
Hans-Peter SCHREI

The Multilevel Monte Carlo Method

and the Wiener-Hopf Factorisation

MASTERARBEIT

zur Erlangung des akademischen Grades eines Diplom-Ingenieur

Masterstudium Finanz- und Versicherungsmathematik

Technische Universität Graz

Betreuer:
O.Univ.-Prof. Dr.phil. Robert F. Tichy

Institut für Analysis und Computational Number Theory

Graz, im März 2014



Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst, andere als die angegebenen
Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe.

Graz, am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources,
and that I have explicitly marked all material which has been quoted either literally or by content from the
used sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(signature)



Contents

1 Stochastic Processes 6

1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Risk Neutral Pricing 12

2.1 The Market Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Arbitrage Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Risk Neutral Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Discretisation Schemes 18

3.1 The Euler-Maruyama Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Milstein Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Runge-Kutta Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 The Monte Carlo Method 28

4.1 The Classic Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 The Classic Monte Carlo Method for Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . 30

5 The Multilevel Monte Carlo Method 32

5.1 The Multilevel Monte Carlo Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 The Multilevel Monte Carlo Method and Control Variates . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Improved Multilevel Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Estimator Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Brownian Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Extreme Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Antithetic Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Derivative Pricing with the Multilevel Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . 42

5.6.1 Derivatives with Lipschitz payo� functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6.2 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6.3 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.4 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6.5 Digital Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6.6 Basket Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 The Multilevel Wiener-Hopf Monte Carlo Simulation 57

6.1 The Wiener-Hopf Factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.1 History of the Wiener-Hopf factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.2 The Wiener-Hopf Factorisation for Lévy Processes . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The Wiener-Hopf Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 The Wiener-Hopf Multilevel Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Numerical Analysis of the Wiener-Hopf Multilevel Monte Carlo Algorithm . . . . . . . . . . . . . 64
6.5 Numerical Analysis of the Random Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3



6.6 Derivative Pricing with the Multilevel Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . 70
6.6.1 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6.2 Parisian Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 The Multilevel Quasi-Monte Carlo Method 74

4



Introduction and Acknowledgements

The following thesis attempts to give a comprehensive treatment of the Multilevel Monte Carlo method intro-
duced by [Giles, 2008a] and the Wiener-Hopf Multilevel Monte Carlo method introduced by [Ferreiro-Castilla
et al., 2013]. In the last chapter, a short overview of Multilevel Quasi-Monte Carlo methods is given. All
implementations were done in Matlab 2013a.

I especially want to thank my advisors Professor Robert Tichy and Dr. Markus Hofer for their patience and
their excellent guidance and supervision.

Lastly I want to thank my parents for their ubiquitous and never-ending support.

Graz, 16.03.2014

5



Chapter 1

Stochastic Processes

1.1 General Introduction

Randomness permeates �nancial markets. Shares in stock of a company are traded on markets, where buyers and
sellers determine their price. Myriads of di�erent factors like speculation, information �ow and macroeconomic
trends drive market sentiment in an unpredictable manner. Thus, there is inherent randomness present in the
markets at all times, in the traded assets as well as in the derivatives based on them. The mathematical model
for such random price movements in time are stochastic processes.

De�nition 1. A stochastic process is a collection of random variables (Xt)t≥0 de�ned on a probability space
(Ω,F ,P). That is, for each time instant t ≥ 0, ω → Xt(ω) is a measurable function from Ω to a measure space
(E, E).

In the following only the case E = Rd for d ≥ 1 with the Borel sigma-algebra E = B(Rd) is considered, as all
processes of interest with regard to Monte Carlo simulation take their values in the n-dimensional real space
Rd.

Sometimes the interpretation of a stochastic process as a random variable of which the realisations are paths

in Rd is of interest, that is, the stochastic process is understood as a measurable function X : Ω →
(
Rd
)[0,∞)

from the probability space Ω into the space
(
Rd
)[0,∞)

of all Rd-valued functions on [0,∞).

The mathematical model for a stochastic process does not only include the process itself, but also a dynamic
system of information in the context of which the process is observed. In the system, more and more information
becomes accessible as time goes on. To strictly de�ne the principles of causality and predictability in such a
system the concept of a �ltration is introduced. Essentially, a �ltration encapsulates the information available
at each time instant t ≥ 0.

De�nition 2. A �ltration (Ft)t≥0 on a probability space (Ω,F ,P) is a collection of sub-sigma-algebras of F
satisfying Fs ⊂ Ft whenever s ≤ t.

Thus, a �ltration allows us to draw a clear distinction between quantities for which the value can be derived
from the available information at a speci�c time point t and quantities for which the outcome is still uncertain.
Intuitively, the set Ft is a snapshot of the information available in a model at time t ≥ 0. Conditioning on Ft
for di�erent t ≥ 0 changes the underlying probabilities according to their relation to the information contained
in Ft. A process (Xt)t≥0 for which each Xt is observable at time t ≥ 0 is called adapted.

De�nition 3. A stochastic process process (Xt)t≥0 is adapted if Xt is an Ft-measurable random variable for
each time instant t ≥ 0.

6



The set of functions measurable with respect to the sigma-algebra generated by a set of real-valued functions
may be characterised as the smallest set of real-valued functions which contains the generating set and which
is closed under taking linear combinations and increasing limits.

De�nition 4. The class of predictable processes is characterised by the smallest set which contains the adapted
left-continuous processes and which is closed under taking linear combinations and increasing limits.

Lemma 1. Alternatively, the set of predictable processes is generated by the continuous and adapted processes
or by sets of the form

{(s, t]×A : t > s ≥ 0, A ∈ Fs} ∪ {{0} ×A : A ∈ F0}.

The probability space (Ω,F ,P) taken together with the �ltration (Ω,F , (Ft)t≥0,P) is called a �ltered probability
space. It is assumed that the �ltration under consideration ful�ls the usual conditions.

De�nition 5. A �ltration F is said to be right-continuous if

Ft = Ft+ =
⋂
s>t

Fs

holds. It is said to be complete if F contains all subsets of zero probability elements of F . It ful�ls the usual
conditions if it is right-continuous and complete.

In general, it is always possible to enlarge a �ltration in a minimal way to one satisfying the usual conditions.
In many instances modi�cations of stochastic processes that are right continuous and for which the left limit
exists at every time instance are of interest.

De�nition 6. A process (Yt)t≥0 is a version or modi�cation of (Xt)t≥0 if P(Xt = Yt) = 1 holds for each time
instant t ≥ 0. A process (Yt)t≥0 is said to be indistinguishable from a process (Xt)t≥0, if P(Xt = Yt ∀t ≥ 0) = 1.

De�nition 7. A stochastic process (Xt)t≥0 taking values in the metric space (Rd, B(Rd)) is called a càdlàg
process, short for continue à droite, limite à gauche, if lims↑tXs < ∞ and if lims↓tXs = Xt for all time
instances t ≥ 0. The space of càdlàg functions D([0,∞),Rd) is called the Skorokhod space.1

If (Xt)t≥0 and (Yt)t≥0 are right-continuous processes such that they are modi�cations of each other, they are
additionally indistinguishable.

An important class of stochastic processes are martingales. A martingale is a process which stays the same on
average. That is, the expected future value conditional on the present is equal to the current value.

De�nition 8. A martingale (Xt)t≥0 is an adapted process with E(|Xt|) <∞ for all t ≥ 0 satisfying

Xs = E(Xt|Fs).

In many cases, however, processes under consideration are close to satisfying the martingale property, but
are not actually martingales. This is for example the case when certain limiting processes are considered or
when stochastic integration with respect to martingales is performed. It is therefore necessary to generalise the
concept of a martingale to the concept of a locale martingale. Localisation is done via stopping times, which
are positive random variables used to stop a stochastic process at a clearly de�ned, yet random time.

De�nition 9. A stopping time is a map τ : Ω→ [0,∞) ∪ {∞} such that {τ ≤ t} ∈ Ft for each t ≥ 0.

De�nition 10. Let P be a class of stochastic processes. Then, a process (Xt)t≥0 is locally in P if there exists
a sequence of stopping times τn ↑ ∞ such that the stopped processes

1{τn≥0}X
τn

are in P . The sequence τn is called a localizing sequence for X with respect to P . A process is a local martingale
if it is locally in the class of càdlàg martingales.
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A further important class of processes are semimartingales which are the composition of locale martingales and
�nite variation processes. Semimartingales are good integrators in the sense that they are the largest class of
processes with respect to which the It	o integral can be de�ned. The class of semimartingales is quite large
and includes for example all continuously di�erentiable processes. In order to introduce semimartingales, the
concept of variation is needed.

De�nition 11. The variation of a function g : [a, b]→ R on [a, b] is given by

V (g)[a,b] = sup
πn

n∑
k=1

|g(tk)− g(tk−1)|.

The supremum is taken over all �nite partitions πn : a = t0 < t1 < · · · < tn = b of [a, b].

A function g : [0,∞)→ R is said to be of bounded variation on compact intervals if V (g)t = V (g)[0,t) <∞ for
all t ≥ 0.

A stochastic process V = (Vt)t≥0 is said to be a process of bounded variation if V : [0,∞) → R is of bounded
variation almost surely.

De�nition 12. A process (Xt)t≥0 de�ned on the �ltered probability space (Ω,F , (Ft)t≥0,P) is called a semi-
martingale if it can be decomposed as

Xt = Mt + Vt

where (Mt)t≥0 is a local martingale and (Vt)t≥0 is a càdlàg adapted process of locally bounded variation.

In particular, many �nancial models are built on one particular stochastic process, namely Brownian motion.
Due to its tractable dynamics, it became an indispensable tool for the modelling of assets in �nancial markets.
Apart from its ubiquitous use in mathematical �nance, Brownian motion is an essential stochastic process for
modelling in the natural sciences, where it also has its origins and from where it derives its name as a result of
the seminal work of the botanist Robert Brown.

De�nition 13. A process (Bt)t≥0 is a Brownian motion on a �ltered probability space (Ω,F , (Ft)t≥0,P) if it
is an adapted process for which

1. B0 = 0,

2. Bt − Bs is independent of Fs for each t > s ≥ 0, following a normal distribution with mean zero and
variance t− s and

3. for which the sample paths are continuous.

1.2 Lévy Processes

Another special class of stochastic processes often used in the modelling of �nancial markets and used as a basis
of risk models in insurance theory are Lévy processes. The di�usion processes analysed in Chapter 5 do not
fully capture the dynamics observed in actual �nancial markets and are therefore of limited use in modelling the
essential characteristics necessary for derivative pricing. In particular, the occurrence of sudden jumps are not
taken into consideration when using di�usion models. Jumps have wide implications on the resulting properties
of the model, a survey can be found in [Tankov and Cont, 2004]. Although some properties of real markets can
be mimicked by di�usion models, the same properties already form an integral part of Lévy models.

Heavy tails in the distribution of asset price processes observed in the market are often used to justify the
choice of Lévy processes in favour of di�usion processes. While heavy tails are certainly more natural to Lévy
processes, they are also attainable in di�usion processes through the the use of highly non-stationary di�usion
coe�cients in local volatility models or through improbably high values for the parameters of the volatility
process in stochastic volatility models.
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Figure 1.1: Three-dimensional Brownian motion

However, whereas stochastic volatility models can reasonably reproduce the implied volatility surface [Gatheral,
2006], their viability is not so evident when looking at the whole term structure of implied volatilities [Rebonato,
1999]. In contrast, Lévy models cannot only fully capture the term structure, they also o�er a reasonable
interpretation in the form of the risk averse behaviour of investors with regards the possibility of large, sudden
jumps in the markets.

Furthermore, local volatility models and stochastic volatility are complete market models or can be easily
extended to be complete, whereas Lévy models, which in general are incomplete market models, accurately
reproduce the real world hedging issues that result from market incompleteness [Tankov and Cont, 2004].

De�nition 14. A stochastic process (Xt)t≥0 on a probability space (Ω,F ,P) with values in Rd such that X0 = 0
is called a Lévy process if it possesses the following properties.

1. Independent increments. For every increasing sequence of time instances t0, . . . , tn the random vari-
ables Xt0 , Xt1 −Xt0 ,. . . ,Xtn −Xtn−1

are independent.

2. Stationary increments. The law of Xt+∆t −Xt does not depend on t.

3. Stochastic continuity. X is a stochastic continuous process, that is

lim
∆t→0

P(|Xt+∆t −Xt| ≥ ε) = 0

holds.

Due to the fact that a càdlàg version of a Lévy process always exists [Protter, 1992], it can be assumed that a
càdlàg version is always used in the following.

Theorem 1. Let (Xt)t≥0 be a Lévy process. There exists a unique modi�cation (Yt)t≥0 of (Xt)t≥0 which is
càdlàg and which is also a Lévy process.

Since a Lévy process has stationary and independent increments, sampling of the process at regular time intervals
leads to a random walk. Thus, any Xt at a speci�c time instance t > 0 can be decomposed into the sum of
n ∈ N independent and identically distributed random variables, which have the same distribution as Xt/n.
The distribution of a random variable which can be represented by the sum of n independent and identically
distributed random variables is called an in�nitely divisible distribution.
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De�nition 15. A probability distribution F on Rd is said to be in�nitely divisible if for any integer n ≥ 2 there
exist n independent and identically distributed random variables Y1, . . . , Yn such that

∑n
i=1 Yi has distribution

F .

Not only does every Lévy process lead to on an in�nitely divisible distribution, the converse holds as well. Every
in�nitely divisible distribution F can be used to construct a Lévy process X such that the law of X1 is given
by F .

Proposition 1. Let (Xt)t≥0 be a Lévy process. Then on the one hand the random variable Xt has an in�nitely
divisible distribution for every t > 0. On the other hand, if F is an in�nitely divisible distribution then there
exists a Lévy process (Xt)t≥0 such that the distribution of X1 is given by F .

A basic building block for characterizing Lévy processes is the Lévy measure, which gives the expected number
of jumps ∆Xt = Xt − lims↓tXs per unit time whose size belongs to A ∈ B(Rd).

De�nition 16. Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on Rd de�ned by

ν(A) = E(|{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}|)

with A ∈ B(Rd) is called the Lévy measure of (Xt)t≥0.

A measure built on the Lévy measure is the jump measure, which extends the time interval in which the number
of jumps is observed to an arbitrary length.

De�nition 17. Let E ⊆ Rd. A Radon measure on (E,B) is a measure µ such that for every compact measurable
set A ∈ B, µ(A) <∞.

De�nition 18. Let (Ω,F ,P) be a probability space, E ⊆ Rd and µ a given positive Radon measure µ on (E,B).
A Poisson random measure on E with intensity measure µ is an integer value random measure M : Ω×B → N

such that

1. For almost all ω ∈ Ω, M(ω, .) is an integer-valued Radon measure on E. For any bounded measurable
A ⊆ E, M(A) <∞ is an integer valued random variable.

2. For each measurable set A ⊆ E, M(., A) = M(A) is a Poisson random variable with parameter µ(A),

P(M(A) = k) = e−µ(A)µ(A)k

k!

for all k ∈ N.

3. For disjoint measurable sets A1, . . . , An ∈ B, the variables M(A1), . . . ,M(An) are independent.

These jump measure JX is a Poisson random measure on [0,∞)×Rd with intensity ν(dx)dt.

De�nition 19. Let (Xt)t≥0 be a Lévy process with Lévy measure ν. Its jump measure JX is a Poisson random
measure on [0,∞)×Rd with intensity measure µ(dx× dt) = ν(dx)dt.

The following theorem gives the basic stepping stone to the characterisation of Lévy processes, the Lévy-It	o-
decomposition.

Proposition 2. Let (Xt)t≥0 be a Lévy process on Rd and ν its Lévy measure. Then ν is a Radon measure on
Rd \ {0} that veri�es ∫

|x|≤1

|x|2ν(dx) <∞ and

∫
|x|≥1

ν(dx) <∞. (1.1)

Additionally, there exist a vector γ ∈ Rd and a d-dimensional Brownian motion (Bt)t≥0 and covariance matrix
A ∈ Rd×d such that

Xt = γt+Bt +X l
t + lim

ε↓0
Xε
t

10



with

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx),

Xε
t =

∫
ε≤|x|<1,s∈[0,t]

x(JX(ds× dx)− ν(dx)ds).

From the Lévy-It	o decomposition it is a short step to the Lévy-Khinchin representation.

Theorem 2. Let (Xt)t≥0 be a Lévy process on Rd with characteristic triplet (A, ν, γ). Then

E
(
eizXt

)
= etψ(z)

with z ∈ Rd and
ψ(z) = −1

2
zAz + iγz +

∫
Rd

(eizx − 1− izx1|x|≤1)ν(dx).

The notion of a subordinator is a further concept used in the latter part of the text. Just as Lévy processes can
be understood as an extension of discrete random walks into continuous time, subordinators can be understood
as the continuous time version of discrete random walks with non-negative increments.

De�nition 20. A subordinator X = (Xt)t≥0 is a real-valued, non-decreasing Lévy process starting from zero.

Lemma 2. If a Lévy process X = (Xt)t≥0 is of bounded variation, it can be represented as the di�erence of
two independent subordinators.

Proof. Set H1
t = 1

2 (V (X)t + Xt) and H
2
t = 1

2 (V (X)t −Xt). Both H
1 = (H1

t )t≥0 and H2 = (H2
t )t≥0 are non-

decreasing and positive. In general, H1 and H2 are not unique, another possible choice would be H1
t = V (X)t

and H2
t = Xt − V (X)t.

11



Chapter 2

Risk Neutral Pricing

In this section, the use of an expectation to calculate the price of a derivative is justi�ed. That an expectation is
the right instrument to price a �nancial contract is a non-trivial result. Rather than using the expectation under
a real world measure P of some presupposed asset dynamics to �nd prices, it is vital in �nancial markets to
price derivatives correctly in relation to each other. The conventional expectation under the real world measure
could be correct only by a fortunate streak of luck, as the market price would then coincide with its long-term
average given by the expectation. That the price at any given point in time is identical to its historical average
would be pure coincidence.

Rather, the fundamental principle enforcing the price of tradeable assets is market opportunism, that is, the idea
that market participants take immediately advantage of any discrepancies in the relative valuation of incorrectly
priced di�erent instruments. An opportunity for riskless pro�t, also called arbitrage opportunity, thus instantly
vanishes in an instant. While this might not be the case in real markets, this assumption is reasonable in
mathematical models, for in the presence of arbitrage opportunities a potential for riskless unlimited loss,
respectively gain, would emerge.

A change of measure to a so called risk neutral measure Q guarantees that the expected values of derivative
payo�s produce a pricing framework that is free of arbitrage.

2.1 The Market Setup

The introduced market model is a generic, conventional market model used in �nancial theory based on the
treatment presented in [Bingham and Kiesel, 2004].

In a �rst step, the market model is assumed to be very simple in order to ease the presentation. All these
assumptions are in general not faithful representations of real markets.

De�nition 21. A market is called frictionless, if there are no transaction costs, no bid/ask spreads, no taxes,
no margin requirements and no restrictions on short sales in place.

As described in Chapter 1, the uncertainty present in a �nancial market is modelled by a probability space
(Ω,F ,P). It is assumed that F0 is generated only by null sets under P, that is sets with P(A) = 0, and that
FT = F .

It is assumed that the market consists of d + 1 primary traded assets, for which the stochastic price processes
are denoted by S0, . . . , Sd. The overall vector process S = (S0, . . . , Sd) is furthermore assumed to follow an
adapted, continuous and strictly positive semi-martingale on (Ω,F ,P).

The implicit reference asset used for transactions in a domestic market is chosen to be denoted by S0. The
asset is required to be a numéraire and it is assumed that it is a non-dividend paying asset 2.

12



De�nition 22. A numéraire is a price process (S0
t )t≥0 that is almost surely strictly positive for each t ≥ 0.

The central aim in introducing the market is the pricing and, to a lesser degree, hedging of derivatives. These
derivatives or contingent claims are modelled as FT -measurable random variables, when [0, T ] is the time
frame under consideration. For hedging purposes, the goal is to establish trading strategies that replicate the
contingent claim.

De�nition 23. A trading strategy ϕ = (ϕt)t≥0 is a Rd+1-valued, predictable, locally bounded process ϕt =
(ϕ0
t , . . . , ϕ

d
t ) with ∫ T

0

E(ϕ0
t )dt <∞ and

d∑
i=0

∫ T

0

E
(
(ϕit)

2
)
<∞.

The {ϕit}i∈{0,...,d} are interpreted to be the number shares of asset i ∈ {0, . . . , d} held in the portfolio at time
t ∈ [0, T ]. Predictability ensures that the holder of the portfolio constructs it on the basis of the information
available in Ft−.

De�nition 24. The value V (ϕ) = (Vt(ϕ))t≥0 of the portfolio ϕ at time t ∈ [0, T ] is given by the scalar product

Vt(ϕ) = ϕt · St =

d∑
i=0

ϕitS
i
t .

The process V is called the value process of the trading strategy. A gains process Gt(ϕ) is de�ned by

Gt(ϕ) =

∫ t

0

ϕudSu =

d∑
i=0

∫ t

0

ϕiudS
i
u.

It is convenient to single out trading strategies where all changes in the portfolio value are due to movements
in the assets, in contrast to trading strategies which allow for the withdrawal or injection of funds.

De�nition 25. A trading strategy ϕ is called self-�nancing if the value process Vt(ϕ) satis�es

Vt(ϕ) = V0(ϕ) +Gt(ϕ)

for all t ∈ [0, T ].

Self-�nancing portfolios are invariant under change of the numéraire, which gives su�cient �exibility in the
choice of the numéraire. The following proposition was proved in full generality in [Delbaen and Schachermayer,
1995].

Proposition 3. Self-�nancing portfolios remain self-�nancing after a numéraire change.

To simplify the notation, discounted processes are introduced. These processes are the asset and the value
processes divided by the numéraire process and the gains process of the discounted assets. That is

S̃t =
St
S0
t

, Ṽt(ϕ) =
Vt(ϕ)

S0
t

and G̃t(ϕ) =

d∑
i=1

∫ t

0

ϕitdS̃
i
t .

The same de�nition of self-�nancing portfolios used for undiscounted processes holds in an analogous manner
for discounted processes.

2.2 The Arbitrage Principle

As noted above, trading strategies of particular interest are strategies which achieve with positive probability
a riskless pro�t. In the constructed mathematical model these strategies would allow with positive probability
for unlimited risk-less pro�t.

13



De�nition 26. A self-�nancing trading strategy ϕ is called an arbitrage strategy if the value process V (ϕ)
satis�es the set of conditions

V0(ϕ) = 0, P(VT (ϕ) ≥ 0) = 1 and P(VT (ϕ) > 0) > 0. (2.1)

The main instrument in developing the risk neutral pricing framework are equivalent martingale measures.

De�nition 27. A probability measure Q de�ned on (Ω,F) is an equivalent martingale measure, respectively
strong equivalent martingal measure if

1. Q is equivalent to P,

2. and if the discounted price process S̃ is a Q-local martingale, respectively a Q-martingale.

The set of all equivalent martingale measures is denoted by P.

In order to eliminate certain arbitrage opportunities from the market, further restrictions are placed on the
available set of self-�nancing strategies.

De�nition 28. A self-�nancing trading strategy ϕ is called C-admissible relative to the numéraire S0 if Ṽt(ϕ) ≥
−C for a positive constant C ∈ R for all t ∈ [0, T ] and called admissible if it is C-admissible for some C ∈ R.
The set of all admissible strategies is denoted by Φ.

It turns out that for admissible strategies the discounted value process is a supermartingale. A more general
proposition holds.

Proposition 4. Let S be a local martingale and let
∫
ϕdS < ∞. If

∫
ϕdS is bounded below, then

∫
ϕdS is a

local martingale. Every local martingale that is bounded below is a supermartingale.

Proof. To show the �rst statement, observe that because Z =
∫ t

0
XdS ≥ −C for positive C ∈ R, the negative

part of the integral Z− is bounded above by C. Due to a standard result in probability theory, Z is a local
martingale if and only if the process sup0≤s≤t Z

−
s is locally integrable [Lowther, 2010].

For the second statement let M be a local martingale and Mt ≥ −C for all t ≥ 0. Without loss of generality,
it can be assumed that C = 0. Let (Tn)n∈N be a localisation sequence, that is the stopped processes (MTn

t )t≥0

are martingales. For 0 ≤ s ≤ t, A ∈ Fs and arbitrary N ∈ N

E
(
1A∩{MTn

s ≤N}M
Tn
s

)
= E

(
1A∩{MTn

s ≤N}M
Tn
t

)
holds. Applying dominated convergence on the left hand side and Fatou's Lemma on the right hand side yield
together with taking the limit n→∞

E
(
1A∩{Ms≤N}Ms

)
= lim inf

n→∞
E
(
1A∩{MTn

s ≤N}M
Tn
t

)
≥ E

(
lim inf
n→∞

1A∩{MTn
s ≤N}M

Tn
t

)
≥ E

(
1A∩{Ms≤N}Mt

)
.

Monotone convergence yields for N →∞ the result E(1AMs) ≥ E(1AMt) for 0 ≤ s ≤ t, A ∈ Fs.

The main result in this section is that the existence of equivalent martingale measures guarantees that there
are no arbitrage strategies in Φ.

Theorem 3. Assume that P 6= ∅. Then the market model contains no arbitrage opportunities in Φ.

Proof. For any ϕ ∈ Φ under any Q ∈ P, the discounted value process Ṽt(ϕ) is a supermartingale by proposition
(4),

EQ

(
Ṽt(ϕ)|Fu

)
≤ Ṽu(ϕ)

for all u ≤ t ≤ T . In order for a ϕ∗ ∈ Φ to be an arbitrage opportunity, it is necessary for Ṽ (ϕ∗) to satisfy
Ṽ0(ϕ∗) = 0 according to the conditions in (2.1). Thus

EQ

(
Ṽt(ϕ

∗)
)
≤ 0
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for all t ∈ [0, T ]. Since ϕ∗ ∈ Φ, Ṽt(ϕ
∗) ≥ −C with positive C ∈ R holds for all t ∈ [0, T ], implying in particular

EQ

(
ṼT (ϕ∗)

)
≤ 0, which in turn implies P(VT (ϕ) > 0) = 0.

An arbitrage strategy ϕ∗ additionally ful�ls P (VT (ϕ∗) ≥ 0) = 1, and, since P and Q are equivalent, Q(VT (ϕ∗) ≥
0) = 1. In combination the aforementioned results yield

Q(VT (ϕ∗) > 0) = P(VT (ϕ∗) > 0) = 0

and thus the third condition in (2.1) is not ful�lled. The strategy ϕ∗ cannot be an arbitrage strategy.

The converse, that absence of an arbitrage strategy implies the existence of equivalent martingale measures,
is more di�cult to prove. Both directions taken together form a fundamental theorem in asset pricing theory,
which in a general form was proven in [Delbaen and Schachermayer, 1994].

To formulate it, the notions of a simple predictable trading strategy and a free lunch with vanishing risk are
required.

De�nition 29. A simple predictable trading strategy is a predictable process that can be represented as a �nite
linear combination of process of the form ψ1(τ1,τ2], where τ1 and τ2 are stopping times and ψ is a Fτ1-measurable
random variable.

De�nition 30. A price process S satis�es the condition of No Free Lunch with Vanishing Risk if for any
{ϕn}n∈N of simple predictable trading strategies such that ϕn is Cn-admissible with limn→∞ Cn = 0 satis�es
limn→∞ VT (ϕn) = 0 in probability.

Fortunately, the condition allows for an evident economic interpretation. In the case S does not satisfy the
condition there exists for every small enough ε > 0 an admissible strategy ϕε such that VT (ϕε) > −ε and
P(VT (ϕε) > 0) > 0. That is, if a free lunch with vanishing risk exists, the holder of the portfolio is willing to
take an arbitrarily small, yet nonetheless positive loss, in order to achieve a positive probability of receiving a
strictly positive portfolio value.

Theorem 4. Let S be a locally bounded semimartingale on (Ω,F , (Ft)t≥0,P). Then S satis�es the condition
of No Free Lunch with Vanishing Risk if and only if there exists an equivalent probability measure Q such that
S is a local martingale with respect to it.

The theorem can be relaxed even further using the concept of σ-martingales and σ-martingale measures [Delbaen
and Schachermayer, 1998].

2.3 Risk Neutral Pricing

Let Q be a strong equivalent martingale measure, implying that there are no arbitrage opportunities with
respect to Φ. In a market in which such a martingale measure exists, it is of interest to price derivatives, which
are referred to as contingent claims in this setting.

