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Abstract

Localization of anatomical structures is a very important step in many medical image

analysis algorithms. However, our interest in localization algorithms is related to an on-

going research study, which investigates the possibility of replacing X-ray imaging with

radiation-free MRI based imaging for the purpose of Bone Age Estimation (BAE). BAE

is an important topic in both forensic and clinical medicine, at the moment, mainly per-

formed by trained radiologists manually inspecting the hand bones within X-ray images.

They suffer from a high inter-observer variability and are very time consuming and te-

dious. Therefore, development of a fully automated BAE method based on MRI images of

the hand, allowing an objective estimation of the bone age without the need for harmful

ionizing radiation, is considered of high practical impact. To extract features for BAE,

localization of the joints between hand bones is a crucial first step in a fully automated

BAE pipeline.

We propose a landmark localization algorithm using multiple Random Regression For-

est localization stages at different scales together with a weighting scheme, that lets local

structures have a higher contribution to the position estimation, thus following the idea

that coarse localization of landmarks is supported by global information from all over the

image, while closer structures provide more information to increase the precision of land-

mark localization. We are able to clearly outperform related approaches on our dataset of

60 T1-weighted MR images, achieving a mean landmark localization error of 1.4±1.5mm,

while having only 0.25% outliers with an error greater than 10mm.

Keywords: Anatomical Landmark Localization, Hand Bones, Magnetic Resonance

Imaging, Bone Age Estimation, Fully Automated, Random Regression Forests
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Kurzfassung

Die Lokalisierung anatomischer Strukturen ist ein wichtiger Bestandteil vieler

medizinischer Bildanalysealgorithmen. Anlass für unser Interesse an Lokalisierungsal-

gorithmen gibt eine aktuelle Forschungsstudie des LBI zur Knochenaltersschätzung,

welche versucht Röntgen basierte Bildgebungsverfahren durch strahlungsfreie

Magnetresonanztomographie (MRI) zu ersetzten. Anwendungsbereiche findet die

Knochenaltersschätzung beispielsweise in der Medizin und in der Forensik. Derzeitige

Verfahren zur Knochenaltersschätzung sind zeitaufwendig, da sie auf einer manuellen

Untersuchung von Röntgenbildern der linken Hand durch geschulte Radiologen basieren.

Zudem unterliegt die Untersuchung durch unterschiedliche Interpretationsmöglichkeiten

der Röntgenbilder einer breiten Streuung. Ein objektives vollautomatisiertes Verfahren

zur Knochenaltersschätzung gestützt auf MRT Bildgebung wäre somit von großer

praktischer Bedeutung. Um jedoch Knochenaltersschätzung zu automatisieren, ist die

Lokalisierung der Knochen innerhalb der MRT Bilder ein wichtiger Schritt.

Wir stellen einen Lokalisierungsalgorithmus vor, welcher auf mehreren Random Regres-

sion Forest Lokalisierungsschritten sowie einem Gewichtungsschema beruht. Mit einem

Lokalisierungsfehler von nur 1.4±1.5mm auf unserer Datenbank, bestehend aus 60 T1-

gewichteten MRT Bildern, erreichen wir ein deutlich besseres Ergebnis als vergleichbare

Algorithmen.

Schlüsselwörter: Lokalisierung, Handknochen, Magnetresonanztomographie,

Knochenaltersschätzung, Vollautomatisiert, Random Regression Forests
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Localization of anatomical structures is a very important step in many medical image

analysis algorithms [46] to provide a coarse initialization for subsequent image analysis

steps, e.g. segmentation algorithms such as Active Shape Models [10] and Active Appear-

ance Models [9], registration algorithms [29], or to provide an initialization for feature

extraction [46] and classification or regression, especially in the field of computer-aided di-

agnosis [17]. Localization is also important in applications where the position of anatomical

landmarks is directly assessed for morphometric measurements, for example to measure

angles in the knee, thus identifying varus-valgus misalignment [33].

Localization of organs in Computed Tomography (CT) or Magnetic Resonance Imaging

(MRI) scans is needed for intelligent navigation and visualization tools [14] or to retrieve

selected parts of patients scans from radiological database systems [38], thus reducing the

amount of data transferred from the database.

