
Master Thesis

Estimation-Based System-Level Power
Management for Symmetric Multi-Core

Processor Systems

Norbert Druml, BSc

————————————–

Institute for Technical Informatics
Graz University of Technology

Head: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Reviewer: Ass.Prof. Dipl.-Ing. Dr.techn Christian Steger

Advisor: Ass.Prof. Dipl.-Ing. Dr.techn Christian Steger
Dipl.-Ing. Andreas Genser

Graz, May 2011

Kurzfassung

Die Komplexität und Geschwindigkeit elektronischer Schaltkreise wächst exponentiell. Der
damit einhergehende steigende Energieverbrauch ist ein Kernproblem moderner Chips,
vor allem wenn diese in batteriebetriebenen, mobilen Applikation Verwendung finden.
Sogenannte Energy Harvesting Anwendungen spielen eine spezielle Rolle, da elektrische
Energie aus der Umgebung gewonnen wird und nur sehr limitiert zur Verfügung steht.
Smart Cards sind typische Energy Harvesting Applikationen, die elektromagnetische Fel-
der zur Energieerzeugung verwenden. Damit eine korrekte Funktionsfähigkeit des Systems
gewährleistet werden kann, sollten längerandauernde Leistungsverbrauchspitzen generell
vermieden werden. Andernfalls wäre ein Einbrechen der Versorgungsspannung möglich,
was im schlimmsten Fall einen Neustart des Smart Card Prozessorsystems zur Folge hätte.

Das Ziel des vorliegenden Projektes ist es, ein anhand elektromagnetischer Felder
betriebenes Smart Card Multiprozessorsystem mitsamt Leistungsanalyse- sowie Power-
managementeinheiten in einem FPGA zu emulieren. Eine Leistungsabschätzeinheit lie-
fert zyklenakkurate Leistungswerte von der Zielhardware. Die Versorgungsspannung wird
von einer speziellen Spannungsabschätzeinheit ermittelt. Ferner wird eine Powermanage-
ment Einheit implementiert, die mittels dynamischer Spannungs- und Frequenzänderun-
gen (DVFS) die Leistungsaufnahme der einzelnen Prozessoren im Notfall regeln kann. Ver-
schiedenartige DVFS Algorithmen mit unterschiedlichsten Optimierungsstrategien werden
implementiert um die Leistungsaufnahmeeigenschaften des Smart Card Systems zu ver-
bessern und Versorgungsspannungseinbrüche zu verhindern. Die gewonnenen Ergebnisse
werden abschließend präsentiert und analysiert.

1

Abstract

Power-aware computing addresses the problem that electronic circuits and algorithms
are growing exponentially in their complexity. Thus, the power dissipation of electronic
circuits also increases rapidly, which is especially problematic for mobile or battery op-
erated applications. Given that the development of battery capacities cannot keep up
with this rapid evolution and is many times slower, power-aware applications are built to
use the available power smarter and more efficiently. Energy harvesting is an important
application area regarding power-awareness. A smart card is a typical energy harvest-
ing application, which relies on electrical energy gathered from an electromagnetic field.
If such an RF-powered smart card device consumes too much power, its supply voltage
consequently drops and the device’s processor may reset.

In this project, a future RF-powered symmetric multi-core processor (SMP) system
is emulated within a field programmable gate array (FPGA) board. Power analysis and
power management techniques are used to improve the system’s efficiency and to avoid
supply voltage drops. A power estimation unit monitors the target hardware’s power
consumption and delivers it cycle accurately. A voltage emulation unit estimates the
supply voltage based on the estimated target hardware’s power consumption. A power
management unit will be implemented for scaling the system’s voltage and frequency
parameters (DVFS) and therefore the system’s power consumption is reduced if required.
Several algorithms aiming at different optimization strategies are implemented and the
results will then be compared and evaluated.

2

Acknowledgement

First and foremost, I would like to thank Ass.Prof. Dipl.-Ing. Dr.techn Christian Steger
for the opportunity to make a contribution to this interesting field of research and the
supervision of this master thesis. Also, I am deeply grateful for Dipl.-Ing. Andreas
Genser’s inspiring support and constructive discussions during the master project. Special
thanks also go out to François Reney for his assiduous and thorough correction work.
My greatest gratitude belongs to my family, friends and partner for supporting, encour-
aging and guiding me throughout my life.

Graz, May 2011 Norbert Druml

3

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

4

Contents

Nomenclature 10

1 Introduction 11
1.1 Objectives and Motivation . 13
1.2 Structuring . 14

2 Related Work 15
2.1 Power Analysis . 15

2.1.1 Hardware Accelerated Power Analysis 16
2.1.2 Hardware Accelerated Power Analysis Implementation 16

2.2 Supply Voltage Analysis . 18
2.2.1 Design-time Based Approaches . 19
2.2.2 Run-time Based Approaches . 20

2.3 Dynamic Power Management . 21
2.3.1 Dynamic Voltage and Frequency Scaling 23
2.3.2 Multi-Core DVFS . 23

2.4 Smart Card Specific Power Management . 26
2.4.1 Smart Card Power Supply Model . 28
2.4.2 Smart Card Power Supply Model Analytical Analysis 29

2.5 Exponential Function in Hardware . 31
2.5.1 CORDIC Approach . 32

3 Design Prerequisites 34
3.1 LEON3 Platform . 34
3.2 Power Estimation Unit . 36
3.3 DVFS Scaling . 36
3.4 Supply Voltage Estimation Unit . 37
3.5 Power Performance and Debug Unit . 38

4 Design of the Emulation Platform 40
4.1 Emulation System Architecture . 41
4.2 LEON3 Hardware Components . 43

4.2.1 Master Core . 43
4.2.2 Slave Cores . 43

4.3 Power Management Components . 43
4.3.1 Power Estimation Units . 43

5

4.3.2 Supply Voltage Estimation Unit . 44
4.3.3 Power Management Unit . 45
4.3.4 Voltage Drop Compensation Unit . 46
4.3.5 Multiplexer . 48
4.3.6 Power Performance and Debug Unit 48

4.4 Software Components . 49
4.4.1 Firmware . 49
4.4.2 Data Capture Tool . 50
4.4.3 Evaluation Software . 50

5 Implementation of the Emulation Platform 51
5.1 Design and Implementation Process . 51
5.2 Power Values in Gate Level Simulation and Hardware Domain 54
5.3 Power Management Hardware Components 56

5.3.1 Improved DVFS Scaling . 56
5.3.2 Supply Voltage Estimation Unit . 57
5.3.3 Power Management Unit . 60
5.3.4 Power Management DVFS Algorithms 61
5.3.5 Voltage Drop Compensation Unit . 64
5.3.6 Voltage Drop Compensation DVFS Algorithms 66
5.3.7 Hybrid Algorithms . 68

5.4 Software Components . 69
5.4.1 Firmware . 69

6 Results 72
6.1 Validation of Simulation Results by Experimentation for the SVE 72
6.2 Emulation Results . 74
6.3 Simulation Results . 75

6.3.1 PM DVFS Algorithms . 77
6.3.2 VDC DVFS Algorithms . 81
6.3.3 Hybrid DVFS Algorithms . 88
6.3.4 VDC and PM DVFS Algorithms Comparison 89

6.4 FPGA Area Consumption . 92

7 Conclusion 94
7.1 Future Work . 95

A Source Code 97

B Tables 98

Bibliography 100

6

List of Figures

1.1 Electricity Consumption of ICT and CE [Age09] 11
1.2 System On Chip Complexity and Power Consumption Trends [ITR11] . . . 12
1.3 Server Refresh Potential [Int11] . 13

2.1 Power Emulation Harddware . 17
2.2 Power Profile Result Comparison . 18
2.3 Voltage Computation by Means of a Convolution Calculation 20
2.4 Voltage Control Mechanism . 20
2.5 Clock Gating . 22
2.6 Guarded Evaluation . 22
2.7 DVFS Test-System Architecture . 24
2.8 Chip-Wide versus Per-Core DVFS . 25
2.9 DVFS Policy Comparison . 26
2.10 Chip-Wide versus Per-Core DVFS Policies [BHB+08] 27
2.11 Smart Card System [Fin03] . 27
2.12 Power and Voltage Trends of a Smart Card System [HKLS] 28
2.13 Smart Card Model . 29
2.14 Simplified Smart Card Model . 30
2.15 Reference and Analytical Model Comparison 31
2.16 CORDIC Iterative Vector Rotation . 33

3.1 GRXC3S-2000 development board . 35
3.2 LEON3 Components and Peripherals . 35
3.3 Power Estimation Unit Architecture . 36
3.4 DVFS Scaling Approach . 37
3.5 Supply Voltage Estimation Principle . 38
3.6 PPDU Hardware Integration . 38
3.7 PPDU System Integration . 39

4.1 Basic Emulation System Approach [GBH+09] 41
4.2 Emulation System Architecture . 42
4.3 Power emulation harddware [GBH+09] . 43
4.4 SVEU Architecture . 45
4.5 PMU Architecture . 45
4.6 VDCU Architecture . 47
4.7 Firmware Process Flow . 49

7

5.1 Design and Implementation Process . 51
5.2 Result and Log File Generation . 54
5.3 Power Value Scaling and Domains . 55
5.4 Emulation System Architecture with Highlighted Power Management Units 56
5.5 Comparison of Original and Improved DVFS Scaling Units 57
5.6 CORDIC Hardware Integration [EL04] . 57
5.7 CORDIC Implementation State Diagram 58
5.8 Smart Card Model . 59
5.9 Power Management Unit Implementation 61
5.10 PM Greedy Algorithm . 62
5.11 PM Gradient Algorithm . 63
5.12 PM Power Algorithm . 64
5.13 PM Performance Algorithm . 65
5.14 Voltage Drop Compensation Unit Implementation 65
5.15 VDC Priority Algorithm . 67
5.16 Greedy Voltage/Power Algorithm . 69
5.17 Firmware Framework . 70

6.1 Supply Voltage Estimation Models . 73
6.2 SVE Hardware Integrated Model Verification Flow 73
6.3 SVE Hardware Integrated Model Verification Result 73
6.4 JAVA Based Data Reception and Display Tool 74
6.5 Emulation Platform in Operation . 75
6.6 PM Greedy Algorithm Simulation Results 77
6.7 PM Gradient Algorithm Simulation Results 78
6.8 PM Power Algorithm Simulation Results . 79
6.9 PM Performance Algorithm Simulation Results 80
6.10 VDC Greedy Algorithm Simulation Results 81
6.11 VDC Power Algorithm Simulation Results 82
6.12 VDC Gradient Algorithm Simulation Results 83
6.13 VDC Gradient Delay Algorithm Simulation Results 84
6.14 VDC Performance Algorithm Simulation Results 85
6.15 VDC Inverse Performance Algorithm Simulation Results 86
6.16 VDC Priority Algorithm Simulation Results 87
6.17 Greedy Voltage/Power Algorithm Simulation Results 88
6.18 Performance Development of PM, VDC and Hybrid DVFS Policies 89
6.19 Supply Voltage and Power Consumption Standard Deviation Comparison . 90
6.20 Deviation from Voltage and Power Setpoints 91
6.21 Simulation Results of Changing Magnetic Field Intensity Test 92
6.22 FPGA Area Consumption of the Emulation Platform 93
6.23 FPGA Area Consumption of the DVFS Policies 93

8

List of Tables

2.1 Power Emulation Platform Results . 18
2.2 CORDIC Operation Modes . 32
2.3 Values for the CORDIC Hyperbolic Mode 33

4.1 Power Estimation Unit Register - PE CTRL 44
4.2 Power Estimation Unit Register - PE AVGSTEP 44
4.3 Power Estimation Unit Register - POWVAL 44
4.4 Power Management Unit Register - PM CTRL 46
4.5 Power Management Unit Register - PM POWER SETPOINT 46
4.6 Power Management Unit Register - PM POWER VALUE 46
4.7 Power Management Unit Register - PM RESET 46
4.8 Voltage Drop Compensation Unit Register - VDC CTRL 47
4.9 Voltage Drop Compensation Unit Register - VDC VOLTAGE SETPOINT . 47
4.10 Voltage Drop Compensation Unit Register - VDC VOLTAGE VALUE . . . 48
4.11 Voltage Drop Compensation Unit Register - VDC RESET 48
4.12 Voltage Drop Compensation Unit Register - VDC POWER SETPOINT . . 48
4.13 Power Performance and Debug Unit Register - PPDU MODUS 49

5.1 Interpretation of the Electric Charges . 59

B.1 PEU Power Model, Part 1/2 . 98
B.2 PEU Power Model, Part 2/2 . 99

9

Nomenclature

ALU Arithmetic and Logical Unit
ASIC Application Specific Integrated Circuit
ASR Application Specific Register
CE Consumer Electronics
CMOS Complementory Metal Oxide Semiconductor
CORDIC Coordinate Rotation Digital Computer
DVFS Dynamic Voltage and Frequency Scaling
FPGA Field Programmable Gate Array
IC Integrated Circuit
ICT Information and Communication Technologies
IEA International Energy Agency
IP Intellectual Property
MIPS Microprocessor without Interlocked Pipeline Stages
PEU Power Estimation Unit
PM Power Management
PMU Power Management Unit
PPDU Power Performance and Debug Unit
SMP Symmetric Multiprocessing
SoC System on Chip
SVEU Supply Voltage Estimation Unit
VDCU Voltage Drop Compensation Unit
VHDL Very High Speed Integrated Circuit Hardware Description Language

10

Chapter 1

Introduction

The globally increasing demand for energy is a major challenge nowadays. According to the
International Energy Agency [Age09], residential electronic devices account for about 15%
of the global energy consumption and this consumption is about to increase in the future.
Figure 1.1 illustrates the power consumption trend of information and communication
technologies (ICT) as well as consumer electronics (CE).

Figure 1.1: Electricity Consumption of ICT and CE [Age09]

The International Technology Roadmap for Semiconductors (ITRS) presented a similar
view regarding System on Chips (SoC) in portable applications. According to this study,
the complexity of SoCs will increase exponentially in the coming years in order to cope with
upcoming application and computation challenges. As a result, the power consumption of
these chips will increase correspondingly very quickly. Figure 1.2 depicts these trends.

Jonathan G. Koomey published in 2007 an article about the total power consumption
of all data centers around the world [Koo07]. According to this study, the amount of power,
that data centers are consuming, has doubled between the years 2000 and 2005. Fourteen
1000 MW power plants are needed by IT servers and their infrastructure (e.g., cooling
system) worldwide. Intel published an article [Int09] as well as a software tool [Int11] that
exemplify the enormous environmental and ecological potential when old server systems
are replaced by newer ones.

11

CHAPTER 1. INTRODUCTION 12

Figure 1.2: System On Chip Complexity and Power Consumption Trends [ITR11]

For a scenario where an about five year old server system consisting of 100 Dual Core
Xeon 5160 processor is replaced by the newest generation of Xeon processors (E7 series),
the following savings and improvements are gained:

� A 16% performance increase while simultaneously reducing the processor count by
93 units.

� 80% of electrical energy and correspondingly 84% of CO2 emissions are saved within
one year.

� The capital investment of about 303.000$ is amortized after 28 month.

Figure 1.3 summarizes the improvements gained by a server system upgrade.
A chip’s power consumption also influences other aspects: The higher the dissipated

power, the higher the temperature of the chip. According to Scott et al. [SK94] a chip
running at high temperature is prone to errors like silicon interconnect fatigue, electrical
parameter shift, package related failure, junction fatigue, etc.

Power Consumption in Mobile and Energy Harvesting Applications

Power consumption plays a very important role when mobile devices (e.g., mobile phones)
are used. The higher the power consumption, the shorter the lifetime of battery operated
applications. Some smart card applications rely on electrical energy gathered from the
environment, such as solar power or a fluctuating magnetic field, by using passive power
sources (e.g., photovoltaic cells, induction circuits). This gathered electrical energy is very
limited and is buffered by capacitors. If the smart card’s hardware dissipates too much
electrical power at given moments, then the supply capacitors could be depleted. As a
result, the hardware’s supply voltage would drop too low and the functionality of the
application could be compromised.

If a smart card application could be provided with information about its instantaneous
power consumption and supply voltage level, it could adapt its operations according to its
remaining power. For example, in case of low power emergency, the application could, in
order to save power, deactivate hardware components, adapt the operation processor using
a dynamic voltage and frequency scaling algorithm or switch off the clock completely.

CHAPTER 1. INTRODUCTION 13

Figure 1.3: Server Refresh Potential [Int11]

1.1 Objectives and Motivation

The main objective of this master project, which is part of the POWERHOUSE1 project,
is to develop and construct an FPGA based emulation platform for a smart card target
hardware in order to evaluate and explore a smart card’s power consumption and supply
voltage behavior during its operation. Basically, this is accomplished by combining a
smart card target design as well as power and supply voltage analysis techniques within
the FPGA. The evaluation of the gathered information may then reveal power bugs in the
target design. Power bugs can be, for example, severe supply voltage drops or too high
power consumptions. The big advantage of this approach is the possibility to detect and
correct such power bugs in early design stage, long before a chip’s tape-out.

In a second step, the emulation platform is enhanced with power management tech-
niques. The instantaneous power and supply voltage values are continuously monitored
and, if a power emergency arises (e.g., very high power consumption peaks or supply volt-
age drops), then the frequency and voltage of the target hardware’s processor cores are
decreased to reduce the smart card’s total power consumption. For this purpose, various
dynamic voltage and frequency scaling (DVFS) algorithms are implemented which use
distinct input parameters and strategies.

Finally, benchmarks are executed on the emulation platform to evaluate the effective-
ness of power and supply voltage analysis implementations as well as the various DVFS

1

”
POWER-aware, Hardware-supported Operating system and Ubiquitous application Software develop-

ment Environment“. Funded by the Austrian Federal Ministry for Transport, Innovation, and Technology
under the FIT-IT contract FFG 815193.

CHAPTER 1. INTRODUCTION 14

policies. The gathered results while using the DVFS algorithms are then post-processed,
compared and analyzed. Furthermore, it is investigated if a final smart card hardware or
ASIC could be enhanced with the presented power management methods.

1.2 Structuring

This document is structured into the following chapters. Chapter 2 presents the theoreti-
cal background of this project. Topics like power and supply voltage analysis, smart card
systems and specific hardware based mathematical operations are explained in detail. In
Chapter 3, the hardware components used for this project, which have been developed by
contributers, are presented. Chapter 4 shows the design of the emulation system and how
the various integrated hardware components are interconnected. The exact implementa-
tion of the system is depicted in Chapter 5. Chapter 6 shows and discusses the results
gained from various tests performed on the final power and supply voltage emulation plat-
form. This document is concluded with a discussion on the last remaining open points in
Chapter 7.

Chapter 2

Related Work

2.1 Power Analysis

According to Bellaouar [BE99], power analysis is a technique used to estimate the average
power consumption of electric circuits. Since Bellaouar’s publication in the year 1999, new
approaches have been invented which also allow for transient power analysis. Basically,
there are two methods that perform power analysis:

� Measurement based: The drawn current or the temperature of the chip is measured.
The results obtained are, in general, very accurate. However, expensive measuring
devices are needed for this method. Under certain circumstances, this method is
impractical: the dissipated power would need to be measured for each subcomponent
of a chip, which is difficult, at best, to perform.

� Estimation based: This method can be further subdivided into:

– Simulation based: The electrical circuit is simulated using a model in software.
The simulation approach may be very accurate, depending on the chosen ab-
straction level. If complex circuits are simulated at a low abstraction level
(e.g., transistor level), the calculations involved to solve the model can increase
considerably the time needed to complete the simulation.

– Hardware accelerated based: The estimation procedure and all calculations
needed for this purpose are done within an additional hardware component.
This approach enables up to nearly real-time calculations.

Estimation based power analysis can be performed with many different approaches and at
every abstraction level. Zaccaria et al. [ZSSS04] group them in the following way:

� At transistor abstraction level, dedicated circuits are simulated with tools like SPICE.
Immense calculation time is needed for large circuits.

� Probabilistic and event driven simulations are done at gate level. Whilst the
probabilistic is a fast method used for logic synthesis, event driven power estimation
uses a logic simulator and power events to simulate the dissipated power of each
logic cell.

15

CHAPTER 2. RELATED WORK 16

� Several different methods have been proposed, which are based on the register trans-
fer level. Among others, one simulation technique features power macro models.
Macro models specify switching activities and capacitance values of dedicated com-
ponents. Then, the models are evaluated by circuit simulators and co-simulators.

� At the microarchitectural level, simulations are faster than at register transfer level
but less accurate.

� Simulations performed on instruction-set level assign each instruction of a proces-
sor a certain power value. Into account are taken cache misses, pipeline stalls as well
as the switching between consecutive instructions.

� At system level components like CPU, hard disks, network interface, etc are analyzed.
State machines are used in recent approaches. Each state is a certain power and
utilization value assigned. The total system’s power consumption is then estimated
by adding up the power values of all currently active states. System level approaches
are the fastest but also the least accurate methods.