De�nition 31. A contingent claim H with maturity T is an arbitrary FT -measurable random variable. The
class of all contingent claims is denoted by L0 = L0(Ω,F ,P).

Pricing in a risk neutral framework is done by replicating the payo� of a contingent claim by a trading strat-
egy.

De�nition 32. A contingent claim H is called attainable if there exists at least on admissible trading strategy
such that VT (ϕ) = H. Such a trading strategy ϕ is called a replicating strategy for H.

A �nancial market model is said to be complete if any contingent claim is attainable.
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The concept of attainability does not depend on the numéraire used: If a contingent claim is attainable in a
given numéraire, it is also attainable in any other numéraire and the replicating strategies are the same.

If a claim H is attainable trough the use of a strategy ϕ ∈ Φ, a market participant is indi�erent between holding
the claim and holding the portfolio under the assumptions of the simpli�ed market model that is used. Bar
any possibility of arbitrage, the price process πt(H) of a contingent claim must therefore be equal to the value
process of the trading strategy ϕ, πt(H) = Vt(ϕ). As can be expected, the price process is intimately connected
with the equivalent martingale measure. The connection is characterised through the risk neutral valuation
formula.

Theorem 5. The arbitrage price process of any attainable claim is given by the risk neutral valuation formula

πt(H) = S0
tEQ

(
H

S0
T

∣∣∣Ft) .
Proof. Because H is attainable, there exists replicating strategy ϕ ∈ Φ such that VT (ϕ) = H and πt(H) = Vt(ϕ)
for all t ∈ [0, T ]. Since ϕ ∈ Φ the discounted value process (Ṽt(ϕ))t≥0 is a martingale, leading for t ∈ [0, T ] to

πt(H) = Vt(ϕ) = S0
t Ṽt(ϕ) = S0

tEQ

(
ṼT (ϕ)

∣∣∣Ft) = S0
tEQ

(
VT (ϕ)

S0
T

∣∣∣Ft) = S0
tEQ

(
H

S0
T

∣∣∣Ft) .

Given a particular equivalent martingale measure Q, the resulting price is unique.

Corollary 1. For any two replicating portfolios ϕ,ψ ∈ Φ, the relation Vt(ϕ) = Vt(ψ) holds for all t ∈ [0, T ].

The theorem and the corollary assume that a martingale measure Q is already given and does not mention how
it should be chosen in the presence of other available equivalent martingale measures. However, it can be shown
that for two equivalent martingale measures Q1 and Q2, the uniqueness result

EQ1

(
H

S0
T

∣∣∣Ft) = EQ2

(
H

S0
T

|Ft
)

holds for replicating strategies ϕ1 ∈ Φ(Q1) and ϕ2 ∈ Φ(Q2). Even more generally, it is true that

π0(H) = sup
Q∈P

S0
0EQ

(
H

S0
T

|Ft
)

= inf
θ(H)

V0(ϕ),

where θ(H) is the class of all admissible trading strategies replicating H.

When only the price of a given derivative is of interest, it is su�cient to �nd an equivalent martingale measure.
If it is necessary to hedge the contingent claim under consideration, it is important to analyse the speci�c nature
of the replicating portfolio.

Lemma 3. Assume that the discounted contingent claim H/S0 is Q-integrable. If the Q-martingale (Mt)t≥0

de�ned by

Mt = EQ

(
H

S0
T

∣∣∣Ft)
for t ∈ [0, T ] admits an integral representation of the form

Mt = M0 +

d∑
i=1

∫ t

0

ϕiudS̃
i
u,

where ϕ1, . . . , ϕd are predictable and locally bounded, then H is attainable.
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Proof. The goal is to �nd a trading strategy ϕ ∈ Φ such that VT (ϕ) = H. Any set of predictable processes
ϕ1, . . . , ϕd such that the stochastic integrals

∫
ϕidS̃i, i = 1, . . . , d exist can be uniquely extended to a self-

�nancing strategy ϕ with speci�ed initial value Ṽ0(ϕ) = M0 by setting

ϕ0
t = v +

d∑
i=1

∫ t

0

ϕiudS̃
i
u −

d∑
i=1

ϕitS̃
i
t

for t ∈ [0, T ]. The strategy ϕ is then a strategy with

Ṽt(ϕ) = M0 + G̃t(ϕ) = M0 +

d∑
i=1

∫ t

0

ϕiudS̃
i
u = Mt.

M is a non-negative martingale, which means that ϕ ∈ Φ, and by de�nition

VT (ϕ) = S0
T ṼT (ϕ) = S0

TMT = S0
T

H

S0
T

= H.
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Chapter 3

Discretisation Schemes

Stochastic modelling in the sciences and �nance is largely done by formulating continuous stochastic processes
which serve as the mathematical description of some natural, non-deterministic phenomenon. However, in order
to simulate a continuous stochastic process one has to restrict oneself again to a �nite number of time point
evaluations by the necessity imposed by �nite computational resources. Prominent discretisation schemes for
It	o stochastic di�erential equations are the Euler-Maruyama scheme, the Milstein scheme and Runge-Kutta
schemes.

De�nition 33. Let ∆t = T
n be the size of an interval in a partition of [0, T ] into n ∈ N intervals of equal

length.

A process {Yi∆t}0≤i≤n on a �ltered probability space (Ω,F , (Ft)t≥0,P) is called a time discrete approximation
with step size ∆t on [0, T ], if it is a process such that Yj∆ is Fj∆t-measurable for all j ∈ {1, . . . , n} and
expressible as a function of Y0, Y∆t, . . . , Yj∆t and a �nite number l of Fj∆t-measurable random variables Zjk,
k ∈ {1, . . . , l} for all j ∈ {1, . . . , n}.

A continuous extension of {Yi∆t}0≤k≤n, denoted by (Ỹt)t≥0, is a càdlàg process that coincides with {Yi∆t}0≤i≤n
at the time instances {i∆t}0≤i≤n.

A process {Yi∆t}0≤i≤n may be extended by di�erent variants of interpolation, which is usually done out of

convenience by working in continuous time. The piecewise linear interpolant (Ỹt)t≥0 is de�ned by

Ỹi∆t+θ∆t = (1− θ)Yi∆t + θY(i+1)∆t

for 0 ≤ θ < 1 and i ∈ {1, . . . , n}. If no explicit interpolation method is given in a particular context in the
following text, it is implicitly assumed that piecewise linear interpolation is used.

Usually two notions of error are used to measure the quality of discretisation schemes. The weak error of a
discretisation scheme measures the proximity of the discretised process to the continuous process based on their
respective distributions whereas the strong error measures the proximity of the processes pathwise.

Formally, a discrete approximation scheme is said to strongly converge against a process X = (Xt)t≥0 on [0, T ]
if

lim
∆t→0

E(|XT − Yn∆t|) = 0

holds. A strongly convergent scheme is said to have convergence rate γ if for some constant C ∈ R

E(|XT − Yn∆t|) ≤ C(∆t)γ

holds.

An approximation process Y is converging weakly against a process X on [0, T ] with respect to a class of
measurable functions H, if

lim
∆t→0

|E(P (XT )− P (Yn∆t))| = 0
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for all P ∈ H. Intuitively, YT converges to XT in distribution. A weakly convergent scheme with respect to the
class H is said to have convergence rate α if for some constant C ∈ R

|E(P (XT )− P (Yn∆t))| ≤ C(∆t)α (3.1)

holds for all P ∈ H.

In the following a d-dimensional process X = (Xt)t≥0 satisfying a stochastic di�erential equation of the
form

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (3.2)

is considered with X0 = x0 ∈ Rd �xed, a m-dimensional Brownian motion (Wt)t≥0 and measurable coe�cient
functions a : R × Rd → Rd, b : R × Rd → Rd×m ful�lling the usual conditions ensuring the existence and
uniqueness of a strong solution. 3

To lighten the notation in some instances the frequently used operators

L0 =
∂

∂t
+

d∑
k=1

a(k) ∂

∂xk
+

1

2

d∑
k,l=1

m∑
j=1

b(k,j)b(l,j)
∂2

∂xk∂xl

L0 =
∂

∂t
+

d∑
k=1

a(k) ∂

∂xk

Lj =

d∑
k=1

b(k,j)
∂

∂xk

are de�ned for j ∈ {1, . . . ,m}.

3.1 The Euler-Maruyama Scheme

The Euler-Maruyama Scheme on a given interval [0, T ] is derived by performing a stochastic Taylor approxima-
tion. Assuming an equidistant discretisation of the interval [0, T ] into n time steps of size ∆t = T/n applying
It	o's Lemma to the two coe�cient functions a(t,Xt) and b(t,Xt) leads to the relation

X
(i)
t+∆t = X

(i)
t +

∫ t+∆t

t

a(i)(s,Xs)ds+

∫ t+∆t

t

m∑
k=1

b(i,k)(s,Xs)dW
(k)
s

= X
(i)
t +

∫ t+∆t

t

a(i)(t,Xt) +

∫ s

t

L0a(i)(u,Xu)du+

m∑
j=1

∫ s

t

Lja(i)(u,Xu)dW (j)
u

 ds
+

m∑
k=1

∫ t+∆t

t

b(i,k)(t,Xt) +

∫ s

t

L0b(i,k)(u,Xu)du+

m∑
j=1

∫ s

t

Ljb(i,k)(u,Xu)dW (j)
u

 dW (k)
s

= X
(i)
t +

∫ t+∆t

t

a(i)(t,Xt)ds+

m∑
k=1

∫ t+∆t

t

b(i,k)(t,Xt)dW
(k)
t + ψ(i)

= X
(i)
t + a(i)(t,Xt)∆t+

m∑
k=1

b(i,k)(t,Xt)∆W
(k)
t + ψ(i), (3.3)

where ∆Wt = Wt+∆t−Wt and where the time and Brownian integrals of multiplicity one are explicitly expressed
and the remaining integrals are collected under the term ψ. By discarding the terms subsumed under ψ for
small ∆t the Euler-Maruyama approximation

Y
(i)
t+∆t = Y

(i)
t + a(i)(t, Yt)∆t+

m∑
k=1

b(i,k)(t,Xt)∆W
(k)
t

= Y
(i)
t + a(i)(t, Yt)∆t+

m∑
k=1

b(i,k)(t,Xt)
√

∆tZ(k) (3.4)
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is obtained, where Z(k) is a standard normally distributed random variable.

Algorithm 1 The Euler-Maruyama Scheme

Let ∆t = T/n for a given n ∈ N.
The Euler-Maruyama approximation at the discretisation points is calculated via the following steps.

1 Set Y0 = X0 = x0.

2 For j = 0 to n− 1 do

Generate a sample of a m-dimensional standard normal variable Z ∼ N(0, Id).

Calculate for every i ∈ {1, . . . , d} of the d-dimensional process Y

Y
(i)
(j+1)∆t = Y

(i)
j∆t + a(i)(j∆t, Yj∆t)∆t+

m∑
k=1

b(i,k)(j∆t, Yj∆t)
√
j∆tZ(k).

The Euler-Maruyama method converges strongly with order 1/2 under Lipschitz and linear growth conditions
on the coe�cient functions [Kloeden and Platen, 1995]. However, in special cases the method may reach a higher
order of convergence. In case the di�usion function b(t, x) is additive, i.e., b(t, x) = b(t), the Euler-Maruyama
scheme has under further smoothness assumptions on the coe�cient functions an order of strong convergence
of 1.

Theorem 6. Given a probability space (Ω,F ,P), let (Xt)t≥0 be a stochastic process of the form (3.2) and
(Yt)t≥0 its Euler-Maruyama approximation with step size ∆t as given in (3.4). Requiring of the initial random
variable

E(|X0|2) <∞,

E(|X0 − Y0|2)
1
2 ≤ C1(∆t)

1
2

for a constant C1 ∈ R and requiring of the coe�cient functions the Lipschitz and linear growth conditions for
all s, t ∈ [0, T ] and x, y ∈ Rd

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C2|x− y|,
|a(t, x)|+ |b(t, x)| ≤ C3(1 + |x|),

|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ C4(1 + |x|)|s− t| 12 ,

for constants C2, C3, C4 ∈ R independent of ∆t, the estimate

E(|XT − YT |p)
1
p ≤ C5(∆t)

1
2

holds for the Euler-Maruyama approximation (Yt)t≥0 with the constant C5 ∈ R independent of ∆t and for p ≥ 2.
Additionally for the whole path over [0, T ] the result

E

(
sup

0≤t≤T
|Xt − Yt|p

) 1
p

≤ Cp(∆t)
1
2 . (3.5)

holds for some constant Cp and for p ≥ 2, which includes the weaker statement that for any δ > 0 and p ≥ 2 a
constant Cδp ∈ R exists such that

E

(
sup

0≤t≤T
|XT − YT |p

)
≤ C∆

p (∆t)
p
2−δ. (3.6)

Furthermore there exists a constant Cp ∈ R such that

E

(
sup

0≤t≤T
|XT − YT |p

)
≤ Cp|∆t log ∆t|

p
2 .

20



Considering weak convergence, the Euler-Maruyama scheme has a convergence of order 1. Since the order of
weak convergence of the Euler-Maruyama scheme is on par with the order of weak convergence of the Milstein
scheme presented below, it is usually sensible to use the Euler-Maruyama scheme when weak convergence is
su�cient.

Theorem 7. Given a probability space (Ω,F ,P), let (Xt)t≥0 be a stochastic process of the form (3.2) and
(Yt)t≥0 its Euler-Maruyama approximation with step size ∆t as given in (3.4).

Suppose that the coe�cient functions a(t, x) = (a(i)(t, x))1≤i≤d and b(t, x) = (b(i,k)(t, x))1≤i≤d,1≤k≤m are Lips-
chitz continuous with components a(i)(t, x), b(i,k)(t, x) that are 4 times continuously di�erentiable, are polyno-
mially bounded and have partial derivatives of up to and including order 4 that are polynomially bounded. Then
there exists for each function P ∈ C4

pol(R
d,Rd) which has partial derivatives of up to and including order 4 that

are polynomially bounded, a constant CP independent of ∆t such that

|E(P (XT )− P (YT ))| ≤ CP∆t.

Thus, the Euler-Maruyama approximation Y converges weakly with order 1 to X.

3.2 The Milstein Scheme

The Milstein scheme is a re�nement of the Euler-Maruyama scheme in that it uses an additional term in the
Taylor expansion. Whereas the drift term in the Euler-Maruyama scheme (3.4) is of order O(∆t), the di�usion

term is only of order O
(

∆t
1
2

)
. The Milstein approximation makes use of the fact that a further expansion

of the di�usion term increases the order of the term to O(∆t) as well, thus increasing the overall order to
O(∆t).

Before the di�usion coe�cient function in (3.3) is expanded further to derive the Milstein scheme, some de�ni-
tions and relations are given.

For j, k ∈ {1, . . . ,m} let Ijk denote the double integral against two independent Brownian motions W (j) and
W (k) over the interval [t, t+ ∆t], i.e.

Ijk =

∫ t+∆t

t

∫ s

t

dW (j)
u dW (k)

s .

By It	o's Lemma and associativity of the integral

Ijk + Ikj =

∫ t+∆t

t

∫ s

t

dW (j)
u dW (k)

s +

∫ t+∆t

t

∫ s

t

dW (k)
u dW (j)

s

=

∫ t+∆t

t

∫ s

t

dW (j)
u d

(∫ s

t

W (k)
u

)
+

∫ t+∆t

t

∫ s

t

dW (k)
u d

(∫ s

t

W (j)
u

)
+

[∫ t+∆t

t

dW (j)
s ,

∫ t+∆t

t

dW (j)
s

]
−

[∫ t+∆t

t

dW (j)
s ,

∫ t+∆t

t

dW (j)
s

]

=

∫ t+∆t

t

dW (j)
s

∫ t+∆t

t

dW (k)
s − Ξjk∆t

= ∆W
(j)
t ∆W

(k)
t − Ξjk∆t, (3.7)

holds, where Ξ denotes the correlation matrix of the m Brownian motions. Usually, m-dimensional standard
Brownian motions are considered, where the correlation matrix Ξ coincides with the m-dimensional identity
matrix.
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Furthermore the Lévy area 4 A
(j,k)
t is de�ned by the di�erence of two double integrals,

A
(j,k)
t = Ijk − Ikj (3.8)

=

∫ t+∆t

t

(
W (j)
s −W (j)

t

)
dW (k)

s −
∫ t+∆t

t

(
W (k)
s −W (k)

t

)
dW (j)

s .

Combining (3.7) and (3.8) results in

Ijk =
1

2

(
∆W

(j)
t ∆W

(k)
t − δjk∆t+A

(j,k)
t

)
. (3.9)

Expanding the di�usion coe�cient function for an additional term in (3.3) using (3.9) yields

X
(i)
t+∆t = X

(i)
t +

∫ t+∆t

t

a(i)(t,Xt) +

∫ s

t

L0a(i)(u,Xu)du+

m∑
j=1

∫ s

t

Lja(i)(u,Xu)dW (j)
u

 ds
+

m∑
k=1

∫ t+∆t

t

b(i,k)(t,Xt) +

∫ s

t

L0b(i,k)(u,Xu)du+

m∑
j=1

∫ s

t

Ljb(i,k)(u,Xu)dW (j)
u

 dW (k)
s

= X
(i)
t + a(i)(t,Xt)∆t+

m∑
k=1

b(i,k)(t,Xt)∆W
(k)
t +

m∑
j,k=1

Ljb(i,k)(t,Xt)

∫ t+∆t

t

∫ s

t

dW (j)
u dW (k)

s (3.10)

+

m∑
j,k=1

∫ t+∆t

t

∫ s

t

[∫ u

t

L0Ljb(i,k)(v,Xv)dv +

m∑
r=1

∫ u

t

LrLjb(i,k)(v,Xv)dW
(r)
v

]
dW (j)

u dW (k)
s + η(i)

= X
(i)
t + a(i)(t,Xt)∆t+

m∑
k=1

b(i,k)(t,Xt)∆W
(k)
t (3.11)

+
1

2

m∑
j,k=1

d∑
l=1

∂b(i,k)(t,Xt)

∂x(l)
b(l,j)(t,Xt)

(
∆W

(j)
t ∆W

(k)
t − Ξjk∆t+A

(j,k)
t

)
+ ψ(i).

The Milstein approximation is accordingly given by

Y
(i)
t+∆t = Y

(i)
t + a(i)(t, Yt)∆t+

m∑
k=1

b(i,k)(t, Yt)∆W
(k)
t

+
1

2

m∑
j,k=1

d∑
l=1

∂b(i,k)(t, Yt)

∂y(l)
b(l,j)(t, Yt)

(
∆W

(j)
t ∆W

(k)
t − Ξjk∆t+A

(j,k)
t

)
(3.12)

and, as the informal reasoning above suggests, has an order of strong convergence of 1 [Kloeden and Platen,
1995]. The additional error bound was proved in [Müller-Gronbach, 2002].

Theorem 8. Given a probability space (Ω,F ,P), let (Xt)t≥0 be a stochastic process of the form (3.2) and
(Yt)t≥0 its Milstein approximation with step size ∆t as given in (3.16). Furthermore, de�ne for k ∈ {1, . . . , d}
the Stratonovich coe�cient

a(k) = a(k) − 1

2

m∑
j=1

L(j)b(k,j).

Requiring of the initial random variable

E(|X0|2) <∞

E(|X0 − Y0|2)
1
2 ≤ C1(∆t)

1
2
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for a constant C1 ∈ R and requiring of the coe�cient functions the Lipschitz and linear growth conditions for
all s, t ∈ [0, T ], x, y ∈ Rd and j ∈ {0, . . . ,m}, j1, j2 ∈ {1, . . .m}

|a(t, x)− a(t, y)| ≤ C2|x− y| |a(t, x)|+ |Lja(t, x)| ≤ C3(1 + |x|)
|bj1(t, x)− bj1(t, y) ≤ C2|x− y| |bj1(t, x)|+ |Ljbj2(t, x)| ≤ C3(1 + |x|) (3.13)

|Lj1bj2(t, x)− Lj1bj2(t, y)| ≤ C2|x− y| |LjLj1bj2(t, x)| ≤ C3(1 + |x|)

|a(s, x)− a(t, x) ≤ C4(1 + |x|)|s− t| 12

|bj1(s, x)− bj1(t, x)| ≤ C4(1 + |x|)|s− t| 12

|Lj1bj2(s, x)− Lj1bj2(t, x)| ≤ C4(1 + |x|)|s− t| 12 ,

where the constants C2, C3, C4 ∈ R do not depend on ∆t, the estimate

E (|XT − YT |) ≤ C5∆t

holds for the Milstein approximation Y , where the constant C5 ∈ R is independent of ∆t. Furthermore there
exists a constant Cp ∈ R such that

E

(
sup

0≤t≤T
|XT − YT |p

)
≤ Cp|∆t log ∆t|

p
2 .

For d = 1, the Lévy area vanishes and the Milstein scheme (3.16) reduces to

Yt+∆t = Yt + a(t, Yt)∆t+ b(t, Yt)∆Wt +
1

2
b′(t, Yt)b(t, Yt)(∆W

2
t −∆t). (3.14)

Kloeden and Platen de�ne for s ∈ [t, t+ ∆t] in [Kloeden and Platen, 1995] the interpolation scheme

Y KPs = Yt + a(t, Yt)(s− t) + b(t, Yt)(Ws −Wt) +
1

2
b′(t, Yt)b(t, Yt)((Ws −Wt)

2 − (s− t)). (3.15)

Theorem 9. Under the conditions of theorem (8), there exists for all m ∈ N a constant Cm such that

E

(
sup

0≤t≤T
|Xt − Y KPt |m

)
< Cm(∆t)m and E

(
sup

0≤t≤T
|Y KPt |m

)
< Cm.

The order of weak convergence and the conditions ensuring weak convergence for the Milstein scheme are the
same as in the Euler-Maruyama scheme, see Theorem 6.

However, the gain in accuracy obtained by expanding the Taylor expansion to the order of O(∆t) in the
Milstein scheme turns out to be spurious in the multidimensional case d > 1. Whereas the Lévy area vanishes
in the case d = m = 1 5, leaving explicit terms which can be readily simulated, the sampling of triples(
∆W (j),∆W (k), A(j,k)

)
escapes an e�cient approach. There is in general no method for sampling the Lévy

area conditional on ∆W (j) and ∆W (k) exactly and although the characteristic function of the Lévy area may
be determined in various ways6, the Fourier inversion step is not analytically possible in the general case
[Scheicher, 2007].

Methods approximating the Lévy area weakly to �rst order based on the decomposition of the covariance matrix
of the �nite-dimensional distribution of a Brownian motion are presented in [Scheicher, 2007]. Additionally, one
can use the same extrapolation methods as in the deterministic case, for example the Romberg extrapolation
method, to improve the accuracy of the approximation.

Kloeden and Platen proved that in order to accomplish a strong convergence rate of O(∆t) the mean square
error in the approximation of the Lévy areas must be neglegible in comparison to the discretisation error or,
to be more precise, must be of order O(∆t3) [Kloeden and Platen, 1995, Corollary 10.6.5]. In [Kloeden et al.,
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Algorithm 2 The Milstein Scheme

Let ∆t = T/n for a given n ∈ N.
The Milstein approximation at the discretisation points is calculated via the following steps.

1 Set Ŷ0 = X0 = x0.

2 For s = 0 to n− 1 do

Generate a sample of a m-dimensional of a standard normal variable Z ∼ N(0, Id).

Generate a sample of (∆W
(j)
s∆t,∆W

(k)
s∆t, A

(j,k)
s∆t ) for every j, k ∈ {1, . . . ,m}.

Calculate for every i ∈ {1, . . . , d} of the d-dimensional process Y

Y
(i)
(s+1)∆t = Y

(i)
s∆t + a(i)(s∆t, Ys∆t)∆t+

m∑
k=1

b(i,k)(t, Ys∆t)
√
s∆tZ(k)

+
1

2

m∑
j,k=1

d∑
l=1

∂b(i,k)(s∆t, Ys∆t)

∂y(l)
b(l,j)(s∆t, Ys∆t)

(
∆W

(j)
s∆t∆W

(k)
s∆t − Ξjk∆t+A

(j,k)
s∆t

)
(3.16)

1992] an algorithm based on truncating the Karhunen�Loève expansion of the Lévy area, which can be derived
by looking at the expansion for a Brownian bridge process and which is given by

A
(j,k)
t =

∆t

π

∞∑
l=1

1

l

(
Υl

(
Φl −

√
2

∆t
∆W

(j)
∆t

)
−Xl

(
Ψl −

√
2

∆t
∆W

(k)
∆t

))
,

where Υl,Φl, Xl and Ψl are independent standard normal variables, was introduced. If the expansion is cut
o� after s terms the algorithm has a mean square error of O

(
1
s∆t2

)
. Subsequently, Wiktorsson re�ned the

algorithm by replacing the tail sum with an appropriate normal random variable
√

2∆t
π

(
π2

6 −
∑s
l=1

1
l2

) 1
2

Z,

where Z is a standard normal variable, in [Wiktorsson, 2001]. This reduces the mean square error to O
(

1
s2 ∆t2

)
,

requiring s only to be proportional to O
(

∆t−
1
2

)
to achieve the necessary mean square error. In fact the Milstein

discretisation combined with the algorithm by Kloeden et al would, at a minimum, require the simulation of the
same amount of Gaussian random variables as the Euler discretisation, and would therefore underperform with
regards to the Euler discretisation provided that the evaluation of the coe�cient functions is not too costly.
To achieve strong convergence with a mean error of ε both methods require the simulation of O

(
ε−2
)
random

variables, whereas the method by Wiktorsson requires the simulation of only O
(
ε−

3
2

)
random variables.

Another approximation method for simulating the Lévy area by Wiktorsson is based on an expansion of the
area into a series of Laplace random variables [Rydén and Wiktorsson, 2001]. The expansion rests on the idea
that the characteristic function of the Lévy area is the product of a logistic random variable and a compound
Poisson process where the summands are Laplace random variables. This decomposition allows the series
representation

A
(j,k)
t =

∆t

π

(
X +

∞∑
l=1

1

l

Pl∑
r=1

Yrl

)
,

where X is a Logistic variable with location parameter 1, Pl are Poisson random variables with parameter

λ =

((
W

(j)
∆t

)2

+
(
W

(k)
∆t

)2
)

∆t
,

and where the Yrl are Laplace random variables with parameter 1. All random variables are independent. Again,

the series expansion is cut o� after s terms and the tail sum replaced by ∆t
π

√
2λ
s Z, where Z is a standard normal
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variable. The complexity is the same as in the algorithm mentioned above, i.e. s must be of order O
(

∆t−
1
2

)
to achieve an overall strong convergence rate of O(∆t).

As already hinted at above, for a practical implementation the number of simulated random variables is a relevant
measure of complexity. Two improvements on the algorithm of Wiktorsson for the case d = 2 with regards to
this measure were proposed by [Malham and Wiese, 2011], which bring down computational complexity in terms
of the number of random variables required for the simulation of the Lévy area to achieve an over all strong

convergence with a mean error of ε from O
(
ε−

1
2

)
to O (log(ε)).

An exact sampling approach for the case d = 2 was presented in [Gaines and Lyons, 1994]. It is based

on the inversion of the joint characteristic function of λ and the Lévy area A
(j,k)
t with ∆t = 2π through

Marsaglia's rectangle-wedge-tail method. It is the fastest of the methods presented, as the simulation of the
triple

(
∆W (j),∆W (k), A(j,k)

)
takes about the same time as the simulation of approximately 15 standard normal

variables. A drawback of the algorithm is the rather forbidding complicated implementation. Subsequently,
Gaines and Lyons developed an approximation method based on replacing the Lévy area by its conditional
expectation on intervening Brownian path information, which in terms of the number of random variables
required for the simulation of the Lévy area, has a computational complexity of O

(
ε−1
)
[Gaines and Lyons,

1997].

Further methods to handle the di�culty of simulating the Lévy area in the Milstein discretisation are the elliptic
operator approach presented in [Cruzeiro et al., 2004], which under certain conditions circumvents the sampling
of the Lévy area altogether, and the combinatorial approach given in [Levin and Wildon, 2008].

For d-dimensional stochastic processes the approach presented in [Rydén and Wiktorsson, 2001] has the greatest
relevance to Monte Carlo simulations. The approach is summarised in Algorithm 3.

