
Realtime Object Separation for Industrial Glass

Sorting Systems

Christian Hartbauer

18.12.2012

Abstract

Industrial glass recycling often includes optical sorting machines, which

are used to sort a stream of glass cullet according to its color. A crucial

problem for the performance of such systems are connected objects which

lead to wrong results in the sorting process. The goal of this thesis is to

develop a solution to this problem. We formulate this problem as a par-

titioning problem according to the Ising model, for two partitions, or the

Potts model, for k partitions. Furthermore we define approximations, such

that both models are defined in a spatially continuous domain and can be

solved with variational methods. In order to find global solutions we use a

simple convex relaxation approach. An other main aspect of this work is,

the requirement, that the algorithms have to be executed in real-time. Thus

we provide a fast numerical approach, called the primal dual algorithm,

which allows to efficiently find a global solution of the problem. To gain

real-time performance we provide a detailed overview in efficient initializa-

tions, convergence criteria and show how parts of the computations can be

excluded earlier. At last we illustrate the great advantages of our models by

comparing them to the well known watershed segmentation algorithm.

Kurzfassung

In der industriellen Glaswiederaufbereitung werden optische Sortiersysteme

eingesetzt, welche große Mengen Bruchglas anhand ihrer Farbe sortieren.

Eines der größten Probleme solcher Sortiersysteme sind zusammenhängende

Objekte, da diese zu falschen Entscheidungen im Sortierprozess führen kön-

nen. Das Ziel dieser Arbeit ist es, eine Lösung für dieses Problem zu entwick-

eln. Wir formulieren diese Aufgabe als Partitionsproblem entsprechend des

Ising Modells für zwei Partitionen und des Potts Modells für k Partitionen.

Des weiteren werden Approximationen zu diesen Modellen formuliert um sie

in einer räumlich kontinuierlichen Domäne zu definieren. Um eine globale

Lösung zu finden verwenden wir eine einfache konvexe Relaxierung. Anhand

dieser Erweiterungen kann eine globale Lösung mit Hilfe einer Variations-

methode gefunden werden. Ein weiterer wichtiger Aspekt dieser Arbeit ist,

dass die gefundenen Algorithmen in Echtzeit einsetzbar sein müssen. Daher

verwenden wir einen numerischen Ansatz zum Lösen des relaxierten Prob-

lems, genannt Primal-Dual Algorithmus, welcher sehr effizient eingesetzt

werden kann. Des Weiteren zeigen wir, wie man mit effizienten Initial-

isierungen, guten Konvergenzkriterien und dem Entfernen von bereits kon-

vergierten Partitionen, das Ziel einer Echtzeitberechnung erreichen kann.

Zum Schluss werden die großen Vorteile unserer Modelle gezeigt, indem sie

mit dem bereits bekannten und weit verbreiteten Watershed Segmentation

Algorithmus verglichen werden.

Acknowledgements

First of all I want to thank my family. Specially my wife, who has covered

my back in the time I was working on my masters thesis. And I want to

thank my daughter, who has finally accepted that I had to do some work

at home. Thanks to Prof. Horst Bischof and Ass. Prof. Thomas Pock for

supervising my Master Thesis.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig

verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und

die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als

solche kenntlich gemacht habe.

Graz, am .

(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly marked

all material which has been quoted either literally or by content from the

used sources.

. .

date

. .

(signature)

1

Contents

1 Introduction 5

1.1 Glass Recycling . 5

1.1.1 Optical Glas Sorting System - REDWAVE 5

1.2 Problem Description . 6

1.2.1 Object separation - A Segmentation Problem 6

1.2.2 Provided Representations of the Objects 7

1.3 Proposed Algorithms . 7

1.3.1 Watershed Segmentation 7

1.3.2 Ising/Potts Model . 8

2 Related Work 13

2.1 Image Segmentation . 13

2.2 Edge based Image Segmentation 14

2.2.1 Snakes . 14

2.2.2 Level Sets . 15

2.2.3 Geodesic Active Contours 17

2.2.4 Global Minimization of Geodesic Active Contour . . . 18

2.3 Region Based Image Segmentation 18

2.3.1 Mumford-Shah . 19

2.3.2 Chan-Vese . 20

2.3.3 Multiphase Segmentation with Level Set functions . . 22

2

2.3.4 Global Minimization of the Active Contour Model

based on Mumford-Shah 24

2.4 Object Separation . 25

2.4.1 Minimum Entropy Segmentation 26

2.4.2 Clump splitting via bottleneck detection 26

2.4.3 Segmenting clustered slender-particles 27

3 Proposed Models 32

3.1 Watershed Segmentation . 32

3.1.1 Distance Transform 32

3.1.2 Watershed Transformation 34

3.1.3 Watershed Segmentation - Algorithm 36

3.2 Computing Minimal Partitions 37

3.3 Preliminaries . 38

3.3.1 Discrete Settings . 41

3.4 Ising Model . 43

3.4.1 Convex Relaxation . 44

3.4.2 Discrete Ising Model 45

3.4.3 Primal Dual Algorithm 45

3.4.4 Ising Primal Dual . 47

3.5 Potts Model . 50

3.5.1 Label Cost . 50

3.5.2 Discretization . 51

3.5.3 Potts Primal Dual . 51

4 Implementation Details 56

4.1 GPU . 56

4.1.1 CUDA . 56

4.1.2 GPU Architecture . 59

4.1.3 Memory Space . 59

4.2 Implementation . 61

3

4.2.1 Watershed Segmentation 61

4.2.2 Ising Model . 61

4.2.3 Potts Model . 62

5 Experimental Results 65

5.1 Experimental Environment 65

5.1.1 Evaluation Metrics . 68

5.1.2 Quality of Input Images 69

5.2 Watershed Segmentation . 69

5.2.1 Determining Distance Transformation 70

5.2.2 Enhanced Watershed Algorithm 70

5.3 Potts Model . 72

5.3.1 Segmentation Quality 73

5.3.2 Performance Measure 74

5.3.3 Summary . 78

5.4 Ising Model . 79

5.4.1 Determining λ . 79

5.4.2 Convergence Criterion 79

6 Conclusion and Outlook 87

6.1 Conclusion . 87

6.2 Outlook . 88

4

Chapter 1

Introduction

1.1 Glass Recycling

In order to produce new usable products out of waste glass, the recycled glass

has to be separated by color. This separation must be done, because different

colors of glass are usually chemically incompatible. In most countries the

human separation of glass with recycling containers has not the quality to go

directly to reproduction. A standard approach in industrial glass recycling

plants is to use optical sorting machines to finish the separation process.

Another important component for the use of optical sorting machines is

the separation of extraneous material out of the glass. There are several

materials which disturb the recycling process such as ceramics, stones and

porcelain (called CSP) which can be separated with optical sorting machines.

1.1.1 Optical Glas Sorting System - REDWAVE

REDWAVE is a trademark of BT-Wolfgang Binder, which are sensor based

sorting machines used to separate incoming stream of matter, based on

different characteristics of the material. BT-Anlagenbau is the provider

of the software for all REDWAVE systems working with RGB cameras.

Figure 1.1 shows the REDWAVE C which is a RGB camera based machine

5

used in glass recycling plants. This machine will be the reference machine

for our object separation approach. As mentioned in Figure 1.1 the camera

of such a machine only captures the transmitted light of the objects, so

only light through transparent objects, like glass, reaches the camera sensor.

Therefore materials like CSP can be separated because of the absence of

light.

1.2 Problem Description

The task of this work is, to produce an algorithm which is able to refine

the process of labeling. To separate extraneous material or wrong sorts of

glass out of a stream of material, the machine has to label the object as

a sort of glass or as extraneous material. While the actual software has

many good algorithms to find out the label of each object, if the objects are

captured separately, there is only one rather simple algorithm which tries

to separate connected objects, so that the labeling algorithms can work

correctly. Separately captured objects means, that at the time of taking the

picture, the object is not connected to any other object.

1.2.1 Object separation - A Segmentation Problem

As mentioned above it is crucial to separate connecting objects. Object

separation can be seen as a sub-domain of image segmentation, which is a

broadly studied problem in computer vision. A summary of those works will

be given in chapter 2. A segmentation problem is the problem of splitting

the image in partitions, such that every pixel in the image is assigned to

these partitions. In our case each pixel can only be assigned to one partition

(mechanically useful). Therefore we can define a continuous setting similar

to [11], where {Ei}k
i=0 is the partition of an open set Ω ⊂ R

2 into k sets

where Ei

⋂

Ej = 0 ∀i 6= j such that
⋃k

i=0 Ei = Ω. If the partition is

optimal, every set Ei corresponds to one and only one separated object

6

∀i ≥ 1 and E0 is the background set.

1.2.2 Provided Representations of the Objects

The software provides several representations of the objects which can be

used for the segmentation process. The segmentation algorithm will have

access to each connected object separately and will get several additional

information of the object. Figure 1.2 shows the provided information which

are, the original camera picture, the binary object mask which separates

the object from the background and the classified image which shows the

color class of each pixel of the object. Further more there will be additional

information, like which class of color has to be separated mechanically, which

will be used in our proposed algorithms.

1.3 Proposed Algorithms

With regard to the requirement of real-time processing and high quality we

have chosen to implement three algorithms. In this subsection we show a

short survey through the algorithms, which will be explained in more detail

in chapter 3.

1.3.1 Watershed Segmentation

The first algorithm concentrates on the shape of a broken glass object. Our

assumption is, that one piece of broken glass is nearly convex and connecting

objects of glass are often concave. This observation brings us to the first

proposed algorithm. The watershed segmentation is a well known algorithm

for segmentation of connecting objects proposed in many papers [15, 3, 2].

A distance transform of a binary object mask, can be seen as a topographic

representation shown in Figure 1.3. This representation has three notions:

minima, catchment basin and watershed line as defined in [15]. Such an

topographic representation can be interpreted as a landscape, where rain

7

is falling. The minima are the lowest parts of the landscape, which are

first filled with water. If the rain doesn’t stop, the catchment basin of each

minima gets filled and only the watershed lines between the basins aren’t

under water. This watershed lines define the end of the influence of one

minima. In our case, each minima represents a object which should be

separated and the watershed line represents the border of the object. This

algorithms tend to be very fast, but have problems with over-segementation

because of the existence of wrong minima’s.

1.3.2 Ising/Potts Model

Furthermore most of the pixels of an object are classified correct, such that

an algorithm which tries to segment an image based on this information

should give good results. This leads us to the minimal partitions problem,

which we will explain in Chapter 3. The discrete analogue of this model is

called Ising/Potts model, which is the basic principle of the two other pro-

posed object separation algorithms. The Ising model[22] is a mathematical

model for ferromagnetism in statistical mechanics, which consists of only

two states. The Potts model[31] is the generalization of the Ising model to

more than two states. This models can be used to find a two-label image

segmentation (Ising), or a multi-label segmentation (Potts). In our case

the multi-label segmentation will operate on the provided classified image,

where each pixel is assigned to a color class. The two-label segmentation

will work on a simplified classified image, where each pixel is assigned to one

of two labels. As the Potts Model is known to be NP hard, there have been

many papers who have tried to approximately minimize this model. Some

try to tackle the discrete problem, like Boykov et. al. [4] who is using binary

optimizations via α-expansion. But those works tend to exhibit metrication

errors. Other works have tried to work on continuous domains, like Chan

and Vese [14], but only found local solutions. We will define both models

in a spatially continuous domain, similar to [29], such that the models can

8

be solved with variational methods. Furthermore we provide a convex re-

laxation, as defined in Zach et. al. [47], which gives us the opportunity to

always find a global solution.

9

1

2

3

4

5

Figure 1.1: Redwave C. A vibration feeder (1) provides a constant flow

of infeed material evenly spread over the entire sorting width. The glass

slides over a light source (2). Opposite to the light source is the sensor unit

(3), containing the RGB camera, which captures the transmitted light of

the objects. Short after the objects where captured, an ejection unit (4)

separates the extraneous material out of the material stream. The ejection

unit contains a tight cluster of compressed air valves, which are activated

if a material has to be sorted out. The divider plate (5) is the boundary

between the two material streams. Publication of this picture is permitted

by BT-Anlagenbau.

