use for integration tests on different

platforms as it’s not intended for embedded systems (googletest needs a C++ compiler

which is not always available).

4.2.2 Cyclomatic Complexity Analyzer

This tool can be used, as the name already implies, to calculate the Cyclomatic Complexity

(CC) for a complete source code directory. Additionally it counts the Lines of Code (LOC)

per function. The obtained information can be exported to a CSV file.

We used the Cyclomatic Complexity Analyzer for the analysis of our source code

regarding the complexity and volume. This values can be used to validate some of our

design goals.

4.3 Use Cases

The following section will describe some major use cases and operations of our implemen-

tation. In contrast to Chapter 3, which focused on static properties like modules and data

types, this section will deal more with dynamic data and execution flows.

4.3.1 VM Initialization and Startup

This use case will describe the steps needed to launch the byte code execution and to

invoke a main function. At the beginning the runtime data area for the VM has to be
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initialized. We decided to organize this data in two stacks, one for the VM frames and

another one for local variables and operands.

For each invoked method, a new frame is pushed on the first stack. The frame contains

all meta data of the current executed method and references to the second stack. For a

detailed description see Section 3.3.2.

The second one contains the local variables, including the arguments of a method,

and the operands. Arguments are treated like local variables and are placed before the

operands. This enables handing over arguments without copying them to another memory

locations. Instead, in the new VM frame, the reference to the local variables is set to the

location in the stack where the first argument was placed. The invoked method is allowed

to change them because all local variables are removed from the value stack when a method

returns. The structure of the two stacks and links between them can be seen in Figure 4.1.

To start up the VM, we first initialize the above described stacks by calling the function

init VM stack. Both stacks get assigned a fixed size area in the transient part of the

memory. The maximum stack size can be adjusted to specific platforms using the two

constants MAX VM FRAMES and MAX VALUE STACK. The VM stack is further initialized by

pushing a frame on it which references the base of the value stack.

VM Frame Stack local vars

operands

...

local vars

operands

...

main

methodX

methodY

...
Args + local vars methodX

operands 
methodX

args 
methodY

operands methodX

VM Frame Value Stack

Figure 4.1: This figure shows how the runtime data is organized. The VM frames reference
the value stack, on which local variables and operands are stored interleaved. The operand
area of the calling method and the local variable area of a called method overleap enabling
the called method to access arguments, pushed on the stack before right before, without
copying them to a new position.
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start_vm Ini_vm_stack get_main_method run_method

load_packages Install_applets

JCRE uninitialized

JCRE initialized

Figure 4.2: This figure shows the activities needed to start byte code execution. Names
in the rectangle are the appropriate C functions.

If not done in a previous session, packages are installed using the function load packages.

Present packages are added to a global list (variable installed packages of type struct

cap container s), which is serving as a container for all packages available on the sys-

tem. If a package define one or more applet (indicated by having a Applet Component),

install applet is called. This function retrieves the install method and executes it using

the functions load method and run vm with the currently installed package as context.

The first method to be executed is always CardManager.main. It is a static method

with no arguments located in the package of the Card Manager. Public static methods

can be retrieved using the class and method token and the export component. The to-

kens for the main method are supplied through the constants CLASS TOKEN CARDMGR and

METHOD TOKEN CARDMGR. The function get main method performs a lookup the CAP file

of the Card Manager. The package is accessed through its index supplied by the constant

CAP INDEX CARD MGR. In the final step the main method is executed in the same way as

the install methods but using JCRE context. Figure 4.2 shows the particular steps needed

to to startup the VM.

4.3.2 Method Retrieval and Invocation

Since Java provides object oriented programming on byte code level, including inheritance

and overriding, the invocation of a method invocation can request different amounts of

lookups. Java Card provides different byte codes for different kinds of invocation (see

Table 4.1). Depending on the used byte code and the requested method, an invocation

can lead to multiple runtime checks and lookups.

Regardless of the type of invocations, once the meta data and the byte code of a method

are retrieved the same process to execute a method can be used. All arguments, including

the this reference, are pushed on the stack. In the following the byte code interpreters
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calls the function load method and supplies all retrieved data as a method s struct (see

Section 3.3.3). Inside this function a new VM frame is created (see Section 3.3.2) and the

dispatch loop continues with the first byte code of the invoked method.

Byte Code Method Properties Possible Lookups

invokestatic static external package
invokevirtual non-static, non-private external package, implementing class
invokespecial private or super external package, implementing class
invokeinterface defined in an interface external package, implementing interface + class

Table 4.1: This table shows the different byte code for invoking a method. Depending on
the byte code different lookups may have to be performed.

In the following we will look at the different cases. Starting with the most simplest one,

the invocation of a static method, up to the most complex case, the lookup of an interface

method. Figure 4.3 shows an outline of how different invoke commands are handled.

Static and Private Methods

Methods which are declared static or private can be retrieved with the least effort as they

can be identified at compile time. The Java compiler and the Java Card converter supply

the exact position of the method byte code in form of an offset into the method component.

The Package Loader doesn’t need to perform any lookup in the class hierarchy. They

method may be implemented in a different package (stored in a different CAP file). If

this case happens, the Package Loader has to perform a lookup for the requested package

given its AID.

For invoking a private method a class instance has to be supplied and is handed over

to the method as first argument. Static methods can be invoked without an class instance.

Virtual Methods

Virtual methods are usually the most prevalent type in Java since every method which is

not assigned any special attribute is a virtual method. Virtual methods can be overridden

multiple times in sub classes. Since the type of a reference and the type of the referred

object may not be the same, the runtime has to perform a lookup for the requested method.

For this purpose the class hierarchy is traversed upwards starting at the object type. If

matching method is found in the object type or in any of its superclass, this method will

be used. If no overriding method is found, at least the call of the reference type must

implement the requested method.

Due to the more complex method retrieval, developers of Java Card applets are en-

couraged to use static methods when possible.
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bc_invokeinterface

bc_invokevirtual bc_invokestaticbc_invokespecial

get_static_method

helper_invoke_instancetoken
object

token
object

token

get_interface_method get_virtual_method

get_method

load_methodrun_method

token

interface token

offset offset

meta data
byte code

VM frame

token

Figure 4.3: This figure show the processing of different invocation byte codes. Arrows
indicate information flow (not control). Tokens denote logical data (e.g. index in table),
whereby offset stands for a physical address inside a CAP.