Simulating the Lévy area e�ciently is an important problem. Every discretisation scheme which exclusively
relies on the discrete increments of the underlying Brownian motion such as the Euler-Maruyama scheme cannot
exceed the order of strong convergence of that scheme, that is, every scheme depending on discrete increments
necessarily has an order of strong convergence smaller than 1/2. This was shown to be the case for a particular
stochastic di�erential equation in [Clark and Cameron, 1980] and extended to general stochastic di�erential
equations in [Müller-Gronbach, 2002]. However, the Multilevel Monte Carlo method when used with the Euler-
Maruyama scheme achieves in no case the optimal lower computational cost bound, not even when the payo�
function is Lipschitz such as in the case of European, Asian and lookback options [Müller-Gronbach and Ritter,
2009]. Therefore application of the Milstein scheme in the context of the Multilevel Monte Carlo method
combined with an e�cient simulation of the Lévy area is desirable.

3.3 Runge-Kutta Schemes

A disadvantage of the Milstein method is the occurrence of the derivatives in (3.16), which can be di�cult to
handle in a computationally e�cient manner. An alternative to the truncation of the Taylor expansion are
Runge-Kutta methods. Just as in the case of Runge-Kutta methods for ordinary di�erential equation, the
partial derivatives involved in Taylor methods are traded in for extra function evaluations resulting from an
approximation through the underlying stochastic di�erential equation. However, although the derivative-free
methods for stochastic di�erential equations are generically called Runge-Kutta methods they are not simple
heuristical extensions of the Runge-Kutta methods for deterministic di�erential equations, as the extensions
constructed by exchanging the derivative in a Taylor expansion for the corresponding di�erence ratios are not
strongly consistent [Kloeden and Platen, 1995].

De�nition 34. A discrete approximation scheme to a solution of a stochastic di�erential equation (3.2) with
step size ∆t yielding discretisation values {Yk∆t}k∈{1,...,n} is called strongly consistent if there exists a non-
negative function c = c(∆t) with lim∆t→0 c(∆t) = 0 such that

E

(∣∣∣∣E(Y(k+1)∆t − Yk∆t

∆t
|Fk∆t

)
− a(k∆t, Yk∆t)

∣∣∣∣2
)
≤ c(∆t) (3.17)
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Algorithm 3 The Wiktorsson-Ryden Iterated Integral Algorithm

Let ∆t = T/n for a given n ∈ N, let s ∈ {1, . . . , n} and j, k ∈ {1, . . . , d}.
The Milstein approximation at the discretisation points is calculated via the following steps.

1 Fix a constant C. Let p be the smallest number such that

p ≥ 1

Cπ

√
m(m− 1)

24∆t

√√√√m+ 4

m∑
i=1

(
W

(i)
s∆t

)2

/∆t.

2 Generate samples ajr, bjr for j ∈ {1, . . . , d} and r ∈ {1, . . . , p} from N(0,∆t/2π2r2). Set η∗jr =
√
πrajr

and ζ∗jr =
√
πrbjr.

3 Calculate the Lévy area and Brownian motion approximations

A
(j,k),p
s∆t =

1

∆t

p∑
r=1

ζ∗jrη
∗
kr − η∗jrζ∗kr

and

apj0 = −
p∑
r=1

2√
πr
ζ∗jr.

4 Calculate the approximated iterated integral

Ipjk =
1

2
IjIk −

1

2
(apk0Ij − a

p
j0Ik) + ∆tA

(j,k),p
s∆t

with Ij =
∫ (s+1)∆t

s∆t
dW

(j)
u .

5 Calculate the tail approximation Ap,tail.
Let x, y ∈ Rm and M = 1

2m(m − 1). Denote with emj the j-th basis vector of Rm. Let ⊗ denote

the tensor product and de�ne Pm : Rm
2 → RM with Pm(x ⊗ y) = y ⊗ x and Km : Rm

2 → RM with

Km(emj ⊗ emk ) = eMv(j,k) and Km(emk ⊗ emj ) = 0 = Km(emk ⊗ emk ), where j < k and v(j, k) is the position of

(j, k) in the M term sequence

(1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (2,m), . . . , (m− 1,m).

Calculate the quantity

Σ∞ = 2EM +
2

∆t
Km(Em2 − Pm)(Em ⊗Ws∆tW

t
s∆t)(Im2 − Pm)Kt

m,

with Em the m×m identity matrix and Ws∆t = (W
(1)
s∆t, . . . ,W

(m)
s∆t )t.

Sample Gp from N(0, EM ), calculate ap =
∑∞
k=p+1

1
k2 and calculate

Ap,tail = (Em2 − Pm)Kt
m

∆t

2π

√
apΣ∞Gp.

6 Calculate Ip+tailjk = Ipjk +Ap,tailjk .

26



and

E

(
1

∆t
|Y(k+1)∆t − Yk∆t − E(Y(k+1)∆t − Yk∆t|Fk∆t)− b(k∆t, Yk∆t)∆Wk∆t|2

)
≤ c(∆t) (3.18)

for all �xed values Yk∆t and k ∈ {0, . . . , n}.

The �rst condition (3.17) forces the mean of the increment in the discretisation to converge to that of the
approximated process. In case no di�usion term appears in the underlying stochastic di�erential equation (3.2),
the condition coincides with the de�nition of consistency of a one-step scheme of a deterministic di�erential
equation. The second condition requires that the variance of the di�erence between the di�usion terms of the
discretisation and the approximated process converges to zero, which implies strong convergence.

In general, Runge-Kutta schemes derived from Taylor schemes by exchanging the derivatives for the respective
di�erence ratios are not strongly consistent. To show that the derivation of Runge-Kutta schemes is non-trivial
the following short example [Kloeden and Platen, 1995] is given.

De�nition 35. A discrete approximation scheme to a solution of a stochastic di�erential equation (3.2) with
step size ∆t de�ned by

Yt+∆t = Yt +
1

2
(a(t,Ξt) + a(t, Yt)) ∆t+

1

2
(b(t,Ξt) + b(t, Yt)) ∆Wt

with
Ξt = Yt + a(t, Yt)∆t+ b(t, Yt)∆Wt

is the Heun discretisation generalised heuristically from the Heun method for deterministic di�erential equations.

The Heun discretisation, which coincides with the explicit trapezoidal rule, is a two-stage Runge-Kutta method
that extends the Euler method. In case of the simple stochastic di�erential equation

dXt = 1.5Xtdt+ 0.1XtdWt, (3.19)

the Heun method does not converge on [0, 1] for Y0 = 1. Instead, for stochastic di�erential equation the following
Heun method is useful.

De�nition 36. A discrete approximation scheme to a solution of a stochastic di�erential equation (3.2) with
step size ∆t de�ned by

Yt+∆t = Yt +
1

2
(a(t,Ξt) + a(t, Yt)) ∆t+

1

2
b(t, Yt)∆Wt (3.20)

with
Ξt = Yt + a(t, Yt)∆t+ b(t, Yt)∆Wt

is the Heun discretisation used for stochastic di�erential equations.

The discretisation in De�nition 3.20 is indeed strongly consistent and converges for the example (3.19).

A Runge-Kutta scheme derived from the multidimensional Milstein scheme in de�nition (3.16) is given by

Y
(i)
t+∆t

= Y
(i)
t + a(i)(t, Yt) +

m∑
j=1

b(i,j)∆W
(j)
t (3.21)

+
1√
∆t

m∑
j1,j2=1

(b(i,j2)(t,Ξ
(j1)
t )− b(i,j2)(t, Yt))

∫ t+∆t

t

∫ s

t

dW (j1)
u dW (j2)

s (3.22)

with
Ξ

(j)
t = Yt + a(t, Yt)∆t+ b(j)(t, Yt)

√
∆t

for j ∈ {1, . . . ,m}. It should be noted that in (3.21) each component b(i,j) of the di�usion matrix b must be

evaluated at the m + 1 vector valued points Yt,Ξ
(1)
t , . . . ,Ξ

(m)
t . The higher number of evaluations is the price

for replacing the derivative. 7
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Chapter 4

The Monte Carlo Method

Monte Carlo simulation �ttingly has its roots in harnessing the computational power of electronic computers for
solving mathematical and physical problems. In 1947 Stanislaw Ulam at the Los Alamos laboratories in New
Mexico outlined the method in a research report, which soon became a research project on the �rst electronic
computer ENIAC due to the recommendation of John von Neumann, who strongly encouraged research in that
direction, seeing the value of the new statistical method in solving complex problems. Independently, Enrico
Fermi had basically applied the same technique 15 years earlier, leaving the work unpublished.

The �rst problems solved with Monte Carlo simulation were di�erential equations describing the neutron dif-
fusion in �ssionable material. Soon the technique became an important research e�ort. Enormous batches of
punch cards, which ENIAC took as input, were �lled with generated random numbers produced for further use
in Monte Carlo simulations [Metropolis, 1987].

Monte Carlo simulations were introduced to the problems of mathematical �nance with the work of Boyle
[Boyle, 1977] for the purpose of pricing options in a straightforward way. To this day, this approach is widely
used by practitioners in the �nancial industry, which makes academic research in this area of vital interest to
�nancial institutions such as banks and insurance companies.

4.1 The Classic Monte Carlo Method

The central idea which de�nes the Monte Carlo method is the approximation of the expected value E(f(X)) of
a random variable f(X) given by

E(f(X)) =

∫
Ω

f(X(ω))dP (ω), (4.1)

for a Lebesgue-integrable function f ∈ L2, by an arithmetic average of the outcomes of a large number of
independent experiments which are all equal in law to f(X). Due to f(X) being again a random variable for
measurable f ∈ L2, it is su�cient to restrict the attention to random variables denoted by X.

Convergence of the arithmetic mean to the expected value is assured by the Strong Law of Large Numbers.
In its most basic form it stipulates that the arithmetic mean of a sequence of independent and identically
distributed random variables (Xi)i∈N with mean µ and variance σ2 converges almost surely to the expected
value µ = E(X1).

Theorem 10. Given a probability space (Ω,F ,P), let (Xi)i∈N be a sequence of real-valued, independent and
identically distributed random variables with �nite expected values µ = E(X1). Then

XN :=
1

N

N∑
i=1

Xi
a.s.−→ µ

holds for N →∞. 8

28



The partial sums XN are unbiased estimators of the expected value µ due to

E
(
XN

)
=

1

N

N∑
i=1

E(Xi) =
1

N

N∑
i=1

µ = µ. (4.2)

It is convenient to use the root mean square error of the partial sums as a measure for the error in the estimation.
For unbiased estimators like XN it reduces to the standard deviation of the partial sums, that is

RMSE(XN ) =

√
MSE(XN ) =

√
E((XN −X)2) (4.3)

=
√(
Var(XN ) + (E(XN )−X)2

)
=

σ√
N
. (4.4)

As the the error is of order O
(

1√
N

)
, a signi�cant increase in computational resources is needed to increase the

accuracy of the method. Since the slow rate of convergence caused by the order of the error is a main drawback
of the Monte Carlo method, mathematical research is focused on improving the order of the error by various
extensions like control variates, antithetic sampling, strati�cation and Latin Hyper Cube sampling, for reference
see [Glasserman, 2004] and [Korn et al., 2010].

For large N the use of the standard deviation as a measure for the error is justi�ed by the Central Limit
Theorem, as the standard deviation characterises uniquely the spread of the values around the mean of a
normal distribution.

Theorem 11. Let (Ω,F ,P) be a probability space and (Xi)i∈N a sequence of real-valued, independent and
identically distributed random variables with �nite expected values µ = E(X1) and �nite variances σ2 = Var(X).

Then the arithmetic mean of the random variables converges in distribution to a normally distributed random

variable with expected value µ and variance σ2

N ,

XN =
1

N

N∑
i=1

Xi
D−→ Z ∼ N

(
µ,
σ2

N

)
.

Therefore, the Monte Carlo estimator is asymptotically normally distributed with mean µ and variance σ2

N for
large values of N . A theoretical approximate con�dence interval for the mean µ is given by[

XN − z1−α2
σ√
N
,XN + z1−α2

σ√
N

]
, (4.5)

where zq denotes the q-th quantile of the normal distribution. The unknown variance σ2 renders the con�dence
interval of no practical use. However, σ2 can be estimated by the sample variance

σ2
N =

1

N

N∑
i=1

(Xi −XN )2.

By Slutsky's Lemma, the limit in distribution in Theorem 11 does not change if the unknown variance σ2 is
exchanged for the calculable estimate σ2

N . Consequently, the calculable con�dence interval[
XN − z1−α2

σ2
N√
N
,XN + z1−α2

σ2
N√
N

]
is obtained.

It should be noted that the con�dence interval is only valid for su�ciently large N and that in particular cases,
for example when the Monte Carlo estimator is applied to random variables that are non-zero only far away
from the center of the underlying distribution, the con�dence interval is particularly inaccurate [Korn et al.,
2010].
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From (4.5) it is clear that if a Monte Carlo estimator with a small error is of interest, the variance of the
estimator should be reduced. All other things being equal, between two unbiased estimators the estimator with
the lower variance should be chosen.

It is however seldomly the case that two estimators only di�er in their variance. An estimator with a lower
variance is usually computationally more expensive. The trade-o� between the accuracy of an estimator and its
computationally complexity was analysed by Glynn and Whitt [Glynn and Whitt, 1992]. The intuitive e�ciency
principle that

[. . . ] the e�ciency of a Monte Carlo process may be taken as inversely proportional to the product
of the sampling variance and the amount of labour expended in obtaining this estimate, [. . . ]

- Monte Carlo Methods, Hammersley & Handscomb, 1964

although applicable an most simulation situations, is shown to lead to inaccurate conclusions in some instances.
Glynn and Whitt developed a framework encompassing very general situations in which to compare di�erent
variance reduction techniques in a rigorous manner. For the Multilevel Monte Carlo setting it is su�cient to
note that in a general Monte Carlo setting the principle established by Hammersley and Handscomb is indeed
applicable. It is therefore possible to �x a bound for the root mean square error and then compare variance
reduction methods on the basis of computational complexity necessary to achieve the error bound.

A direct application of Theorem 10 is the Classic Monte Carlo algorithm for approximating the mean E(X) of
a random variable X.

Algorithm 4 The Classic Monte Carlo Algorithm

Let X be a real-valued random variable and N ∈ N be �xed. The Monte Carlo approximation of the

mean E(X) is calculated via the following steps.

1 For i = 1 to N do

Sample an observation Xi from a random variable equal in law to X.

2 Calculate

XN =
1

N

N∑
i=1

Xi.

4.2 The Classic Monte Carlo Method for Stochastic Processes

In the following the main focus lies in simulating stochastic processes X = (Xt)t≥0 in continuous time de�ned
on a probability space (Ω,F ,P).

The expectation of measurable functionals P :
(
Rd
)[0,∞) → R of the stochastic process X is considered. It is

assumed that the expectation E(P (X)) is well-de�ned and �nite. If independent realisations X(ωi), ωi ∈ Ω, for
i ∈ {1, . . . , N}, can be sampled, the random variable P (X) can be sampled. However, because the realisations
X(ωi) are functions on a time continuum, one has to resort to a discretisation scheme in order to approximate
the continuous stochastic process for sampling in manageable discrete �nite time steps. Approximating the
processes X(ωi) through a time discretisation Y (ωi) and subsequent sampling of the resulting processes with P
applied to them results in the approximate sampling of P (X).

Applying the Classic Monte Carlo Algorithm to P (X) using the construction outlined above yields an estimator
for E(P (X)),

Ŷ =
1

N

N∑
i=1

P (Y (ωi)) ,
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Algorithm 5 The Classic Monte Carlo Algorithm for Stochastic Processes

Let X be a stochastic process, P a functional, and N ∈ N be �xed. The Monte Carlo approximation of

the mean E(P (X)) is calculated via the following steps.

1 For i = 1 to N do

Approximate the process X with a discretisation Y and sample an observation Y (ωi).

2 Calculate

Ŷ =
1

N

N∑
i=1

P (Y (ωi)) .

and consequently a Classic Monte Carlo algorithm for stochastic processes.

Again the root mean square error

RMSE =

√
E([Ŷ − E(P (X))]2)

should be kept small as e�ciently as possible when estimating P (X). That means minimizing the computational
complexity to achieve a root mean square error RMSE ≤ ε, where ε is �xed in advance. Minimizing the root
mean square error is equivalent to minimizing

E([Ŷ − E(P (X))]2) = E([Ŷ − E(Ŷ ) + E(Ŷ )− E(P (X))]2)

= E([Ŷ − E(Ŷ )]2)︸ ︷︷ ︸
variance of the Monte Carlo estimator

+
[
E(Ŷ )− E(P (X))

]2
︸ ︷︷ ︸

discretisation error

(4.6)

Due to the discretisation error the estimator has a bias in contrast to the conventional Monte Carlo estimator
(4.2). However, the order of the variance is the same as in (4.3). Because of

Var(Ŷ ) =
1

N2
Var

(
N∑
i=1

P (Yi∆t)

)

=
1

N
Var(P (Y∆t))

the variance is of order O
(

1
N

)
. For both the Euler-Maruyama and the Milstein discretisation the weak error is

of order O(∆t). In sum, for the MSE of Ŷ

E([Ŷ − E(P (X))]2) = O

(
1

N

)
+O(∆t2).

is obtained. In order to guarantee a root mean square error proportional to ε, it is therefore necessary to have
1/N = O(ε2) and ∆t2 = O(ε2), which leads to N = O(ε−2) and ∆t = O(ε). The computational complexity of a
standard Monte Carlo simulation is proportional to the number of paths N multiplied by the cost of creating
each path, which is sensibly measured by the number of time steps 1/∆t used for each path. Multiplication
yields that the overall computational cost has to be of order C = O(ε−3).
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Chapter 5

The Multilevel Monte Carlo Method

The Multilevel Monte Carlo method is a recent development introduced by Giles, generalizing on the two level
approach developed by Kebaier in [Kebaier, 2005] and drawing on concepts of the multi-grid method for the
iterative solution of linear systems of equations arising from the discretisation of elliptic partial di�erential
equations. It is also similar to the multilevel method for parametric integration developed by Heinrich in
[Heinrich, 2001]. The goal is to e�ciently compute the expectation of the functional of a solution of a stochastic
di�erential equation by using a sequence of discretisations with decreasing step size.

The method is based on the fact that the salient features or the long-time trends of a process can be captured
by the use of a coarse time grid to a satisfying accuracy. Less important features are then added onto these
coarse paths as corrections to the long-time trend by the use of a �ner time grid. In course of the method, no
additional bias appears and the successive corrections on the long-time trend are cheaper in terms of variance
than the original variance of a process not using time grids of di�erent granularity. Thus, the Multilevel Monte
Carlo method is at heart an additional versatile variance reduction technique, adding to the many reduction
techniques already employed frequently.

For a given error, composed of the bias introduced by the underlying discretisation scheme and the standard
deviation, recursively applying the successive increase in �neness to the time grid used leads to an optimal
computational complexity.

5.1 The Multilevel Monte Carlo Theorem

The goal is to calculate E(P (X)) where P : Rd → R is some functional of X : ω → Rd. In the Multilevel
Monte Carlo approach, di�erent levels of resolution for the approximation of a realisation P (ω) = P (X(ω)),
l = 0, 1, . . . , L are considered with l = 0 being the coarsest and l = L being the the �nest level. For brevity,
Pl denotes the approximation of P (X) at the level l. By adding up the expectations of di�erent approximation
levels in a telescoping sum, the identity

E(PL) = E(P0) +

L∑
l=1

E(Pl − Pl−1) (5.1)

is obtained. The basic idea underpinning the Multilevel Monte Carlo Method is to now estimate each of the
expectations E(Pl − Pl−1) independently of each other in such a way that the overall variance for a �xed
computational cost is minimised. Let Ŷ0 be an estimator for E(P0) using N0 samples and let Ŷl, l > 0, be an
estimator for E(Pl−Pl−1) using Nl samples. A natural estimator for E(Pl−Pl−1) is the mean of Nl independent
samples, which for l > 0 is given by

Ŷl =
1

Nl

Nl∑
i=1

(Pl(ωi)− Pl−1(ωi)),
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where Pl(ωi) and Pl−1(ωi) should come from two discrete approximations Y l(ωi) and Y l−1(ωi) of the same
underlying stochastic sample X(ωi). This ensures that the di�erence Pl(ωi)−Pl−1(ωi) is small on �ner levels of
resolution because of strong convergence, resulting in a small variance Var(Pl(ωi)−Pl−1(ωi)) and consequently
a small number of samples on �ner levels to accurately estimate E(Pl − Pl−1) via Ŷl. The overall Multilevel
Monte Carlo estimator for E(P (X)) is then given by

Ŷ =

L∑
l=0

Ŷl

=
1

N0

N0∑
i=1

P0(ωi) +

L∑
l=0

1

Nl

Nl∑
i=1

(Pl(ωi)− Pl−1(ωi)) (5.2)

From the identity

E(Ŷ ) = E(Ŷ0) +

L∑
l=1

E(Ŷl)

= E(P0) +

L∑
l=1

1

Nl

Nl∑
i=1

E(Pl(ωi)− Pl−1(ωi))

= E(P0) +

L∑
l=1

1

Nl
E(Pl − Pl−1) = E(PL) (5.3)

it is clear that although di�erent approximation levels with di�erent approximation errors are used to estimate
E(P (X)) the accuracy of the overall estimation only depends on the accuracy of the �nest level L. The
complexity of the Multilevel Monte Carlo simulation was established by Giles in [Giles, 2008a] . The Theorem
is formulated in great generality so that it not only applies to derivatives with Lipschitz payo�s, but also to
derivatives for which the payo� function is a discontinuous function of an underlying asset at the terminal state
T . It describes the computational complexity of the Multilevel Monte Carlo method in dependence on the
underlying discretisation scheme used and the Multilevel estimators.

Theorem 12. Let P denote a functional of the solution of a stochastic di�erential equation an let Pl denote the
corresponding approximation at level l. If there exist independent estimators Ŷl with computational complexity
Cl based on Nl Monte Carlo samples and positive constants α, β, γ, c1, c2, c3 such that α ≥ 1

2 min(β, γ) and

a) |E(Pl − P )| ≤ c1
Mαl

b) E(Ŷl) =

{
E(P0) if l = 0

E(Pl − Pl−1) if l > 0

c) Var(Ŷl) ≤ c2
NlMβl

d) Cl ≤ c3NlMγl

then there exists a positive constant c4 such that for any ε <
1
e there are values L and Nl for which the Multilevel

Monte Carlo estimator

Ŷ =

L∑
l=0

Ŷl

has a mean square error with bound
E((Ŷ − E(P ))2) < ε2

and computational complexity C with bound

C ≤


c4
ε2 if β > γ
c4 log2 ε
ε2 if β = γ
c4

ε2+
γ−β
α

if 0 < β < γ.

(5.4)
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Proof. Let L be given by

L =

⌈
logM

√
2c1
ε

α

⌉
<

logM
√

2c1
ε

α
+ 1 (5.5)

so that
ε√

2M−α
< c1M

−αL ≤ ε√
2
. (5.6)

Combining (5.6) with conditions a) and b) of the theorem leads to

(E(PL − P ))2 ≤ 1

2
ε2. (5.7)

According to (4.6), an error bound of 1
2ε

2 in (5.7) and an error bound of 1
2ε

2 on the variance shown below, yield
an overall error bound on the MSE of ε2. Additionally, using (5.6) and extending the sum on the left hand side
to a geometric series results in

L∑
l=0

Mγl <
MγL

1−M−γ
<
Mγ(
√

2c1)
γ
α

1−M−γ
ε−

γ
α . (5.8)

Three di�erent cases for β are possible.

i) β = γ
Setting

Nl =

⌈
2(L+ 1)c2
ε2Mβl

⌉
(5.9)

achieves using condition c)

Var(PL) =

L∑
l=0

Var(Ŷl) ≤
∑ c2

NlM−βl
≤ 1

2
ε2,

which gives the required bound on the variance of the estimator such that the overall MSE is smaller than
ε2. Rearranging the terms in (5.9) shows that

CL ≤ c3
L∑
l=0

NlM
γl ≤ c3

(
2(L+ 1)2c2

ε2
+

L∑
l=0

Mγl

)

If ε < 1
e < 1 it follows that 1 < log 1

ε and because of the assumption α ≤ 1
2γ the bounds ε−

γ
α ≤ ε−2 ≤

ε−2(log ε)2 are obtained. Combining these inequalities with (5.5) and (5.8) leads to CL ≤ ε−2(log ε)2,
showing the desired result in (5.4).

ii) β > γ
The number of paths on the level l ∈ {1, . . . , L} is set to

Nl =

⌈
2c2

ε2(1−M− β−γ2 )M
(β+γ)l

2

⌉

in order to get

L∑
l=0

Var(Ŷl) ≤
∑ c2

NlM−βl
≤ 1

2
ε2
(

1−M−
(β−γ)

2

) L∑
l=0

M−
(β−γ)l

2 <
1

2
ε2.

Because

Nl ≤
2c2

ε2(1−M− β−γ2 )M
(β+γ)l

2

+ 1
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the computational complexity bound

CL ≤ c3
L∑
l=0

NlM
γl ≤ c3

 2c2

ε2
(

1−M−
(β−γ)

2

)2 +

L∑
l=0

Mγl


follows by using the geometric series as an upper bound on the sum on the left hand side. For ε < 1

e < 1

the inequality ε−
γ
α ≤ ε−2 follows and from (5.8) the desired result CL ≤ ε−2 in (5.4) is achieved.

iii) β < γ
Setting

Nl =

⌈
2c2M

(γ−β)L
2

ε2(1−M−
(γ−β)

2 )M
(β+γ)l

2

⌉
leads to

L∑
l=0

Var(Ŷl) ≤
∑ c2

NlM−βl
<

1

2
ε2

(
1−M

−(γ−β)
2

)
M−

(γ−β)L
2

L∑
l=0

M
(γ−β)l

2 <
1

2
ε2.

Due to

Nl <
2c2M

(γ−β)L
2

ε2(1−M− γ−β2 )M−
(β+γ)l

2

+ 1

a bound on the computational complexity is given by

CL ≤ c3
L∑
l=0

NlM
γl

≤ c3

(
2c2M

(γ−β)L
2

ε2(1−M−
(γ−β)

2 )

L∑
l=0

M
(γ−β)l

2 +

L∑
l=0

Mγl

)

≤ c3

(
2c2M

(γ−β)L

(1−M− γ−β2 )2
+

L∑
l=0

Mγl

)
.

From (5.6) it follows that

M (γ−β)L < (
√

2c1)
(γ−β)
α

M (γ−β)

ε
γ−β
α

.

Furthermore, for ε < 1
e < 1 the inequality ε−

γ
β ≤ ε−2− (γ−β)

α follows because of α ≥ 1
2β. Due to inequality

(5.8) �nally the result CL ≤ ε−2− γ−βα is obtained.

In general Var(Ŷl) is similar in magnitude to E([Pl − Pl−1]2) ≥ [E(Pl − Pl−1)]2 which implies β ≤ 2α and thus
α ≥ 1

2 min(β, γ).

The di�erent bounds for the computational complexity C result from balancing the computational costs over
all levels in di�erent ways.

In the case β > γ, the major part of the overall computational e�ort is spent on the coarsest levels close to the
level l = 0, where Cl = O(1) holds and where O(ε−2) paths are required to achieve the �xed accuracy level.
This case coincides with the Classic Monte Carlo approach with only one level and one accordingly has to resort
to standard variance reduction techniques or Quasi-Monte Carlo methods.

In the case β < γ, the major part of the computational e�ort is located at the �nest levels close to the level
l = L. As the MSE and thus the discretisation error are of order O(ε2), combining (E(PL − P ))2 = O(ε2) with
condition i) from Theorem 31 results in M−αL = O(ε). Further combination of this relation with condition iv)
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Figure 5.1: Realized paths of a geometric Brownian motion with a(t,Xt) = 3Xt and b(t,Xt) = Xt on di�erent
levels l = 1, . . . , 9 with M = 2.

leads to CL = O(ε−γ/α) . If β = 2α, which for a �xed α is usually the maximum achievable for β, then the
overall complexity is O(CL), which is the result of sampling O(1) paths on the �nest level l = L.

In the �nal case β = γ the computational e�ort and the variance is balanced almost evenly over all levels. Each
level contributes approximately the same computational cost and variance to the total tally of both cost and
variance.

If V0 and Vl are used to denote the variance of sampling one path of P0 respectively Pl − Pl−1 then the overall

variance of the multilevel estimator is given by V =
∑L
l=0 Vl/Nl. The overall computational cost of a multilevel

estimator is given by C =
∑L
l=0 ClNl.