2.1.1 Hardware Accelerated Power Analysis

To speed up power simulations, the calculations can be implemented in hardware, thus the
power analysis is done nearly in real-time. Such approaches can be done at multiple ab-
straction levels. Any synthesizable power model/simulation based technique may be used
for this method. According to Coburn (see [CRR05] and [CRA05]) the complete target
hardware is integrated in a hardware emulation environment, like a field programmable
gate array (FPGA). This approach is known as

”
Power Emulation“ and provides the devel-

opment team a big advantage: the emulation platform is already available in early design
stages. Power bugs (e.g., power peaks exceeding a maximum allowed value) may therefore
be found and fixed before the tape-out.

Coburn proposes a power estimation platform based on the register transfer abstraction
level. Power macromodels are attached to each register transfer component of interest.
A power macromodel’s tasks is to compute to component’s power consumption by means
of observing its input and output signals. The system’s total power consumption is then
computed by accumulating all macromodel power values.

2.1.2 Hardware Accelerated Power Analysis Implementation

Genser et al. [GBH+09] propose a power estimation system at the system abstraction
layer. The internal power model is implemented as a linear regression model (depicted by
Equation (2.1)), which bases upon methods suggested by Bogliolo et al. [BBDM00].

ŷ =

n−1∑
i=0

ci · xi + ε (2.1)

x is a vector whose elements specify a certain system state (e.g., CPU running, CPU idle,
etc). Every state has a model coefficient assigned to itself. A model coefficient defines
how much power is dissipated while being in the corresponding system state. The model
coefficients compose the vector c. The linear combination of the model parameters x and

CHAPTER 2. RELATED WORK 17

the model coefficients c plus an uncertainty factor ε (difference between the estimated and
the real power value) form the estimated power value ŷ.

After the power model has been defined, the power characterization process is per-
formed. During this process, model parameter x are chosen and perturbed, the corre-
sponding power values y are measured and the model coefficients c are calculated. The
chosen model parameters influence the accuracy of the power emulation model directly.
To calculate the model coefficients c, a matrix form of Equation (2.1) is introduced by
Equation (2.2).

y = X · c (2.2)

The matrix X and the power values within the vector y form the training set T, which is
shown by Equation (2.3).

T = (y,X) (2.3)

Usually the training set is bigger than the number of model coefficients c, thus there is no
exact solution for c. However, this can be solved by applying a least square fit method.
Afterwards the model coefficients c can be calculated by solving the system of equations
(2.2).

Now, the power emulation platform can be implemented in an FPGA. Therefore, the
hardware under test must be available as synthesizable code. Figure 2.1 illustrates the
power emulation system’s architecture according to the approach of Genser [GBH+09].

Figure 2.1: Power Emulation Harddware [GBH+09]

The power emulation system uses power sensors to retrieve the model states of each
hardware component. If model states at system abstraction level are too inaccurate, then
they can be also gathered from lower abstraction levels (e.g., architectural level, see Figure
2.1). The power states are then mapped to their corresponding power values. Afterwards,
the power values are summed up and equal the total target system’s power dissipation.
Finally, a time-dependency is introduced with the help of Equation (2.4).

y(t) =
n−1∑
i=0

ci · xi(t) (2.4)

The power emulation system proposed by Genser et al. [GBH+09] delivers cycle ac-
curate power values in real time with only about 1.5% additional hardware costs. Figure
2.2 illustrates the power profile of a payment application. A comparison is done between

CHAPTER 2. RELATED WORK 18

a gate level simulation and the power information gained from the emulation system. A
relative average error of only 8.4% can be detected. Further benefits of this power emula-

Figure 2.2: Power Profile Result Comparison [GBH+09]

tion approach are outlined by Table 2.1. Remarkable are the time differences between the
emulation platform calculation time (e.g., 338.0µs) and the reference simulation time (98.3
hours). This behavior underlines the fact that power simulations of complex hardware is
unfeasible.

Time Average Error
Algorithm Simulation [h] Emulation [µs] Power [%] Energy [%]

ALU 4.1 70.8 7.3 6.4
CPU 0.78 31.3 -2.1 -3.2
Cache 14.0 12.4 -1.5 -2.6
RAM 2.9 56.0 -4.9 -5.5
SCP-AES128 17.2 13.5 1.2 -0.2
SCP-AES256 24.0 15.7 1.1 -0.2
SCP-DES 5.5 82.2 1.1 0.3
SCP-DDES 6.3 76.9 0.5 1.0
Payment 98.3 338.0 8.4 2.0
Dhrystone 18.1 139.0 0.4 -2.0

Table 2.1: Power Emulation Platform Results [GBH+09] with Modifications

2.2 Supply Voltage Analysis

During the past 30 years, the number of transistors on a die has increased exponentially
and the power consumption of a single System On Chip has reached over 100 Watts (cf.
[ITR11] and [Bor99]). Some high end processors (e.g., Intel Core i7-900 Desktop Processor
Extreme Edition, see [Int10]) can be operated below a supply voltage of 1V but with a
maximum current draw of up to 140A.

CHAPTER 2. RELATED WORK 19

This ongoing increase of power consumption and decrease of supply voltage results in the
following technical problems:

� During the transistor switching times high current draw variations occur. These
current changes provoke a voltage across an inductance L according to Equation
(2.5). The inductance value L is given by wires and pins between the power supply
and the processors. This effect is known as the

”
di/dt problem“ [GAT02].

V = L · di/dt (2.5)

� High current flows between power and ground busses cause voltage variations in
these busses. According to [BBH01], such voltage variations have an impact on the
gate delay. Thus, the delay of the critical path changes. This behavior plays a
considerable role, especially for processors with high clock frequencies.

� High frequency current variations provoke electromagnetic interferences [NIA03]
[NIA04].

� The usage of a low supply voltage reduces the noise margin and therefore increases
a processor’s vulnerability against voltage droop effects. As a result, the following
effects may arise: false triggering logic, double clocking or missing clocked pulses
[SP93].

� Energy harvesting devices generate their electrical energy from the environment (e.g.,
electromagnetic fields). The amount of energy generated is very limited. In case of
smart cards, this energy is saved in capacitors. If the processor’s power consumption
is too high or changes too fast, the supply voltage may drop and the processor would
reset or would perform its functions incorrectly. This subject is analyzed in detail
within Chapter 2.4

These problems illustrate that voltage analysis and voltage control are crucial for
modern integrated circuits and power supplies. Several approaches have been presented
to cope with these problems. Basically, they can be divided into design-time and run-time
based solutions.

2.2.1 Design-time Based Approaches

During the design-time the di/dt problem can be reduced, for example, by shaping the
electrical current with the help of a semi-asynchronous architecture [BTD+02] or by adding
decoupling capacitor to reduce the inductance L [SSN02]. However, both approaches prove
to be disadvantageous: In the first case the design constraints complicate the design phase,
in the second case the decoupling capacitors require more die area.

Grochowski et al. [GAT02] presented a simulation based approach to control the sup-
ply voltage. Based on a current simulator, the power consumption of each clock gated
processor part is calculated and summed up. Then, a detailed model of the power distri-
bution network is generated and its impulse response computed. The supply voltage is
finally calculated by performing a convolution of the summed up current and the power
distribution networks impulse response. A voltage control mechanism is finally achieved

CHAPTER 2. RELATED WORK 20

by a feedback loop (see Figure 2.4). In case the threshold comparators recognize a voltage
violation, specific clock gated processor components are switching on/off. In emergency
situations even the main clock is deactivated for a short amount of time.

Figure 2.3: Voltage Computation by Means of Convolution Calculation [GAT02]

Figure 2.4: Voltage Control Mechanism by [GAT02]

In general, design-time based solutions need a very pessimistic design and detailed
processor and power network models [SSN02]. Furthermore, very time intense simulations
must be performed.

2.2.2 Run-time Based Approaches

There are several methods to monitor and control the supply voltage during run-time.
On-die circuits are used by [HNB08] to detect voltage drops and inject up to 100mA

into the specific node. The disadvantages of this approach are the need for additional

CHAPTER 2. RELATED WORK 21

die area for the circuit, up to 250mW of additional power consumption and a secondary
supply voltage which is higher than the chip voltage to provide the injection-current.

Analog-to-digital converts [ASH05] and voltage comparators [NIA04] can be
used to measure the supply voltage and detect drops. The sensor delay can be noted as a
drawback of these methods and can limit their effectiveness.

All sensor and circuit based solutions have in common that they are available only at
a late stage within an IC development process.

Shift registers are used by [GAT02] to delay clock gated processor components. As
a result, there is a limited possibility to switch on/off several processor components simul-
taneously. This architectural modification reduces the voltage noise which is generated by
high current changes.

Grochowski et al. [GAT02] implement their simulation approach (explained in Chap-
ter 2.2.1) in real hardware. A current estimation unit is used instead of the current
simulator. This unit monitors the clock gating signals and estimates the power consump-
tion of the currently active processor components. Major disadvantages of this approach
are the convolution engine’s high computation complexity and time delay.

A predictive approach is proposed by [RGH+09]. Signatures of the running program
are analyzed. A signature consists of program path sequences and micro architectural
events (e.g., cache misses, pipeline stalls, etc). In case a signature matches an emergency
pattern the processor is throttled. The accuracy of detected emergencies is above 90%
and varies depending on the test programs, the size of pattern tables, etc. The immense
implementation effort can be noted as a major drawback of this method.

Zhao et al. [ZDBT10] demonstrate the influence of temperature on voltage drops.
The higher the temperature the lower the drop. With the help of this knowledge, they
implemented a thermal-aware, on signatures based predictive voltage control. The ther-
mal awareness improved the system’s performance by more than 5% compared to other
signature based implementations.

Genser et al. propose in [GBH+11] a voltage emulation system which implements
an estimation approach. A power estimation unit (explained in Chapter 2.1.2) estimates
the instantaneous power consumption of the target hardware by means of its states (e.g.,
CPU running, reading memory, etc). The power values are then processed by a voltage
estimation unit, which is based upon the model of a smart card’s supply circuit (see
Chapter 2.4.1). Both units and the target hardware are then integrated into an FPGA.
Genser’s emulation system delivers cycle accurate power and voltage values in real time
and consumes only 1.5% of additional FPGA space. The error done by the estimation
procedure is below 8.4%. Above all, this approach can be performed in early product
design stages. Consequently, power bugs within the target hardware can be found and
corrected very soon.

2.3 Dynamic Power Management

The CMOS dynamic power consumption is basically given by Equation (2.6) [KM08]. The
formula says that the dissipated power is proportional to the load capacity C, the squared
supply voltage V, an activity factor A and the frequency f. The load capacity C mostly
depends on wire lengths within the chip. Cleverly designed architectures may reduce

CHAPTER 2. RELATED WORK 22

the capacity value such as implementing several small processors. The activity factor
A describes how often signal changes take place. A signal switching at the maximum
frequency (e.g., the main clock signal) would be assigned a value of one, while other
signals with lower switching frequencies would be assigned a value between zero and one.

P ∼ C ·A · V 2 · f (2.6)

Tiwari et al. coined the name
”
Dynamic Power Management“ in the year 1997 by

summarizing and describing the most important former techniques to save power in inte-
grated circuits dynamically [TDMG97]. Among others, a few very popular dynamic power
management methods are presented in the following paragraphs:

An integrated circuit’s clock tree represents a large amount of load. Clock gating
specifies a method to propagate the clock signal only to chip components that really need
it. This technique is a very effective way to save power (activity factor A of Equation (2.6)
is affected) and can be implemented very easily at low cost (see Figure 2.5). Analysis of
Pokhrel showed that 20% die area and between 34% to 43% power can be saved with the
clock gating methodology [Pok07].

Figure 2.5: Clock Gating [TDMG97]

Guarded evaluation is a way to disable the propagation of transitions to a dedicated
component. This is viable when multiple combinational blocks share, for example, the
same input but only one is performing valid activities. The input for all other blocks is
disabled in order to avoid unnecessary transitions that consume power. Figure 2.6 depicts
a typical application for this technique within a processor’s ALU.

Figure 2.6: Guarded Evaluationg [TDMG97]

Bus deactivation is a method to drive a bus only when the data on the bus must be
used. Thus, the power waste is reduced when bus data is not needed at all.

CHAPTER 2. RELATED WORK 23

All the dynamic power management techniques presented here are very well known
and commonly used. However, for this master thesis the

”
dynamic voltage and frequency

scaling“ methodology is used, which has several benefits.

2.3.1 Dynamic Voltage and Frequency Scaling

DVFS is a technique which is used to modify a processor’s clock frequency and supply volt-
age. In contrast to other dynamic power management methods, DVFS provides an elegant
and very precise way to control an IC’s power dissipation. According to Equation (2.6) a
cubic impact can be achieved by modifying these two parameters. Any modification to the
DVFS frequency parameter also affects the processor’s performance linearly. Furthermore,
not any arbitrary combination of voltage and frequency parameters can be selected. In
order to operate a processor at a specific frequency, a dedicated minimum voltage must be
supplied. Otherwise the processor would not function properly because transistors would
not have enough time to switch states. According to Kaxiras and Martonosi [KM08],
DVFS is utilized at three major abstraction levels:

� At system level, a whole processor is affected by the voltage and frequency modifi-
cations. Often DVFS is applied during processor idle times.

� Program level based DVFS is driven by a program’s behavior. For example, memory
operations with long latencies can be exploited.

� Another level below, hardware based slack is addressed directly from within the
hardware.

2.3.2 Multi-Core DVFS

There are numberless approaches and algorithms available which treat DVFS implementa-
tion and utilization, particularly with regard to the field of multi-core processor systems.
In the following sections, several research papers on this topic and relevant for this master
thesis are described.

Globally Asynchronous Locally Synchronous Architecture

Semeraro et al. [SMB+02] propose a multi-core system featuring a globally asynchronous
locally synchronous architecture (GALS, see [MHK+99]). The processor is subdivided into
four clock domains (front end, integer units, floating point units and load/store units).
In each domain, the frequency and voltage parameters are controlled independently. Ad-
ditionally, processor components which are not used at all can be deactivated by means
of clock gating. Tests with circuit simulators have shown that an energy-delay product
(see [GH96] regarding the energy-delay product metric) improvement of up to 20% can
be achieved compared to the system without any DVFS control. The main drawback of
this approach is its complexity and hardware overhead, because communication between
different voltage/clock domains must be performend via queues.

Talpes and Marculescu present a simulation based GALS design exploration framework
[TM05]. With the help of this framework system, designers are able to rapidly examine
how certain voltage/frequency island granularities affect the system’s power consumption

CHAPTER 2. RELATED WORK 24

and performance. Taples and Marculescu also demonstrate a processor featuring a GALS
architecture, which is able to save 25%−30% of the power whilst the performance is only
reduced by 5%−7%.

Per-Core versus Chip-Wide DVFS

Kim et al. explore the DVFS energy saving potential with a four core processor system
[KGWB08]. Comparisons are done regarding benefits of per-core versus chip-wide DVFS.
Furthermore, one slow off-chip and four very fast on-chip DVFS regulators are available for
different test scenarios. The on-chip regulators allow voltage changes within nanoseconds,
whilst the off-chip regulator is only able to modify the voltage within microseconds. Figure
2.7 illustrates the system architecture of three different test settings:

� Using only the off-chip regulator =̂ chip-wide DVFS

� Using the off-chip and one on-chip regulator =̂ chip-wide DVFS

� Using the off-chip and all four on-chip regulators =̂ per-core DVFS

Figure 2.7: DVFS Test-System Architecture [KGWB08]

Each regulator causes electrical losses which are taken properly into account during all
tests. Kim et al. used an

”
offline algorithm“ to control the voltage regulators. This

algorithm minimizes the processor’s energy consumption by exploiting the slack of memory
accesses and pays attention to certain performance constraints simultaneously.

An implementation of DVFS should aim to increase the operating time of the appli-
cation while keeping the performance degradation below 5%. Figure 2.8 shows the test
results of the algorithm. If only one on-chip voltage regulator is used, the electrical losses
downsize the theoretical power savings compared to the off-chip regulator setting. For the
case where all four on-chip regulators are used, the power consumption of the complete
processor can be controlled very precisely with DVFS. Thus, an improvement of up to
21% can be achieved.

DVFS Policies

Herbert and Marculescu simulate a symmetric 16-core processor system in [HM07]. Vari-
ous different DVFS policies are examined and the achieved power saving is analyzed. The

CHAPTER 2. RELATED WORK 25

Figure 2.8: Chip-Wide versus Per-Core DVFS [KGWB08]

following algorithms are used:

� A threshold algorithm that increases voltage and frequency if an upper threshold
is breached and respectively decreases voltage and frequency if a lower threshold is
breached.

� A
”
Greedy“ algorithm that constantly searches for optimal voltage and frequency

values to minimize the proportion of the energy/throughput2 metric.

� An algorithm based on control theory, which implements a proportional-integral
controller to regulate power according to processing load.

The following voltage and frequency combinations are arranged during the tests:

� Voltage and frequency parameters are equal for all cores =̂ chip-wide DVFS.

� Groups of four cores are composed. Cores from the same group are operated with
the same voltage and frequency parameters.

� Every core is run with independent parameters =̂ per-core DVFS.

Herbert and Maculescu demonstrate that the proportion of energy/throughput2 metric
can be reduced by 38.2% when the Greedy algorithm and the highest possible voltage/fre-
quency combination is used.

Isci et al. use a simulation approach to analyze miscellaneous DVFS policies [IBC+06].
These algorithms try to optimize the performance of a multi-core processor system while
considering another constraint: the total processor’s power consumption should not exceed
a specified power budget. The following per-core policies are tested:

� The
”
Priority“ policy assigns different priorities to each processor core. The algo-

rithm tries to run the core with the highest priority as fast as possible. When power
needs to be economized, the lowest prioritized core is throttled first and the highest
prioritized core is throttled last.

CHAPTER 2. RELATED WORK 26

�
”
PullHiPushLo“ is a policy that tries to distribute the power consumption fairly

between the cores. The core with the highest power consumption is throttled and
the core with the lowest power consumption is accelerated.

�
”
MaxBIPS“ optimizes the system performance by adjusting the processor’s instruc-

tions per second ratio. This is accomplished by a technique which predicts the cores’
future utilization and power consumption.

� A chip-wide DVFS method is implemented as well. This scheme applies to all cores
the same voltage and frequency parameters.

Figure 2.9 depicts the resulting performance and power consumption curves. The left
image shows the performance degradation of all four policies depending on the preset
power budget. The per-core DVFS policy

”
MaxBIPS“ performs best. In contrast, the

chip-wide DVFS algorithm performs worst. The sub-figure on the right shows the power
consumption curve of each policy. The dashed curve represents the preset power budget.
Remarkable here is the big power consumption slack of the chip-wide policy. The reason
for this is that the power consumption impact is many times greater when all cores are
moved together to the next higher DVFS power/performance mode. Hence, the adjustable
voltage and frequency granularity of per-core policies is far better.

Figure 2.9: DVFS Policy Comparison [IBC+06]

Bergamaschi et al. [BHB+08] use a simulation based approach to conduct investiga-
tions regarding chip-wide and per-core DVFS policies. Basically, two algorithms are used:
The MaxBIPS (which has been proposed by [IBC+06]) and a continuous power model al-
gorithm. The special feature of the continuous power model policy is its ability to use any
arbitrary frequency and voltage couple within predefined upper and lower bounds. Fig-
ure 2.10 illustrates the expected outcome. Per-core DVFS outperform chip-wide DVFS
approaches.

2.4 Smart Card Specific Power Management

Haid et al. [HKLS] divide a smart card system into the following two components: A
reader hardware and the smart card (transponder) itself. The reader hardware generates

CHAPTER 2. RELATED WORK 27

Figure 2.10: Chip-Wide versus Per-Core DVFS Policies [BHB+08]

an electromagnetic field for power supply and communication purposes. The magnetic
field inducts an electrical current in the smart card. The smart card uses the electrical
energy to power a small processor. Figure 2.11 illustrates this assembly. In order to ensure

Figure 2.11: Smart Card System [Fin03]

a robust working smart card system, several aspects need to be taken into account.
Firstly, the available electrical energy is very limited. An available power budget can

be calculated on the basis of the electromagnetic field strength, the antenna design, the
resonance circuits and capacitors, which are used as energy storages (see Figure 2.13). The
energy consumption of the smart card should never exceed this power budget to avoid a
power breakdown. Attention must be paid to both, high average power consumption and
high power peaks.

Secondly, the communication between reader and smart card is often modulated with
the amplitude shift keying method and a modulation index of ≤ 100%. The load modu-
lation is simply done by switching on/off an additional resistor. Thus, the modulation is
directly influenced by any processor load change. As a result, load changes can corrupt
the communication.

Figure 2.12 demonstrates the impact of different workloads on the processor’s supply

CHAPTER 2. RELATED WORK 28

voltage. Both workloads consume the same electrical energy but with different power
peaks and lengths. When the processor’s current rises above 3mA, both capacitors from
Figure 2.11 are being depleted and the processor’s supply voltage drops. It is evident: The
higher the power peak, the greater the supply voltage drop. In case the supply voltage
drops below a certain level, the reset logic puts the processor back into its initial state and
provokes a restart.

Figure 2.12: Power and Voltage Curves of a Smart Card System [HKLS]

In summary, a smart card power management must take the following crucial issues
into account to guarantee a proper working system:

� The power profile needs to be flattened to minimize negative impacts on the
communication.

