
Florian Klien, BSc

Leveraging Content-independent
Features for Spam Detection in URL

Shorteners

Master’s Thesis

Graz University of Technology

Knowledge Technologies Institute
Head: Univ.-Prof. Dr. Stefanie Lindstaedt

Supervisor: Univ.-Doz. Dipl.-Ing. Dr.techn. Markus Strohmaier

Graz, April 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

URL Shorteners have become very popular in the last few years. They take
a long URL and return a short equivalent, that can be used instead. Visitors
of this short-link first visit the URL Shortener and are then redirected to the
original long URL. The biggest services redirect millions of users every day
to various websites. But it is their basic functionality that is a source for ex-
ploits. Spammers take advantage of short-links to hide malicious websites.
It is the responsibility of the URL Shortener to identify these links and to
disable them. Often a URL Shortener is the first to come in contact with a
spam link, rendering traditional methods, such as blacklists, unusable.

This work presents a method to identify spam without the aid of blacklists
or the shortened websites’ content. Analyzing a dataset that was generated
by operating a URL Shortener for 21 months shows that there is useful in-
formation to help fighting spam in URL Shorteners. By only taking data
that is directly available to the shortener, such as usage data, one can suc-
cessfully identify spam with an accuracy of up to 97%. There is no need to
crawl the shortened website or query a blacklist. This work should give a
good insight into how one could implement a spam detection mechanism
for URL Shorteners without the need to rely on external sources.

The results of this work are relevant for scientists, who have an interest
in spam detection and practitioners, who want to prevent content-based
exploits of existing spam detection systems.

iv

Kurzfassung

URL-Verkürzer haben in den letzten Jahren sehr an Popularität gewonnen.
Benutzer können dort einen langen Link in einen kurzen Link umwan-
deln. Dieser kann dann an Stelle des langen Links eingesetzt werden. Die
größten Dienste leiten täglich Millionen Menschen auf diverse Webseiten
weiter. Es ist aber die grundlegende Funktionsweise der URL-Verkürzer,
die eine Sicherheitslücke darstellt. Spammer nutzen URL-Verkürzer aus,
um bösartige Links zu verstecken. Es liegt in der Verantwortung der URL-
Verkürzer, diese Links zu finden und zu deaktivieren. Häufig sind URL-
Verkürzer allerdings die ersten die solche Links sehen, was klassische Meth-
oden, wie schwarze Listen, unbrauchbar macht.

Diese Arbeit stellt eine Methode vor, mit der Spam ohne Zuhilfenahme
von externen Inhalten oder schwarzen Listen detektiert werden kann. Das
Betreiben eines eigenen URL-Verkürzers über 21 Monate und die Anal-
yse des resultierenden Datensatzes ergibt, dass man wertvolle Information
aus lokalen Daten extrahieren kann. Mit solche Daten, wie etwa dem Be-
nutzerverhalten, kann eine Spamdetektion mit einer Genauigkeit von bis
zu 97% durchgeführt werden. Diese Arbeit soll einen Einblick geben, wie
man diese neue Methode in URL-Verkürzern einsetzen kann, ohne sich auf
externe Daten verlassen zu müssen.

Die Resultate dieser Arbeit sind für Wissenschaftler und Spezialisten inter-
essant, die sich im Feld der Spam-Erkennung beschäftigen und das Aus-
nützen von Schwachstellen in der Inhaltsanalyse ihrer Spam-Filter vermei-
den wollen.

v

Acknowledgments

I would like to thank my advisor, Dr. Markus Strohmaier, for his dedicated
guidance and support. His knowledgeable feedback to this thesis was an
invaluable input. Without him and his proficiency this work would not
exist.

Additionally, I want to thank my friends and colleagues at the Knowledge
Technologies Institute at Graz University of Technology, who always had
the right remedy in case of emergency: precious advice, coffee breaks, or
funny cat pictures.

Finally, I want to thank my parents, Lilli and Karl, my sisters, Andrea and
Lisa, and my fiancée Christine. Your love and support during my studies
made this possible. Thank you!

I would like to dedicate this work to my grandfather, Dr. Rüdiger Axmann,
who always has been a shining example of ingenuity. His ambition, cre-
ativity, and inventive genius inspired me to become an engineer.

Florian Klien
Graz, April 2013

vi

Contents

Abstract iv

1. Introduction 1
1.1. Motivation . 1

1.2. Objectives . 3

1.3. Contribution . 3

1.4. Thesis Outline . 4

2. Related Work 5
2.1. The Brief History of Hypertext Research 5

2.2. Terminology . 7

2.3. Recent Developments: URL Shorteners 10

2.4. Spam . 13

2.4.1. E-Mail Spam . 13

2.4.2. Spam in Hypertext Systems 15

2.4.3. Link Spam . 17

2.4.4. Scam, Malware and Questionable Content 18

2.4.5. URL Blacklists . 20

3. Experimental Setup 22
3.1. The URL Shortener: Qr.cx . 22

3.1.1. Architecture . 22

3.1.2. The Qr.cx API . 24

3.2. The Qr.cx Dataset . 25

3.3. Descriptive Statistics . 28

3.3.1. Metrics . 28

3.4. Annotation & Sample Sets . 35

3.5. Features . 38

vii

Contents

3.6. Spam Classification . 42

3.6.1. Evaluation . 43

4. Results 46
4.1. Experiments . 46

4.1.1. Feature Quality . 46

4.1.2. Classifier Experiments 51

4.2. Discussion . 56

4.3. Limitations . 57

5. Conclusion 58
5.1. Implications . 59

5.2. Outlook . 60

A. Implementation 62
A.1. Version 1.0 . 62

A.2. Version 2.0 . 63

B. Histogram Country Plots 66

C. Features 84

Bibliography 91

viii

List of Figures

1.1. URL Shortener functionality . 2

2.1. RFC3986 URI parts . 8

2.2. SPAM . 10

2.3. Scam Example . 18

2.4. Malware Download Example 19

3.1. Resolve Histogram . 26

3.2. Resolves & creates over time 27

3.3. URL-Resolve Scatter plot . 27

3.4. Links in between Countries (Top countries with more than
5,000 resolves) . 29

3.5. Links in between Countries with more than 50,000 resolves . 29

3.6. RC Ratio World map . 32

3.7. Click histogram and Resolver % for AT, IN and US 34

3.8. In- and Outdegree of Countries. 36

3.9. Small Correlation Matrix of Features 41

4.1. Feature distribution: Lat, Lon, Create Cnt, Creator %, Re-
solve %, IRR, Ctry ID, Ctry In- and Outdegree, Ctry RC Ratio. 47

4.2. Feature distribution: click time, self click, IP, domain age,
minutes, local minutes. 48

A.1. Database Tables . 64

B.1. Click histogram and Resolver % for ZA 66

B.2. Click histogram and Resolver % for AE, AR and BO 67

B.3. Click histogram and Resolver % for BR, CL and CO 68

B.4. Click histogram and Resolver % for DE, DO and DZ 69

B.5. Click histogram and Resolver % for EC, EG and ES 70

ix

List of Figures

B.6. Click histogram and Resolver % for FR, GB and GE 71

B.7. Click histogram and Resolver % for HK, HU and ID 72

B.8. Click histogram and Resolver % for IL, IR and IT 73

B.9. Click histogram and Resolver % for JM, JO and JP 74

B.10. Click histogram and Resolver % for KR, KW and KZ 75

B.11. Click histogram and Resolver % for MA, MX and MY 76

B.12. Click histogram and Resolver % for NL, PE and PH 77

B.13. Click histogram and Resolver % for PK, PL and PR 78

B.14. Click histogram and Resolver % for RO, RS and RU 79

B.15. Click histogram and Resolver % for SA, SG and SI 80

B.16. Click histogram and Resolver % for SK, TH and TN 81

B.17. Click histogram and Resolver % for TR, TT and TW 82

B.18. Click histogram and Resolver % for UA, VE and VN 83

C.1. Full Correlation Matrix of Features 90

x

1. Introduction

1.1. Motivation

The World Wide Web’s most crucial concept is the link, which is repre-
sented by the URL1. It let’s the user explore and browse in between web
sites. When URLs become too long and unpractical for some tasks, URL
Shorteners provide a service to facilitate the use of long URLs. A short-
URL is the URL returned by URL Shortener services. This URL will not
serve any content but instead it will redirect the visitor to the long URL.
This is generally achieved with a HTTP 301

2 response. A resolve is the
action of getting the long-URL from the URL Shortener by requesting the
short-URL, see figure 1.1 on page 2. URL Shorteners take any URL and re-
turn a short-URL in return. The resulting short-URL is usually shorter than
30 characters. It can be used instead of the original URL. The URL Short-
ener now acts as a middle man between users and the world wide web.
URL Shorteners redirect every request on a short-URL to the correspond-
ing long URL. They are the link between a resource and the user. URL
Shorteners are mainly used to facilitate the distribution of URLs via e-mail,
SMS3 or other channels like Twitter4. They may also be used to gather infor-
mation on visitors of a short-link. Some URL Shorteners provide a detailed
statistics page where users can track visitors of their short-links.

When the URL Shortener forwards a user to a website, they do not know
where it will take them. This causes a certain responsibility on the side of
the service. A URL Shortener typically wants to prevent any harm to its

1URL: Uniform Resource Locator
2HTTP 301: Moved Permanently
3SMS: Short Message Service
4http://twitter.com

1

http://twitter.com

1. Introduction

Figure 1.1.: Illustration of the basic redirect functionality of a URL Shortener. When re-
questing the short-link from the URL Shortener (1), it responds with a redirect
to the original URL (2). The user’s web-browser then takes the user to the
original URL (3).
Anyone can add a URL to the URL Shortener. The creator requests a short-link
(A), and the URL Shortener returns one (B).

users, which is why checking the shortened URL for malicious content is
essential. Such content may include spam, scam, or otherwise fraudulent
content that might harm a visitor in any way. Detecting and disabling such
malicious links is paramount to keeping URL Shortening services trustwor-
thy.

As URL Shorteners get more and more popular, it is increasingly important
to detect spam or malicious short-links efficiently and effectively. Bit.ly,
the largest URL Shortener, redirected users 2.1 billion times in November
2009 [09]. Although Bit.ly tries to detect spam as well as possible, their
algorithms can not and do not catch every malicious short-link in their
system [Mag+13].

There are some methods for spam classification that rely heavily on con-
tent. This work focuses on data that is contained within logging data or
general usage data. This leads to a more efficient and less vulnerable clas-
sification approach, as content is never analyzed to identify spam. While
content based approaches, which scan websites and analyze its content,

2

1. Introduction

may reach a higher success rate, the difference in traffic overhead is enor-
mous. First, the amount of data that has to be retrieved is up to the website
owner. Second, content can be altered to fit spam detection algorithms but,
most importantly, it can be changed at any time. A website may appear
legitimate when spammers create a short-link but they can change the con-
tent later. Therefore, websites need to be rescanned in regular intervals,
increasing the traffic overhead even more. Issues like congestion of popu-
lar websites, network failure, or server downtime have to be considered as
well.

The approach presented in this thesis aims at minimizing traffic to external
websites while simultaneously keeping the success rate of correctly identi-
fying spam high. The objective is to reach a correct classification score of
more than 95%.

1.2. Objectives

The objectives of this thesis are:

• to find a method for identifying malicious links in URL Shorteners
• with metrics that allow a good classification of spam by
• using as little external information as possible
• while keeping the accuracy high. The objective is to reach an accuracy

of 95% or more.

1.3. Contribution

This thesis makes the following contributions:

• Implementation of a URL Shortening service.
• Provision of a large dataset, including click behavior in a URL Short-

ener.

3

1. Introduction

• Presentation of an extended analysis of an URL Shortener dataset
which has already been published5. Parts of this work have already
been published in a Hyper Text 2012 short-paper by Klien and Stroh-
maier [KS12].
• Presentation of a set of metrics that can be used in any URL Short-

ener system to detect spam. These features can be easily collected
and calculated to extend every URL Shortener service’s current spam
detection system.
• Finally, the thesis shows how the proposed metrics perform in combi-

nation with different machine learning algorithms. This insight should
facilitate the planning and deployment of similar systems.

1.4. Thesis Outline

This work consists of five chapters. The introduction is followed by chap-
ter 2 which gives a brief overview of the history of hypertext research,
recent developments like link spamming and URL Shorteners, and finally
shows the influence spam has on current on-line systems and what re-
searchers have developed to tackle this problem.

Chapter 3 first describes the URL Shortener used to gather the used dataset.
It then examines the used dataset in detail and gives an insight on how
the later used metrics might help to identify spam. Chapter 4 presents and
discusses the results of the classifier experiments. It includes the discussion
of the experiments with its limitations. Chapter 5 concludes this thesis with
an outlook.

5http://qr.cx/dataset

4

http://qr.cx/dataset

2. Related Work

This chapter provides an overview of related work to this thesis, which is
not only related to spam detection but also to URL Shorteners in general
and its touching points, as well as hypertext systems and web technology.

2.1. The Brief History of Hypertext Research

In 1945 Vannevar Bush wrote an article about the ‘memex’, short for ‘mem-
ory index’. The machine was never built but would have been based on
micro films, cameras and readers, and a mechanical system all built into
one desk. The top of the desk would have allowed a user to browse docu-
ments and add comments. Bush thought of a linking structure that would
allow the user to make associative links between documents. Every docu-
ment could link to multiple other documents [Bus45].

Table 2.1, on page 6, shows a chronological list of the most important his-
toric events regarding hypertext systems. The most influential event was
the introduction of the World Wide Web (WWW) in 1990 by Tim Berners-
Lee. He introduced a system that was not feature-complete but allowed ev-
eryone to participate. The three standards introduced with the WWW were:
HTTP, the Hypertext Transfer Protocol, HTML, the Hypertext Markup Lan-
guage and URL, the Uniform Resource Locator [Ber89].

HTTP allowed quick following of resources across the Internet, regardless
of the resource’s location. This protocol was fast and flexible. It not only
allows sharing of hypertext but also of other forms of data. This versatility
was one reason for its success. In combination with HTTP, the URL facili-
tates the identification of the resource. In addition, HTML allowed a visu-
ally more appealing representation of information. The documents could

5

2. Related Work

Year System Originator Milestone
1945 Memex Vannevar Bush Microfilm-based deviceconcept
1965 Xanadu Ted Nelson Term ‘hypertext’
1967 Hypertext Editing System Andries van Dam, Brown University First working hypertext system
1978 Aspen Movie Map Andrew Lippman, MIT First working hypermedia system
1985 Intermedia Brown University Anchors, webs
1986 Guide Office Workstations Ltd. First commercial product
1987 HyperCard Apple Computer Corp. Free with every Macintosh
1987 ACM Hypertext’87 University of North Carolina First ACM conference on hypertext
1990 WWW Tim Berners-Lee, CERN Hypermedia across the Internet
1993 Mosaic NCSA Graphical browser for WWW
1994 Hyper-G Graz University of Technology Hypermedia information system

Table 2.1.: The history of hypertext systems [Mau96]

be linked to each other from within the documents. Users would follow
a link embedded in the document they were reading and could be taken
to another server somewhere else. Follow-up systems, like the Hyper-G
system developed at Graz University of Technology, featured more com-
plex mechanisms to include bidirectional linking, link consistency checks
and many other advanced features. They came close to implementing the
vision of Ted Nelson of 1965. Nelson envisioned a system that would be
based on virtual inclusions. It allowed content to be included at multiple
locations without being copied. As Nelson never succeeded at implement-
ing his Xanadu system, the Hyper-G system never became as popular and
widely used as the WWW. The reasons for this might be the complexity
of the system, its resource management or the fact that there was never
any free software available to let people implement a system of their own
[Mau96].

The ability to link to any server worldwide, the ease of use, and the avail-
ability of free software led to the Internet as we know it today. A huge
network of millions of servers that store petabytes of data. Or as Witten,
Gori, and Numerico [WGN06] fittingly put it:

“The WWW is one of the greatest success stories in the history of
technology. Although it exploded into the world without warning, like
a supernova, the ground had been prepared over several decades: it
is the culmination of the conjoint effort of philosophers, engineers, and
humanities scholars. Between them, these people conjured up two revo-
lutions, one in information dissemination and the other in human-

6

2. Related Work

computer interaction.”

To keep up with the amount of information in a network like the Internet,
there are search engines that provide the service of information filtering;
information filtering in a sense as they try to match content to a query
given by a user. As there is massive information on almost any topic online,
search engines have to sort and prioritize content in a certain way. These
metrics and methods are generally not publicly available, as they represent
the business model of search engines.

2.2. Terminology

This section defines some essential concepts to better understand the the-
ory behind this work.

Uniform Resource Identifiers (URIs)

Berners-Lee, Fielding, and Masinter [BFM05] defined URIs in the following
way:

“A Uniform Resource Identifier (URI) is a compact sequence of char-
acters that identifies an abstract or physical resource. [...] The URI
syntax defines a grammar that is a super-set of all valid URIs, al-
lowing an implementation to parse the common components of a URI
reference without knowing the scheme-specific requirements of every
possible identifier. [...] ”

Their definition later became Internet standard STD 66, [BFM05].

URI schemes should be registered with the IANA1, but there are some
schemes that are widely used without a proper registration; e.g: the ‘java-
script:’ URI.

The name URN (Uniform Resource Name) was originally defined in 1997,
but is now deprecated. Instead the more general term URI is used.