The variance reduction in the Multilevel Monte Carlo method is based on the mean square convergence of Pl
to P (X), which is corresponding to the mean square convergence of the Cauchy sequence Pl − Pl−1, leading to
limnl→∞ Vl = limnl→∞Var(Pl−Pl−1) = 0. This means that the contribution from the �ne levels to the overall
variance is falling with nl → ∞, which means that the use of a few computationally expensive samples on the
�ne level is su�cient to re�ne the use of computationally cheap samples on the coarse levels.

Under the constraint that the overall cost C is �xed, the variance V can be minimised by �nding the solution
of the optimisation problem

L∑
l=0

Vl
Nl

+ η

(
L∑
l=0

NlCl − C

)
(5.10)

with the Lagrangian multiplier method. First order conditions reveal that the minimum is achieved at Nl =
η
√
Vl/Cl, where η is the Lagrange multiplier which may attain some arbitrary value. If an overall variance of

ε2/2 is required then η = 2ε−2
∑L
l=0

√
VlCl has to be chosen and the optimal number of sample paths for level

l is then given by

Nl =

⌈
2ε−2

√
VlCl

L∑
k=0

√
Vk/Ck

⌉
. (5.11)
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The overall computational cost is then given by

C =
1

ε2

(
L∑
l=0

√
VlCl

)2

.

For di�erent behaviours of the product VlCl, the dominant contribution comes from di�erent parts of the level
spectrum. If VlCl increases with the level, the major part of the overall e�ort goes to the �nest level L, which
results in CL ≈ ε−2VLCL. Vice versa, C0 ≈ ε−2V0C0 holds. In the classic Monte Carlo simulation on the other
hand, the overall computational cost is CCMC ≈ ε−2V0CL under the assumption that the cost of simulating PL
is close to the cost of PL − PL−1 and that Var(PL) ≈ Var(P0).

Comparing the improvement in overall computational complexity in the Multilevel Monte Carlo method to the
classic Monte Carlo method shows that the improvement takes di�erent forms, varying from case to case. In
the case of increasing VlCl the Multilevel Monte Carlo cost is reduced by the factor CL/CCMC = VL/V0, which
means that the improvement stems from a reduction in variance, whereas in the case of decreasing VlCl the
multilevel cost is reduced by a factor of C0/CCMC = C0/CL, which means that the improvement occurs through
speeding up the path calculation.

Under the assumption of an order of weak convergence of 1, the bias of the overall method is of order O(∆tL),
since only the last level of �neness contributes to the discretisation bias because of condition b) in Theorem 31.
This translates to c∆tL = cTM−L. To achieve a discretisation error and therefore squared bias proportional to
ε2/2, it is useful to set

Lmax =
log(cT

√
2/ε)

logM
,

in order to calculate the overall computational complexity of the Multilevel Monte Carlo estimator via a short
algorithm.

Algorithm 6 The Multilevel Monte Carlo Complexity Algorithm

Let L be the number of levels in a Multilevel Monte Carlo setting, Vl be the variance of Ŷl and Nl be the

number of sample paths at level l for l = 1, . . . , L.

1 Set L = 0.

2 Determine a �rst estimate of VL using 100 sample paths.

3 Determine the optimal Nl using

Nl =

⌈
2ε−2

√
VlCl

L∑
k=0

√
Vk/Ck

⌉
.

4 Sample as many additional paths as needed for the optimal Nl.

5 If L < Lmax

Set L = L+ 1.

Go to step 2.

5.2 The Multilevel Monte Carlo Method and Control Variates

The control variate method is based on the idea that given a random variable Y with known E(Y ) that is
correlated with X as much information as possible from Y should be used to calculate E(X). The identity

E(X) = E(X − λY ) + E(λY ) (5.12)
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for λ ∈ R motivates the control variate estimator

XY =
1

n

n∑
i=1

X(ωi)− λ(Y (ωi)− E(Y )) (5.13)

for E(X) with (X(ωi))1≤i≤n, (Y (ωi))1≤i≤n being independent samples of X and Y . From

Var(XY ) =
1

n
(Var(X) + λ2Var(Y )− 2λCov(X,Y ))

it is clear that a variance reduction by use of a control variate is only achieved if Var(X) ≥ λ2Var(X − Y )
holds. The variance is minimised for λ∗ = σY ρXY /σX , where ρXY denotes the correlation between X and Y .
Then the amount of variance reduction attained is

2λ∗Cov(X,Y )− (λ∗)2Var(Y ) =
σ2
XY

σ2
Y

= 1− ρ2
XY .

Equations (5.12) and (5.13) bear a striking resemblance to equations (5.1) and (5.2), especially when one
considers the parallels between (5.12) and the two-level Multilevel Monte Carlo estimator

E(P1) = E(P0) + E(P1 − P0). (5.14)

Whereas the goal is to estimate E(X) through the use of E(Y ) because of our superior knowledge about E(Y ) in
comparison to E(X) in the case of the usual control variate approach, in the Multilevel Monte Carlo approach
E(P0) is used to estimate E(P1) because of the reduced computational costs of estimating E(P0) in comparison
to estimating E(P1). The control variate estimator in the case of 5.14,

1

N0

N0∑
i=1

P0(ωi) +
1

N1

N1∑
i=1

(P1(ωi)− P0(ωi)),

coincides with the Multilevel Monte Carlo estimator Ŷ with L = 1. The two main di�erences between the
control variate and the Multilevel approach are that the expectation E(P0) is not taken as a given and therefore
has to be estimated, and that λ = 1 is �xed ab ante.

5.3 Improved Multilevel Monte Carlo

5.3.1 Estimator Construction

The main idea behind the Multilevel Monte Carlo method is to exploit the improvement in total computa-
tional complexity by the reduction of variance through the introduction of di�erent path approximation levels
l = 1, . . . , L. A further analysis of the variance Var(Ŷl) allows for even greater improvements in overall com-
putational cost. The payo� for constructing a more sophisticated estimator is a reduced variance Var(Ŷl) and
consequently a need for fewer samples paths.

Instead of relying on the telescoping property of the terms in (5.1), it is also possible to use di�erent estimators

for the �ner and coarser levels under consideration [Giles, 2008b]. If P fl denotes the �ner approximation of the
path and P cl the coarser approximation, then

E(P fl ) = E(P cl ) (5.15)

is required for l = 1, . . . , L, that is, the Pl in E(Pl − Pl−1) and E(Pl+1 − Pl) must have the same expectation,
so that again the pivotal relation in the Multilevel Monte Carlo approach

E(P fL) = E(P f0 ) +

L∑
l=1

E(P fl − P
c
l−1) (5.16)
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is obtained. Theorem 31 is still valid for the estimators

Ŷ0 =
1

N0

N0∑
i=1

P f0 (ωi),

Ŷl =
1

Nl

Nl∑
i=1

(P fl (ωi)− P cl−1(ωi)),

for l = 1, . . . , L. The advantage of this setting is that it allows for a greater range of possibilities to construct
approximations for which

Var(P fl − P
c
l−1) < Var(Pl − Pl−1), (5.17)

yielding larger values for the value β in condition c) of Theorem 31. The concrete construction of the approx-
imation should be adapted to the speci�c problem under consideration. For derivatives more complex than
European options such as Asian, lookback, barrier and Digital options it may be pro�table to de�ne P cl in such

a way that it involves information from P fl+1 which was not available during the previous iteration involving

P fl . In the subsequent applications of this technique the improvement in variance (5.17) in combination with
(5.15) is usually achieved by interpolating in between discretisation points with a Brownian interpolant.

5.3.2 Brownian Interpolation

In case the drift a(t,Xt) and the volatility b(t,Xt) are constant, the stochastic di�erential equation (3.2) has
the solution

Xt = X0 + at+ bWt.

Using constant di�usion coe�cients in the intervals [ti, ti+1], i = 0, . . . , n, in between equally spaced discretisa-
tion points leads to the Brownian interpolation

Xt = Xi∆t + λ(X(i+1)∆t −Xi∆t) + b(Wt −Wi∆t − λ(W(i+1)∆t −Wi∆t)), (5.18)

with λ = (t − ti)/∆t. The deviation of Xt from the piecewise linear interpolated values Xi∆t, i = 0, . . . , n, is
therefore proportional to the deviation of Wt from its piecewise linear interpolated values.

In [Glasserman, 2004] it is shown that the distribution of Wt is independent of the increment W(i+1)∆t −Wi∆t

and that the following lemmas hold.

Lemma 4. Conditional on Xi∆t and X(i+1)∆t the distribution of the integral of Xt over the interval [ti, ti+1],
i = 1, . . . , n is given by ∫ ti+1

ti

Xtdt =
1

2
∆t(Xi∆t +X(i+1)∆t) + bIi,

where

Ii =

∫ ti+1

ti

(Wt −Wi∆t − λ(W(i+1)∆t −Wi∆t))dt

is a random variable with Ii ∼ N
(
0, 1

12∆t3
)
, independent of W(i+1)∆t −Wi∆t.

Lemma 5. Conditional on Xi∆t and X(i+1)∆t the distributions for the minimum and maximum of Xt over the
interval [ti, ti+1] are given by

Xi∆t,min = min
t∈[ti,ti+1]

1

2

(
Xi∆t +X(i+1)∆t −

√
(Xi∆t +X(i+1)∆t)2 − 2b2∆t logUi

)
,

Xi∆t,max = max
t∈[ti,ti+1]

1

2

(
Xi∆t +X(i+1)∆t +

√
(Xi∆t +X(i+1)∆t)2 − 2b2∆t log Vi

)
,

where Ui and Vi, i = 1, . . . , n are uniformly distributed on the unit interval (0, 1).
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Lemma 6. Provided b 6= 0, conditional Xi∆t and X(i+1)∆t the probability that the minimum, respectively the
maximum, of Xt over the interval [ti, t(i+ 1)], i = 1, . . . , n, is less than, respectively greater than, some value
B is given by

P

(
inf

t∈[ti,ti+1]
Xt < B|Xi∆t, X(i+1)∆t

)
= exp

(−2(Xi∆t −B)+(X(i+1)∆t −B)+

b2∆t

)
,

P

(
sup

t∈[ti,ti+1]

Xt > B|Xi∆t, X(i+1)∆t

)
= exp

(−2(B −Xi∆t)
+(B −X(i+1)∆t)

+

b2∆t

)
.

Corollary 2. If (Wt)t≥0 is a Brownian motion with W0 = W1 = 0 then for x > 0

P

(
sup
t∈[0,1]

Wt > x

)
= P

(
inf

t∈[0,1]
Wt < −x

)
= exp(−2x2).

Thus, E
(

supt∈[0,1] |Wt|m
)
is �nite for all positive integers m.

From extreme value theory [Shalizi, 2007] the following results that determine the limiting distribution of the
maximum of a large set of independent and identically distributed random variables [Embrechts et al., 2008]
are used.

Lemma 7. If the Ui, i = 1, . . . , n are independent samples from a uniform distribution on the unit interval
[0, 1] then for any positive integer m

E( max
i∈{1,...,n}

| logUi|m) = O((log n)m)

as n→∞.

Lemma 8. If Zi, i = 1, . . . , n are independent samples from a standard normal distribution then for any positive
integer m

E( max
i∈{1,...,n}

|Zi|m) = O((log n)m/2)

as n→∞.

Corollary 3. If (W i
t )t≥0, i = 1, . . . , n are independent Brownian paths on [0, 1] conditional on W i

0 = W i
1 = 0

then for any positive integer m

E

(
max

i∈{1,...,n}
sup
t∈[0,1]

|W i
t |m
)

= O((log n)m/2)

as n→∞.

Proof. This is a direct result from Corollary 2, since for su�ciently large x the tail probability for |W i
t | is less

than that of a standard normal random variable,

P

(
sup
t∈[0,1]

|W i
t | > x

)
≤ 2e−2x2

≤ P (Z > x)

for x large enough and Z ∼ N(0, 1).

5.3.3 Conditional Monte Carlo

To improve the convergence of the variance when considering barrier and digital options in the Multilevel
Monte Carlo setting, the conditional Monte Carlo method is frequently used. The goal remains to calculate
E(P ). By the law of iterated expectation, it is possible to write E(P ) = E(E(P |Z)), where Z is a random
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vector. The variance of P can be decomposed according to Var(P ) = E(Var(P |Z)) + Var(E(P |Z)). Both
statements are employed when using the improved Multilevel Monte Carlo construction, where each level l =
1, . . . , L is once taken to be �ne and once taken to be a coarse level in (5.16). For �ne levels, the conditional
expectation E(P f |Zf ) is used with Zf = {Yi∆tl}0≤i≤M l , whereas for coarse levels instead of the conditional

expectation E(P c|Zc) with Zc = {Yi∆tl−1
}0≤i≤M l−1 the conditional expectation E(P c|Zc, Z̃c) is employed with

Z̃c = {Yi∆t(l−1)+j∆tl}0≤i≤M l,1≤j≤M−1, where the respective points are obtained from the interpolation formula
(5.18). The condition (5.15) holds by the law of iterated conditional expectation

E(E(P c|Zc)) = E(P c) = E(E(P c|Zc, Z̃c)).

5.4 Extreme Paths

In the Multilevel Monte Carlo analysis for some path-dependent derivatives a speci�c theoretical argument is
used to discard the contribution of certain extreme paths. Their impact on the expected value to be estimated
is small enough to ignore them in the resulting estimate.

The methodology used to perform analysis on these paths is built on the following two lemmas. In the proof of
the asymptotic error bounds of the respective derivatives, Lemma 9 is used to establish the conditions necessary
for the application of Lemma 10, which then justi�es discarding the extreme paths by showing that their overall
contribution is negligibly small in contrast to the other paths.

Lemma 9. If Xl is a random variable de�ned on level l = 1, . . . , L of the Multilevel Monte Carlo method and
if for each positive integer m ∈ N the expectation E(|Xl|m) is uniformly bounded, then for any δ > 0

P
(
|Xl| > ∆t−δl

)
= o(∆tpl )

for all p > 0.

Proof. This is an immediate consequence of Markov's inequality

P
(
|Xl| ≥ ∆t−δl

)
= P

(
|Xl|m ≥ ∆t−mδl

)
≤ ∆tmδl E(|Xl|m)

with m > p/δ.

Lemma 10. If Yl is a random variable de�ned on level l = 1, . . . , L of the Multilevel Monte Carlo method, if
E
(
(Yl)

2
)
is uniformly bounded and if for each p > 0 the function 1El on level l, which takes the values 1 or 0

depending on whether or not a path lies within a set El, satis�es

E(1El) = o(∆tpl ),

then for each p > 0
E(|Yl|1El) = o(∆tpl ).

Proof. This is a consequence of Hölder's inequality, which yields

E(|Yl|1El) ≤
(
E(Y 2

l )
) 1

2 (E(1El))
1
2 .

The following Lemma builds on the preceding results and is the Lemma directly used in the analysis of barrier
and Digital options [Giles et al., 2013]. If u > 0, u ≺ hα denotes that there exists a constant c > 0 such that
u < chα for h su�ciently small. The implications

u1 ≺ hα1 , u2 ≺ hα2 =⇒ u1 + u2 ≺ hmin(α1,α2), u1u2 ≺ hα1+α2

are useful in establishing the following results.
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Lemma 11. For any γ > 0, the probability that a Brownian path (Wt)t≥0, its increments {∆Wi∆t}i≤n and the
corresponding solutions (Xt)t≥0 of the stochastic di�erential equation (5.23) and its �ne as well as coarse path

approximations {Y fi∆t}0≤i≤n and {Y ci∆t}0≤i≤n satisfy any of the following extreme conditions

max
0≤i≤n

(
max

(
|Xi∆t|, |Y fi∆t|, |Y

c
i∆t|
))

> ∆t−γ ,

max
0≤i≤n

(
max

(
Xi∆t − Y ci∆t|, |Xi∆t − Y fi∆t|, |Y

f
i∆t − Y

c
i∆t|
))

> ∆t1−γ ,

max
0≤i≤n

|∆Wi∆| > ∆t
1
2−γ ,

sup
t∈[0,T ]

|Y ft −Xt| > ∆t1−γ ,

sup
t∈[0,T ]

|Wt −W t| > ∆t
1
2−γ

is o(∆tp) for all p > 0, where W t is de�ned to be the piecewise linear interpolant of the discrete values
{Wi∆t}0≤i≤n.

In addition, if none of these extreme conditions is satis�ed and if γ < 1
2 then

max
0≤i≤n

|Y fi∆t − Y
f
(i−1)∆t| ≺ ∆t

1
2−2γ , (5.19)

max
0≤i≤n

|b(i∆t, Y fi∆t)− b((i− 1)∆t, Y f(i−1)∆t)| ≺ ∆t
1
2−2γ , (5.20)

max
0≤i≤n

max{|b(i∆t, Y fi∆t)|, |b(i∆t, Y
c
i∆t)|} ≺ ∆t−γ , (5.21)

max
0≤i≤n

|b(i∆t, Y fi∆t)− b(i∆t, Y
c
i∆t)| ≺ ∆t

1
2−2γ , (5.22)

where b(i∆t, Y ci∆t) is de�ned to be equal to b((i− 1)∆t, Y c(i−1)∆t) if i ∈ {1, . . . , n} is odd.

5.5 Antithetic Sampling

An alternative to the above construction is a variant based on antithetic sampling. Given an antithetic ωai equal
in distribution to ωi, one can use with the same basic idea as in antithetic sampling the estimators

Ŷ0 =
1

N0

N0∑
i=1

1

2
(P0(ωi) + P0(ωai )),

Ŷl =
1

Nl

Nl∑
i=1

1

2
(Pl(ωi) + Pl(ω

a
i ))− Pl−1(ωi).

Because of E(Pl(ω
a
i )) = E(Pl(ωi)) condition b) of Theorem 31 is again satis�ed.

5.6 Derivative Pricing with the Multilevel Monte Carlo Method

In mathematical �nance, one of the main applications of the Monte Carlo method is risk neutral derivative
pricing. Application of the Monte Carlo method in the risk neutral valuation of a derivative reduces to the
estimation of an expectation E(P (X)) where the functional P : Rd → R describes the payo� function of the
derivative including the appropriate discount factor and where X = (Xt)t≥0 is the stochastic process underlying
the mathematical model of the market under consideration.

In the following models based on a stochastic process (Xt)t≥0 which is the solution of a one-dimensional stochas-
tic di�erential equation of the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (5.23)
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are considered with X0 = x0 ∈ R �xed, a one-dimensional Brownian motion (Wt)t≥0 and measurable coe�cient
functions a : R ×R → R, b : R ×R → R ful�lling the usual conditions ensuring the existence and uniqueness
of a strong solution.

Although Lévy processes will be covered in later sections, the analysis of di�usion processes de�ned by (5.23)
can be put to considerable practical use. Due to the simplicity of the majority of di�usion processes used in
�nance, a Monte Carlo simulation approach for a di�usion model seems hardly necessary. The ubiquitous Black-
Scholes model based on geometric Brownian motion and the Vasicek model based on the Ornstein-Uhlenbeck
process both have analytic solutions, which are quick to evaluate. For the Cox-Ingersoll-Ross model based on
a square-root-di�usion process, a credit risk model introduced in [Brigo and Alfonsi, 2005] based on the same
process, as well as the Black-Karasinski model based on a log-normal-di�usion process, the distribution of the
process at a speci�c time instance is known. For these processes, it is thus advantageous to simulate the process
at a time instance t ≥ 0 directly, rather than to use a Monte Carlo method simulating entire paths.

However, local volatility models enjoy broad practical acceptance and both approaches outlined above are not
available in their case. Fitting to a local volatility surface consists in calibrating b(t,Xt) in (5.23) to market
data in two dimensions, maturity and strike of the European options under consideration. LetM1 ∈ N maturity
dates and M2 ∈ N strikes be available, yielding M1 ×M2 data points. A frequently used technique [Gatheral,
2006] consists in approximating the 2D-Fourier transform of a high resolution local volatility �t b̃(t, x) by

b(t, x) =
1

M1M2

M1−1∑
m1=0

M2−1∑
m2=0

ei(ωm1
t+ωm2

Xt).

For a resulting stochastic di�erential equation of the type

dXt = a(t,Xt)dt+ b(t,Xt)dWt

a Monte Carlo approach is preferable, as neither an analytic formula nor the distribution of Xt for t ≥ 0 are
likely to be available.

5.6.1 Derivatives with Lipschitz payo� functions

We are �rst considering European options which provide for only one possibility to exercise at the maturity of
the option. Thus, the approximation of an expectation of the form E(P (XT )) is of interest. Speci�cally, globally
Lipschitz continuous payo�s P are considered in this section, that is functionals P : Rd → R for which

|P (x)− P (y)| ≤ D|x− y|.

holds for a positive constant D ∈ R and all x, y ∈ Rd, such as European call or put options.

Euler-Maruyama and Milstein Scheme

The weak convergence rate of an approximation process {Yi∆t}0≤i≤n to a process (Xt)t≥0 with regards to a
smooth payo� function P : Rd → R and a choice of time step approximations ∆tl depending on level l is given
by α in

|E(P (XT )− P (Ynl∆tl))| ≤ C(∆tl)
α

The convergence rate α appears in condition a) of Theorem 31.

The variance in condition b) of Theorem 31 can be bound by

Var(Ŷl) = Var(Pl − Pl−1) ≤ E([Pl − Pl−1]2)

≤ 2E([Pl − P ]2) + 2E([P − Pl−1]2)

≤ 2D
[
|XT − Ynl∆tl |2 + |XT − Ynl−1∆tl−1

|2
]
.

for Lipschitz continuous payo�s. Thus it becomes clear that one also has to analyse the strong convergence of
the approximation process {Yi∆t}0≤i≤n, as the convergence of the Multilevel Monte Carlo variance in case of
globally Lipschitz payo� functions is completely determined by the rate of strong convergence of the underlying
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discretisation scheme used. For the Euler-Maruyama scheme a Multilevel Monte Carlo variance convergence
of β = 1/2 is achieved, for the Milstein scheme accordingly a variance convergence rate of β = 1 [Giles and
Szpruch, 2013].

Theorem 13. The Multilevel Monte Carlo estimator for a derivative with a Lipschitz payo� function has

variance Vl = O(∆t
1/2
l ) using the Euler-Maruyama scheme and variance Vl = O(∆tl) using the Milstein scheme.

Milstein Scheme

By allowing for an improved Multilevel Monte Carlo construction with Brownian interpolation (5.24) in between
time steps the performance of the Multilevel Monte Carlo method can be improved. Generalizing from European
derivatives to derivatives with payo� functions depending on multiple time instances leads to

P (X) = f(XT1
, . . . , XTm)

for m ≥ 1, with the Lipschitz condition

|P (x(1), . . . , x(m))− P (y(1), . . . , y(m))| ≤ D
m∑
j=1

|y(j) − x(j)|

for x, y ∈ Rm.

Before the convergence result is considered it is useful to contrast the interpolation scheme resulting from
(5.18),

Ys = Yt + λ(Y(t+∆t − Yt) + b(t, Yt)(Ws −Wt − λ(Wt+∆t −Wt)), (5.24)

where λ = (s− t)/∆t, with the interpolation scheme (3.15) from [Kloeden and Platen, 1995].

Theorem 14. If (Yt)t≥0 denotes a Milstein discretisation interpolated with Brownian motion according to
(5.24) and if (Y KPt )t≥0 denotes a Milstein discretisation interpolated according to the Kloeden and Platen
scheme (3.15), then for any m ∈ N,

E

(
sup

0≤t≤T
|Yt − Y KPt |m

)
= O((∆t log ∆t)m), sup

0≤t≤T
E
(
|Yt − Y KPt |m

)
= O(∆tm),

E

[∫ T

0

Yt − Y KPt dt

]2
 = O(∆t3). (5.25)

Theorem 15. For Lipschitz payo�s the single replication variance obtainable is β = 2, leading to an optimal
overall complexity O(ε−2).

Proof. Using Jensen's inequality in combination with the Lipschitz condition yields

Var(P fl − P
c
l−1) ≤ E((P fl − P

c
l−1)2) ≤ D2m

m∑
j=1

E((Y fTj − Y
c
Tj )

2).

By adding and subtracting the respective terms under the expectation on the right hand side for one summand
the inequality

1

4
E((Y fTj − Y

c
Tj )

2) ≤E
((

Y fTj − Y
fKP

Tj

)2
)

+ E

((
Y cTj − Y

cKP
Tj

)2
)

+ E

((
Y f

KP

Tj − YTj
)2
)

+ E

((
Y cKPTj − YTj

)2
)
.

can be obtained.

Due to Theorem 14, the �rst two terms on the right hand side are therefore of order O(∆t2) and due to Theorem
9 the second two terms are of order O(∆t2), giving the desired overall order.
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5.6.2 Asian Options

Asian options which are continuously monitored have payo� functions which are uniform Lipschitz functions of
the average of the underlying over the time interval [0, T ] and the value of the underlying at maturity,

P (X) = f

(
XT ,

1

T

∫ T

0

Xtdt

)
.

One possibility to treat Asian options is to directly integrate the Brownian interpolant (5.18).

Lemma 12. Conditional on Xi∆t and X(i+1)∆t, the distribution of the integral of Xt over the interval [i∆t, (i+
1)∆t] is given by ∫ (i+1)∆t

i∆t

Xtdt =
1

2
∆t(Xi∆t +X(i+1)∆t) + b(i∆, Xi∆t)Ii∆t (5.26)

with

Ii∆t =

∫ (i+1)∆t

i∆t

(Wt −Wi∆t −
t− i∆t

∆t
(W(i+1)∆t −Wi∆t))dt

is a normally distributed random variable with mean zero and variance 1
12∆t3 independent of W(i+1)∆t−Wi∆t.

Thus, integration of the approximation on the �ne level yields∫ T

0

Y ft dt =

N−1∑
i=0

1

2
∆tl(Y

f
i∆tl

+ Y f(i+1)∆tl
) + b(i∆tl, Y

f
i∆tl

)Ifi∆tl

where the Ifi∆tl are independent normally distributed random variables with mean zero and variance 1
12∆t3l .

The coarse approximation may be derived from the �ne approximation with

Ici∆tl =

∫ (i+2)∆tl

i∆tl

(
Wt −Wi∆tl −

t− i∆tl
2∆tl

(W(i+2)∆tl −Wi∆tl)

)
dt

= Ifi∆tl + If(i+1)∆tl
− 1

2
∆tl(W(i+2)∆tl − 2W(i+1)∆tl +Wi∆tl).

Interpolation with Brownian motion leads to an optimal convergence result.

Theorem 16. The approximation with Brownian interpolation for Asian payo�s leads to Vl = O(∆t2l ).

Proof. Due to the Lipschitz continuity of the payo� function the proof of Theorem 15 for Lipschitz continuous
functions can be mimicked. Integrating

Y ft − Y ct = (Y ft − Y f
KP

t )− (Y ct − Y c
KP
t ) + (Y f

KP

t −Xt)− (Y cKPt −Xt)

in addition to squaring and taking the expectation leads to

E((Y ft − Y ct )2) ≤ 4

(
E

((
Y ft − Y f

KP

t

)2
)

+ E

((
Y ct − Y c

KP
t

)2
)

+E

((
Y f

KP

t −Xt

)2
)

+ E

((
Y cKPt −Xt

)2
))

.

An alternative is to leave o� the integrals If , respectively Ic, in equation (5.26). The integral of the interpolants
are thus approximated via trapezoidal integration or, from a di�erent viewpoint, are the result of an averaging
process over piecewise linear interpolants. The order of the variance does not change when compared to the
case of Brownian interpolation.

Theorem 17. The approximation with piecewise linear interpolation for Asian payo�s leads to Vl = O(∆t2l ).

Proof. A compact proof can be found in [Giles et al., 2013].
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5.6.3 Lookback Options

In this section �oating strike lookback call options are considered. The payo� function of such an option is
a uniform Lipschitz function of the underlying at maturity and depending on the contract either the in�mum
or the supremum of the underlying over the time interval until maturity. In the following the analysis for the
case of dependence of the payo� on the in�mum is performed, the supremum case is treated analogously. The
undiscounted lookback payo� is then given by

P (X) = XT − inf
0≤t≤T

Xt (5.27)

and a possible numerical approximation of the payo� by setting for every level l = 1, . . . , L

Pl = Ynl∆tl − inf
0≤m≤T/∆tl

Y∆tlm. (5.28)

Bar any further treatment, the weak convergence rate of the approximated payo� in (5.28) to the exact payo�
in (5.27) is of order O

(√
∆tl
)
[Gobet and Menozzi, 2004].