Localization can be achieved by placing landmarks manually [7, 43], which is very

time consuming, is prone to high inter-observer variability and is difficult, since 3D images

are often visualized by presenting 2D slices, where the visual appearance of anatomical

structures depends strongly on the slice orientation [42]. To overcome these limitations,

1
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MR Input Volume

Bone

Localization

Age

e.g 13.4 years

Bone Age
Estimation

Figure 1.1: Fully automated Bone Age Estimation pipeline, which aims to estimate the
age of a subject from an MRI input volume. The localization of the hand bones is a crucial
first step in that pipeline.

localization algorithms can be used, with fully automatic image processing pipelines often

even requiring automated localization algorithms.

There has been many work on anatomical landmark localization via low-level interest-

point detectors such as Harris Corners [19] or by fitting 3D intensity models [56]. However,

due to the progress in the field of machine learning, powerful algorithms such as Random

Forests (RFs) [6], which learn how to localize anatomical landmarks from training data,

have emerged and have become a widely used technique for localization of anatomical

structures.

Our interest in localization algorithms is related to an ongoing research study at the

LBI-CFI∗ in Graz, which investigates the possibility of replacing X-ray imaging with

radiation-free MRI for the purpose of age estimation of young unaccompanied asylum

seekers without identification document, who are currently routinely scanned for the Aus-

trian government. To automate age estimation, localization of the anatomical structures,

where age relevant features can be found, is a crucial first step in an age estimation pipeline

as shown in Fig. 1.1.

1.1.1 Bone Age Estimation

During maturation of children and young adolescents, changes in anatomy and physiology

define biological age. The biological age of subjects can be estimated by a radiological

examination of the skeletal development, which is referred to as Bone Age Estimation

(BAE).

∗The Ludwig Boltzmann Institute for Clinical Forensic Imaging (LBI-CFI) dedicates its research ef-
forts to Forensic Radiology. The scientific goal of the interdisciplinary research team is developing basic
parameters for the clinical-forensic use of MR and CT imaging.
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Estimating the age of children and young adolescents has many applications in clinical

and legal medicine. In clinical medicine the chronological age of subjects is usually known

and compared to the biological age. Deviations of the biological age from the chronological

age are used to diagnose endocrinological diseases [37] or to make growth predictions [50].

Another clinical application of BAE is to plan the time-point for orthopedic surgical

interventions in pediatric cases of leg length discrepancy [36] or scoliosis [55].

However, our main focus lies on applications for legal medicine, where age estimation is

an important procedure when proper identification documents are missing. The chronolog-

ical age is unknown in such cases and is approximated using BAE techniques. Applications

are legal majority age determination of young unaccompanied asylum seekers [44], to de-

termine whether the juvenile or adult law should be applied in criminal prosecutions, to

prevent age manipulations in age-related tournaments in sports [22] or to perform victim

identification after disasters [3, 16].

A widely established approach for BAE is to follow the ossification process of the bones

within the hand or the clavicle. Up to an age of around 19 years BAE can be done by

examining bones within the hand. After that, the ossification process is finished within

the hand and no more changes are visible. Therefore, other bones such as the clavicle are

used for estimating the age for ages up to around 23 years.

At the moment, BAE is mainly performed by trained radiologists manually inspecting

the hand bones within X-ray images according to methods proposed by Greulich-Pyle

(GP) [27] or Tanner-Whitehouse (TW) [49]. Age estimation as proposed by GP is done

by comparing a hand X-ray to an atlas consisting of reference images from subjects of

different ages. By finding the most similar reference image, the age is estimated by taking

the age of the reference image. According to TW, the skeletal development stage of specific

parts of the hand is determined independently. Age is estimated by fusing the independent

ratings of individual bones according to the estimated development stages.

Such a manual inspection is very time consuming, tedious and a large intra- and inter-

observer variability due to different human interpretations can be observed. Recently,

fully automatic approaches, e.g. the BoneXpert method [51], were proposed to overcome

limitations of manual inspections. However, the exposure of subjects to harmful ionizing

radiation is still a limitation, especially when applied to healthy subjects. Since this expo-

sure is even prohibited in many countries for non diagnostic reasons, i.e. in legal medicine,

BAE based on MRI has recently gained in importance.