1Internet Assigned Numbers Authority

7

2. Related Work

The following are two example URIs and their component parts:

foo://example.com:8043/over/there?name=ferret#nose

_/ ______________/_________/ _________/ __/

| | | | |

scheme authority path query fragment

| _____________________|__

/ \ / \

urn:example:animal:ferret:nose

Figure 2.1.: RFC3986, defining the different parts of an URI [BFM05]

Uniform Resource Locators (URLs)

Uniform Resource Locators are a subset of URIs. The main difference is
that they do not define a resource by its name but by its location. The lo-
cation defines a computer network or a single computer where the file can
be found. The ‘file’ URL scheme is an example of this. ‘file:///home/flo/-
Desktop/diplomarbeit.pdf’ accesses a PDF document in the Desktop folder
in the home directory of user flo. Figure 2.1 shows URL and URI compo-
nents.

The ‘http’ URL scheme is probably the most famous one. HTTP is the
main protocol for the world wide web. The URL ‘http://www.youtube.
com/watch?v=06Mhn0L23Tk&hd=1’ defines the location of a resource on the
web. ‘www.youtube.com’ defines the authority which hosts the content.
‘watch’ is the path of the URL, and everything behind the question mark
(‘?’) is part of a query that will be sent to this web page. One cannot take the
path or any argument to any other authority to find the same content. The
only exception are authorities that are built to do exactly this. These are,
for example, mirrors of web services that would fill in if the main server is
overloaded or out of order.

8

http://www.youtube.com/watch?v=06Mhn0L23Tk&hd=1
http://www.youtube.com/watch?v=06Mhn0L23Tk&hd=1

2. Related Work

URL Shortener

Another example of these authorities are URL Shorteners. A URL Shortener
is a web service that takes any URL from a user and provides a short-URL
in return. The short-URL usually has not more than 30 characters. The
short-URL can the be used as surrogate for the original long URL. Instead
of going to the original server directly, a visitor will now visit the URL
Shortener first. The URL Shortener will then look up the long URL and
redirect the user to the original URL. This process allows the URL Short-
ener to collect massive data about who visits what, when and how often.
Figure 1.1 on page 2 illustrates the basic URL Shortener functionality.

Most URL Shorteners would define an arbitrary name for a resource and
redirect to a previously defined longer URL. Their paths would be dif-
ferent from the URL they link to; e.g.: ‘http://qr.cx/8Ctq’ links to the
same resource as the Youtube link above. Youtube’s own URL Shortener
is different. They reserved the Belgian domain ‘youtu.be’ for their service.
The URL ‘http://youtu.be/06Mhn0L23Tk’ defines the location of a video
resource on their ‘youtube.com’ website. But part of our previously men-
tioned URL is found in this short-link. ‘06Mhn0L23Tk’ is Youtube’s video
ID and is reused to define the same resource via the main website and their
URL Shortener.

Spam

The name ‘spam’ originated as a fantasy name to market ‘spiced ham’ -
SPAM, a ground pork in cans, as seen in figure 2.2 on page 10. It was
well known to allied soldiers in the Second World War, where it gained a
certain negative connotation for being cheap military food. ‘Spam’ refer-
ring to the electronic form has its name from a Monty Python sketch. The
scene depicts a room full of Vikings who start to sing ‘spam spam spam...’
and hinder all others from continuing their conversations [WGN06]. Iron-
ically, the word ‘ham’ developed over time, describing messages that are
not spam.

9

http://qr.cx/8Ctq

2. Related Work

Figure 2.2.: SPAM: The Hormel ‘Spiced Ham’, titular Saint of spam.
(Photo from http://flic.kr/p/bVFTpi by Tom Marshall, CC-BY-SA)

2.3. Recent Developments: URL Shorteners

As the short messaging service Twitter2 became more popular, URL Short-
eners emerged as a way to publish links. As Twitter did not allow messages
to be longer than 140 characters, and some URLs can be significantly longer
than that, posting links was a challenge. Many URL shortening services
quickly evolved to allow users to shorten their long links and post the
short-links on Twitter. Their presence and popularity has led to research
regarding their usefulness, reliability, challenges, and dangers.

Inoue et al. [Ino+11] present a study of a URL Shortener that was used
right after the Great East Japan Earthquake in March 2011. They built a
URL Shortener that altered shortened links to redirect users to a CDN
(Content Distribution Network). This was done to mitigate flash crowds
that formed when many users visited tweeted short-links. The websites
behind these links were often overwhelmed by the demand. They hosted
content that was helpful after an Earthquake. The disaster’s impact from

2http://twitter.com

10

http://flic.kr/p/bVFTpi
http://twitter.com

2. Related Work

the earthquake, the resulting tsunami, and the triggered nuclear accident
in Fukushima Daiichi, led people to visit websites with information that
would help them. As people shared links on-line in Online Social Net-
works (OSNs) like Twitter, many websites hosting valuable information
did not withstand the number of requests. Inoue et al. [Ino+11] built a
URL Shortener that could avert website overloads. The shortener trans-
formed the submitted links to links of the CoralCDN. These coralized
links are URLs altered to request the same content from CoralCDN’s mir-
ror servers. To get a coralized link, one simply adds ‘.nyud.net’ to the
domain name in the original URL, e.g.: ‘http://example.com/path’ be-
comes ‘http://example.com.nyud.net/path’ [FFM04]. The study shows
that within the three days, from March 15 to March 18, their service re-
solved nearly 25,000 requests. Their log analysis shows that most link refer-
rals (83.4%) come from Twitter clients or Twitter’s website. Their relatively
small dataset furthermore shows that most of the content they redirected to
was related to disaster information, e.g.: nuke accidents, earthquakes, util-
ity and transportation, shelters, and disasters in general. Their paper shows
an interesting perspective of the use and responsibility of URL Shorteners
in special circumstances, such as earthquakes [Ino+11].

Antoniades et al. [Ant+11] analyzed a dataset of short-URLs they had ob-
tained through crawling. They crawled Twitter for short-URLs of Bit.ly and
Ow.ly. Furthermore, they guessed short-URLs via brute forcing hashes, ob-
taining a little over 9 million links. They analyzed the lifetime, the des-
tination, the origin, the usage location, and the popularity of short-links.
Their results show that the lifetime of 50% of short-links exceeds 100 days.
They notice that the countries that use their set of short-links most are the
USA, Japan, and Great Britain. For some reason they do not see any us-
age of users from China or India in their data, which are listed among the
top-5 countries regarding Internet users. Most links (>60%) are resolved
in services like e-mail, instant messaging and SMS. They do not refer to
any website but are only seen as a direct hit on the link. The most popu-
lar destinations for their short-links are news portals. The URL popularity
describes a power-law behavior [Bre+99]. They additionally took a look at
the performance of shortening services in terms of latency and shortening
effectiveness. Finally they investigated the latency of short-URL services
and discovered that most requests are delayed by about 0.35 seconds.

11

http://example.com/path
http://example.com.nyud.net/path

2. Related Work

Chhabra et al. [Chh+11] did a study concerning the distribution of phishing
links across Twitter. Their research analyzes the connection between users
and their vulnerability to click on malicious links. They find that phishers
use shortening services not to shorten their links but mostly to hide their
original URL. Phishers are willing to take the risk of adding an extra hop
to the victim’s click path to hide their real link. The advantage of breaking
most spam filters and gaining the trust of users outweighs the risk of being
disconnected by the URL Shortener. Furthermore, they find that spoofing
brand names is very popular amongst phishers, although they recently
moved their focus from financial institutions and e-commerce sites to on-
line social media. The most popular brands are: Facebook, PayPal, Orkut,
HSBC, Habbo and Bradesco. Moreover, they look into the geographical dis-
tribution and the lifetime of phishing URLs.

Benevenuto et al. [Ben+10a] detected spammers on Twitter by finding at-
tributes that would describe users based on their posting behavior and
social connections. They use the number of hashtags per tweet, number of
URLs per words, number of words of each tweet, number of hashtags per
tweet, number of characters per tweet, and so on. Furthermore, they use a
list of common spam words to match used words. The fraction of tweets
that contain these known spam words represents another metric. The used
metrics are based on observations on the user behavior of spammers, e.g.:
spammers have a higher fraction of tweets containing a URL and 39% of
spammers’ tweets contain spam words, only 4% of the tweets by non-spam
users show spam words. Also, spammers use hashtags more vigorously
than normal users. In addition to the content-based metrics they also used
behavioral attributes. These are for example: the number of followers, the
number of followees, the age of the user account, the number of mentions,
the number of times a user replied to someone, whether or not there are
spam words in the user’s screenname, time span between tweets, etc. In
total, they used 23 attributes per user. To classify users, Benevenuto et al.
[Ben+10a] used a Support Vector Machine (SVM), a state-of-the-art machine
learning technique [Joa98]. The results show that they can classify spam-
mers with 70% accuracy and non-spammers with 96% accuracy. They also
show that by using only the behavioral attributes they are able to achieve a
similar classification rate [Ben+10a].

Maggi et al. [Mag+13] did an extensive two-year study on short-URLs. They

12

2. Related Work

analyzed almost 25 million short-URLs from up to 622 URL Shorteners.
They found that the most popular shortening services blocked malicious
URLs within a short period of time after creation. However, if short-URLs
were created with a benign website and that content was later changed, all
of those links were kept active. None of the URL-shorenters would repeat-
edly check the long URL for malicious content. The only exception was
Tinyurl.com which deleted 1,800 spam links that became active after their
short-link creation. Bit.ly allowed every malicious link to be shortened but
deleted them shortly after [Mag+13].

2.4. Spam

Spam affects many applications. It is no longer only limited to e-mail
[Cal+08] but also concerns blogs [Tho07], Online Social Networks like Twit-
ter [Ben+10a; Gri+10], videos [Ben+10b; Ben+09; Ben+08], web search en-
gines [FMN04], and also URL Shorteners [12b; KS12]. Therefore, researchers
and engineers have developed a series of techniques to tackle this problem
in different domains.

2.4.1. E-Mail Spam

Unsolicited e-mail or e-mail spam has been a problem for e-mail users
and service providers since the early days of the ARPA net. E-mail spam
is mainly used to advertise products but also to distribute viruses and
malware.

There are many means to handle e-mail spam. All commercial e-mail pro-
viders offer spam filter mechanisms. There are some popular open source
projects that can handle spam as well. The probably most popular open
source solution is the Apache Software Foundation’s SpamAssassin3. It is
based on an implementation of several machine learning algorithms. The
project first started in April 2001 and became an Apache Software Founda-
tion project in 2004.

3http://spamassassin.apache.org/

13

http://spamassassin.apache.org/

2. Related Work

Kanich et al. [Kan+08] conducted an experiment in infiltrating one of the
largest botnets, the Storm botnet. The botnet is a massive spamming net-
work with millions of nodes. The botnet consists of master nodes that are
most likely to be controlled by the botnet owners, then there are worker
bots and proxy bots. The proxy bots relay commands from the master
servers to the worker bots in an encrypted P2P (peer to peer) network.
The worker bots execute their orders and report back to the proxy bots.
When a machine first becomes infected, it determines if it is publicly reach-
able. If so, it becomes a proxy bot. If it is behind a firewall, it becomes a
worker. Workers can take up any task, from sending spam to participating
in DDoS (Distributed Denial of Service) attacks. Kanich et al. [Kan+08]
set up eight proxy bots on virtual machines. Their network traffic was
tunneled through a centralized gateway to block unanticipated behavior,
such as DDoS attacks. Furthermore, this gateway rewrote commands that
were sent to worker bots. Doing this, they were able to let worker bots do
what they wanted. Kanich et al. [Kan+08] rewrote e-mail addresses and
URLs that should be included in spam messages to point to websites that
they controlled. By intercepting commands from the master servers and
rewriting them for the worker bots, the monitoring of the botnet’s success
rate was made possible. Their ‘man-in-the-middle’ approach allows an esti-
mate of how much spam links are resolved by spam victims. They not only
looked at click-through-rates of links but also at conversion rates of phar-
maceutical online shops and executions of possibly harmful malware (Ma-
licious Software). Preparing their experiment, they set up an online shop
for pharmaceuticals and a website that encouraged users to run a program
on their computer. The webshop did nothing but report back what users
would have bought and what amount their purchase would have been.
The spam victim could not enter credit card information but instead only
got to see a 404

4 error page. The program to download and run did noth-
ing but report back to the researcher’s server that it was executed. On a
real spammer’s website, this would have been another instance of the bot-
net’s software or other malware. Kanich et al. [Kan+08] find that spammers
have a very low conversion rate. Out of the three spam campaigns they ob-
served only a fraction did get delivered into user’s e-mail inboxes. Just 28

purchases were triggered from 347,000,000 spam mails sent. The program

4
404: HTML error code for ‘page not found’

14

2. Related Work

was sent out 123,790,966 times in two campaigns and was run by spam
victims just 541 times (0.000437%). Moreover Kanich et al. [Kan+08] found
that 90% of spam link visits occurred within one week of the initial spam
delivery. Some are visited by crawlers, others are user-generated traffic.
Just 10% of users and 30% of crawlers hit a link within the first 10 minutes.
Some crawlers show a pattern of hitting links one hour after spam delivery.
This suggests that some crawlers are partly configured to scan links upon
delivery and others to periodically check links in spam mails [Kan+08].

Chirita, Diederich, and Nejdl [CDN05] proposed a method to identify spam
based on the social connection of the inbox owner. Every e-mail address,
a user has contact to, is used to build a social graph between users, which
are represented by their e-mail address. This social graph is then used to
analyze whether it is likely that a received e-mail message is spam or not.
The connections between users are interpreted as trust votes. If a connec-
tion between users exists, the likelihood of it being spam is small. But, if
the sender of the message is not to be found in the graph, this likeliness
increases dramatically. Their proposed system, the Mail Rank, can be cal-
culated locally, for every user individually, or globally, with a combined
social graph for all users of the system.

Wu et al. [Wu+05] used visual features to classify spam e-mails. This step
was necessary as spammers started to adapt their methods to keep their e-
mails passing through newer spam filters. Spammers would integrate their
message in embedded images. By analyzing the content of the images Wu
et al. [Wu+05] improved their filter from 47% with only text-based filtering
to 81% with image-based filtering. A combination of both even brought a
84.6% detection rate.

2.4.2. Spam in Hypertext Systems

To fight spam in Hypertext systems engineers need different approaches.

Castillo et al. [Cas+07] proposed a system to classify spam websites based
on their connections to other websites. This network of neighbors can be
rather perfidious. Their research shows that network features by them-
selves are not precise enough to decide whether a website is spam or not.

15

2. Related Work

They needed to include content-based features to make a better classifica-
tion [Cas+07].

Akismet is a plugin solution for blogs using the Wordpress5 blogging soft-
ware. It is free to use for personal blogs and requires an API key regis-
tration from its users. As of April 2011, Akismet caught 25 billion spam
comments. As of March 2013, the Akismet website6 reports to have de-
tected over 75 billion spam comments on blogs. As Wordpress version 3

was downloaded over 65 million times and is powering over 14.7% of Alexa
Internet’s ‘top 1 million’ web sites, it prevents severe abuse of spammers
[12a; 11a; 11c].

Grier et al. [Gri+10] point out that many spammers use shortener services
to obfuscate their links in tweets. As URLs are not directly used in Online
Social Networks, such as Twitter, it is not directly apparent what site is
linked to a given shortlink. Spammers take advantage of this to hide their
domains behind well-known shorteners, such as Bit.ly, Ow.ly, Tinyurl, or
Is.gd. To get a short-link’s destination, one has to resolve it. Spammers can
complicate resolving their links by chaining multiple shorteners together.
These nested URLs hamper spam detection but also increase the risk for the
spammer to be deleted from either of the used shortening services. They
also evaluated the use of blacklists for spam detection on Twitter. Check-
ing their dataset against three blacklists, Google Safebrowsing, URIBL, and
Joewein, they found that blacklists often lag Twitter, meaning tweets with
spam links are often published before they can be blacklisted. This results
in the need of re-crawling published tweets and URLs to see if the content
might be spam or fraudulent content. If URLs are not found on a blacklist,
they might be on it later, so rechecking the blacklists is necessary as well.
Nevertheless, any redirect-URL needs to be resolved to see the final land-
ing page that then is checked on blacklists. They also argue that certain
blacklists threaten to blacklist innocent websites as they blacklist entire do-
mains. URIBL and Joewein operate in that manner. Google Safebrowsing
offers a more fine-grained approach as it blacklists URLs and not domains
[10b; 12f; 10c].

5http://wordpress.org
6http://akismet.com/

16

http://wordpress.org
http://akismet.com/

2. Related Work

2.4.3. Link Spam

As search engines become more and more important for finding the infor-
mation one is looking for, methods to influence a search engine have been
developed. The main purpose of these actions is to get one’s own website
listed higher in the list of results regarding a certain key word. As the exact
algorithms for ranking websites are well guarded by search engines, people
have to reverse engineer these metrics to optimize the position of their own
website in search results. Some basic algorithms used by search engines are
known from publications and let search engine optimizers estimate basic
approaches that could be successful. The first search engines looked at the
amount of incoming links on a web site. Page et al. [Pag+99] published the
Page Rank algorithm, which is one of the reasons Google became a popular
search engine. They also take outgoing links into account.

Exploiting these metrics is easy. One of the methods used is called ‘link
farming’. One simply puts up multiple web sites that strongly link to each
other. To influence Page Rank, there are ways to optimally put links on
certain nodes of the link farm, e.g. it is better to place outgoing links on
pages that already have many outgoing links. Also, it is beneficial to avoid
sinks, a page that has no outgoing links at all. A Page Rank given to a sink
would propagate their rank to all other pages on the web uniformly. Link-
ing to a second page inside the link farm increases the overall Page Rank
of the link farm. Additionally, one needs as many external links linking to
the link farm as possible. Finally, one places links on every node of the link
farm to the page or community one wants to promote. Influencing other al-
gorithms such as HITS [Kle99], which uses ‘hubs’ and ‘authorities’ as basic
metric, is also possible. Hubs are pages linking to many other pages. Pages
that have many incoming links are called ‘authorities’. The idea is that au-
thorities have many web sites that link to them. Ergo they have content
that is worth one’s while to take a look at. Hubs are more influential if they
link to more prominent authorities, e.g. google.com, cnn.com, apple.com
etc. Pages mentioned on many influential hubs are also called authorities.
To influence HITS, one creates multiple good hubs, pages that link to many
popular pages plus the one page one wants to boost. The only limit to this
method is the financial threshold one can’t pass to run a huge number of
hubs [WGN06].