A standard approximation result [Broadie et al., 1999], which relates the price of a continuously monitored
lookback option to the price of discretely monitored one by way of adjusting the resulting minimum in (5.28), can
be used to numerically approximate the lookback option payo�. In order to compensate for the time instances
in between discretisation points at which the minimum attained could be have been lower, the minimum is
lowered by a multiple of the constant β = −ζ(1/2)/2π ≈ 0.5826, where ζ is the Riemann-Zeta function,

Ymin = min
0≤i≤nl

(
Yi∆tl − βb(i∆tl, Yi∆tl)

√
∆tl

)
. (5.29)

The correction term results from a limiting theorem proven in [Asmussen et al., 1995] and improves the weak
convergence of order O(

√
∆tl) to O(∆tl) [Giles, 2008b].

Euler-Maruyama Scheme

For simplicity, the case M = 2 is considered.

Theorem 18. The Multilevel Monte Carlo estimator for a lookback option has variance Vl = O(∆t1−δl ) for any
δ > 0 using the Euler-Maruyama scheme.

Proof. By considering (3.5) the Euler-Maruyama scheme with linear interpolation (Y ∆tl
t )t≥0 yields

E(|P − Pl|2) ≤ 2E(|XT − Y ∆tl
T |2) + 2E

(
| inf
0≤t≤T

Xt − inf
0≤t≤T

Y ∆tl
t |2

)
= O(∆t) + 2E

(
| inf
0≤t≤T

Xt − inf
0≤t≤T

Y ∆tl
t |2

)
. (5.30)

From the inequality
| inf
0≤t≤T

Xt − inf
0≤t≤T

Y ∆tl
t | ≤ sup

0≤t≤T
|Xt − Y ∆tl

t |

it follows from (5.30) and (3.6) that given any δ > 0 the order relation

E(|P − Pl|2) ≤ O(∆t) + 2E

(
sup

0≤t≤T
|Xt − Y ∆tl

t |2
)

= O(∆t1−δ)

holds, resulting in β = 1− δ for the �oating strike lookback call.

An analogous result holds for the �oating strike lookback put with payo� function P = sup0≤t≤T Xt−XT .

Milstein Scheme

The most recent analysis of lookback options in the Multilevel Monte Carlo setting has been done in [Giles et al.,
2013]. Using the Milstein scheme, the convergence rate of the variance can be increased to O(∆t2l (log ∆tl)

2) by
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applying the improved Multilevel Monte Carlo method. The idea is to compute the minimum for both the �ne
and the coarse paths.

The Brownian interpolant for the �ne path simulation in the time interval [i∆tl, (i+1)∆tl] for i ∈ {1, . . . , nl−1}
is according to (5.18) de�ned to be

Y ft = Y fi∆tl + λ(Y f(i+1)∆tl
− Y fi∆tl) + b(t, Y fi∆tl)(Wt −Wi∆tl − λ(W(i+1)∆tl −Wi∆tl))

with λ = (t−i∆tl)/∆tl. Applying Lemma 5 the minimum in the time interval [i∆tl, (i+1)∆tl] can be simulated
by

Y fi∆tl,min =
1

2

(
Y fi∆tl + Y f(i+1)∆tl

−
√(

Y f(i+1)∆tl
− Y fi∆tl

)2

− 2b(i∆tl, Y
f
i∆tl

)2∆tl logUi

)
,

where Ui is a uniform random variable on the unit interval. The global minimum is attained by taking the
minimum over all time instances. The global minimum is then used to compute the value for the �ne path
P fl .

The treatment for the coarse path P cl−1 di�ers slightly. For even i ∈ {1, . . . , nl − 1} the same underlying
Brownian interpolant (5.18) is used to de�ne Y c(i+1)∆tl

. The minimum value over the interval [i∆tl, (i+ 1)∆tl]

can then be determined by choosing the smaller of the minima for the two intervals [i∆tl, (i + 1)∆tl] and
[(i+ 1)∆tl, (i+ 2)∆tl],

Y ci∆tl,min =
1

2

(
Y ci∆tl + Y c(i+1)∆tl

−
√(

Y c(i+1)∆tl
− Y ci∆tl

)2

− 2b(i∆tl, Y ci∆tl)
2∆tl logUi

)
,

Y c(i+1)∆tl,min =
1

2

(
Y c(i+1)∆tl

+ Y c(i+2)∆tl
−
√(

Y c(i+2)∆tl
− Y c(i+1)∆tl

)2

− 2b(i∆tl, Y ci∆tl)
2∆tl logUi+1

)
.

The uniform random numbers Ui and Ui+1 from the �ne path simulation are reused. Consequently, the identity
(5.15) necessary in order for the improved Multilevel Monte Carlo method to work holds due to

min(Y ci∆tl,min, Y
c
(i+1)∆tl,min)

D
= Y fi/2∆tl−1,min,

which in turn holds because of the fact that both the left hand and the right hand side are based on the same
Brownian interpolant.

Theorem 19. For the improved Multilevel Monte Carlo method using the Milstein scheme with Brownian
interpolation, Vl = O(∆t2l (log ∆tl)

2) holds.

Proof. If Y fmin and Y cmin are the minima for the �ne and the coarse part, then

|Y fmin − Y
c
min| ≤ max

0≤i≤nl
|Y fi∆tl,min − Y

c
i∆tl,min|

≤ max
0≤i≤nl

|Y fi∆tl − Y
c
i∆tl
|+ max

0≤i≤nl
|Rfi∆tl −R

c
i∆tl
|

with

Rfi∆tl =
1

2

√
(Y f(i+1)∆tl

− Y fi∆tl)
2 − 2b(i∆tl, Y

f
i∆tl

)2∆tl logUi.

If Rfi∆tl = Rci∆tl = 0, then |Rfi∆tl −R
c
i∆tl
| = 0, otherwise the summands Rfi∆tl and R

c
i∆tl

yield a strictly positive
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sum and via the inequality
∣∣∣|x| − |y|∣∣∣ ≤ |x− y| for x, y ∈ R it follows that

|Rfi∆tl −R
c
i∆tl
| =
|Rfi∆tl

2
−Rci∆tl

2|
Rfi∆tl −R

c
i∆tl

≤
|(Y f(i+1)∆tl

− Y fi∆tl)
2 − (Y c(i+1)∆tl

− Y ci∆tl)
2|

4(Rfi∆tl +Rci∆tl)
+
|b(i∆tl, Y fi∆tl)

2 − b(i∆tl, Y ci∆tl)
2|∆tl| logUi|

2(Rfi∆tl +Rci∆tl)

≤ 1

2

∣∣∣|Y f(i+1)∆tl
− Y fi∆tl | − |Y

c
(i+1)∆tl

− Y ci∆tl |
∣∣∣+

1√
2

∣∣∣|b(i∆tl, Y fi∆tl)| − |b(i∆tl, Y ci∆tl)|∣∣∣√∆tl| logUi|

≤ 1

2

(
|Y f(i+1)∆tl

− Y c(i+1)∆tl
|+ |Y fi∆tl − Y

c
i∆tl
|
)

+
1

2
|b(i∆tl, Y fi∆tl)− b(i∆tl, Y

c
i∆tl

)|
√

∆tl| logUi|

from which

(Y fmin−Y
c
min)2 ≤ 8 max

0≤i≤nl
(Y fi∆tl−Y

c
i∆tl

)2+∆tl

(
max

0≤i≤nl
(b(i∆tl, Y

f
i∆tl

)− b(i∆tl, Y ci∆tl)
2

)(
max

0≤i≤nl
| logUi|

)
(5.31)

follows. From the uniform Lipschitz condition in the main Theorem 8 on the strong convergence rate of the
Milstein scheme, for even i ∈ {1, . . . , nl}

(b(i∆tl, Y
f
i∆tl

)− b(i∆tl, Y ci∆tl)
2 ≤ C2

2 (Y fi∆tl − Y
c
i∆tl

)2

follows, whereas for odd i ∈ {1, . . . , n}(
b(i∆tl, Y

f
i∆tl

)− b(i∆tl, Y ci∆tl)
)2

=
(

(b(i∆tl, Y
f
i∆tl

)− b((i− 1)∆tl, Y
f
(i−1)∆tl

)) + (b((i− 1)∆tl, Y
f
(i−1)∆tl

)
)2

≤ 2C2
2 (Y fi∆tl − Y

f
(i−1)∆tl

)2 + 2C2
2 (Y f(i−1)∆tl

− Y c(i−1)∆tl
)2 (5.32)

holds. The �ne Milstein approximation on level l is according to (3.14) given by

Y fi∆tl − Y
f
(i−1)∆tl

= a((i− 1)∆tl, Y
f
(i−1)∆tl

)∆tl + b((i− 1)∆tl, Y
f
(i−1)∆tl

)∆W(i−1)∆tl

+
1

2
b′((i− 1)∆tl, Y

f
(i−1)∆tl

)b((i− 1)∆tl, Y
f
(i−1)∆tl

)(∆W 2
(i−1)∆tl

−∆tl). (5.33)

The second summand on the right hand side of (5.33) is of order O
(√

∆tl
)
whereas the other summands are

of order O(∆tl). This observation in combination with Jensen's inequality, Hölder's inequality and Lemma 8
yields

E

(
max

0≤i≤nl
(Y fi∆tl − Y

f
(i−1)∆tl

)2

)
≤
(
E( max

0≤i≤n
|Y fi∆tl − Y

f
(i−1)∆tl

|)
)2

=

(
E( max

0≤i≤nl
|b((i− 1)∆tl, Y

f
(i−1)∆tl

)∆W(i−1)∆tl |)
)2

+ o

((
E( max

0≤i≤nl
|b((i− 1)∆tl, Y

f
(i−1)∆tl

)∆W(i−1)∆tl |)
)2
)

≤ E
(

max
0≤i≤nl

b((i− 1)∆tl, Y
f
(i−1)∆tl

)2

)
E

(
max

0≤i≤nl

(
∆W(i−1)∆tl

)2)
+ o

((
E( max

0≤i≤nl
|b((i− 1)∆tl, Y

f
(i−1)∆tl

)∆W(i−1)∆tl |)
)2
)

= O(∆tl| log ∆l|) (5.34)

From the de�nition of Y c, inequality (5.32) and statement (5.34) it follows that

E

(
max

0≤i≤nl
(bf (i∆tl, Y

f
i∆tl

)− bc(i∆tl, Y ci∆tl))
2

)
= O(∆tl| log ∆tl|).
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Combining Lemma 7 with inequality (5.31) yields

E
(

(Y fmin − Y
c
min)2

)
= O(∆t2l (log ∆tl)

2).

Since the payo� function is uniform Lipschitz and since

max
0≤i≤nl

E
(

(Y fi∆tl − Y
c
i∆tl

)2
)

= O(∆t2l ), (5.35)

the variance of a single sample is of the desired order

Vl = O(∆t2l (log ∆tl)
2).

5.6.4 Barrier Options

This section contains the analysis of barrier options. The type of barrier options considered are down-and-out
options for which the payo� is a Lipschitz function f : R→ R of the value of the underlying asset X at maturity,
provided the asset has never dropped below a �xed value B,

P (X) = f(XT )1τ−B>T
, (5.36)

where the �rst passage time τ−B is de�ned as

τ−B = inf
t>0
{Xt < B}. (5.37)

Direct approximation of the stopping time on the level l via

τ̂−B = inf
0≤i≤nl

{Yi∆tl < B}

overestimates the exact stopping time as it is possible for X to cross the barrier at some time instance t > 0
in between the discretisation points {i∆tl}0≤i≤nl but never to be above the barrier at any of the discretisation
points themselves. For the resulting weak error

E(P (X)− P (Y )) ≤ C
√

∆tl + o(
√

∆tl) (5.38)

holds [Gobet and Menozzi, 2010].

The overshoot problem in simulating the payo� of barrier option has been extensively analysed by Gobet in
[Gobet and Menozzi, 2010], [Gobet and Menozzi, 2004], [Gobet, 2000] and [Gobet and Temam, 2001] and an
array of methods to handle this particular problem has been developed.

1. A standard approach taken is shifting the barrier by a constant to account for the overestimation of the
stopping time. The shifted barrier

B+ = B + βb(i∆tl, Yi∆tl)
√

∆tl

with β = −ζ(1/2)/2π ≈ 0.5826, where ζ is the Riemann-Zeta function, corrects the leading error in (5.38)
resulting in an o(

√
∆tl) error and O(∆tl) weak convergence.

2. Another approach consists of interpolating in between discretisation times with Brownian bridges and
directly sampling the in�mum of the bridges.

3. Instead of simulating the Brownian bridges it can be advantageous to only compute the probabilities of
bridges crossing the barrier in a conditional Monte Carlo approach [Boyle et al., 1997].
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The �rst method may seem to be the equivalent of the similar construction in (5.29), however, the correction
term for lookback option payo� is not a straightforward extension of the arguments used to justify the correction
for barrier payo�s [Broadie et al., 1999]. The other two methods are presented below.

Milstein Scheme

In contrast to the lookback option, the barrier option is not a Lipschitz continuous function of the in�mum
of the underlying asset price over the time interval [0, T ]. Therefore, the chain of argumentation, speci�cally
including the argument using the Lipschitz continuity of the payo� function (5.35) and Lemma 5 in the proof
of the lookback option cannot be employed in the case of a barrier option.

The route taken in [Giles, 2008b], which follows an argument presented in [Glasserman, 2004], uses the unique
structure of the barrier payo� function and samples the indicator 1Yi∆t,min<B for i ∈ {1, . . . , n} from Lemma 5
directly by calculating in each timestep the probability that the Brownian bridge used to interpolate in between
discretisation points crosses the barrier. Conditional on Yi∆t and Y(i+1)∆t, which are assumed to be greater
than B, the indicator takes the value 1 with probability

p̂i = P(Yi∆t,min ≤ B|Yi∆t, Y(i+1)∆t) = exp

(
−

2(Yi∆t −B)(Y(i+1)∆t −B)

b(i∆t, Yi∆t)2∆t

)
.

Thus, 1τ−B>T
can be approximated by

∏n−1
i=0 1Ui≤p̂i with Ui, i ∈ {0, . . . , n − 1}, uniformly distributed on the

unit interval (0, 1) and consequently the exact payo� (5.36) can be approximated by

f(Yn∆t)

n−1∏
i=0

1Yi∆t,max<B . (5.39)

In case the discretisation {Yi∆t}0≤i≤n is a Markov process, as is the case for the Euler-Maruyama and Milstein
scheme, the indicators in (5.39) do not have to be sampled, as the conditional expectation of the payo� is then
given by

E

(
f(Yn∆t)

n−1∏
i=0

1Yi∆t,max<B |Y0, . . . , Yn∆t

)
= f(Yn∆t)

n−1∏
i=0

E
(
1Yi∆t,max<B |Yi∆t, Y(i+1)∆t

)
= f(Yn∆t)

n−1∏
i=0

p̂i. (5.40)

Using the conditional expectation as an estimator is an example for a more general method in Monte Carlo
variance reduction [Boyle et al., 1997]. By the law of iterated expectations, the estimators (5.39) and (5.40)
have the same expectation and discretisation bias, but due to the law of total variance, the variance is reduced
by using the estimator (5.40) instead of (5.39). However, the computational e�ort in computing the estimator
(5.40) is higher than the e�ort involved in computing the estimator (5.39), as the computation of (5.39) can
be aborted as soon as Yi∆t,min for one i ∈ {1, . . . , n} exceeds the barrier, whereas the whole path has to be
simulated for the estimator (5.40) if for no i ∈ {1, . . . , n} the value Yi∆t,max is below the barrier.

In the Multilevel Monte Carlo setting the paths on the �ne level are set to

P fl = f(Y fnl∆tl)

nl−1∏
i=0

(1− p̂fi ),

with

p̂fi = exp

(
−

2(Y fi∆tl −B)(Y f(i+1)∆tl
−B)

b(i∆tl, Y
f
i∆tl

)2∆tl

)
.

Analogously the coarse path is de�ned by

P cl = f(Y cn∆tl
)

nl−1∏
i=0

(1− p̂ci )
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Figure 5.2: An illustration of a situation for which the improved Multilevel Monte Carlo method yields an
improvement over the Classic Monte Carlo method. The conventional Multilevel Monte Carlo method would
not yield an improvement, as the case of the �ne path (�lled circles) passing the barrier with the coarse path
(empty circles) not passing the barrier still gives Var(∆tl) = O(∆tl).

with

p̂ci = exp

(
−

2(Y ci∆tl −B)(Y c(i+1)∆tl
−B)

b(i∆tl, Y ci∆tl)
2∆tl

)
,

where for odd values of i ∈ {1, . . . , nl} the value Y fi∆tl is given by the Brownian interpolant and where
b(i∆tl, Y

c
i∆tl

) = b((i− 1)∆tl, Y
c
(i−1)∆tl

). The identity (5.15) necessary for the improved Multilevel Monte Carlo
setting to work is satis�ed due to the law of iterated expectations leading to

P

(
inf

t∈[i∆tl,(i+2)∆tl]
Y ct > B|Y ci∆tl , Y

c
(i+2)∆tl

)
= E

(
P

(
inf

t∈[i∆tl,(i+2)∆tl]
Y ct > B|Y ci∆tl , Y

c
(i+1)∆tl

Y c(i+2)∆tl

))
.

Theorem 20. Assuming that inft∈[0,T ] |b(t, B)| > 0 and that inft∈[0,T ]Xt has a bounded density in the neighbour-

hood of B, the Multilevel Monte Carlo estimator for a down-and-out barrier option has variance Vl = o(∆t
3/2−δ
l )

for any δ > 0 using the Milstein scheme.

A detailed proof of the theorem can be found in [Giles et al., 2013]. That the variance Vl is of order o(∆t
3/2−δ
l ) is

a result of the strong convergence of the discretisation schemes used [Giles and Szpruch, 2013]. Due to Markov's
inequality

P

(
sup

0≤i≤nl
|Xi∆tl − Yi∆tl | ≥ ∆t1−εl

)
≤ ∆t−p+pεl E

(
sup

0≤i≤n
|Xi∆tl − Yi∆tl |p

)
= O(∆tpεl )

holds, which means that the probability that the discretisation {Yi∆tl}0≤i≤n is outside a ∆t1−δl neighbourhood
of the exact underlying process (Xt)t≥0 is arbitarily small. Consequently, if the in�mum of (Xt)t≥0 over the

interval [0, T ] is outside of a ∆t
1/2
l -neighbourhood of the barrier B then so is the discretisation. In this case the

barrier becomes irrelevant, as asymptotically the probability of either process crossing the barrier is either 0 or
1 depending on which side of the barrier the in�mum of the exact process (Xt)t≥0 has realised. Therefore this
situation reduces back to the case of a Lipschitz payo� function.
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If on the other hand the in�mum of (Xt)t≥0 has realised within a ∆t
1/2
l -neighbourhood of the barrier, then

the same holds for the discretisation {Yi∆tl}0≤i≤nl . In this case it can be shown that E(P fl − P cl−1)2 =

O(∆t1−δl ).

In the proof it is shown that due to the boundedness assumption on the density, the probability that the in�mum

of (Xt)t≥0 is within a ∆t
1/2
l -neighbourhood the barrier is of order O(∆t

1/2−δ
l ). All put together the overall

variance Vl is thus of order o(∆t
3/2−δ
l ) for any δ > 0.

5.6.5 Digital Options

A digital call option, which is a derivative that pays out one unit if the value of the asset is above the �xed
strike price K and pays out nothing otherwise, has a payo� function of the form

P = 1{XT>K}

with the numerical approximation
Pl = 1{Ynl∆tl>K}.

Euler-Maruyama Scheme

Theorem 21. Under the additional assumptions that

|a(0, x)| ≤ C, |a′(0, x)| ≤ C, |b(0, x)| ≤ C, |b′(0, x)| ≤ C,

for some constant C ∈ R+ and

E

(∣∣∣∣∫ t

0

b(s,Xs)
2ds

∣∣∣∣−
p0
2

)
<∞ (5.41)

for some p0 > 2 and for all t ∈ [0, T ] 9 the Multilevel Monte Carlo estimator for a digital option has variance

Vl = O(∆t
1/2−δ
l ) for any δ > 0 using the Euler-Maruyama scheme.

Proof. Because of the simple structure of the payo� function, the error due the numerical approximation is
readily calculated. An error in the payo� only occurs if either the exact solution is below and the approximation
is above the strike price and vice versa.

E(|P − Pl|2) = P({XT > K} ∩ {YT ≤ K}) + P({XT ≤ K} ∩ {YT > K}) (5.42)

For a given δ ∈ (0, 1
2 ), a number m ∈ N large enough may be chosen such that 1/(2m + 2) < δ. It is then

convenient to set

β̂ =
1

2
− 1

2m+ 2
>

1

2
− δ. (5.43)

For the �rst summand on the right hand side of (5.42), which handles the case that the exact solution is above
the strike but the discretisation is below the strike, the inequality

P({XT > K} ∩ {YT ≤ K}) = P({K + ∆tβ̂l > XT > K} ∩ {YT ≤ K}) + P({XT > K + ∆tβ̂l } ∩ {YT ≤ K})
(5.44)

= P({K + ∆tβ̂l > XT > K} ∩ {YT ≤ K}) + P({XT − YT > ∆tβ̂l })

holds for the threshold value ∆tβ̂l , where β̂ in (5.43) has been chosen in such a way that it balances two opposing

aims. On the one hand, it is desirable to keep ∆tβ̂l small in order to keep P({K + ∆tβ̂l > XT > K}) small.

On the other hand, ∆tβ̂l should be large so that by strong convergence the probability P({XT − YT > ∆tβ̂l }) is
small. Due to assumption (5.41) the density of XT is bounded [Caballero et al., 1998] resulting in

P({K + ∆tβ̂l > XT > K} = O(∆tβ̂l ). (5.45)
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On the other hand the Markov inequality together with the bound (3.5) yields

P({XT − YT > ∆tβ̂l }) ≤
E(|XT − YT |m)

∆tβ̂ml

≤
Cm∆t

m/2
l

∆tβ̂ml

= O

(
∆t

1
2−

1
2m+2

l

)
= O(∆tβ̂l ). (5.46)

Thus, plugging in (5.46) and (5.45) into (5.44) results in the desired

E(|P − Pl|2) = O(∆tβ̂l ) = O(∆t
1
2−δ
l ).

Milstein Scheme

In [Giles et al., 2013] the Multilevel Monte Carlo estimator variance for digital options was analysed for the Mil-
stein scheme after numerical results were obtained in [Giles, 2008b]. Again a conditional expectation approach
is used.

Using the same approach as for global Lipschitz functions would lead to an O(∆tl) fraction of all ST of �ne and

coarse paths to end up on di�erent sides of the strike K, leading to an error of |P fl − P cl−1| = 1. This leads to
an overall estimator variance of Vl = O(∆tl) in the absence of any advanced treatment.

The basic idea is to observe the behaviour of a path one time step before T , that is at time (nl − 1)∆tl, where

the value of the �ne path approximation is Y f(nl−1)∆tl
. Approximating the path in between ∆tl(nl − 1) and

nl∆tl with a Brownian motion that has constant drift af(nl−1)∆tl
= a(Y f(nl−1)∆tl

, T −∆tl) and constant volatility

bf(nl−1)∆tl
= b(Y f(nl−1)∆tl

, T −∆tl), results in a conditional expectation for the payo� at time T that is given by

P(Y fnl∆tl > K) after one additional time step or

P fl = E(1{Y fnl∆tl>K}
|Y f(nl−1)∆tl

) = Φ

(
Y f(nl−1)∆tl

+ af(nl−1)∆tl
∆tl −K

|bf(nl−1)∆tl
|
√

∆tl

)
(5.47)

with the standard normal cumulative distribution function Φ, due to the fact that an arithmetic Brownian motion
at a time instance t ∈ N follows a normal distribution. Given the Brownian increment ∆W(nl−1−1)∆tl−1+∆tl ,
which is the same increment as used in the �ne path simulation, the probability P(Y cnl−1∆tl−1

> K) is given
by

P cl−1 = E(1{Y cnl−1∆tl−1
>K}|Y c(nl−1−1)∆tl−1

,∆W(nl−1−1)∆tl−1+∆tl)

= Φ

(
Y c(nl−1−1)∆tl−1

+ ac(nl−1−1)∆tl−1
∆tl−1 + bc(nl−1−1)∆tl−1

∆W(nl−1−1)∆tl−1+∆tl −K
|bc(nl−1−1)∆tl−1

|
√

∆tl

)
(5.48)

The conditional expectation of P cl−1 is equal to the conditional expectation of P
f
l−1, satisfying equality (5.15).

Theorem 22. Assuming that b(T,K) 6= 0 and that Xt has a bounded density in the neighbourhood of K, the

Multilevel Monte Carlo estimator for a digital option has variance Vl = o(∆t
3/2−δ
l ) for any δ > 0 using the

Milstein scheme.

Proof. The proof is is split into three parts. In the �rst part, extreme paths are considered, in the second

part, paths which are not extreme with |XT −K| > ∆t
1/2−4γ
l and in the third part the the rest of the

remaining paths.

a.) Paths that are de�ned to be extreme satisfy any of the conditions of Lemma 11 for 0 < γ < 1
4 . The

fourth moments E
(
(P f )4

)
and E

(
(P c)4

)
are both �nite. Therefore, the extreme paths contribute o(∆tpl )

for all p > 0 to the overall variance.
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b.) Paths which are not extreme with |XT − K| > ∆t
1/2−4γ
l need their own analysis. Let Y fnl∆tl and

Y cnl−1∆tl−1
be the values that are obtained in the �ne, respectively coarse, path simulations after the �nal

time step, then by plugging in the Milstein approximation (3.14)

Y fnl∆tl + af(nl−1)∆tl
∆tl −K

|bf(nl−1)∆tl
|
√

∆tl
(5.49)

=
Y fnl∆tl −K

|bf(nl−1)∆tl
|
√

∆tl
−

bf(nl−1)∆tl

|bf(nl−1)∆tl
|
√

∆tl

(
∆W(nl−1)∆tl +

1

2
(b′)f(nl−1)∆tl

(
(∆W(nl−1)∆tl)

2 −∆tl
))

and

Y c(nl−1−1)∆tl−1
+ ac(nl−1−1)∆tl−1

∆tl−1 + bc(nl−1−1)∆tl−1
∆W(nl−1−1)∆tl−1

−K
|bc(nl−1−1)∆tl−1

|
√

∆tl
(5.50)

=
Y cnl−1∆tl−1

−K
|bc(nl−1−1)∆tl−1

|
√

∆tl
−

bc(nl−1−1)∆tl−1

|bc(nl−1−1)∆tl−1
|
√

∆tl

·
(

∆W(nl−1)∆tl +
1

2
(b′)c(nl−1−1)∆tl−1

(
(∆W(nl−1−1)∆tl−1

+ ∆W(nl−1)∆tl)
2 −∆tl−1

))
.

Because the paths are not extreme |∆Wi∆tl | ≤ ∆t
1/2−γ
l for all i ∈ {1, . . . , nl} and |XT −Y fnl∆tl | ≤ ∆t1−γl .

Due to Lemma 11, |bf(nl−1)∆tl
| ≺ ∆t−γl . Combining these statements leads in the case of XT > K +

∆t
1/2−3γ
l for su�ciently small ∆tl to

Y f(nl−1)∆tl
+ af(nl−1)∆tl

∆tl −K

|bf(nl−1)∆tl
|
√

∆tl
> C∆t−2γ

l

for an appropriate constant C ∈ R. An analogue result follows for the corresponding coarse path, which
results in P fl − P cl−1 = o(∆tpl ) for all p > 0.

An analogue argument applies to the paths for which XT < K −∆t
1/2−3γ
l . Combining both cases leads

to E((P fl − P cl−1)21b.)) = o(∆tpl ) for all p > 0.

c.) The rest of the paths satisfy |XT −K| ≤ ∆t
1/2−2γ
l . The triangle inequality yields

|bf(nl−1)∆tl
− b(T,K)| ≤ |bf(nl−1)∆tl

− bfnl∆tl |+ |b
f
nl∆tl

− b(T,K)|. (5.51)

The �rst summand on the right hand side in (5.51) is bound by ∆t1/2−2γ with γ < 1
4 due to the relation

(5.20),

| max
0≤i≤n

|b(i∆t, Y fi∆t)− b((i− 1)∆t, Y f(i−1)∆t)| ≺ ∆t1/2−2γ

in Lemma 11. For the second summand on the right hand side in (5.51) the Lipschitz condition imposed
on b(t, x) in (3.13) in Theorem 8 provides the upper bound

|bfnl∆tl − b(T,K)| ≤ C|Y fnl∆tl −XT +XT −K| ≤ C(|Y fnl∆tl −XT |+ |XT −K|) ≤ C(∆t1−γl + ∆t
1/2−2γ
l ).