Interface Methods

References can also be of type interface. Interfaces are pure abstract classes which do

not implement any methods. In Java, classes can implement multiple interfaces which

supports some kind of multiple inheritance, normally forbidden in Java. This feature

makes the retrieval of an interface method quite complex. First the implementing interface

has to be determined by traversing the class hierarchy upwards and looking for a class

implementing the interface of the reference type. Given a class hierarchy with one or more

superclasses, the same interfaces can be implemented by more than one class. In this case,

subclasses override interface methods being already implemented in a superclass. When

the implementing class is found, the interface method can be matched to a virtual method.

It may be necessary to perform a lookup for the virtual method in the way we already

described above.

Due the large overhead when invoking an interface method, this should be avoided by

developers whenever possible.
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4.3.3 Applet Selection and APDU Processing

Java Card applets communicate with the external world using APDUs. We already ex-

plained them in Section 2.3.1. In the following we will show how APDUs are processed

through the layers and in the VM. We will also show how APDUs can be used to select

an applet.

HAL OS Layer jcre

NativeCardMgr

Applet 1

Applet 2

HW

process Method
APDU Object

process Method
APDU Object

HW 
depentand

receive_byte_IO
send_byte_IO

bytes

read_capdu
send_rapdu

APDU
(byte array)

APDU
(byte array)

read_apdu_native
send_apdu_native

readAPDU
sendAPDU

APDU
(Java byte field)

Java

Native (C)

Figure 4.4: This figure show the steps how an APDU is processed, starting at the under-
lying HW, through the HAL and the OS layer, up to the VM. The incoming bytes are
assembled to an APDU, stored in a byte array and included in a Java object.

Forwarding APDUs

In the lowest layer, the HAL, APDUs are received as single bytes. This can be done

in quiet different ways depending on the underlying HW. Some platforms for example

may provide library functions like getchar or similar ones. On other platforms the I/O is

maybe memory mapped or has special CPU instructions. The same assumptions hold for

outgoing data.

Regardless of how the I/O data processed by the HW, the HAL will offer functions to

send and receive single bytes. At this point there is no cohesion between the processed

bytes. The first interpretation of I/O data is done by the OS layer. In this stage, the

individual received bytes are arranged to an APDU. The other way around, when sending

an APDU, would be to disassemble an APDU and transmit it byte per byte.

The OS layer is expected to wait until a full APDU was received (or was sent). When

the complete APDU is placed in a byte array we specified before, the control is handed

back to the VM. The mentioned byte array is the same used as buffer in the APDU

object (class javacard.framework.APDU), so the APDU is already stored in a memory
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area which we can be accessed by Java code. All processing steps of an APDU, from HW

to Java byte code, are shown in Figure 4.4.

CardMgr.main Native.readAPDU

byte field

Applet.select Applet.process Native.sendAPDU

APDU obj

byte field

APDU obj

Figure 4.5: This figure show the call sequence for selecting an applet.

Selecting an Applet

When receiving an incoming APDU, the JCRE forwards it to the currently selected applet.

After starting up a Java Card device, the selected applet is always the Card Manager (also

called default applet). The CAD can select another installed applet by sending a special

APDU, described in Table 4.2.

Field Value

CLA 0x00
INS 0xA4
P1 0x04
P2 0x00
LC AID length

Data AID

Table 4.2: The table shows the content of an APDU thought to select an applet.
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The task of applet lookup and selection is done by the Card Manager. Every incoming

APDU is checked if it contains an applet selection. In this case the Card Manager invokes

Applet.deselect on the currently selected applet. In the following the received AID is

checked against all installed applets and if a fitting applet is found, Applet.select is

invoked on it. Anyway the received APDU is forwarded to the selected applet by invoking

Applet.process. Figure 4.5 shows the procedure of selecting an applet and forwarding

an APDU.

4.4 Test Cases

The following section will describe the test cases we used to verify the correctness (and

compliance) of our implementation. We will use layer tests, which tests the functionality

of an entire layer, and module tests. The tests are constructive, for example we will test

the OS Layer with an already tested implementation of the HAL. Module tests will also

be constructive to avoid simulating behavior of all other modules when testing one.

4.4.1 HAL Test

Functional testing of the HAL is difficult because the HAL is tailored for each platform.

Due to this circumstances, meaningful testing of a HAL implementation can only take

place on the target platform the implementation was designed for. To be able to test on

a wide variety of target platforms we foresee the use of a testing framework which needs

a C++ compiler. Instead we provide a test module in a single C source file (hal test.c)

which tests the two basic functions of the HAL: memory allocation and communication.

The test case includes the following tasks:

• Startup and Hello World Message

The test module is started by the HAL and tries to message through the outgoing

channel. If this message is not printed, the HAL was not able to boot or to launch

any further execution.

• Communication Test

The test module examines the ability of the HAL to communicate through incom-

ing and outgoing channels. Characters received through the incoming channel are

forwarded (echoed) to the outgoing channel without any modification. This should

prove the ability to receive and send data correctly. The input and the output data

can be compared outside the HAL under test to ensure a faultless communication.
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• Memory Access Test

The test module tries to access the entire memory the HAL grants him and fills

them with number according to different patterns. The transient memory is byte

wise filled with increasing numbers starting from 0 to 255 and the persistent memory

with decreasing numbers from 255 to 0. When the range is exceeded counting starts

at the initial value. After both memory areas are filled with numbers according to

a different pattern they are read again and checked for errors. If a number was not

written or was written in the wrong memory area the patterns support detection of

the error.

To run the HAL test, the project has to be built with the preprocessor flag TEST HAL.

When this flag is present the HAL implementation should start run hal layer test in-

stead of start os. To ensure correct handling by the HAL implementation the definition

of start os is removed from the HAL interface when the flag is present.

4.4.2 OS Layer Test

This test case should verify the correctness of the OS Layer. Due to the OS Layer doesn’t

access platform functions directly, it can be tested independently from the target platform.

The OS Layer will use the HAL implementation for X86, which will be tested before

using the test case stated in the previous section. To organize the tasks of this test case

we will use googletest which we already introduced in Section 3.5.2.