17

2. Related Work

Figure 2.3.: A typical scamming website, promising easy money.

2.4.4. Scam, Malware and Questionable Content

Spam represents all forms of unsolicited advertisement, messages, com-
ments or e-mails [CL98; WGN06]. Spam is ubiquitous. With a real life
mailbox one would add a sticker that says “No Ads”. With the electronic
form of a mailbox, the e-mail provider usually does some sort of spam
filtering. These are methods developed to automatically test if an e-mail
is considered to be junk or spam. If it is considered to be spam, the mail
server automatically delivers it to a separate folder. This way, the user never
needs to hand-filter e-mails. With URLs this problem usually does not ex-
ist as people can see which link they are visiting. Before clicking on a link
one can read which server will be visited. This is no longer true for short-
URLs. These short-links ‘hide’ the true destination of the link. Users can
only see where it redirects to by actually visiting the short-link. This can be
exploited by spammers. They use short-links to lure visitors on web sites
that users typically would not have visited willingly.

Scam is a fraudulent business scheme or swindle. Scam is similar to spam
as it uses the same techniques to be distributed. However the goal of scam
is very different. The scammer, the name for the person who is responsible

18

2. Related Work

Figure 2.4.: A malware site, mimicking to be Facebook, that starts a download of a ‘.exe’
file: ‘YouLolJPG.exe’. A search of the file’s md5sum revealed it to be a Trojan
Horse.

for the scam, wants to financially benefit from the trustworthiness of users.
Scammers will mostly promise money or something of interest and ask
for something else in return. Their victim is asked to give their credit card
number, bank account number, or make a down payment for a product
that they will never receive. The credit information is then used to defraud
the victim [And+07]. A typical example of a scam website is shown in
figure 2.3. The site promises quick and easy money. The least a victim can
lose on this site is their personal contact information, which may also be
valuable to the scammer. Valid e-mail addresses and names are also sold
on the black market [11b]. These addresses are then again used to send
more spam or scam e-mails.

Another threat is malware. Malware is a type of computer program that
takes advantage of the user’s data or machine in any way. The most com-
monly known malware is the Trojan Horse. It is named after a tale in Greek
mythology. The program essentially offers some kind of back door into the
infiltrated computer. Unlike other forms of computer viruses, it generally

19

2. Related Work

does not self reproduce. The most common use for a Trojan Horse is e.g.:
Keystroke logging, screen watching, data theft or running the infected ma-
chine as part of a botnet.

Those botnets are then used for spamming or DDOS7 attacks. Figure 2.4
shows the download site of a malware (‘YouLolJPG.exe’). Its md5sum re-
vealed that it was a Trojan Horse [12e]. The website wants to appear trust-
worthy and mimics the appearance of facebook.com. The real URL however
shows it is not Facebook. Without the ‘help’ of a URL Shortener this link
would not have been clicked on that easily.

Throughout this thesis I will subsume all fraudulent links, spam, scams,
and malware links as just spam.

2.4.5. URL Blacklists

Before URL Shorteners were abused for spamming, spammers used their
links for their campaigns directly. They bought a cheap domain and used
the newly created URL directly. This is the reason why blacklist services
like ‘surlb.org’ exist. [sur12]

Depending on the purpose of the malicious URLs, they might get listed
in different blacklist indexes. Wepawet is an index for malware, Spamhaus
lists domains found in spam e-mail, PhishTank lists URLs of phishing attack
sites, Google’s Safe Browsing lists URLs of both phishing and malware sites,
SURBL lists phishing, malware and e-mail spam web sites, and URIBL lists
domains that were used in spam e-mails, they also offer a whitelist for
domains [13e; 13d; 13c; 13a; sur12; 12f].

SURBL acts as a lookup service for domains. It offers a service based on
DNS8 to save resources. It lets spam-filters query for domains that are men-
tioned in e-mails. The filters then can decide if they classify the message
as spam or not. As spam gets detected, the content on URL-blacklists gets
updated. Using DNS has several advantages over static lists. The informa-
tion is more current as SURBL updates their data dozens of times per day.

7DDOS: distributed denial-of-service
8DNS: Domain Name System

20

2. Related Work

The servers can be hosted by anyone and updates get pushed via the well-
tested DNS eco-system, and DNS request are very efficient and fast [sur12].
An example of querying SURBL is given in listing 2.1.

Listing 2.1: ”Querying ‘pleksinogars.ru’ manually via the UNIX host command and ping.
‘pleksinogars.ru’ is on the SURBL blacklist. On the other hand ‘qr.cx’ is not
listed on the blacklist.”

flo@rod ~ % host -tA pleksinogars.ru.multi.surbl.org

pleksinogars.ru.multi.surbl.org has address 127.0.0.4

flo@rod ~ % ping -c1 pleksinogars.ru.multi.surbl.org

PING pleksinogars.ru.multi.surbl.org (127.0.0.4) 56(84) bytes of data.

64 bytes from 127.0.0.4: icmp_seq =1 ttl =64 time =0.014 ms

--- pleksinogars.ru.multi.surbl.org ping statistics ---

1 packets transmitted , 1 received , 0% packet loss , time 0ms

rtt min/avg/max/mdev = 0.014/0.014/0.014/0.000 ms

flo@rod ~ % host -tA qr.cx.multi.surbl.org

Host qr.cx.multi.surbl.org not found: 3(NXDOMAIN)

As these services evolved, e-mail spammers decided to use URL Shorteners
to ‘hide’ their links. They know that scanning e-mails is resource-intensive
and that resolving and looking at the content of every link from every e-
mail is too much for most spam-filters. They kick off a chicken and egg
problem for URL Shorteners. When they start creating short-links for a
spam-flood, no one can tell if those links should be considered spam or
not. Just by looking at the URL itself, it is impossible to determine if it is
spam. The URLs will not appear on blacklist as they have not been used
yet. When the spam-wave hits the first servers, the spam-filters would have
to resolve the short-link to see what is behind. Based on the resolved link
they could make the query at a URL-blacklist but instead spam-filters start
reporting that certain short-links appear in spam mails. In the best case, the
URL Shortener gets abuse e-mails to let the service know about the spam-
links. At this time, the URL Shortener could query URL-blacklists as well
and see if the links that have been created are listed. This is however only
possible after users have started using the link. If no one visits the link, the
spam does not get detected.

As a result, URL Shorteners use different techniques to identify these links
and disable them. Bit.ly and Safe.mn, for example, use Google’s Safe Brows-
ing or SURBL. They also use other undisclosed methods to further improve
their results [12b; 12d].

21

3. Experimental Setup

3.1. The URL Shortener: Qr.cx

In June 2009, I started operating a URL Shortener service. The domain reg-
istered for this service was ‘qr.cx’. QR standing for QR-code1 (Quick Re-
sponse Code). CX is the Top Level Domain (TLD) of the Christmas Island,
a territory of Australia in the Indian Ocean. The choice for this domain
was mainly influenced by its availability as the shortener should hand out
QR-Codes containing the short-URL. The QR-Code allows easy and quick
sharing of URLs between smartphones. Also, sharing a URL from a desktop
computer to a smartphone is possible. In mid-June the shortener provided
a public API2, which led to an increased use by websites and applications.
Details on the implementation can be found in appendix A.

3.1.1. Architecture

As big URL Shortener datasets are not publicly available, the purpose of the
service was to collect data that would not be available otherwise. The main
design demand was easy usage. Users should be able to shorten a link for
a website while browsing on that site. This was accomplished by accepting
shortening requests as path in the URL of qr.cx, see figure 2.1 on page 8

[BFM05]. E.g.: ‘http://qr.cx/http://example.com’. The idea behind this
is that users can type ‘qr.cx/’ just before the current URL in their browsers,
hit enter, and get a shortlink for that site.

1http://en.wikipedia.org/wiki/QR_code
2Application Programming Interface: http://qr.cx/api.php

22

http://qr.cx/http://example.com
http://en.wikipedia.org/wiki/QR_code
http://qr.cx/api.php

3. Experimental Setup

Quick short-link creation is typically implemented by using a ‘bookmark-
let’3. A bookmarklet gets its name from a combination of the words ‘book-
mark’ and ‘applet’. It is basically a Java Script call that is saved as a book-
mark in the browser’s bookmark bar and becomes available to the user
with just one click. Qr.cx also offers a bookmarklet. The downside of this
approach is that it needs prior ‘installation’ by the user. The link needs to
be dragged onto the bookmark bar to be usable. After setup, the new tool
is usable by clicking on it. The main disadvantage of the bookmarklet is
that it is not available on smartphones. The bookmarklet needs an environ-
ment where the ‘bookmark’ can be clicked on. It then reads the currently
active URL in the browser window and opens the qr.cx website with the
current URL as path. The called shortener website displays a short-link for
the previously active website with a QR-code that can be scanned by any
QR-code reader on any smartphone.

The main link creation approach, by adding ‘qr.cx/’ in front of the URL,
allows link creation on devices that do not have the possibility of using
bookmarklets, such as, for example, smart phones or tablet computers. Fur-
thermore, it does not need any prior installation of any kind to use the qr.cx
service.

To keep the service as simple as possible it does not offer user-accounts.
The main reason for this was to keep the service open and available for
everyone, without the need of an account or a forced sign-up. This later
proved to be difficult to maintain. Without user accounts there is no mech-
anism to prevent abuse or spamming on a user basis. Having user accounts
or API-keys would have made it much easier to block abusive users. This
is still an option for future versions of the service.

The only meta-information that is available to the end-user is the click
count of an URL. This can be accessed by adding a plus sign (‘+’) at the
end of the short-URL, e.g: ‘http://qr.cx/1r8+’. The accessed information
page would show the QR-Code of the short-URL as well as the original
link where the short-URL would relay to.

3https://en.wikipedia.org/wiki/Bookmarklet

23

http://qr.cx/1r8+
https://en.wikipedia.org/wiki/Bookmarklet

3. Experimental Setup

3.1.2. The Qr.cx API

The Qr.cx API is based on HTTP GET requests and allows programmers
to integrate the qr.cx service into their own software. As the API sends
its responses in machine-readable formats, its usage is much more conve-
nient than implementing a service integration on top of the normal user
interface.

The basic GET request for creating a short-link would be: http://qr.cx/
api/?longurl=http://example.com. Special characters in the URL should
be encoded so that they are considered URI-safe; making sure the receiver
cannot misinterpret different characters in the request. A space (‘ ’) would
become ‘%20’, ‘!’ would become ‘%21’, ‘#’ would become ‘%23’, ‘%’ would
become ‘%25’, etc. (see percent-encoding in Berners-Lee, Fielding, and Mas-
inter [BFM05]4).

Apart from creating a short-URL, there is one call to query the long URL
behind the short-link: http://qr.cx/api/?get=1r8. It returns the original
URL of the http://qr.cx/1r8 short-URL. The one optional parameter to
this interface is ‘mode’. It allows two values: ‘plain’ or ‘title’. ‘plain’ returns
the long-URL in plain text, without anything wrapped around it. The ‘title’
option returns an HTML anchor element with the long-URL as title, e.g.:
http://qr.cx/api/?mode=title&get=http://qr.cx/1r8 answers with:

http://qr.cx/1r8

Any error occurring during link creation or any other request leads with
‘error: ’, followed by a text describing the problem. E.g.: ‘error: either un-
supported URL or the URL is not valid...’

The most prominent user of the API is maybe ‘tiny-url.info’5 which is a
meta-URL Shortener. The service offers a common API for many URL

4http://tools.ietf.org/html/rfc3986#page-12
5http://www.tiny-url.info/

24

http://qr.cx/api/?longurl=http://example.com
http://qr.cx/api/?longurl=http://example.com
http://qr.cx/api/?get=1r8
http://qr.cx/1r8
http://qr.cx/api/?mode=title&get=http://qr.cx/1r8
http://tools.ietf.org/html/rfc3986#page-12
http://www.tiny-url.info/

3. Experimental Setup

Shorteners. One basically calls an API6 with the long URL as argument and
another argument that defines which URL Shortener one wants to use.

3.2. The Qr.cx Dataset

The dataset, acquired by running the before mentioned URL Shortener,
ranges from April 1, 2010 to December 31, 2011 and contains 732,679 short-
URLs and 7,919,891 resolves of these short-URLs (see Table 3.1). A subset
of this data contains geographical longitude and latitude information for
users, which I obtained from geo-locating their IP. This was done by using
the free GeoLite database7. I published the dataset under an Attribution 3.0
Creative Commons license8 and it is available online9. For privacy reasons
the dataset does not contain the original IP address.

Table 3.1.: Dataset characteristics: The observation period ranges from 1st of April 2010 to
31st of December 2011.

Clicks (Resolves) URLs (Creates) Sum
complete dataset 7,919,891 732,679 8,652,570

There are some limitations and biases in the dataset. Given that the URL
Shortener service was operated from within Austria, there likely is a local
bias in the data. Furthermore, popular online social media are often hosted
in US-based territories, which represents another source of bias. In addi-
tion, these services sometimes use bots to resolve short-URLs and explore
the mentioned content. Other biases are possible (e.g. with regard to users’
preferences with regard to certain shortener services). In general, however,
one can say that - based on the comprehensive logs - the URL Shortener
service reflects certain characteristics of URL Shortener services.

Figure 3.1 shows a histogram of resolves for the dataset. One can clearly see
that most links were resolved less than 50 times and that very few links get

6http://www.tiny-url.info/open_api.html
7http://dev.maxmind.com/geoip/geolite
8http://creativecommons.org/licenses/by/3.0/
9http://qr.cx/dataset/

25

http://www.tiny-url.info/open_api.html
http://dev.maxmind.com/geoip/geolite
http://creativecommons.org/licenses/by/3.0/
http://qr.cx/dataset/

3. Experimental Setup

0 200 400 600 800 1000
resolves

101

102

103

104

105

106

lin
ks

 [
lo

g
]

qr.cx Dataset - resolve count histogram

Figure 3.1.: The Resolve histogram for the dataset including resolves up to a limit of 1000.
The y-axis shows a logarithmic scale count of links, the x-axis shows the num-
ber of resolves.

resolved more than 1000 times. There exist 51,675 links that have only been
resolved once and one link that has been resolved around 30,000 times.

Figure 3.2 plots the number of creates and resolves over our observation
period. Resolves and creates correlate strongly in the second half of 2011.
The traffic for URL creates has increased by two orders of magnitude be-
tween December 2010 and December 2011. In the same time period resolves
have increased by a factor of about 25. A spam wave hit the service in April
2011. This is depicted in Figure 3.2 and in a video visualization of the data
that is available on-line [12c].

Figure 3.3, on page 27, depicts the number of URLs with a certain resolve
count. The top left corner shows 51,675 URLs that were resolved only once.
The bottom right corner shows that only three URLs have been resolved
more than 10,000 times. 340,000 links, which have a resolve count of zero,
are not included in the logarithmic graph.

Analyzing the resolves of links one can see interesting patterns emerge.
Building edges between the country a link was created in and the country
the link was resolved in, one gets a graph that shows the inter-country com-

26

3. Experimental Setup

May 2010

Jul 2
010

Sep 2010

Nov 2010

Jan 2011

Mar 2
011

May 2011

Jul 2
011

Sep 2011

Nov 2011

time

100

101

102

103

104

105

106

h
it

s/
d
a
y

Resolves
Creates

Figure 3.2.: Resolves per day are depicted in blue (upper line), creates per day are depicted
in red (lower line). An increase of both creates and resolves can be observed
for April 2011. Taking a deeper look into the server logs, it was found that this
increase was caused by a spam wave that hit the URL Shortener service at that
time.

Figure 3.3.: Scatter plot of number of URLs vs Resolves. This plot depicts that 51,675 links
have been resolved once, top left corner. 340,000 links, which have a resolve
count of zero, are not included in the logarithmic graph.

27

3. Experimental Setup

munication that can be observed by URL Shorteners. Figure 3.4 on page 29

shows the graph of 13 countries and their resolving patterns between them.
The edges’ widths correspond to logarithms of their resolve count. The
biggest edge counts 340,000 resolves between India and the United States
of America. The weakest edge counts 5,000 resolves.

3.3. Descriptive Statistics

To characterize the use of the URL Shortener, a series of metrics was de-
fined. These were used to further analyze the dataset as well as to learn
from them to classify spam. The metrics introduced in section 3.3.1 are
mostly meant to be used on groups of users. These groups of users can
however have any scale, from simple IP subnets, to geo location-based ar-
rangement, or parts of countries. I used IP addresses to group users by
country. This allowed a look at well-defined groups of users. While this
method might not equally distribute all users among all ‘groups’, it is a
well-known pattern that is easy to understand and easy to handle.

3.3.1. Metrics

In order to formulate metrics some concepts within the URL Shortener
network are defined. Basically, all short-links have to be created at first in
order to be usable. From the moment of their creation they exist infinitely.
A group of users, in this case countries, is named by their function in the
network. A creator is the group of users that creates a short-link. The cumu-
lative count of these actions is the ‘create count’ or the number of creates by
that group. A resolver is the group of users that clicks on a short-link. This
action is defined as a resolve or click. The cumulative count is the resolve
count or the indegree.