10

(a) Camera image (b) Classified data

(c) Mask image

Figure 1.2: This figure shows the provided representations of a connected

object, which can be used for object separation. (a) Is the original pic-

ture taken with a linescan-camera. (b) A pseudocolor representation of the

classified data. (c) A mask which separates background from the object.

11

(a) Distance transform

0

10

20

30

40

0

10

20

30

40

0

100

200

300

watershed line

minima

catchment basins

(b) Topographic surface

Figure 1.3: (a) Shows the distance transformation of two objects. (b) Is

a three dimensional surface representation of the 2 dimensional distance

transformation. Where the z-axis is the value of the distance transformation.

The catchment basins define the area of influence of each minima and the

watershed line defines the border of the two catchment basins.

12

Chapter 2

Related Work

This chapter will focus on recent work on image segmentation and object

separation. Specially work which could have been used to address our prob-

lem of object separation will be presented.

2.1 Image Segmentation

Image Segmentation is one of the main tasks of computer vision. From the

early stages of computer vision, there have been methods developed, which

try to divide the image in regions, which fulfill some predefined requirements.

Most of the methods can be divided into two groups. The first group focuses

on the edges of the regions. The theory behind this algorithms is to find the

transitions from one region to the other, which should be inhomogeneous.

This should result in the contour of the segmented regions. The other group

focuses on the regions itself and tries to find homogeneous areas in the

image. Other differences lie in finding a global or a local optimum based on

the proposed model.

13

2.2 Edge based Image Segmentation

There are many works that concentrate on finding salient image contours.

The first step in finding contours is often the edge detection, followed by

linking the edges to a contour. Newer approaches are based on active contour

models, such as geodesic active contour models or snakes.

2.2.1 Snakes

Kass et. al. [23] defined a snake as an energy minimizing spline, which is

guided through external constraint forces and influenced by image forces,

which pull it towards lines and edges. Therefore snakes are defined para-

metrically by a curve function C(s) = (x(s), y(s)) where s ∈ [0, 1] can be

any arbitrary parametrization. The energy function of this contour can be

written as [23]

Esnake =

∫ 1

0
EintC(s) + EimageC(s) + EconC(s) ds (2.1)

Internal Energy

Where Eint is the internal contour energy and is defined as

Eint =
α(s)|C(s)′| + β(s)|C(s)′′|

2
(2.2)

α(s) and β(s) define the weighting of the smoothness constraints, which are

the first and second order derivatives of the curve.

Image Energy

The image Energy Eimage is defined through three terms.

Eimage = wlineEline + wedgeEedge + wtermEterm (2.3)

Where Eline is just the gray value of the image, such that the snake can be

forced to be pushed to dark or light lines, depending on the sign of wline. As

14

edge functional Kass et. al. [23] proposes Eedge = −|∇I(x, y)| which forces

the contour to regions with large image gradients. The third term, Eterm,

uses the curvature of the slightly smoothed image to find terminations of

line segments and corners. Each of the terms can be weighted with their

correspondign weights wline, wedge, wterm.

Constraint Energy

The last term, Econ, of the snake energy functional (2.1) is used to model

user constraints into the contour.

Assets and Drawbacks

If the region of interest, which has to be separated by the snake, is approxi-

mately known, snakes can be a powerful tool to find contours. Also Kass et.

al. [23] introduced an edge energy functional, which can be used to address

edges from a longer distance, by using the theory of scale space. Therefore

the functional was changed into Eedge = −(Gσ ∗ ∇2I(x, y))2 where G is a

Gaussian of standard deviation σ. But the problem with this functional

is, that there has to be made a tradeoff between localisation of edges and

the distance of which the snake is attracted to an edge. An other major

drawback of snakes is, that they are defined parametrically. With such a

definition the curve cannot change in topology. That means during the

curve evolution process it is impossible to perform splitting or merging of

the curve.

2.2.2 Level Sets

Osher and Sethian [27] introduced the level set method, a short overview

of the method can be found in Osher et. al [26]. The method defines a

15

boundary Γ of an open region Ω by a smooth function ϕ(x).

ϕ(x)























= 0 ∂Ω = Γ

< 0 ∀x 6∈ Ω

> 0 ∀x ∈ Ω

(2.4)

The function ϕ(x) can be seen as a helper function to define a boundary of

a region without a parametrization, as shown in Figure 2.1. The behavior of

the boundary under a velocity field ~v can be computed by the PDE (Partial

Differential Equation)
∂ϕ

∂t
+ 〈~v, ∇ϕ〉 = 0 (2.5)

where 〈.〉 defines the scalar product. As there is only the normal compo-

nent of ~v needed, we can define a force F = 〈~v, ∇ϕ
|∇ϕ|〉 which is the normal

component of ~v. Now equation (2.5) becomes

∂ϕ

∂t
+ F |∇ϕ| = 0 (2.6)

With such a level set formulation topological changes will be realized natu-

rally by the level set function, which represents a great advantage to para-

metric models such as snakes.

ϕ = 0

ϕ < 0

ϕ > 0

ϕ < 0

Figure 2.1: Level set function where ϕ defines the boundary of the region

16

2.2.3 Geodesic Active Contours

Caselles et. al. [8] introduced an energy minimizing function, which trans-

formed the minimizing function of a snake into a problem of geodesic com-

putation in a Riemannian space.

min

∫ 1

0
g(|∇I(C(q))|)|C ′(q)| dq (2.7)

Where g is a general edge detector with the property:

lim
z→∞

g(z) = 0

For example [8] chooses g as:

g(I) =
1

1 + |∇(Gσ ∗ I)|
Where Gσ is a Gaussian with standard deviation σ.

It is remarkable that [8] only used the first order term of the internal energy

of the snake, shown in Equation 2.2. Because they showed that a smooth

curve can be achieved without a higher order term. In order to obtain a

parameter free representation of the curve, a level set formulation of Equa-

tion 2.7 was represented. Therefore the contour C(q) will be represented

through the level set function ϕ(x) as defined in section (2.2.2). Resulting

in a PDE:
∂ϕ

∂t
= |∇ϕ| div

(

g(I)
∇ϕ

|∇ϕ|

)

+ cg(I)|∇ϕ| (2.8)

Caselles et. al. [8] states, that the second term can be seen as an area con-

straint which adds a velocity according to the area enclosed by the contour.

They show in their experimental results that c = 0 can be choosen and the

model still converges, but with a slower motion.

Assets and Drawbacks

A problem with geodesic active contours is, that their energy functional is

not convex, which results in finding local-optima depending on the initializa-

tion of the curve. Furthermore the globally optimal solution of the geodesic

active contour is the empty set.

17

2.2.4 Global Minimization of Geodesic Active Contour

Many works concentrate on the circumstance that active contour models

only find local minimizers. Such as Bresson et. al. [6], who proposed an

global minimizer based on the famous ROF model [34].

EROF (u, λ) =

∫

Ω
|∇u| dx + λ

∫

Ω
(u − f)2 dx (2.9)

Where the first term denotes the Total Variation as shown in Section 3.3

and the second term is the quadratic data term. Bresson et. al. [6] changed

the ROF model in order to get an global minimizer for the geodesic active

contour model which is not the empty set.

E(u, λ) =

∫

Ω
g(x)|∇u| dx + λ

∫

Ω
|u − f | dx (2.10)

The first term denotes the weighted Total Variation, where the weight-

ing function g ∈ [0, 1] gives the link between the proposed model and the

geodesic active contour model. If g is an edge indicator function and u = 1ΩC

is a characteristic function of a closed set ΩC ⊂ Ω where C are the bound-

aries of ΩC . A link between the weighted Total Variation and the geodesic

active contour model(GAC) can be shown.

T Vg(u = 1ΩC) =

∫

Ω
g(x)|∇1ΩC | dx =

∫

C
g(s) ds = EGAC(C) (2.11)

Secondly the L2 − norm of the ROF model is changed to a L1 − norm,

which better preserves the contrast and the order, according to the feature

size, in which the features disappear. Since this model provides a global

minimum, standard calculus of variations can be used to solve it, see [6].

The advantage of a global model as it is presented in this section, is shown

in Figure 2.2.

2.3 Region Based Image Segmentation

Early methods for region based image segmentation often include thresh-

olding an image such that different intensities lead to different regions. For

18

(a) Local initialization (b) Local GAC (c) Global GAC

Figure 2.2: Global vs. local geodesic active contour models, reprinted from

[6].

example see White and Rohrer [45] who used an adaptive threshold for

optical character recognition, or Sahoo et. al [35] for an overview on thresh-

olding techniques. More recent methods try to find an appropriate model for

the segmented image and solve this model based on level set or variational

methods.

2.3.1 Mumford-Shah

In their famous paper, Mumford-Shah [25] tried to find an approximation

to the problem of image segmentation. Their approximation concentrates

on two properties of a great number of images.

1. the image f varies smoothly within a region Ei

2. the image f varies discontinuously across most of the boundary Γ

between different regions Ei, Ej

Where Ei are disjoint connected open subsets of a domain Ω and Γ are the

boundaries of Ei inside Ω.

Ω = E1 ∪ E2 ∪ . . . ∪ En ∪ Γ (2.12)

They defined an energy functional, which measures the degree of match

between an image f(x) and a segmentation, where the energy is smaller if

the degree of match is higher:

E(u, Γ) = µ2
∫

Ω
(u − f)2 dx +

∫

Ω\Γ
|∇g|2 dx + ν|Γ| (2.13)

19

Where u is a differentiable function on
⋃n

i Ei. The three terms are measuring

(left to right):

1. the similarity between u and f .

2. the smoothness of each region Ei

3. the length of the boundaries of the segmentation.

As stated in their paper [25], there are many drawbacks which lead to wrong

segmentation, like textured objects, partially transparent objects or noisy

images.

2.3.2 Chan-Vese

An other concept of active contours was represented by Chan and Vese [13],

who changed the stopping function of an active contour, which is normally an

edge function (see Section 2.2.3) into a stopping term based on the Mumford-

Shah functional [25], see Equation (2.13). Which results in following engergy

minimization problem:

inf
c1,c2,C

F (c1, c2, C) =µLength(C) + νArea(C)

+ λ1

∫

inside(C)
|f(x) − c1|2 dx

+ λ2

∫

outside(C)
|f(x) − c2|2 dx

Where the first two terms are the regularization terms, which penalize the

length or the area of the contour C. The second two terms, which are the

stopping terms, are penalizing the difference of the two image regions called

inside(C) and outside(C) to their respective mean intensities. Again Chan

and Vese [13], described their method through a level set forumulation where

the contour C was replaced by the level set function ϕ(x) according to Sec-

tion 2.2.2. The function inside(C) is changed by ϕ(x) > 0 and outside(C)

20

is represented by ϕ(x) < 0. A Heaviside function H and a one dimensional

dirac measure δ is used to address the two regions and the contour:

H(z) =











1 if z ≥ 0

0 else

δ0(z) =
d

dz
H(z)

With this functions the energy functional can be rewritten as:

inf
c1,c2,ϕ

F (c1, c2, ϕ) =µ

∫

Ω
δ(ϕ(x))|∇ϕ(x)| dx

+ ν

∫

Ω
H(ϕ(x)) dx

+ λ1

∫

Ω
|f(x) − c1|2H(ϕ(x)) dx

+ λ2

∫

Ω
|f(x) − c2|2(1 − H(ϕ(x))) dx

(2.14)

If the mean intensities of the two regions aren’t known a priori, they can be

easy calculated at each step of the curve evolution process by the following

equations:

c1 =

∫

Ω f(x)H(ϕ(x)) dx
∫

Ω H(ϕ(x)) dx

c2 =

∫

Ω f(x)(1 − H(ϕ(x))) dx
∫

Ω(1 − H(ϕ(x))) dx

Assets and Drawbacks

The active contour model proposed by Chan and Vese has an advantage to

the geodesic model shown in Section 2.2.3, because it can find objects with

smooth boundaries as shown in Figure 2.3. But again a problem of this

formulation is, that the formulation results in a non-convex minimization

problem.

21

(a) Input image. (b) Result of Chan Vese algorithm.

Figure 2.3: Segmentation result of the Chan Vese algorithm, reprinted from

[36]. It shows that the algorithm can find objects with smooth boundaries.

2.3.3 Multiphase Segmentation with Level Set functions

The algorithms proposed in Section 2.3.2 and Section 2.2.3 only separate two

regions from each other, similar to our Ising model proposed in Section 3.4.