For small enough ∆tl the left hand side in (5.51) can thus be bound by |bf(nl−1)∆tl
− b(T,K)| < 1

2b(T,K).

This shows that bf(nl−1)∆tl
is not zero and of the same sign as b(T,K). The same chain of argumentation

can be applied to bc(nl−1−1)∆tl−1
.

Applying the fact that the cumulative distribution function of the normal distribution Φ is Lipschitz
continuous with Lipschitz constant C = 1, |Φ(x)−Φ(y)| ≤ |x− y|, to the �ne payo� approximation P fl in

54



(5.47) and the coarse payo� approximation P cl−1 in (5.48) and using the identities (5.49) and (5.50) leads
to

|P fl − P
c
l−1| ≤

∣∣∣∣∣Y
f
(nl−1)∆tl

+ af(nl−1)∆tl
∆tl −K

|bf(nl−1)∆tl
|
√

∆tl
(5.52)

−
Y c(nl−1−1)∆tl−1

+ ac(nl−1−1)∆tl−1
∆tl−1 + bc(nl−1−1)∆tl−1

∆W(nl−1−1)∆tl−1+∆tl −K
|bc(nl−1−1)∆tl−1

|
√

∆tl

∣∣∣∣∣
≤

∣∣∣∣∣ Y fnl∆tl −K
|bf(nl−1)∆tl

|
√

∆tl
−

Y cnl−1∆tl−1
−K

|bc(nl−1−1)∆tl−1
|
√

∆tl

∣∣∣∣∣
+

1

2
√

∆tl
K
(
(∆W(nl−1)∆tl)

2 + (∆W(nl−1−1)∆tl−1
+ ∆W(nl−1)∆tl)

2 + 3∆tl
)

In the next step, the identity

f1g1 − f2g2 =
1

2
(f1 − f2)(g1 + g2) +

1

2
(f1 + f2)(g1 − g2)

is used to arrive at

Y fnl∆tl −K
|bf(nl−1)∆tl

|
√

∆tl
−

Y cnl−1∆tl−1
−K

|bc(nl−1−1)∆tl−1
|
√

∆tl
=

1

2
√

∆tl
(Y fnl∆tl − Y

c
nl−1∆tl−1

)

(
1

|bf(nl−1)∆tl
|

+
1

|bc(nl−1−1)∆tl−1
|

)

+
1

2
√

∆tl
(Y fnl∆tl + Y cnl−1∆tl−1

− 2K)

(
|bc(nl−1−1)∆tl−1

| − |bf(nl−1)∆tl
|

|bf(nl−1)∆tl
| · |bc(nl−1−1)∆tl−1

|

)
.

Using the identities (5.19), (5.21) and (5.22) it follows that

Y fnl∆tl −K
|bf(nl−1)∆tl

|
√

∆tl
−

Y cnl−1∆tl−1
−K

|bc(nl−1−1)∆tl−1
|
√

∆tl
= O(∆t

1/2−5γ
l )

and in consequence due to (5.52) that P fl −P cl−1 = O(∆t
1/2−5γ
l ). Due to assumption that the probability

density of XT is bounded, the probability that a path belongs to the rest of the paths treated in section c)

is given by the expectation E(1c.)) = O(∆t
1/2−3γ
l ). Combining these results yields E((P fl −P cl−1)21c.)) =

O(∆t
3/2−13γ
l ). Setting γ < min( 1

4 , δ/13) leads to the desired result.

5.6.6 Basket Options

Basket options are derivatives whose payo� is dependent on the weighted average of J underlying assets,
XA
t =

∑J
j=1 µjX

j
t . Each of these underlying asset price processes Xj is assumed to be the solution of a

stochastic di�erential equation of the form given in (3.2),

dXj
t = aj(t,Xj

t )dt+ bj(t,Xj
t )dW j

t ,

where Σ is the correlation matrix of the multidimensional Brownian motion Wt = (W 1
t , . . . ,W

J
t ). As in the

case of the other derivatives treated above, Brownian interpolation is used in between discretisation points. It
can be shown that the resulting averaged Brownian interpolation has the same form as (5.18) [Giles, 2009],
rendering the construction of the Multilevel Monte Carlo estimators exactly the same as in the case of the
non-Basket derivatives. Let {Y Ai∆t}1≤i≤n denote the averaged discretisation values of the underlying assets, that

is Y Ai∆t =
∑J
j=1 µjY

j
i∆t. Then the Brownian interpolant in between discretisation points is given by

Y At = Y Ai∆t + λ(Y A(i+1)∆t − Y
A
i∆t) +

J∑
j=1

µjb
j(i∆t, Y ji∆t)

(
W j
t −W

j
i∆t − λ(W j

(i+1)∆t −W
j
i∆t

)
= Y Ai∆t + λ(Y A(i+1)∆t − Y

A
i∆t) + b̃i∆t(W̃t − W̃i∆t − λ(W̃(i+1)∆t − W̃i∆t),
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where W̃t =
∑J
j=1 µjW

j
t and where

b̃2i∆t =
∑
j,k

µjb
j(i∆t, Y ji∆t)Σ

(j,k)µkb
k(i∆t, Y ki∆t).

Y At thus has the same form as the interpolant de�ned in (5.18).

No numerical analysis of Basket options for the Multilevel Monte Carlo method exists as of yet. However, the
construction of the estimators suggests that convergence rates remain in line with the rates derived for the
non-Basket derivatives and thus optimal. Giles has found as much for the case of Black-Scholes model in [Giles,
2009] via numerical simulation. Improvements in terms of computational cost over the Classic Monte Carlo
simulation range from an 100-fold improvement in case of the Asian option, 150-fold in case of the lookback
option, 100-fold in case of the barrier option to 500-fold in case of the Digital option, always considered with a
target accuracy level of ε = 0.01.

5.6.7 Summary

A look at the table of convergence rates of Vl for the derivatives presented above shows that β, determined
by Vl, always satis�es β > 1 in the case of the Milstein scheme. Under the assumption γ = 1 Theorem (31)
guarantees that in every case an optimal computational complexity of O(ε−2) is achieved. Thus, the Multilevel
Monte Carlo Method e�ectively brings down the computational complexity of O(ε−3) under the Classic Monte
Carlo method to O(ε−2).

It should be explicitly said that the Multilevel Monte Carlo method achieves optimal results asymptotically,
but not in every case that may arise in industry applications. If, for example ε is relatively large, the savings
achieved by coupled levels of grid granularity are trumped by the additional computational overhead that is
necessary to estimate the variances Vl for every l ∈ {1, . . . , L}. Roughly, the savings outweigh the overhead
obtained through the Multilevel construction for an ε ≈ 2−10. Additionally, if the estimator variance on the
coarse levels is relatively small in comparison to the �ner levels, the computational cost is spread more evenly
across all levels, defeating the purpose of the Multilevel approach.

Nonetheless, the Multilevel Monte Carlo method features enormous savings in the case of the �nancial derivatives
discussed in the preceding sections, as in these cases the variance of the estimators is relatively uneven going from
coarse to �ne levels. If a high accuracy in form of a very small ε is required, the method o�ers vast computational
savings. Its usefulness can be increased even more by performing the computations on a processor which allows
parallelisation, as the independent sampling of the estimators on di�erent levels of the Multilevel Monte Carlo
technique is predilected to be done in parallel.

Euler Scheme Milstein Scheme

Option Type Numerical Analytical Numerical Analytical

Lipschitz Payo� O(∆tl) O(∆tl) O
(
∆t2l

)
O
(
∆t2l

)
Asian Option O(∆tl) O(∆tl) O

(
∆t2l

)
O
(
∆t2l

)
Lookback Option O(∆tl) O(∆tl) O

(
∆t2l

)
O
(
∆t2l (log ∆tl)

2
)

Barrier Option O
(

∆t
1/2
l

)
o
(

∆t
1/2−δ
l

)
O
(

∆t
3/2
l

)
o
(

∆t
3/2−δ
l

)
Digital Option O

(
∆t

1/2
l

)
O
(

∆t
1/2
l log ∆tl

)
O
(

∆t
3/2
l

)
o
(

∆t
3/2−δ
l

)
Table 5.1: Convergence rates for the variance Vl, proven analytically and shown numerically using the Euler
scheme respectively the Milstein scheme [Giles et al., 2013]. δ > 0 is an arbitrary constant.
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Chapter 6

The Multilevel Wiener-Hopf Monte Carlo

Simulation

6.1 The Wiener-Hopf Factorisation

A fundamental property common to all Lévy processes is the Wiener-Hopf factorisation, which is a highly
e�cient method to study vital functionals of Lévy processes like the extrema of the underlying process, �rst
passage times and the resulting overshoot. The factorisation is heavily used in theoretical research [Bertoin,
1996], [Sato, 1999], but due to the nature of many problems in mathematical �nance, such as the pricing
of derivatives involving the extrema of the underlying asset process like lookback or barrier options and the
modelling of default processes credit risk management [Schoutens, 2003], [Cariboni and Schoutens, 2009], it is of
increasing interest in areas connected to �nance. In insurance, ruin processes are frequently modelled by Lévy
processes, where the problems are also strongly related to quantities which can be treated with the Wiener-Hopf
factorisation [Albrecher et al., 2008].

6.1.1 History of the Wiener-Hopf factorisation

The factorisation has its basis in a method developed by Norbert Wiener [Wiener and Payley, 1934] and Eberhard
Hopf [Hopf, 1934] to solve for f(x) linear integral equations of the �rst kind10, which take the form∫ ∞

0

k(x− y)f(y)dy = g(x) (6.1)

with x ∈ (0,∞), k(x− y) a known function depending only on the di�erence x− y, the di�erence kernel 11, and
g(x) a given function de�ned for x ∈ (0,∞). In a �rst step the method constructs a continuation of the integral
equation to values on the negative axis by setting∫ ∞

0

k(x− y)f(y)dy =

{
g(x), x ∈ (0,∞)

h(x), x ∈ (−∞, 0)
(6.2)

where h(x) is an unknown function. This allows to perform a Fourier transformation of (6.2) resulting in

G+(α) +H−(α) = F+(α)K(α), (6.3)

where H−(α) and F−(α) are half-range Fourier transforms respectively de�ned over (−∞, 0) and (0,∞) of the
unknown functions f(x) and h(x), whereas G+(α) is the known half-range Fourier transform of g(x) and K(α)
is the full-range Fourier transform of k(x). The subscripts show whether the respective functions are analytic
in the upper or in the lower half regions of the complex plane.
The Wiener-Hopf method exploits the fact that a factorisation, the Wiener-Hopf factorisation, of the Fourier-
transformed kernel can be found, that is

K(α) = K+(α)K−(α), (6.4)
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where both factors on the right hand side are zero-free in their respective half-planes of analyticity. From this
decomposition it follows that (6.3) can be written as

G+(α)

K−(α)
+
H−(α)

K−(α)
= F+(α)K+(α).

Factorizing the �rst summand further 12 into

G+(α)

K−(α)
= L+(α) + L−(α)

makes it possible to rewrite (6.3) as

L−(α) +
H−(α)

K−(α)
= F+(α)K+(α)− L+(α).

The left hand side contains only functions analytic in the lower half-plane and the right hand side contains
only functions analytic in the upper half region. The next step consists of employing analytic continuation
arguments to express both sides as an entire function E(α) and using constraints on the asymptotic behaviour
of f(x), g(x) and k(x) for x → 0 and respectively on their Fourier-transforms for α → ∞ to determine E(α),
thereby working out the unique H−(α) and F+(α) �xed by E(α). In the last step, Fourier inversion gives the
desired function f(x) [Lawrie and Abrahams, 2007].

6.1.2 The Wiener-Hopf Factorisation for Lévy Processes

The Wiener-Hopf factorisation of a Lévy process X = (Xt)t≥0 is given by a decomposition of the same type as in
(6.4). Let a compound Poisson process X with the property that lim supt→∞Xt <∞ be given. It can be shown
that the Strong Markov property 13 yields that sups≤∞Xs is equal in distribution to max(ζ + sups≤∞Xs, 0)
where ζ is not dependent on sups≤∞Xs and equal in distribution to the jump distribution of X [Kyprianou,
2006]. Under the assumption that the jump distribution of X has density k it directly follows that

P

(
sup
s≤∞

Xs ≤ x
)

=

∫ x

−∞
P

(
sup
s≤∞

Xs ≤ x− y
)
k(y)dy =

∫ ∞
0

k(x− y)P

(
sup
s≤∞

Xs ≤ y
)
dy.

Setting g(x) = f(x) = P
(
sups≤∞Xs ≤ x

)
gives equation (6.1).

To switch to a more general setting, let ς(q) for any q > 0 denote an exponentially distributed random variable
with mean E(ς(q)) = 1/q and which is independent of X. Additionally, the notation

Xt = sup
s≤t

Xs and Xt = inf
s≤t

Xs

is introduced. Furthermore let C+ = {z ∈ C : =(z) > 0} denote the open upper complex half plane and

C
−

= {z ∈ C : =(z) ≥ 0} the closed upper complex half plane and let the open/closed lower complex half plane
be de�ned analogously.
Theorem 23. Assume that q > 0. Let the Wiener-Hopf factors be de�ned by

φ±q (u) = exp

(∫
R+

1

teqt

∫
R±

(eiux − 1)dPXtdt

)
, u ∈ C±

1. For all u ∈ R the Wiener-Hopf factorisation

q

q + ψ(u)
= φ+

q (u)φ−q (u)

holds, where ψ(u) is the characteristic exponent of the Lévy process X.
2. The Wiener-Hopf factors φ+

q (u) and φ−q (u) may be also expressed by

φ±q (u) = exp

(
± u

2πi

∫
R

ln

(
q

q + ψ(z)

)
dz

z(z − u)

)
, u ∈ C±
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3. The identities

φ+
q (u) = E

(
eiuXς(q)

)
, u ∈ C+ and φ−q (u) = E

(
eiuXς(q)

)
, u ∈ C−

hold.
4. Xς(q) and Xς(q) are independent positive, respectively negative, in�nitely divisible random variables with

zero linear drift. Additionally, Xς(q)
D
= Xς(q) −Xς(q).

5. Assume that there exist a positive in�nitely divisible random variable X1 and a negative in�nitely divisible
random variable X2 with zero linear drift such that for all u ∈ R

q

q + ψ(u)
= E

(
eiuX1

)
E
(
eiuX2

)
.

Then Xς(q)
D
= X1 and Xς(q)

D
= X2.

6. Assume that there exist two functions f+(u) and f−(u) such that f±(0) = 1, f±(u) are analytic in C±,

continuous and have no roots in C
±
and u−1 ln(f±(u))→ 0 as u→∞, u ∈ C±. if
q

q + ψ(u)
= f+(u)f−(u), u ∈ R

then f±(u) = φ±q (u) for all u ∈ C±.
Exit problems, such as an asset price leaving an area described by a barrier, are closely connected to the Wiener-
Hopf factorisation. For instance, if the positive Wiener-Hopf factor is known, then through the Pecherskii-
Rogozin identity [Pecherskii and Rogozin, 1969] the joint Laplace transform of the �rst passage time and the
overshoot is known.
De�nition 37. Let the �rst passage times τ+

h and τ−h of X be de�ned by

τ+
h = inf{t > 0 : Xt > h} and τ−h = inf{t > 0 : Xt < h}

and let the respective overshoots be de�ned to be equal to Xτ+
h
− h and h−Xτ+

h
.

Theorem 24. Assume that q > 0, h ≥ 0, <(w) > 0 and <(z) > 0 and w 6= z. Then∫
R+

e−whE

(
e
−qT+

h −z(Xτ+
h
−h)
)
dh =

1

w − z

(
1−

φ+
q (iw)

φ−q (iz)

)
.

Since τ−h (X) = τ+
−h(−X), an analogue statement holds for the joint law of (τ−h (X), Xτ−h (X)) for h < 0. The joint

law of the �rst passage time and the overshoot is of natural interest in �nance and insurance problems. For exam-
ple, the pricing of an up-and-in barrier option requires evaluating an expectation of the form E(f(XT )1XT>B),

the valuation of a credit default swap involves knowledge of the distribution function P(XT < x)
Unfortunately, although the Wiener-Hopf factorisation holds for all Lévy processe, the factors φ±q in general do
not allow for an explicit form [Kuznetsov and Peng, 2012]. Therefore, the search for closed-form Wiener-Hopf
factors is reduced to �nding rich enough families of Lévy processes with properties that make it possible to
derive an explicit Wiener-Hopf factorisation.
For some classes of Lévy processes it was shown that the Wiener-Hopf factors can be identi�ed and consequently
that the distribution of the variables Xς(q) and Xς(q) can be explicitly determined. The sub-classes of Lévy
processes are distinguished by the form their Lévy measure takes. More precisely, for the Lévy processes in the
di�erent sub-classes the Lévy density f(x) exists, which is the density of the Lévy measure with respect to the
Lebesgue measure, v(dx) = f(x)dx, and the processes are categorised according to their Lévy density.

1. Processes with jumps of rational transform. A Lévy process X is said to have jumps of rational transform,
if its characteristic function is a rational function, that is the quotient of two polynomials. It can be shown
that the Lévy density of such a process necessarily takes the form

f(x) =

m∑
k=1

nk∑
j=1

ckjα
j
k

xj−1

(j − 1)!
e−αkx

with parameters m,nk ∈ N and ckj , αk ∈ C. The αk ∈ C must furthermore satisfy

0 < α1 < <(α2) ≤ · · · ≤ <(αm).
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Processes with positive jumps of rational transform, which are de�ned by a Lévy measure

ν(dx) =

{
ν+(dx) = λp(x)dx, x > 0

ν−(dx), x < 0

where the behaviour of the negative jumps is determined by an arbitrary Lévy measure ν−(dx) concen-
trated on the set (−∞, 0) and where the behaviour of the positive jumps is described by an intensity λ > 0
and a Lévy density f(x), were studied in [Lewis and Mordecki, 2008].
Sub-classes of processes with jumps of rational transform are the following.
(a) Processes with phase-type jumps. A Lévy process X is said to have jumps of phase-type if its Lèvy

density has the form
f(x) = veRxr,

where v = (v1, . . . , vd), d ∈ N, is the initial probability distribution of a �nite state continuous
time Markov process with one absorbing state and the remaining d − 1 states transient, R ∈ Rd×d
is its intensity matrix and where r ∈ Rd is the associated exit rates vector, which together satisfy
rj +

∑d
k=1Rjk = 0 for j ∈ {1, . . . , d}. Phase-type distributions de�ned by the density f(x) include

and generalise the exponential distribution, which is exactly the phase-type distribution with d = 1,
as well as the Erlang distribution and the hyper-exponential distribution explicitly listed below.
Phase-type distributions form a dense subset of the set of all distributions on (0,∞) [Asmussen
et al., 2000]. In [Pistorius, 2006] it is shown that a general Lévy process can be approximated with
arbitrary precision by processes where the positive jumps follow phase type distributions.

(b) Processes with hyper-exponential jumps. A Lévy process X is said to have hyper-exponential jumps
if its Lévy density has the form

f(x) = 1{x>0}

m∑
i=1

piηie
−ηix + 1{x<0}

n∑
j=1

qjθje
θjx

with pi, ηi, qj , θj ∈ R+ and ηi > 1 as well as
∑m
i=1 pi +

∑n
j=1 qj = 1. The sub-class of Lévy processes

with hyper-exponential jumps is large enough to approximate processes with heavy-tailed distributed
jumps with arbitrary precision [Cai, 2009].

2. Meromorphic processes. A Lévy process X is said to be meromorphic if its density has the form

f(x) = 1{x>0}

∞∑
i=1

piηie
−ηix + 1{x<0}

∞∑
j=1

qjθje
θjx

with pi, ηi, qj , θj ∈ R+ and strictly increasing sequences {ηi}i∈N and {θj}j∈N that satisfy limi→∞ ηi =
limj→∞ θj =∞. To ensure that the convergence condition∫

|x|≤1

|x|2ν(dx) =

∫
|x|≤1

|x|2f(x)dx <∞

in (1.1) is satis�ed, the additional constraint

∞∑
i=1

piη
−2
i +

∞∑
j=1

qjθ
−2
j <∞

has to be imposed. The characteristic exponent ψ(x) of the Lévy process X is a meromorphic function
which has poles at the points {−iηi, iθj}i,j∈N [Kuznetsov et al., 2012]. Clearly, Lévy processes with
hyper-exponential jumps are a sub-class.
(a) Processes in the β-family. A Lévy process X is said to belong to the β-family, if it has the Lévy

density

f(x) = C1
e−α1β1x

(1− e−β1x)λ1
1{x>0} + C2

eα2β2x

(1− eβ2x)λ2
1{x<0},

where Ci, αi, βi ∈ R+ for i ∈ {1, 2} and λ1, λ2 ∈ (0, 3) \ {1, 2}. This family of processes allows for an
arbitrary behaviour of small jumps and includes processes similar to CGMY processes. The processes
in the β-family are processes where the meromorphic characteristic exponent consists of beta and
digamma functions [Kuznetsov, 2010].
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(b) Hyper-geometric Lévy processes. A Lévy process X is said to be a hyper-geometric Lévy process, if
it has the Lévy density

f(x) =

{
− Γ(η)

Γ(η−γ̃)Γ(−γ)e
−(1−β+γ)x

2F1(1 + γ, η; η − γ̃; e−x), x > 0

− Γ(η)
Γ(η−γ)Γ(−γ̃)e

(β̃+γ̃)x
2F1(1 + γ̃, η; η − γ; e−x) x < 0

where η = 1− β+ γ + β̃+ γ̃ and 2F1 is the respective hyper-geometric function. In the class of Lévy
processes with double-sided jumps the distribution of the exponential functional

(
eXt
)
t≥0

is known

in closed form only in the case of Lévy processes with hyper-exponential jumps [Cai and Kou, 2010].
3. Processes with bounded positive jumps. Lévy processes with bounded positive jumps have a Lévy

measure ν that has support on (−∞, k], where k is the right boundary of the support of ν, that is
k = infx>0{ν((x,∞)) = 0}. This class is of interest as it is very large and with a certain understanding
dense in the class of all Lévy processes, as any Lévy measure can be approximated with arbitrary precision
by cutting it o� at a large positive number. Therefore, they are of practical interest, as any general Lévy
process can be approximated with a given precision. Secondly, in insurance applications a natural cap on
the positive jumps is already a given, as when a reinsurance contract is used to hand o� any claims above
a certain level to an insurer.
Meromorphic processes and processes with bounded positive jumps are very similar to each other. In both
cases the positive Wiener-Hopf factor φ+ is the product including the solutions to the equation ψ(z) = q
in the half-plane <(z) > 0. For meromorphic processes these solutions are real, whereas for processes with
bounded positive jumps they are complex.

All these processes have in common that their characteristic exponent ψ(x) has an analytical structure which
makes it possible to represent it as the product of two functions, which are analytic in the left, respectively
right, complex half plane, and in consequence to retrieve the Wiener-Hopf factors. In general, an explicit
Wiener-Hopf factorisation can be obtained if and only if ψ(x) can be extended to a meromorphic function in
the left or right complex plane, which underlines the importance of the meromorphic Lévy processes introduced
above. This is the reason why no explicit Wiener-Hopf factorisations have been discovered for the more widely
used processes usually found in �nancial applications, like the Variance Gamma and the CGMY process. The
respective characteristic exponents ψ(x) of theses processes have at least one branch point and therefore lack a
meromorphic extension [Kuznetsov and Peng, 2012].

6.2 The Wiener-Hopf Monte Carlo Algorithm

The subsequent treatment based on the exposition in [Ferreiro-Castilla et al., 2013] assumes that the following
conditions are satis�ed.

A1.
∫
|x|≥1

x2ν(dx) <∞
A2. The payo� function P : R×R+ → R is a Lipschitz function with a Lipschitz constant assumed to be 1.
A3. The computational time to sample Xς(q) and Xς(q) is independent of the value of q.

A natural way to use Monte Carlo simulation when calculating the expectation of an unknown quantity involving
the joint law of (Xt, Xt)t≥0 is given by using stationarity and independence of the increments of Lévy processes
to approximate the continuous time processes by discrete random walks, simulating multiple path instances and
by keeping record of the maximum in each instance. This approach requires that the distribution of the Lévy
process is known, either through the availability of an analytical formula or alternatively through the use of
numerical inversion of the characteristic function. However, although one samples examples exactly from the
distribution of the underlying Lévy process X, the law of the recorded maximum of the sampled random walk
will not be the same as the law of (Xt)t≥0, indeed, the incurred error will be signi�cant.
Another method to simulate a Lévy process is by using an appropriate series representation. In [Rosi«ski, 2001]
a Lévy process X at time t ∈ [0, T ] is developed into an almost surely and uniformly converging series according
to

Xt = γt+

∞∑
i=1

(H(Γi/T, Vi)1Ui≤t − tci), (6.5)

where {Γi}i∈N denotes a sequence of partial sums of independent and identically distributed standard exponen-
tial random variables, {Ui}i∈N a sequence of independent and identically distributed random variables uniformly
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distributed on [0, T ], independent of {Γi}i∈N, {Vi}i∈N a sequence of independent and identically distributed ran-
dom variables with common probability distribution F and where the {ci}i∈N are given by ci = A(i)−A(i− 1)
with

A(s) =

∫ s

0

∫
|x|≤1

xP(H(r, Vi) ∈ dx)dr.

The function H : (0,∞)×Rd is de�ned by P(H(r, Vi) ∈ A) = f(r,A) with ν(A) =
∫∞

0
f(r,A)dr for A ∈ B(Rd).

H(Γi, Vi) can be interpreted as the e�ect at time zero of a shot Vi that happened Γi time units ago, when the
respective series in (6.5) is interpreted as a shot noise process. However, more direct and much faster methods
which are adapted to the speci�c law of the Lévy process under consideration exist. For example, [Janicki and
Weron, 1994] gives an overview for α-stable Lévy processes.
A further approach commonly used is to approximate the Lévy process X with a jump-di�usion process. Jump-
di�usion processes are Lévy processes that are the linear combination of a Brownian motion and an independent
compound Poisson process. The method is based on the idea of cutting o� the Lévy measure by discarding
the small jumps below an arbitrarily chosen threshold. To compensate for the removal of the small jumps the
linear component or the Brownian motion are adjusted in an appropriate fashion. If the jump component of
the Lévy process is of �nite variation, it is for example possible to replace the small jumps with an adjustment
in the linear trend, whereas if the jump component is of unbounded variation, it is more appropriate to use an
adjustment in the Brownian motion component [Dereich and Heidenreich, 2011]. In general, the removal of the
small jumps guarantees that the process has the structure of a Brownian motion with linear drift combined with
a compound process. Simulating the paths of the Brownian motion interspersed with jumps injected by the
Poisson process is relatively straightforward. Limitations were noted by [Asmussen and Rosi«ski, 2001].
In [Kuznetsov et al., 2011] an accurate Monte Carlo simulation technique for expectations involving the joint
law of (Xt, Xt)t≥0 was introduced. It allows for the exact sampling from the law of (Xτ , Xτ ) with τ being a
random time whose distribution can be centred arbitrarily close around t ≥ 0, that is it does not work with
a �xed, deterministic grid, but rather uses an underlying grid composed of random times. The accuracy of
the Monte Carlo simulation heavily depends on a parameter controlling how much the the distribution of the
random times is concentrated around a given t ≥ 0 and thus how high the resolution of the resulting grid
is. The intervals in between those random times are the arrival times of a compound Poisson process, that is
independent and identically distributed exponential variables.
More formally, assume that {ei(1)}i∈N are a sequence of independent and identically distributed random vari-
ables with mean 1. By the strong law of large numbers, it follows that

n∑
i=1

t

n
ei(1)

a.s.−→ t. (6.6)

By the property of exponential variables that their sum is again a scaled exponential variable, the random
variable on the left hand side of (6.6) is an exponentially distributed random variable with mean t/n and by
the relationship between Gamma distributed random variables and exponentially distributed random variables,
it is in addition a Gamma random variable with parameters n and n/t, denoted by g(n, n/t). Due to the strong
law of large numbers and independence of g(n, n/t) from X,

(Xg(n,n/t), Xg(n,n/t))
a.s.−→ (Xt, Xt).

The main theorem in [Kuznetsov et al., 2011] establishes a procedure on sampling from
(Xg(n,n/t), Xg(n,n/t)).