The test case includes the following sub tests:

• Memory Management

This test will check the ability of the OS Layer to organize the memory. First

memory areas with different size are reserved, using the function malloc of the OS

Inteface, until the memory has exceeded. The memory areas will be filled with the

same pattern used in the HAL test: increasing numbers in each byte, wraping around

when number space exceeds. In the next step the patterns are checked for errors

which will occur for example if reserved memory areas overlap. In the following all

previous reserved memory areas are freed and tried to reserve again.

• Transaction Management

This test will check the ability of the OS Layer to undo modification recorded during

a transaction. For this purpose several memory areas are reserved using the malloc

function of the OS Interface. The memory areas are initialized with specific values

for each area. In the following a transaction is started by labeling some areas as

part of the transaction (using function record transaction). Modification of these
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areas should be reverted when calling rollback transaction or made permanent

when calling commit transaction. Both cases are verified by the test environment.

• Communication

This test will check the ability of the OS Layer to correctly parse an incoming

APDU and to disassemble an outgoing APDU and transmit it byte wise. The in-

coming APDU is provided by the test environment and transmitted using the x86

HAL implementation. The test environment will receive the APDU through the OS

Interface and echoes it through the same (only the data). The test environment will

compare both to check if any errors occurred during transmission.

Due to the fact the used test environment needs a C++ compiler, the OS Layer

and the HAL are compiled separately for this test case. The tasks of this test case are

implemented in os layer test.cc. The test environment doesn’t need to declare a main

function because googletest is able to find all test cases through the used macros.

4.4.3 Package Loader Test

In contrast to the layer tests described above isolation of the VM modules is not that easy.

The unit tests described bellow sometimes have to use functionality of other modules which

aren’t explicitly targeted in that test case. In this case we will try only to use functionality

which was checked before by another test case or we will provide mockups.

• Constant Pool Access

This test will perform a lookup in the Constant Pool Component of the first package

and tests if the item can be parsed correctly. The item is specified by its index. The

function under test is get constant pool info.

• Method Lookup by Offset

This test will verify if a method can be parsed correctly into a method s struct (see

Section 3.3.3). The method is specified by the offset and the containing package.

The function under test is get method.

• Static Method Retrieval

This test will check the ability of the module to lookup a static method. A static

method is specified by a Constant Pool Entry. It may requests a lookup for an exter-

nal package and parsing a method. The function under test is get static method.

• Virtual Method Retrieval

This test will check the retrieval of a virtual method. A virtual method can be

identified by the reference type, the object type and the method token. The test
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environment will provide a class instance struct which represents the Java object.

This test case involves a lookup in the class hierarchy of the object and a method

lookup. The function under test is get virtual method.

• Interface Method Retrieval

This test will check the retrieval of an interface method. The setup is similar to

test for virtual method retrieval expect the reference type is an interface. Through

that the test case also involves the lookup for the implementing interface. The result

should be again a parsed method. The function under test is get interface method.

The tests are implemented in package loader test.cc and are again organized by

googletest. The packages used for testing is jcos.testing and jcos.testing.extern.

4.4.4 Object Manager Modul Test

Due to the Object Manager uses functions of the Package Loader Test this test case has to

be performed after the testing the latter module. When the former test is finished we can

rely on correct behavior of the Package Loader module. The Object Manager performs

various operation on dynamic objects, like creating and accessing arrays or class instances.

The test case includes the following sub tests:

• Array Creation and Access

This test will perform the creation of Java arrays of different types. In the following

array access (put field and get field) will be tested. Due to object deletion is optional

and we do not support it, we also will not test it. The functions under test are

array new, array load and array store.

• Class Creation

This test will check the creation of a derived class, which includes the creation of

instances for all super classes. The resulting class also serves as input for the next

test. The function under test is new obj.

• Field Access

This test will check the field access for the previous created class. This will include

access to fields of the super classes. The functions under test are get static field

and put static field.

• Type Checking

This test will check the ability of the Object Manager to perform type checking in

dynamic types. This functionality is needed to perform save casts in Java and for

the instanceof operator. The function under test is check type.
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The tests will be performed on special test classes implemented in the package jcos

.testing. One class will have at least two super classes (including Object) and will

implement two interfaces at different stages in the class hierarchy.

4.4.5 Byte Code Module Test

The Byte Code Module has a vast number of functions but not all require automated

testing. A lot of the byte codes are arithmetic operations or simple stack manipulation.

Another large set of byte codes heavily uses the functionality of the other modules. All

these byte codes (and thus functions) have in common to contain very little code. In our

opinion, this condition reduces the need for automated testing as short code segments can

be easily checked by the programmer.

Nevertheless some function contain significant amount of code and are included in the

automated tests. They can be grouped as follows:

• Branch Statements

The Java Card byte code knows many different commands to control the program

execution. The available options range from an unconditioned goto command, over

jumps depending on various conditions to complex byte codes which reassemble

switch-case commands on byte code level. For this test we will check the program

counter after executing a branch control command.

• Invoke

Although most of the functionality to invoke methods is implemented in the Package

Loader, functions implementing the different invoke byte codes contain significant

amount of code. To ensure the correct behavior we will test the byte code functions

together with the Package Loader at this place.

To execute the above described tests, we will build up on the previously tested mod-

ules. In addition the test environment will provide a valid VM frame for execution (see

description in Section 3.3.2).

4.4.6 JCRE Test

This test case will cover functions of the JCRE Module which can be easily isolated. This

holds for most of the Java only part and for the implementation of the native methods.

The collaboration of the Java and the native part will be covered in the System Integration

Test.
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The tested functions/methods can be grouped as followed:

• Card Manager

The Card Manager is implemented in Java and accesses native functions through

jcos.Native. This test only covers the Java part which involves methods for regis-

tering and retrieving applets.

• Native Functions

These functions serve as the native backend for the Java method stubs in

jcos.nativebinding.Native. Their purpose range from simple manipulation of

native variables over communication handling to memory management. The test will

cover only functions with significant amount of code and will utilize the googletest

framework.

• Applet Installation

Installing applets involves a lookup in the associated CAP file and invoking a Java

method from a native context. These two tasks are essential capabilities which

makes them worth testing. The test environment will provide a package (CAP

file) containing an applet. In the course of the installation process the method

CardMgr.addApplet should be invoked. In this case the test has succeeded.

4.4.7 System Integration Test

This test case will examine the Core Module of the VM together with the other modules

and the underlying layers. We will use the reference implementation as the golden device.