Many papers concentrated on separating more regions from each other using

level set functions to achieve results similar to the Potts model proposed in

Section 3.5.

Multiphase Chan-Vese

Chan-Vese proposed an extension of their two region algorithm as shown in

Section 2.3.2. They changed the energy function from Equation (2.14) to a

multiphase version [41]:

Fn(c, φ) =
n
∑

i=1

∫

Ω
(f − ci)

2χi dx

+
m
∑

i=1

ν

∫

Ω
|∇H(ϕi)|

(2.15)

Where φ = (ϕ1, . . . , ϕm) is a vector level set function with m = log n level

set functions (see Section 2.2.2). And H(φ) = (H(ϕ1), . . . , H(ϕm)) is a

vector Heaviside function whose components are 0 or 1. The function χi is

the characteristic function for the class i. With this formulation the authors

22

were able to define a n class segmentation with only m = log n level set

functions, as shown in Figure 2.4. The Heaviside function can be seen as

binary codification of the classes.

ϕ1 < 0

ϕ2 < 0

ϕ1 < 0

ϕ2 > 0

ϕ1 > 0

ϕ2 > 0

ϕ1 > 0

ϕ2 < 0

Figure 2.4: Example of a multiphase Chan Vese, with 2 level set functions,

which result in 4 separated regions.

Splitting Active Contour Model

Li et. al. [24] proposed a model that splits the image in two regions with

the Chan Vese model in Section 2.3.2. The new regions are splitted again

until the result is an image with constant mean value. The advantage of this

method is, that it uses only one level set function and is easy to implement.

23

Multi-Layer Image Segmentation

Wang et. al. [44] proposed a quite similar algorithm, which splits the image

with one level set function according to the Chan Vese model in Section 2.3.2.

After the splitting, the found region insight the contour is replaced by the

average gray value outside the contour and the algorithm will start splitting

again, until the difference of pixel intensities doesn’t reach a predefined

threshold anymore.

Conclusion

The multiphase Chan Vese model [41] heavily depends on the initialization

of the level set functions. Whereas the other two papers [44, 24] try to

extend the two phase model [13] with additional algorithmic overhead.

2.3.4 Global Minimization of the Active Contour Model

based on Mumford-Shah

Bresson et. al. [6] enhances the standard Chan Vese model in order to

determine a global minimum. Therefore they changed the energy functional

proposed by Chan Vese [13],which was presented in Section 2.3.2.

E(u, c1, c2, λ) =

∫

Ω
g(x)|∇u| dx + λ

∫

Ω
u((c1 − f(x))2 − (c2 − f(x))2) dx

(2.16)

Where the first term is the weighted Total Variation. Bresson et. al. [6]

states, that the Energy functional is homogeneous of degree 1 in u. Therefore

it has only a stationary solution, if the minimization of u is restricted to

0 ≤ u(x) ≤ 1. This leads to a minimization:

min
0≤u(x)≤1

{E(u, c1, c2, λ)} (2.17)

With this changes of the Chan Vese model the proposed energy func-

tional provides a global minimum. The advantages of this model to the

original Chan Vese model, which only find a local minima, is shown in Fig-

ure 2.6.

24

(a) Original Image (b) Local solution

(c) Global solution

Figure 2.5: Global vs. local Chan Vese models. The local solution is gener-

ated with the original Chan-Vese model, whereas the global solution works

with the model of [6].Reprinted from [6].

2.4 Object Separation

Other works concentrate on segmentation approaches used for object sep-

aration, similar to our work. In most papers a connected object is given

and has to be separated. This section shows some of those approaches.

All of those works can be split in two groups. One group concentrates on

the shape of the connected object, like the watershed algorithm which we

represent later. The other group tries to partition the connected object in

homogeneous regions, similar to our Ising and Potts model which will also

represented in the next chapter.

25

2.4.1 Minimum Entropy Segmentation

A work that uses a quite different approach to find homogeneous regions

is the paper of Schwartzkopf et. al. [37]. They used a minimum entropy

segmentation technique on classified multi-spectral chromosome images, to

separate connecting components of chromosomes. Therefore they imple-

mented an algorithm that uses the entropy definition of Shannon [38],

H = −
n
∑

i=1

pi log pi (2.18)

Where pi is the probability of the occurrence of a class Ci in the connected

component. And Ci is one of the n classes with which a pixel can be labeled.

They try to find a cut line in the connected object where the sum of the

entropy of the two new objects is lesser than the entropy of the original

object. If this cut line reduces the entropy more than any other cut line, the

object will be separated. This is done recursively until no more cut lines can

be found. This leads to a set of objects which tend to be over-segmented.

Therefore they combine those separated objects if the combination reduces

the entropy once more.

2.4.2 Clump splitting via bottleneck detection

Wang et. al. [43] proposed an algorithm which separates connected compo-

nents, called clump, with two steps.

First they find a pair of points for splitting. They assume that the objects

are convex in shape and connected objects tend to be concave. Further more

they assume, that two objects are most likely connecting on the bottleneck

of the clump contour. Therefore they apply following function, where A, B

are all points on the boundary of the clump:

(A∗, B∗) = arg min
A,B

dist(A, B)

min(length(A, B))
(2.19)

Resulting in the points A∗, B∗ which define the bottleneck of the clump, as

shown in Figure 2.7. Where dist(., .) is a distance function on the Cartesian

26

Grid and length(., .) is the length of the boundary arc on the boundary of

the clump. As the boundary of a clump is connected, there are always two

results of the function length(., .), where the smaller one is taken by the

function min(., .).

The second step is, to find the best cut between the two found points.

This is done by finding the cut with the minimal geodesic distance. A cut

c = (c1, c2 . . . cL) between the two bottleneck points A∗, B∗ is defined as a

path between those points on the image I. Where ci = (x, y) is a point on

the cut at position i and L is the total length of the cut. Therefore the best

cut is defined as:

c∗ = arg min
c

L
∑

i=1

e(I(ci))

where e(I(ci)) is the L1 norm of the discrete gradient at position ci, as

described in Section 3.3.1.

2.4.3 Segmenting clustered slender-particles

Zhong et. al. [48] proposed an algorithm, which extends the standard

watershed segmentation as shown in Section 3.1, by reducing the over-

segmentation.

To reduce over-segmentation they only allowed watershed lines, which end-

points are both concave, to be cut lines. They proposed an easy way to

determine the concavity of a point x on the boundary of the object:

concavity(x) =
Ax

L
(2.20)

Therefore they define a circular mask, whose center is x. L defines the

perimeter of the circular mask and Ax is the arc length of the circular mask

insight the object. Additionally they define an orientation of a concave point

x, which is defined through the point x itself and the center point of the

arc of the circular mask outside the object. See Figure 2.8 for an additional

illustration.

27

Further more they proposed an algorithm, which allows to find additional

cut lines, which are not found by the watershed segmentation. The algorithm

starts on a concave point and tries to find a cut line to an other concave

point according to six rules, which are best illustrated by Figure 2.9.

1. A very small path between the endpoints

2. Start and end have opposite orientations.

3. Splitting path orientation.

4. No crosses between paths.

5. Shortest length of all possible splitting paths are taken.

6. If there is only a single concavity in the object, the object is splitted

the opposite way, to the points orientation.

28

(a) Classified image (b) Connected components

(c) Result of segmentation

Figure 2.6: Minimum entropy segmentation on a multi-spectral chromosome

image. (a) Is the classified data used for the object separation. (b) shows

the connected components which should be separated. (c) Separation result

of minimum entropy segmentation as proposed in Section 2.4.1. Reprint

from [37].

29

Figure 2.7: Bottleneck detection. Bottleneck pixels (red) of a clump, found

by the clump splitting algorithm as defined in Equation 2.19. Reprinted

from[43].

P1

c1

P2

c2

Figure 2.8: Determining concavity of a point. P1 and P2 are concave points

where Ax

L
> 0.5 . Their orientation is defined through P1, c1 and P2, c2.

30

(a)
(b)

(c)

(d)
(e)

(f)

Figure 2.9: Determining correct splitting paths for clump splitting, accord-

ing to the proposed rules in Section 2.4.3. Reprinted from [48].

31

Chapter 3

Proposed Models

This chapter shows the proposed algorithms to fulfill an adequate object

separation. First we will concentrate on a standard algorithm for object

separation, whereas the second two algorithms are state of the art variational

models to solve such a problem.

3.1 Watershed Segmentation

The first algorithm, we will use to separate objects, is the watershed seg-

mentation for binary images. This algorithm will only depend on the binary

representation of the objects. It depends on our observation, that the con-

tour of one object of broken glass is almost convex and many connecting

objects have often a concave contour, as shown in Figure 3.1. To separate

such concave objects we will first perform a distance transform. After that,

the watershed transformation will provide the borders (called watershed

lines) of the separated objects.

3.1.1 Distance Transform

In order to use the contour information of a binary image, a distance trans-

form has to be accomplished. Given a binary image f : Ωh → {0, 1} where

32

(a) Convex objects (b) Connected concave objects

Figure 3.1: Convex objects vs. concave objects. (a) shows nearly convex

objects which are properly separated. (b) shows that connected objects tend

to be concave.

f contains two sets.

Λ0 = {f ∈ Ωh : f(x) = 0}
Λ1 = {f ∈ Ωh : f(x) = 1}

The distance transform d : Ωh → R is the calculation of the distance of each

pixel of the set Λ0 to the nearest pixel of the set Λ1.

d(x) =











0 if x ∈ Λ1,

dist(x, Λ1) else.
(3.1)

The function dist(x, A), where x ∈ Ωh and A ⊂ Ωh, is defined as:

dist(x, A) = inf{m(x, y)|y ∈ A} (3.2)

Where m(x, y) can be any metric, for example the euclidean metric. An

example of one watershed transformation, with different metrics, is shown in

Figure 3.2. It is remarkable, that the chosen metric, can change the result of

the watershed transformation significantly. Therefore different metrics will

be reviewed in chapter 5.

33

50 100 150 200

50

100

150

200

City block

50 100 150 200

50

100

150

200

Euclidean

50 100 150 200

50

100

150

200

Chessboard

Figure 3.2: This reprint from [15] shows 3 distance transformations from a

black image with a white dot in the middle. Each transformation used an

other metric function. The used metric functions can be found in Equa-

tion (5.4)(5.5)(5.6)

3.1.2 Watershed Transformation

The task of the watershed transformation is to find the catchment basin

and watershed lines of predefined minima. First of all we define the notions

minima, catchment basin and watershed line in a formal way.

Definition The set of neighbours of a subset X ⊂ Ωh of a Cartesian grid

is defined trough their distance.

NX = {y ∈ Ωh : dist(X, y) ≤ 1 and y 6∈ X} (3.3)

Definition A connected set is a subset X ⊂ Ωh of a Cartesian grid, where

each element x ∈ X has at least one neighbour, which is also in the subset.

Definition A minima of an image is a connected subset X ⊂ Ωh of a

Cartesian grid, where f(x) < f(y) for all x ∈ X, y ∈ NX \ X. This means,

that the neighbours of the minima have all higher function values, than the

minima itself.

Definition The catchment basin defines the influence of the minima. If you

have an image with two minima X, Y , the catchment basin of the minima

34

X called C(X) is defined as

max
|C(X)|

{C(X) ⊇ X and C(X) ∩ C(Y) = ∅} (3.4)

Definition A watershed line is the set of pixels, which are in no catchment

basin. That means this set defines the borders of all minima of the image.

Watershed Transformation - Algorithm

There are many algorithm which full-fill the watershed transformation. We

have chosen an algorithm, which is called immersion and proposed in [42, 33].

This algorithm works by the idea of flooding the minima until they touch

each other. A short pseudo code of the algorithm is presented in Algorithm

1.

35

Algorithm 1 Watershed Transformation

Require: f : Ωh → R

Require: Sets of all minima S1 . . . Sn

Initialize watershed set W = {∅}
for k = 1 to MAXVALUE do

for l = 1 to n do

for all y ∈ NSl
\ W do

if y ∈ {S1 ∪ . . . ∪ Sn} then

W = {W ∪ y}
else

if f(y) = k then

Sl = {Sl ∪ y}
end if

end if

end for

end for

end for

At the end, each set Sl \W contains the pixel of one catchment basin and

the set W contains all watershed pixel.