Clinically established methods suffer from high inter-observer variability due to man-
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Figure 1.2: Bone skeleton of the hand with regions where epiphyseal plate fusion can be
seen (green).

ual inspection or involve harmful ionizing X-ray radiation. Therefore, development of a

fully automated BAE method based on MRI images of the hand, allowing an objective

estimation of the bone age without the need for harmful ionizing radiation, is considered

of high practical impact.

Features relevant for describing the age of a person can be found in the regions around

the epiphyseal plates within the hand as can be seen in Fig. 1.2. To extract features from

these regions for BAE, localization is a crucial first step in a fully automated BAE pipeline.

Localization of these regions could be achieved by a segmentation of the epiphyseal plates

followed by an extraction of features from the appearance of the segmented areas. However,

such a segmentation task is very challenging and any mis-segmentations would directly

influence the age estimation result. Extraction of age relevant features is possible without

requiring a segmentation, but instead using the predicted location of the epiphyseal plates.

Therefore, we use localization and avoid a much more challenging segmentation task. Since

the epiphyseal plates are located inside the bones’ metaphysis, their position is constrained

by the location of the bones. Therefore, we propose a localization of anatomical landmarks,

located in the joints between the bones as shown in Fig. 1.4, thus defining the position of

the bones and the epiphyseal gaps. Localization is a crucial and mandatory first step of

an age estimation pipeline as can be seen in Fig. 1.1.
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x
y

z

Figure 1.3: Example 2D slices of our database of T1-weighted MR images showing varia-
tions related to different poses and different ages.

1.1.2 Goal of this thesis

The goals of this thesis are:

(1), to give an overview over state of the art algorithms for landmark localization,

while focusing on those well suited for a BAE pipeline based on 3D MRI images of the

hand.

(2) The development of a fully automated landmark localization algorithm, meeting

the requirements of robustness and good localization accuracy and precision, since it is

the first part of the BAE pipeline.

(3) The developed algorithm requires thorough evaluation and comparison to related

state of the art algorithms.

1.2 Data

In the course of an ongoing research study at the LBI-CFI in Graz with the goal of

developing a BAE method based on MRI, scans are taken from volunteering children

and young adolescents. We were provided with a dataset consisting of 60 MR images from

Caucasian male subjects in an age range of 13 up to 23 years. The 3D images were obtained
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Figure 1.4: Hand bones with our annotated anatomical landmarks (red points).

using a T1-weighted gradient echo sequence with a voxel size of 0.45x0.45x0.9mm3 and

an average volume dimension of 294x512x72 voxels. The hands are located roughly in the

center of the images with a rotation about the z-axis varying in the range of ±15◦. During

the scanning procedure subjects are told to put their hand into the head and neck coil of

the scanner and a sand-sack is put on top of their hand to keep its position fixed and reduce

finger pose variations. However, since we are dealing with children and juveniles, they are

trying to find a comfortable positions for their hands and therefore the scans still include

finger pose variations. Fig. 1.3 shows example images taken from the dataset illustrating

the different finger poses and variations due to the age range that we are dealing with.

Fully automated landmark localization is challenging due to

• the presence of a lot of repeating structures in the hand, which may lead to ambiguous

localization results,

• finger pose variations,

• anatomical variations related to the age range of the investigated subjects.

Annotation To enable the use of machine learning algorithms requiring ground-truth

landmarks during training and to allow an evaluation, a manual annotation of the location

of anatomical landmarks in the hand as shown in Fig. 1.4 is required.
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1.3 Contribution and Outline

In Chapter 2 we give an overview over related work on localization of anatomical struc-

tures ranging from low-level approaches and application-specific solutions for hand-bone

localization up to powerful machine learning algorithms.

In the following, we propose a novel landmark localization algorithm following the

idea that the location of anatomical landmarks is constrained by all of their surrounding

structures. Coarse localization of landmarks is supported by global information from all

over the image, while closer structures provide more information to increase the precision

of landmark localization.