The test environment will compare the response APDUs created by our implementation

with the ones created by reference implementation.

The individual tests will be some of the sample applets, which are contained in the JCDK,

together with a custom test applet.

• JCDK Hello World

This applet from the JCDK demonstrates the ability of our implementation to work

with APDUs (and also to execute byte code in general). The data of the command

APDU is read and echoed through a response APDU. The test succeeds then the

received data is identical to the data sent.

• JCDK Wallet

This applet from the JCDK represents an electronic wallet. The supported opera-

tions are to credit or debit the balance and to protect the wallet using a PIN. The

results will be checked against the results of the reference implementation.
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• Calculator Applet

This applet is part of our JCRE implementation and provides a Java Card bases cal-

culator. The applet is supplied with two operands and an instruction value to select

a mathematical function. The applet can calculate addition (INS=0), subtraction

(INS=1), power (INS=2) and factorial (INS=3). To demonstrate the object-oriented

features of the Java Card platform the calculator uses the command pattern. The

different calculations are all done by classes implementing the interface ICalc. The

process method selects a specific implementation and invoke the method calc,

which is defined in the interface.

The test applets will be compiled and converted, using the tools supplied with the

JDK and the JCDK, prior to running the test case. The test environment will contain

the byte code, command APDU and the reference response APDU to check for correct

execution.

4.5 Summary

This chapter dealt with the implementation of the concept proposed in Chapter 3. First,

in Section 4.1, we described the tools we used for the implementation and explained for

what purposed we used them.

In the following, in Section 4.3, we demonstrated the dynamic behavior of our imple-

mentation. We showed the major use cases and elaborated how they are processed. This

description of the dynamic behavior of our implementation should act as a supplement to

the description of the static architecture in Chapter 3.

Finally, in Section 4.4, we explained how to test our implementation. An important

aspect is, that test cases are constructive. To test the OS Layer we need a working HAL

implementation. To test the Byte Code Module, we need a woking Package Loader, a

working Object Manager module and working implementations of all underlying layers.

We will conform to this demand by testing the layers/module in the stated order. The

results of the test cases will be discussed in Chapter 5.
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Results and Evaluation

This chapter will present the results obtained during testing our implementation. First we

will look at tests of the functional requirements derived from the design goal Compliance

(see Section 3.1). The test cases were already described in Section 4.4. In the following,

we will look at the nonfunctional requirements, consisting of the design goals Portability

and Maintainability.

5.1 Functional Requirements

This section will show the test result derived from functional requirements of our imple-

mentation. The subsections are organized in the same manner as in Section 4.4. For each

test case described before, there will be a subsection in this section containing the results.

5.1.1 HAL Test

Below are the results of the test case we described in Section 4.4.1. The tests were

executed using a x86 executeable compiled with GCC and a 8051 executebale using the

Keil simulator. When running the test cases we linked C std lib to give more debug

information by using printf (preprocessor flag DEBUG).

<DEBUG>Starting JCEP on x86!

<DEBUG>HAL Test

DEBUG<hal-hal_test-run_hal_layer_test>: Testing HAL:

DEBUG<hal-hal_test-test_com>: testing communication (echoing input data)

0, a4, 4, 0, a, a0, 0, 0, 0, 62, 3, 1, c, 1, 1, 7f,

DEBUG<hal-hal_test-test_com>: block termination

80, 10, 1, 2, a, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, 7f,

DEBUG<hal-hal_test-test_com>: block termination

64
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DEBUG<hal-hal_test-test_com>: testing communication finished

DEBUG<hal-hal_test-test_mem>: testing memory management!

DEBUG<hal-hal_test-test_mem>: memory management test succeeded!

DEBUG<hal-hal_test-run_hal_layer_test>: HAL test finished!

<DEBUG>Shutting down x86 HAL!

Figure 5.1: This figure show output of the HAL test running on Keil. The input echoing
input is echoed

5.1.2 OS Layer Test

This test case is described in Section 4.4.2 and is executed using googletest. The source

code is located in os layer test.cc. The test case is named OS LAYER TEST. The result

can be seen in the googletest output.

5.1.3 CAP Access Modul Test

This test case is described in Section 4.4.3 and is executed using googletest. The source

code is located in os layer test.cc. The test case is named CAP ACCESS TEST. The result

can be seen in the googletest output.

5.1.4 Object Manager Modul Test

This test case is described in Section 4.4.4 and is executed using googletest. The source

code is located in os layer test.cc. The test case is named OS LAYER TEST. The result

can be seen in the googletest output.
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5.1.5 Byte Code Modul Test

This test case is described in Section 4.4.5 and is executed using googletest. The source

code is located in os layer test.cc. The test case is named OS LAYER TEST. The result

can be seen in the googletest output.

5.1.6 JCRE Test

This test case is described in Section 4.4.6. The native part is tested using googletest. The

source code is located in os layer test.cc. The test case is named OS LAYER TEST. The

result can be seen in the googletest output.

5.1.7 System Integration Test

In the following we will show the results of the test cases described in Section 4.4.7.

For each test case we show the input (command APDU) and the output data (response

APDU). All applets are selected by a special APDU described in Section 4.3.3. This

APDU will also be the first input. We added line number to ease reading.

JCDK Hello World

The following communications was generated by the Hello World applet running on our

Java Card Operating System (JCOS). The input consists of three APDUs. The first

APDU (imput line 1) will bring the Card Manager to select the applet but is ignored by

the applet itself. The result is the status word for normal execution ( 90 00 output line

5). Afterwards the applet receives two APDUs (input line 2 and 3) which are echoed and

trailed with a status word (output line 6 and 7).

Input (APDUs):

1: 0x00 0xa4 0x04 0x00 0x0a 0xa0 0x00 0x00 0x00 0x62

0x03 0x01 0xc 0x01 0x01 0x7F;

2: 0x80 0x10 0x01 0x02 0x0f 0x01 0x02 0x03 0x04 0x05

0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f

0x7F;

3: 0x80 0x10 0x01 0x02 0x00 0x7F;

Output (APDUs + debug messages):

1: <DEBUG>Starting JCEP on x86!