3.1.3 Watershed Segmentation - Algorithm

As proposed in [15] and [3] the watershed segmentation can separate con-

nected, or overlapping objects. Therefore a distance transform has to be

accomplished out of the binary representation of the object, in order to get

a topographic surface representation. The local minimum of the inverse

distance function also represents the minima for the watershed transforma-

tion. The produced watershed lines, represent the border of the separated

objects. At last we will propose an additionally step similar to [48], which

approximately calculates the concavity of the watershed line endpoints and

the length of the watershed line. Only if both endpoints are concave or

36

the watershed line is small enough, the line will be used to separate found

objects.

Algorithm 2 Watershed Segmentation

• Given binary image f : Ωh → {0, 1}

• Invert the binary image

• Generate distance transform

• Generate watershed transformation out of inverted distance transform

• If avgl(wi(first)) > c1 ∧ avgl(wi(last)) > c1 ∨ length(wi) < c2 then

separate objects.

Where wi is a list of all pixels of the i’th watershed line. avgl(wi(x))

calculates the average of the endpoints of wi on the binary image f , by

using a circular mask of size l.And length(wi) calculates the length of the

watershed line.

3.2 Computing Minimal Partitions

As mentioned in section 1.3.2, we want a continuous formulation of the

Potts, or for the case of two states, the Ising model, which is, as proposed

in [29], the partitioning problem.

min
Ei

{1

2

k
∑

i=0

Per(Ei, Ω) +
k
∑

i=0

∫

Ei
fi(x) dx}, (3.5)

such that
k
⋃

i=0

Ei = Ω and Ei

⋂

Ej = 0 ∀i 6= j

Where k defines the number of partitions (with k = 1 in the Ising case). The

first sum with the function Per(Ei, Ω) defines the perimeter of the partition

37

Ei on the whole image domain Ω ⊂ R
d and is the regularization term of

the variational model. Therefore this term tends to minimize the perimeter

of the partitions, which results in smooth segmentation boundaries. While

each perimeter is counted two times, because each boundary is part of two

segments, the coefficient 1
2 is added. The second term is the data term,

which measures how accurate the data is represented with the actual seg-

mentation. The non-negative function fi : Ω → R
+ measures how well a

point x is represented by the partition Ei. For example take Equation (3.6),

here the function fi is a binary function, which is 0 if the point x has the

corresponding label of the partition Ei and 1 else. But this function can

also have different representations.

fi(x) =











0 if x = i,

1 if x 6= i.
(3.6)

3.3 Preliminaries

This subsection gives some definitions, which we later use to formulate our

approach.

Definition Gradient and divergence. The gradient in the continuous set-

ting is defined via the ∇ operator.

∇f =

(

δf

δx1
, . . . ,

δf

δxn

)

The divergence operator div is the adjoint of ∇.

− div = ∇∗

Definition Total Variation.

The Total Variation of a smooth function θ is is defined as:

J(θ) =

∫

Ω
|∇θ| dx (3.7)

38

For a L1 integrable function the Total Variation can also be formulated by

means of a dual formulation [7, 10, 9, 29].

J(θ) = sup
ξ:|ξ(x)|≤1

{−
∫

Ω
θ div ξ dx} (3.8)

Where ξ : Ω → R
d is the dual variable.

Definition Bounded Variations.

A function is said to have bounded variations (BV) if the Total Variation

of the function J(u) < +∞.

A often used theorem in connection with the Total Variation is the co-area

formula from Federer and Fleming [21]. This formula shows an geometrical

property of the Total Variation, because it can be decomposed by means

of the level sets of the function. So the Total Variation can be seen as the

accumulated surface of all of its level sets of a function.

Theorem 3.3.1. Co-area Formula. For a function u ∈ BV (Ω) and for a.e.

s ∈ R, the set {u > s} is a set with finite perimeter in Ω and following

equation holds [9]:

J(u) =

∫

Ω
|∇θ| dx =

∫ ∞

−∞
Per({u > s}; Ω) ds (3.9)

Please refer to [20] for a proof of this formula.

Definition The Subdifferential.

Is a generalisation of the gradient to non differentiable functions and is

defined as:

∂F (X) = {y ∈ R
n : 〈y, x′ − x〉 ≤ f(x′) − f(x), ∀x′ ∈ R

n} (3.10)

A member of the subdifferential is called subgradient. In Figure 3.3 subgra-

dients of a non differentiable function are illustrated.

39

Definition Legendre-Fenchel transform.

Is a transformation of a function f : R → R∪ {∞}, which has to be contin-

uous but not necessarily differentiable, into:

F ∗(y) = sup
y

{〈x, y〉 − F (x)} (3.11)

It describes the relation between the slope of the function F (x) to the in-

tersection of the tangent on a point x ∈ F (x) with the y-axis. As stated

in Handa et. al. [1], the transformation turns points of the function F

into slopes of F ∗, and slopes of F into points of F ∗. An example of the

transformation can be seen in Figure 3.3.

x

F (x) = |x| F ∗(p)

p = 1 p = −1

p ∈ [−1, 1]

Figure 3.3: This reprint from [1] shows the Legendre-Fenchel transformation

of the function F (x) = |x|. It shows the connection between points on the

function F to slopes on the function F ∗. It also shows some subgradients

on the position F (x) = 0.

40

Theorem 3.3.2. The Legendre-Fenchel transform is always convex. No

matter if F is convex or not, F ∗ is always convex. Therefore the Legendre-

Fenchel transform is also called the convex conjugate. For a proof please

refer to [1].

Definition Duality

Duality is the principle of looking at a function or problem from two different

perspectives, which are called the primal and the dual form [1]. In the case

of the Legendre-Fenchel transform, we use the duality of tangents and points

to represent a function. That means a function can be represented by its

points, or by its tangents. Usually the function is represented by its points,

such that (x, F (x)) define the curve of the function. The other tangential

representation is parameterized by the slope and the intercept it cuts on the

negative y-axis. Therefore (x, F (x)) ⇔ (p, F ∗(p)) are the dual from each

other. Figure 3.4 shows the duality between the point-wise representation

of a function and the Legendre-Fenchel transform. For further readings

about primal, dual and conjugate of functions we refer to [32].

3.3.1 Discrete Settings

For discretization we use the same notation as [29, 9, 10]. Therefore we use

a standard Cartesian grid Ωh with size M × N : {(ih, jh) : 1 ≤ i ≤ M, 1 ≤
j ≤ N}. Where (i, j) are indizes of the grid and h is the width of the spatial

discretization, called discretization step. For example h could be h = 1/N .

u is now a discretized image function u : Ωh → R. To simplify the notation

we also use x for the location on the grid, and use function arguments to

index the images.

41

(0, −f∗)

x0

y = f(x)

y = f ′(x0)x − f∗

Figure 3.4: Dual representation of a function. This figure shows the

Legendre-Fenchel transformation of a function. Where a point x0 of a func-

tion f is represented by its tangent. It can be seen that f∗ is the intercept,

the tangent of f(xo) cuts on the negative y-axis.

Definition Discrete gradient.

(∇u)i,j =





(∇u)1
i,j

(∇u)2
i,j





(∇u)1
i,j =











ui+1,j − ui,j i < M

0 i = M

(∇u)2
i,j =











ui,j+1 − ui,j j < N

0 j = N

Now (∇u)i,j is a function X → Y where Y = X × X.

42

Definition The discrete divergence operator div p : Y → X is defined as

(div p)i,j =























p1
i,j − p1

i−1,j 1 < i < M

p1
i,j i = 1

−p1
i−1,j i = M

(3.12)

+























p2
i,j − p2

i,j−1 1 < j < N

p2
i,j j = 1

−p2
i,j−1 j = N

(3.13)

where p = (p1, p2)

Definition Discrete Version of the Total Variation. Let h be the discretiza-

tion step, then a simple discretization of the Total Variation is:

T Vh(u) = h2||∇u||2,1 (3.14)

Where

||p||2,1 =
N
∑

i,j=1

√

(p1
i,j)

2 + (p2
i,j)

2,

i, j are the indizes of the discrete grid.

It can be shown that the discrete version of the Total Variation Γ−converges

to the Total Variation as h → 0. So only by minimizing the discretization

step, the discrete Total Variation converges to the continuous formulation.

A proof of this theorem can be found in [11].

3.4 Ising Model

As stated in [14, 29] the minimal partition problem in Section 3.5 for the

two label case with k = 1 can be rewritten in term of the variational model

min
θ

{
∫

Ω
|∇θ| dx + λ

∫

Ω
(1 − θ(x))f0(x) + θ(x)f1(x) dx} (3.15)

43

where θ denotes an binary function θ : Ω → {0, 1}, which is used to define

the partition of the image domain. We use a slightly different formulation

of the variational model of Equation (3.15), which has a more compact

mathematical representation.

min
u

{
∫

Ω
|∇θ| dx + λ

∫

Ω
(f1 − f0)u dx} (3.16)

Where u : Ω → {0, 1} is a binary function, same as θ from (3.15). It can

be shown that the two representations of (3.15) and (3.16) are the same up

to a constant f0, which does not change the minimization problem up to a

change in λ.
∫

Ω
(1 − θ)f0 + θf1 dx =

∫

Ω
f0 + θf1 − θf0 dx =

∫

Ω
f0 + uf1 − uf0 dx

⇒
∫

Ω
(1 − θ(x))f0(x) + θ(x)f1(x) dx =

∫

Ω
f0 + (f1 − f0)u dx

The regularization term
∫

Ω |∇θ| dx is the Total Variation of the binary func-

tion u, which is equal to the total interface area.

3.4.1 Convex Relaxation

Our minimization problem (3.16) has to be convex in order to find a global

minimum. Therefore the easiest way to achieve a convex relaxation is to

allow u to vary smoothly u : Ω → [0, 1]. As it can be shown in Proposition

3.4.1, the solution of the relaxed problem can be transformed to a solution

of the binary problem by simply thresholding it.

Proposition 3.4.1. The minimization problem in Equation (3.5) can be

relaxed as follows:

min
u∈BV (Ω;[0,1])

{J(u) + λ

∫

Ω
u(x)f(x) dx} (3.17)

given any solution of u with any value s ∈ [0, 1), the set {u > s} is a solution

of (3.5).

Proof. This proposition is a direct consequence of the Co-area formula of

theorem 3.3.1. For a detailed proof see [9].

44

3.4.2 Discrete Ising Model

With the convex relaxation of u we now obtain the convex relaxed Ising

model:

min
u∈BV (Ω;[0,1])

{J(u) + λ

∫

Ω
(f1 − f0)u dx} (3.18)

In order to use the Ising model on images, we have to discretize the contin-

uous definition of (3.18). Therefore f0, f1, u are now discrete functions on a

discrete grid as defined in the Preliminaries 3.3.1 of this section. We use

the discrete version of the Total Variation T Vh(u) defined in Equation (3.14)

with h = 1. So the discrete Ising model is defined as:

min
u∈[0,1]

||∇u||2,1 + λ(f1 − f0)u (3.19)

3.4.3 Primal Dual Algorithm

To find a solution for our discrete Ising model we use the primal dual algo-

rithm form [30, 12]. We have chosen this algorithm, because it can be easy

accelerated with the GPU(Graphic Processing Unit).

Primal Formulation

The primal dual algorithm, as defined in [12], works for a general class of

minimization problems of this form:

min
x∈X

F (Kx) + G(x) (3.20)

Where G, F : X → [0, +∞) are proper, convex, lower-semicontinuous func-

tions. X, Y are finite-dimensional real normed vector spaces, where N =

dim(X) and M = dim(Y). K : X → Y is a continuous linear operator with

operator norm

||K|| = sup{||Kx|| : x ∈ X with ||x|| ≤ 1} (3.21)

45

Primal-Dual Formulation

With the convex conjugate, we can turn the primal formulation into a primal

dual formulation, used for the proposed algorithm.

min
x∈X

max
y∈Y

〈Kx, y〉 + G(x) − F ∗(y) (3.22)

Where F ∗ : Y → [0, +∞) is the convex conjugate of F which is defined in

Definition 3.3. Further more we suppose that F, G are simple in the way,

that their proximal operator has a closed form representation.

x = (I + τ∂F)−1 = min
x

{

||x − y||2
2τ

+ F (x)

}

(3.23)

With this information the primal dual algorithm from [12] can be estab-

lished.