As for any network, a graph is defined to consist of vertices and edges. A
vertex represents a group. An edge is defined to be directed and weighted.
An edge comes into existence whenever a group clicks on a short-link. The
edge starts at the creator’s node and ends at the resolver’s node. One can

28

3. Experimental Setup

Figure 3.4.: The international flow of shortened URLs: Edges go from countries where
links have been created to countries that resolve them. Edges’ widths cor-
respond to logarithms of their resolve count. Smallest edge weight is 5,000,
biggest 340,000.

Figure 3.5.: Graph of countries showing resolves; only edges with a weight of more than
50,000 are shown. The U.S. and Great Britain are the main hubs where short-
links are resolved.

29

3. Experimental Setup

think of it as a message that has been sent from group A to group B, from
creator to resolver. The creation of a short-link does not have any influence
on the graph at first. However, resolving a short-link results in the creation
of an edge. Any subsequent resolve between the same actors increases the
edge’s weight by one. There can be edges that start and end in the same
node. They are called ‘loops’.

The Indegree is defined as the total weights of ending edges in a vertex.
It is the same as the number of resolves of a group. The Outdegree is de-
fined as the summarized weights of edges starting in a vertex [WF94]. The
Outdegree defines how often links of one group have been clicked.

Furthermore, Self Resolves are defined as resolves that are performed in
links that were created by the group itself. These are equivalent to the
weight of a loop. Alien Resolves are defined as resolves of links that were not
created by the resolving group. These are the Indegree of a vertex minus
the Self Resolves. Having defined the basic concepts of the URL Shortener
network, I can now introduce the first metric.

The RC Ratio is the ratio between resolves and creates. It tells us if a partic-
ular group visited more links than it created. It is a very basic estimation if
the usage of the URL Shortener service is ‘normal’. One would expect that
most actions are resolves. If more creates are detected, one could call this
an irregularity.

RC Ratio in % =
of Resolves

(# of Creates + # of Resolves)
∗ 100 (3.1)

This ratio models resolves and creates as percentage. 100% RC Ratio means
the group has not created any links. If it is lower than 50% it means the
group resolved fewer links than it created. This shows the group as a whole
‘sends out’ more links than it clicks on. One can see a plot of this metric in
figure 3.6 on page 32.

A variation of this metric would be to only count resolves of self-created
short-URLs, see equation 3.2. It shows how much of the created links are
actually used locally.

30

3. Experimental Setup

Self RC Ratio in % =
of Self Resolves

(# of Creates + # of Self Resolves)
∗ 100 (3.2)

The Internal Resolve Rate (IRR) is the ratio of link resolves that were created
by the groups themselves to its Indegree. It is expressed in percent:

Internal Resolve Rate (IRR) in % =
of Self Resolves
of all Resolves

∗ 100 (3.3)

The IRR shows how many of the resolves of a group happen on links cre-
ated by that group. E.g.: If the fictional country Eurasia has 80 resolves of
links that were created within the country, and 20 resolves of links that
were created abroad, it would have an IRR of 80%. The links visited in
Eurasia are 80% local links.

The ratios between Indegree and Outdegree show the ‘consumption’ or
‘broadcasting’ activity of a group. The Indegree is defined as the cumula-
tive resolve count of a group. The Outdegree was defined as the cumulative
resolve count of links created by that group.

The Resolver Percentage (Res. %) shows how much a group ‘consumes’.

Resolver Percentage =
Indegree

(Indegree + Outdegree)
∗ 100 (3.4)

The Creator Percentage (Creator %) is an indicator for the ‘broadcast’ activity
of a group.

Creator Percentage =
Outdegree

(Indegree + Outdegree)
∗ 100 (3.5)

The Resolver Percentage differs from the Internal Resolve Rate (IRR) as
it does count every link resolve. Including those of links that were not
created locally. Figure 3.7b, on page 34, shows the Resolver Percentage for
links created in Austria. One can see that only 10% of all clicks are local.
Clicks from the USA (fig. 3.7f) are mostly resolved locally. Detailed plots
for most countries can be found in appendix B starting on page 66.

31

3. Experimental Setup

Fi
gu

re
3
.6

.:
W

or
ld

m
ap

sh
ow

in
g

th
e

ra
ti

o
be

tw
ee

n
re

so
lv

es
an

d
cr

ea
te

s
(R

C
R

at
io

)
by

co
un

tr
y,

as
sh

ow
n

in
eq

ua
ti

on
3
.1

.
La

rg
e

pa
rt

s
of

So
ut

h
A

m
er

ic
a

an
d

A
fr

ic
a

ar
e

id
en

ti
fie

d
as

m
os

tl
y

cr
ea

to
rs

w
it

h
sm

al
l

nu
m

be
rs

of
re

so
lv

es
.

N
or

th
A

m
er

ic
a,

A
si

a,
A

us
tr

al
ia

,a
nd

(t
o

so
m

e
ex

te
nt

)
Eu

ro
pe

ar
e

id
en

ti
fie

d
as

m
os

tl
y

re
so

lv
er

s,
w

it
h

sm
al

l
nu

m
be

rs
of

cr
ea

te
s.

32

3. Experimental Setup

Plotting the In- and Outdegree as shown in figure 3.8b on page 36, one
can see which countries ‘export’ more links than they ‘import’. A high
Outdegree indicates that there are more links clicked on abroad than there
are links clicked on locally. Figure 3.8a shows the world map of Resolver
Percentage and Creator Percentage. Countries in red have a high Creator
Percentage, countries in blue have a high Resolver Percentage.

33

3. Experimental Setup

(a) (b)

(c) (d)

(e) (f)

Figure 3.7.: The Click histogram for links created in different countries on the left hand
side, shows the basic world wide popularity of links created in that coun-
try. The Resolver Percentage histogram for locally created links, on the right,
shows how popular the locally created links are within the same country.
(a)(c)(e): Click histogram for Austria, India, and the USA.
(b)(d)(f): Resolver Percentage histogram for Austria, India, and the USA.
Most links created in India are visited abroad (d), showing a very little per-
centage of local resolves. Almost all links created in the USA have more than
a 50% share of local resolves (f). Austria shows a high local popularity as well
(b), while some links are almost exclusively resolved abroad.

34

3. Experimental Setup

In Table 3.2 on page 37 one can see the top 24 countries by Indegree. The
United States of America have almost 10 times as many resolves as Great
Britain. A low IRR and a high Creator Percentage are indicative for a nation
to be ‘spamming’, although it is not conclusive evidence. One can see that
the USA have an RC Ratio of 98.72 %, which shows that they are resolving
a lot more links than they are creating. However, it does not tell us that
there are no spam links at all coming from the USA.

3.4. Annotation & Sample Sets

For the machine learning analysis of the dataset, two subsets of the big
dataset, called subset A and subset B, were used. Table 3.3 on page 38

shows the amount of spam and the size of the subsets.

Subset A, the first and smaller sample set, contains 5,957 short-URLs, which
were randomly selected and hand-annotated. A little under 1% of the orig-
inal data was drawn from buckets each representing one month. Classi-
fication was done by visiting the long URL and evaluating its content. If
the website was no longer available or the domain did no longer exist, it
was assumed to be spam. This is based on the observation that spammers
regularly discard their domains after they were blacklisted. It is likely that
these domains were spam domains, but this was not checked thoroughly.
If the long URL was identified as spam, all URLs that used the same do-
main or domain pattern were marked as spam too. This was to address
a behavior of spammers that had been observed, where some spam sites
would change their sub-domains or would vary their URL paths10. Do-
mains which clearly host multiple legitimate websites but were abused by
spammers were not handled in such a manner. The annotated set A con-
tained 4,780 spam and 1,177 non-spam links. This results in a spam rate
of 80.24%. I also evaluated whether or not creators had resolved their link
themselves.

The second subset B is a semi-automatically annotated sample. It consists
of 297,470 URLs. 190,883 of them are considered spam, which results in a

10protocol://subdomain.domain.TLD/path

35

protocol://subdomain.domain.TLD/path

3. Experimental Setup

(a) World map showing the Resolver Percentage and the Creator Percentage based
on the Indegree and Outdegree of countries. Resolver Percentage is defined in
equation 3.4 and the Creator Percentage is defined in equation 3.5.

100 101 102 103 104 105 106 107

Indegree [log]

103

104

105

106

O
u
td

e
g
re

e
 [

lo
g
]

AT

AU

BE

BR

CA

CH
CN

DE

FR

GB

GR

IE

IN

JP

KR

KZ
MX

MY

NL

NO

PE
PH RU

TH

TR
US

VN

Country In/Outdegree - threshold: 2000

(b) Scatter plot of countries by Indegree and Outdegree on a logarithmic scale. The
U.S. has the highest Indegree while Mexico and Thailand have high Outdegrees.
One can see which countries ‘export’ (on the left) more links than they ‘import’.

Figure 3.8.: In- and Outdegree of Countries.

36

3. Experimental Setup
Ta

bl
e

3
.2

.:
To

p
2

4
C

ou
nt

ri
es

by
re

so
lv

es
.I

nd
ia

,r
an

ke
d

1
2

th
pl

ac
e,

sh
ow

s
an

in
te

re
st

in
g

pa
tt

er
n

of
lin

k
cr

ea
te

s
to

re
so

lv
es

,
w

he
re

cr
ea

te
s

ou
tn

um
be

r
re

so
lv

es
tw

ic
e

(c
ol

.I
nd

eg
re

e)
,r

es
ol

ve
s

of
lo

ca
lly

cr
ea

te
d

lin
ks

w
it

hi
n

In
di

a
ar

e
ju

st
a

lit
tl

e
ov

er
1

0
%

of
th

ei
r

cr
ea

te
s.

Th
e

U
.S

.a
nd

G
re

at
Br

it
ai

n
sh

ow
fa

r
m

or
e

re
so

lv
es

(I
nd

eg
re

e)
th

an
cr

ea
te

s.
A

lie
n

R
es

ol
ve

s
ar

e
re

so
lv

es
of

lin
ks

cr
ea

te
d

in
ot

he
r

co
un

tr
ie

s.
Se

lf
R

es
ol

ve
s

ar
e

re
so

lv
es

of
lin

ks
cr

ea
te

d
w

it
hi

n
th

e
sa

m
e

co
un

tr
y.

N
ot

e:
Se

lf
R

es
ol

ve
s

an
d

A
li

en
R

es
ol

ve
s

su
m

up
to

th
e

In
de

gr
ee

.
C

tr
y

In
de

gr
ee

O
ut

de
gr

ee
C

re
at

es
Se

lf
R

es
.

A
lie

n
R

es
.

IR
R

R
C

R
at

io
R

es
.%

C
re

at
or

%
U

S
62

50
74

1
1
7
6
4
3
7

81
34

0
1
2
8
6
8
8

6
1
2
2
0
5
3

2
.0

5
%

9
8
.7

2
%

9
6
.1

4
%

3
.8

6
%

G
B

69
98

04
3
4
9
3
8

24
09

2
8
0
8

6
9
6
9
9
6

0
.4

0
%

9
9
.6

6
%

9
5
.2

4
%

4
.7

6
%

D
E

3
5
7
0
3
6

7
0
8
8
9

6
5
4
4

2
3
3
0
6

3
3
3
7
3
0

6
.5

3
%

9
8
.2

0
%

8
3
.4

3
%

1
6
.5

7
%

R
U

1
0
8
9
9
6

1
1
5
7
9
8

7
5
9
9

3
4
4
9

1
0
5
5
4
7

3
.1

6
%

9
3
.4

8
%

4
8
.4

9
%

5
1
.5

1
%

JP
1
0
2
9
7
9

1
1
3
8
2
8

8
0
1
5

1
2
8
0

1
0
1
6
9
9

1
.2

4
%

9
2
.7

8
%

4
7
.5

0
%

5
2
.5

0
%

K
R

5
0
6
7
9

1
2
8
3
2
6

8
9
6
5

3
8
3
9

4
6
8
4
0

7
.5

7
%

8
4
.9

7
%

2
8
.3

1
%

7
1
.6

9
%

FR
4
3
8
8
6

2
1
3
2
4
8

2
6
2
7
2

6
2
3
7

3
7
6
4
9

1
4
.2

1
%

6
2
.5

5
%

1
7
.0

7
%

8
2
.9

3
%

C
A

3
4
2
6
3

1
9
4
1
9

1
1
5
4

4
6
8
1

2
9
5
8
2

1
3
.6

6
%

9
6
.7

4
%

6
3
.8

3
%

3
6
.1

7
%

N
L

3
2
4
5
4

2
0
1
8
4

1
6
8
6

3
8
4

3
2
0
7
0

1
.1

8
%

9
5
.0

6
%

6
1
.6

6
%

3
8
.3

4
%

C
N

3
0
6
2
6

9
5
9
3

9
0
7

7
5
7

2
9
8
6
9

2
.4

7
%

9
7
.1

2
%

7
6
.1

5
%

2
3
.8

5
%

G
R

1
6
2
9
3

1
5
4
0
0

1
1
9
6

3
1

1
6
2
6
2

0
.1

9
%

9
3
.1

6
%

5
1
.4

1
%

4
8
.5

9
%

IN
15

62
0

4
5
6
0
1
7

31
79

8
33

95
1
2
2
2
5

2
1
.7

3
%

3
2
.9

4
%

3
.3

1
%

9
6
.6

9
%

IE
1
4
9
3
0

3
4
0
8

2
8
3

1
1
4
9
2
9

0
.0

0
%

9
8
.1

4
%

8
1
.4

2
%

1
8
.5

8
%

A
U

1
1
8
7
7

5
0
5
9

2
7
8

6
5

1
1
8
1
2

0
.5

4
%

9
7
.7

1
%

7
0
.1

3
%

2
9
.8

7
%

A
T

9
5
8
0

7
7
5
6
6

1
1
1
8

6
5
1
4

3
0
6
6

6
7
,9

9
%

8
9
.5

5
%

1
0
.9

9
%

8
9
.0

1
%

U
A

9
1
9
1

5
6
1
6
0

5
2
0
8

1
5
8

9
0
3
3

1
.7

2
%

6
3
.8

3
%

1
4
.0

6
%

8
5
.9

4
%

IT
8
9
1
6

7
8
6
1
0

1
6
5
5
1

4
8
9

8
4
2
7

5
.4

8
%

3
5
.0

1
%

1
0
.1

9
%

8
9
.8

1
%

C
O

8
4
4
9

1
1
5
4
7
0

8
1
1
0

1
0

8
4
3
9

0
.1

2
%

5
1
.0

2
%

6
.8

2
%

9
3
.1

8
%

BE
6
9
5
2

1
8
0
7
5

9
1
6

1
7

6
9
3
5

0
.2

4
%

8
8
.3

6
%

2
7
.7

8
%

7
2
.2

2
%

C
H

6
9
1
5

5
4
5
7

5
0
5

2
0
3

6
7
1
2

2
.9

3
%

9
3
.1

9
%

5
5
.8

9
%

4
4
.1

1
%

SA
5
8
2
2

1
6
2
4
8
0

1
2
5
7
4

2
4
0
5

3
4
1
7

4
1
.3

1
%

3
1
.6

5
%

3
.4

6
%

9
6
.5

4
%

ES
4
6
6
8

3
5
6
2
4

2
7
8
4

4
2

4
6
2
6

0
.9

0
%

6
2
.6

4
%

1
1
.5

9
%

8
8
.4

1
%

Q
A

4
6
0
1

1
8
0
7
4

1
4
1
1

2
4
5
9
9

0
.0

4
%

7
6
.5

3
%

2
0
.2

9
%

7
9
.7

1
%

M
Y

3
6
2
7

2
5
6
0
4
2

1
9
8
5
7

8
2
0

2
8
0
7

2
2
.6

1
%

1
5
.4

4
%

1
.4

0
%

9
8
.6

0
%

37

3. Experimental Setup

Table 3.3.: The annotated subset A of the big dataset, where 80.24% of URLs are labeled
as spam. The bigger semi-automatically annotated subset B consists of 64.17%
spam.

Set A self resolved not self resolved Sum
spam 17 4,763 4,780

non-spam 18 1,159 1,177

Sum 35 5,922 5,957

Set B
spam 1,390 189,493 190,883

non-spam 837 105,750 106,587

Sum 2227 295,243 297,470

64.17% spam rate. The low spam rate is most likely caused by automatically
whitelisting known good domains, while doing nothing with unknown
domains, good or bad. The annotation of dataset B was done by creating
whitelists and blacklists. Whitelisted domains would be considered safe.
The whitelist contained websites like my blog, Google.com, BBC.co.uk, and
many others that were shortened on a regular basis. Spam domains were
added to the blacklist on a ‘spam-attack’-basis. Whenever a spam-wave hit
the server, those links were analyzed, the domain added to the blacklist,
and the created links in the database were marked as spam. Any further
links created with the same domain names were accepted but automati-
cally marked as spam. The newly created link would never work once the
domain was on the blacklist. This approach is similar to Bit.ly’s behavior
of accepting all URLs and then deleting malicious links later, described by
Maggi et al. [Mag+13]. The resulting subsets can be seen in table 3.3.

3.5. Features

The main goal of my approach is to achieve a good classification score
(95%+) without the need to crawl the content of the shortened website. The
basic idea behind this is that, firstly, the content of a web site can change
over time. This has been exploited in the past, as mentioned by Maggi
et al. [Mag+13]. A spammer can easily start shortening links of websites

38

3. Experimental Setup

that host benign content at first and later change that to abuse visitors. A
content check by the URL Shortener would have no impact at short-link
creation time and would have to be repeated after a certain time. This has
to be re-done as long as the link exists and the link is eventually blocked for
abuse. This approach also leaves the spammer to use the short-link for the
time between the content change and the detection by the URL Shortener.
As the content of a website is no guarantee for successful spam detection
it is doubtful how useful this method is.