We realize this idea using a multi-scale setup of multiple Random Regression Forest

(RRF) [12] localization stages together with a weighting scheme, that lets local structures

have a higher contribution to the position estimation. The RRF framework together with

the proposed weighting scheme is introduced in Chapter 3. In Chapter 4 we connect several

RRF stages in a multi-scale setup to finally derive our proposed localization algorithm.

To highlight the benefit of our method, we provide a comprehensive evaluation of our

algorithm and a comparison to related approaches in Chapter 5. Chapter 6 summaries and

concludes this thesis.
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This chapter is dedicated to give a brief overview over existing methods on the lo-

calization of anatomical structures. In Section 2.1 we provide a categorization of local-

ization according to the semantic representation of the position and distinguish between

approaches making a prediction based on local and global context. In the remaining sec-

tions, different approaches from the literature, ranging from low-level and atlas-based to

powerful machine learning algorithms, are discussed and concluded in Section 2.7.

2.1 Categorization of Localization Algorithms

2.1.1 Semantic Representation

Anatomical structure localization approaches can be categorized according to their seman-

tic representation. They aim to estimate either

9
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• Bounding Boxes (BBs) around structures,

• the position of anatomical landmarks,

• or yield voxel-wise labels for an anatomical structure, i.e. a segmentation.

Performing segmentation is a very hard task, especially when using supervised machine

learning algorithms requiring training images, because it requires a precise ground-truth

segmentation of all 3D training images, which is very time-consuming and cumbersome to

obtain.

Detecting BBs has the advantage to get both, the location and extent of a structure. A

disadvantage of BBs is that their faces are defined by the largest extent of an anatomical

structure, which is not necessarily of interest. Especially axis-aligned BB designs lack in

precision in the presence of rotations. Therefore, anatomical landmarks are used when a

more precise localization is needed.

In case of our BAE pipeline, we are interested in the position of the epiphyseal plates,

which are located inside the metaphysis part of the bones. Their position can be derived

more accurately from anatomical landmarks in the joints between bones than from BBs

around the bones.

2.1.2 On the context

From a different perspective, one can make a distinction between localization algorithms

estimating based on local- or global context. Both approaches are dealing differently with

the presence of repeating structures, e.g. a lot of landmarks within the hand share a similar

local appearance.

Approaches based on local context model only the local appearance around the land-

marks. Due to repeating structures, this requires to use a high-level model to distinguish

between the different landmarks. Such a high-level model usually selects landmark loca-

tions based on some kind of geometric relationship between the different landmarks.

Another approach to handle repeating structures is to locate the landmarks based on

global context. This means that predictions are made by using appearance information

from all over the image. Approaches based on global context typically do not require a

high-level model such as a geometric model.
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2.2 Low-Level Approaches

The localization of anatomical structures as an initialization for further processing is often

achieved by very application-specific tailored low-level approaches. A domain specific al-

gorithm for locating the epiphyseal regions from X-ray images was presented in [40]. They

locate finger tips by thresholding and parsing the input image in horizontal lines as shown

in Fig. 2.1.

Figure 2.1: Locating fingers from X-ray images via horizontal parsing. (Source: [40])

Once the finger tips are found by looking for the top most response, they follow the cen-

terline of each finger and locate the epiphyseal gaps by interpreting gradient information.

However, this algorithm locates only the phalanges, an extension to 3D MRI images is not

straightforward and the algorithm is not robust to typical variations in clinical images.

In [56], they locate anatomical landmarks by fitting 3D parametric intensity models of

the landmark’s local appearance to the image intensities. To handle repeating structures

within the hand, a subsequent high-level prediction step including geometric constraints

would be required for practical use in landmark localization.

An approach using global optimization to select landmark locations from candidates

obtained via interest point detectors, was presented in [19]. They propose to use a new

interest point detector based on symmetry properties of the local appearance in combina-

tion with Harris corners. After interest points are found, they perform global optimization

using a Markov Random Field (MRF), thus modeling geometric relationships between

landmarks. While this algorithm can handle repeating structures, the problem of not

being very robust to local appearance changes in the presence of anatomical variations

remains.
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2.3 Approaches based on Atlas Registration

In the past, atlas-based approaches have been widely used in the field of anatomical

structure localization [24, 45, 57].