Algorithm 3 Standard Primal Dual Algorithm

Initialization: τ, σ > 0,Θ ∈ [0, 1],x0, y0 ∈ X × Y

For all iterations (n ≥ 0):

xn+1 = (I + τ∂G)−1(xn − τK∗yn)

yn+1 = (I + σ∂F ∗)−1(yn + σK(xn+1 + θ(xn+1 − xn)))

This algorithm performs alternating projected gradient descent steps in x

and gradient ascend steps in y. After each iteration the algorithm re-projects

the primal and dual variable into their respective sets.

Setting up the step size

As stated in [12], the step sizes τ, σ must be chosen with respect to following

inequation.

τσL2 < 1 (3.24)

46

Where L is called the Lipschitz constant. Chambolle et. al. [12] showed,

that the Lipschitz constant is the operator norm of the linear operator K:

L = ||K|| (3.25)

If the structure of K is complicated, for example K has different entries in

each row such that the closed from solution of the operator norm of K is

hard to compute Pock et. al. [28] proposed an other way to distinguish τ

and σ out of K.

τj =
1

∑M
i=1 |Ki,j |2−α

(3.26)

σi =
1

∑N
j=1 |Ki,j |α

(3.27)

Where α ∈ [0, 2]. As stated in [28] this leads to dimension dependent time

steps τj , σi, which do not change the computational complexity of the algo-

rithm. Furthermore they showed, that this time steps are faster for compli-

cated K, than those computed by the operator norm.

3.4.4 Ising Primal Dual

In order to implement the discrete Ising model of Equation (3.19) with the

primal dual algorithm stated in 3.4.3, we have to turn the primal formulation

from (3.19) into a primal dual formulation. Therefore we have to turn the

discrete Total Variation in its dual formulation, according to (3.8).

min
u∈X

max
p∈Y

〈∇u, p〉 + λ〈f1 − f0, u〉 − δP (p) + δU (u) (3.28)

Where X ∈ [0, 1], Y = X × X and δp is a indicator function on a convex set

P .

P = {p ∈ Y : ||p||∞ ≤ 1}

δP (p) =











0 if p ∈ P

∞ else
(3.29)

47

||p||∞ is called the discrete maximum norm which is defined as,

||p||∞ = max
√

(p1
i,j)

2 + (p2
i,j)

2 (3.30)

So p has to lie in the unit circle of the L2 norm to achieve a maximum, other

than −∞ in equation (3.28). To fulfil the additional requirement of u being

between zero and one the indicator function δu is added, which works on

the convex set U .

U = {u ∈ X : 0 ≤ u ≤ 1}

δU (u) =











0 if u ∈ U

∞ else
(3.31)

To implement the algorithm in 5 we have to find the proximal operators

of δP (p) which is F ∗(p) from (3.22) and λ〈f1 − f0, u〉 + δU (u), which is G(u)

from (3.22). As stated in [12] the proximal of δP (p) reduces to pointwise

euclidean projectors on L2 balls.

(I + σ∂(δP (p)))−1 =
pi,j

max(|pi,j |, 1)
(3.32)

The proximal operator of G(u) can be calculated by the definition of the

proximal operator (3.23) and has following result.

(I + τ∂(G(u)))−1 = max(min(1, (f0 − f1)τλ + u), 0) (3.33)

As shown in Figure 3.5 by Equation (3.33), the proximal operator finds the

optimum within x ∈ [0, 1]. Now the primal dual algorithm of the Ising model

can be implemented. A detailed description of the single algorithm steps are

found in Algorithm 4.

48

−2 0 2
0

2

4

G(u)=(u-2)2

−2 0 2
0

2

4

G(u)=(u+2)2

−2 0 2
0

2

4

G(u)=(u)2

Figure 3.5: Proximal Operator of G(u) with u ∈ [0, 1]. This figure shows

how the proximal operator of a function G(u), finds the minimum of G(u)

with respect to u ∈ [0, 1]. Where the red dot marks the found minimum of

u.

Algorithm 4 Primal Dual Ising Model

Initialization: τ, σ > 0,Θ ∈ [0, 1],u0 ∈ X, p0 ∈ Y

For all iterations (n ≥ 0):

un+ 1

2 = (un − τ∇∗pn)

un+1 = max(min(1, (f0 − f1)τλ + un+ 1

2), 0)

pn+ 1

2 = (pn + σ∇(un+1 + θ(un+1 − un)))

pn+1 =
p

n+ 1

2

i,j

max(|pn+ 1

2

i,j |, 1)

The step sizes of the two constants τ, σ have to fulfil the requirements of

Equation (3.24). Therefore the Lipschitz constant can be calculated accord-

ing to Equation (3.25). In the case of the primal dual Ising model the opera-

tor K is simple K = ∇. Therefore the operator norm of ∇ can be estimated

by using the Matlab function normest, which results in: L = ||∇|| =
√

8 and

τσ ≤ 1

8
(3.34)

49

3.5 Potts Model

After we found an algorithm to solve the Ising model we want to find a vari-

ational model for the case of k labels, the Potts model, to get a more precise

algorithm for our object separation task. Therefore we have to rewrite Equa-

tion (3.17) in order to gain more than two partitions. We use the relaxation

approach from Zach et al. [47]

min
u

=
1

2

K
∑

l=1

∫

Ω
|∇u| dx + λ

K
∑

l=1

∫

Ω
ul(x)fl(x) dx (3.35)

with the additional conditions ul(x) ∈ [0, 1] and
∑k

l=1 ul(x) = 1. So the

function u has changed to a vector function u : Ω → [0, 1]k . If we change u

to a binary function u(x) ∈ {0, 1}k this formulation is equal to the minimal

partitions problem defined in (3.5). The first term in (3.35) is simple the sum

of the Total Variation of u for each label. As shown in [29] this relaxation is

too small and there exists a more precise formulation, but this formulation

results in a faster algorithm, which brought us to the decision to use this

relaxation.

3.5.1 Label Cost

A major problem with this model is to define the correct number of parti-

tions, which should be found. In our case an upper bound of k can easily be

defined by the number of classes of the image’s pixels. This upper bound is

in many cases too high, so there will be resulting partitions which are empty.

But this empty partitions increment the computation time of the algorithm,

because they have to be computed in every iteration. Our approach is, to

include a label cost term in the model, which gives us information of the

priority of the label, so the unused labels can be excluded form the calcula-

tion. An other positive effect is, that the label prior helps to minimize the

amount of used labels for the partitioning problem. We expand our model

with the label cost term proposed in [46]. The label cost term for the case

50

that u(x) ∈ {0, 1}k can be written as

γM where M = #{1 ≤ l ≤ k|ul 6= 0} (3.36)

Where γ is used to weight the term in our model. If we include this term in

the convex relaxed model from (3.35) we obtain,

min
u∈[0,1]

=
1

2

k
∑

l=1

∫

Ω
|∇ul| dx + λ

k
∑

l=1

∫

Ω
ul(x)fl(x) dx + γ

k
∑

l=1

max
x∈Ω

ul(x) (3.37)

where the third term is the infinity norm of ul(x), which is the convex

analogue of the label cost term defined in (3.36).

3.5.2 Discretization

Now f, u :∈ R
k are discrete vector functions on a discrete grid as defined

in Preliminaries 3.3.1. According to [46] the infinity norm of the label prior

can be replaced by an additional scalar y ∈ R
k, for each label, with some

additional constraints. Furthermore the Total Variation in the regulariza-

tion term is replaced by its discrete version defined in (3.14). With this

modifications we obtain a discrete model.

min
u,y

k
∑

l=1

||∇ul||2,1 + λ
k
∑

l=1

〈ul, fl〉 + γ
k
∑

l=1

yl (3.38)

with additional constraints

ul(x) ∈ [0, 1] (3.39)
k
∑

l=1

ul(x) = 1 (3.40)

0 ≤ (ul)i,j ≤ yl ∀i, j (3.41)

3.5.3 Potts Primal Dual

To obtain an algorithm which is fast and well suited for GPU processing,

we have chosen to take the primal dual algorithm 3. We use a very similar

51

primal dual definition of the potts model as in [40]. In order to obtain a

primal dual definition of the discrete model from (3.38), we have to change

the Total Variation definition into its dual definition, as defined in (3.8),

similar to (3.28). Furthermore we define Lagrange multipliers to take the

additional constraints (3.39)(3.40)(3.41) into account. First we define the

Lagrange multiplier q :∈ R
K to tackle constraint (3.41). We use a additional

matrix P , as defined in [40], to write the constraint in a single condition.

Where P = (I, −1t) with an identity matrix I ∈ X × X and a row vec-

tor 1 with all entries equal to one. So an additional term 〈q, P





u

y



〉 and

an indicator function δ(q), which forces q to be positive, can be added to

tackle the label-cost constraint (3.41). The other constraints (3.39) (3.40)

can be combined by defining an Lagrange multiplier s :∈ R, for the term

〈s,
∑k

l=1 ul − 1〉, which forces that
∑k

l=1 ul(x) = 1 at each position x on the

discrete grid. To avoid that ul(x) < 0 an indicator function δ(u) is added.

min
u,y

max
p,q,s

k
∑

l=1

(

〈∇ul, pl〉 + λ〈ul, fl〉 + γyl+

〈ql, P





ul

yl



〉 − δQ(pl) − δΛ(ql) + δΛ(ul)

)

+ 〈s,
k
∑

l=1

ul − 1〉

(3.42)

where the indicator functions are defined by the sets

Q = {p ∈ Ωh × Ωh : ||p||∞ ≤ 1}
Λ = {z ∈ Ωh : z(x) ≥ 0}

and the indicator function for a set C

δC(p) =











0 if p ∈ C

∞ else

52

Algorithm

In order to obtain the primal dual algorithm for the Potts model out of

Equation (3.42), we can transfer it to a problem of the form defined in

Equation (3.22). Therefore we concatenate the two primal variables and

three dual variables to one primal and one dual variable:

x =





























u1

y1

...

uk

yk

1





























, z =





























p1

q1

...

pk

qk

s





























, O =



































∇̃ | . . . | 0
...

0 | . . . | ∇̃
P | . . . | 0

...

0 | . . . | P

Z



































(3.43)

Such that x is the concatenated primal variable, z the concatenated dual

variable and O is the concatenated linear operator. Where ∇̃ = (∇, 0t) and

Z = (I, 0t, . . . I, 0t, −1t) with an identity matrix I ∈ X × X. Furthermore

we define G(x) =
∑k

l=1 λ〈ul, fl〉 + γyl + δΛ(ul) and F ∗(z) =
∑k

l=1 δQ(pl) +

δΛ(ql). With this definition of the Potts model, we can implement the primal

dual algorithm as defined in Section 3.4.3, which is similar to the algorithm

proposed in [40], without the map uniqueness constraint.

53

Algorithm 5 Potts Primal Dual with Label Prior

Initialization: choose s1, q1, u1, p1, y1

for all n ≥ 0 do

for l = 1 to K do

sn+1 = sn + σ(un
l − 1

k
)

p
n+ 1

2

l = pn
l + σ∇un

pn+1
l =

p
n+ 1

2
l

max(1,||p
n+ 1

2
l

||)

qn+1
l = max

(

0, qn
l + σ

(

P





un
l

yn
l





))

end for

for l = 1 to K do

y
n+ 1

2

l = yn
l − τ(γ −∑

i,j(ql)i,j)

yn+1
l = 2y

n+ 1

2

l − yn
l

u
n+ 1

2

l = max(0, un
l − τ(− div pn+1

l + qn+1
l + sn+1 + λfl)

un+1
l = 2u

n+ 1

2

l − un
l

end for

end for

Setting up the Step Size

As mentioned in Section 3.4.3, there are two ways to calculate the correct

step size. The linear operator O of the Potts model is complex. Therefore

we calculate τ and σ with the method proposed by Pock et. al. [28] which

is shown in Equation (3.26) and Equation (3.27). There are three different

steps σp, σq, σs according to the dual variables p, q, s, which will be calculated

with Equation (3.27). Where σp = 1
2 because the absolute sum of one row

of the ∇ operator is 2. Same for σq = 1
2 , because the absolute sum of one

row of P is 2, too. Each row of the Z operator has k + 1 entries, where k is

the number of labels used by the Potts algorithm. Therefore σs = 1
k+1 .