Secondly, one has to consider network overhead for scanning websites, gen-
erating traffic, and handling server outages. This maybe less problematic
than it would have been a few years ago but it still consumes resources that
could be used elsewhere.

Thirdly, it is maybe not enough to just crawl the text content of websites.
There are many websites that rely heavily on image content, where parts of
the content is represented in images. To detect abusive content one would
have to crawl those images and run character recognition on them. Clearly
this is computational overhead that should be reduced as much as possible.
What if one could tell if a link is spam by looking at features that can be
more easily gathered? What if these features were already available to the
URL Shortener? Therefore, I looked for a set of features that was able to
classify spam according to my goal. This section defines the features used
to classify spam and fraudulent links. The same features were used for the
different machine learning algorithms.

Using the metrics from section 3.3.1 one can directly define some features
to use. Those were all calculated based on the country a link was cre-
ated in. The Internal Resolve Rate (ctry irr), Creator Percentage (ctry crea-
tor percentage), Resolver Percentage (ctry resolver percentage), RC Ratio (ctry -
rc ratio), Indegree (ctry indegree), and Outdegree (ctry outdegree). Those were
directly calculated as described in section 3.3.1. Based on their direct rela-
tion, some of these features have linear correlations. This however, did not
have a negative influence on the results. The feature correlation can be seen
in figure 3.9 on page 41. Table 3.4 on page 40 lists the main features.

The Create Count of a country (ctry create cnt) is the total amount of links
a country has created. The Resolve Count of a country is the total num-
ber of resolves a country has performed. It is the same as the Indegree

39

3. Experimental Setup

Table 3.4.: List of features used for the machine learning experiments.
Feature Name Description Comment
a1 - zw up to 217 creator country features binary feature
click time Time in minutes from creation to first click
ctry Country ID 1 - 217

ctry create cnt Create count of creator country
ctry creator percentage Creator percentage of creator country
ctry indegree Indegree of creator country (resolve count)
ctry irr Internal Resolve Rate of creator country
ctry outdegree Outdegree of creator country
ctry rc ratio RC Ration of creator country
ctry resolver percentage Resolver percentage of creator country
domain age Domain age in minutes at link creation
lat Geographical Latitude -180 - 180

localminutes Local day time at link creation in minutes 0 - 1440

lon Geographical Longitude -180 - 180

minutes Server day time at link creation in minutes 0 - 1440

numip IP address converted to number 0 - 232

self click True if creator IP visited its own link binary feature

(ctry indegree). All links that were created within a country contribute to
features with ‘ctry ’ in front of the feature name. These feature values are
the same for any link from the same country.

The Country variable (ctry) is an index of the country and is arbitrarily
chosen. It is basically a unique ID given to a country and is based on the
temporal occurrence in the dataset.

Corresponding to the Country variable there is a set of 212 features that
each represent a country. It is a binary vector. Their label is the two-letter
country code (ISO 3166-1 alpha-2). Just one value out of the 212 can be set
per URL, e.g.: if a link were created in Eurasia, the variable for Eurasia
would be set to one and all others would be set to zero. This type of encod-
ing overcomes certain classification difficulties with Logistic Regression.

Now I will present features that are unique to a short-URL and not based
on their country of creation:

The Click Time feature (click time) is the time in minutes it takes for a link
to be resolved for the first time. This is zero if the link is never clicked on.

40

3. Experimental Setup

m
in

u
te

s

lo
ca

lm
in

u
te

s

n
u
m

ip lo
n

la
t

d
o
m

a
in

_a
g
e

se
lf
_c

lic
k

cl
ic

k_
ti

m
e

ct
ry

_c
re

a
te

_c
n
t

ct
ry

_r
c_

ra
ti

o

ct
ry

_i
n
d
e
g
re

e

ct
ry

_o
u
td

e
g
re

e

ct
ry

_c
re

a
to

r_
p
e
rc

e
n
ta

g
e

ct
ry

_r
e
so

lv
e
r_

p
e
rc

e
n
ta

g
e

ct
ry

_i
rr

ct
ry

minutes

localminutes

numip

lon

lat

domain_age

self_click

click_time

ctry_create_cnt

ctry_rc_ratio

ctry_indegree

ctry_outdegree

ctry_creator_percentage

ctry_resolver_percentage

ctry_irr

ctry

features pearson correlation (first 16)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.9.: The correlation matrix for the first 16 features (excluding the binary coun-
try features). As one would expect there is a correlation between the time of
day at the creator’s timezone (localminutes) and the server time (minutes).
However, the time of day does not correlate with any other feature. Features
based on country data correlate stronger as they are linearly dependent and
derived from the same set of figures. The full correlation matrix can be seen
in Appendix C.1

As the data shows, this feature is very indicative depending on whether a
link is a spam link or not. Spam links have a very high Click Time.

The Self Click feature (self click) is a binary feature that indicates if the
creators themselves visited the link. This is not based on a group but on
the single user. If the same IP created a link and is seen on the link as a
user, this variable is set to one. It is reasonable to assume that spammers
would not have the resources to visit every link they create. Especially as
they create thousands of links at a time. A link that was created by hand
has a higher chance to be checked for functionality by its creator.

41

3. Experimental Setup

The IP (numip) is the IP address of the creator converted into an integer. It
is the base for the country information of every link as well as any other
geographical information that can be used. It is the sole feature that is not
available or calculable with the published dataset.

Longitude (lon) and Latitude (lat) are the geographical coordinates ob-
tained through the IP address of the link creator.

The Minutes feature (minutes) is the time of day at creation based on the
server time in minutes. A link created at a local timestamp of 02:00 in the
morning would have a minutes value of 120.

The Local Minutes feature (local minutes) is the converted local time of day
based on the timezone of the creator. It is converted based on the timezone
information gained from the IP address of the creator and is expressed in
minutes, ranging from zero to 1440 (the number of minutes in one day). The
idea behind this feature is to tell humans from programs apart. A human
would be less likely to create a link at 3 a.m. than an automated program
operating from another time-zone.

Finally, there is the Domain Age feature (domain age). It is the only feature
that cannot be directly calculated from the dataset itself. It is crawled from
WHOIS records. Every domain of every link that is shortened was crawled
for its WHOIS data. Most WHOIS records indicate when the domain was
first registered. For this experiment this date was extracted and used as
start date. The time difference between the domain’s creation date and the
link’s creation date was calculated and converted in minutes. If WHOIS
records did not indicate the first date of registration, the ‘last changed’
entry was used to calculate the age of the domains. If the domain did not
exist any more at the time of crawling, it was assumed to be a spam domain
and the Domain Age value was set to zero.

3.6. Spam Classification

Identifying spam is a typical classification problem with two classes: spam
or ham (not spam). To classify the data four machine learning algorithms

42

3. Experimental Setup

were evaluated. Their performance is described in detail on the following
pages.

The machine learning library used was the SciKit Learn Library11 available
for Python12.

The data handling and reformatting of the data was done in Python as
well. Parts of the reformatting process was implemented in the MapReduce
paradigm [DG08]. This allowed significant memory savings when restruc-
turing the data. The purpose of MapReduce is to handle huge amounts of
data line by line. Furthermore, MapReduce is designed to be distributed
among a cluster of machines. Every worker node does one single simple
task on the one line of data it is provided with. It’s called the mapper. Af-
ter that, the output is directly written to the standard output. Every worker
gets a subset of the data. All results are then collected and sorted. This
sorted data is then aggregated by the mapper. The mapper collects all sub-
results and calculates a final result. A simple example for MapReduce is
counting words: Mappers get a part from a document and read it line by
line. For every word they see they print e.g: ‘foo 1\n’ to the standard out-
put. Each line represents a key, ‘foo’, and a value, ‘1’. The sorting between
mappers and reducers guarantees that all the keys are listed in one block.
The reducer reads this sorted data line by line. For the same key it sums up
the values. Every time the key changes it resets its counter to the current
value and starts over.

3.6.1. Evaluation

To evaluate the results from machine learning algorithms there are several
metrics one can use. As classifying spam is a classification problem with 2

classes, one can get 4 possible outputs for a classified sample: True Positive
(TP), True Negative (TN), False Positive (FP), or False Negatives (FN). True
Positives are correctly classified samples from the positive class, in our
case spam.True Negatives are correctly classified samples from the negative
class, ham, or no spam. False Positives are ham samples that wrongly got

11http://scikit-learn.org/
12http://www.python.org

43

http://scikit-learn.org/
http://www.python.org

3. Experimental Setup

Table 3.5.: Confusion Matrix: showing the four classes of binary classification.
Truth

Spam Ham

Classifier Spam TP FP
Ham FN TN

classified as spam. Finally, there are False Negatives which are samples
of spam that were falsely classified as ham. These classes can be used to
calculate different metrics:

The Accuracy, in eq. 3.6, is the ratio of samples which were correctly clas-
sified based on all samples: ‘Successfully classified’ versus all.

Accuracy =
TP + TN

(TP + TN + FN + FP)
(3.6)

The Precision, in eq. 3.7, is the measure to evaluate how well a classification
algorithm identifies the positive samples.

Precision =
TP

TP + FP
(3.7)

The Recall, True Positive Rate or Sensitivity, in eq. 3.8, shows how likely it
is to classify spam as spam.

Recall =
TP

(TP + FN)
(3.8)

The True Negative Rate or Specificity, in eq. 3.9, evaluates how many ham
samples are actually ham and not spam. Keeping this value high helps
avoiding False Positives. In most spam detection systems it is better to
keep this high. No ham is reported as spam and just some spam is not
found. Users will find the spam anyhow but will not lose ham due to the
spam filter.

TNR =
TN

(TN + FP)
(3.9)

44

3. Experimental Setup

The Negative Predictive Value, in eq. 3.10. If this value is high it indicates
that false negatives are low and only a little spam is missed.

NPV =
TN

(TN + FN)
(3.10)

F1-Score in eq. 3.11, is the harmonic mean between precision and recall
[YL99]. It has some weakness when estimating the performance of a clas-
sifier on an unbalanced dataset. As the samples in the dataset were about
80% spam, this measure was not easy to interpret. For the sake of com-
pleteness I will also report the results as F1-Score, but this value should be
taken with some caution.

F1 = 2 ∗ precision ∗ recall
precision + recall

(3.11)

F1 = 2 ∗
TP

(TP+FP) ∗
TP

(TP+FN)

TP
(TP+FP) +

TP
(TP+FN)

(3.12)

Matthews correlation coefficient (eq. 3.13) is a measure that works for un-
balanced datasets [Bal+00]. It takes any misclassification into account. The
MCC is minus one for a complete misclassification, zero for average or
random performance, and one for a perfect fit. To make it comparable the
MCC will also be reported in percent. The scaling was done as described
in equation 3.14. 0% MCC mean no fit, 50% MCC represent a random per-
formance and 100% MCC are a perfect fit.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(3.13)

MCC% =
MCC + 1

2
∗ 100 (3.14)

45

4. Results

In this chapter the results of multiple machine-learning evaluations based
on those metrics and features are presented. In practical testing, four dif-
ferent machine-learning algorithms were used.

4.1. Experiments

4.1.1. Feature Quality

Taking a closer look at the dataset and the distribution of features in the
two classes, ham and spam, one can see that many of the features look
very promising to make good decisions. The latitude of a creator indi-
cates clearly that most non spammers are located on the northern hemi-
sphere, which can be seen in figure 4.1a. Looking at the Country Indegree
(fig. 4.1h), one can see that it has about the same distribution as the Coun-
try Create Count (fig. 4.1c). This is surprising at first because when looking
at the dataset one would expect that spammers come from countries with
a high number of creates and a low number of resolves. This assumption
is shown to be correct when looking at the Country Creator Percentage
(fig. 4.1d) and the Country Resolver Percentage (fig. 4.1e), which puts the
absolute values in relation to each other.

The Indegree and Outdegree from figures 4.1h and 4.1i and the RC Ratio
from figure 4.1j confirm the last observation. Figure 4.1g shows that the
number of different countries spammers come from is much higher than
the one of non-spammers.

46

4. Results

ham spam
0.002

0.001

0.000

0.001

0.002

0.003

0.004
lat

(a)

ham spam

0.004

0.002

0.000

0.002

0.004

lon

(b)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
ctry_create_cnt

(c)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
ctry_creator_percentage

(d)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
ctry_resolver_percentage

(e)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
ctry_irr

(f)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
ctry

(g)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
ctry_indegree

(h)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
ctry_outdegree

(i)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
ctry_rc_ratio

(j)

Figure 4.1.: Feature distribution differences between the two classes ham and spam.
(a): Latitude; (b): Longitude; (c): Country Create Count; (d): Country Creator
Percentage; (e): Country Resolver Percentage; (f): Country Internal Resolve
Rate (IRR); (g): Country ID; (h): Country Indegree; (i): Country Outdegree;
(j): Country RC Ratio;
Longitude and latitude differ in their distributions across both classes (a)(b).
The latitude indicates that most non-spam comes from the northern hemi-
sphere. The creator percentage, the resolver percentage, and the outdegree
show a high variance between both classes, indicating they might be valuable
features.

47

4. Results

ham spam
0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
click_time

(a)

ham spam
0.06

0.04

0.02

0.00

0.02

0.04

0.06
self_click

(b)

ham spam
0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
numip

(c)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
domain_age

(d)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
minutes

(e)

ham spam
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
localminutes

(f)

Figure 4.2.: Feature distribution differences between the two classes ham and spam.
(a): Click Time (minutes from creation to first resolve); (b): Self Click; (c): IP;
(d): Domain age; (e): Minutes (link creation server time in minutes); (f): Local
minutes (link creation local time in minutes);
The click time (a) indicates that spam links are idle for a much longer time
than non-spam links. The day time features (e)(f) do not differ significantly
between the two classes, thus signaling they might be less promising features.

48

4. Results

The non-country related features can be seen in figure 4.2. The Click Time
(fig. 4.2a), the amount of time passing between link creation and the first
click, shows that spammers’ links have a longer idle time before their first
click. This might be due to the delay caused in a spammer’s link distribu-
tion methods. The IP address of the creator has a wider range with spam
than it has with ham (fig.4.2c). This is not surprising as several bot net
spamming waves were observed while operating qr.cx. The time of day
in minutes shows no significant difference between the two classes. Nei-
ther the server time (fig. 4.2e) nor the local time (fig. 4.2f) show significant
deviance.

The most promising feature for spam detection is the age of the domain
(fig. 4.2d). Spammers often change their domains. The reason for this be-
havior is most likely to be the existence of blacklists. The spammers’ do-
mains quickly get recognized and are then blacklisted rendering the do-
main unusable for their purpose. This feature is very valuable to estimate
if a link is spam or not. Table 4.2 shows the results of a recursive feature
elimination, which identifies it as the most important features.

49

4. Results

Table 4.1.: This table shows the rank
of the features, applying
RFE (recursive feature
elimination) with Logistic
Regression, on subset A with
5952 URLs, rank 1 being
the most important feature.
Countries with a rank higher
than 20 have been omitted.
See appendix A Table C.1 for
the full list.

Rank Feature
1 ctry create cnt
2 ctry outdegree
3 click time
4 ctry indegree
5 domain age
6 numip
7 minutes
8 localminutes
9 lon

10 ctry
11 lat
12 ctry creator percentage
13 f r
14 ctry rc ratio
15 br
16 ctry resolver percentage
17 de
18 eg
19 it
20 ae
...

47 sel f click
81 ctry irr

Table 4.2.: This table shows the rank
of the features, applying
RFE (recursive feature
elimination) with Logistic
Regression, on subset B with
297,470 URLs, rank 1 being
the most important feature.
Countries with a rank higher
than 20 have been omitted.
See appendix A table C.2 for
the full list.

Rank Feature
1 domain age
2 ctry resolver percentage
3 us
4 ctry rc ratio
5 ctry indegree
6 f r
7 lon
8 it
9 ctry

10 lat
11 ctry creator percentage
12 click time
13 numip
14 mx
15 th
16 ctry create cnt
17 ua
18 tr
19 my
20 co
...

35 ctry outdegree
36 ctry irr
44 localminutes
64 sel f click
96 minutes

50

4. Results

4.1.2. Classifier Experiments

The machine learning experiments were done with four different classifiers.
The datasets used are the ones described in section 3.4. Dataset A is the
smaller one with 5,957 short-URLs, dataset B is the bigger one with 297,470

short-URLs. As all classifiers ran out of memory on dataset B, only half the
dataset could be used. To get any results on that subset, on a machine with
8 gigabytes of RAM, this subset had to be cut in half. The cut was done
after shuffling the samples. 148,735 samples should however be enough to
get a good impression of the classifiers’ performances with a big dataset.
The confusion matrix for the reports is based on a single training set. Two
thirds of the dataset were used to train the classifier and one third was used
for testing.

Logistic Regression

Logistic Regression’s basic performance is around 85% MCC. When nor-
malizing the data along both axes (features, samples), Logistic Regression
performs even better with up to 93.7% MCC, as can be seen in table 4.4.
The confusion matrix is shown in table 4.3.

Support Vector Classifier

Support Vector Classifiers or Support Vector Machines operate in the high
dimensional space that is defined by the provided features. Their perfor-
mance is highly dependent on normalized and scaled data. The results are
shown in table 4.10 and the confusion matrix is shown in table 4.9.

Decision Trees

Decision Trees surpass the target threshold of 95% MCC. The input data
for Decision Trees should not be normalized as the performance of Deci-
sion Trees would suffer. Therefore, the data was used without scaling or
normalizing for this setup.

51

4. Results

Table 4.3.: Confusion Matrix for Logistic Regression. The first confusion matrix shows the
results on dataset A, the second half shows the results on a random half of
dataset B.