An image, with known ground-truth labels of the anatomical structures of interest, is

taken as a reference image or also called atlas. Localization is performed by aligning a new

unseen image to the reference image using registration techniques. Labels from the atlas

are propagated to the input image, thus obtaining the location of anatomical structures.

Such approaches are suitable for locating landmarks, BBs or even rough segmentations.

However, due to the flexibility of a lot of parts of the human body, simple rigid registration

will introduce errors. To overcome this limitation, non-rigid registration algorithms may

be used. They are able to handle slight variations in shape, but due to higher model

complexities, computational requirements are highly increased.

Multi-atlas approaches have been developed to handle the anatomical variations be-

tween subjects or the use of different modalities in medical images. An input image is

registered to multiple reference images. The labels from the best reference image, accord-

ing to the overall registration cost, are selected. Another possibility is to fuse the labels

of the different reference images and propagate them to the input image [32]. Label prop-

agation is performed via a spatially varying fusion process, depending on an assessment

of the local registration cost. In general it can be said that registration based approaches

often need a careful initialization to guarantee convergence.

2.4 Statistical Shape Models

An approach for incorporating shape prior information when localizing anatomical land-

marks are Active Shape Models (ASMs) [9, 10]. They consist of a Statistical Shape Model

(SSM) to model the geometric relationships between the landmarks. Based on a set of

training images, the variations in shape of the landmark positions are learned. When

locating landmarks in an unseen image, landmark positions obtained based on image in-

tensities are regularized using the learned Statistical Shape Model (SSM) to allow only

shapes similar to the shapes in the training images. ASMs are typically implemented using

an iterative scheme with the following steps:

1. Start with a coarse initialization linit of the landmark positions l = linit.

2. Obtain new landmark locations l based on image intensities in a small region around
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current landmark locations l.

3. Regularize the obtained landmark locations l using an SSM.

4. Repeat steps 2-3 until convergence.

Limitations of ASMs are that they require a careful initialization to guarantee conver-

gence and typically require a large number of training data to prevent over-constrained

models [30].

As an example approach using SSMs, we describe an algorithm for anatomical land-

mark localization from hand CT images based on SSM in the following. Another approach

based on SSMs is presented in Section 2.6.1.2.

2.4.1 Top-Down Image Patch Regression

Top Down Image Patch Regression (TDPR) as proposed in [20], is a very fast method

for localizing anatomical landmarks in 2D and 3D data. TDPR maintains an appearance

codebook, containing an efficient representation of patches from all over the image at

different scales. Each patch is associated with a displacement vector, modeling the distance

to the landmark location.

Landmark locations are predicted in a multi-scale search, starting from the coarsest

level, using the appearance codebook. An SSM is used at each scale to model the spatial

distribution of the landmarks, thus constraining the landmark locations and allowing to

handle the presence of repeating structures within the hand.

In the following, the training and testing stages of TDPR are described.

2.4.1.1 Training

Training of TDPR consists of learning a local appearance model and an SSM.

Appearance Model During training of TDPR, multi-scale regression codebooks for

each of the L landmarks x ∈ 1, ..., L and S different scales s ∈ 1, ..., S are built, resulting

in S x L codebooks, as can be seen in Fig. 2.2. Each codebook consists of patches Pp with

index p around the landmarks with varying offsets and scaling, where for each patch Pp,

relative landmark position offsets Lp of all visible landmarks on the patch are stored.

Since the memory required for storing the large amount of patches is very high, and

a comparison of patches at testing involves a lot of computations, an efficient represen-

tation is necessary. Each patch Pp is compressed using Principal Component Analysis
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Figure 2.2: TDPR Training: Construction of the patch codebook over several scales for
each landmark. (Source: [20])

(PCA) [4], resulting in PCA coefficients PPCA. The final codebooks are consisting of the

tuples < Pp
PCA,L

p >.