2: <DEBUG>Starting CardOS

3: <DEBUG>VM not previously initialized, 6 packages loaded
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4: <DEBUG>Start VM (card manager)

5: 0x90 0x0 ;

6: 0x80 0x10 0x1 0x2 0xf 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa

0xb 0xc 0xd 0xe 0xf 0x7f 0x90 0x0 ;

7: 0x80 0x10 0x1 0x2 0x0 0x7f 0x90 0x0 ;

8: <DEBUG>No further input data (APDUs), shutting down JCOS!

JCDK Wallet

The Wallet applet is bundled with the JCDK and simulates the behavior of a simple elec-

tronic wallet. The four provided functions are: verify a PIN (input line 2), retrieve the

balance (input line 3), credit the balance (input line 5) and debit the balance (input line

6). The input (command) APDUs generates a respond APDU which consists of a data

segment containing the balance (eg. output line 3 and 6) and a status word. If the applet

doesn’t send any data only the status word is returned. The status word is 0x90 0x0 if

no error has occurred (stands for SW NO ERROR) or represents and error code (e.g. output

line 4: 0x6a 0x85 stands for SW NEGATIVE BALANCE).

A part of the input APDU script supplied by the JCDK, the full script can be found

in Appendix D.1):

2: 0x80 0x20 0x00 0x00 0x05 0x01 0x02 0x03 0x04 0x05 0x7F;

3: 0x80 0x50 0x00 0x00 0x00 0x02;

5: 0x80 0x30 0x00 0x00 0x01 0x64 0x7F;

7: 0x80 0x40 0x00 0x00 0x01 0x32 0x7F;

Output (APDUs + debug messages):

<DEBUG>Starting JCEP on x86!

<DEBUG>Starting CardOS

<DEBUG>VM not previously initialized, 9 packages loaded

<DEBUG>Start VM (card manager)

1: 0x90 0x0 ;

2: 0x90 0x0 ;

3: 0x0 0x0 0x90 0x0 ;

4: 0x6a 0x85 ;

5: 0x90 0x0 ;

6: 0x0 0x64 0x90 0x0 ;

7: 0x90 0x0 ;

8: 0x0 0x32 0x90 0x0 ;
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9: 0x6a 0x83 ;

10: 0x0 0x32 0x90 0x0 ;

11: 0x6a 0x85 ;

12: 0x0 0x32 0x90 0x0 ;

13: 0x6a 0x83 ;

14: 0x0 0x32 0x90 0x0 ;

15: 0x90 0x0 ;

16: 0x63 0x1 ;

17: 0x63 0x0 ;

18: 0x90 0x0 ;

19: 0x67 0x0 ;

20: 0x0 0x32 0x90 0x0 ;

<DEBUG>No further input data (APDUs), shutting down JCOS!

Calculator Applet

The following shows the communication with our own test applet (see description in Sec-

tion 4.4.7). The first ingoing APDU (input line 1) selects the calculator applet. The

APDUs in line 2, 3, 5 and 6 are used to calculate the sum, difference, power and factorial

of the two respective one (for factorial) values in the data segment. Each value occupies

two bytes (short). The APDU in line 4 tests the exception handling by using a invalid

instruction. This leads to an array access out of bounds and an exception is thrown. The

result is an error (output line 8). The other commands generate an output containing

a result (output line 6, 7, 9 and 10) stored in the first two byte of the data segment.

Successful commands are always acknowledged by a status word (0x90 0x0).

Input (APDUs):

1: 0x00 0xa4 0x04 0x00 0x07 0xA0 0x0 0x0 0x0 0x62 0xFF 0x4 0x7F;

2: 0x00 0x00 0x00 0x00 0x04 0x00 0xFF 0x00 0x03 0x7F;

3: 0x00 0x01 0x00 0x00 0x04 0x00 0x02 0x00 0x04 0x7F;

4: 0x00 0x05 0x00 0x00 0x04 0x00 0x02 0x00 0x03 0x7F;

5: 0x00 0x02 0x00 0x00 0x04 0x00 0x02 0x00 0x03 0x7F;

6: 0x00 0x03 0x00 0x00 0x04 0x00 0x04 0x00 0x00 0x7F;

Output (APDUs + debug messages):

1: <DEBUG>Starting JCEP on x86!

2: <DEBUG>Starting CardOS

3: <DEBUG>VM not previously initialized, 8 packages loaded
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4: <DEBUG>Start VM (card manager)

5: 0x90 0x0 ;

6: 0x1 0x2 0x90 0x0 ;

7: 0xff 0xfe 0x90 0x0 ;

8: 0x6f 0x0 ;

9: 0x0 0x8 0x90 0x0 ;

10: 0x0 0x18 0x90 0x0 ;

11: <DEBUG>No further input data (APDUs), shutting down JCOS!

5.2 Nonfunctional Requirements

According to Bajpai and Gorthi [35] the two design goals Portability and Maintain-

ability (described in detail in Section 3.1) have to be treated as non-functional require-

ments (NFR). Due to NFRs are difficult to specify and even more difficult to measure, we

haven’t defined test cases for this two attributes, as we did for the functional requirements.

Instead will use the next two subsection to explain why we think our implementation fulfills

this two NFR.

5.2.1 Portability

Portability is one of our main design goals we stated in Section 3.1. We demanded from our

implementation to be able to run on various platforms ranging from desktop workstations

to micro controller. The changes need to be done when moving our implementation to a

new platform should be as few as possible.

As stated before Portability is a NFR and therefor it is difficult to measure. We will

use two different approaches to show the portability of our implementation. First we will

discuss our experience from porting our implementation from our development platform

(GCC and x86) to the 8051 platform (Keil Compiler and Simulator). Due to the fact

that this is only a single case we will also show how our implementation supports future

porting efforts.

8051 Port

During the implementation phase of our work we mainly used GCC (compiler and debug-

ger). To be able to run the code on a PC we also implemented a specific HAL for this

platform (directory arch x86).

Mooney [36] defines the degree portability as a relation of the costs for adapting an

existing implementation and the costs for developing a new one (see Equation (5.1)). One

would be perfect portability thereby a positive values indicates that porting is cheaper
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Figure 5.2: This figure show the relation between the Lines of Code (LOC) which depends
on the HW (HAL for x86 and 8051) and the LOC which are HW independent (OS Layer
and VM).

than redeveloping. For our implementation (using LOC as scale) the formula would lead

to a degree of portability of 0.97.