Truth
Spam Ham

Logistic Regression (A) Spam 1526 65

Ham 54 339

Logistic Regression (1
2 B)

Spam 31408 2477

Ham 391 15303

Table 4.4.: Performance of Logistic Regression. ST is a simple test split with 2/3 to train
and 1/3 to test, CV2 is a 2-fold cross-validation, CV10 a 10-fold cross-validation.

A ST CV2 CV10

Accuracy 0.9400 0.9378 0.9397

Precision 0.9591 0.9494 0.9553

Recall 0.9658 0.9744 0.9702

F1 Score 0.9625 0.9617 0.9627

MCC 0.8133 0.7982 0.8064

MCC% 90.66 89.91 90.32

1
2 B ST CV2 CV10

Accuracy 0.9422 0.9421 0.9424

Precision 0.9269 0.9272 0.9276

Recall 0.9877 0.9870 0.9871

F1 Score 0.9563 0.9562 0.9564

MCC 0.8748 0.8747 0.8755

MCC% 93.74 93.73 93.77

52

4. Results

Table 4.5.: Confusion Matrix for the Support Vector Classifier. The first confusion matrix
shows the results on dataset A, the second half shows the results on a random
half of dataset B.

Truth
Spam Ham

SVM (A) Spam 1520 42

Ham 74 348

SVM (1
2 B)

Spam 31162 2641

Ham 691 15085

Table 4.6.: Performance of the Support Vector Classifier. ST is a simple test split with 2/3

to train and 1/3 to test, CV2 is a 2-fold cross-validation, CV10 a 10-fold cross-
validation.

A ST CV2 CV10

Accuracy 0.9415 0.9432 0.9437

Precision 0.9731 0.9701 0.9726

Recall 0.9536 0.9587 0.9568

F1 Score 0.9632 0.9644 0.9646

MCC 0.8215 0.8249 0.8281

MCC% 91.07 91.24 91.41

1
2 B ST CV2 CV10

Accuracy 0.9328 0.9329 0.9329

Precision 0.9219 0.9225 0.9224

Recall 0.9783 0.9774 0.9777

F1 Score 0.9493 0.9492 0.9493

MCC 0.8533 0.8536 0.8538

MCC% 92.67 92.68 92.69

53

4. Results

Table 4.7.: Confusion Matrix for Decision Trees. The first confusion matrix shows the re-
sults on dataset A, the second half shows the results on a random half of dataset
B.

Truth
Spam Ham

Decision Trees (A) Spam 1563 46

Ham 35 340

Decision Trees (1
2 B)

Spam 30540 1002

Ham 1132 16905

Table 4.8.: Performance of Decision Trees. ST is a simple test split with 2/3 to train and
1/3 to test, CV2 is a 2-fold cross-validation, CV10 a 10-fold cross-validation.

A ST CV2 CV10

Accuracy 0.9592 0.9617 0.9640

Precision 0.9714 0.9777 0.9791

Recall 0.9781 0.9744 0.9761

F1 Score 0.9747 0.9761 0.9775

MCC 0.8684 0.8802 0.8880

MCC% 93.42 94.01 94.40

1
2 B ST CV2 CV10

Accuracy 0.9570 0.9554 0.9596

Precision 0.9682 0.9662 0.9693

Recall 0.9643 0.9643 0.9677

F1 Score 0.9662 0.9652 0.9685

MCC 0.9069 0.9031 0.9122

MCC% 95.34 95.16 95.61

54

4. Results

Table 4.9.: Confusion Matrix for the Random Forest. The first confusion matrix shows the
results on dataset A, the second half shows the results on a random half of
dataset B.

Truth
Spam Ham

Random Forest (A) Spam 1547 35

Ham 16 386

Random Forest (1
2 B)

Spam 31337 1074

Ham 346 16822

Table 4.10.: Performance of the Random Forest. ST is a simple test split with 2/3 to
train and 1/3 to test, CV2 is a 2-fold cross-validation, CV10 a 10-fold cross-
validation.

A ST CV2 CV10

Accuracy 0.9743 0.9709 0.9740

Precision 0.9779 0.9770 0.9796

Recall 0.9898 0.9858 0.9868

F1 Score 0.9838 0.9831 0.9826

MCC 0.9222 0.9102 0.9179

MCC% 96.11 95.51 95.89

1
2 B ST CV2 CV10

Accuracy 0.9714 0.9700 0.9715

Precision 0.9669 0.9655 0.9673

Recall 0.9891 0.9873 0.9891

F1 Score 0.9778 0.9769 0.9782

MCC 0.9378 0.9344 0.9386

MCC% 96.89 96.72 96.93

Random Forest

The Random Forest classifier’s performance is a just about 1% MCC above
the Decision Tree. The Random Forest produces about the same amount of
false positives as the Decision Tree but far less false negatives, increasing
the recall to 98.9%. Furthermore, compared to the Decision Trees this ap-
proach is really slow. This classifier was the slowest at learning. Its runtime
performance disqualifies it from being used in a production system.

55

4. Results

4.2. Discussion

Looking at the results from the classifier experiments, one can clearly see a
difference in performance for each of the four methods.

Logistic Regression has an MCC of more than 90% depending on the
amount of data available. The accuracy of 94.2% is quite satisfying but
the True Negative Rate of 86% shows that there is a high number of false
positives, which would result in numerous good links being classified as
spam. The recall of 98.7% is only surpassed by random forests. This shows
that very little spam links are missed by this method.

Support Vector Machines achieve a 93.2% accuracy which is almost as good
as the previous method. Yet, once more the True Negative Rate of 85.1%
is too low. The classifier would falsely classify too many benign links as
malicious. With a recall of 97.7% the number of undetected spam links
would remain very low.

The Decision Tree has an accuracy of 95.9%. The MCC surpasses 95% at
all tests with the random half of subset B. There are just 1002 misclassified
benign links, resulting in a True Negative Rate of 94.4%, which is the best
result of all classifiers. Although the recall of 96.7% puts the Decision Tree
at the last place, the precision is at 96.9%, which is the best result of all four
classifiers.

The Random Forest classifier proved to have the highest accuracy. With
97.1% accuracy it is the best classification method. It also succeeds to sur-
pass the MCC of the Decision Tree with 96.9%. With a recall of 98.9% it
has the highest rate of all classifiers to detect spam. Just 346 spam links
were not found when training and testing on a random half of subset B.
This results in a negative predictive value of 97.9%. A True Negative Rate
of 93.9% just misses the mark of the Decision Tree by 0.5%.

Overall, the Random Forest, therefore, provides the best performance of all
classifiers.

56

4. Results

4.3. Limitations

This experiment was performed by using a dataset of a rather small URL
Shortener. The performance of the presented methods on other datasets is
unknown, as there is no similar dataset available. The data certainly has
a bias regarding the use of this shortener, and it is currently unknown
how the same features and classifiers would perform on another dataset.
The dataset at hand was significantly influenced by spammers. They were
using the service regularly within the observation period and used bot-nets
to post their links. The geographical distribution of bot-net nodes is one of
the reasons as to why these features work so well on this dataset. Another
bias of the dataset could be data points originating from Austria. As I am
from Austria, the URL Shortener found its first users in Austria. The local
social network has a certain influence on how the shortener was used in
the beginning.

Using the proposed methods in a production system would certainly re-
quire tweaking the machine learning algorithms. The results in the previ-
ous sections are based on default settings of those algorithms. Although
several settings were tried to get the best results out of every classifier, the
final results are based on their default settings within SciKit-learn. The only
alteration between the classifiers was the normalization and scaling of the
data, as some of them need specially formatted data to function correctly.

57

5. Conclusion

The goal of this work was to show that it is possible to detect spam links
within a URL Shortener network using a content-independent approach. It
can be done by identifying features that do not involve any content of the
shortened website. Just taking behavioral data of users, geographical data
and domain information is enough to classify spam with a 95% accuracy.
Excluding the content of a shortened website has multiple advantages. It
saves resources as there is no need to crawl content, reformat, index and
analyze it. Furthermore, the content of a website can change over time,
which means that content crawling would have to be done over and over
again. Crawling shortened websites can be omitted using the presented
approach.

Building this classifier was achieved by identifying 16 features that vary
significantly between the two target classes: spam and non-spam or ham.
These features are mainly property features of users of the URL Shortener.
First, the users are grouped by country. Then, an international country
graph is generated which shows the inter-country traffic produced by the
short-links. The properties from this graph are used to deduce information
about links originating from different countries. Further features such as
the domain age, the longitude and latitude are taken into account. Finally,
behavioral features such as the time between link creation and the first click
are used to train classifiers. These classifiers then separate malicious links
from benign content. It was shown that Decision Trees perform best for this
problem.

Further this work contributes a URL Shortener dataset which has already
been published1. This dataset was collected by implementing a URL Short-
ener and operating it for 21 months. For privacy reasons the original IPs

1http://qr.cx/dataset

58

http://qr.cx/dataset

5. Conclusion

were removed from the published dataset. It contains more than 700,000

short-URLs and a little under eight million clicks.

5.1. Implications

The results of this work show that by taking advantage of implicit connec-
tions within a dataset one can derive useful information. This information
is often self-contained and does not need to be expanded by adding addi-
tional external data. A thorough analysis of the available data points can
give deep insights into connections that reveal hidden information.

By using the proposed techniques to identify spam on a URL Shortener net-
work, operators could significantly reduce their spam detecting cycles and
therefore improve their spam detection rate. They can build a completely
self-reliant spam detection system. This methods can not be as easily in-
fluenced as starting a website with benign content and changing it later to
become malicious. These methods have already been exploited to get spam
links into URL Shorteners. The best approach would be to use the proposed
method as a supplement to existing blacklists. As URL Shorteners are often
the first to reveal new malicious links, this approach could detect the links
that are not yet known to blacklists.

Attacks against the proposed techniques could be done by simulating ‘nor-
mal’ usage on spam links. This could be done by creating short-links from
countries that are not peculiar in their link creation statistics. Further the
link usage has to resemble the usage of a non-spam link. Tricking the spam
detection system into classifying a link as non-spam is possible. However,
the portion of the visitors that are exploited has to be significantly lower
in order to keep the link usage at inconspicuous levels. This kind of mani-
pulation can only be done with access to many hosts and IP addresses.
Using the same machines of a botnet for creating links and faking usage
might, however, give the manipulation away. The overhead for faking nor-
mal usage is likely to be too much effort for spammers. The most difficult
feature to exploit is probably the domain age. It is not cheap to keep many
domains for a long time. The amount of domains spammers register and
discard is high. Once domains are on a blacklist they become unusable for

59

5. Conclusion

spammers and their purpose. Keeping one domain for a long time and
then using it in just one spam attack in order to lose it just right afterwards
is not a cheap approach.

5.2. Outlook

This work should be seen as a start point for further research in this direc-
tion. The presented features could be used to train different classifiers. One
could likely use differently preprocessed data to achieve a higher accuracy.
The geographical data inherent in this dataset is alluring to try clustering
algorithms on it. Furthermore, there exist many more features that can be
inferred from the very same dataset. Such features could be: detailed data
regarding the visits on short-links, additional data from the inter-country
graph, more meta-data from WHOIS-records, or meta-data from top level
domains, such as domain prices or registrars.

As this dataset is available online2, I invite the corresponding research com-
munity to improve on the methods presented in this work.

2http://qr.cx/dataset, (CC-BY)

60

http://qr.cx/dataset

Appendix

61

Appendix A.

Implementation

A.1. Version 1.0

The main programming language used is PHP1. The reasons for choosing
PHP are the following: It is one of the most popular, if not the most popular,
scripting language to generate dynamic websites. It is used by Wikipedia2,
Facebook3, Wordpress4, and many others. It is easy to learn, which makes it
easy to find developers. It is supported by most webhosters and therefore
easy to scale or migrate. PHP is object-oriented which makes inclusion
of external libraries and modular development a lot easier. Furthermore,
there are ways to compile PHP code to make it faster. One method to do so
was developed by Facebook [10a; 13b]. Finally it provides a big and active
community which is helpful when encountering any kind of difficulty.

The web-service uses an Apache HTTP webserver5 which was configured
with the mod rewrite module6 to allow the special treatment of URLs as
paths. This could have been directly implemented in PHP. However, for
quick prototyping purposes this was avoided. This step was implemented
in PHP with version 2.0 of the implementation.

1http://www.php.net
2http://wikipedia.org
3http://facebook.com
4http://wordpress.org
5http://httpd.apache.org
6http://httpd.apache.org/docs/current/mod/mod_rewrite.html

62

http://www.php.net
http://wikipedia.org
http://facebook.com
http://wordpress.org
http://httpd.apache.org
http://httpd.apache.org/docs/current/mod/mod_rewrite.html

Appendix A. Implementation

MySQL is used as database backend. The database consists of just two ta-
bles. One to save the URLs and one to record the visits. The URL-table
consists of: urlid, to save a unique ID; shorty, the unique random string that
is used in the short-URL, e.g.: 1r8; url, the most important field, to store
the long-URL to which the user will be redirected; creationdate, a times-
tamp of the date and time of creation; creatorip, to save the creators IP
address; and three binary fields to store the state on deleted, approved, or
hidden. A URL would be marked ‘deleted’ if it was regarded to be spam
or would link to illegal content. It would be marked ‘approved’ if it was on
the whitelist. The ‘hidden’ field was meant to be used to hide URLs from
the public statistics page. It should also be available for registered users to
hide their links on demand. This feature will be released at some point in
the future.

The second table, which stores the visits, is used to log every visit of every
short-link. The fields consist of: a unique hitid, giving every visit a unique
ID; urlid referring to a URL from the first table; date, the date and time of
the visit; ip, the IP of the visitor, and referrer the link referee sent with the
browser in case a short-link was clicked on on a website. The table structure
can be seen in figure A.1.

A.2. Version 2.0

The re-implementation of the service which was done in 2011 did not go
live. This implementation was done as part of a lecture called ‘Multimedi-
ale Informationssysteme 2’.It is build on Symfony 2

7, a very popular PHP 5

framework. The backend used was MongoDB8.

The main advantage of the re-implementation was the Model View Con-
troller (MVC) paradigm. It separates code from the document structure in
web-pages and allows easier restructuring of websites without touching
the code behind it.

7http://www.symfony.com
8http://www.mongodb.org/

63

http://www.symfony.com
http://www.mongodb.org/

Appendix A. Implementation

+--------------+---------------+------+-----+-------------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+---------------+------+-----+-------------------+----------------+

| urlid | int(11) | NO | PRI | NULL | auto_increment |

| shorty | varchar(40) | NO | UNI | NULL | |

| url | varchar(3500) | NO | | NULL | |

| creationdate | timestamp | NO | | CURRENT_TIMESTAMP | |

| creatorip | varchar(16) | NO | | 0.0.0.0 | |

| deleted | tinyint(1) | NO | | 0 | |

| approved | tinyint(1) | NO | | 0 | |

| viewable | tinyint(1) | NO | | 1 | |

+--------------+---------------+------+-----+-------------------+----------------+

+--------------+---------------+------+-----+-------------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+---------------+------+-----+-------------------+----------------+

| hitid | int(11) | NO | PRI | NULL | auto_increment |

| urlid | int(11) | NO | | NULL | |

| date | datetime | NO | | NULL | |

| ip | varchar(20) | NO | | NULL | |

| referrer | varchar(4000) | YES | | NULL | |

+--------------+---------------+------+-----+-------------------+----------------+

Figure A.1.: Structure of database tables. The upper table is used to store short-URLs and
their corresponding long-URL. The lower table is used to log link-usage.

Views are based on Twig9, a template engine for PHP. Twig allows easy iter-
ating through lists without the need of a single line of PHP code. This way,
one can list dynamic elements without calling PHP code directly. This is
solely done by passing arguments. Twig is developed by Fabien Potencier,
who also is responsible for the Symfony framework.

The basic idea of version 2 was to use the same gateway for users of the
website and users of the API. The main qr.cx website would be just an-
other implementation of the service’s API. Using Java Script and JSON
(Java Script Object Notation) the main website accesses the API as any
other external software would. The API calls available to the very own web
service would be available to everyone else. The most obvious advantage
was the consolidation of two code bases to one. Checking for erroneous
URLs, spam checking, whitelisting, and link usage logging would all be
done by the backend.

To limit abuse from external API users an API-key would have to be passed

9http://twig.sensiolabs.org/

64

http://twig.sensiolabs.org/

Appendix A. Implementation

with the other arguments. As this API-key would be visible in the Java
Script implementation on the main website, abusive users could copy this
key. To guarantee that the main website could always access the API, and
others that could not use the main API-key, an IP whitelisting was set in
place.

There were plans to add additional features to the API. One would be
granted access to the click history of links. This click data would not only
give the total number of clicks a short-link received but also the time and
date of the clicks. The main website would access this API interface and
would get a JSON object containing an array with certain click statistics.
These would then be plotted using a library called ‘jqPlot’10. JqPlot allows
dynamic visualizing of graphs that are completely rendered in Java Script.
Using this approach, one lessens the bandwidth as well as the computa-
tional resource load on the server side.

10http://www.jqplot.com/

65

http://www.jqplot.com/

Appendix B.

Histogram Country Plots

This section lists Click histograms and Resolver Percentage histograms for
different countries. The Click histogram shows the short-link click count
distribution on links created within the given country. The Resolver Per-
centage histogram shows the percentage of clicks, locally created short-
links get, from within the own country. The left side has links that get no
clicks from within the own country, the right side has links that get all
clicks from within the creation country.

(a) (b)

Figure B.1.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for South Africa. (b): Resolver Percentage histogram for
South Africa.

66

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.2.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for the United Arab Emirates. (b): Resolver Percentage his-
togram for the United Arab Emirates. (c): Click histogram for Argentina. (d):
Resolver Percentage histogram for Argentina. (e): Click histogram for Bolivia.
(f): Resolver Percentage histogram for Bolivia.