� The power consumption should be below a specific power budget to avoid power
breakdowns.

� The supply voltage must not drop below a certain level to avoid processor resets.

2.4.1 Smart Card Power Supply Model

In order to estimate the supply voltage of smart card systems, Wendt et al. propose a
well fitting model [WGSW08]. In this model, the smart card is powered by a magnetic
field, which is generated by a reader device. The electromagnetic field induces a sinusoidal
current in the smart card. This alternating current is then transformed into a direct
current. This direct current finally powers the smart card’s processor.

CHAPTER 2. RELATED WORK 29

The exact functions of the electrical components are:

� vs(t) generates an alternating voltage with a frequency of 13.56 MHz.

� R1 and R2 model the ohmic losses of the coils.

� Coil L1 generates an electromagnetic field.

� Coil L2 is used in conjunction with the magnetic field to induce a sinusoidal current.

� C1 and L2 form a series resonance circuit. To ensure a maximum power transfer
between the reader and the smart card, the resonance frequency must match the
frequency of the readers alternating voltage. In this example, the circuit is configured
for a resonance frequency of 13.56 MHz.

� D1 to D4 are rectifying the induced current.

� C2 does smooth the rectified current and stores electrical energy.

� Zener Diode D5 is used to regulate the output voltage.

� v(t) specifies the target hardware’s supply voltage.

Hard
ware

vS(t)

Smartcard
H(t)

Reader

C1

C2

D1 D2

D3 D4 D5

R2

R1

v(t)vi(t)

L1 L2

iZ(t)

Figure 2.13: Smart Card Model

According to [WGSW08] this smart card model can be further simplified (see Figure
2.14). The generation of the electromagnetic field, the induction and the rectification of
the current are replaced by a Thevenin voltage source vi(t) and a resistance Ri. v(t) again
defines the important target hardware’s supply voltage. The target hardware consists of
the processor and some clock and reset logic. i(t) is the current the target hardware is
consuming.

2.4.2 Smart Card Power Supply Model Analytical Analysis

The current i(t) in Figure 2.14 is drawn by the target hardware and varies depending on:

� The voltage (Vdd) at which the processor is operated.

� The frequency (f) of the processor’s clock.

CHAPTER 2. RELATED WORK 30

Ri ii(t)

iC(t)

i(t)

vi(t) v(t)
Pro
ces
sor

Vdd, fC
Ele
ctro
nic

Smartcard

iZ(t)

Figure 2.14: Simplified Smart Card Model

� The processor’s current workload.

Looking at Figure 2.14, it can be observed, using Kirchhoff’s circuit laws, that the voltage
drop across the electronic load, v(t), is the same as the voltage difference across the
capacitor and the Zener diode. Also, this voltage is affected by the behavior of the Zener
diode placed in an inverse configuration. Here is a list of all the cases describing the
circuit’s behavior:

� v(t) < VZ : in this case, the Zener diode acts almost like an open circuit (iZ(t) ≈ 0)
and therefore, the capacitor alone sets the value of v(t). However, the capacitor
voltage value is strongly affected by all electric current values present in the circuit.
The possibilities are:

– i(t) < ii(t): this describes that the current drawn in the electronic circuit is
less than the supply current given by the RF receptor. In this case, iC(t) is
negative, which means that the capacitor is charged and v(t) increases. The
supply voltage is therefore not constant.

– i(t) = ii(t): this describes that the current drawn in the electronic circuit is
equal to the supply current given by the RF receptor. In this case, iC(t) is 0,
which means that v(t) is constant at this instant. The supply voltage cannot
be considered constant over a significant amount of time as i(t) and ii(t) can
fluctuate independently from one another.

– i(t) > ii(t): this describes that the current drawn in the electronic circuit is
greater than the supply current given by the RF receptor. In this case, iC(t) is
positive, which means that the capacitor is discharged and v(t) decreases. The
supply voltage is therefore not constant.

� v(t) = VZ : in this case, the diode is at the threshold between acting as an open-
circuit and acting as a perfect wire. In this case, the circuit’s behavior can change
drastically depending on the values of all electrical current:

– i(t) < ii(t): this describes that the current drawn in the electronic circuit is less
than the supply current given by the RF receptor. In this case, iC(t) is negative,
which means that the capacitor should be charged and v(t) should increase.
However, this is not the case because the diode will switch its operation and

CHAPTER 2. RELATED WORK 31

act as a perfect wire. This results in a current drain of both the capacitor
and the source until v(t) goes back to be equal to VZ . In practice, the supply
voltage stays constant because the diode bleeds off any small voltage excesses
very rapidly.

– i(t) = ii(t): this describes that the current drawn in the electronic circuit is
equal to the supply current given by the RF receptor. In this case, iC(t) is 0,
which means that v(t) is constant and can be considered at the limit of stability.

– i(t) > ii(t): this describes that the current drawn in the electronic circuit is
greater than the supply current given by the RF receptor. In this case, iC(t) is
positive, which means that the capacitor is discharged and v(t) decreases. The
supply voltage is therefore not constant.

According to [WGSW08] the instability of this system and the resultant changing
supply voltage v(t) can described by Equation (2.7).

v(t) = vi(t)−Ri · i(t) + e(−t·Ri·C) · (v0 − vi(t) +Ri · i(t)) (2.7)

This analytical model has been checked against a reference model by using a MIPS power
simulator. Figure 2.15 shows both voltage curves of a md5 checksum calculation. The
difference between the analytical and the reference model is less than 2%.

Figure 2.15: Reference and Analytical Model Comparison [WGSW08]

2.5 Exponential Function in Hardware

For this master thesis, a methodology has been developed to compute the exponential term
e(−t·Ri·C) of Equation (2.7) quickly and accurately within hardware. Furthermore, the syn-
thesized algorithm should use die area economically. Deschamps et al. [DBS06] outline
the most feasible ways to implement a hardware based exponential function. Approaches
like the classic TaylorMacLaurin Series or the computation via Additive Normalization
are presented. However, the majority of these algorithms require a high amount of hard-
ware resources like multiplier- and divisor-units. Therefore, they are considered to be
impractical for this master thesis.

In the following section, the CORDIC algorithm is presented which is the most suitable
method for this task.

CHAPTER 2. RELATED WORK 32

2.5.1 CORDIC Approach

Jack E. Volder introduced the Coordinate Rotation Digital Computer (CORDIC) algo-
rithm in the year 1959 [Vol59]. It is a linear convergence method. It iteratively approxi-
mates any trigonometric function by rotating vectors. The special feature of this approach
is that only a few lookup tables, shift and add operations are used. Thus, CORDIC is a
very practical method to be implemented in hardware. According to [Vol59], [HTHR94]
and [EL04] the CORDIC algorithm is basically given by the iterative Equations (2.8),
(2.9) and (2.10).

xj+1 = xj −mσj2−jyj (2.8)

yj+1 = yj + σj2
−jxj (2.9)

zj+1 =


z[j]− σj tan−1(2−j) if m = 1

z[j]− σj tanh−1(2−j) if m = −1

z[j]− σj(2−j) if m = 0

(2.10)

j = 0, 1, ...N − 1

σj =

{
1 if z[j] ≥ 0

−1 if z[j] < 0
(2.11)

Km[j] = (1 +m2−2j)1/2 (2.12)

j conforms the number of iteration. The rotation direction is given by σj , which depends
on the instantaneous value of zj . The CORDIC algorithm supports several operation
modes. Each mode computes different trigonometric functions. The various possible
modes are presented by Table 2.2. After N+1 computation iterations an accuracy of N-bit

Variable Value Mode

m -1 Hyperbolic Coordinates
m 0 Linear Coordinates
m 1 Circular Coordinates
y → 0 Rotating
z → 0 Vectoring

Table 2.2: CORDIC Operation Modes

is achieved. Finally, the resulting x and y values must be compensated by a factor Km,
which is given by Equation (2.12). The value of this factor Km depends on the operation
mode m. Figure 2.16 exemplifies a CORDIC iterative vector rotation. The starting vector
given by the values xin and yin is several times rotated until the final rotation θ and the
values xf and yf are yielded.

CORDIC Hyperbolic Mode

Basically, the exponential function can be expressed by Equation (2.13)

eθ = cosh(θ) + sinh(θ) (2.13)

CHAPTER 2. RELATED WORK 33

Figure 2.16: CORDIC Iterative Vector Rotation [EL04]

To achieve this calculation, the CORDIC algorithm is used in its hyperbolic - rotation
mode (see [Vol59], [HTHR94] and [EL04]). Thus, the values of Table 2.3 must be applied.
Running the iterative CORDIC algorithm results in the final values, which are displayed

Variable Value Comment

j 1 Initial value
m -1 Hyperbolic corrdinates are used
xin 1 Initial value
yin 0 Initial value
zin θ
zf 0 z → 0, z is driven to 0
K−1 ≈ 0.82816
θmax 1.11817 Maximum converging input value
Repeated Iterations 3k+1 3, 14, 40,...

Table 2.3: Values for the CORDIC Hyperbolic Mode

in Equation (2.14). The current version of the algorithm does not converge yet. To resolve
this issue, every 3k + 1 iteration is carried out twice.

xf = K−1(xin cosh(θ) + yin sinh(θ) (2.14)

yf = K−1(xin sinh(θ) + yin cosh(θ)

zf = 0

At last, xf is accumulated with yf and xin, yin are filled with the corresponding values
from Table (2.3). Thus, Equation (2.15) displays the resulting exponential function.

xf + yf = K−1(cosh(θ) + sinh(θ)) = K−1e
θ (2.15)

CORDIC hardware implementations have been presented by Hu [Hu92], Andraka
[And98] and Boudabous et al. [BGKM04]. Their approaches are described in detail
by the authors and form the basis for this master thesis’ CORDIC version of the supply
voltage estimation unit.

Chapter 3

Design Prerequisites

The design as well as the implementation of the emulation system rely on several compo-
nents, which have already been developed and used in the past:

� The GRXC3S-2000 development platform is used for rapid VHDL and FPGA de-
velopment purposes. The FPGA-synthesizable processor used in this project is a
LEON3 processor. This processor uses 32-bit instructions and data structures and
it fully complies with the IEEE-1754 SPARC V8 specification. Also, it can be used
within a multi-core system.

� To receive cycle accurate power consumption information about the smart card
a power estimation unit is used. This unit has been developed by Genser et al.
[GBH+09].

� The dynamic voltage and frequency scaling technique is implemented according to
a lookup table approach, which has already been developed by A. Genser.

� Genser’s supply voltage estimation unit is used to receive information about the
target hardware’s supply voltage level [GBH+11].

� A power performance and debug unit is integrated into the emulation platform to
transmit all relevant information to a host PC for further analysis tasks. This unit
has been developed by M. Lackner [Lac10].

Thanks to the participation of all contributors, the development process was focused solely
on the most important issues. In this chapter, the utilized parts are presented in detail.

3.1 LEON3 Platform

The GRXC3S-2000 development board [Gai10] is being used during this master thesis.
This board, illustrated in Figure 3.1, has been developed by the company PENDER ELEC-
TRONIC DESIGN GmbH. It features a Spartan 3 Xilinx FPGA, 64 MByte SDRAM and
peripheral units like an Ethernet-interface, two RS232 interfaces and several more.

The LEON3 is a synthesizable open source processor (whose VHDL source code is
published under GNU GPL license) which has been developed by Aeroex Gaisler on behalf

34

CHAPTER 3. DESIGN PREREQUISITES 35

Figure 3.1: GRXC3S-2000 development board [Gai10]

of the European Space Agency. It is shipped with a comprehensive IP core library, namely
the GRLIB [Gai09]. The main features of the LEON3 processor are:

� 32-bit harvard architecture processor, fully compliant with the IEEE-1754 SPARC
V8 standard. Up to 16 processor cores can be used simultaneously within a multi-
core environment.

� A seven stage integer pipeline and support for 15 asynchronous interrupts.

� A floating point unit and a user-defined coprocessor.

� Basic power saving methods, such as power down mode, are supported. Furthermore,
clock gating techniques can be added easily.

� For inter-component communication purposes, the Advanced Microcontroller Bus
Architecture (AMBA) AHB and APB bus systems are used [ARM99]. Figure 3.2
illustrates the numerous supported peripheral components.

� A fault tolerant processor version is available. This processor type is mostly used for
critical applications where errors caused by

”
single event upset“ (a type of temporary

logic error caused by non-damaging ionizing radiation) may occur.

Figure 3.2: LEON3 Components and Peripherals [Gai10]

CHAPTER 3. DESIGN PREREQUISITES 36

A power emulation system has been developed during a previously carried out project
[Dru10]. It featured the LEON3 processor as target hardware and the power estimation
unit which is presented in Section 3.2. This emulation system and the experience gained
from the IT-Project are used as a basis for this master thesis.

3.2 Power Estimation Unit

The power estimation unit (PEU) is used to estimate in real time the power consumption of
the target hardware. This unit has already been developed by A. Genser and C. Bachmann
at the Institute for Technical Informatics in Graz [GBH+09]. The mathematical principle
involved in the PEU operation is explained in Section 2.1.2 in details. Basically, small
power sensors monitor in real time the processor signals. Based on this information, the
corresponding processor states (e.g., memory read, memory write, ALU multiplication,
etc) are derived. Then, the states are mapped against power values. The sum of all power
values equals the momentary total power consumption of the processor core. The power
model utilized within the PEU has been developed by Bachmann et al. [BGS+10]. It is
based on gate level simulations. Figure 3.3 illustrates the principle behind the PEU.

RAM

ALU

Peripherie - USB

...

Power Sensor 1

Power Sensor 2

Power Sensor 3

...

LEON3 Processor Core Power Estimation Unit

+

Total Core’s
Power Value

P(t)

Signals

Figure 3.3: Power Estimation Unit Architecture

The target hardware features a symmetric multi-core processor system. Each processor
core has one PEU assigned (cf. Figure 4.2). The sum of all power values derived by the
PEUs represents then the total SMP system’s power consumption. These values are then
used by supply voltage estimation unit (SVEU), voltage drop compensation unit (VDCU)
and power management unit (PMU) for further computations and DVFS control decisions.

3.3 DVFS Scaling

Due to the fact that this project features a power/supply voltage emulation and evaluation
platform, dynamic voltage and frequency scaling of processor cores is only simulated and
not implemented in hardware directly. This is achieved by a lookup table approach. Each
possible processor clock frequency is assigned to a certain required voltage. The power
values P (t) which are received by the PEUs, are then scaled with the DVFS frequency

CHAPTER 3. DESIGN PREREQUISITES 37

and voltage, according to Equation (3.1).

P (t, f, v) = P (t) · f · v2 (3.1)

Each processor core has one DVFS scaling unit assigned to it. Figure 3.4 depicts the
architecture of the DVFS scaling approach.

LUT
f → V

Multiplier

Voltage
V

P(t,f,V)
* * *

Frequency
f

Power
Consumption

P(t)

LUT

Frequency
f

Figure 3.4: DVFS Scaling Approach

However, this simulation approach introduces a major drawback. Basically, in case two
identical processors are running at different clock frequencies but are executing the same
program, the faster processor finishes earlier. Note that processor cores which are running
within this master thesis’ proposed emulation platform execute their programs always at
the same speed and finish simultaneously. The DVFS approach is only simulated with the
help of a lookup table method, different processor frequencies can not be processed 100%
realistically. Hence, the results gained from DVFS per-core algorithms must regarded with
caution, because they operate the processor cores with different frequencies. Chip-wide
DVFS algorithms are not affected by this matter, because all cores are always operated
at the same clock frequency.

3.4 Supply Voltage Estimation Unit

Genser et al. proposed a supply voltage estimation unit (SVEU) in [GBH+11]. This unit
has been developed and integrated within a power and supply voltage emulation platform
for a smart card target hardware. The basic principles which have been applied for this
SVEU are explained in Section 2.2 and Section 2.4.1 in detail.

PEUs are used to calculate the momentary power consumption of each processor core.
The summed up power value is then passed to the SVEU, which computes the supply
voltage by means of Equation 3.2.

v(t+ 1) = vi −Ri · i(t) + e(−t·Ri·C) · (v(t)− vi +Ri · i(t)) (3.2)

i(t) is given by the PEUs. To avoid the calculation of the exponential term e(−t∗Ri∗C),
the parameter t is considered to be constant and is a value of 30ns assigned. Therefore
the whole exponential term is constant too. vi defines the voltage which is supplied
by the magnetic field. Its steady value is set to 2.5V. The start condition for t=0 is
v(0) = vi = 2.5V , thus the capacitor is fully charged. Figure 3.5 illustrates the design
of the supply voltage estimation approach by Genser et al. for a symmetric multi-core
processor system.

CHAPTER 3. DESIGN PREREQUISITES 38

Core 1

Core n

PEU 1

PEU n

SVEU

Supply Voltage Estimation Principle

Core 1 Power
Consumption

P(t)Signals

Supply
Voltage+

Core n Power
Consumption

P(t)

Total Power
Consumption

Signals

Figure 3.5: Supply Voltage Estimation Principle

3.5 Power Performance and Debug Unit

The power performance and debug unit (PPDU) has been designed and implemented by
M. Lackner during his master thesis at the Institute for Technical Informatics in Graz
[Lac10]. Its task is to transmit information from the emulation system via Ethernet to a
host PC for further evaluation and analysis tasks. A JAVA based software has also been
developed to receive, display and save the gathered information. The PPDU is being used
during this master thesis to transfer power consumption, supply voltage level information
and the processor cores’ DVFS settings.

Figure 3.6 exemplifies the integration of the PPDU within a power emulation system.
An AMBA APB interface is supported by the PPDU for configuration tasks. Data is
sent to the unit via the designated State Core 1 to State Core n signals. The data is then
internally preprocessed, filled into an Ethernet frame and forwarded directly to Intel’s
LXT971A 100MBit Ethernet core. Finally, the Ethernet core’s responsibility is to ship
the Ethernet packets.

Figure 3.6: PPDU Hardware Integration [Lac10]

Figure 3.7 depicts the basic functionality of the PC based JAVA software. The JPCAP
library is used to capture the incoming Ethernet packets [JPC11]. A XML configuration
file is used to define the content format of the Ethernet packets and tells the subsequent
pre-processing module how the data should be parsed and interpreted. The profile-output

CHAPTER 3. DESIGN PREREQUISITES 39

software module then takes over the data and offers the user the possibility to whether
display the data within a chart or to save it into a comma-separated file. Finally, the csv
file can then be further processed by any analysis programs like MATLAB, Excel, etc.

Figure 3.7: PPDU System Integration [Lac10]

According to M. Lackner, the integration of the PPDU within a two core multiprocessor
system is quite costly. 19% of the FPGA area is occupied by the PPDU [Lac10]. To
minimize the FPGA utilization, the PPDU is being downsized and specialized for this
project. Thus, only the most relevant information is being processed and transmitted to
the host PC.

The current version of the PPDU is interlinked with an 100 MBit/s Ethernet interface.
The power and supply voltage emulation system runs at rounded 30 MHz and generates
several bytes of analysis data every clock cycle. It is impossible to transmit all the gen-
erated data under the given circumstances. Therefore, the PPDU averages the analysis
data over a certain amount of clock cycles, which introduces an unwanted but unavoidable
inaccurateness. For details refer to [Lac10].

Chapter 4

Design of the Emulation Platform

This chapter presents the architectural design of the emulation platform and the basic
framework of all software components. It also presents the main hardware and software
components:

� A LEON3 master core is used to configure the emulation platform, which comprises
the PEU, VDCU, PMU and PPDU.

� LEON3 slave cores represent the processor cores of the smart card hardware. These
cores are analyzed regarding power consumption and supply voltage.

� Power estimation units evaluate as precisely as possible the power consumption of
the slave cores.

� A supply voltage estimation unit calculates the supply voltage of the smart card
based on the estimated power consumption.

� A power management unit is designed to apply DVFS policies. These policies are
based on the estimated power consumption and set DVFS frequency and DVFS
voltage parameters that are applied to the processor cores.

� A supply voltage drop compensation unit is designed to apply DVFS policies. These
policies act based on the estimated supply voltage and set DVFS frequency and
DVFS voltage parameters that are applied to the processor cores.

� Firmware is developed to configure the emulation system and run benchmark pro-
grams on slave cores.

� A power performance and debug unit is used to transmit power and supply voltage
as well as DVFS parameters to a host PC. The data transmission is performed using
an Ethernet network connection.

� Software tools, such as a data capture software and evaluation scripts, are used to
gather the data from the PPDU and to present the results of performed analyses.

40

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 41

4.1 Emulation System Architecture

The objectives of this master thesis can be subdivided into two distinct parts. In the
first part, a power and supply voltage emulation platform is designed, developed and
integrated. It enables the operator to evaluate and explore the power consumption and
supply voltage behavior of a user given target hardware. The only precondition is that the
target hardware must be available as synthesizable VHDL code. The target design is then
integrated into an FPGA together with power and supply voltage estimation units. The
power and supply voltage information gathered by these units is transferred to a host PC,
where further data interpretation is performed with software tools like MATLAB, Excel,
etc. Figure 4.1 from [GBH+09] depicts the basic concept of this emulation system. The

Figure 4.1: Basic Emulation System Approach [GBH+09]

advantages of this emulation based analysis technique are:

� The target design/hardware can be explored and analyzed regarding power con-
sumption and supply voltage behavior in early design stages.