Statistical Shape Model To model the spatial distribution of the landmark positions

s = 〈xi1, ...,xiL〉, a PCA based shape model S = {s,S} is learned. The shape model

consists of the mean shape s and the Eigen-decomposition S of the covariance matrix of

the landmark positions. This is a generative model, allowing to construct shapes using a

parameter vector b in the following way:

s = s+ Sb (2.1)

This model allows to generate linear combinations of all shapes occurring in the training

set.

2.4.1.2 Testing

As can be seen in Fig. 2.3, multi-scale landmark localization starts at the largest scale

s = 1. The matrix L∗s=1, holding all landmark position estimates, is initialized with the

center of the test volume. For each landmark x, a patch P x, centered at L∗s, is extracted

and projected on to the PCA space. The patch in PCA-space P x
PCA is used for a nearest
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Figure 2.3: TDPR Testing: Multi-scale localization scheme, starting at the largest scale
s = 1. For each landmark a patch is extracted and compared to the patch codebook,
yielding multiple predictions for each landmark. (Source: [20])

neighbor search in the codebook according to the Euclidean distance, yielding the pre-

diction Lx∗p . Since a landmark may be visible on multiple patches coming from different

landmarks, multiple predictions are available. The final landmark positions are estimated

by taking the median over all predictions.

Statistical Shape Model For all scales s ≤ S − 3, the position estimates L∗s are

regularized according to the PCA-based shape model S by projecting L∗s onto the shape

space S, and reconstructing it back again. Thus, the landmark positions are restricted

to linear combinations of shapes observed in the training set. This step actually prevents

landmark localizations wandering off wrongly to neighboring landmarks with a similar

local appearance. At the smallest scales s ≥ S − 3, this regularization step is omitted and

the prediction is made solely based on local appearance, thus achieving a good precision.

2.5 Marginal Space Learning

Recently, an object localization technique called Marginal Space Learning (MSL) [58],

received a lot of attention. This work aims to estimate the pose parameters position,
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orientation and size of an anatomical structure, which can be seen as estimating an oriented

BB around an object. The authors showed the capability of MSL for localizing the heart-

chambers in 3D cardiac CT volumes and this technique was also successfully applied to

other problems, like the localization of wrist bones from CT [35], or the detection of

axillary lymph nodes from CT [2].

In 3D object localization by BBs there are 9 unknown parameters to estimate, namely

three for translation, scales in three directions and three rotation angles. The number

of hypotheses increases exponentially with the number of parameters, which makes an

exhaustive search over all parameters infeasible, especially in 3D.

2.5.1 Idea

The idea behind MSL is to avoid an expensive exhaustive search over all parameters, but to

split the problem into smaller sub-problems by first estimating a limited set of parameters,

while keeping the remaining parameters fixed. In subsequent steps, more parameters are

included into optimization, but the parameter space is restricted based on the estimations

of the previous parameters.

2.5.2 Toy Example

The toy example in Fig. 2.4 shows the reduction of the parameter space, when finding

the maximum of a joint probability P(X,Y) with two parameters X,Y. First, the marginal

distribution P(Y) with only one parameter Y is estimated. The number of possible hy-

potheses for the parameter space spanned by Y is much smaller than the space spanned

by X and Y together. As a result, we obtain a few candidates for the parameter Y. In

any subsequent steps, the search space of parameter Y is reduced according to the ob-

tained candidates. A second classifier is applied on a restricted space to estimate the joint

distribution P(X,Y).

2.5.3 Application to Object Localization

For object detection, the authors of MSL propose to estimate parameters in the following

sequence:

1. translation

2. translation and orientation
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Figure 2.4: Toy example showing the parameter space reduction using MSL. The joint
probability P(X,Y) is estimated within the restricted space by first estimating the marginal
distribution P(Y) to reduce the search space. (Source: [58])

3. translation, orientation and scale

In each of the three steps a classifier based on the Probabilistic Boosting Tree

(PBT) [52] is used to select the best candidates for the set of parameters to estimate. In

the subsequent step, those candidates are augmented with additional parameters, used in

the next step, and again a classifier is choosing the best candidates.