The two primal steps are computed with Equation (3.26), where the absolute

54

sum of the columns of O have to be calculated. This leads to τu = 1
6 , because

the absolute sum of the first columns of O according to ∇, P, Z are 4, 1, 1.

And τy = 1
MN

, because the absolute sum of the last columns of O according

to ∇, P, Z are 0, MN, 0.

55

Chapter 4

Implementation Details

As mentioned in the previous chapter, the Ising and Potts model in com-

bination with the primal dual algorithm is suitable to be run on a Graphic

Processing Unit, called GPU. This will provide a speedup, which allows us

to run the algorithms in realtime environments.

4.1 GPU

We have chosen to implement two of our algorithms on a Nvidia GPU,

because of its general purpose parallel computing architecture CUDA. A

good description of the purpose and use of CUDA can be found in [19, 17, 18]

4.1.1 CUDA

It includes the CUDA instruction set architecture, and the parallel comput-

ing engine in the GPU. The major benefit of CUDA is, that it provides a

small extension to the standard programming language C, which enables a

straightforward implementation of parallel algorithms. As the whole RED-

WAVE software is coded in C and CUDA supports heterogeneous computa-

tion, where the serial tasks are run on the CPU and parallel tasks are loaded

to the GPU, it can be easy adapted to the existing software product. Fur-

56

thermore parallel computing on CUDA can be applied step wise by changing

sequential CPU code to parallel CUDA code. An other benefit of CUDA,

stated in [19] is, that the CPU and GPU are treated as separate devices

with separate memory spaces, which allows simultaneous computation on

both devices at the same time, without contention of the memory.

Programming Details

CUDA C extends the programming language by defining C functions, which

are executed N times in parallel by N different CUDA threads.

This functions are called kernels and are defined by the use of the keyword

__global__ in the declaration specifier. Furthermore by calling the ker-

nel function, the programmer has to define the number of threads per block

and the number of blocks per grid. Which defines how often the kernel func-

tion will be executed parallel. An example of a two dimensional grid with a

two dimensional kernel can be seen in Figure 4.1.

Threads per Block All threads of a block reside on the same processor

core, and have to share the same limited amount of memory. The advantage

of threads in one block is that they can access a shared memory which allows

them to communicate faster.

Blocks per Grid But there can only be a limited number of threads

in one block. So several equal sized blocks have to be defined, which are

organized into a grid of thread blocks. Unfortunately the memory access

between blocks is much slower.

CUDA C has predefined variables which exist in kernel functions, in order

to identify the thread which is executed. The blockIdx variable identifies

the block within the grid and the threadIdx variable identifies the thread

within a block. Both variables can be of dimension one to dimension three,

depending on the definition in the program. In order to compute an unique

57

Figure 4.1: A reprint from [18] which shows a two dimensional grid of two

dimensional blocks, where each block contains 4×3 threads. Which are used

to define how often a kernel function will be executed parallel.

identifier a third variable, blockDim, can be accessed, which provides the

dimensions of each block.

The ideal use of those threads is to compute numerous data elements

simultaneously. Where each thread computes at least one data element,

which is connected to the thread by its index, parallel to the other threads.

58

4.1.2 GPU Architecture

We have chosen to test our implementations with an Nvidia Geforce GTX

580, which is based on the Fermi architecture, which will be shortly discussed

in this section.

Fermi

The Geforce GTX 580 is a Fermi based GPU. As specified in [16] it features

512 CUDA cores, which are separated into 16 Streaming Multiprocessors

(SM) with 32 cores. Each CUDA core has a fully pipelined integer arith-

metic logic unit and a floating point unit. Furthermore each SM has 16

load/store units, which allows to calculate source and destination addresses

for 16 threads per clock. An other feature of the fermi architecture is, that

its L1 chache and its shared memory of the SM are on-chip and the program-

mer is able to change the size between the two memories. An architecture

overview of one SM is shown in Figure 4.2.

4.1.3 Memory Space

As one can mention from the previous sections, a major optimization concern

in parallel programming with CUDA are the memory optimizations. There

are several types of memories, which can be accessed by the GPU, which

have all different advantages and disadvantages. An overview of the different

memories and their position on the device is given in Figure 4.3.

Host Memory

The GPU cannot access host memory direct, so the memory has to be copied

from host to the device and vice versa. This data transfer between host and

device should be minimized because it is very slow.

59

Global Memory

Is the device memory which is located in the DRAM and can be accessed

by all SM and all threads. It is the slowest type of memory and read/write

operations should be avoided. Fermi architecture has L1 cache which enables

the SM to buffer the global memory variables.

Local Memory

If a thread has not enough registers to save all local variables into, it uses

the DRAM as local memory. This should be avoided by using not too much

local variables.

Registers

If there are enough registers the local variables are loaded into it automati-

cally. This is the fastest memory.

Shared Memory

Located in the SM and very fast, but it only can be accessed block wise.

Therefore each block of threads has to load its data from global memory to

shared memory before usage. Should be used if the same location in global

memory is read by more than one thread. Be aware shared memory uses the

same memory than the L1 cache. Therefore the programmer has to make a

tradeoff between the usage of shared memory and L1 cache.

Constant and Texture Memory

Can be accessed by all threads. The advantage of both is that they are

cached and therefore there is only a DRAM access on a cache miss. For

further readings please refer to [17].

60

4.2 Implementation

4.2.1 Watershed Segmentation

We have chosen to implement the watershed segmentation algorithm in Mat-

lab, which gives us the advantage of a pre-defined distance transformation

and watershed segmentation. As there are many libraries that provide the

watershed algorithm like the OpenCV Library [5], there are many ways to

include this algorithm with little programming effort in the existing RED-

WAVE software.

4.2.2 Ising Model

As mentioned above the Ising model is implemented in CUDA C, where

the primal and dual steps are implemented as CUDA kernel functions. Al-

gorithm 4 shows the two steps, which can be computed parallel per pixel,

because the calculation doesn’t need much information of their neighbours.

Enhanced use of Shared Memory

The only ∇ and div operators need information from pixel neighbours.

Therefore we installed an static shared memory, where each thread copies its

repeatedly used data into. Although this should minimize the data access of

global memory, the benefit of this change with respect to the consumed time

was minor. One reason for the lack of benefit is, that the shared memory

can only be used per block in CUDA. This has the disadvantage, that the

neighbouring pixels, which aren’t in the block, have to be loaded into the

shared memory. Which leads to an overlapping grid of blocks, where the

border pixels of each block are used by two blocks. An other reason is the

use of L1 cache for global memory by cards with Fermi architecture, which

reduces the consecutive load of the same global memory.

61

Binary Object Mask

As we only have to segment the object, represented by the binary object

mask shown in Figure 1.2, there are many pixels in the picture, which don’t

have to be calculated by our algorithm. In other words, the border of the

segmented area is not the border of the picture, but the border of the object.

Therefore the primal and dual update CUDA kernels need extra conditional

branches to dedicate if a pixel is within an object or not. Those branches

are very inefficient in context of computation time on CUDA kernels. We

gained as much performance as possible by minimizing the branches in the

two CUDA kernels.

4.2.3 Potts Model

Like the Ising model, also the Potts model is implemented in CUDA C

where each update step is implemented in a CUDA kernel. We used an

existing implementation from [39, 11] of a Potts model. But we extended

the implementation by a label prior as defined in Equation (3.42). An other

major difference to the implementation of [39, 11], is the use of different

convergence criteria, which will be discussed accurately in the next chapter.

Enhanced use of L1 Cache

Further more we have chosen to not implement the shared memory enhance-

ment as for the Ising model, but to leaf the additional memory for the L1

cache. At last the texture memory, which is used by the original imple-

mentation has gained no performance increase, quite the contrary was true,

because L1 cache works faster than texture memory. So the texture memory

usage was canceled by our implementation. The extra conditional branches

to include the binary object mask where included with respect to keep as

much performance as possible.

62

Figure 4.2: A reprint from [16] which shows a streaming multiprocessor with

its 32 cores and 16 load/store units. As well as other features like the on-chip

L1/shared memory.

63

Figure 4.3: A reprint from [17] which shows the location of all sorts of

memory available by the kernel functions.

64

Chapter 5

Experimental Results

5.1 Experimental Environment

We have set up 2 different experimental environments, which are shown in

Figure 5.3. The first picture, it is taken from a machine working in a real

glass sorting environment, will be used to investigate the performance of the

Potts and watershed algorithms. The second picture, taken from our test-

machine, will be used to investigate the performance of the Ising model. As

the Ising model only uses 2 labels, it is better suited for applications where

a small amount of extraneous material have to be sorted out, which is given

by the second picture. To analyze the maximum time that an object takes

to be computed, we show the computation time of the largest objects in

each environment separately. These objects are shown in Figure 5.1. Both

pictures have a ground truth which was manually implemented. Opposite to

other works our ground truth doesn’t define the segmented objects, but the

band in which the cut of the connecting objects should go trough. Figure 5.2

shows the different types of cut bands, which can be used to evaluate the

proposed algorithms. As the separation of objects who correspond to the

same type of glass doesn’t have to be done, this separation is optional and

isn’t counted as error if it isn’t separated.

65

(a) Largest object in picture 1

(b) Largest object in picture 2

Figure 5.1: Largest objects of the two proposed evaluation environments.

(a) shows the largest object in picture 1, which contains over 20 objects. (b)

shows the largest object in picture 2, which contains 4 objects.

(a) Yellow band (b) Purple band

Figure 5.2: The yellow band defines the area, in which two objects of differ-

ent class have to be separated. The purple band defines the area, in which

two objects of the same class can be separated.

66

(a) Picture 1

(b) Picture 2

Figure 5.3: Picture 1 (1100 × 5000) shows a two second snapshot from a

real working machine. Picture 2 (1100×1500) shows a 0.6 seconds snapshot

taken from our test machine.

67

5.1.1 Evaluation Metrics

We used two metrics to measure the relevance of our segmentation, called

precision (Pre) and recall (Rec).

Rec =
T h(

∑#SepObj
i=0

CP O(SepObj,GT Obj)
CP O(GT Obj,GT Obj))

#SepObj
100 (5.1)

Pre =
T h(

∑#GT Obj
i=0

CP O(SepObj,GT Obj)
CP O(SepObj,SepObj))

#GT Obj
100 (5.2)

Where the function CPO(mask1, mask2) counts the number of pixels

that occur in both masks. SepObj is the mask of the separated object and

GT Obj is the mask of the ground truth object. The constants #SepObj

and #GT Obj define the number of separated, or ground truth objects, in

a picture. We have set up an threshold function T h(), which defines which

object is acceptable. In all following evaluations we have set the threshold

to 0.9, such that 9 out of 10 pixels of an object have to be assigned correct.

Recall is a metric for over-segmentation, which means that an object is

separated incorrectly. It should be noted that the recall is calculated based

on the separated objects. In other words for each separated object the recall

of this object is calculated, by searching for the ground truth object that

covers the biggest part of the separated object. This has the advantage

that every over-segmented object is counted separately. On the contrary

precision is based on the ground truth objects. Precision measures the under-

segmentation of an object, which means that an object is connected after the

segmentation process. Therefore for each ground truth object the precision is

calculated, by searching for the separated object that covers the biggest part

of the ground truth object. Here every under-segmented object is counted

separately which results in an accurate measurement.

To provide a summary of the two metrics we use the F-Measure function.

FMeasure =
2RecPre

Rec + Pre
(5.3)

68

5.1.2 Quality of Input Images

At first we want to investigate the quality of the input images in order to

get an overview of how much objects are connected, and how good our pro-

posed models work in contrast to no separation. Table 5.1 shows the results

of picture 1 and picture 2 without any object separation. It can be seen that

about 36% of the objects are connected objects and even in optimal envi-

ronments like in picture 2 about 20% of the objects are connected objects,

which belong to different output streams. As there is no object separation

there is no over-segmented object, which results in a 100% recall. This shows

how important object separation is in industrial glass sorting systems. It

should be noted that all evaluations with picture 1 have been established

with a preliminary erosion with a 3 × 3 mask, because objects at this size

will also be eroded in the REDWAVE software.

Table 5.1: Precision and recall of picture 1 and picture 2 without proposed

algorithms

Picture 1 Picture 2

Precision 63.71 82.02

Recall 100 100

5.2 Watershed Segmentation

This section determines, how efficient the watershed segmentation algo-

rithm 2 works. As this algorithm is standard and there are many exist-

ing implementations, we concentrate on the performance of the algorithm

without concentrating on the computation time.