� Power bugs can be detected and resolved before the tape-out. Power bugs can
be, for example, supply voltage drops or power consumption peaks that exceed
a maximum allowed threshold. Such undesired circumstances may compromise a
hardware’s functionality. In particular, supply voltage drops can be extremely lethal
for a smart card system (see Section 2.4).

� The power and supply voltage analysis is performed in real time by dedicated hard-
ware. Therefore, this analysis is many times faster than a simulation-based one (cf.
Table 2.1).

This master thesis features as target hardware a smart card with a symmetric multi-
core processor system. A very limited power supply and a high sensitiveness regarding
power consumption changes are the prevalent challenges when dealing with smart card
systems. Thus, a smart card emulation system, that is aware of its power consumption
and supply voltage, is built for testing purposes.

In the second part, the emulation platform is enhanced with dynamic voltage and
frequency scaling techniques. The objective is to increase the robustness of the system
against power and supply voltage emergencies. Various DVFS algorithms are implemented
and their effectiveness is analyzed and compared. Representative embedded benchmarking
programs are used for these tests.

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 42

The final design of the emulation platform, which is illustrated in Figure 4.2, consists of
the following components:

� LEON3 specific hardware components

– Several symmetric LEON3 processor cores, divided in one master core and in

”
n“ slave cores.

� Power management specific hardware components

– One power estimation unit (PEU) for each slave core, which estimates the slave
processor core’s instantaneous power consumption.

– A power management unit (PMU) implements several DVFS algorithms which
use power values for DVFS control decisions.

– A voltage drop compensation unit (VDCU) estimates the supply voltage (done
by an internal supply voltage estimation unit (SVEU)) and implements several
DVFS policies using voltage and power values for DVFS control decisions.

– The emulation platform can either be operated with the PMU or VDCU. A
multiplexer unit is used to pass only the analysis information of the currently
active PMU or VDCU to the PPDU.

– The power performance and debug unit’s (PPDU) tasks are to transmit DVFS
parameters, supply voltage and power values to the host PC for further evalu-
ation and analysis purposes.

� Software Components

– A control and benchmark firmware runs on master and slave cores.

– A JAVA based software saves and evaluates the incoming PPDU data from the
Ethernet interface.

– MATLAB scripts perform further data post-processing, evaluation and illus-
tration tasks.

In the following paragraphs, each component of the emulation system is explained in detail.

Slave
Core 1

Slave
Core n

PEU 1

PEU n

VDCU

PPDU

PMU

Emulation Platform / FPGA PC

Evaluation
Software

Ethernet
Status

Information

Power Values
SignalsMaster

Core

Power
On / Off

DVFS Parameters
Supply Voltage

Scaled Power Values

Scaled Power Values
DVFS Parameters

MUX

DVFS Parameters: f,V

DVFS Parameters: f,V

SVEU

Figure 4.2: Emulation System Architecture

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 43

4.2 LEON3 Hardware Components

4.2.1 Master Core

The master core is a LEON3 processor that configures and controls the emulation system.
It is not connected to any power estimation unit. When the emulation platform is switched
on, the master core is the only active one. Then, the master core configures and controls
the PEU, VDCU, PMU and PPDU through the AMBA APB bus system and finally
activates/deactivates the target hardware (slave cores).

4.2.2 Slave Cores

These cores are LEON3 processors that represent the actual target hardware under test.
When the emulation platform is powered up, all slave cores remain deactivated until
the master core has finished initializing all analysis units (PEU, PMU, VDCU, PPDU).
Benchmark programs are then run on slave cores. The PEU and SVEU analyze these slave
cores continuously and deliver the corresponding power and supply voltage data. PMU
and VDCU execute various DVFS policies with the help of the results from the PE and
SVE units. Slave cores’ DVFS voltage and frequency parameters are modified during the
execution of the DVFS policies.

4.3 Power Management Components

4.3.1 Power Estimation Units

These units estimate the power consumption of the target hardware/slave cores. They have
been taken directly from A. Genser [GBH+09] and are used without any modifications
within this master project. The resulting power values form the basis for subsequent
supply voltage estimations as well as DVFS control decisions. The applied mathematical
and design principles within these PEUs are explained within Section 2.1.2 and Section
3.2 in detail. Basically, power sensors analyze internal processor signals and determine
model states for each hardware component (cf. Figure 4.3). Each state has a specific
power consumption value assigned to it. The total power consumption is the summation
of all active component power consumption values.

Figure 4.3: Power emulation harddware [GBH+09]

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 44

Figure 4.2 depicts the integration of the PEUs within the emulation system. An
AMBA APB interface is used to configure and control the PEUs. Genser’s PEU supports
the following configuration options:

PE CTRL - Address 0x80000A00

This register defines the operation modes of the PEU.

Name Bit Direction Description

PE EN 0 RW Enables the complete PEU.
AVG EN 1 RW Enables value averaging. The kind of averaging mode

used is further specified by the AVG MODE bit.
AVG MODE 2 RW 0: Standard cycle-accurate averaging

1: Coarse-grained averaging. The n-the cycle, which is
taken into account, is specified in the PE AVGSTEP
register.

Table 4.1: Power Estimation Unit Register - PE CTRL

PE AVGSTEP - Address 0x80000A04

Name Bit Direction Description

PE AVGSTEP 0:31 RW Defines the n-th cycle, which is used for coarse-
grained averaging.

Table 4.2: Power Estimation Unit Register - PE AVGSTEP

POWVAL - Address 0x80000A08

Name Bit Direction Description

POWVAL 0:15 R Contains the currently estimated power value.
The register width can be modified through the
RES VAL WIDTH definition. In case the PEU is dis-
abled by the PE EN bit, this register does not contain
any valid data.

Table 4.3: Power Estimation Unit Register - POWVAL

4.3.2 Supply Voltage Estimation Unit

Estimating the supply voltage of the target hardware is the designated task of supply volt-
age estimation unit (SVEU). It is instantiated and used by the voltage drop compensation
unit (VDCU). The incorporated mathematical computations utilize a power supply net-
work model based upon a smart card system (see Section 2.4.1). The basic concept for
this unit comes from Genser’s approach, which is described in Section 2.2.2 and Section
3.4.

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 45

The basic functionality of the SVEU can be described as follows: The instantaneous
power consumption of all processor cores are estimated by the PEUs and are delivered to
the SVEU. The power values are transformed into corresponding electric current values.
Several mathematical operations are then executed based on the smart card’s power sup-
ply model (see Section 2.4.1) and the instantaneous applied core clock frequencies. The
resulting v(t) supply voltage values (cf. Figure 2.14) form the basis for VDC DVFS control
algorithms. Figure 4.4 depicts the basic architectural model of the SVEU.

Scaled Power
Values Core 1-n

DVFS Parameter f
Core 1-n

SVEU

Supply Voltage
+ Supply Voltage

Estimation

Total Power
Consumption

Figure 4.4: SVEU Architecture

During this master project, two distinct versions of the SVEU have been designed.
The first design implements the CORDIC algorithm, which is the first attempt to improve
Genser’s approach by calculating the exponential function more precisely. The second
design implements the electrical charge based approach. This approach bypasses the very
complex exponential calculation completely by considering electrical charges which charge
or discharge the smart card’s capacitor. Both design implementations are presented and
discussed in Section 5.3.2.

4.3.3 Power Management Unit

The power management unit (PMU) combines the DVFS policies which acts based on the
instantaneous power consumption.

The PEU delivers power information to the PMU. These power values are then scaled
on the basis of the currently set DVFS parameters. The DVFS policy analyzes the scaled
power values and controls the DVFS parameters correspondingly. For further analysis
tasks all relevant status information is forwarded to the PPDU, which sends the data to
the host PC ultimately. Figure 4.5 depicts the basic design of the power management unit.

Processor
Core PEU

Power
ValuesSignals DVFS

Policy
DVFS

Scaling

Scaled
Power
Values

DVFS Parameters: f,V

PMU

AMBA APB

PPDU
Host PC

Figure 4.5: PMU Architecture

Configuration tasks can be performed through an AMBA APB interface. The following
tables describe the supported features of the interface.

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 46

PM CTRL - Address 0x80000B00

This register defines the operation modes of the power management unit. Only one DVFS
policy can be enabled at the same time.

Name Bit Direction Description

PM EN 0 RW Enables the complete PMU
PM POLICY[1:5] 1 RW Enables PM Greedy DVFS Policy

2 - Reserved
3 RW Enables PM Power DVFS Policy
4 RW Enables PM Performance DVFS Policy
5 RW Enables PM Gradient DVFS Policy

Table 4.4: Power Management Unit Register - PM CTRL

PM POWER SETPOINT - Address 0x80000B04

Name Bit Direction Description

PM POWER SETPOINT 0:31 RW Defines the DVFS policies’ control
setpoint/target value

Table 4.5: Power Management Unit Register - PM POWER SETPOINT

PM POWER VALUE - Address 0x80000B08

Name Bit Direction Description

PM POWER VALUE 0:31 R Contains the instantaneous DVFS
scaled power value

Table 4.6: Power Management Unit Register - PM POWER VALUE

PM RESET - Address 0x80000B0C

Name Bit Direction Description

PM RESET 1 W Resets the PMU

Table 4.7: Power Management Unit Register - PM RESET

4.3.4 Voltage Drop Compensation Unit

This unit is designed to estimate the target hardware’s supply voltage and compensate
detected voltage drops with the help of DVFS policies. Figure 4.6 presents the basic
architecture of this unit. The functionality can be described as follows: The VDCU
receives the instantaneous power values from the PEUs. These power values are then
scaled on the basis of the currently set DVFS parameters and forwarded to the internally
instantiated SVEU. Within the SVEU, the calculation/estimation of the target hardware’s
supply voltage is performed. DVFS policies are fed with the instantaneous power and

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 47

supply voltage values. Based upon this information the slave cores’ DVFS frequency and
voltage parameters are modified correspondingly.

Processor
Core PEU

Power
ValuesSignals

SVEU

Supply
Voltage DVFS

Policy
DVFS

Scaling

Scaled
Power
Values

DVFS Parameters: f,V

VDCU

AMBA APB

PPDU
Host PC

Figure 4.6: VDCU Architecture

An AMBA APB interface is supported for configuration tasks. The following configu-
ration options are supported:

VDC CTRL - Address 0x80000E00

This register defines the operation modes of the VDCU. Only one DVFS policy can be
enabled at the same time.

Name Bit Direction Description

VDC EN 0 RW Enables the complete VDCU
VDC POLICY[1:12] 1 - Reserved

2 RW Enables VDC Greedy DVFS Policy
3 - Reserved
4 RW Enables VDC Power DVFS Policy
5 RW Enables VDC Performance DVFS Policy
6 - Reserved
7 RW Enables VDC Gradient DVFS Policy
8 RW Enables VDC Gradient Delay DVFS Policy
9 - Reserved
10 RW Enables VDC Priority DVFS Policy
11 - Reserved
12 RW Enables VDC Hybrid Greedy Voltage/Power

DVFS Policy

Table 4.8: Voltage Drop Compensation Unit Register - VDC CTRL

VDC VOLTAGE SETPOINT - Address 0x80000E04

Name Bit Direction Description

VDC VOLTAGE SETPOINT 0:15 RW Defines the DVFS policies’ control
setpoint/target value

Table 4.9: Voltage Drop Compensation Unit Register - VDC VOLTAGE SETPOINT

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 48

VDC VOLTAGE VALUE - Address 0x80000E08

Name Bit Direction Description

VDC VOLTAGE VALUE 0:15 R Contains the instantaneous supply
voltage level

Table 4.10: Voltage Drop Compensation Unit Register - VDC VOLTAGE VALUE

VDC RESET - Address 0x80000E0C

Name Bit Direction Description

VDC RESET 1 W Resets the VDCU

Table 4.11: Voltage Drop Compensation Unit Register - VDC RESET

VDC POWER SETPOINT - Address 0x80000E10

Name Bit Direction Description

VDC POWER SETPOINT 0:15 RW Defines the DVFS policies’ control
target value

Table 4.12: Voltage Drop CompensationUnit Register - VDC POWER TARGET

4.3.5 Multiplexer

A multiplexer is implemented to pass only the analysis data of the currently active PMU
or VDCU to the PPDU. The emulation platform is not designed to be operated with both
units simultaneously.

4.3.6 Power Performance and Debug Unit

M. Lackner’s PPDU is used to transmit the analysis data from the PMU and VDCU to
the host PC (cf. Figure 4.5 and Figure 4.6). The original PPDU version supports several
different operation modes and transmits huge amounts of analysis and performance data to
the host PC. To reduce the FPGA area occupation and to increase the accurateness of the
data (the less data transmitted, the less data is averaged), a lot of unneeded functionality
has been removed. The newly designed PPDU supports only two operation modes and
transmits only power consumption, supply voltage, DVFS frequency and DVFS voltage
values to the host PC. The PPDU’s AMBA APB interface can be used to configure the
unit. The following table describes the supported features.

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 49

PPDU MODUS - Address 0x80000D00

Name Bit Direction Description

ENABLE 31 RW Enables the complete PPDU
MODUS 30:29 RW Defines the operation mode.

’01’: Power consumption and supply voltage informa-
tion is transmitted.
’10’: DVFS frequency and DVFS voltage values are
transmitted.

Table 4.13: Power Performance and Debug Unit Register - PPDU MODUS

4.4 Software Components

4.4.1 Firmware

The emulation platform is designed to come along without any operating system. Due to
the fact that a multi-core processor system is given and no operating system is used, the
same firmware is executed on each processor core. Thus, the firmware must be designed
in a way to run on both, the master and the slave cores properly. In order to simplify
the design, functions related specifically to the hardware operation are separated from
the benchmarking functions. This is done by using an application programming interface
(API) structure. The basic flow of activities is presented by Figure 4.7: When the em-
ulation system is powered on, the firmware is executed on the master core only. First
of all, a check is executed to verify if the software runs on the master core or on slave
cores. Because the program runs on the master core, the master core branch is pursued
and its role is to configure the emulation platform (PEU, PMU, VDCU, PPDU). After
the initialization procedure, the target hardware/slave cores are started. Now the same
firmware is executed on the slave cores but this time, it is the slave-branch that is exe-
cuted. This branch of the firmware finally implements the various benchmarks. To offer
a basis of comparison with results from other publications, the MiBench benchmarking
suite [GRE+01] is used. MiBench has been developed by the University of Michigan and
is specialized in representative embedded applications.

Emulation System
Power On /

Start of Slave Core

Configure
Emulation System

Start of Firmware
Master

or Slave
Core?

Start Slave Cores

Execute
Benchmark

Master Core

Slave Core

Figure 4.7: Firmware Process Flow

CHAPTER 4. DESIGN OF THE EMULATION PLATFORM 50

4.4.2 Data Capture Tool

M. Lackner’s JAVA tool (see Section 3.5 for further information) is used to capture and
save the incoming analysis data. It runs on a host PC and reads the data coming from
the Ethernet interface. Once the tool has gathered all the data, it can present it on screen
or save it to a log file.

4.4.3 Evaluation Software

MATLAB scripts as well as Excel are used to read the log files and perform analyses.
Also, it can illustrate the analyses in a professional way. In general, there are two possible
analysis data sources. The scripts are designed so that it can read either log files from
Lackner’s tool or log files coming from ModelSim simulations of the platform.

Chapter 5

Implementation of the Emulation
Platform

In Chapter 3 and Chapter 4, the basic design of the power and supply voltage emulation
platform has been presented. This chapter now explains in more details how this project
is realized.

5.1 Design and Implementation Process

This section presents the major design and implementation process as well as the tools
which are used during this project. Figure 5.1 gives an overview of the performed design
and implementation tasks.

Literature
Research

Feasibility
Studies

VHDL + Firmware
Development SimulationSynthesis

FPGA
Configuration

Firmware
Upload

Emulation Result
Analysis

Emulation Simulation

Figure 5.1: Design and Implementation Process

Literature Research and Feasibility Studies

Before any implementation or design activity can be accomplished, a theoretical back-
ground needs to be acquired. The topics which have been explored during this master

51

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 52

thesis are described and explained in Chapter 2. Design and architectural ideas are then
formed and evaluated based on the gained experiences. Feasibility studies of CORDIC
and other exponential algorithms are then programmed in C and analyzed with Visual
Studio. MATLAB [Mat10] and LTSpice IV [Tec10] are fundamental tools which are used
during the evaluation and development of the electrical charge based SVE model of the
SVEU. LTSpice IV is a SPICE simulator, which can be downloaded from the Internet1.

VHDL and Firmware Development

The development of the VHDL source code is one of the major activities during the
implementation process. The development is based upon the LEON3 VHDL source code
which is published through the Aeroflex Gaisler’s GRLIB package. This library can be
downloaded free of charge from the Gaisler homepage2. To get the GRLIB environment
running, Linux or a Linux-like environment is required. Due to the fact that most of the
development and result evaluation tasks are performed under Windows, the Linux-like
environment Cygwin has been chosen [Cyg10]. It can be downloaded from the Internet3.

The firmware source code as well as the VHDL source code are written and edited with
Visual Studio editor. C++ based tools are developed to ease the VHDL development.
Among other tasks, they are used for integer-to-fixed point conversions, lookup table
generations, etc. Visual Studio does not support VHDL source code highlighting originally.
Nevertheless, it is used because Visual Studio is one of the most comfortable and clearly
arranged source code editors available.

Generally, whenever source code is compiled, the outcome must be mapped towards a
specific platform (e.g., Windows, Linux, etc) or processor (e.g., ARM, SPARC V8, x86,
etc). Thus, a LEON3 specialized cross-compiler is needed for this purpose. There are a
few different compilers available, which can be all downloaded from the Gaisler homepage.
This project utilizes the Bare-C Cross Compiler (BCC).

Simulation

The developed VHDL and firmware source code can be tested before the time intense
hardware synthesis is performed. It’s an alternative that saves time and money. In this
project, simulations are performed with ModelSim 6.6 SE [Gra10]. ModelSim can be
downloaded from the Internet4 but a special licensing environment is needed to operate it
properly. This issue can be resolved for example by established a virtual private network
connection to Graz University of Technology.

Synthesis

In order to build the hardware integrated power and supply voltage emulation system,
the VHDL source code needs to be converted into a netlist file that is used to configure
the FPGA. This task is performed with the help of Xilinx ISE, which is available from

1http://www.linear.com/ [last access 2010-05-14].
2http://www.gaisler.com [last access 2010-05-14].
3http://www.cygwin.com [last access 2010-05-14].
4http://model.com [last access 2010-05-14].

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 53

the internet in the Xilinx’s Webpack 5. Basically, the netlist generation procedure can be
subdivided into the following tasks:

� Synthesis: The source code is checked and the hierarchy of the design is analyzed.
The outcome is a netlist, which is saved in an NGC file.

� Translation: The netlists and the design constraints are merged. At the end of this
task a native generic database (NGD) file is generated.

� Mapping: The logic design is mapped with the help of the NGD file to the Xilinx
Spartan 3 FPGA. As a result a native circuit design (NCD) file is created.

� Place and route: Takes the NCD file, places and routes the design and finally saves
the result in another NCD file.

� Bitfile generation: Based on the routed NCD file a bitstream file (BIT or ISC) is
produced. These files are used to configure the FPGA.

FPGA Configuration

During this task, the FPGA is configured with the developed VHDL design. The bitstream
file is required for this purpose, which is generated during the synthesis process. The
configuration is basically done with either Xilinx ISE or the GRLIB specific tool through
the JTAG interface [IEE01].

Firmware Upload

The firmware now needs to be uploaded into the memory of the development board. This
is performed with the help of the debug monitoring program GRMON and the JTAG
interface. GRMON is available in the Internet6 and can be downloaded free of charge.

Emulation

The emulation system now has been integrated into the FPGA and the firmware is up-
loaded. The emulation system is ready to be put into operation. This is done by executing
the

”
run“ command within the GRMON tool.

Result Analysis

Figure 5.1 and Figure 5.2 depict the two possible approaches to generate and evaluate
results. One method is emulation and the other one is simulation.

� Emulation: During the execution of the firmware, analysis data is gathered by the
emulation system’s internal PPDU and is sent to the host PC through the Ethernet
interface. At PC side, a JAVA tool (see Section 3.5) is used to collect and save the
data into log files. These log files contain averaged information of supply voltage
and power consumption behavior as well as averaged DVFS parameters. Averaging

5http://xilinx.com [last access 2010-05-14].
6http://www.gaisler.com [last access 2010-05-14].

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 54

Slave
Core 1

Slave
Core n

PEU 1

PEU n

VDCU

PPDU

PMU

Emulation in FPGA PC

JAVA
Tool

Ethernet
Status

Information

Power Values
SignalsMaster

Core

Power
On / Off

DVFS Parameters
Supply Voltage

Scaled Power Values

Scaled Power Values
DVFS Parameters

MUX

DVFS Parameters: f,V

DVFS Parameters: f,V

SVEU

Slave
Core 1

Slave
Core n

PEU 1

PEU n

VDCU

PPDU

PMU

Simulation in ModelSim

Power Values
SignalsMaster

Core

Power
On / Off

Analysis Data
Supply Voltage

Analysis Data

MUX

DVFS Parameters: f,V

DVFS Parameters: f,V

SVEU

MATLAB
Scripts

MATLAB
Scripts

Log File

Log File

Log File

Figure 5.2: Result and Log File Generation

is necessary because the Ethernet interface is too limited in terms of bandwidth. For
details refer to [Lac10].