Theorem 25. Let {Sjn/t}j∈N and {Ijn/t}j∈N be sequences of independent and identically distributed random

variables with common distribution equal to that of Xe(n/t) and Xe(n/t), respectively. Then for all n ∈ N

(Xg(n,n/t), Xg(n,n/t))
D
= (V (n, n/t), J(n, n/t))

with V (0, n/t) = 0 and where for any k ∈ N

V (k, n/t) = V (k − 1, n/t) + (Skn/t + Ikn/t), (6.7)

J(k, n/t) = max{J(k − 1, n/t), V (k − 1, n/t) + Skn/t}. (6.8)
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Proof. Let n ≥ 1 be �xed and de�ne Xs,t = sups≤u≤tXu. Telescoping the sum in the �rst component and
splitting up the supremum in the second results in

(Xg(k,n/t), Xg(k,n/t)) = (Xg(k−1,n/t) + (Xg(k,n/t) −Xg(k−1,n/t)),max(Xg(k−1,n/t), Xg(k−1,n/t),g(k,n/t))),

where g(0, λ) = 0. Furthermore de�ne X
(k)
t = Xg(k−1,n/t)+t−Xg(k−1,n/t) and X

(k)

ekt/n
= sups≤ekt/nX

(k)
s . Using

this notation it then follows that

(Xg(k,n/t), Xg(k,n/t)) = (Xg(k−1,n/t) +X
(k)

ekt/n
,max(Xg(k−1,n/t), Xg(k−1,n/t) +X

(k)

ekt/n
)).

Due to the construction of X(k), it is independent of {Xs : s ≤ g(k − 1, n/t)}. Additionally, from 4. in
Theorem 26 the Wiener-Hopf factorisation it follows that Xe1t/n and Xe1t/n−Xe1t/n are independent and that

Xe1t/n −Xe1t/n is equal in distribution to Xe1t/n
. Using the factorisation �nally results in

(Xg(k,n/t), Xg(k,n/t))
D
= (Xg(k−1,n/t) + Skn/t + Ikn/t,max(Xg(k−1,n/t), Xg(k−1,n/t) + Skn/t)).

Given that sampling from the distributions of Sn/t and In/t is feasible, the theorem thus a�ords us the ability

to simulate (Xg(n,n/t), Xg(n,n/t)) exactly. Due to the Strong Law of Large Numbers, the conventional Monte
Carlo estimator

Ŷ nN =
1

N

N∑
i=1

Pn(ωi)

where Pn = P (V (n, n/t), J(n, n/t)), can be used to estimate the expected value E(P (Xg(n,n/t), Xg(n,n/t))).

Indeed, successively taking limits leads to almost sure convergence to E(P (Xt, Xt)),

lim
n→∞

lim
N→∞

Ŷ nN = lim
n→∞

E(P (Xg(n,n/t), Xg(n,n/t))) = E(P (Xt, Xt)).

The feasibility of the Monte Carlo simulation rests on the availability of samples from the distributions of Sn/t
and In/t in Theorem (26). The discovery of Lévy processes for which these distributions are known is quite
a recent one. Indeed, processes for which samples from Sn/t and In/t can be readily drawn are the rich class
of meromorphic processes. The aforementioned closeness of a sub-class of meromorphic processes, namely the
β-processes, to widely used Lévy processes in �nancial mathematics like the CGMY process, variance gamma
processes and processes give the class practical importance.

6.3 The Wiener-Hopf Multilevel Monte Carlo Algorithm

As shown in section 5.6.7, the introduction of multiple levels of di�erent �neness into a Monte Carlo simulation
vastly improves asymptotic convergence rates which even tend to be optimal. As in the case of (4.6) a decom-
position of the mean square error between the estimator Ŷ nN and E(P (Xt, Xt)), E((Ŷ nN − E(P (Xt, Xt))

2), is

due to E(Ŷ nN ) = E(Pn) and Var(Ŷ nN ) = 1
NVar(P

n) given by

MSE(Ŷ nN ) =
1

N
Var(Pn) + [E(Pn − P (Xt, Xt))]

2. (6.9)

In contrast to (4.6), the decomposition breaks down the mean square error into the the variance of the Monte
Carlo simulation and the bias introduced by the randomised time horizon. The decomposition of the expectation
E(Pl) into a telescoping sum and the subsequent construction of the Multilevel Monte Carlo estimator Ŷl are
the same as given by equations (5.1) and (5.2).
As noted in the introductory section on the Multilevel Monte Carlo Method it is vital for the construction of
the Multilevel Monte Carlo estimator that the samples for Pl and Pl−1 when simulation Pl −Pl−1 should come
from the same draw, necessitating a mechanism to calculate Pl−1 from Pl. Di�erent mechanism were presented
in section 5.6 on derivative pricing. When using Lévy processes on a random grid, the question of constructing
such an adequate mechanism has to be revisited.
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The technique used in [Ferreiro-Castilla et al., 2013] is Poisson thinning. When generating a sample on level
l ∈ {1, . . . , L} of Pl − Pl−1 a Poisson random grid with parameter λl = nl/t is constructed, that is, the time
distances between arrival times in the grid are independent exponentially distributed random variables with

mean 1/λl. Let (N
l

s)s≥0 denote a Poisson process with arrival rate λl and let the respective arrival times of the

process N
l
be denoted by {TN

l

k }k≥0 with T
N
l

0 = 0. The central property used in Poisson thinning is the thinning
property of Poisson processes [Tankov and Cont, 2004, p. 65], which guarantees that discarding arrivals with
probability p creates out of a Poisson process with parameter λ a Poisson process with parameter λp. Applied

to the situation at hand, discarding the arrivals of a Poisson process N
l
, which has intensity λl = nl/t, with

probability 1/M , where nl/nl−1 = M , yields a Poisson process that has intensity λl−1 = nl−1/t and thus follows

the same law as N
l−1

. Again, the waiting times on this coarser Poisson grid are independent and exponentially
distributed with mean 1/λl.
In [Ferreiro-Castilla et al., 2013] only the case M = nl/nl−1 = 2 is considered. Using the previously introduced

notation, the identity g(nl, nl/t) = TN
l

nl
holds. Following Theorem 26 the sequences of independent random

variables {Sjnl/t}j≥1 and {Ijnl/t}j≥1, which are identically distributed with the respective distributions ofXe(nl/t)

and Xe(nl/t)
with the exponential waiting times generated by the Poisson process N

l
, are considered. For i ∈ N

let κi be the index of the i-th arrival in the process N
l
that has not been discarded after using the Poisson

thinning technique and set κ0 = 0. In particular, it should be noted that the sequence {κi − κi−1}i∈N is a
sequence of independent and identically, geometrically distributed random variables with parameter 1/2 and

that for a i ∈ N the waiting time in the thinned process N
l
in between the (i− 1)-th arrival and the i-th arrival

is equal in distribution to
∑κi
j=κi−1+1 ej(nl/t).

The technique of Poisson thinning can be consequently used to build the independent sequences {Sinl−1/t
}i∈N

and {Iinl−1/t
}i∈N}, which are subsequently used to sample from Pl−1 according to Theorem 26, from the se-

quences {Sinl/t}i∈N and {Iinl/t}i∈N} by way of a deterministic transformation. The arguments above lead to the
construction scheme

Sinl−1/t
=

κi−κi−1∨
k=1


k−1∑
j=1

(
S
κi−1+j
nl/t

+ I
κi−1+j
nl/t

)
+ S

κi−1+k
nl/t

 ,

Iinl−1/t
=

κi∑
j=κi−1+1

(Sjnl/t + Ijnl/t)− S
i
nl−1/t

.

The construction scheme o�ers a straightforward way to construct the in�nite sequence of pairs
{(Sinl−1/t

, Iinl−1/t
)}i∈N from {(Sinl/t, I

i
nl/t

)}i∈N, however, the practical situation of �nite sequences still has

to be considered. The construction of the Poisson random grid is cut o� at the time g(nl, nl/t). To guarantee

that the number of arrivals that were not discarded from N
l
to construct N

l−1
sums up to nl−1 it is necessary

to prophylactically extend the number of arrivals in N
l
beyond g(nl, nl/t) before applying the Poisson thinning

technique.
Another point to consider arises from that the algorithm is based on a grid that is entirely random. Let P̂l−1

be a sample produced from Pl by the Poisson thinning technique. As in the conventional Multilevel Monte
Carlo algorithm it is necessary to ensure that the expectation of Pl−1 is the same as the expectation of P̂l−1.
That this is indeed the case, is ensured by the construction of the Poisson thinning technique, as thinning the

Poisson process N
l
yields in distribution a Poisson process with parameter nl−1/t, which is therefore equal

in distribution to N
l−1

. Consequently, the random time g(nl−1, nl−1/t) is of the same distribution as the
thinned version ĝ(nl−1, nl−1/t) produced from g(nl, nl/t). Considering this in connection with the fact that
g(nl−1, nl−1/t) and ĝ(nl−1, nl−1/t) are independent of the Lévy process on top of which they are constructed
gives that P̂l−1 and Pl−1 are indeed of the same law.
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6.4 Numerical Analysis of the Wiener-Hopf Multilevel Monte Carlo

Algorithm

In course of the numerical analysis of the Wiener-Hopf Multilevel Monte Carlo Algorithm in [Ferreiro-Castilla
et al., 2013] the following notation is employed. The short hand a <˜ b is used to signify that for positive a, b the
quantity a/b is uniformly bounded independent of any parameters. Accordingly, a =˜ b means that both a <˜ band b <˜ a hold.
The basic methodology adopted to measure the e�ciency of an algorithm in [Ferreiro-Castilla et al., 2013] is
di�erent from the methodology used in [Giles, 2008b] and [Giles et al., 2013], where an accuracy ε is �xed in
advance and the cost needed to reach an error level below that accuracy is estimated subsequently. Instead,
the convergence error of the analysed Wiener-Hopf Multilevel Monte Carlo algorithm is taken to be a function
of the computational cost involved, measured in �oating point operations. That is, the expectation of the
computational complexity C(P̂ ) is considered for a given estimator P̂ of the expected value E(P (Xt, Xt)) and
it is assumed that it is uniformly bounded by some value ν, E(C(P̂ )) <˜ ν. Given that bound on the estimated

computational cost the goal consists in consequently bounding the root mean square error RMSE(P̂ ) by a bound
dependent on ν.
A basic convergence result is the convergence of the Wiener-Hopf Monte Carlo method on a single level.
Theorem 26. Let t ≥ 0 be a given time instance and assume that Y converges in mean square to P (Xt, Xt).
Furthermore suppose that there exist positive constants α, γ > 0 such that

a) |E(Pn − P (Xt, Xt))| <˜ 1

nα
and b) E(Cn) <˜ nγ ,

where Cn is the cost of computing a single sample of Pn on a Poisson grid with rate n/t. Then for every ν ∈ N
there exist n,N ∈ N such that

E(C(Ŷ nN )) <˜ ν and RMSE(Ŷ nN ) <˜ 1

ν
1

2+γ/α

.

Proof. The �rst step consists in showing that Var(Pn) is bounded. Due to Var(Pn) ≤ E
(

(Pn)
2
)
the inequality

1

2
Var(Pn) ≤ E((Pn − P (Xt, Xt))

2) + E((P (Xt, Xt)
2)

holds. Since Pn converges in mean square to P (Xt, Xt) and P is assumed to be Lipschitz continuous, the �rst
summand is bounded above independently of n. The second summand is bound again due to the Lipschitz
continuity of P and assumption A1 that guarantees that Xt possesses second �nite moments for all t ≥ 0.
Under the assumption that Var(Pn) is bounded by a constant independent of n, it becomes clear that when
the two summands on the right hand side in (6.9) should be balanced, then assumption a) yields

1

N
Var(Pn) =˜ (E(Pn − P (Xt, Xt))

2 =˜ n−2α

and consequently N =˜ n2α. Due to C(Ŷ nN ) = NCn and assumption b) the expected value of the overall

computational cost of the estimator is going to be have the upper bound ν, if n =˜ ν 1
2α+γ because of

C(Ŷ nN ) = NCn =˜ n2α+γ =˜ ν.
Consequently, N =˜ ν 2α

2α+γ , yielding the desired bound on RMSE(Ŷ nN ).

In an analogue fashion to the Multilevel Monte Carlo Theorem, Theorem 31, a multilevel variant of the Wiener-
Hopf Monte Carlo method can be formulated. A proof of the theorem can be found in [Cli�e et al., 2011].
Theorem 27. Let t ≥ 0 be a given time instance and nl = n0M

l for some level l ∈ N and assume that there
are positive constants α, β, γ > 0 with α ≥ 1

2 max(β, γ) such that

a) |E(Pl − P (Xt, Xt))| <˜ 1

nαl
, b) Var(Pl − Pl−1) <˜ 1

nβl
, c) E(Cl) <˜ nγl ,
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where Cl denotes the computational cost of computing a single sample of Pl on a Poisson grid with rate nl/t.
Then for every ν ∈ N there exists a value L and a sequence of Multilevel Monte Carlo estimators Ŷl, l ∈
{1, . . . , L}, such that for the Multilevel Monte Carlo estimator Ŷ the inequalities E(C(Ŷ )) <˜ ν and

RMSE(Ŷ ) <˜

ν−

1
2 if β > γ,

ν−
1
2 log2 ν if β = γ,

ν−
1

2+(γ−β)/α) if β < γ

hold.
For Theorem 26 and Theorem 27 to be useful, constants α, β and γ have to be found such that the respective
assumptions in the theorems are indeed satis�ed. Since the computational time to sample Xe(q) and Xe(q) is
independent of q because of assumption A3, γ = 1 always holds, whereas the values of α and β are dependent
on the convergence rate of g(n, n/t) to t.
To determine suitable constants α and β, let τ and τ ′ be non-negative random variables that are independent of
the Lévy process X. They nonetheless could be correlated. Additionally, let Xt = (Xt, Xt). From the Lipschitz
continuity assumption on P the inequalities

|E(P (Xτ )− P (Xt))| ≤ E(|Xτ −Xt|) ≤ E(|Xτ −Xt|) + E(|Xτ −Xt|) (6.10)

and
Var(P (Xτ − P (Xτ ′)) ≤ E((Xτ −Xτ ′)

2) ≤ 2(E((Xτ −Xτ ′)
2) + E((Xτ −Xτ ′)

2)) (6.11)

follow. The following Lemma helps in establishing estimates on the summands on the right hand sides of the
respective inequalities.
Lemma 13. Let X be a Lévy process that satis�es assumptions A1 to A3 and let τ be an arbitrary non-negative
random variable not dependent on X. Then for a given time instance t ≥ 0 the identities

E((Xτ −Xt)
2) = Var(X1)E(|τ − t|) + E(X1)2E((τ − t)2),

E((Xτ −Xt)
2) ≤ 16Var(X1)E(|τ − t|) + 2(max(E(X1), 0))2E((τ − t)2)

hold.

Proof. Since the increments of a Lévy process are independent and identically distributed, they can be written
in the form

Xτ −Xt
D
=

{
Xτ−t, if τ ≥ t,
−Xt−τ if τ < t.

Because τ is assumed to not depend on X and because of

E(X2
s ) = Var(X1)s+ E(X1)s2

for all s ≥ 0, the identity

E((Xτ −Xt)
2) = Var(X1)E(|τ − t|) + E(X1)2E((τ − t)2)

follows.
To show the second result, the identity

Xt
D
= max(Xs, Xs +X

′
t−s)

with s < t and X
′
t−s independent of {Xs′}s′≤s and identically distributed to Xt−s. Considering the duality

property of Lévy processes, which states that Xs is equal in distribution to Xs −Xs, the result

Xt −Xs
D
= max(X ′′s +X

′
t−s, 0) ≤ X ′t−s

follows, with X ′′s independent of X
′
t−s and equal in distribution to Xs. This identity yields the inequality

E((Xτ −Xt)
2) ≤ E(X

2

|τ−t|). (6.12)
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Assumption A1 a�ords us the ability to decompose X into a martingale part X∗ = {X∗t }t≥0 and a drift such
that it has the form Xt = X∗t + tE(X1) for t ≥ 0. It then follows that

E(X
2

t ) = E(sup
s≤t

(X∗s + E(X1)s)2)

≤ E((X
∗
t + t(max(E(X1), 0))2)

≤ 2
(
E((X

∗
t )

2) + (max(E(X1), 0)2t2
)
, (6.13)

with X
∗
t = sups≤tX

∗
t . Doob's martingale inequality [Sato, 1999, p. 167] then leads to

E(X
2

t ) ≤ 2
(
8E((X∗t )2) + (max(E(X1), 0)2t2

)
. (6.14)

Plugging in |τ − t| results in

E(X
2

|τ−t|) ≤ 16E((X∗|τ−t|)
2) + 2(max(E(X1), 0)))2E((τ − t)2).

But because of E((X∗|τ−t|)
2) = E((X∗τ −X∗t )2) equation (6.12) can be used to get the result

E(X
2

|τ−t|) ≤ 16E((X∗τ −X∗t )2) + 2(max(E(X1), 0))2E((τ − t)2)

= 16Var(X∗1 )E(|τ − t|) + 2(max(E(X1), 0))2E((τ − t)2).

Combining this inequality with Var(X∗1 ) = Var(X1) leads to the desired result.
Lemma 14. Let t ≥ 0 be a given time instance and X a Lévy process satisfying assumptions A1 to A3. Then
for any n ∈ N the bounds

E(((Xg(n,n/t) −Xt)
2) =˜ n− 1

2 and E(|Xg(n,n/t) −Xt|) <˜ n− 1
4 , (6.15)

E(((Xg(n,n/t) −Xt)
2) =˜ n− 1

2 and E(|Xg(n,n/t) −Xt|) <˜ n− 1
4 (6.16)

hold. If additionally X has paths of bounded variation then the improved bounds

E(|Xg(n,n/t) −Xt|) <˜ n− 1
2 and E(|Xg(n,n/t) −Xt|) <˜ n− 1

2 (6.17)

hold.

Proof. To show the bounds (6.15) and (6.16) it is su�cient to show the respective bounds for the second
moments, as the bounds for the �rst moments then follow from an application of Jensen's inequality. With the
goal of using Lemma 13, it will be shown that for all n ∈ N the identities

E((g(n, n/t)− t)2) =
t2

n
(6.18)

E(|g(n, n/t)− t|) = 2te−n
nn

n!
=˜ n− 1

2 . (6.19)

The last bound is a direct consequence of Stirling's formula n! ≈
√

2nπnne−n. Because E(g(n, n/t)) = t and
g(n, n/t) has a Gamma distribution, equation (6.18) is just an application of the formula for the variance of the
Gamma distribution. Equation (6.19) can be written as

E(|g(n, n/t)− t|) =

∫ t

0

(t− s)g(n, n/t, s)ds+

∫ ∞
t

(s− t)g(n, n/t, s)ds

= 2

∫ t

0

(t− s)g(n, n/t, s)ds, (6.20)
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where g(k, θ, s) = Γ(k)−1θksk−1e−θs is the density of a Gamma distributed random variable. Let γ(k, u) =∫ u
0
xk−1e−xdx denote the incomplete gamma function for which the identities∫ t

0

g(k, θ, s)ds =
γ(k, tθ)

Γ(k)
and

∫ t

0

sg(k, θ, s)ds =
γ(k + 1, tθ)

Γ(k)θ

hold. With the incomplete gamma function equation (6.20) can be written as∫ t

0

(t− s)g(n, n/t, s)ds = t

∫ t

0

g(n, n/t, s)ds−
∫ t

0

sg(n, n/t, s)ds = t

(
γ(n, n)

Γ(n)
− γ(n+ 1, n)

Γ(n+ 1)

)
. (6.21)

The incomplete gamma function also allows for the representation

γ(k, u)

Γ(k)
=

1

Γ(k)

∫ u

0

xk−1e−xdx = 1−
(

1 + u+
u2

2!
+
u3

3!
+ · · ·+ uk−1

(k − 1)!

)
e−u,

which can be found in [Abramowitz and Stegun, 1970, sec. 6.5.13]. Plugging in this representation into the
right hand side of equation (6.21) yields∫ t

0

(t− s)g(n, n/t, s)ds = t
nn

n!
e−n.

Substituting the right hand side into equation (6.20) yields the desired result

E(|g(n, n/t)− t|) = 2te−n
nn

n!
.

In case the Lévy process X is of bounded variation, the Doob's martingale inequality for absolute moments and
the same decomposition into martingale and drift as used in equations (6.13) and (6.14) a�ords us the ability
to derive that

E(|Xg(n,n/t) −Xt|) ≤ E(X
∗
|g(n,n/t)−t|) + max(E(X1), 0)E(|g(n, n/t)− t|)

≤ 8E(|X∗|g(n,n/t)−t||) + max(E(X1), 0)E(|g(n, n/t)− t|).

Additionally, E(|Xg(n,n/t) − Xt|) = E(|X|g(n,n/t)−t||) is thus also bounded by a weighted sum consisting of
E(|X∗|g(n,n/t)−t||) and E(|g(n, n/t) − t|). The missing link to a complete proof is the bound in (6.19) on the

expectation of the martingale part, E(|X∗|g(n,n/t)−t||) <˜ n− 1
2 . Given this bound, the proof is �nished.

Due to Lemma 2, the Lévy process X∗, which is of bounded variation, is the di�erence of two independent
subordinators, X∗t = X ′t −X ′′t . Again assumption A1 guarantees that the subordinators X ′ and X ′′ have �nite
second moments. Using (6.19) yields

E(|X∗|g(n,n/t)−t||) ≤ E(X ′|g(n,n/t)−t|) + E(X ′′|g(n,n/t)−t|) = E(|g(n, n/t)− t|)E(|X ′1|+ |X ′′1 |) =˜ n− 1
2 .

The main theorem in [Ferreiro-Castilla et al., 2013], which gives the particular convergence rates needed to
con�rm the validity of the assumptions in Theorems 26 and 27, directly follows by combining the previous
lemmas and theorems.
Theorem 28. If the assumptions A1 to A3 are satis�ed, the assumptions in Theorems 26 and 27 hold with
α = 1/4, β = 1/2 and γ = 1. If the Lévy process X has paths of bounded variation, α = 1/2 holds. The root
mean square errors for the single Wiener-Hopf Monte Carlo method are under the restriction that the expectation
of the overall computational complexity is O(ν) for any ν ∈ N given by

RMSE(Ŷ nN ) <˜
{
ν−

1
6 , ifX is not of bounded variation,

ν−
1
4 , ifX is of bounded variation.

For the Wiener-Hopf Multilevel Monte Carlo method the root mean square errors are given by

RMSE(Ŷ ) <˜
{
ν−

1
4 , ifX is not of bounded variation,

ν−
1
3 , ifX is of bounded variation.

Proof. Since γ = 1 is ensured by assumption A3, this result follows immediately from Theorems 26 and 27 as
well as Lemma 14 and equations (6.10) and (6.11).
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6.5 Numerical Analysis of the Random Grid

In [Ferreiro-Castilla et al., 2013] a suggestion for improvement on the random grid presented above is discussed.
Unfortunately, the improvement su�ers from the defect that it turns out to be of primarily theoretical value,
as it requires the ability to simultaneously sample from three distributions in connection with the Wiener-Hopf
factorisation. Sub-classes of Lévy processes which are practically important and for which this is possible are
not known.
The basic insight of the improvement consists in the recognition that there is indeed nothing particular about
the random times g(n, n/t) used in Theorem 26. Since by de�nition g(n, n/t) =

∑n
i=1

t
nei(1), the random time

g(n, n/t) is just the sum of n independent random variables exponentially distributed with mean t/n, converging
to t as n→∞. An alternative, more e�cient way to construct a sum of independent exponentially distributed
random variables that converges to t is presented in the following.
Let N = {Ns}s≥0 be the Poisson process with parameter t/n that is used as the basis for sampling the random
walk V (k, n/t), k ∈ N. Furthermore, de�ne

TNj = inf
s>0
{Ns = j} and T (n, t) = TN

Nt+1
.

From the lack of memory property of the exponential distribution it directly follows that the exponentially
distributed waiting times of N imply that T (n, t) − t is again exponentially distributed with mean t/n. Addi-
tionally,

lim
n→∞

T (n, t)
a.s.
= t and lim

n→∞
(XT (n,t), XT (n,t))

a.s.
= (Xt, Xt).

Theorem 26 indicates that it may be useful to approximate (XT (n,t), XT (n,t)) by (V (N t + 1, n/t), J(N t +

1, n/t)). The Wiener-Hopf factorisation, however, only o�ers knowledge about (Xe(q), Xe(q) −Xe(q)), but not

(Xe(q), Xe(q) −Xe(q), e(q)), which is a salient point exploited in Theorem 26 and which makes it impossible to

sample exactly and simultaneously from (V (N t + 1, n/t), J(N t + 1, n/t), N t + 1).
To consider the theoretical improvement of the time T (n, t) over g(n, n/t) let Pn(ωi) to be understood as the
i− th realisation of the random variable

Pn = P (V (N t + 1, n/t), J(N t + 1, n/t)).

The Poisson thinning technique results again in{Sinl−1/t
}i∈N and {Iinl−1/t

}i∈N} constructed through

Sinl−1/t
=

κi−κi−1∨
k=1


k−1∑
j=1

(
S
κi−1+j
nl/t

+ I
κi−1+j
nl/t

)
+ S

κi−1+k
nl/t

 ,

Iinl−1/t
=

κi∑
j=κi−1+1

(Sjnl/t + Ijnl/t)− S
i
nl−1/t

.

However, it still has to be shown that the Poisson thinning procedure works on the random T (n, t). Let

l ∈ {1, . . . , L} and let T̃ (nl−1, t) be the random time constructed from N
l
by Poisson thinning. What remains

to be seen is that T̃ (nl−1, t) is in distribution equal to T (nl−1, t). Since Poisson thinning removes arrivals from

the Poisson process N
l
, T (nl, t) ≤ T̃ (nl−1, t) holds. Because T (nl, t)− t is equal in distribution to e(nl/t), the

relations

T̃ (nl−1, t)− t = T (nl, t)− t+

κ∑
i=1

ei(nl/t)
D
=

κ∑
i=0

ei(nl/t)
D
= e(nl−1/t)

D
= T (nl−1, t)− t,

with κ being an independent geometrically distributed random variable on N0 with parameter 1/2. Thus P̃l−1,
constructed via T̃ (nl−1, t), is equal in distribution to Pl−1, constructed via T̃ (nl−1, t).
Even more interestingly, the random time T (n, t) allows for an additional simpli�cation of the Multilevel Monte
Carlo algorithm. Let (XT (nl,t), XT (nl,t)) be known. To construct a sample on the coarse level, only remove one
of the arrival times via Poisson thinning with probability 1/2. If it is not removed, then

(XT (nl−1,t)(ωi), XT (nl−1,t)(ωi)) = (XT (nl,t)(ωi), XT (nl,t)(ωi)) and Pl(ωi)− Pl−1(ωi) = 0.
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If it is removed, then a sample (Snl−1/t(ωi), Inl−1/t(ωi)) of (Xe(nl−1/t), Xe(nl−1/t)
) is generated and the new pair

(XT (nl−1,t)(ωi), XT (nl−1,t)(ωi)) is constructed via

XT (nl−1,t)(ωi) = max(XT (nl,t)(ωi), XT (nl,t)(ωi) + Sinl−1/t
),

XT (nl−1,t)(ωi) = XT (nl,t)(ωi) + Sinl−1/t
+ Iinl−1/t

.

Proposition 5. Let t ≥ 0 be a given time instance. Furthermore suppose that X satis�es the assumptions A1
to A3. Then for any n ∈ N

E((XT (n,t) −Xt)
2) =˜ n−1 and E(|XT (n,t) −Xt|) <˜ n− 1

2 ,

E((XT (n,t) −Xt)
2) <˜ n−1 and E(|XT (n,t) −Xt|) <˜ n− 1

2 .

Proof. Due to Jensen's inequality it is su�cient to prove the inequalities for the second moments, as the
inequalities for the �rst moments are a direct consequence. The random variable T (n, t) − t is exponentially
distributed with parameter n/t due to the lack of memory property. Thus,

E((T (n, t)− t)2) = 2
t2

n2
and E(|T (n, t)− t|) = E(T (n, t)− t) =

t

n
.

An application of Lemma 13 is then su�cient to show that the inequalities hold.

Together with Theorems 26 and 27 and γ = 1 the next Theorem directly follows from Proposition 5.
Theorem 29. Suppose that the assumptions A1 to A3 are satis�ed. Let the time horizon be given by T (n, t).
Then for any ν ∈ N, the root mean square error for the Wiener-Hopf Monte Carlo method under the constraint
that the expected value of the overall computational cost is limited to O(ν) operations, is RMSE(Ŷ Nn ) <˜ ν− 1

4 .
Correspondingly the root mean square error for the Wiener-Hopf Multilevel Monte Carlo method satis�es
RMSE(Ŷ ) <˜ ν− 1

2 log2 ν.