69

5.2.1 Determining Distance Transformation

One big influence to the results of the watershed segmentation is the use of

the metric for the distance transformation, defined in Equation 3.1. We have

investigated the performance of some standard metrics, described below.

dist1(x, y) = |x1 − y1| + |x2 − y2| (5.4)

dist2(x, y) = max(|x1 − y1|, |x2 − y2|) (5.5)

dist3(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 (5.6)

Where dist1(x, y) is called cityblock distance, dist2(x, y) is called chessboard

distance and dist3(x, y) is called euclidean distance. An example that shows

the difference between the different distance transformations according to

the object separation results can be found in Figure 5.4. Table 5.2 shows

the precision and recall results of the watershed segmentation with different

distance transformations. It can be seen that dist1(x, y) achieves the highest

result.

Table 5.2: Precision and recall of watershed segmentation with different

distance transformations

dist1(x, y) dist2(x, y) dist3(x, y)

Precision 92.59 91.19 95.50

Recall 73.48 67.51 43.88

5.2.2 Enhanced Watershed Algorithm

As described in Algorithm 2 we have proposed an additional step which

excludes a part of the watershed lines from being separation lines. This

section analyzes the influence of this additional parameters to the quality of

the segmentation. First we calculate the concavity approximation by using

a 13 × 13 circular mask and vary the threshold c1 defined in Algorithm 2.

70

(a) Cityblock Distance Transform (b) Chessboard Distance Transform

(c) Euclidean Distance Transform

Figure 5.4: Influence of different distance transformations to the watershed

object separation. (a) Performance of cityblock distance transformation,

which provides the best results. (b) Performance of chessboard distance

transformation. (c) Performance of euclidean distance transformation.

71

Table 5.3 shows, that a much higher recall can be achieved by a little per-

formance lost on precision. The second Table 5.4 analyzes the threshold c2

which enables very small watershed lines to be separation lines, regardless

to the concavity of their endpoints. Figure 5.5 shows the result of the en-

hanced watershed segmentation, which can be compared to the results of the

standard watershed segmentation shown in Figure 5.4. The varying quality

of the different watershed parametrization are shown in the precision/recall

plot of Figure 5.6.

Figure 5.5: This picture shows the performance of the enhanced watershed

segmentation, with cityblock distance transformation.

5.3 Potts Model

To obtain an overview of the quality of our Potts model, we have performed

a set of tests which will be provided in the next section. First of all we focus

72

Table 5.3: Precision and recall of watershed segmentation with additional

concavity constraint

c1 = 0.5 c1 = 0.55 c1 = 0.6

Precision 84.44 79.38 75.44

Recall 86.14 94.50 98.07

Table 5.4: Precision and recall of watershed segmentation with additional

length constraint

c2 = 5 c2 = 7 c2 = 10

Precision 85.84 87.07 89.22

Recall 93.30 92.06 89.81

on the quality, regardless to the computation time. The second section will

discuss the time issue and provide an overview of how to boost it. At last

we will give an advise of how to find a tradeoff between the two diverging

requirements. As the Potts model returns a continuous segmentation result

u, we use a simple argmax to obtain a discrete segmentation result.

u̇(x) = argmax(u1(x), u2(x), . . . , uK(x)) (5.7)

Furthermore we initialize fl(x) = 0, if the picture contains the class l at

position x and fl(x) = 1 else, as defined in Equation 3.6.

5.3.1 Segmentation Quality

Determining λ

First of all we varied λ, which defines a tradeoff between a smooth segmen-

tation boundary and the similarity of the segmentation result to the input

image. A lower λ defines a smoother segmentation. As it is shown in Ta-

ble 5.5 and Figure 5.7 a precision of 90% and a recall of 96% can be achieved

by λ = 0.15, which results in the highest F-Measure. An other result of

73

this evaluation is, that lambda regulates the tradeoff between over- and

under-segmentation. At a lower lambda there is nearly no over-segmentation

whereas a higher lambda means lesser under-segmentation.

Table 5.5: F-Measure of varying λ

λ 0.01 0.05 0.1 0.15 0.2 0.4

F-Measure 80.78 88.37 92.26 93.41 92.14 91.22

Table 5.6: F-Measure of varying γ

γ 1 5 10 15 25 35 50

F-Measure 92.19 93.41 92.07 91.61 91.44 90.95 89.94

Determining γ

The second test deals with the influence of γ, which defines the weight of

the label cost term. Table 5.6 shows us that the influence of gamma to the

segmentation result is very low.

5.3.2 Performance Measure

Label Convergence with Label Cost Term

As it is shown in Equation (3.42), we added an additional label cost term to

our Potts model, in order to determine the importance of a label. As a con-

sequence of the term an unimportant label can be excluded from calculation,

which should result in a faster performance of our algorithm. Because in the

later iterations, only the data of the important labels have to be updated.

The label cost constraint from Equation (3.41) shows that the variable yl is

greater than any ul(x). Therefore we have added a simple constraint, that

stops the calculation of pl, ul, ql, yl for every l where yl < c. If we choose that

c = 1
2k

, the quality of our segmentation is exactly the same as in Table 5.6,

74

but the computation time of our segmentation is nearly 2 times faster, for

details see Table 5.7.

Table 5.7: Performance of label convergence with label cost term

c no criterion c = 1
2k

Picture in sec. 62.53 34.26

Largest Obj. in sec. 2.83 2.18

Label Convergence without Label Cost Term

The major drawback of the label convergence is the necessity of calculating

the label cost term and with it the Lagrange multiplier ql, which costs a lot

of computation time. As there is only little benefit in segmentation quality,

according to Table 5.6, we tried to exclude the label cost term from our

model. With this modification the computation time was much faster and

the segmentation quality stayed the same at 93.41 (F-Measure).

On the other side we have developed a work around for the label con-

vergence, which works without the label cost term. Therefore we have de-

veloped a similar convergence criterion.

ỹn
l =

∑

x |u(x)n
l − u(x)n−t

l |
#xt

(5.8)

Where t is a predefined step of iterations and #x is the number of pixels of

the object. If ỹn
l < c the calculation of pl, ul, yl stops. As the computation

of ỹn
l is only for convergence checking, it can be done at regular intervals,

which decreases the computation time. If we choose that c = 2e − 07 and

t = 50, with checking intervals of 50, the quality of our segmentation is

exactly the same at 93.41 (F-Measure) and the computation time is 2 times

faster, see Table 5.10.

75

Table 5.8: Performance of Label Convergence without Label Cost Term

c no criterion c = 2e − 07

Picture in sec. 4.61 2.38

Largest Obj. in sec. 0.122 0.050

Convergence Criteria

Convergence Criterion 1 All previous sections have used the same con-

vergence criterion which is defined as:

χ =

∑k
l=1

∑

x |u(x)n
l − u(x)n−t

l |
#xtk

(5.9)

This is the summation over all labels of the label convergence criterion de-

fined in Equation 5.8. The computation of our Potts model stops, if χ < c.

Table 5.9 shows the results with different c.

Table 5.9: Performance of Convergence Criterion 1

c c = 1e − 10 c = 1e − 06 c = 1e − 05 c = 1e − 04 c = 1e − 03 c = 1e − 02

F-Measure 93.41 93.41 93.41 91.72 89.55 86.73

Picture in sec. 2.39 2.31 2.15 1.65 1.00 0.84

Largest Obj. in sec. 0.05 0.05 0.05 0.032 0.009 0.005

Convergence Criterion 2 As the result of our segmentation is simply

the argmax of u, as mentioned in Equation 5.7, we don’t have to continue the

computation until u doesn’t change any more. Therefore we have installed a

second convergence criteria which allows us to stop the computation earlier,

which is shown in Table 5.10.

ξ =
∑

x

φun,un−t(x) (5.10)

φun,un−t(x) =











1 if argmax(un
1 . . . un

K) = argmax(un−t
1 . . . un−t

K)

0 else
(5.11)

76

With this criteria we stop the computation, if ξ = 0, so the only parameter

is t, which has to be large enough to not stop too early.

Table 5.10: Performance of Convergence Criterion 2

t 200 100 50 25

F-Measure 93.41 93.41 91.91 91.85

Picture in sec. 2.58 1.73 1.28 1.09

Largest Obj. in sec. 0.042 0.039 0.034 0.041

Initialization

Because the Potts model, proposed in this paper, provides a global solution

the initialization of u is unimportant related to the quality of the segmen-

tation results. But it is not unimportant related to the computation time.

Therefore we have tried different initializations of u which results in different

computation times, that are shown in Table 5.11. Where

û = 1 − f

ǔl =











1 if l is most frequent used class of object

0 else

ūl =
1

K

are the different initializations of u. The results show quite different com-

putation times for the different initializations. The major benefit in time

consumption is achieved by ǔ, because it is already the result for objects

that don’t have to be separated. So those objects have a computation time

of less than 1ms with the drawback of higher computation time for larger

objects that have to be separated.

77

Table 5.11: Initialization of u

u û ǔ ū

Picture in sec. 2.57 1.73 2.50

Largest Obj. in sec. 0.027 0.039 0.029

Resize the Object

The next step was to reduce the object size by simply resizing the input

matrizes, in order to gain an extra computation time boost. With λ = 0.3

and a resize factor of 0.5, we have gained an F-Measure of 90.02 with a recall

of 90.18 and a precision of 89.68. Which shows that the results of computing

the Potts model with lesser information are respectable. The computation

time of the largest object in the picture was 5 times faster and lasted only

0.007 seconds and even the computation time of the whole picture has been

reduced to 1.33 seconds.

5.3.3 Summary

The results of our evaluation show that there are many ways to achieve a

good segmentation with the Potts model, which fulfill the diverging require-

ments of quality and time. As the computation time of a picture taken in

two seconds, is less than two seconds with the right convergence criterion

and initialization, the computation of this model is in real-time and achieves

very good results as shown in Figure 5.8. The REDWAVE System records

the object with a linescan camera, the system has to wait until the whole

connecting object has been recorded, which can be larger than the distance

between the capturing line and the valves. The current software cuts the

object in order to obtain information about the object early enough. This

hard cut could be modified by our model, such that all finished objects can

be calculated and the rest will be computed later.

78

5.4 Ising Model

As mentioned in the previous chapters the Ising model only works on 2

labels, and therefore can not be used with the classified representation as

proposed in Figure 1.2. But a standard REDWAVE machine can only split

the input material stream in two output material streams. Therefore each

color class wherewith a pixel is labeled has a parameter, which defines what

output stream the class is part of. So if we label the pixels with the output

stream their class is part of, we get a binary image of the objects, which can

be used for the Ising model.

5.4.1 Determining λ

First we have analyzed the influence of λ to the quality of the object sepa-

ration. As one can see in Table 5.12, the F-Measure is highest at λ = 0.1,

with a recall of 91.50 and a precision of 94.93. Figure 5.10 shows the pre-

cision/recall plot, which implies that a higher λ yields a higher precision

with loss of recall. That conforms with our model, because a higher λ im-

plies, that the resulting segmentation has to be more similar to the highly

fragmented input.

Table 5.12: F-Measure, with varying λ, of the Ising Model

λ 0.01 0.05 0.1 0.15 0.2 0.4

F-Measure 89.61 92.26 93.18 92.47 91.02 60.29

5.4.2 Convergence Criterion

As discussed in the Potts model evaluation, we use the label changed con-

vergence criterion, as described in Equation 5.10 for the Ising model, too.

Therefore we have to analyze the quality and performance of the time step,

which is shown in Table 5.13. The best performance with nearly constant

quality is achieved with t = 25 and the time, used for the calculation is

79

Table 5.13: Performance of Convergence Criterion of the Ising Model

t 200 100 50 25 15

F-Measure 93.18 93.18 92.98 92.99 93.13

Picture in sec. 1.76 1.03 0.68 0.56 0.57

Largest Obj. in sec. 0.008 0.005 0.006 0.0078 0.0077

lesser than the time, which is used to take the picture. So the Ising model

is fast enough to perform in real-time. As shown in the Potts model eval-

uation, we have also used the initialization of ǔ shown in Equation 5.12.

The performance result of the Ising model on our test picture 2 is shown in

Figure 5.11.