� Simulation: The simulation of the platform is performed by ModelSim. The data
generated by the PMU and VDCU are saved by ModelSim into log files. These files
contain cycle accurate information regarding supply voltage and power consumption
behavior as well as DVFS parameters.

MATLAB and Excel are used to analyze and visualize the content of the log files. Those
scripts calculate execution time of the benchmark, mean and standard deviation for supply
voltage and power consumption, as well as variation in time from desired value of supply
voltage and power consumption. One can recognize a good DVFS implementation if it
respects the following criteria:

� Faster execution time is an indication of economical energy consumption.

� Supply voltage must be above the minimal supply voltage value at all times in order
to ensure proper operation.

� Lower deviation values are an indication that DVFS facilitates the operation of the
smart card.

5.2 Power Values in Gate Level Simulation and Hardware
Domain

The power values form the basis for any further power analysis and supply voltage esti-
mation. They cross several representation domains and are depicted in Figure 5.3. This
section describes the exact mathematical transformations of these values.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 55

PSim [W]

fDVFSSim: 31 MHz
VddDVFSSim: 1.5 V

Simulation
Domain

ScalingFactor: 10022

Hardware Domain

fDVFS: 1-31 MHz
VddDVFS: 0.5-1.5V

DVFS
Scaling

ScalingFactor: 10022PSim PSimInt PSimIntDVFS

2
SimIntDVFSP

DVFSSimDVFSSim VDDf •

DVFS Scaling of
Simulation Removal PIntDVFS

Integer to Real

torScalingFac
PIntDVFS

Real to Integer

torScalingFac•SimP

PRealDVFS

Figure 5.3: Power Value Scaling and Representation

A gate level simulation of the target hardware forms the origin for any further pow-
er/supply voltage analysis. The target hardware is operated at 31 MHz and 1.5 V. The
states from the power model are perturbed and the dedicated power dissipation is de-
termined. These power values, which are given in Watt (Equation (5.1) exemplifies the
value of one power value), now need to be transformed into a representation suitable for
further hardware computations. This is achieved by converting them into an integer data
type. A multiplication factor, named ScalingFactor, is used for this purpose (5.2) and has
a value of 15033. DVFS algorithms are then scaling the PSimInt values with the specific
DVFS voltage and DVFS frequency parameters according to Equation (5.3). After that,
the original DVFS parameters (31 MHz and 1.5 V) from the gate level simulation need to
be removed from the power value by division. This is done in Equation (5.4). The power
value is then converted from the integer domain to real domain because the real supply
voltage value is more meaningful to an hardware developer. Furthermore, the real voltage
is needed so that one can verify at all times if the supply voltage constraint is respected.
This is done in Equation (5.5).

PSim = 0, 1W (5.1)

PSimInt = bPSim · ScalingFactorc (5.2)

PSimIntDV FS = PSimInt · fDV FS · V ddDV FS · V ddDV FS (5.3)

PIntDV FS =
PSimIntDV FS

fDV FSSim
· V ddDV FSSim

· V ddDV FSSim

(5.4)

PRealDV FS =
PIntDV FS

ScalingFactor
(5.5)

To compute the transformation of Equation (5.4) and Equation (5.5) easily in hardware,
the following trick is used. Equation (5.6) shows the value of the divisor from Equation
(5.4) and Equation (5.5). Equation (5.7) shows the nearest possible power of two value.
Thus, the integer value PSimIntDV FS is divided by 220, which can be implemented by a
hardware based shift bit operation. A calculation error of less than 0,03� is produced
during these representation shifts.

ScalingFactor · fDV FSSim
· V ddDV FSSim

· V ddDV FSSim
= 1048551.75 (5.6)

220 = 1048576 (5.7)

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 56

A major prerequisite for a proper supply voltage estimation is the computation of the
target hardware’s drawn electrical current. According to Equation (5.8), this is done by
dividing the instantaneous power consumption with the supply voltage (1.5 V), which
is actually applied to the target hardware. Due to the fact that an implementation of a
hardware based division is very costly, the ScalingFactor between simulation and hardware
domain is divided by 1.5. Thus, the problem of the hardware based division is solved
elegantly. Consequently, the final value of the ScalingFactor equals 10022.

P (t) = U(t) · I(t) (5.8)

The SVEU uses the VHDL support library7 to ease the implementation of the described
fixed point computations.

5.3 Power Management Hardware Components

Figure 5.4 depicts the emulation platform with the highlighted power management units,
which are explained in this section.

Slave
Core 1

Slave
Core n

PEU 1

PEU n

VDCU

PPDU

PMU

Emulation Platform / FPGA PC

Evaluation
Software

Ethernet
Status

Information

Power Values
SignalsMaster

Core

Power
On / Off

DVFS Parameters
Supply Voltage

Power Values

Power Values
DVFS Parameters

MUX

DVFS Parameters: f,V

DVFS Parameters: f,V

SVEU

Figure 5.4: Emulation System Architecture with Highlighted Power Management Units

5.3.1 Improved DVFS Scaling

The original DVFS scaling approach used two architectural units, one lookup table and
three multipliers (cf. Figure 3.4). Each processor core has one DVFS scaling unit assigned.
A DVFS scaling computation is done within two clock cycles. Due to the fact, that the
DVFS scaling unit is part of the controller loop, it influences the control delay directly
and consequently the performance of all DVFS algorithms.

An improved DVFS scaling unit has been implemented during this master thesis. It
features a lookup table between frequency and f · v2 as well as only one multiplier. This
design is feasible because each frequency value (31 discrete values are fragmenting the fre-
quency range between 1 and 31 MHz) is exactly one voltage value assigned. Furthermore,
the two original architecture units are merged together improving the calculation speed
by one clock cycle. This speed increase can be identified in Figure 5.5 if one compares
the old implementation with the new one. Each architectural unit (delimited by a blue
box) introduces a delay of one clock cycle. Thanks to the new, tighter and faster design
the performance of all DVFS algorithms is improved which is directly reflected by better
benchmarking results.

7http://www.vhdl.org/fphdl/ [last access 2011-04-22].

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 57

LUT
f → V

Multiplier

Voltage
V

P(t,f,V)
* * *

Frequency
f

Power
Consumption

P(t)

LUT

Frequency
f

LUT
f → f*V2

f*V2

P(t,f,V)
*

Frequency
f

Power
Consumption

P(t)

Improved DVFS
Scaling Unit

Figure 5.5: Comparison of Original and Improved DVFS Scaling Units

5.3.2 Supply Voltage Estimation Unit

The supply voltage estimation unit is the central part of this master thesis. Genser et
al. have already proposed a version of a supply voltage estimation unit (see [GBH+11]
and Chapter 3.4). Genser’s voltage estimation architecture acts as a basis for this master
thesis. However, the following issue of Genser’s implementation is addressed and improved
during this project: Term e(−t·Ri·C) of Equation (2.7) is expressed by a constant. The
main advantage of this approach is that a very complex exponential function calculation
is avoided. But in case the parameter t changes a calculation error is introduced. Due to
the fact DVFS algorithms modify a processor’s frequency, t is in general not constant.

CORDIC Approach

An implementation of the CORDIC algorithm, based on a feasibility study, has been inte-
grated in hardware during this master thesis. The goal is to compute the exponential term
e(−t·Ri·C) of the supply voltage estimation procedure more precisely. This CORDIC imple-
mentation is specialized in the hyperbolic - rotation mode to approximate the exponential
function (see Chapter 2.5.1). Figure 5.6 from [EL04] depicts the utilized architecture.

Figure 5.6: CORDIC Hardware Integration [EL04]

The CORDIC exponential algorithm supports only a very limited convergence radius
of ±1.11817. This convergence radius limits the exponent input parameter to the same
value range. Therefore, a way to increase the convergence radius has been looked for.
A solution has been found by taking advantage of exponential identities. Based upon
Equation (5.9) [Kre93], an alternative formula (5.10) is being introduced, which is more

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 58

suitable for hardware integrations. After a simplification, the Equation (5.11) is divided by
2−k. Equation (5.12) is then multiplied with ex, resulting in (5.13). Finally, the simplified
Equation (5.14) reduces the argument of positive x values. This approach can easily be
adapted for negative x values and is very suitable to be integrated into hardware. Only
one addition (if x < -1.11817) or subtraction (if x > 1.11817), a table lookup (k ln(2)) and
a bit shift operation are needed for this task.

x = eln(x) (5.9)

2−k = eln(2
−k) (5.10)

2−k = e−k·ln(2) (5.11)

1 = 2k · e−k·ln(2) (5.12)

ex = 2k · e−k·ln(2)ex (5.13)

ex = 2k · ex−k·ln(2) (5.14)

Figure 5.7 illustrates the three major states of the final hardware integrated module. At
first, the input parameter is adjusted by the factor k ln(2) to comply with the limited
convergence radius. Then, the CORDIC iterations are done. And finally, the outcome
needs to be readjusted with the factor 2k.

Adjust Input
Parameter by

k*ln(2)

CORDIC
Iterations

Adjust Result by
2k

i < N

i == N
Initialization Finish

Figure 5.7: CORDIC Implementation State Diagram

The number of cycles needed for the computation depends mostly on the desired
accuracy. n accuracy bits request n+1 CORDIC iterations. The final implementation
was able to do one iteration within two clock cycles. Consequently, in case a 16-bit
accuracy is aimed, 34 cycles for the CORDIC iterations and a few cycles for initializing,
value adjustments and finishing tasks are needed. There are possibilities to increase the
computation speed by parallelizing the design, but then the hardware costs increase and
a latency of 17 clock cycles still remains. This kind of delay directly influences the control
delay of all VDC DVFS algorithms. The higher the control the delay, the worse the control
performance.

There are a few alternative CORDIC implementations available (e.g., from OpenCores8

or Xilinx). The Xilinx IP Generator offers a comfortable way to customize the CORDIC
unit’s design regarding special needs. According to [Xil04], Xilinx’s fastest possible im-
plementation is able to compute n accuracy bits within n clock cycles with the help of
pipelining and parallelization at the costs of 660 FPGA slices. Considering these facts the
CORDIC SVEU design disqualifies.

8http://www.opencores.org/ [last access 2011-04-22].

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 59

Electrical Charge Approach

The fact that the CORDIC implementation is too slow, a completely different approach
has been searched and developed. Figure 5.8 illustrates the simplified analytical model
of a smart card. The main idea behind this method is the calculation of the electrical
charges which affect the capacitor C. Table 5.1 presents the electrical charges, which are
used during the calculations.

Ri iRi(t), QRi(t)

iC(t),
∆QC(t)

i(t), Q(t)

vi(t)
v(t)

Pro
ces
sor

Vdd, fC
QC(t)

Ele
ctro
nic

vRi(t)

iZ(t)

Figure 5.8: Smart Card Model

Variable Interpretation

QRi(t) Electric charge provided by the magnetic field during one processor cycle,
calculated with the help of iRi(t)

Qi(t) Electric charge consumed by the target hardware during one processor
cycle, calculated with the help of i(t)

QC(t) Electric charge level of the capacitor C
∆QC(t) Capacitor C is charged or discharged by the amount of ∆QC

Table 5.1: Interpretation of the Electric Charges

The analysis of this model starts by defining the following facts: Ri (62.5Ω) and C
(100nF) are given; capacitor C is fully charged. In addition, it is assumed that the value
of vi(t) is known (2.5V). A voltage sensor comes into operation in smart card systems for
this purpose. Based on these assumptions, vRi(t) and iRi(t) can be computed easily by
Equation (5.15) and Equation (5.16). After that, the electrical charge QRi(t) is computed
according to Equationn (5.17) with the help of the electrical current iRi and the reciprocal
processor clock frequency. The processor’s power consumption is estimated now by the
power estimation unit (further explanations be found in Chapter 3.2 and Chapter 5.2).
This power value is transformed into the electric current i(t). Then, the corresponding
charge Q(t) is computed on the basis of i(t) and the instantaneous processor’s clock fre-
quency. The difference between Q(t) and QRi(t) is captured by ∆QC(t). The specific
characteristic of ∆QC(t) and the corresponding electrical current iC(t) are their changing
directions. Depending on the processor’s power consumption the charge ∆QC(t) flows
either into the capacitor C (the capacitor is charged, QC(t+ 1) increases) or contrariwise
(the capacitor is discharged, QC(t + 1) decreases). Finally, the target hardware’s supply
voltage v(t+ 1) can be determined by Equation (5.21).

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 60

vRi(t) = vi(t)− v(t) (5.15)

iRi(t) = vRi(t) ·
1

Ri
(5.16)

QRi(t) = iRi(t) ·∆t (5.17)

Q(t) = i(t) ·∆t (5.18)

∆QC(t) = QiRi(t)−Qi(t) (5.19)

QC(t+ 1) = QC(t) + ∆QC(t) (5.20)

v(t+ 1) = QC(t+ 1) · 1

C
(5.21)

The hardware-integrated model uses only one lookup table and four multipliers. The
lookup table is used to translate clock frequencies to their reciprocal time values. To ease
the computation of the fixed point values, a VHDL support library9 is used. The resulting
supply voltage can be computed with a latency of two clock cycles (two latches are added
to reduce the critical path). Furthermore, a multi-core system can be supported elegantly:
Equation (5.18) and Equation (5.17) are improved by Equation (5.22) and Equation (5.23)
for this purpose. Thus, the influence of each processor core can be computed individually.

Qi(t) = iCore1(t) ·∆tCore1 + iCore2(t) ·∆tCore2 (5.22)

QiRi(t) = iRi(t) ·
∆tCore1 + ∆tCore2

2
(5.23)

Magnetic Field Changes

The implemented SVEU is capable to model a changing magnetic field intensity. This
effect occurs when a smart card is moved within the magnetic field. Thus, the voltage vi(t)
alters inevitably. Power Management and Voltage Drop Compensation DVFS algorithms
are evaluated with this special test method regarding the stability of the resulting supply
voltage v(t).

5.3.3 Power Management Unit

The PMU is designed and implemented in order to flatten the target hardware’s power
profile. Figure 5.9 shows the detailed implementation of this unit. PEUs deliver estimated
power consumption values from their dedicated processor cores. The DVFS scaling units
are fed with these values and compute the scaled power values based on the current set of
DVFS voltage and frequency parameters (see Figure 5.5). These values are then forwarded
to the various PM DVFS algorithms. The AMBA APB interface is used to transmit the
control setpoint value and the DVFS policy used to PMU. The processor core frequencies
are output by the policy units and a multiplexer unit decides upon the settings from the
AMBA APB interface what parameters are further used. Finally, the frequency values
are forwarded to the DVFS scaling units and to the PPDU. The PPDU is responsible

9http://www.vhdl.org/fphdl/ [last access 2010-05-14].

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 61

to transmit the DVFS frequency and voltage values as well as the instantaneous power
consumption to the host PC for further analysis tasks.

PM Algorithm 1

PM Algorithm m

DVFS Scaling 1

MUX

Core 1 DVFS Frequency

Core 1-n
DVFS

Frequencies

Core n DVFS Frequency

Core 1 Scaled
Power Values

Core n Scaled
Power Values

PMU PPDU

Core 1 DVFS Frequency

Core n DVFS Frequency

Core 1 Power Consumption

Core n Power
Consumption

DVFS Scaling n

PEU
Core 1

PEU
Core n

Power Values

A
M

BA
 A

PB Configuration, Setpoint

Core 1 DVFS Voltage

Core n DVFS Voltage

...

...

Figure 5.9: Power Management Unit Implementation

The delay of the PMU’s control delay is very small. According to Figure 5.9, each
unit (PM Algorithm, MUX, DVFS Scaling) introduces a one clock cycle delay. The whole
control loop is shown by the red line in Figure 5.9. Therefore, the time needed to get
a complete update on the PMU’s output values is three clock cycles. Due to the small
control loop delay, the PMU is very well suited to flatten the target hardware’s power
profile. The main disadvantage of the PMU is its unawareness of the target hardware’s
instantaneous supply voltage. In the following section, the PM related DVFS approach is
explained and the advantages/disadvantages are depicted.

5.3.4 Power Management DVFS Algorithms

Power management algorithms perform DVFS modifications based upon the instantaneous
power consumption of the target hardware and a predefined power setpoint.

On one hand, PM algorithms smooth the power profile very well and with low control
delay, but on the other hand they are unaware of the target hardware’s supply voltage.
Basically, the PM algorithms are able to prevent voltage drops but a rather pessimistic
power setpoint setup is needed for this purpose. So, a PM setup must deal with the
following problems:

� At which value should the PM setpoint be set?

� If the PM setpoint is set too low, the performance of the benchmarking application
is compromised but the voltage drop safety is increased.

� If the PM setpoint is set too high, voltage drops may occur more likely but the
benchmarking application is executed faster.

In the following paragraphs, the various PM DVFS policies are presented in detail.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 62

PM Greedy Algorithm

Greedy is a very simple but effective chip-wide DVFS algorithm. Figure 5.10 depicts
the implementation of this DVFS method. An artificial control delay is implemented
to cope with the PMU’s control loop delay. If the control delay is reached, then the
instantaneous power consumption and the power consumption setpoint are compared and
DVFS frequency modification is ordered. For the case where the instantaneous total
power consumption is higher than the power setpoint, all processor cores have their clock
frequencies decreased by the same amount. Otherwise, if the total power consumption is
lower than the power setpoint, all cores have their clock frequencies increased. The reason
why there is a delay is actually to give the system time to adjust its power consumption
according to the DVFS modifications. Once that the effect is significant, a new calculation
of DVFS frequencies can be requested.

Control Delay
Reached?

No Yes

Power ≥ Setpoint

YesNo

Increase Frequency of All
Cores

Decrease Frequency of All
Cores

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Wait for New Clock Cycle
Event

Entry Point

Figure 5.10: PM Greedy Algorithm

PM Gradient Algorithm

The Gradient algorithm is a per-core DVFS method, which controls the processor cores’
frequencies based on their respective power consumption gradients and the instantaneous
total power consumption. Figure 5.11 depicts this algorithm’s sequence of activities. At
first, power gradients are calculated. The number of cycles between power consumption
measurements for this computation can be adapted easily by modifying a constant in the
VHDL source code. Next, the list of processor cores is sorted ascendingly by means of
their gradients. Power consumption gradients are compared:

� If the gradients are different:

– If the total power consumption is below the power consumption setpoint then
the core with the lowest power gradient gets an increase in its clock frequency.

– If the total power consumption is above the power consumption setpoint then
the core with the highest power gradient gets a decrease in its clock frequency.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 63

� If the gradients are equal:

– If the total power consumption is below the power consumption setpoint then
the core with the lowest power consumption gets an increase in its clock fre-
quency.

– If the total power consumption is above the power consumption setpoint then
the core with the highest power consumption gets a decrease in its clock fre-
quency.

After the affected core has received its new clock frequency, the algorithm waits an amount
of time equals to an user-defined control delay in order to be able to observe a significant
change in power consumption before ordering a new calculation.

Control Delay
Reached?

Yes

Calc the Power Gradient of
each Core

Sort all Cores According to
their Power Gradient

Gradients
Differ?

Sort all Cores According to
their Power Consumption

YesNo

Power ≥ SetpointPower ≥ Setpoint

No NoYes Yes

Increase Frequency of Core with
Lowest Power Consumption

Decrease Frequency of Core with
Highest Power Consumption

Increase Frequency of Core
with Lowest Power Gradient

Decrease Frequency of Core
with Highest Power Gradient

No

Wait for New Clock Cycle
Event

Entry Point

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Figure 5.11: PM Gradient Algorithm

PM Power Algorithm

This is a per-core DVFS policy. Figure 5.12 depicts this algorithm’s control sequence. At
first, all cores are sorted according to their instantaneous power consumption. Then, the
total power consumption is computed using the power consumption from each core. If
the total power consumption is below the power setpoint, the core with the lowest power
consumption gets an increase in its clock frequency. If the total power consumption is

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 64

above the setpoint value, then the processor core with the highest power consumption
gets a decrease in its clock frequency.

Control Delay
Reached?No Yes

Power ≥ Setpoint

YesNo

Increase Frequency of Core with
Lowest Power Consumption

Decrease Frequency of Core
with Lowest Power Consumption

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Wait for New Clock Cycle
Event

Entry Point

Sort all Cores According to
their Power Consumption

Figure 5.12: PM Power Algorithm

PM Performance Algorithm

This per-core algorithm decides with the help of performance information which core
frequency must be altered. Figure 5.13 depicts this algorithm’s control sequence. Each
core has a performance index calculated as follows: At each current clock cycle, if the core
executes a none-idle instruction it gets a pondered value according to its clock frequency.
At each clock cycle, the sum of the last 100 pondered values is calculated: this is the
performance metric. Then, all cores are sorted according to their current performance
metric. Next, the total power consumption is computed using the power consumption
from each core. If the total power consumption is below the power setpoint, the core
with the highest performance gets an increase in its clock frequency. If the total power
consumption is above the setpoint value, then the processor core with the lowest power
performance gets a decrease in its clock frequency. This DVFS algorithm favors the best
performing processor core in all cases.