67

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.3.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Brazil. (b): Resolver Percentage histogram for Brazil.
(c): Click histogram for Chile. (d): Resolver Percentage histogram for Chile. (e):
Click histogram for Colombia. (f): Resolver Percentage histogram for Colom-
bia.

68

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.4.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Germany. (b): Resolver Percentage histogram for Ger-
many. (c): Click histogram for Dominica. (d): Resolver Percentage histogram
for Dominica. (e): Click histogram for Algeria. (f): Resolver Percentage his-
togram for Algeria.

69

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.5.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Ecuador. (b): Resolver Percentage histogram for
Ecuador. (c): Click histogram for Egypt. (d): Resolver Percentage histogram
for Egypt. (e): Click histogram for Spain. (f): Resolver Percentage histogram
for Spain.

70

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.6.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for France. (b): Resolver Percentage histogram for France.
(c): Click histogram for the United Kingdom. (d): Resolver Percentage his-
togram for the United Kingdom. (e): Click histogram for Georgia. (f): Resolver
Percentage histogram for Georgia.

71

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.7.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Hong Kong. (b): Resolver Percentage histogram for
Hong Kong. (c): Click histogram for Hungary. (d): Resolver Percentage his-
togram for Hungary. (e): Click histogram for Indonesia. (f): Resolver Percent-
age histogram for Indonesia.

72

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.8.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Israel. (b): Resolver Percentage histogram for Israel.
(c): Click histogram for the Iran. (d): Resolver Percentage histogram for Iran.
(e): Click histogram for Italy. (f): Resolver Percentage histogram for Italy.

73

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.9.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand side.
(a): Click histogram for Jamaica. (b): Resolver Percentage histogram for Ja-
maica. (c): Click histogram for Jordan. (d): Resolver Percentage histogram for
Jordan. (e): Click histogram for Japan. (f): Resolver Percentage histogram for
Japan.

74

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.10.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for South Korea. (b): Resolver Percentage histogram for
South Korea. (c): Click histogram for Kuwait. (d): Resolver Percentage his-
togram for Kuwait. (e): Click histogram for Kazakhstan. (f): Resolver Per-
centage histogram for Kazakhstan.

75

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.11.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Morocco. (b): Resolver Percentage histogram for Mo-
rocco. (c): Click histogram for Mexico. (d): Resolver Percentage histogram for
Mexico. (e): Click histogram for Malaysia. (f): Resolver Percentage histogram
for Malaysia.

76

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.12.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for the Netherlands. (b): Resolver Percentage histogram
for the Netherlands. (c): Click histogram for Peru. (d): Resolver Percentage
histogram for Peru. (e): Click histogram for the Philippines. (f): Resolver Per-
centage histogram for the Philippines.

77

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.13.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Pakistan. (b): Resolver Percentage histogram for Pak-
istan. (c): Click histogram for Poland. (d): Resolver Percentage histogram for
Poland. (e): Click histogram for Puerto Rico. (f): Resolver Percentage his-
togram for Puerto Rico.

78

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.14.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Romania. (b): Resolver Percentage histogram for Ro-
mania. (c): Click histogram for Serbia. (d): Resolver Percentage histogram for
Serbia. (e): Click histogram for Russia. (f): Resolver Percentage histogram for
Russia.

79

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.15.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Saudi Arabia. (b): Resolver Percentage histogram for
Saudi Arabia. (c): Click histogram for Singapore. (d): Resolver Percentage
histogram for Singapore. (e): Click histogram for Slovenia. (f): Resolver Per-
centage histogram for Slovenia.

80

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.16.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Slovakia. (b): Resolver Percentage histogram for Slo-
vakia. (c): Click histogram for Thailand. (d): Resolver Percentage histogram
for Thailand. (e): Click histogram for Tunisia. (f): Resolver Percentage his-
togram for Tunisia.

81

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.17.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for Turkey. (b): Resolver Percentage histogram for
Turkey. (c): Click histogram for Trinidad and Tobago. (d): Resolver Percent-
age histogram for Trinidad and Tobago. (e): Click histogram for Taiwan. (f):
Resolver Percentage histogram for Taiwan.

82

Appendix B. Histogram Country Plots

(a) (b)

(c) (d)

(e) (f)

Figure B.18.: Click histogram for links created in different countries on the left hand side,
Resolver Percentage histogram for locally created links on the right hand
side.
(a): Click histogram for the Ukraine. (b): Resolver Percentage histogram for
the Ukraine. (c): Click histogram for Venezuela. (d): Resolver Percentage his-
togram for Venezuela. (e): Click histogram for Viet Nam. (f): Resolver Per-
centage histogram for Viet Nam.

83

Appendix C.

Features

This section lists the feature importance that was gained from a recursive
feature elimination with logistic regression. Table C.1 lists the feature im-
portance of subset A, table C.2 the feature importance of subset B. Further
table C.3 lists the ‘ISO 3166-1 alpha-2’ country codes used as label for the
country binary features. Finally it shows the complete feature correlation
matrix in figure C.1 on page 90.

Table C.1.: This table shows the rank of the features, applying RFE (recursive feature elim-
ination) with Logistic Regression, on subset A.

Rank Feature Rank Feature Rank Feature
1 ctry create cnt 2 ctry outdegree 3 click time
4 ctry indegree 5 domain age 6 numip
7 minutes 8 localminutes 9 lon

10 ctry 11 lat 12 ctry creator
percentage

13 fr 14 ctry rc ratio 15 br
16 ctry resolver percentage 17 de 18 eg
19 it 20 ae 21 il
22 kz 23 tr 24 in
25 sa 26 dz 27 mx
28 th 29 vn 30 za
31 tn 32 ph 33 my
34 ir 35 ma 36 jp
37 hk 38 ua 39 kr
40 ch 41 pr 42 at
43 al 44 sn 45 cl

Continued on next page

84

Appendix C. Features

Table C.1 – Continued from previous page
Rank Feature Rank Feature Rank Feature

46 pk 47 self click 48 rs
49 ao 50 jm 51 ru
52 ke 53 si 54 gh
55 pt 56 us 57 hu
58 kw 59 cm 60 ge
61 pl 62 sk 63 tw
64 ga 65 mk 66 am
67 rw 68 gb 69 ro
70 bs 71 mz 72 hn
73 no 74 qa 75 es
76 bb 77 nl 78 cy
79 jo 80 md 81 ctry irr
82 co 83 dk 84 ng
85 do 86 bg 87 ba
88 mn 89 vi 90 cz
91 bf 92 ag 93 id
94 ar 95 ug 96 fi
97 zw 98 py 99 lb

100 zm 101 fj 102 cn
103 iq 104 lk 105 sz
106 mw 107 bh 108 kg
109 ca 110 pe 111 np
112 lt 113 kh 114 tt
115 bo 116 mq 117 tj
118 ps 119 sy 120 uz
121 dj 122 be 123 lv
124 by 125 sd 126 lr
127 ci 128 bj 129 im
130 ve 131 ly 132 gt
133 gp 134 tc 135 lc
136 ec 137 ht 138 kn
139 au 140 bw 141 a2

142 om 143 az 144 mv
145 sg 146 ie 147 pa
148 bd 149 ni 150 se
151 uy 152 cr 153 sv
154 gr 155 la 156 aw
157 as 158 ee 159 ky
160 hr 161 gf 162 gy
163 mu

85

Appendix C. Features

Table C.2.: This table shows the rank of the features, applying RFE (recursive feature elim-
ination) with Logistic Regression, on subset B.

Rank Feature Rank Feature Rank Feature
1 domain age 2 ctry resolver percentage 3 us
4 ctry rc ratio 5 ctry indegree 6 fr
7 lon 8 it 9 ctry

10 lat 11 ctry creator percentage 12 click time
13 numip 14 mx 15 th
16 ctry create cnt 17 ua 18 tr
19 my 20 co 21 kz
22 ar 23 br 24 ae
25 eg 26 ph 27 pe
28 kr 29 in 30 ir
31 sa 32 rs 33 ve
34 at 35 ctry outdegree 36 ctry irr
37 il 38 de 39 es
40 pk 41 ro 42 cl
43 dz 44 localminutes 45 jp
46 id 47 tw 48 hk
49 vn 50 ru 51 pl
52 bg 53 ec 54 jo
55 ma 56 do 57 sg
58 tn 59 hu 60 sk
61 ba 62 gr 63 jm
64 self click 65 ch 66 qa
67 bo 68 si 69 gt
70 kw 71 nl 72 tt
73 ge 74 za 75 pr
76 al 77 gb 78 lb
79 se 80 hn 81 mk
82 sv 83 by 84 kg
85 pt 86 bh 87 ps
88 cy 89 be 90 pa
91 uy 92 uz 93 ht
94 sn 95 ly 96 minutes
97 ke 98 ee 99 ci

100 ni 101 lv 102 lt
103 cm 104 bd 105 az
106 ie 107 no 108 np

Continued on next page

86

Appendix C. Features

Table C.2 – Continued from previous page
Rank Feature Rank Feature Rank Feature

109 am 110 gh 111 sy
112 dk 113 cr 114 lk
115 rw 116 bs 117 sd
118 iq 119 md 120 bw
121 hr 122 ca 123 ao
124 fi 125 cz 126 zw
127 gy 128 ng 129 tj
130 lc 131 py 132 mz
133 ug 134 mu 135 bj
136 om 137 ga 138 nz
139 cw 140 gm 141 tz
142 vi 143 fj 144 sr
145 ag 146 is 147 mw
148 sz 149 ye 150 tc
151 sc 152 as 153 bf
154 vc 155 mp 156 me
157 mv 158 ml 159 bb
160 kh 161 cd 162 a2

163 bt 164 bz 165 mg
166 pf 167 to 168 zm
169 dj 170 re 171 ne
172 pg 173 af 174 gp
175 cv 176 mo 177 au
178 bn 179 ls 180 sl
181 bm 182 lu 183 la
184 aw 185 dm 186 cg
187 kn 188 ai 189 ax
190 je 191 et 192 gd
193 gu 194 st 195 vu
196 gn 197 fm 198 eu
199 mn 200 tg 201 gq
202 lr 203 bi 204 er
205 ws 206 im 207 a1

208 nc 209 cu 210 fo
211 ki 212 mc 213 gf
214 tm 215 vg 216 cn
217 na 218 mh 219 ms
220 cf 221 gi 222 mt
223 gl 224 km 225 mq
226 mr 227 ky 228 gg

87

Appendix C. Features

Table C.3.: This table shows the name of the countries represented by the two letter coun-
try code, used as label for the machine learning algorithms. Special codes such
as ‘A2’ are used by GeoLite to identify IPs without geo-location.

code Name of country or region code Name of country or region code Name of country or region
A1 Anonymous Proxy A2 Satellite Provider O1 Other Country
AD Andorra AE United Arab Emirates AF Afghanistan
AG Antigua and Barbuda AI Anguilla AL Albania
AM Armenia AO Angola AP Asia/Pacific Region
AQ Antarctica AR Argentina AS American Samoa
AT Austria AU Australia AW Aruba
AX Aland Islands AZ Azerbaijan BA Bosnia and Herzegovina
BB Barbados BD Bangladesh BE Belgium
BF Burkina Faso BG Bulgaria BH Bahrain
BI Burundi BJ Benin BL Saint Bartelemey
BM Bermuda BN Brunei Darussalam BO Bolivia
BQ Bonaire, Saint Eustatius and Saba BR Brazil BS Bahamas
BT Bhutan BV Bouvet Island BW Botswana
BY Belarus BZ Belize CA Canada
CC Cocos (Keeling) Islands CD Congo, The Democratic Republic of the CF Central African Republic
CG Congo CH Switzerland CI Cote d’Ivoire
CK Cook Islands CL Chile CM Cameroon
CN China CO Colombia CR Costa Rica
CU Cuba CV Cape Verde CW Curacao
CX Christmas Island CY Cyprus CZ Czech Republic
DE Germany DJ Djibouti DK Denmark
DM Dominica DO Dominican Republic DZ Algeria
EC Ecuador EE Estonia EG Egypt
EH Western Sahara ER Eritrea ES Spain
ET Ethiopia EU Europe FI Finland
FJ Fiji FK Falkland Islands (Malvinas) FM Micronesia, Federated States of
FO Faroe Islands FR France GA Gabon
GB United Kingdom GD Grenada GE Georgia
GF French Guiana GG Guernsey GH Ghana
GI Gibraltar GL Greenland GM Gambia
GN Guinea GP Guadeloupe GQ Equatorial Guinea
GR Greece GS South Georgia and the South

Sandwich Islands
GT Guatemala

GU Guam GW Guinea-Bissau GY Guyana
HK Hong Kong HM Heard Island and McDonald Islands HN Honduras
HR Croatia HT Haiti HU Hungary
ID Indonesia IE Ireland IL Israel
IM Isle of Man IN India IO British Indian Ocean Territory
IQ Iraq IR Iran, Islamic Republic of IS Iceland
IT Italy JE Jersey JM Jamaica
JO Jordan JP Japan KE Kenya
KG Kyrgyzstan KH Cambodia KI Kiribati
KM Comoros KN Saint Kitts and Nevis KP Korea, Democratic People’s Republic of
KR Korea, Republic of KW Kuwait KY Cayman Islands
KZ Kazakhstan LA Lao People’s Democratic Republic LB Lebanon
LC Saint Lucia LI Liechtenstein LK Sri Lanka
LR Liberia LS Lesotho LT Lithuania
LU Luxembourg LV Latvia LY Libyan Arab Jamahiriya
MA Morocco MC Monaco MD Moldova, Republic of
ME Montenegro MF Saint Martin MG Madagascar
MH Marshall Islands MK Macedonia ML Mali
MM Myanmar MN Mongolia MO Macao
MP Northern Mariana Islands MQ Martinique MR Mauritania
MS Montserrat MT Malta MU Mauritius
MV Maldives MW Malawi MX Mexico
MY Malaysia MZ Mozambique NA Namibia
NC New Caledonia NE Niger NF Norfolk Island
NG Nigeria NI Nicaragua NL Netherlands
NO Norway NP Nepal NR Nauru
NU Niue NZ New Zealand OM Oman

Continued on next page

88

Appendix C. Features

Table C.3 – Continued from previous page
code Name of country or region code Name of country or region code Name of country or region
PA Panama PE Peru PF French Polynesia
PG Papua New Guinea PH Philippines PK Pakistan
PL Poland PM Saint Pierre and Miquelon PN Pitcairn
PR Puerto Rico PS Palestinian Territory PT Portugal
PW Palau PY Paraguay QA Qatar
RE Reunion RO Romania RS Serbia
RU Russian Federation RW Rwanda SA Saudi Arabia
SB Solomon Islands SC Seychelles SD Sudan
SE Sweden SG Singapore SH Saint Helena
SI Slovenia SJ Svalbard and Jan Mayen SK Slovakia
SL Sierra Leone SM San Marino SN Senegal
SO Somalia SR Suriname SS South Sudan
ST Sao Tome and Principe SV El Salvador SX Sint Maarten
SY Syrian Arab Republic SZ Swaziland TC Turks and Caicos Islands
TD Chad TF French Southern Territories TG Togo
TH Thailand TJ Tajikistan TK Tokelau
TL Timor-Leste TM Turkmenistan TN Tunisia
TO Tonga TR Turkey TT Trinidad and Tobago
TV Tuvalu TW Taiwan TZ Tanzania, United Republic of
UA Ukraine UG Uganda UM United States Minor Outlying Islands
US United States UY Uruguay UZ Uzbekistan
VA Holy See (Vatican City State) VC Saint Vincent and the Grenadines VE Venezuela
VG Virgin Islands, British VI Virgin Islands, U.S. VN Vietnam
VU Vanuatu WF Wallis and Futuna WS Samoa
YE Yemen YT Mayotte ZA South Africa
ZM Zambia ZW Zimbabwe