DP = 1− cost to port

cost to redevelop
(5.1)

Figure 5.2 show the relation of platform dependent and platform independent LOC.

The HW dependent part only accounts for a small part of the overall LOC. This result is

reached by isolating all external interfaces in few modules (HAL and header file). Thereby

porting our implementation for the 8051 platform only requires a little amount of code to

be redeveloped (see also Figure 5.2).

Support for Future Porting

To aid porting to yet unknown platforms, Brown [24] recommends to use a standardized

HLL and to stick to a subset of this language which is supported by most compilers. We

took account for this suggestions and selected C (in the revision C90) as our programming

language of choice. C is a ISO standardized language which is also popular in the smart

card domain [21, Chapter 13]. The recommended subset of language features was C90

which is a matured standard supported by most compilers. Brown also recommends to

use preprocessor statements to mask different platform behavior, which we implemented

in jcos common.h.

Mooney [36] demands to identify all external interfaces (which includes I/O and mem-

ory management) and to isolate them or use a platform overarching standard. Since no

such standard (like POSIX for Unix like OS) exists for our domain, we isolated all ex-
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ternal interfaces in the HAL and provided a well-defined interface for other SW parts

(hal interface.h). Mooney also mandates for using a well-standardized programming

language, stating C as one example, which was also our language of choice. Another

point he raised is the reusability of test cases to avoid introducing errors during port-

ing. We achieve this goal by providing a reusable test case for HAL implementation (file

hal test.c) and HW independent test cases for the other parts (googletest framework).

5.2.2 Maintainability

Several methods were proposed to measure maintainability. One example would be the

Maintainability Index (MI) [37] which is a fitting function for known good maintainable

systems. It is based on several source code metrics and provides a single numeric value

which should indicate the degree of maintainability. However the Maintainability Index

was criticized by others [38] for not being very useful for developers who want to increase

the maintainability of their source code. For example the index provides no hints what

changes should be applied.

Instead Heitlager et. al. [38] supposes a new method for measuring maintainability

based on some SW characteristics defined in ISO 9126. Subsequently they define a set

of source code properties they believe to be good indicators for maintainability. In the

following we will examine our implementation according to this properties. Each property

earns a grade from very good (marked ++) to very poor (marked as --). Unfortunately

we didn’t have access to all tools or metrics they used to calculate their source code

properties. The often used term unit refers to the smallest executable part of the system.

For languages like C or Java this would be a function respective a method.

Attribute Threshold JCOS Grade

Volume < 8 man year < 1 man year ++

Complexity per Unit < 25% LOC with CC > 10 2.75% LOC with CC > 10 ++

Duplication < 3% LOC 0.59% LOC ++

Unit Size NA 74% LOC in units < 30 LOC NA
Unit Testing Coverage > 95% LOC NA NA

Table 5.1: This table shows maintainability attributes according to Heitlager et. al. [38].
The threshold is always for the best grade. For unit size they do not supply a concrete
value. They also do not name the tools used to calculate the values, thus we cannot
reproduce some metrics.
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Volume

According to Heitlager et. al. the overall number of Lines of Code (LOC) accounts a lot to

the maintainability of a SW system. Smaller systems are easier to overlook and thus also

to maintain. This property isn’t really relevant for us as they consider a system developed

in eight man-years or less as very good. This border is much higher than the amount of

time spend during a master thesis.

Complexity per Unit

The complexity of units is measured using the Cyclomatic Complexity (CC) [39]. The

grading of the overall system depends of the proportion of LOC in complex units, and

thus high risk units, in contrast to LOC of the overall systems.
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Figure 5.3: This figure shows the Cyclomatic Complexity (CC) and the Lines of Code
(LOC) for some units (functions) of our implementation. Units with a CC with less than
6 are omitted

Figure 5.3 shows the CC for some units (functions) of our implementation (units with

less than 6 CC are omitted). Heitlager et. al. regards units with CC of ten or lower as

simple units without much risk and units with CC from 11 to 20 as units with moderate

risk. If the number of line of codes in moderate risk units is below 25 percent, this property

is rated very good.

Duplication

Blocks of six lines or more which occur multiple times are regarded as code duplication

(according to Heitlager et. al.). Five ore less percentage of duplicated code is regarded a

good value concerning maintainability.
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We used Atomiq1 to analyze code duplication in our source code. Looking for blocks

of six lines or more, 0.59% duplicated lines were found. To validate the results of the test

tool we also calculated duplication for blocks of two lines leading to 5.16% duplicated lines

being found.

Unit Size

Heitlager et. al. don’t give concrete thresholds for this point but states that larger units

are more difficult to maintain than small one. We took account of this by trying to split

large functions into smaller ones even if this results in lower execution due to more frequent

function calls.

In Figure 5.4 the distribution for LOC per unit is shown. Most units only have few

LOC and can be regarded as easily to maintain. Only a small part of the units are more

complex (in terms of code size).
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Figure 5.4: This figure shows a histogram for the unit size (function) measured in LOC.

Unit Testing

Unit testing is regarded as an important point for maintainability which we take into

account by using googletest. See Section 3.5.2 for the description of the framework, Sec-

tion 4.4 for the test cases and Section 5.1 for the results.

5.3 Summary

In this chapter we recalled the design goals we stated in Section 3.1 and determined if and

how good our implementation met these goals. The first design goal, the Compliance

1Homepage http://getatomiq.com/

http://getatomiq.com/
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with the Java Card platform standard, was regarded as a functional requirement. In

Section 4.4 we defined test cases, both unit tests and system test, to check the behavior

of our implementation. The results of these teat cases are documented in Section 5.1.

The two other design goals, Portability and Maintainability, are non-functional

requirements (NFR)s. NFR are difficult to cover with test cases and hard to measure.

In Section 5.2.1 and Section 5.2.2 we determined the degree of portability and maintain-

ability of our implementation by methods suggested in specialist literature. Most notable

for portability were the use of a wide supported language (subset) and a small part of

LOC which needed to be adopted for different platforms. For a good maintainability, an

important point is the small size per unit (function) and the low complexity (measured

by CC).



Chapter 6

Conclusion and Future Work

In the following chapter we will come up with our lesson learned during this master

thesis. Subsequently we will conclude with an outlook to possible improvements and

enhancements.