5.3.5 Voltage Drop Compensation Unit

The VDCU is responsible for voltage drop detections and compensations. Figure 5.14
shows the detailed implementation scheme. This implementation works in the following
way: An AMBA APB interface is utilized for configuration tasks (e.g., enabling the unit,
selecting a DVFS policy, configuring the control setpoint value, etc). PEUs are delivering
instantaneous power consumption values for each slave core. These values are then scaled
in the improved DVFS scaling units with the currently set DVFS frequency parameters
(explained in detailed in Section 5.3.1 and Figure 5.5). The scaled power values are then
passed to the SVEU, which estimates the instantaneous target hardware’s supply voltage.
The power values as well as the supply voltage value are then passed to the DVFS units.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 65

Control Delay
Reached?No Yes

Power ≥ Setpoint

YesNo

Increase Frequency of Core with
Highest Performance

Decrease Frequency of Core
with Lowest Performance

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Wait for New Clock Cycle
Event

Entry Point

Sort all Cores According to
their Performance

Figure 5.13: PM Performance Algorithm

What kind of DVFS policy is utilized is controlled through the AMBA APB interface. A
multiplexer finally passes the appropriate DVFS frequencies to the DVFS scaling units to
close the control loop. For analysis purposes, all information of interest is passed to the
PPDU which is transferring the data to the host PC.

SVEU

Supply
Voltage

VDC Algorithm 1

Power Values

VDC Algorithm m

MUX

Core 1 DVFS Frequency

Core 1-n
DVFS

Frequencies

Core 1-n
DVFS

Frequencies

Core 1 Scaled
Power Values

Core n Scaled
Power Values

Core n DVFS Frequency

VDCU PPDU

Supply Voltage

Core 1 DVFS Frequency

Core n DVFS Frequency

AM
BA

 A
PB

PEU
Core 1

PEU
Core n

DVFS Scaling 1

DVFS Scaling n

Configuration, Setpoint

Core 1 Power
Consumption

Core n Power
Consumption

Core 1 DVFS Voltage

Core n DVFS Voltage

...

...

Figure 5.14: Voltage Drop Compensation Unit Implementation

Comparing the VDCU’s control loop, which is shown by the red line in Figure 5.14, with
the PMU’s control loop, shown in the same way in Figure 5.9, shows that the VDCU im-
plements a longer control delay. Each unit introduces one clock cycle delay. An additional
two clock cycles delay is caused within the SVEU because of critical path optimizations.
Furthermore, the SVEU introduces a delay caused by circuitry that mimics the behavior

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 66

of a charging/discharging capacitor. This kind of control delay (six clock cycles and the
modeling of capacitor C) must be regarded by the VDC DVFS policies. In the following
section, the VDC related DVFS approach is explained and the advantages/disadvantages
are depicted.

5.3.6 Voltage Drop Compensation DVFS Algorithms

Voltage drop compensation algorithms perform DVFS modifications based upon the in-
stantaneous supply voltage of the target hardware and a predefined voltage setpoint.
Each policy decides on the basis of an unique strategy what processor core needs to be
slowed/accelerated. All algorithms have in common the possibility to modify the DVFS
step size and control delay individually. With the help of these DVFS policies, a multi-
core processor system can be operated at very high clock rates and fatal supply voltage
drops are prevented simultaneously. High inertia and control delays, mainly caused by
a long control loop and the SVEU’s modeled capacitor C, can be noted as the primary
disadvantages.

Most of the currently implemented DVFS policies are allowed to change the frequency
and voltage parameters for a given processor at each clock cycle. The emulation platform
is operated at a clock frequency of about 30 MHz. Thus, modifications to a processor
frequency can be done every 3.3ns. According to Kim et al. [KGWB08], the switching
time of off-chip regulators is between 1µs and 10µs. Contrariwise, on-chip regulators
are capable to operate below a switching time of 10ns. The control delay at which the
algorithms can update the core frequency is limited by the settling time of on-chip or
off-chip regulators: this delay must be longer than the settling time and can be set by the
system user.

VDC Greedy Algorithm

The principle of this algorithm is similar to the PM Greedy Algorithm, which has been
presented in Section 5.3.4, but instead of observing the power consumption, this algorithm
observes the supply voltage in order to make its decision. The instantaneous supply voltage
level and the voltage setpoint are compared continuously. If the supply voltage drops below
the setpoint, the frequencies of all cores get decreased by the same amount. Otherwise, if
the supply voltage is above the setpoint, the frequencies of all cores get increased by the
same amount.

VDC Power Algorithm

The principle of this algorithm is similar to the PM Power Algorithm, which has been
presented in Section 5.3.4, but instead of observing the power consumption, this algorithm
observes the supply voltage in order to make its decision. At first, all cores are sorted
according to their instantaneous power consumption. Then, the instantaneous supply
voltage level is analyzed. If it is below the voltage setpoint, the core with the highest
power consumption is slowed. If the supply voltage is above the setpoint value, then the
processor core with the lowest power consumption is accelerated.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 67

VDC Priority Algorithm

The Priority algorithm corresponds to a per-core DVFS policy. Each core has a priority
value assigned to itself. These values can be modified during runtime. This method favors
the most prioritized core. Thus, for the case where a voltage emergency is recognized, the
core with the lowest priority is slowed first to save electrical energy. If the supply voltage
is above a defined setpoint value, then the high prioritized cores are accelerated ahead of
all others. Figure 5.15 depicts the implementation of this DVFS method.

Control Delay
Reached?No Yes

Voltage ≤ Setpoint

YesNo

Increase Frequency of Core with
Highest Priority

Decrease Frequency of Core
with Lowest Priority

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Wait for New Clock Cycle
Event

Entry Point

Sort all Cores According to
their Priority

Figure 5.15: VDC Priority Algorithm

VDC Gradient Algorithm

The principle of this algorithm is similar to the PM Power Algorithm, which has been
presented in Section 5.3.4, but instead of observing the power consumption, this algo-
rithm observes the supply voltage in order to make its decision. The Gradient algorithm
is a per-core DVFS method, which controls the processor cores’ frequencies based on their
respective power consumption gradients and the instantaneous supply voltage. At first,
power gradients are calculated. The number of cycles between power consumption mea-
surements for this computation can be adapted easily by modifying a constant in the
VHDL source code. Next, the list of processor cores is sorted ascendingly by means of
their gradients. Power consumption gradients are compared:

� If the gradients are different:

– If the supply voltage is above the voltage setpoint then the core with the lowest
power gradient gets an increase in its clock frequency.

– If the supply voltage is below the voltage setpoint then the core with the highest
power gradient gets a decrease in its clock frequency.

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 68

� If the gradients are equal:

– If the supply voltage is above the voltage setpoint then the core with the lowest
power consumption gets an increase in its clock frequency.

– If the supply voltage is below the voltage setpoint then the core with the highest
power consumption gets a decrease in its clock frequency.

After the affected core has received its new clock frequency, the algorithm waits an amount
of time equals to an user-defined control delay in order to be able to observe a significant
change in power consumption before ordering a new calculation.

VDC Gradient Delay Algorithm

This is a special version of the per-core VDC Gradient algorithm. DVFS parameters
are only allowed to be changed after a certain amount of time that copes with off-chip
regulators. Due to the fact that this algorithm is not allowed to change as often as a
Greedy algorithm, a small offset is added to the voltage setpoint. This offset has the effect
of reducing clock frequency ahead of time compared to other algorithms. Furthermore,
the clock frequency for a given core can be increased by increments of 3 MHz or decreased
by decrements of 16 MHz. Those combined actions does save more power in the long run
at the expense of performance.

VDC Performance Algorithm

The principle of this algorithm is exactly the same as the PM Performance Algorithm,
which has been presented in Section 5.3.4, except that instead of observing the power
consumption, this algorithm observes the supply voltage in order to make its decision.

VDC Inverse Performance Algorithm

The principle of this algorithm is exactly the same as the VDC Performance Algorithm,
which has been presented above. However, the main difference is that control actions
performed for each case are reversed. If the supply voltage is below the voltage setpoint,
the highest performing core is slowed. If the supply voltage is above the voltage setpoint,
the lowest performing core is accelerated.

5.3.7 Hybrid Algorithms

Hybrid algorithms are neither power nor voltage management algorithms solely. They
combine the best of both worlds: They are able to flatten the power consumption profile
very well and additionally they are aware of the supply voltage.

Greedy Voltage/Power Algorithm

This type of chip-wide hybrid algorithm uses both voltage and power setpoint values.
Figure 5.16 shows the detailed implementation scheme. It DVFS policy basically acts like
the PM Greedy algorithm (see Section 5.10). Additionally, the current supply voltage level

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 69

is checked against the voltage setpoint continuously. The power setpoint is then modified
slowly to direct the instantaneous supply voltage level to the desired voltage setpoint.

The main disadvantage of the power management techniques described in Section 5.3.4
is their unawareness of the supply voltage level. To ensure a maximum voltage drop safety,
the power budget must be setup in these cases with very pessimistic settings. This hybrid
methodology incorporates the advantage of power management algorithms (low control
delay) while still being aware of the supply voltage. It permanently searches the optimal
power setpoint for a previously specified voltage setpoint. Thus, the power setpoint can
be initially setup very pessimistic without suffering a major performance degradation.

Control Delay 1
Reached?No Yes

Power ≥ Setpoint
YesNo

Increase Frequency of All
Cores

Decrease Frequency of All
Cores

Update Output with Updated
Frequency Variables

Update Output with Current
Frequency Variables

Wait for New Clock Cycle
Event

Entry Point

Control Delay 2
Reached?No Yes

Voltage ≤ Setpoint

YesNo

Increase Power Setpoint Decrease Power Setpoint

Figure 5.16: Greedy Voltage/Power Algorithm

5.4 Software Components

5.4.1 Firmware

The firmware is the so-called software that runs on the LEON3 processor cores. Embedded
systems are sometimes run with an operating system like eCos [eCo10] or Linux. However,
this project does not use any operating system because it represents an unneeded overhead.

Listing A.1 shows the pseudo code of a standard firmware implementation. As al-
ready noted in Chapter 4, the same source code/firmware is executed on each core of the
multi-core processor system simultaneously. There are methods available to cope with this

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 70

circumstance very elegantly. Additionally, the firmware must communicate with the in-
ternal power management units of the emulation system (PEU, PMU, VDCU and PPDU)
and has to execute various benchmarks. Thus, a firmware framework is implemented in a
way to encapsulate benchmarking, emulation platform and LEON3 specific multiprocessor
functionalities to preserve a clear structure. Figure 5.17 depicts the architecture of the
constructed framework. In the following paragraphs, each part of the software framework
is described precisely.

Emulation
System

API

VDCU API

PMU API

PPDU API

Multiprocessor
API

Benchmark
API

MiBench FFT

MiBench Basic
Math

etc.

PEU API

Figure 5.17: Firmware Framework

Multi Processor API

This part of the framework offers functionalities to control the LEON3 multiprocessor
system. The LEON3 supports several application specific registers (asr) for control and
analysis tasks. Detailed information can be found within the LEON3 SPARC functional
manual [Aer10]. Very important are the asr17 and asr19 registers. With the help of asr17,
the CPU index can be identified on which the program is currently running. Listing 5.1
shows the usage of the asr17.

Listing 5.1: Getting the CPU Index

unsigned char GetCPUIndex (void)
{

i n t nCPUIndex = 0xF ;

// read asr17 and s h i f t r i g h t
asm v o l a t i l e (” rd %%asr17 ,%0\n\ t ”

” s r l %0,28,%0” : ”=&r” (nCPUIndex) :) ;
r e turn nCPUIndex ;

} // GetCPUIndex

Register asr19 can be utilized to power down the current processor core. This is
accomplished by writing a zero into it. The power down functionality is used by the
firmware after a benchmark has finished. Listing 5.2 exemplifies the usage of the power
down feature.

Listing 5.2: Powering down the current core

void PowerDownCurrentCore (void)
{

asm v o l a t i l e (”wr %g0 , %asr19 ”) ;

} // PowerDownCurrentCore

CHAPTER 5. IMPLEMENTATION OF THE EMULATION PLATFORM 71

When the emulation system is powered up, only the core with index zero (master core)
is active. Therefore, the slave processor cores must be started by the master core. For
this purpose the multi processor status register of the multi processor interrupt controller
unit is used (cf. [Gai09]). Its usage is exemplified in Listing 5.3. The multi processor
status register can be accessed through the AMBA APB interface. A bit is assigned to
each processor core and has the role to start the processor when the bit goes to one.

Listing 5.3: Powering up the slave cores

void PowerUpSlaveCores (void)
{

v o l a t i l e unsigned long * pMult iCoreStatusReg i s ter ;

pMult iCoreStatusReg i s ter = (v o l a t i l e unsigned long *) 0x80000210 ;

// b i t nr 0 = core 0 , master core
// b i t nr 1 = core 1 , s l a v e core
// b i t nr 2 = core 2 , s l a v e core

* pMult iCoreStatusReg i s ter |= 0x06 ;

} // PowerUpSlaveCores

Emulation System API

The emulation system API contains functions to access and configure the PEU, VDCU,
PMU and PPDU. All these units support an AMBA APB interface. Therefore, a certain
memory range is reserved for each unit. A unit is then accessed by performing a read
or write operation within the dedicated memory range. Listing 5.4 exemplifies how the
voltage setpoint value is transmitted to the VDCU.

Listing 5.4: Example of a Emulation System API Function

void VDCSetVoltageSetpointValue (unsigned long nSetpointValue)
{

* ((v o l a t i l e unsigned long *) VDC REGISTER SETPOINT SUPPLY VOLTAGE) = nSetpointValue ;

} // VDCSetVoltageTargetValue

Benchmark API

This API implements an abstraction layer for the underlying benchmarking framework.
This framework consists of self written benchmarks and slightly modified functions of the
MiBench suit. The MiBench suit can be downloaded from the Internet10.

10http://www.eecs.umich.edu/mibench/ [last access 2010-05-14].

Chapter 6

Results

This chapter presents the results and experiences gained from this master project. First,
the functionality of the implemented SVEU is compared to its equivalent simulation in
order to verify the proper operation of this unit. Results generated by the emulation
platform, named in this chapter

”
emulation results“, are presented. Then, the results

from simulations with ModelSim, named in this chapter
”
simulation results“, are shown.

The supply voltage, the power consumption and DVFS parameters of the target hardware
are analyzed in order to determine which algorithms perform best according the criteria
presented in Section 5.1.

6.1 Validation of Simulation Results by Experimentation
for the SVE

The functionality of the SVEU has been checked intensively, because all voltage drop
compensation DVFS policies rely on the correctness of these values. Several versions of
the power supply network model have been implemented at different abstraction levels
during this project (see also Figure 6.1):

� A reference SPICE model within the LT Spice IV simulator

� A MATLAB model

� A hardware integrated version

Figure 6.2 illustrates the way the final hardware integrated version is verified against
the reference model. At first a simple benchmarking firmware program is developed and
run within a ModelSim simulation of the emulation platform. The power consumption
values gained from the PEU are converted to an electrical current. Then, the electrical
current and SVEU’s voltage values are written by ModelSim into log files. The log file,
which contains the electrical current values, is imported by the LT Spice IV simulator.
After performing a SPICE simulation of the smart card’s supply power network with the
given electrical current values, the resulting voltage values are exported into another log
file. Next, the emulation platform voltage log file and the SPICE simulation voltage log
file are analyzed and verified in MATLAB. Figure 6.3 illustrates both voltage curves as
well as the computed mean squared error. The hardware implementation of the SVEU

72

CHAPTER 6. RESULTS 73

Smart Card Power
Supply Network

SPICE Reference
Implementation

Matlab
Implementation

Hardware
Implementation

Hardware
Simulation

Hardware
Operation

Difference

Difference Difference

Figure 6.1: Supply Voltage Estimation Models

Emulation Platform
Simulation with

ModelSim

Drawn Current
Saved to File

Current Imported
to SPICE

Simulation

Voltage Result
Saved to File

Voltage Result
Saved to File

Analysis and
Comparison with

MATLAB

Figure 6.2: SVE Hardware Integrated Model Verification Flow

introduces a certain inexactness which is produced by rounding errors and computation
delay. The delay is generated by latched signals between PE, SVE and DVFS scaling
units. However, there is hardly any deviation observable, the mean squared error is in the
range of 10−5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.3

2.35

2.4

2.45

2.5
Supply Voltage Estimation, SPICE / Hardware Comparison

Time [Normalized]

V
ol

ta
ge

 [V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

x 10
−5

SPICE Simulation
Hardware
Mean Squared Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

x 10
−5

M
S

E

Figure 6.3: SVE Hardware Integrated Model Verification Result

The implementation of the SVEU occupies only 238 FPGA slices and computes a
supply voltage value with a latency of 2 clock cycles.

CHAPTER 6. RESULTS 74

6.2 Emulation Results

The hardware integrated smart card emulation platform has been tested with various
benchmark programs. In these special test configurations, the analysis data is transmitted
by the PPDU to the host PC. The JAVA based tool, which has been developed by M.
Lackner, is used to gather, save and display the data. Figure 6.4 shows the tool in
operation.

Figure 6.4: JAVA Based Data Reception and Display Tool

The received analysis data is then written by the JAVA tool into a comma-separated
file. Due to the fact, that the PPDU is averaging the analysis data, this analysis data is
less accurate. MATLAB scripts are used to read and post-process the content of these
log files. Figure 6.5 shows the results of a benchmarking test while applying the VDC
Greedy DVFS policy. The sub-figures on the left side illustrate the smart card running at
a maximum speed of 31 MHz. Note the power peak, which is marked with a red arrow.
This power peak causes the supply voltage to drop dramatically (also marked with a red
arrow). In this certain case the functionality of the smart card would be corrupted. In
contrast, the sub-figures on the right side show the smart card with the activated VDC
Greedy DVFS algorithm. This DVFS policy recognizes the supply voltage drop and slows
the processor cores in time, which is marked by a red arrow. As a result, the supply
voltage setpoint level can be maintained and the smart card’s functionality is properly
preserved.

CHAPTER 6. RESULTS 75

Figure 6.5: Emulation Platform in Operation

6.3 Simulation Results

This section presents the result of the emulation platform when DVFS policies are applied.
In particular, the supply voltage of the target hardware as well as power consumption and
DVFS voltage/frequency settings of the individual processor cores are examined. The
gathered analysis data is compared to a reference target hardware setup that is operated
at the maximum possible clock frequency of 31 MHz.

The evaluation of a DVFS policy is basically done in the following way: A bench-
marking program is written. This program is compiled and run on the emulation platform
twice. During the first run, the target hardware is operated at the maximum possible clock
frequency and the analysis data is saved into a log file. This data represents the reference
curves. The second run finally utilizes the specified DVFS policy with a predefined power
or voltage setpoint. This gathered analysis data represents the comparison curves and
is again saved to a log file. Both log files are then evaluated with MATLAB scripts in
order to determine if the DVFS algorithm actually improves the reliability of the target
hardware.

The diagrams presented in this section show curves which are named with certain
variables. The meanings of these variables are defined as follows:

� PC1(t) and PC2(t): Power consumption of the smart card’s processor core 1 and 2.

CHAPTER 6. RESULTS 76

� PS(t): Power consumption sum of both processor cores. The higher the power
consumption, the faster is the smart card’s emergency capacitor discharged.

� PT (t): Power control setpoint/target value which is used by PM DVFS algorithms
for DVFS control decisions.

� v(t): Supply voltage which is applied to the target hardware, cf. Figure 2.14.

� vi(t): Voltage generated by coil L2 and the electromagnetic field, cf. Figure 2.14 and
Figure 2.13.

� VT (t): Voltage control setpoint/target value which is used by VDC DVFS algorithms
for DVFS control decisions.

� IC1(t) and IC2(t): Number of instructions executed by both processor cores during
a specific amount of time.

� fC1(t) and fC2(t): DVFS frequencies applied to the processor cores, cf. Figure 2.14.
The cores’ clock frequencies have an impact on the the power consumption and the
execution time of the application.

� V ddC1(t) and V ddC2(t): DVFS voltage applied to the processor cores, cf. Figure
2.14. A squared impact on the processor cores’ power consumption is caused by
these values.

CHAPTER 6. RESULTS 77

6.3.1 PM DVFS Algorithms

In this section, the simulation results of the PM algorithms are presented. Basically, power
management algorithms perform DVFS modifications based upon the instantaneous power
consumption of the target hardware and a predefined power setpoint.