89

Appendix C. Features

minutes

localminutes
numip

lon

lat
domain_age

self_click

click_time

ctry_create_cnt

ctry_rc_ratio

ctry_indegree

ctry_outdegree

ctry_creator_percentage

ctry_resolver_percentage

ctry_irr

ctry

at
us

ua

ca

ch
ru

fr
gb

cn

de

br
my

by

kr
ro
sg

ae

in
es

jp

it
ar

tr
pk

co

mn

bh

bd
sa

gt

ph

ir
au

il
mx

ve

cl
cy

mg

rs

bg

ma

kw
jo

id

th
et
vn

se

lk

tt

tn
eg

tw

lb

kz
ge

nl

do
pe

ci
sv

pl

nz

ke
uy

dz
az

md

be

hu
za

hk

bo

ba
cm

dk
gr

ni

kh

is
qa

mp

mk
cw

ec
np

sd
mz

lt
pa

sk
cr

lv

hr
pr

iq

no

ee

hn

si
uz
gy

bj

cz

ne

pt

mt

bf
gu

ug

am

sn

bn
fj

al

ht
ye

a2

ls
jm

ly

mw
ps

af
gm

mo

tg

bt
cv

ie
cu
py

ng

lc
mu
sy

om

fi
mr

sr

me

gh

cf

bs

tz
mv

ws

dj

rw
gn

bb

vi

kn
zm

aw

nc

tc

ai

la
re

fo
gp

vg

ao

zw
ag

na

vc

pf
ga

ml

bw
gf

gd

bm
mq

sc

ky

bz

dm

km
as

gl

a1
gi

im
gg

cd
tj

je

kg

mh
pg

sz

sl
ax

lr
to
er

ms

ki
cg

bi
gq

fm

lu
eu

mc

tm

st
vu

m
in

u
te

s

lo
ca

lm
in

u
te

s

n
u
m

iplo
n

la
t

d
o
m

a
in

_a
g
e

se
lf
_c

lic
k

cl
ic

k_
ti

m
e

ct
ry

_c
re

a
te

_c
n
t

ct
ry

_r
c_

ra
ti

o

ct
ry

_i
n
d
e
g
re

e

ct
ry

_o
u
td

e
g
re

e

ct
ry

_c
re

a
to

r_
p
e
rc

e
n
ta

g
e

ct
ry

_r
e
so

lv
e
r_

p
e
rc

e
n
ta

g
e

ct
ry

_i
rr

ct
rya
t

u
s

u
acachrufrg
bcnd
eb
r

m
y

b
ykrrosga
eine
sjpita
rtrp
kcom
n

b
h

b
dsag
t

p
hira
uil

m
x

v
eclcym
grsb
g

m
a

kwjoidthe
t

v
nselktttne
g

twlbkzg
en
l

d
o

p
ecisvp
l

n
z

keu
y

d
z

a
z

m
d

b
e

h
uzah
k

b
o

b
a

cmd
kg
rn
i

khisq
a

m
p

m
k

cwe
c

n
psdm
zltp
a

skcrlvh
r

p
riqn
o

e
e

h
nsiu
z

g
yb
j

czn
ep
t

m
t

b
f

g
u

u
g

a
msnb
nfja
l

h
t

y
ea
2lsjmly

m
wp
sa
f

g
m

m
otgb
t

cviecup
y

n
glc

m
usyo

mfi

m
rsrm
e

g
hcfb
stz

m
v

w
sd
j

rwg
n

b
bv
i

knzma
wn
ctca
i

larefog
pv
g

a
o

zwa
g

n
a

v
cp
f

g
a

m
l

b
wg
f

g
d

b
m

m
qsckyb
z

d
mkma
sg
l

a
1g
i

img
gcdtjjekgm
h

p
gszsla
xlrtoe
r

m
skicgb
i

g
q

fmlue
u

m
c

tmstv
u

fe
a
tu

re
s

p
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 (

a
ll)

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fi
gu

re
C

.1
.:

T
he

fu
ll

co
rr

el
at

io
n

m
at

ri
x

co
nt

ai
ni

ng
al

l
fe

at
ur

es
.A

sm
al

le
r

ve
rs

io
n

co
nt

ai
ni

ng
th

e
to

p
1

6
fe

at
ur

es
ca

n
be

se
en

in
fig

ur
e

3
.9

90

Bibliography

[09] Goo.gl Challenges Bit.ly as King of the Short. http://bits.blogs.
nytimes.com/2009/12/14/googl- challenges- bitly- as-

king-of-the-short/. 2009 (cit. on p. 2).

[10a] Facebook HipHop. http://developers.facebook.com/blog/
post/2010/02/02/hiphop-for-php--move-fast/. 2010 (cit. on
p. 62).

[10b] Google Safebrowsing. http://code.google.com/apis/safebrowsing/.
2010 (cit. on p. 16).

[10c] J. Wein. Joewein.de LLC - fighting spam and scams on the Internet.
http://www.joewein.net/. 2010 (cit. on p. 16).

[11a] 25 Billion Pieces of Spam. http://blog.akismet.com/2011/04/
08/25-billion-pieces-of-spam/. 2011 (cit. on p. 16).

[11b] The Going Rate on the Black Market for Your E-Mail Address. http:
/ / www . securitymanagement . com / news / 00000025 - going -

rate-black-market-your-email-address-008950. 2011 (cit.
on p. 19).

[11c] WordPress Now Powers 22 Percent Of New Active Websites In The
U.S. http://techcrunch.com/2011/08/19/wordpress-now-
powers-22-percent-of-new-active-websites-in-the-us/.
2011 (cit. on p. 16).

[12a] Akismet, Wordpress Anti-Spam Plugin. http://akismet.com/
wordpress/. 2012 (cit. on p. 16).

[12b] bit.ly. Spam and Malware protection,
http://blog.bitly.com/post/138381844/spam-and-malware-

protection. 2012 (cit. on pp. 13, 21).

91

http://bits.blogs.nytimes.com/2009/12/14/googl-challenges-bitly-as-king-of-the-short/
http://bits.blogs.nytimes.com/2009/12/14/googl-challenges-bitly-as-king-of-the-short/
http://bits.blogs.nytimes.com/2009/12/14/googl-challenges-bitly-as-king-of-the-short/
http://developers.facebook.com/blog/post/2010/02/02/hiphop-for-php--move-fast/
http://developers.facebook.com/blog/post/2010/02/02/hiphop-for-php--move-fast/
http://code.google.com/apis/safebrowsing/
http://www.joewein.net/
http://blog.akismet.com/2011/04/08/25-billion-pieces-of-spam/
http://blog.akismet.com/2011/04/08/25-billion-pieces-of-spam/
http://www.securitymanagement.com/news/00000025-going-rate-black-market-your-email-address-008950
http://www.securitymanagement.com/news/00000025-going-rate-black-market-your-email-address-008950
http://www.securitymanagement.com/news/00000025-going-rate-black-market-your-email-address-008950
http://techcrunch.com/2011/08/19/wordpress-now-powers-22-percent-of-new-active-websites-in-the-us/
http://techcrunch.com/2011/08/19/wordpress-now-powers-22-percent-of-new-active-websites-in-the-us/
http://akismet.com/wordpress/
http://akismet.com/wordpress/
http://blog.bitly.com/post/138381844/spam-and-malware-protection
http://blog.bitly.com/post/138381844/spam-and-malware-protection

Bibliography

[12c] qr.cx usage time analysis video. http://qr.cx/8Ctq or http:

//youtu.be/06Mhn0L23Tk&hd=1. 2012 (cit. on p. 26).

[12d] Safe.mn Safety FAQ. http://safe.mn/faq/safety. 2012 (cit. on
p. 21).

[12e] Scumware.org. http://www.scumware.org/report/91.218.39.
245. 2012 (cit. on p. 20).

[12f] URIBL. URIBL.com,
http://www.uribl.com/about.shtml – realtime URI blacklist.
2012 (cit. on pp. 16, 20).

[13a] Google, Safe Browsing. https://developers.google.com/safe-
browsing/. 2013 (cit. on p. 20).

[13b] hip-hop github website. https://github.com/facebook/hiphop-
php/wiki. 2013 (cit. on p. 62).

[13c] PhishTank. http://www.phishtank.com/index.php. 2013 (cit.
on p. 20).

[13d] Spamhaus, Domain Block List. http://www.spamhaus.org/dbl/.
2013 (cit. on p. 20).

[13e] Wepawet, About. http://wepawet.iseclab.org/about.php.
2013 (cit. on p. 20).

[And+07] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker.
Spamscatter: Characterizing internet scam hosting infrastructure.
2007 (cit. on p. 19).

[Ant+11] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos, S.
Ioannidis, E. P. Markatos, and T. Karagiannis. “we.b: the web
of short urls.” In: Proceedings of the 20th international conference
on World wide web. WWW ’11. Hyderabad, India: ACM, 2011,
pp. 715–724. isbn: 978-1-4503-0632-4. doi: http://doi.acm.
org/10.1145/1963405.1963505. url: http://doi.acm.org/
10.1145/1963405.1963505 (cit. on p. 11).

[Bal+00] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H.
Nielsen. “Assessing the accuracy of prediction algorithms for
classification: an overview.” In: Bioinformatics 16.5 (2000), pp. 412–
424 (cit. on p. 45).

92

http://qr.cx/8Ctq
http://youtu.be/06Mhn0L23Tk&hd=1
http://youtu.be/06Mhn0L23Tk&hd=1
http://safe.mn/faq/safety
http://www.scumware.org/report/91.218.39.245
http://www.scumware.org/report/91.218.39.245
http://www.uribl.com/about.shtml
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
https://github.com/facebook/hiphop-php/wiki
https://github.com/facebook/hiphop-php/wiki
http://www.phishtank.com/index.php
http://www.spamhaus.org/dbl/
http://wepawet.iseclab.org/about.php
http://dx.doi.org/http://doi.acm.org/10.1145/1963405.1963505
http://dx.doi.org/http://doi.acm.org/10.1145/1963405.1963505
http://doi.acm.org/10.1145/1963405.1963505
http://doi.acm.org/10.1145/1963405.1963505

Bibliography

[Ben+08] F. Benevenuto, F. Duarte, T. Rodrigues, V. Almeida, J. M. Almeida,
and K. W. Ross. “Understanding video interactions in YouTube.”
In: Proceedings of the 16th ACM international conference on Multi-
media. ACM. 2008, pp. 761–764 (cit. on p. 13).

[Ben+09] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, and K.
Ross. “Video interactions in online video social networks.” In:
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMCCAP), Vol. 5.4 (2009), p. 30 (cit. on p. 13).

[Ben+10a] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. “De-
tecting spammers on twitter.” In: Collaboration, Electronic mes-
saging, Anti-Abuse and Spam Conference (CEAS). Vol. 6. 2010 (cit.
on pp. 12, 13).

[Ben+10b] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, M. Gonçalves,
and K. Ross. “Video pollution on the web.” In: First Monday,
Vol. 15.4 (2010), pp. 1–14 (cit. on p. 13).

[Ber89] T. Berners-Lee. Information Management: A Proposal. http://
www.w3.org/History/1989/proposal.html. 1989 (cit. on p. 5).

[BFM05] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uni-
form Resource Identifier (URI): Generic Syntax. Ed. by Internet
Engineering Task Force (IETF). Request For Comments (RFC).
2005. url: http://www.ietf.org/rfc/rfc3986.txt (cit. on
pp. 7, 8, 22, 24).

[Bre+99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. “Web
caching and Zipf-like distributions: Evidence and implications.”
In: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE. Vol. 1.
IEEE. 1999, pp. 126–134 (cit. on p. 11).

[Bus45] V. Bush. As we may think. 1945 (cit. on p. 5).

[Cal+08] P. H Calais, D. E. V. Pires, D. O. Guedes, W. Meira Jr, C.
Hoepers, and K. Steding-Jessen. “A campaign-based charac-
terization of spamming strategies.” In: Proceedings of the 5th
Conference on e-mail and anti-spam (CEAS), Mountain View, CA.
2008 (cit. on p. 13).

93

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.ietf.org/rfc/rfc3986.txt

Bibliography

[Cas+07] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri.
“Know your neighbors: web spam detection using the web
topology.” In: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information re-
trieval. SIGIR ’07. Amsterdam, The Netherlands: ACM, 2007,
pp. 423–430. isbn: 978-1-59593-597-7. doi: 10.1145/1277741.
1277814. url: http : / / doi . acm . org / 10 . 1145 / 1277741 .

1277814 (cit. on pp. 15, 16).

[CDN05] P. Chirita, J. Diederich, and W. Nejdl. “MailRank: using rank-
ing for spam detection.” In: Proceedings of the 14th ACM in-
ternational conference on Information and knowledge management.
CIKM ’05. Bremen, Germany: ACM, 2005, pp. 373–380. isbn:
1-59593-140-6. doi: 10 . 1145 / 1099554 . 1099671. url: http :

//doi.acm.org/10.1145/1099554.1099671 (cit. on p. 15).

[Chh+11] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Kumaraguru.
“Phi.sh/$oCiaL: the phishing landscape through short URLs.”
In: Proceedings of the 8th Annual Collaboration, Electronic mes-
saging, Anti-Abuse and Spam Conference. CEAS ’11. Perth, Aus-
tralia: ACM, 2011, pp. 92–101. isbn: 978-1-4503-0788-8. doi:
10.1145/2030376.2030387. url: http://doi.acm.org/10.
1145/2030376.2030387 (cit. on p. 12).

[CL98] L. F. Cranor and B. A. LaMacchia. “Spam!” In: Communications
of the ACM, Vol. 41.8 (1998), pp. 74–83 (cit. on p. 18).

[DG08] J. Dean and S. Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters.” In: Communications of the ACM, Vol.
51.1 (2008), pp. 107–113 (cit. on p. 43).

[FFM04] M. J. Freedman, E. Freudenthal, and D. Mazieres. “Democra-
tizing content publication with Coral.” In: NSDI. 2004 (cit. on
p. 11).

[FMN04] D. Fetterly, M. Manasse, and M. Najork. “Spam, damn spam,
and statistics: Using statistical analysis to locate spam web
pages.” In: Proceedings of the 7th International Workshop on the
Web and Databases: colocated with ACM SIGMOD/PODS 2004.
ACM. 2004, pp. 1–6 (cit. on p. 13).

94

http://dx.doi.org/10.1145/1277741.1277814
http://dx.doi.org/10.1145/1277741.1277814
http://doi.acm.org/10.1145/1277741.1277814
http://doi.acm.org/10.1145/1277741.1277814
http://dx.doi.org/10.1145/1099554.1099671
http://doi.acm.org/10.1145/1099554.1099671
http://doi.acm.org/10.1145/1099554.1099671
http://dx.doi.org/10.1145/2030376.2030387
http://doi.acm.org/10.1145/2030376.2030387
http://doi.acm.org/10.1145/2030376.2030387

Bibliography

[Gri+10] C. Grier, K. Thomas, V. Paxson, and M. Zhang. “@spam: the
underground on 140 characters or less.” In: Proceedings of the
17th ACM conference on Computer and communications security.
CCS ’10. Chicago, Illinois, USA, 2010, pp. 27–37. isbn: 978-1-
4503-0245-6. doi: http://doi.acm.org/10.1145/1866307.
1866311. url: http : / / doi . acm . org / 10 . 1145 / 1866307 .

1866311 (cit. on pp. 13, 16).

[Ino+11] T. Inoue, F. Toriumi, Y. Shirai, and S. Minato. “Great east Japan
earthquake viewed from a URL shortener.” In: Proceedings of
the Special Workshop on Internet and Disasters. SWID ’11. Tokyo,
Japan: ACM, 2011, 8:1–8:8. isbn: 978-1-4503-1044-4. doi: 10.
1145/2079360.2079368. url: http://doi.acm.org/10.1145/
2079360.2079368 (cit. on pp. 10, 11).

[Joa98] T. Joachims. “Text categorization with support vector machines:
Learning with many relevant features.” In: Machine learning:
ECML-98 (1998), pp. 137–142 (cit. on p. 12).

[Kan+08] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker,
V. Paxson, and S. Savage. “Spamalytics: An empirical analysis
of spam marketing conversion.” In: Proceedings of the 15th ACM
conference on Computer and communications security. 2008, pp. 3–
14 (cit. on pp. 14, 15).

[Kle99] J. M. Kleinberg. “Authoritative sources in a hyperlinked en-
vironment.” In: Journal of the ACM (JACM), Vol. 46.5 (1999),
pp. 604–632 (cit. on p. 17).

[KS12] F. Klien and M. Strohmaier. “Short links under attack: geo-
graphical analysis of spam in a URL shortener network.” In:
Proceedings of the 23rd ACM conference on Hypertext and social me-
dia. HT ’12. Milwaukee, Wisconsin, USA: ACM, 2012, pp. 83–
88. isbn: 978-1-4503-1335-3. doi: 10.1145/2309996.2310010.
url: http://doi.acm.org/10.1145/2309996.2310010 (cit. on
pp. 4, 13).

[Mag+13] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross,
C. Kruegel, and G. Vigna. “Two Years of Short URLs Inter-
net Measurement: Security Threats and Countermeasures.” In:
Proceeding of the 22nd international World Wide Web conference.

95

http://dx.doi.org/http://doi.acm.org/10.1145/1866307.1866311
http://dx.doi.org/http://doi.acm.org/10.1145/1866307.1866311
http://doi.acm.org/10.1145/1866307.1866311
http://doi.acm.org/10.1145/1866307.1866311
http://dx.doi.org/10.1145/2079360.2079368
http://dx.doi.org/10.1145/2079360.2079368
http://doi.acm.org/10.1145/2079360.2079368
http://doi.acm.org/10.1145/2079360.2079368
http://dx.doi.org/10.1145/2309996.2310010
http://doi.acm.org/10.1145/2309996.2310010

Bibliography

WWW ’13. Rio de Janeiro, Brazil: ACM, 2013. isbn: 978-1-4503-
2035-1/13/05 (cit. on pp. 2, 12, 13, 38).

[Mau96] H. Maurer. HyperWave - The Next Generation Web Solution. 1996

(cit. on p. 6).

[Pag+99] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank
citation ranking: bringing order to the web.” In: (1999) (cit. on
p. 17).

[sur12] surbl. SURBL - URI reputation data. 2012. url: http://www.
surbl.org (cit. on pp. 20, 21).

[Tho07] A. Thomason. “Blog spam: A review.” In: Proceedings of Confer-
ence on Email and Anti-Spam (CEAS). 2007 (cit. on p. 13).

[WF94] S. Wasserman and K. Faust. Social Network Analysis: Methods
and Applications. Structural analysis in the social sciences 8.
Cambridge University Press, 1994. isbn: 9780521387071 (cit. on
p. 30).

[WGN06] I. H. Witten, M. Gori, and T. Numerico. Web dragons: inside the
myths of search engine technology. Morgan Kaufmann, 2006 (cit.
on pp. 6, 9, 17, 18).

[Wu+05] C. Wu, K. Cheng, Q. Zhu, and Y. Wu. “Using visual features
for anti-spam filtering.” In: Image Processing. ICIP 2005. IEEE
International Conference on. Vol. 3. IEEE. 2005, pp. III–509 (cit.
on p. 15).

[YL99] Y. Yang and X. Liu. “A re-examination of text categorization
methods.” In: Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in information re-
trieval. ACM. 1999, pp. 42–49 (cit. on p. 45).

96

http://www.surbl.org
http://www.surbl.org