6.1 Conclusion

The conclusion will be centered around our three design goals. We will discuss the efforts

we undertook to fulfill them and how close we get.

6.1.1 Compliance

The compliance to the Java Card Specification may seems to be the easiest of the three

design goals as we can treat it as a functional requirement. But large functional require-

ments pose their specific problems; they can usually not be verified completely. In our

case, the specification consists a high level description in english and a reference imple-

mentation for the PC platform. Non of them can be used for an exhaustive compliance

check. A specification in a natural language always has some obscurities and ambiguities.

The implementation can be used to compare specific input sets.

Because of this limitations we decided to use a mixed approach. We used the high

level description to derive requirements for our unit tests and we used the reference im-

plementation to have a golden device to which we can compare our own implementation.

6.1.2 Portability

Getting closer to the ’real’ problems of software engineering, portability confronts us with

a non-functional requirements (NFR). NFR are even worse than functional requirements

as they are difficult or sometimes even impossible to measure. Portability is not the worst
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one but metering also poses some challenges. We used two approaches: we described our

experiences during porting our implementation to an alternative platform and we discussed

the measures we conducted to aid future porting efforts.

The first approach includes comparing the development efforts for different platforms

(estimated using the LOC). We were able to show that only a minor part of our code

is platform dependent and the rest can be reused without much adaptions. Having this

number also allows us to calculate the Degree of Portability. Our implementation results

in a DP of 0.97 which indicated a very good portability (one would be perfect portability,

values lesser zero advise a redevelopment).

6.1.3 Maintainability

Basically measuring maintainability yields the same problems than measuring portability

but we had one huge advancement; we hadn’t any real experiences in maintaining our

implementation because we are only at the end of the implementation phase. Due to this

circumstances we decided to use the Sig Maintainability Model. This model defines five

different attributes related to maintainability. The attributes themselves are derived from

an ISO norm to increase the reliability of the values.

Although these attributes give a good overview of how good a SW system can be

maintained it has some serious drawbacks (which are also addressed by the creators of

the model). One example would be the measurement of unit complexity which is done by

using the Cyclomatic Complexity (CC). CC grades the complexity of a unit (usually a

function or a method) by the number of possible execution branches. This leads to a low

complexity measure for function with a lot of unconditional calculation.

6.2 Future Work

Due to the design goals Portability and Maintainability two main fields for improve-

ments can be identified: porting the JCOS to new platforms and improving or enhancing

the source code.

6.2.1 Future Implementation Work

The possibility for functional enhancements dates back to the Java Card platform specifica-

tion which only describes a minimum functionality an implementation must provide. First

their are some optional features described by the specification which can be implemented

in future like integer support or additional JCRE classes. Additionally implementers are

free to extent their platforms with features not described in the specification (as long as
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they do not interfere with mandatory features). Examples for such features may be a

garbage collector or additional communication protocols.

6.2.2 Future Research

Further research can explore possibilities for enhanced security on smart card platforms

like defensive virtual machines, which check byte code sanity during execution or use HW

features to encapsulate applet data.

Another research focus could be porting our implementation to new platforms like

ARM compatible CPUs. This platform is used a lot for embedded systems and also gains

popularity in the field of smart cards. Another aspect of the ARM platform is the good

compiler support. ARM can be targeted by the GCC which we used intensely during our

work. Thus it is likely to port the JCOS to an ARM platform with very little effort: all

compiler directives can be reused, only the HAL would need adaptions.
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Abbreviations

ABI Application Binary Interface

AID application identifier

APDU Application Protocol Data Unit

CAD Card Acceptance Device

CAP Java Card converted applet

CC Cyclomatic Complexity

CDT C/C++ Development Tools

COS Card Operating System

CPU Central Processing Unit

GCC GNU Compiler Collection

HAL Hardware Abstraction Layer

HLL-VM High-Level Language Virtual Machine

HLL High Level Language

HW Hardware

ISA Instruction Set Architecture

ISO International Organization for Standardization

JCDK Java Card Development Kit
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JCOS Java Card Operating System

JCRE Java Card Runtime Enviroment

JCVM Java Card Virtual Machine

JDT Java Development Tools

LLVM Low Level Virtual Machine

LOC Lines of Code

MI Maintainability Index

MMU Memory Management Unit

NFR non-functional requirements

OS Operating System

PC Personal Computer

RE Runtime Environment

SW Software

SoC System on Chip

VM Virtual Machine



Appendix B

How To

This chapter will explain how to build, run and test our implemention for users not familar

with the source code.

B.1 Build

The source code was developed using Eclipse so for a first build it is the easiest way to

import the source code in your Eclipse working space. It should work on all C compiler

supporting the C90 standard, we tested it on MinGW and GCC.

To build the code using a Eclipse, an empty C project has to be created. Subsequently

the two directories scr and include have to be added to the project. The include

directory also has to be in the search path for header files (for Eclipse: Project Settings

→ C/C++ General → Paths and Symbols).

During development we recommend to built the code using the DEBUG flag (see

Table B.1 for all preprocessor options). When set, parts of the C standard library are

included and several debug messages are printed on stdout. This may not work an all

platforms/compilers or interferes with the APDU channel (depending on the HAL).

Flag Value Description

DEBUG NA print debug messages, link with stdlib
ARCH X86, 8051 ... define platform, if not defined X86 is used
OMIT MAIN NA remove main function in HAL, needed for test framwork
TEST HAL NA. only run HAL test (see subsection 4.4.1)

Table B.1: This table shows all available global preprocessor options.

80



APPENDIX B. HOW TO 81

B.2 Run

How to run the JCVM strongly depends on the used platform and how the specific HAL is

implemented. When using the x86 HAL the JCVM can be started like a normal executable.

Two parameters have to be supplied: a binary file which can be used to initialize the

persistent memory and a text file which contains incoming APDUs.

<DEBUG>Usage: jcep <pmem-image> <apdu-file>

The incoming APDUs have to be encoded in hex values, separated by blanks. One

line represents one APDU and has to be terminated with a semicolon. The same format

was used in subsection 5.1.7 to show the results of the test applets.

The outgoing APDUs are stored in the file apdu.out. This file uses the same format

as previously described. During shutdown the state of the persistent memory is stored in

the file pmem.new.