PM Greedy Algorithm

This is a very simple but effective chip-wide DVFS algorithm. If power emergencies are
recognized, the clock frequencies of all cores are modified by the same amount. Figure 6.6
illustrates this fact. The power profile is flattened very well and the benchmark program
is executed very quickly. The DVFS switching steps are not as precise as the PM Power’s
steps, because of its chip-wide strategy. However, due to the fact that only two processor
cores are used during these benchmarks, this drawback is hardly noticeable.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

PM Greedy
P

ow
er

 [N
or

m
al

iz
ed

]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.6: PM Greedy Algorithm Simulation Results

CHAPTER 6. RESULTS 78

PM Gradient Algorithm

This per-core DVFS algorithm decides based upon the individual power gradients which
processor core is accelerated or throttled. Figure 6.7 depicts the power consumption,
supply voltage and DVFS parameter curves of the target hardware while this DVFS policy
is applied. Basically, the PM Gradient method flattens the power profile well and executes
the benchmark very fast. However, the FPGA area occupation (see Figure 6.23) is very
high and the benefits compared to the other DVFS policies are relatively low. Considering
these facts, it is not recommended to use this power management method.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

PM Gradient

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.7: PM Gradient Algorithm Simulation Results

CHAPTER 6. RESULTS 79

PM Power Algorithm

The target hardware’s behavior, when applying the PM Power policy, is depicted in Figure
6.8. The fact that this is a per-core method, the frequency and voltage parameters of the
processor cores are controlled individually and the total system’s power consumption can
be controlled very precisely. In case of an power emergency, the core with the highest
power consumption is throttled. Otherwise, the core with the lowest power consumption
is accelerated. Due to this special strategy, this DVFS policy generates a low power and
supply voltage variation, which is shown by the sub-figures on the right side of Figure 6.8.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

PM Power

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.8: PM Power Algorithm Simulation Results

CHAPTER 6. RESULTS 80

PM Performance Algorithm

Like its counterpart the VDC Performance method, DVFS decisions are performed based
upon the utilization of the individual processor cores. The core with the highest utilization
is favored most. Figure 6.9 illustrates the resulting power and supply voltage behavior
of the smart card device. The DVFS voltage and frequency charts show that one pro-
cessor core is operated mostly at high speed while the other core is throttled. Due to
this specific characteristic, the available electrical energy is utilized very inefficiently. This
kind of system behavior results in a bad benchmark execution time and bad power/sup-
ply voltage deviation values. These benchmarking results heavily depend on the type of
application/benchmark. This DVFS policy would achieve better results if an application
with huge idle time would be executed.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

.]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

PM Performance

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

al
iz

ed
]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.9: PM Performance Algorithm Simulation Results

CHAPTER 6. RESULTS 81

6.3.2 VDC DVFS Algorithms

The VDC DVFS algorithms control the processor cores’ voltage and frequency settings
based on the estimated supply voltage from the SVEU and a predefined supply voltage
setpoint. They are aware of the supply voltage and should be able to compensate any
lethal drop. The emulation platform supports several distinct VDC DVFS policies. In the
following paragraphs, the simulation results of the VDC DVFS algorithms are presented
in detail.

VDC Greedy Algorithm

This chip-wide policy constantly searches for the optimal DVFS voltage and frequency pa-
rameters for a given supply voltage setpoint. If DVFS modifications need to be performed,
then all cores are affected by the same DVFS voltage and frequency settings. Due to this
special feature and the long VDCU’s control loop delay, the power consumption of the
target hardware can not be controlled as precisely as the per-core VDC Power algorithm
or the PM algorithms do. However, the voltage setpoint can be maintained and the avail-
able electrical energy is used very economically (see Figure 6.10). Thus, the benchmarking
program is executed very quickly.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Greedy

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.10: VDC Greedy Algorithm Simulation Results

CHAPTER 6. RESULTS 82

VDC Power Algorithm

This is a per-core DVFS policy. Each processor core is controlled individually depending on
its power consumption. If the instantaneous supply voltage is above the specified setpoint
value, then the core with the lowest power consumption is accelerated. Otherwise, if a
supply voltage drop below the setpoint value is recognized, the core with the highest power
consumption is slowed. This per-core strategy results in a very precise power consumption
and supply voltage control. Due to this fact, the power consumption variation is one of
the lowest of all VDC policies (cf. Figure 6.19). The advantage of this DVFS algorithm
would further increase if more processor cores were needed for a given application.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Power

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.11: VDC Power Algorithm Simulation Results

CHAPTER 6. RESULTS 83

VDC Gradient Algorithm

Figure 6.12 depicts the target hardware’s power consumption, supply voltage and DVFS
parameter curves when the VDC Gradient DVFS policy is utilized. This per-core policy
calculates the power consumption gradient of each processor core and decides, according
to this information, which core must be accelerated (lowest gradient) or throttled (highest
gradient). The hardware-synthesized algorithm occupies most of the FPGA area of all
integrated DVFS policies. The benchmark is run very quickly, within approximately the
same amount of time as the VDC Greedy or VDC Power policies. Additionally, the power
and supply voltage variations are very low. Summing up, the minor benefits gained by
this DVFS algorithm do not justify the major increase in hardware costs.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Gradient

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.12: VDC Gradient Algorithm Simulation Results

CHAPTER 6. RESULTS 84

VDC Gradient Delay Algorithm

This per-core DVFS algorithm simulates voltage and frequency regulators more realisti-
cally. DVFS modifications can only be performed after a certain amount of time that
copes with off-chip regulators. Despite this restriction, this policy is able to prohibit a
major supply voltage drop below the supply voltage setpoint. Figure 6.13 depicts the cor-
responding supply voltage, power consumption and DVFS parameter curves of the target
hardware. Observable are the typical slow DVFS transitions. Comparing this algorithm
with others reveals the impact of the delay restrictions: The benchmarks are performed
at a significantly slower speed plus the supply voltage as well as the power consumption
variations are the highest of all DVFS policies.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Gradient Delay

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.5 1 1.5
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.13: VDC Gradient Delay Algorithm Simulation Results

CHAPTER 6. RESULTS 85

VDC Performance Algorithm

This per-core DVFS policy uses a performance metric (number of non-idle instructions
executed during a certain period of time) to decide which core to accelerate or to throttle:
The core with the highest performance is favored, the core with lowest performance is
penalized. Due to the fact that a core’s performance is influenced by DVFS changes, the
following situation may occur: The DVFS settings are distributed between the cores very
differently, like it is shown in Figure 6.14. Core 1 runs nearly the whole time at maximum
speed, whilst core 2 is throttled. Due to the cubic power consumption impact of voltage
and frequency (see Equation 2.6), this kind of configuration is very uneconomically way
to utilize the available electrical energy (cf. Equation 2.6). This is observable in very poor
benchmark result, which is depicted in Figure 6.14. These benchmarking results heavily
depend on the type of application/benchmark. This DVFS policy would achieve better
results if an application with huge idle time would be executed.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

.]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Performance
P

ow
er

 [N
or

m
al

iz
ed

]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

al
iz

ed
]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.5 1 1.5 2
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.14: VDC Performance Algorithm Simulation Results

CHAPTER 6. RESULTS 86

VDC Inverse Performance Algorithm

The Inverse Performance DVFS implementation tries to solve the VDC Performance’s
problem of its wasteful utilization of electrical energy. Basically, it works contrariwise to
the Performance policy: The core with the lowest performance is favored, the core with
highest performance is penalized. Figure 6.15 illustrates the resulting power consumption,
supply voltage and DVFS parameter curves of the target hardware. With this algorithm,
both cores tend to have the same level of performance. This kind of characteristic has a
good impact on the benchmark results. The benchmark applications, that run on both
processor cores, are executed quickly and the available electrical energy is utilized eco-
nomically (cf. Figure 6.15).

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

.]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Inverse Performance

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

0

0.5

1

P
er

f.
[N

or
m

al
iz

ed
]

I
C1

(t)

I
C2

(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.15: VDC Inverse Performance Algorithm Simulation Results

CHAPTER 6. RESULTS 87

VDC Priority Algorithm

Figure 6.16 illustrates the power consumption, supply voltage and DVFS parameter curves
of the smart card when the VDC Priority policy is applied. In this presented example, core
two is assigned the lowest priority. Thus, when a supply voltage emergency is detected,
core 2 is throttled. Core one is throttled only if core two is already running at the lowest
possible clock frequency. The DVFS voltage and frequency curves from Figure 6.16 show
that core one is operated nearly the whole time at the maximum frequency of 31 MHz
whilst core two is operated in a very low frequency range. Due to the fact that voltage
and frequency have a cubic impact on the power consumption (cf. Equation 2.6), the
available electrical energy usage is very inefficient. Consequently, the execution time of
the benchmark firmware is very high. Regardless of this underperformance, the supply
voltage setpoint is maintained properly.

The VDC Priority strategy may be especially used for time-critical applications, which
run on high prioritized processor cores and do not tolerate clock frequencies that are too
low.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

VDC Priority

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.5 1 1.5 2
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.16: VDC Priority Algorithm Simulation Results

CHAPTER 6. RESULTS 88

6.3.3 Hybrid DVFS Algorithms

Greedy Voltage/Power Algorithm

This hybrid DVFS algorithm uses both, a voltage and a power setpoint value. It tries
to maintain both setpoints simultaneously. Due to the fact that this DVFS policy acts
basically like the PM Greedy, the power profile flattening is done very well. Additionally,
the voltage setpoint is checked on a regular basis. If the instantaneous supply voltage
level is not in the range of the voltage setpoint, the power setpoint is adapted accordingly.
Figure 6.17 shows the target hardware’s power consumption, supply voltage and DVFS
parameter curves when the Greedy Voltage/Power policy is applied. Figures 6.19 and 6.20
reveal the very low standard deviation and setpoint deviation values that are achieved.
Furthermore, the algorithm’s FPGA area consumption is quite low and the benchmarking
firmware is executed very quickly. Considering all these facts, this DVFS policy performs
best.

If per-core DVFS decision would be implemented instead of chip-wide decisions, this
policy would perform even better.

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

Greedy Voltage/Power

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.17: Greedy Voltage/Power Algorithm Simulation Results

CHAPTER 6. RESULTS 89

6.3.4 VDC and PM DVFS Algorithms Comparison

In this section the VDC and PM algorithms are compared directly with each other. In
order to increase the comparability of the presented results, the MiBench FFT and Basic-
math benchmarks are executed on the individual processor cores.

Benchmark Execution Time

This test has been performed to visualize the development of the benchmark’s execution
time when the voltage and power setpoint values are varied. Figure 6.18 depicts these
performance curves. There is one important chart area in both curves:

� The voltage setpoint equals zero and the power setpoint equals a maximum. In
these operation modes all processor cores are always run at the maximum speed
of 31 MHz. If the cores are operated at that speed, the supply voltage may drop
to 0V continuously (illustrated for example in Figure 6.17). However, the resulting
benchmark execution time acts as a theoretically lower bound and is compared to
the other results.

Both curves show a similar characteristic. If the voltage setpoint is increased or the
power setpoint is decreased, the execution time of the benchmark application increases
exponentially. In addition, the PM Power and VDC Power DVFS policies show the best
performing benchmark results. This is due to the fact, that these per-core strategies control
the power consumption very precisely and therefore use the limited available electrical
energy very economically. If the number of cores would increase, this per-core strategy
advantage would further increase.

20 40 60 80 100 120
0

20

40

60

80

100

120

Power Setpoint [mW]

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

[%
]

PM Performance Development

PM Gradient
PM Greedy
PM Power

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300

350

400

450

500

Voltage Setpoint [V]

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

[%
]

VDC and Hybrid Performance Development

Greedy Voltage/Power
VDC Gradient
VDC Gradient Delay
VDC Greedy
VDC Inverse Performance
VDC Performance
VDC Power
VDC Priority

Figure 6.18: Performance Development of PM, VDC and Hybrid DVFS Policies

CHAPTER 6. RESULTS 90

Standard Deviation and Deviation From Power/Supply Voltage Setpoint

Figure 6.19 shows the standard deviation of the target hardware’s supply voltage and
power consumption when DVFS policies are applied. These diagrams are of special in-
terest, because the functionality of a smart card systems’ RF communication may be
corrupted if big power consumption changes take place (see Section 2.4). Concerning
this matter, the PM policies perform better than their VDC counterparts because of the
smaller control loop delay. The results show that the chip-wide VDC Gradient Delay
algorithm presents the worst supply voltage deviation of all algorithms. This is mainly
due to the restriction that DVFS control decisions are only allowed to be performed after
a certain delay. However, this kind of behavior represents a more realistic simulation of
voltage and frequency regulators.

0

0.02

0.04

0.06

0.08

0.1

0.12

D
ev

ia
tio

n
[N

or
m

al
iz

ed
]

Power Consumption Standard Deviation

PM
 G

ra
die

nt

PM
 G

re
ed

y

PM
 P

er
fo

rm
an

ce

PM
 P

ow
er

Gre
ed

y V
olt

ag
e/

Pow
er

VDC G
ra

die
nt

VDC G
ra

die
nt

 D
ela

y

VDC G
re

ed
y

VDC In
ve

rs
e

Per
fo

rm
an

ce

VDC P
er

fo
rm

an
ce

VDC P
ow

er

VDC P
rio

rit
y

0

0.01

0.02

0.03

0.04

0.05

0.06

D
ev

ia
tio

n
[N

or
m

al
iz

ed
]

Supply Voltage Standard Deviation

PM
 G

ra
die

nt

PM
 G

re
ed

y

PM
 P

er
fo

rm
an

ce

PM
 P

ow
er

Gre
ed

y V
olt

ag
e/

Pow
er

VDC G
ra

die
nt

VDC G
ra

die
nt

 D
ela

y

VDC G
re

ed
y

VDC In
ve

rs
e

Per
fo

rm
an

ce

VDC P
er

fo
rm

an
ce

VDC P
ow

er

VDC P
rio

rit
y

Figure 6.19: Supply Voltage and Power Consumption Standard Deviation Comparison

Figure 6.20 compares the ability of the various DVFS algorithms to maintain their
power and supply voltage control setpoint values. The VDC Gradient Delay method
performs poorly again due to its DVFS switching delay restrictions.

Figures 6.19 and 6.20 show, that the hybrid algorithm Greedy Voltage/Power performs
well. The power and supply voltage deviation values are the lowest of all algorithms. Fur-
thermore, the voltage control setpoint value is maintained extremely well. This algorithm
combines the ability to flatten the power profile like the PM DVFS methods and simulta-
neously maintains a preset supply voltage level like the VDC DVFS implementations.

CHAPTER 6. RESULTS 91

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
D

ev
ia

tio
n

[N
or

m
al

iz
ed

]
Deviation from Power Target

PM
 G

ra
die

nt

PM
 G

re
ed

y

PM
 P

er
fo

rm
an

ce

PM
 P

ow
er

0

0.01

0.02

0.03

0.04

0.05

0.06

D
ev

ia
tio

n
[N

or
m

al
iz

ed
]

Deviation from Voltage Target

Gre
ed

y V
olt

ag
e/

Pow
er

VDC G
ra

die
nt

VDC G
ra

die
nt

 D
ela

y

VDC G
re

ed
y

VDC In
ve

rs
e

Per
fo

rm
an

ce

VDC P
er

fo
rm

an
ce

VDC P
ow

er

VDC P
rio

rit
y

Figure 6.20: Deviation from Voltage and Power Setpoints

Magnetic Field Intensity Changes

In order to explicitly present the pros and cons of PM and VDC DVFS policies, the
following test is being carried out. For a more comprehensible illustration, the voltage
vi(t) is altered. vi(t) is generated by the electromagnetic field. If the intensity of the
electromagnetic field changes, then voltage vi(t) varies according to Lorenz law (cf. Figure
2.14). Figure 6.21 compares the behavior of the target hardware when PM and VDC DVFS
policies are applied and the voltage vi(t) changes. It is observable that the VDC Greedy
algorithm manages to compensate the magnetic field changes perfectly. In contrast, the
PM Greedy algorithm is unable to cope with this situation. In this case, variations of
voltage vi(t) influence v(t) directly. Thus, v(t), which is applied to the target hardware,
drops periodically below the lethal threshold of 1.4V. This behavior is explained by the
supply voltage unawareness of all PM DVFS policies. To cope with these voltage drops,
the PM control setpoint value needs to be set very pessimistically low, which results in
performance degradations.

This test shows clearly, that PM DVFS algorithms are unable to maintain a minimum
voltage setpoint if environment properties change or unpredictable situations occur.

CHAPTER 6. RESULTS 92

0

0.5

1

Reference

P
ow

er
 [N

or
m

.]

P
S
(t)

P
C1

(t)

P
C2

(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C1

(t)

0

0.5

1

PM Greedy

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t) P

T
(t)

0

1

2

V
ol

ta
ge

 [V
]

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

0

0.5

1

VDC Greedy

P
ow

er
 [N

or
m

al
iz

ed
]

P
S
(t) P

C1
(t) P

C2
(t)

0

1

2

V
ol

ta
ge

 [V
]

v
T
(t)

v(t)
v

i
(t)

10

20

30

F
re

qu
en

cy
 [M

H
z]

f
C1

(t)

f
C2

(t)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

V
ol

ta
ge

 [V
]

Time [Normalized]

Vdd
C1

(t)

Vdd
C2

(t)

Figure 6.21: Simulation Results of Changing Magnetic Field Intensity Test

6.4 FPGA Area Consumption

Figure 6.22 depicts the FPGA area consumption of the total emulation platform. 37,7% of
the FPGA area is occupied by additional hardware components: the master core (18%) and
PEU, PMU, VDCU and PPDU (19,7%). This overhead is quite high. However, during this
master project a power consumption and supply voltage emulation/exploration platform
is constructed, which is not integrated into a final product. This emulation platform is
used to evaluate and explore a target hardware’s power and supply voltage behavior in
early design stages. Therefore, the high amount of additional die area is actually not a
problem at all.

The FPGA area consumption of the individual DVFS policies is compared and illus-
trated in Figure 6.23. This chart shows that PM and VDC Gradient algorithms occupy a
huge amount of slices but provide hardly any matchable advantages compared to the PM
and VDC Greedy algorithms. In contrast, the PM and VDC Greedy algorithms require
hardly any FPGA area and additionally generate well performing benchmarking results.

CHAPTER 6. RESULTS 93

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r

of
 U

ni
ts

 [1
00

00
]

FPGA Area Consumption (Emulation Platform)

Em
ula

tio
n

Plat
fo

rm

Tar
ge

t H
ar

dw
ar

e

M
as

te
r C

or
e

PEU
PM

U
SVEU

VDCU
PPDU

LUTs
Slices
Slice Reg

Figure 6.22: FPGA Area Consumption of the Emulation Platform

0

100

200

300

400

500

600

N
um

be
r

of
 U

ni
ts

 [1
]

FPGA Area Consumption (DVFS Policies)

PM
 G

re
ed

y

PM
 G

ra
die

nt

PM
 P

er
fo

rm
an

ce

PM
 P

ow
er

Gre
ed

y V
olt

ag
e/

Pow
er

VDC G
re

ed
y

VDC G
ra

die
nt

VDC G
ra

die
nt

 D
ela

y

VDC P
er

fo
rm

an
ce

VDC In
ve

rs
e

Per
fo

rm
an

ce

VDC P
rio

rit
y

VDC P
ow

er

LUTs
Slices
Slice Reg

Figure 6.23: FPGA Area Consumption of the DVFS Policies

Chapter 7

Conclusion

Power-aware computing addresses the problem that electronic circuits and algorithms are
growing exponentially in their complexity. Thus, the power dissipation of electronic cir-
cuits also increases rapidly, which is especially problematic for mobile or battery operated
applications. Power and supply voltage analysis techniques are used to measure or esti-
mate the instantaneous dissipated power of devices and their supply voltage level. The
gathered information can then be used to optimize the system’s power consumption re-
garding certain constraints. Power and supply voltage emulation is an estimation based
analysis technique utilizing hardware acceleration to deliver cycle accurate power and
supply voltage values in real time.

During this master project, a power and supply voltage emulation system for a smart
card target hardware has been built and integrated into an FPGA. For this purpose,
several LEON3 processor cores are used to emulate the multi-core processor system of
a smart card. A supply voltage estimation unit has been developed based on a smart
card’s supply network model. Together with an already developed power estimation unit,
a smart card power and supply voltage emulation and exploration platform has been
constructed. Operating the smart card emulation and exploration platform can clearly
reveal power bugs in the design under test. These design problems can thereupon be
corrected by the development team even in early design stages, long before the chip’s
tape-out. In the second part, this exploration platform has been enhanced with dynamic
voltage and frequency scaling functionalities to increase the target hardware’s robustness
against power peaks and supply voltage drops. Benchmarks with different power and
supply voltage setpoint values have been carried out. MATLAB scripts have been written
to visualize and evaluate the power and supply voltage behavior of the target design
as well as the performance of the benchmarking applications while DVFS policies are
applied. Based on this data, the best fitting DVFS strategy can be chosen for a specific
smart card application. Tests have shown that a DVFS enhanced SMP smart card design
can be operated at a stabilized supply voltage of 1.7V while degrading the application’s
execution time by only about 50%. This value of 50% is compared to the smart card
system running continously at 31 MHz and allowing supply voltage drops down to 0 V.
The presented emulation platform supports twelve different power management strategies.
It incurs average estimation errors of 8.4% (PEU) and 2% (SVEU power network model)
while occupying 37.7% of the total FPGA area. Furthermore it is depicted that an ASIC
or final smart card hardware can be enhanced with the presented power management

94

CHAPTER 7. CONCLUSION 95

methods (see Section 7.1). 10.1% of the die area would be occupied by power analysis and
management units.

7.1 Future Work

The current version of the smart card emulation and exploration platform performs well
in detecting power bugs. However, there is still a lot of improvement potential available.
The most promising ideas are presented in the following sections.