80

40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

dist 1
dist 2

dist 3

+c1

+c2

Recall

P
re

ci
si

on
Precision/Recall Plot

Figure 5.6: Precision/Recall plot of wathershed segmentation. Where dist 1

to dist 3 describes the precision/recall which can be achieved with different

distance transformations. And +c1 describes the result of cityblock distance

transformation with additional concavity constraint, where c1 = 0.55. At

last +c2 has the same parameter as +c1 with additional length constraint,

where c2 = 7.

81

70 75 80 85 90 95 100
65

70

75

80

85

90

95

100

0.01

0.05

0.1

0.15

0.20.25
0.30.4

Recall

P
re

ci
si

on
Precision/Recall Plot

Figure 5.7: Precision/Recall plot of the Potts model with varying λ. At a

lower lambda there is nearly no over-segmentation, whereas a higher lambda

means lesser under-segmentation.

82

(a) Detail of Picture 1

(b) Pseudo Color Result

Figure 5.8: Result of the Potts model. The resulting object separation

performed with the Potts model in pseudo color. Where every object has

its own color coding (λ = 0.15).

83

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Recall

P
re

ci
si

on

Precision/Recall Plot

Watershed algorithm
Potts model

Figure 5.9: This plot shows the performance gain achieved with the Potts

model, in contrast to the watershed algorithm.

84

40 50 60 70 80 90 100
84

86

88

90

92

94

96

98

0.01

0.05

0.1

0.15
0.20.25

0.3

0.4

Recall

P
re

ci
si

on
Precision/Recall Plot

Figure 5.10: Precision/Recall plot of the Ising model with varying λ. At a

lower lambda there is nearly no over-segmentation, whereas a higher lambda

means lesser under-segmentation.

85

(a) Detail of Picture 2

(b) Pseudo Color Result

Figure 5.11: The resulting object separation performed with the Ising model

in pseudo color. Where every object has its own color coding. (λ = 0.10)

86

Chapter 6

Conclusion and Outlook

6.1 Conclusion

We have shown, how object separation can be established in order to per-

form in real-time. Chapter 1 has shown the construction of a REDWAVE,

which is the industrial machine where our proposed algorithms should run

on. Further more we have provided a short overview of our algorithms. In

the second chapter we have shown works that are similar to our proposed

algorithms, or could have been used to achieve our goals. We have illus-

trated the ideas behind this works and what their drawbacks are. Chapter 3

has given a detailed description of our three proposed algorithms. The first

algorithm we have proposed, is the well known watershed transformation

segmentation, which we have used to separated the objects by applying it

to a binary representation of the objects. The algorithm works quite well,

because of the observation that connected objects have often concave con-

tours, whereas a single object is nearly convex. To minimize the number

of watershed lines we only allow watershed lines to separate objects if they

have concave endpoints. The other two algorithms which we have proposed,

are very similar and differ only in the number of different labels they can

work with. Where the Potts model can work with k labels, the Ising model

87

only works with two labels. We have defined both models in a spatially

continuous domain, such that the models can be solved with variational

methods. In order to provide global solutions to our models, we have used

simple convex relaxations. After all we have proposed the use of the primal

dual algorithm to obtain an algorithm, that can be easily executed parallel

and also converges with a small amount of iterations. Chapter 4 illustrates

the CUDA framework and the structure of an Nvidia GPU with Fermi ar-

chitecture. Further more we have described how we have implemented the

algorithms in concern of using the GPU with high performance. In the last

Chapter of our work we have evaluated the different algorithms and have

shown what initializations, convergence criteria and performance boosts can

be installed in order to achieve a real-time performance without loosing seg-

mentation quality. Further more we have shown the impressive performance

of the proposed Potts model and the fast and also respectable performance

of the Ising model.

6.2 Outlook

We recommend to use the proposed Potts model to achieve a higher perfor-

mance with the REDWAVE system. The next steps should be to implement

the algorithm in the system and perform some tests in real industrial envi-

ronments which will quantify the performance boost. In order to prohibit

that very big objects take too much computation time, different solutions

can be implemented. We recommend to apply the algorithm on parts of

the connected object and cut away all finished parts, as described in the

evaluation summary in Section 5.3.3. An other possibility is to measure the

time at predefined iteration steps and exit the computation, if it lasts too

long. Also the Ising model performs very good and should be used if it is

possible.

88

Bibliography

[1] Adrien Angeli Ankur Handa, Richard A. Newcombe and Andrew J.

Davison. Applications of legendre-fenchel transformation to computer

vision problems. Technical Report DTR11-7, Imperial College - De-

partment of Computing, September 2011.

[2] S. Beucher and C. Lantuejoul. Use of Watersheds in Contour Detection.

In International Workshop on Image Processing: Real-time Edge and

Motion Detection/Estimation, Rennes, France., September 1979.

[3] S. Beucher and Centre De Morphologie Mathmatique. The watershed

transformation applied to image segmentation. In Scanning Microscopy

International, pages 299–314, 1991.

[4] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy

minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.,

23(11):1222–1239, November 2001.

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.

[6] Xavier Bresson, Selim Esedoglu, Pierre Vandergheynst, Jean-Philippe

Thiran, and Stanley Osher. Fast global minimization of the active

contour/snake model. J. Math. Imaging Vis., 28(2):151–167, June 2007.

[7] J.L. Carter. Dual Methods for Total Variation-based Image Restoration.

University of California, Los Angeles, 2001.

89

[8] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic ac-

tive contours. International Journal of Computer Vision, 22(1):61–79,

February 1997.

[9] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock. An

introduction to total variation for image analysis. In Theoretical Foun-

dations and Numerical Methods for Sparse Recovery. De Gruyter, 2010.

[10] Antonin Chambolle. An algorithm for total variation minimization and

applications, 2004.

[11] Antonin Chambolle, Daniel Cremers, and Thomas Pock. A convex

approach to minimal partitions. preprint.

[12] Antonin Chambolle and Thomas Pock. A first-order primal-dual algo-

rithm for convex problems with applications to imaging. preprint.

[13] T. F. Chan and L. A. Vese. Active contours without edges. IEEE

transactions on image processing : a publication of the IEEE Signal

Processing Society, 10(2):266–277, February 2001.

[14] Tony F. Chan, Selim Esedo Glu, and Mila Nikolova. Algorithms for

finding global minimizers of image segmentation and denoising models.

Technical report, SIAM Journal on Applied Mathematics, 2004.

[15] Qing Chen, Xiaoli Yang, and E.M. Petriu. Watershed segmentation

for binary images with different distance transforms. In Haptic, Audio

and Visual Environments and Their Applications, 2004. HAVE 2004.

Proceedings. The 3rd IEEE International Workshop on, pages 111 –

116, oct. 2004.

[16] NVIDIA Corp. Whitepaper nvidia’s next generation cuda compute

architecture: Fermi. Technical report, NVIDIA Corp., 2009.

[17] NVIDIA Corp. Cuda c best practices guide. Technical Report DG-

05603-001-v4.1, NVIDIA Corp., January 2012.

90

[18] NVIDIA Corp. Nvidia cuda c programming guide. Technical Report

V4.2, NVIDIA Corp., Mai 2012.

[19] NVIDIA Corp. Nvidia cuda getting started guide for microsoft win-

dows. Technical Report DU-05349-001-v04, NVIDIA Corp., April 2012.

[20] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties

of Functions. CRC-Press, 2000.

[21] WendellH. Fleming and Raymond Rishel. An integral formula for total

gradient variation. Archiv der Mathematik, 11:218–222, 1960.

[22] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für

Physik A Hadrons and Nuclei, 31(1):253–258, February 1925.

[23] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac-

tive contour models. INTERNATIONAL JOURNAL OF COMPUTER

VISION, 1(4):321–331, 1988.

[24] Can-Fei LI, Yao-Nan WANG, and Guo-Cai LIU. A new splitting active

contour framework based on chan-vese piecewise smooth model. Acta

Automatica Sinica, 34(6):659 – 664, 2008.

[25] D. Mumford and J. Shah. Optimal approximations by piecewise smooth

functions and associated variational problems. Communications on

Pure and Applied Mathematics, 42(5):577–685, 1989.

[26] Stanley Osher and Ronald P. Fedkiw. Level set methods: An overview

and some recent results. J. Comput. Phys, 169:463–502, 2001.

[27] Stanley Osher and James A. Sethian. Fronts propagating with curvature

dependent speed: Algorithms based on hamilton-jacobi formulations.

JOURNAL OF COMPUTATIONAL PHYSICS, 79(1):12–49, 1988.

[28] Thomas Pock and Antonin Chambolle. Diagonal preconditioning for

first order primal-dual algorithms in convex optimization. In Interna-

tional Conference on Computer Vision (ICCV 2011), 2011. To Appear.

91

[29] Thomas Pock, Antonin Chambolle, Daniel Cremers, and Horst Bischof.

A convex relaxation approach for computing minimal partitions. In

CVPR, pages 810–817. IEEE, 2009.

[30] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle.

An algorithm for minimizing the mumford-shah functional. In IEEE

International Conference on Computer Vision (ICCV), 2009. to appear.

[31] R. B. Potts. Some generalized order-disorder transformations. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 48(01):106–

109, 1952.

[32] R. T. Rockafellar. Convex Analysis (Princeton Mathematical Series).

Princeton Univ Pr, 1970.

[33] Jos B. T. M. Roerdink and Arnold Meijster. The watershed transform:

Definitions, algorithms and parallelization strategies, 2000.

[34] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total

variation based noise removal algorithms. Phys. D, 60(1-4):259–268,

November 1992.

[35] P. K. Sahoo, S. Soltani, A. K.C. Wong, and Y. C. Chen. A survey

of thresholding techniques. Comput. Vision Graph. Image Process.,

41(2):233–260, February 1988.

[36] Michalis A. Savelonas, Eleftheria A. Mylona, and Dimitris Maroulis.

Unsupervised 2d gel electrophoresis image segmentation based on active

contours. Pattern Recogn., 45(2):720–731, February 2012.

[37] Wade Schwartzkopf, Brian L. Evans, and Alan C. Bovik. Minimum

entropy segmentation applied to multi-spectral chromosome images. In

ICIP (2), pages 865–868, 2001.

[38] C. E. Shannon. A mathematical theory of communication. Bell system

technical journal, 27, 1948.

92

[39] Markus Unger. Convex Optimization for Image Segmentation. PhD

thesis, Institute for Computer Graphics and Vision, Graz University of

Technology, Graz, Austria, October 2012.

[40] Markus Unger, Manuel Werlberger, Thomas Pock, and Horst Bischof.

Joint motion estimation and segmentation of complex scenes with label

costs and occlusion modeling. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), 2012.

[41] Luminita A. Vese and Tony F. Chan. A multiphase level set framework

for image segmentation using the mumford and shah model. Interna-

tional Journal of Computer Vision, 50:271–293, 2002.

[42] Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient

algorithm based on immersion simulations. IEEE Trans. Pattern Anal.

Mach. Intell., 13(6):583–598, June 1991.

[43] Hui Wang, Hong Zhang, and Nilanjan Ray. Clump splitting via bot-

tleneck detection. In Benoît Macq and Peter Schelkens, editors, ICIP,

pages 61–64. IEEE, 2011.

[44] Xiao Feng Wang and De-Shuang Huang. A novel multi-layer level set

method for image segmentation. J. UCS, 14(14):2427–2452, 2008.

[45] J. M. White and G. D. Rohrer. Image thresholding for optical character

recognition and other applications requiring character image extraction.

IBM J. Res. Dev, 27:400–411, 1983.

[46] Jing Yuan and Yuri Boykov. Tv-based multi-label image segmentation

with label cost prior. In Frédéric Labrosse, Reyer Zwiggelaar, Yonghuai

Liu, and Bernie Tiddeman, editors, BMVC, pages 1–12. British Machine

Vision Association, 2010.

93

[47] Christopher Zach, David Gallup, Jan michael Frahm, and Marc Ni-

ethammer. Fast global labeling for real-time stereo using multiple plane

sweeps, 2008.

[48] Qufa Zhong, Ping Zhou, Qingxing Yao, and Kejun Mao. A novel seg-

mentation algorithm for clustered slender-particles. Computers and

Electronics in Agriculture, 69(2):118 – 127, 2009.

94