Installing Additional Applets

JCOS currently doesn’t contains an on-card installer as this feature is not requested by

the Java Card specification. Nethertheless new applets can added in the same way we

included the JCRE packages and the test applets. The function load jcre packages in

file packages.c loads and initializes this packages. First a CAP file struct has to be

created and the pointer to the different components have to be set. Subsequently it can

be added to be list of available packages and the static fields can be initialized using

the function init static field. If the package contains an applet, install applet can

be called to install it. At the end, the number of installed packages has to be updated

(cap container s.count).

B.3 Test

Generally speaking, three different kinds test cases exist for (parts of) the JCVM. The

HAL is tested by a special module, most other parts are tested using googletest and the

whole systems can be tested by a number of sample applets.

B.3.1 HAL Test

To test a specific HAL, the JCVM has to compiled with the flag TEST HAL (see Table B.1).

When the executable is deployed on the target platform it launches a test routine (in

source file hal test.c) for the HAL instead of the VM.

For the x86 HAL just start the executable and see how memory access is checked and

the input is echoed.
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B.3.2 Unit Test

To run the unit tests simple compile the containing Eclipse project (jcep testing) and

run the executable. The projects have to be in the same workspace and the platform

specific googletest libraries have to copied into the lib directory. The unit test can only

be performed on platforms supported by a C++ compiler and an available stdout stream

(like x86/Linux).
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Naming Conventions

Throughout the the source file we used the following rules to name variables, functions

and methods. For historical reasons we use different naming conventions for Java and C

source code.

C.1 C

In C source and header files names usually contain only lower case letters and are separated

by underlines (e.g. my variable). Names are chosen using the following rules:

• Structs, Unions and respective pointers

Structs are like normal names but alway contain s at the end, respective unions

end with u. A typedef pointer to any type always ends with p.

• Local and global Variables

Variables are named obeying the general rule, only lower case letters separated

by underlines. Global variables have an additional underscore at the end (e.g.

my global var ).

• Function Names

No special rules apply for function names, we only try to chose descriptive names.

• Preprocessor Statements

Preprocessor statements are an exception to the general use of lower case letter and

have names using only upper case letters and underscores. This stamens include

constants and macros, both created using #define (e.g. VM STACK SIZE).
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C.2 Java

As mentioned before for historical reasons we choose a different naming convention for

Java code in our implementation. We will stick largely to the coding standard for java

provided by Oracle [40]. It request class names to begin with a capital letter and variable

and method names with lower case letters. Name are separated by using capital letters

inside an name (e.g. MyClass or methodForMyClass).
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Applet Scripts

D.1 Wallet

The input script below is used to access the Wallet supplied by the JCDK (text is taken

from file wallet.scr)..

Input (APDUs + comment lines with trailing //):

/////////////////////////////////////////////////////////////////////

// Initialize Wallet

/////////////////////////////////////////////////////////////////////

//Select Wallet

1: 0x00 0xA4 0x04 0x00 0x0a 0xa0 0x0 0x0 0x0 0x62 0x3 0x1 0xc 0x6 0x1 0x7F;

// 90 00 = SW_NO_ERROR

//Verify user pin

2: 0x80 0x20 0x00 0x00 0x05 0x01 0x02 0x03 0x04 0x05 0x7F;

//90 00 = SW_NO_ERROR

//Get wallet balance

3: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x00 0x00 0x00 0x90 0x00 = Balance = 0 and SW_ON_ERROR

//Attempt to debit from an empty account

4: 0x80 0x40 0x00 0x00 0x01 0x64 0x7F;

//0x6A85 = SW_NEGATIVE_BALANCE
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//Credit $100 to the empty account

5: 0x80 0x30 0x00 0x00 0x01 0x64 0x7F;

//0x9000 = SW_NO_ERROR

//Get Balance

6: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x64 0x9000 = Balance = 100 and SW_NO_ERROR

//Debit $50 from the account

7: 0x80 0x40 0x00 0x00 0x01 0x32 0x7F;

//0x9000 = SW_NO_ERROR

//Get Balance

8: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x32 0x9000 = Balance = 50 and SW_NO_ERROR

//Credit $128 to the account

9: 0x80 0x30 0x00 0x00 0x01 0x80 0x7F;

//0x6A83 = SW_INVALID_TRANSACTION_AMOUNT

//Get Balance

10: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x32 0x9000 = Balance = 50 and SW_NO_ERROR

//Debit $51 from the account

11: 0x80 0x40 0x00 0x00 0x01 0x33 0x7F;

//0x6A85 = SW_NEGATIVE_BALANCE

//Get Balance

12: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x32 0x9000 = Balance = 50 and SW_NO_ERROR

//Debit $128 from the account

13: 0x80 0x40 0x00 0x00 0x01 0x80 0x7F;

//0x6A83 = SW_INVALID_TRANSACTION_AMOUNT

//Get Balance

14: 0x80 0x50 0x00 0x00 0x00 0x02;
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//0x00 0x32 0x9000 = Balance = 50 and SW_NO_ERROR

//Reselect Wallet applet so that userpin is reset

15: 0x00 0xA4 0x04 0x00 0x0a 0xa0 0x0 0x0 0x0 0x62 0x3 0x1 0xc 0x6 0x1 0x7F;

// 90 00 = SW_NO_ERROR

//Credit $127 to the account before pin verification

16: 0x80 0x30 0x00 0x00 0x01 0x7F 0x7F;

//0x6301 = SW_PIN_VERIFICATION_REQUIRED

//Verify User pin with wrong pin value

17: 0x80 0x20 0x00 0x00 0x04 0x01 0x03 0x02 0x66 0x7F;

//0x6300 = SW_VERIFICATION_FAILED

//Verify user pin again with correct pin value

//0x80 0x20 0x00 0x00 0x08 0xF2 0x34 0x12 0x34 0x56 0x10 0x01 0x01 0x7F;

18: 0x80 0x20 0x00 0x00 0x05 0x01 0x02 0x03 0x04 0x05 0x7F;

//0x9000 = SW_NO_ERROR

//Get balance with incorrect LE value

19: 0x80 0x50 0x00 0x00 0x00 0x01;

//0x6700 = ISO7816.SW_WRONG_LENGTH

//Get balance

20: 0x80 0x50 0x00 0x00 0x00 0x02;

//0x00 0x32 0x9000 = Balance = 50 and SW_NO_ERROR
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