Power and Supply Voltage Management Enhanced ASIC

The main idea of this approach is to enhance an ASIC or final smart card product with
power management and supply voltage drop compensation functionalities, which are pre-
sented in this master thesis. To make this approach feasible, only the most important
power management parts of the emulation platform are used and integrated. All other
insignificant and area intense components are omitted. Therefore, the hardware overhead
is reduce dramatically. The design of the final smart card product consists of:

� The smart card target hardware, which consists of two processor cores and periph-
erals (14676 slices).

� Two PEUs to estimate the power consumption of each processor core (1156 slices).

� A VDCU which estimates the supply voltage and implements only the VDC Greedy
DVFS policy to cope with voltage drops (494 slices).

� Alternatively another, more sophisticated DVFS policy can be chosen, which is bet-
ter suited for the designated target application.

With this pessimistic laid-out design (a lot of area improvements are still possible) a
hardware overhead of 10.1% is achieved, but the hardware’s robustness against power
peaks and supply voltage drops is increased enormously. Therefore, the smart card’s very
area intense emergency capacitors could be reduced drastically.

Considering all these facts, the accumulated hardware amount and consequently the
manufacturing costs would decrease and the product’s application robustness would in-
crease.

Additional DVFS Algorithms

There are several promising DVFS algorithms and power management strategies, that
have been proposed by the scientific community but have not been implemented in this
project. Among others, there are:

� An algorithm based on control theory, which implements a proportional-integral-
differential controller.

� Oracle based solutions, which are able to calculate the future power consumption.

� Neuronal network controller approaches.

� Policies which are based on adaptive algorithms.

CHAPTER 7. CONCLUSION 96

PPDU Improvements

The current version of the PPDU is used in conjunction with a 100 MBit Ethernet core.
Due to the fact that the 100 MBit Ethernet is not able to transfer all analysis data
produced during each clock cycle, the data must be averaged. In case a faster 1 GBit core
would be used, the analysis data could be sent more accurately to the host PC.

Appendix A

Source Code

Listing A.1: firmware.c

int main (int argc , char *argv [])
{

unsigned int nCPUIndex = GetCPUIndex () ;

i f (nCPUIndex == 0)
{

// master core
StartUnitsOfEmulationSystem () ;
PowerUpSlaveCores () ;

// wait u n t i l a l l benchmarks are f i n i s h e d
WaitUntilAllSlaveCoresArePoweredDown () ;

// e . g . the PPDU needs to be stopped
StopUnitsOfEmulationSystem () ;

// f i n a l l y power down the master core
PowerDownCurrentCore () ;

}
else i f (nCPUIndex == 1)
{

// s l a v e core , execute the benchmark
FFTBenchmark () ;

// benchmark f i n i s h ed , power down the s l a v e core
PowerDownCurrentCore () ;

}
else i f (nCPUIndex == 2)
{

// s l a v e core , execute the benchmark
BasicmathBenchmark () ;

// benchmark f i n i s h ed , power down the s l a v e core
PowerDownCurrentCore () ;

}

} // main

97

Appendix B

Tables

Signal Name Power [W] Power [1]

/testbench/cpu/l3/cpu 0/u0/cmem0/dme/dd0 0/ddata0/write 0,0038914 39
/testbench/cpu/l3/cpu 0/u0/cmem0/ime/im0 0/idata0/write 0,0015259 15
/testbench/cpu/l3/cpu 0/u0/cmem0/ime/im0 0/itags0/write 0,0011244 11
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/dcache0/r.dstate(2) 0,0016642 17
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/dcache0/r.dstate(3) 0,0017490 18
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/dcache0/r.read 0,0003930 4
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/icache0/r.istate(0) 0,0021274 21
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/icache0/rl.write 0,0001293 1
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/icache0/v pe signal.holdn 0,0001077 1
/testbench/cpu/l3/cpu 0/u0/p0/m1/c0mmu/mmudci.transdata.read 0,0006370 6
/testbench/cpu/l3/cpu 0/u0/p0/mgen/div0/holdn 0,0048107 48
/testbench/cpu/l3/cpu 0/u0/p0/mgen/div0/r.state(0) 0,0015865 16
/testbench/cpu/l3/cpu 0/u0/p0/mgen/div0/r.state(2) 0,0005605 6
/testbench/cpu/l3/cpu 0/u0/p0/mgen/div0/divo.nready 0,0016493 17
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.a.ctrl.rett 0,0003364 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.a.ctrl.wreg 0,0000718 1
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.a.rsel1(2) 0,0002039 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.a.rsel2(0) 0,0002209 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.a.rsel2(1) 0,0004415 4
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.alusel(0) 0,0002676 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.alusel(1) 0,0008184 8
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.ctrl.wicc 0,0011431 11
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.ctrl.wreg 0,0005500 6
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.cwp(1) 0,0004244 4
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.cwp(2) 0,0011237 11
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.e.ldbp2 0,0004602 5
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.m.ctrl.rett 0,0023060 23
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.m.ctrl.wicc 0,0015579 16

Table B.1: PEU Power Model, Part 1/2

98

APPENDIX B. TABLES 99

Signal Name Power [W] Power [1]

/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.m.divz 0,0010553 11
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.m.mul 0,0010763 11
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.x.ctrl.rd(5) 0,0005725 6
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.x.ctrl.rd(7) 0,0002313 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.x.ctrl.rett 0,0060096 60
/testbench/cpu/l3/cpu 0/u0/p0/iu0/r.x.ctrl.wicc 0,0012771 13
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.ctrl.pv 0,0005603 6
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.ctrl.rd(0) 0,0008125 8
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.ctrl.rd(2) 0,0005009 5
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.rsel1(0) 0,0001729 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.rsel1(1) 0,0009330 9
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.rsel2(1) 0,0002502 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.a.rsel2(2) 0,0001496 1
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.e.ctrl.annul 0,0001781 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.e.ctrl.rd(0) 0,0006293 6
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.e.ctrl.rd(2) 0,0005878 6
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.m.ctrl.ld 0,0002350 2
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.m.ctrl.rd(0) 0,0002956 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.m.ctrl.rd(2) 0,0002619 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.m.ctrl.rd(7) 0,0000538 1
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.m.dci.write 0,0011780 12
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.x.ctrl.rd(0) 0,0002727 3
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.x.ctrl.rd(3) 0,0001177 1
/testbench/cpu/l3/cpu 0/u0/p0/iu0/v pe signal.x.ctrl.rd(7) 0,0001116 1
/testbench/cpu/l3/cpu 0/u0/rf0/we 0,0010513 11
I-Cache Read Hit (4kB) 0,0246170 247
I-Cache Read Miss (4kB) 0,0268500 269
I-Cache Write Hit (4kB) 0,0258000 259
I-Cache Write Miss (4kB) 0,0268500 279
D-Cache Read Hit (4kB) 0,0246170 247
D-Cache Read Miss (4kB) 0,0268500 269
D-Cache Write Hit (4kB) 0,0258000 259
D-Cache Write Miss (4kB) 0,0268500 279
RFMem Read 0,0037583 38
RFMem Write 0,0039389 39

Table B.2: PEU Power Model, Part 2/2

Bibliography

[Aer10] Aeroflex. UT699 LEON 3FT/SPARC V8 MicroProcessor Functional Manual,
2010.

[Age09] International Energy Agency. Gadgets and Gigawatts, Policies for Energy
Efficient Electronics, 2009.

[And98] R. Andraka. A survey of CORDIC algorithms for FPGA based computers.
In Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, 1998.

[ARM99] ARM. AMBA Specification (Rev 2.0), 1999.

[ASH05] E. Alon, V. Stojanovic, and M. Horowitz. Circuits and Techniques for High-
Resolution Measurement of On-Chip Power Supply Noise. In IEEE Journal
of Solid-State Circuits, volume 40, pages 820–828, 2005.

[BBDM00] A. Bogliolo, L. Benini, and Giovanni. De Micheli. Regression-based RTL
power modeling. In Transactions on Design Automation of Electronic Sys-
tems, pages 337–372, 2000.

[BBH01] G. Bai, S. Bobba, and I.N. Hajj. Static Timing Analysis Including Power
Supply Noise Effect on Propagation Delay in VLSI Circuits. In Proceedings
of the 38th Design Automation Conference, pages 295–300, 2001.

[BE99] A. Bellaouar and M. Elmasry. Low-Power Digital VLSI Design: Circuits and
Systems. Kluwer Academic Publishers, 1999.

[BGKM04] A. Boudabous, F. Ghozzi, M.W. Kharrat, and N. Masmoudi. Implementation
of Hyperbolic Functions Using CORDIC Algorithm. In The 16th International
Conference on Microelectronics, pages 738–741, 2004.

[BGS+10] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid. Automated
Power Characterization for Run-Time Power Emulation of SoC Designs. In
13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools (DSD), pages 587–594, 2010.

[BHB+08] R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, I. Nair, G. Dittmann,
G. Janssen, N. Dhanwada, Zhigang Hu, P. Bose, and J. Darringer. Exploring
Power Management in Multi-Core Systems. In Asia and South Pacific Design
Automation Conference, pages 708–713, 2008.

100

BIBLIOGRAPHY 101

[Bor99] S. Borkar. Design challenges of technology scaling. In Micro, IEEE, volume 19,
pages 23–29. IEEE Computer Society, 1999.

[BTD+02] M. Badaroglu, K. Tiri, S. Donnay, P. Wambacq, I. Verbauwhede, G. Gie-
len, and H. De Man. Clock Tree Optimization in Synchronous CMOS Digi-
tal Circuits for Substrate Noise Reduction Using Folding of Supply Current
Transients. In Proceedings of the 39th annual Design Automation Conference,
pages 399–404, 2002.

[CRA05] J. Coburn, S. Ravi, and Raghunathan A. Power Emulation: A New Paradigm
for Power Estimation. In Design Automation Conference, Proceedings, pages
700–705, 2005.

[CRR05] J. Coburn, S. Ravi, and A. Raghunathan. Hardware Accelerated Power Es-
timation. In Design, Automation and Test in Europe, Proceedings, volume 1,
pages 528–529, 2005.

[Cyg10] Cygwin. Cygwin. http://www.cygwin.com/, 2010.

[DBS06] J-P. Deschamps, G.J.A Bioul, and G.D. Sutter. Synthesis of Arithmetic Cir-
cuits - FPGA, ASIC and Embedded Systems. John Wiley & Sons, Inc., 2006.

[Dru10] N. Druml. Power Emulation on a LEON3 Platform. Technical report, Graz
University of Technology, 2010.

[eCo10] eCos. eCos. http://ecos.sourceware.org/, 2010.

[EL04] M.D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Pub-
lishers, 2004.

[Fin03] K Finkenzeller. RFID Handbook: Fundamentals and Applications in Con-
tactless Smart Cards and Identification. John Wiley & Sons, 2nd edition,
2003.

[Gai09] Aeroflex Gaisler. GRLIB IP Core Users Manual Version 1.0.21, 2009.

[Gai10] Aeroflex Gaisler. Aeroflex Gaisler. http://www.gaisler.com/, 2010.

[GAT02] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural simulation and
control of di/dt-induced power supply voltage variation. In Proceedings of the
8th International Symposium on High Performance Computer Architecture,
pages 7–16, 2002.

[GBH+09] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss. An Emulation-
Based Real-Time Power Profiling Unit for Embedded Software. In Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, pages 67–73, 2009.

[GBH+11] A. Genser, C. Bachmann, J. Haid, C. Steger, and R. Weiss. Supply Volt-
age Emulation Platform for DVFS Voltage Drop Compensation Explorations.
In IEEE International Symposium on Performance Analysis of Systems and
Software, 2011.

http://www.cygwin.com/
http://ecos.sourceware.org/
http://www.gaisler.com/

BIBLIOGRAPHY 102

[GH96] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose mi-
croprocessors. In IEEE Journal of Solid-State Circuits, volume 31, pages
1277–1284. IEEE Solid-State Circuits Society, 1996.

[Gra10] Mentor Graphics. ModelSim SE 6.6. http://model.com/, 2010.

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark
suite. In IEEE International Workshop on Workload Characterization, pages
3–14, 2001.

[HKLS] J. Haid, W. Kargl, T. Leutgeb, and D. Scheiblhofer. Power Management for
RF-Powered vs. Battery-Powered Devices.

[HM07] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency Scal-
ing in Chip-Multiprocessors. In Proceedings of the 2007 international sympo-
sium on Low power electronics and design, pages 38–43, 2007.

[HNB08] M. Holtz, S. Narasimhan, and S. Bhunia. On-Die CMOS Voltage Droop
Detection and Dynamic Compensation. In Proceedings of the 18th ACM Great
Lakes symposium on VLSI, pages 35–40, 2008.

[HTHR94] H. Hahn, D. Timmermann, B.J. Hosticka, and B. Rix. A Unified and Division-
Free CORDIC Argument Reduction Method with Unlimited Convergence
Domain Including Inverse Hyperbolic Functions. In IEEE Transactions on
Computers, volume 43, pages 1339–1344, 1994.

[Hu92] Y.H. Hu. CORDIC-Based VLSI Architectures for Digital Signal Processing.
In IEEE Signal Processing Magazine, volume 9, Issue:3, pages 16–35, 1992.

[IBC+06] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An Anal-
ysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 347–358,
2006.

[IEE01] IEEE. IEEE Std 1149.1-2001, IEEE Standard Test Access Port and
Boundary-Scan Architecture, 2001.

[Int09] Intel09. Realizing Data Center Savings with an Accelerated Server Refresh
Strategy. 2009.

[Int10] Intel Corporation. Intel Core i7-900 Desktop Processor Extreme Edition
Series and Intel Core i7-900 Desktop Processor Series on 32-nm Process
Datasheet, 2010.

[Int11] Intel11. Intel Xeon Processor-based Server Refresh Savings Estima-
tor. http://www.intelsalestraining.com/xeonestimator/2B904B09/

index.htm, 2011.

http://model.com/
http://www.intelsalestraining.com/xeonestimator/2B904B09/index.htm
http://www.intelsalestraining.com/xeonestimator/2B904B09/index.htm

BIBLIOGRAPHY 103

[ITR11] ITRS. International Technology Roadmap for Semiconductors. http://www.
itrs.net, 2011.

[JPC11] JPCAP. JPCAP Library. http://netresearch.ics.uci.edu/kfujii/

jpcap/doc/index.html/, 2011.

[KGWB08] W. Kim, M.S. Gupta, G. Wei, and D. Brooks. System Level Analysis of
Fast, Per-Core DVFS using On-Chip Switching Regulators. In IEEE 14th
International Symposium on High Performance Computer Architecture, pages
123–134, 2008.

[KM08] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-
Efficiency. Morgan and Claypool Publisher, 2008.

[Koo07] Jonathan G. Koomey. Estimating Total Power Consumption by Servers in
the U.S. and the World. 2007.

[Kre93] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, Inc.,
7th edition, 1993.

[Lac10] M. Lackner. Design and Implementation of a Multi-Core Power and Perfor-
mance Emulation Platform. Master’s thesis, Graz University of Technology,
2010.

[Mat10] MathWorks. MATLAB. http://www.mathworks.com/, 2010.

[MHK+99] T. Meincke, A. Hemanil, S. Kumar, P. Ellerveel, J. Oberg, T. Olsson, P. Nils-
son, D. Lindqvist, and H. Tenhunen. Globally Asynchronous Locally Syn-
chronous Architecture for Large High-Performance ASICS. In Proceedings
of the 1999 IEEE International Symposium on Circuits and Systems, pages
512–515, 1999.

[NIA03] T. Nakura, M. Ikeda, and K. Asada. Theoretical Study of Stubs for Power
Line Noise Reduction. In Proceedings of the IEEE 2003 Custom Integrated
Circuits Conference, pages 715–718, 2003.

[NIA04] T. Nakura, M. Ikeda, and K. Asada. Preliminary Experiments for Power
Supply Noise Reduction using Stubs. In Proceedings of 2004 IEEE Asia-
Pacific Conference on Advanced System Integrated Circuits, pages 286–289,
2004.

[Pok07] K. Pokhrel. Physical and Silicon Measures of Low Power Clock Gating Suc-
cess: An Apple to Apple Case Study. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture. SNUG, 2007.

[RGH+09] V.J. Reddi, M.S. Gupta, G. Holloway, G. Wei, M.D. Smith, and D. Brooks.
Voltage Emergency Prediction Using Signatures to Reduce Operating Mar-
gins. In IEEE 15th International Symposium on High Performance Computer
Architecture, pages 18–29, 2009.

http://www.itrs.net
http://www.itrs.net
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html/
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html/
http://www.mathworks.com/

BIBLIOGRAPHY 104

[SK94] K. Scott and K. Keutzer. Improving Cell Libraries for Synthesis. In Custom
Integrated Circuits Conference, 1994., Proceedings of the IEEE 1994, pages
128–135, 1994.

[SMB+02] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas,
and M.L. Scott. Energy-Efficient Processor Design Using Multiple Clock Do-
mains with Dynamic Voltage and Frequency Scaling. In Eighth International
Symposium on High-Performance Computer Architecture, Proceedings, pages
29–40, 2002.

[SP93] R. Senthinathan and J.L. Prince. Application Specific CMOS Output Driver
Circuit Design Techniques to Reduce Simultaneous Switching Noise. In IEEE
Journal of Solid-State Circuits, volume 28, pages 1383–1388, 1993.

[SSN02] H. Su, S.S. Sapatnekar, and S.R. Nassif. An Algorithm for Optimal Decou-
pling Capacitor Sizing and Placement for Standard Cell Layouts. In Proceed-
ings of the 2002 international symposium on Physical design, 2002.

[TDMG97] V. Tiwari, R. Donnelly, S. Malik, and R. Gonaalea. Dynamic Power Manage-
ment for Microprocessors: A Case Study. In Proceedings Tenth International
Conference on VLSI Design, pages 185–192, 1997.

[Tec10] Linear Technology. LTSpice. http://www.linear.com/, 2010.

[TM05] E. Talpes and D. Marculescu. Toward a Multiple Clock/Voltage Island Design
Style for Power-Aware Processors. In IEEE Transactions on Very Large Scale
Integration Systems, volume 13, pages 591–603, 2005.

[Vol59] J. E. Volder. The CORDIC Trigonometric Computing Technique. In IRE
Transactions on Electronic Computers, volume EC-8, Issue:3, pages 330–334,
1959.

[WGSW08] M. Wendt, C. Grumer, C. Steger, and R. Weiss. System Level Power Profile
Analysis and Optimization for Smart Cards and Mobile Devices. In SAC
’08 Proceedings of the 2008 ACM symposium on Applied computing, pages
1884–1888, 2008.

[Xil04] Xilinx. CORDIC v3.0, Product Specification, 2004.

[ZDBT10] J. Zhao, B. Datta, W. Burleson, and R. Tessier. Thermal-aware Voltage
Droop Compensation for Multi-core Architectures. In Proceedings of the 20th
symposium on Great lakes symposium on VLSI, 2010.

[ZSSS04] V. Zaccaria, M. Sami, D. Sciuto, and C. Silvano. Power Estimation and Op-
timization Methodologies for VLIW-Based Embedded Systems. Kluwer Aca-
demic Publishers, 2004.

http://www.linear.com/

	Nomenclature
	Introduction
	Objectives and Motivation
	Structuring

	Related Work
	Power Analysis
	Hardware Accelerated Power Analysis
	Hardware Accelerated Power Analysis Implementation

	Supply Voltage Analysis
	Design-time Based Approaches
	Run-time Based Approaches

	Dynamic Power Management
	Dynamic Voltage and Frequency Scaling
	Multi-Core DVFS

	Smart Card Specific Power Management
	Smart Card Power Supply Model
	Smart Card Power Supply Model Analytical Analysis

	Exponential Function in Hardware
	CORDIC Approach

	Design Prerequisites
	LEON3 Platform
	Power Estimation Unit
	DVFS Scaling
	Supply Voltage Estimation Unit
	Power Performance and Debug Unit

	Design of the Emulation Platform
	Emulation System Architecture
	LEON3 Hardware Components
	Master Core
	Slave Cores

	Power Management Components
	Power Estimation Units
	Supply Voltage Estimation Unit
	Power Management Unit
	Voltage Drop Compensation Unit
	Multiplexer
	Power Performance and Debug Unit

	Software Components
	Firmware
	Data Capture Tool
	Evaluation Software

	Implementation of the Emulation Platform
	Design and Implementation Process
	Power Values in Gate Level Simulation and Hardware Domain
	Power Management Hardware Components
	Improved DVFS Scaling
	Supply Voltage Estimation Unit
	Power Management Unit
	Power Management DVFS Algorithms
	Voltage Drop Compensation Unit
	Voltage Drop Compensation DVFS Algorithms
	Hybrid Algorithms

	Software Components
	Firmware

	Results
	Validation of Simulation Results by Experimentation for the SVE
	Emulation Results
	Simulation Results
	PM DVFS Algorithms
	VDC DVFS Algorithms
	Hybrid DVFS Algorithms
	VDC and PM DVFS Algorithms Comparison

	FPGA Area Consumption

	Conclusion
	Future Work

	Source Code
	Tables
	Bibliography