6.6 Derivative Pricing with the Multilevel Monte Carlo Method

6.6.1 Barrier Options

In [Ferreiro-Castilla et al., 2013] the sub-class of β-processes in the class of meromorphic processes is used as
the underlying process modelling the �nancial market. As remarked in section 6.1.2, this class of Lévy processes
is one of the sub-classes that possesses an explicit Wiener-Hopf factorisation and which, under addition to a
compound Poisson process, can be used as an approximation to a larger class of Lévy processes. Additionally, the
class contains processes that allow for considerable freedom in the modelling of �nancial markets and includes
important special cases of practical use.
The extrema distributions are given by

E
(
eiuXe(q)

)
=

1

1 + iu
ζ−0 (q)

∏
n≤−1

1 + iu
β1(n+1−α1)

1 + iu
ζn(q)

E
(
eiuXe(q)

)
=

1

1 + iu
ζ+
0 (q)

∏
n≥1

1 + iu
β2(n−1+α2)

1 + iu
ζn(q)

with ζ−0 (q) and {ζn(q)}n≤−1 corresponding to the negative zero points and ζ
+
0 (q) and {ζn(q)}n≥1 corresponding

to the positive zeros of ψ(−iu) = −q. Simulation of the extrema may be accomplished by truncating the in�nite
series, which has the favourable property that the cost of the simulation is independent of q. This was assumed
to be a condition for the analysis presented in the previous sections, namely assumption A3. The assumption
A1 also holds for β-processes.
The payo� function of barrier call options with strike K > 0 and barrier B > 0 in a Lévy model has the
form

E
((
ex0+Xt −K

)+
1x0+Xt>B

)
.
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Figure 6.1: Price/Time grid of a β-process simulated with the Wiener-Hopf Multilevel Monte Carlo method
with M = 2 and L = 7. The β-process with parameters µ = 1, σ = 0, C1 = 1.5, C2 = 1, α1 = 1, α2 = 1.5,
β1 = 1.5, β2 = 1.5, λ1 = 2, λ2 = 2 was simulated. The option parameters were set to K = 5 and B = 10. 40
initial prices S0 ∈ [0, 10] and 200 time instances t ∈ [0, 1] were used as the underlying grid. The behaviour is as
expected, with rising barrier option prices for increasing asset prices.

It should be noted that assumption A2 is not satis�ed. Nonetheless, the performance analytically shown for
payo� functions satisfying the assumption is achieved.
It should be noted that β-processes are adequate processes for modelling �nancial asset price processes. The
class of β-processes servers as an excellent approximation to Meixner-processes [Ferreiro-Castilla and Schoutens,
2010]. In [Schoutens, 2001] it is shown that a near-perfect �t to �nancial time series data is achievable, in
particular, the Nikkei-225 Index and the Standard and Poors 500 Index were �tted with the process using time
series data spanning three years. Stochastic volatility e�ects such as autocorrelation may be incorporated using
stochastic time.

6.6.2 Parisian Options

Parisian options are exotic options which can be used in a wide variety of �nancial applications. Essentially,
they are barrier options for which the knock in/knock out event is not given by the crossing a pre-speci�ed
barrier, but rather by an excursion above or below that barrier, see Figure 6.4. The option yields a conditional
payo� at maturity if the asset price stays above or below a pre-speci�ed barrier for a pre-speci�ed amount of
time.
In contrast to barrier options and much like Asian options, the excursion time makes Parisian options impervious
to manipulations of the underlying stock price. Whereas barrier options can be knocked in by pushing the price
above the barrier for only a moment, Parisian options can be only knocked in if the stock price has stayed above
a certain level for a longer time period. Applications are for example compensatory options for board members
of a corporation, where barrier options could give an incentive to push the price above a bonus barrier for only
a moment in time. Parisian options would incentivise long-term performance. In the insurance industry, the
ruin of an insurance portfolio in conventional risk theory could be �tted with a Parisian option-style window,
taking account of grace periods a�orded under bankruptcy law.
Formally, let gBt (X) be the last time before t > 0 at which an asset process X = (Xt)t≥0 was, without loss of
generalisation, below the barrier B,

gBt (X) = sup
s≤t
{Xs ≤ B}.
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Figure 6.2: Price/Time grid of a β-process simulated with the Wiener-Hopf Multilevel Monte Carlo method
with M = 2 and L = 7. The β-process with parameters µ = 1, σ = 1, C1 = 1.5, C2 = 1, α1 = 1, α2 = 1.5,
β1 = 1.5, β2 = 1.5, λ1 = 2, λ2 = 2 was simulated. The option parameters were set to K = 5 and B = 10. 40
initial prices S0 ∈ [0, 10] and 200 time instances t ∈ [0, 1] were used as the underlying grid. Clearly, setting
σ = 1 in comparison to Figure 6.1 has shifted the behaviour of the process markedly.
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Figure 6.3: Price/Time grid of a β-process simulated with the Wiener-Hopf Multilevel Monte Carlo method
with M = 2 and L = 7 . The β-process with parameters µ = 1, σ = 1, C1 = 0.8, C2 = 1.3, α1 = 1.2, α2 = 1.7,
β1 = 1, β2 = 1.6, λ1 = 1.4, λ2 = 0.5 was simulated. The option parameters were set to K = 5 and B = 10. 40
initial prices S0 ∈ [0, 10] and 200 time instances t ∈ [0, 1] were used as the underlying grid.
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Figure 6.4: Lévy processes in red, with their excursions above a barrier set at B = 120 marked in green. If these
excursions are longer than a prespeci�ed time, a Parisian option knocks in respectively out. For cumulative
Parisian options the overall excursion above the barrier is of interest.

The stopping time depending on a given time window D ∈ R of interest for the particular case of Parisian
options is given by. If this stopping time occurs before the maturity date T , the option knocks in, respectively
knocks out.

G+
D = inf

t>0
{(t− gBt (X))1St>B ≥ D}.

Future research could implement a Wiener-Hopf Multilevel Monte Carlo method which would not only sample
the supremum or the �rst hitting time of a Lévy process but also the respective excursions above a given
barrier.
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Chapter 7

The Multilevel Quasi-Monte Carlo

Method

The Multilevel Monte Carlo method may be extended in the direction of Quasi-Monte Carlo simulation in
di�erent ways. The Quasi-Monte Carlo method computes a desired integral on a d-dimensional hypercube like
the expectation in (4.1) by way of a quadrature rule consisting of N equally weighted points of the form∫

[0,1]d
f(x)dx ≈ 1

N

N−1∑
i=0

f(xi). (7.1)

In contrast to the Classic Monte Carlo method the d-dimensional points {xi}1≤i≤N are not sampled uniformly
from the unit cube, but are constructed by an algorithm in a deterministic manner. The Classic Monte Carlo
method requires in general computational costs of order O(ε−3), whereas in the best case the Quasi-Monte Carlo
method requires only costs of order O(ε−2) [Glasserman, 2004].
In general, the fractional part of low-discrepancy sequences {zi}1≤i≤N is considered, that is xi = zi − bzic for
i ∈ {1, . . . , N}. In order to mimic salient features of the Classic Monte Carlo method, namely the provision of
an unbiased estimate of a target quantity and of a con�dence interval for that unbiased estimate, the Quasi-
Monte Carlo method may be randomised [Tu�n, 2004]. This is done by setting xi = zi + ∆−bzi + ∆c with an
o�set vector ∆ ∈ [0, 1)d. Generating q ∈ N random o�set vectors {∆j}1≤j≤q gives one the ability to treat the

{xi}1≤i≤N as random variables with samples {x(j)
i }1≤i≤N,1≤j≤q, x

(j)
i = zi + ∆j − bzi + ∆jc, and

Ŷ =
1

N

1

q

q∑
j=1

N−1∑
i=1

f
(
x

(j)
i

)
becomes an unbiased estimate of the integral in (7.1) with con�dence intervals constructed in the fashion of the

interval (4.5). Let fl = P0 for l = 0 and fl = Pl − Pl−1 for l ∈ {1, . . . , L} and write {xl,(j)i }1≤i≤Nl,1≤j≤q,0≤l≤L,
x
l,(j)
i = zli + ∆l

j − bzli + ∆l
jc. On a level l ∈ {1, . . . , L} in a Multilevel Monte Carlo setting the quantity

Ŷ0 =
1

N0

1

q

q∑
j=1

N0∑
i=1

f0

(
x

0,(j)
i

)
can thus be used as an estimate for E(P0) and

Ŷl =
1

Nl

1

q

q∑
j=1

Nl−1∑
i=1

fl

(
x
l,(j)
i

)
can be used as an estimate for E(Pl − Pl−1) with l ∈ {1, . . . , L}.
Considering the Milstein discretisation with step size ∆t = T/n of a scalar stochastic di�erential equation on
the time horizon [0, T ] of the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt,
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the dimensionality of the problem is the number of discretisation points d = n. When using the Milstein scheme
(3.14) to approximate the stochastic di�erential equation, the question of how the covariance matrix of the
Brownian increments should be factorised comes up. The expectation of a derivative with payo� function P
based on the value of the solution (Xt)t≥0 of the stochastic di�erential equation is given by∫

Rd
P (x)

e−
1
2x
tΣ−1x

(2π)d/2
√

det Σ
dx, (7.2)

where Σ is the d-dimensional covariance matrix of the elements of x which are the values of the driving Brownian
motion {Wi∆t}1≤i≤n. Factorising the covariance matrix into Σ = AAt and substituting in (7.2) with x = Ay
and y = Φ−1(z) leads to ∫

Rd
P (Ay)

e−
1
2y
ty

(2π)d/2
dy =

∫
[0,1]d

P (AΦ−1(z))dz.

Thus, the transformed integral has the desired form (7.1). Whereas the factorisation of Σ is of no importance
when using Monte Carlo simulation, it is important when considering Quasi-Monte Carlo simulation. Roughly,
three approaches are frequently used.

1. The Cholesky factorisation. Σ is factorised into the Cholesky factorisation Σ = AAt. The Brownian

increments are then given by ∆Wj∆t =
√

∆tΦ−1(x
(j)
i ). This is usually called the standard construction.

2. The Brownian Bridge construction. The component x(1) is used to de�ne WT , the component x(2) is
used to de�ne WT/2 conditional on x(1), the components x(3) and x(4) are used to de�ne WT/4 and W3T/4

conditional on the components x(1) and x(2), and so on and so forth. The factorisation matrix A is only
implicitly de�ned.

3. The Principal Components Analysis Method. A is constructed column-wise. The k-the column of
A is set to be equal to

√
λkvk where λk is the k-th largest eigenvalue of Σ and where vk is the associated

eigenvector.
In [Giles and Waterhouse, 2009] the second method is chosen, as it systematically outperforms the �rst and
third methods in numerical simulations. However, in general there are problems in �nancial mathematics for
which the standard construction and the PCA method fare better.
The Quasi-Monte Carlo method pendant to the Multilevel Monte Carlo complexity algorithm, Algorithm 4, is
a straightforward variation of the original algorithm.

Algorithm 7 The Multilevel Quasi-Monte Carlo Complexity Algorithm

Let L be the number of levels in a Multilevel Monte Carlo setting, Nl be the number of Quasi-Monte

Carlo points at level l for l = 0, . . . , L, Ŷl be the average of P0 or Pl − Pl−1 for l = 1, . . . , L over q = 32

sets of Nl Quasi-Monte Carlo lattice points with each set based on a di�erent random o�set ∆ and Vl be

the variance of Ŷl.

1 Set L = 0.

2 Determine a �rst estimate of VL using q = 32 random o�sets and NL = 1.

3 While
∑L
l=0 Vl > ε2/2 double the Nl on the level with the largest Vl/(2

lNl).

4 If L < 2 or if the bias estimate is greater than ε/
√

2

Set L = L+ 1.

Go to step 2.

The low-discrepancy sequence used in [Giles and Waterhouse, 2009] is a sequence generated by a rank-1 lattice
rule, that is zi = i

N z with an integer vector z. To generate a suitable z the component-by-component sieve
algorithm introduced in [Dick et al., 2008] in connection with a Fast Fourier Transformation developed in
[Nuyens and Cools, 2006] can be used.
Numerical simulation of the di�erent derivatives presented in section 5.6 is performed for the case of the Black-
Scholes model in [Giles and Waterhouse, 2009]. In general, they observe that the introduction of the Quasi-
Monte Carlo method has the greatest impact on the rough levels of the Multilevel Monte Carlo method, with
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improvements �ailing as the levels become �ner. For European options, a 20 to 100-fold increase in performance
is found when using the Multilevel Quasi-Monte Carlo method over the conventional Multilevel Monte Carlo
method, with computational costs being of order O(ε−1). Similar results are found for the case of Asian and
lookback options, whereas improvements in case of barrier and Digital options are less pronounced, with savings
ranging around 5 to 10-fold improvements in computational e�ciency.
In a more recent paper [Gerstner and Noll, 2013], a Sobol sequence is used instead of a sequence determined
by a rank-1 lattice rule. The authors also perform a numerical analysis of the Multilevel Quasi-Monte Carlo
method. In order to present the analysis, some de�nitions common to Quasi-Monte Carlo methods are intro-
duced [Glasserman, 2004, p. 288f].
First, the concept of discrepancy of a sequence is introduced. Intuitively, discrepancy describes the deviation
of a given sequence from the uniform distribution. The higher the discrepancy, the higher the irregularity of
the given sequence. Let P = {x1, . . . , xN} with N ∈ N and x1, . . . , xN ∈ [0, 1]d. For a given set B ⊂ [0, 1]d the
counting function A(B,P ) is de�ned by

A(B,P ) =

N∑
i=1

1B(xi),

indicating the number of i ∈ {1, . . . , N} for which xi ∈ B.
De�nition 38. Let B be a non-empty set of Lebesgue-measurable subsets of [0, 1]d and let λd denote the d-
dimensional Lebesgue measure. Then the general discrepancy of a point set P is de�ned by

DN (B, P ) = sup
B∈B

∣∣∣∣A(B,P )

N
− λd(B)

∣∣∣∣ .
By placing restrictions on the family B, particular concepts of discrepancy are de�ned. For the Multilevel
Quasi-Monte Carlo analysis especially one concept of discrepancy is of interest.
De�nition 39. The star discrepancy D∗N (P ) = D∗N (x1, . . . , xN ) of the point set P is de�ned by D∗N (P ) =

DN (J ∗, P ), where J ∗ is the family of all subintervals of [0, 1]d of the form
∏d
i=1[0, ui).

Next, two notions of measuring the variation of a function are introduced. Let f be a function on [0, 1]d and let
J = [u−1 , u

+
1 ]× [u−2 , u

+
2 ]× · · · × [u−d , u

+
d ] with 0 ≤ u−i ≤ u+

i for i ∈ {1, . . . , d}. Furthermore, let E(J) be the set
of all vertices for which the number of + superscripts is even and let O(J) be the set of all vertices for which
the number of + superscripts is odd. Denote the sum of f over the vertices of J with opposite signs given to
function values at vertices lying next to each other with ∆(f, J),

∆(f, J) =
∑

u∈E(J)

f(u)−
∑

u∈O(J)

f(u).

The hypercube [0, 1]d may be partitioned into rectangles taking the form of J , together forming a set of rectangles
denoted by P.
De�nition 40. Let J , P and ∆(f, J) be de�ned as above. With P ranging over all possible partitions of [0, 1]d

into rectangles, the measure of the variation of f

V d(f) = sup
P

∑
J∈P
|∆(f, J)|

is de�ned to be the measure of variation in the sense of Vitali.
In particular, V d(f) allows for the representation

V d(f) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣ ∂df

∂u1 . . . ∂ud

∣∣∣∣ du1 . . . dud

in case the partial derivative is continuous on the unit hypercube [Niederreiter, 1992, p. 19]. A measure of
the variation of f employed in the analysis of the Multilevel Quasi-Monte Carlo Method is the measure of the
variation in the sense of Hardy and Krause.
De�nition 41. For 1 ≤ k ≤ d and 1 ≤ i1 < i2 < · · · < ik ≤ d, let V k(f, i1, . . . , ik) be the variation in the
sense of Vitali of the restriction of f to the k-dimensional set {(u1, . . . , ud) ∈ [0, 1]d |uj = 1 for j 6∈ {i1, . . . , ik}}.
Then

V (f) =

d∑
k=1

∑
1≤i1<···<ik≤d

V k(f, i1, . . . , ik)
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is de�ned to be the measure of variation in the sense of Hardy and Krause.
Using the star discrepancy and the Hardy-Krause variation, the Koksma-Hlawka inequality can be formulated
[Hlawka, 1961].
Theorem 30 (Koksma-Hlawka Inequality). If f has a bounded variation V (f) on [0, 1]d in the sense of Hardy
and Krause, then for any x1, . . . , xN ∈ [0, 1]d∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫

[0,1]d
f(u)du

∣∣∣∣∣ ≤ V (f)D∗N (x1, . . . , xN ).

Using the Koksma-Hlawka inequality, and setting Qxl = {zli + ∆l
j}1≤i≤Nl,1≤j≤q as well as P = {zli}1≤i≤Nl the

variance of the estimator Ŷl can be bounded above by

Var(Ŷl) =
1

q
Var

 1

Nl

Nl∑
j=1

fl

(
x
l,(j)
i

) =
1

q

∫
[0,1]d

 1

Nl

Nl∑
j=1

fl

(
x
l,(j)
i

)
− E(fl)

2

dxl

≤ 1

q

∫
[0,1]d

(
V (fl)D

∗
Nl

(Qxl)
)2
dxl.

Due to D∗Nl(Qxl) ≤ 4dD∗Nl(P), the bound

Var(Ŷl) ≤
(
4dV (fl)D

∗
Nl

(P)
)2

follows. For low-discrepancy sequences, D∗Nl(P) = O(N−1
l (logNl)

d) holds and because 4d ≤ (logN)d is true for

all N ≥ 55 the factor 4d can be discarded by doubling the dimension d. In [Niederreiter, 1992] it is proposed
that a star discrepancy of D∗Nl(P) = O(N−1+ε

l ) for all ε > 0 is su�cient in most cases. Thus, a variance of

order Var(Ŷl) = O
(

(V (fl))
2
N−2+ε
l

)
is obtained.

It remains to determine the behaviour of V (fl). The authors of [Gerstner and Noll, 2013] assume that V (fl)
has the same behaviour as Var(fl) via the following chain of argumentation. In the Multilevel Monte Carlo
setting the function fl = Pl − Pl−1 is the di�erence of two functions at di�erent time steps. As the di�erence
of the time instances becomes increasingly smaller with successively higher levels, the di�erence of the two
functions evaluated at a certain point successively decreases. With the additional assumption that the variation
is connected to the strong convergence behaviour of the underlying discretisation method used, the authors
arrive at the conclusion that V (fl) is similar in its asymptotic behaviour to Var(fl), leading to

Var(Ŷl) = O
(

∆2β
l N

−2+ε
l

)
(7.3)

with the β from the Multilevel Monte Carlo Theorem, Theorem 31.
Under these assumptions a numerical analysis of the Multilevel Quasi-Monte Carlo method based on the initial
work in [Giles, 2008a] is given in [Gerstner and Noll, 2013]. The underlying discretisation scheme is chosen to
be the Euler scheme.
Since the order of weak convergence for the Euler scheme is 1, E(PL − P ) = O(∆tL) holds. By �xing L =
log ε−1

logM +O(1) the order of the �nest time step is ∆tL = O(ε) in the limit ε→ 0. Due to Ŷ having no bias as an

estimate for E(PL) as evident from equation (5.3), the weak error E(Ŷ −E(P )) is also of order O(ε). Discarding
the ε in (7.3) leads to

Var(Ŷl) = O
(

∆t2βl N
−2
l

)
.

MinimizingVar(Ŷ ) =
∑L
l=0Var(Ŷl) inNl leads to an optimisation problem similar to (5.10) and can accordingly

be dealt with in the same way. Formulating it as an Lagrangian multiplier problem and solving it in combination
with using the Euler scheme, which implies β = 1/2, gives the optimal solution

Nl = O

(
(L+ 1)1/2∆t

2/3
l

ε7/6

)
.
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Plugging in this result in to Var(Ŷ ) gives

Var(Ŷ ) =

L∑
l=0

c2N
−2
l ∆tl =

L∑
l=0

c1∆tl

(
(L+ 1)1/2∆t

2/3
l

ε7/6

)−2

=

L∑
l=0

c2∆tl

(
ε7/3

(L+ 1)∆t
4/3
l

)
≤ c2ε7/3ε−1/3 ≤ c2ε2

leading to the desired target mean square error MSE = O(ε2). Plugging in Nl into the overall computational
cost gives

C = c3

L∑
l=0

Nl∆t
−1
l = c3

L∑
l=0

(
(L+ 1)1/2∆t

2/3
l

ε7/6

)
∆t−1

l = c3

L∑
l=0

(L+ 1)1/2

ε7/6∆t
1/3
l

≤ c3
(L+ 1)3/2

ε7/6∆t
1/3
L

≤ c3ε−9/6(L+ 1)3/2.

(7.4)

Thus, substituting L = log ε−1

logM +O(1) leads to C = O(ε−3/2(log ε−1)3/2).

Generalizing upon the Multilevel Monte Carlo Theorem proven in [Giles, 2008a], an analogous Multilevel Quasi-
Monte Carlo Theorem is presented in [Gerstner and Noll, 2013]. The Theorem is extended through the use of
a parameter δ that changes according to the chosen simulation method and has to be determined numerically.
Using Quasi-Monte Carlo methods δ = 2−ε with ε > 0 applies; the conventional Multilevel Monte Carlo method
can be obtained with δ = 1.
Theorem 31. Let P denote a functional of the solution of a stochastic di�erential equation an let Pl denote
the corresponding approximation at level l with ∆tl = M−lT . If there exist independent estimators Ŷl with
computational complexity Cl based on Nl Monte Carlo samples and positive constants α, β, δ, c1, c2, c3 such that
α ≥ 1

2 , δ ≥ 1 and

a) |E(Pl − P )| ≤ c1
Mαl

b) E(Ŷl) =

{
E(P0) if l = 0

E(Pl − Pl−1) if l > 0

c) Var(Ŷl) ≤ c2
N−δl Mβl

d) Cl ≤ c3NlMγl

then there exists a positive constant c4 such that for any ε < 1
e there are values L and Nl for which the

Multilevel Monte Carlo estimator

Ŷ =

L∑
l=0

Ŷl

has a mean square error with bound
E((Ŷ − E(P ))2) < ε2

and computational complexity C with bound

C ≤

{
c4 max(ε−

2
δ (log ε−1)1+ 1

δ , ε−
1
α ) if β ≥ δ

c4 max(ε−
2
δ−

1
α+ β

αδ (log ε−1)1+ 1
δ , ε−

1
α ) if β < δ

(7.5)

As in the case of the conventional Multilevel Monte Carlo Theorem, Theorem (31), α is determined by the
discretisation method via its weak convergence, whereas β is determined by the payo� function P . The newly
introduced parameter δ depends on the payo� function and possibly on the dimension of the Quasi-Monte Carlo
method used.
For Lipschitz bounded payo� functions and the Euler scheme, α = 1 and β = 1 follows. With δ = 2, the
computational complexity (7.4) is obtained.

Notes

1Usually the Skorokhod space is equipped with a metrizable topology such that the Skorokhod space is Polish, which is called
the Skorokhod topology. A Polish space is a separable, completely metrizable topological space. A topological space is called
separable if it contains a countable dense set. There exists a metrizable topology on D([0,∞),Rd) called the Skorokhod topology
for which the Skorokhod space is Polish.
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Let Λ be the set of all continuous functions λ : [0,∞)→ [0,∞) that are strictly increasing with λ(0) = 0 and limt→∞ λ(t) =∞.
Furthermore, de�ne for each N ∈ N the function kN by

kN (t) =


1 if t ≤ N
N + 1− t if N < t < N + 1

0 if t ≥ N + 1.

Then for all λ ∈ Λ we set

||λ||Λ = sup
s<t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ .
and for α, β ∈ D([0,∞),Rd) we set

δN (α, β) = inf
λ∈Λ

(||λ||Λ + ||(kNα) ◦ λ− kNβ||∞).

Then

δ(α, β) =
∞∑
n=1

1

2N
min(1, δN (α, β))

is a metric on D([0,∞),Rd), which yields the Skorokhod topology [Jacod and Shiryaev, 2002]. The Borel sigma-algebra induced
by the metric is the Skorokhod sigma-algebra.

2Historically, the reference asset was usually chosen to be the money market account given by S0
t = ert with (rt)t≥0 being a

positive deterministic process.
3A strong solution X = (Xt)t≥0 of the stochastic di�erential equation (3.2) is a stochastic process satisfying

1. X is adapted to the �ltration generated by the Brownian motion (Wt)t≥0 and by X0,

2. X is continuous,

3. P(X0 = x0) = 1,

4. P(
∫ t
0 |a(s,Xs)|+ |b(s,Xs)|2ds <∞) = 1 for all t > 0 and

5. Xt = X0 +
∫ t
0 a(s,Xs)ds+

∫ t
0 b(s,Xs)dWs for all t ≥ 0 almost surely.

If the any two strong solutions X and Y with initial condition X0 = Y0 are indistinguishable, i.e. P(Xt = Yt∀t ≥ 0) = 1, the strong
solution is said to be unique.

If the coe�cient functions of (3.2) are locally Lipschiz continuous in x and satisfy for some C ≥ 0

〈x, a(t, x)〉+ trace(b(t, x)b(t, x)t) ≤ C(1 + |x|2)

for all x ∈ Rd and t ≥ 0, then the stochastic di�erential equation has a unique strong solution for any initial random variable X0

satisfying E(|X0|2) <∞ [Durrett, 1996].
In the one-dimensional case strong uniqueness already holds for a Hölder-continuous coe�cient function b(t, x) of order 1

2
[Karatzas and Shreve, 1991].

4The Lévy area derives its name from the fact that it describes the area enclosed by the paths of two Brownian motions and
the chord joining their respective end points. This is a consequence of Stoke's Theorem.

5The Lévy area also vanishes in more general situations. If the di�usion function b(t, x) is additive, i.e., b(t, x) = b(t), the
Milstein scheme reduces to the Euler scheme. If in the case d = m the component i ∈ {1, . . . , d} of the d-dimensional process is
only dependent on the component i ∈ {1, . . . ,m} of the m-dimensional Brownian motion, the multi-dimensional Milstein scheme
reduces to one-dimensional Milstein schemes. The most general case, which includes the previous two, is the case of commutative
noise [Kloeden and Platen, 1995].

6Short treatments of the Lévy area which include the calculation of the characteristic function and the density can be found in
[Protter, 1992] and [Kloeden and Platen, 1995].

7In special cases the number of evaluations of the di�usion matrix in a Runge-Kutta scheme may be lower. In the case of
additive noise the Runge-Kutta scheme reduces to the Euler scheme, in which the di�usion matrix is only evaluated at Yn. For
diagonal noise the number of evaluations at each b(i,i) is reduced to two.

8Many variants relaxing the assumptions of the Strong Law of Large Numbers exist. An elementary proof of a Strong Law
of Large Numbers requiring only pairwise independence was given by Etemadi [Etemadi, 1981]. A version weakening both the
independence and the identical distribution down to a relatively loose correlation structure is presented in a report by Ninness
[Ninness, 2000], which also showcases practical examples. Furthermore, the Strong Law is a special case of Birkho�'s ergodic
theorem [Shalizi, 2007].

9The condition guarantees the boundedness of the density ofXT . Another su�cient condition is that the coe�cient functions
a(t, x) and b(t, x) are both bounded and arbitrarily often continuously di�erentiable on [0, T ] × R and that b(t, x) satis�es the
uniform ellipticity condition, that is there exists a constant C ∈ R such that

(
	
t, x) ≥ C ≥ 0

for all (t, x) ∈ [0, T ]×R [Friedman, 1964].
10The same method works for integral equations of the second kind, which occur more often in problems, but involve a more

complicated treatment.
11A general function k(x, y) in (6.1) is called a kernel. If it only depends on the di�erence x − y, it is called a di�erence

kernel.
12Such factorisations can usually be achieved by using Cauchy's integral formula.
13A stochastic process X on (Ω,F ,P) with the natural �ltration {Ft}t≥0 is said to have the Strong Markov Property if for each

stopping time τ conditioned on {τ <∞} the random variable Xτ+t is independent of Fτ+ given Xτ for all ≥ 0.
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