A common approach when estimating the orientation of an object is to use one classi-

fier, which is trained at one fixed orientation. At testing, the image is rotated in discrete

steps and the classifier is evaluated on each rotated version of the image [18]. To overcome

the limitation of expensive image rotations, steerable features are used for training an

efficient classifier for object orientation and scaling. The idea behind steerable features

is, that the locations of the features are depending on the hypotheses for orientation and

scaling. Local features are sampled using a sampling pattern. This pattern is rotated and

scaled according to the orientation and scaling of the hypothesis as shown in Fig. 2.5.

Thus, the classifiers for all orientations and scales can be trained and during testing hy-

potheses with different orientations and scales can be tested by transforming the sampling

pattern instead of the input image, which makes the algorithm much faster.

Since structures with shape variations are not handled very well when estimating only

the rigid transformation parameters, Nonrigid MSL was proposed in [59]. Nonrigid MSL

aims to additionally estimate shape parameters of a PCA based SSM.
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Figure 2.5: Rotation and scaling of the feature sampling pattern according to a hypothesis
of object orientation and scaling. Each ’+’ within the image corresponds to a location,
where local appearance is sampled. (Source: [58])

2.5.4 Conclusions

MSL is an object localization technique, well suited for detecting BBs around anatomical

structures in 3D images due to its efficiency. In [35] it was shown that MSL can also be

applied to detect wrist bones from T1 and T2 weighted MRI images. However, for our

goal, the localization of hand bones, further effort is necessary, since MSL does not handle

the presence of repeating structures. One approach to overcome this limitation is to use an

iterative scheme as proposed in [34], which significantly adds to the computational cost.

2.6 Localization using Random Forests

Due to the progress in the field of machine learning, powerful algorithms such as RFs [6]

have emerged and have become a widely used technique for localization of anatomical

structures. Therefore, we give a small overview over existing related work.

An RF is a powerful machine learning algorithm, able to perform classification and

regression tasks by taking as an input a set of features. The objective of classification is to

predict discrete class label, e.g. perform a voxel-wise classification. The goal of regression

is to predict a continuous label, e.g. the relative distance from a patch to a landmark.

An RF is an ensemble [5] of multiple decision trees, where each tree performs hierar-

chically arranged feature tests, thus ending up in leaf nodes where predictions are stored.

Like in every ensemble method, the predictions of all the trees are combined, e.g. by av-

eraging [6]. By introducing randomness during training of the decision trees, e.g. using

bagging [5], the individual decision trees are decorrelated, thus making the ensemble a

very powerful classifier. A more detailed survey about RFs can be found in Chapter 3.
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Figure 2.6: Pre-filtered Hough Forests: Overview of the localization pipeline. (Source: [21])

In the following, we divide the literature on detection algorithms using RFs into local-

ization based on local and global context.

2.6.1 Local Context

This section is about localization algorithms, where RFs are employed to capture the local

context, thus a subsequent step, performing reasoning on the high-level semantics of the

RF output is needed to handle the presence of repeating structures.

2.6.1.1 Pre-filtered Hough Forests and Discrete Optimization

The work proposed in [21] aims to localize anatomical landmarks in 2D and 3D medical

images, with a special focus to handle the presence of repeating structures, thus making

the algorithm perfectly suitable for localization of landmarks within the hand.

Localization consists of three steps, as shown in Fig. 2.6. At the beginning, multiple

candidate positions are obtained for each landmark via voxel-wise RF classification. In

the next step, candidate positions are refined using RF regression. Among those refined

candidates, the one resulting in the highest probability according to a geometric model,

is selected using a Markov Random Field (MRF). The geometric relationship between

landmarks is automatically learned from training data. In the following, we will discuss

each step in more detail.

RF Classification The objective of the first step is to obtain candidates for the land-

mark positions, which is achieved using RF classification. An RF is used to predict for
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each voxel within an image a discrete class label corresponding to background or one of

the L landmarks, resulting in a classification task with L+ 1 discrete class labels.

When training the RF, positive samples for each landmark are chosen by taking all

voxels within a small radius around each landmark, while background samples are drawn

randomly from areas of the images outside a small radius around all landmarks. The RF

learns to distinguish between the classes by local appearance around each voxel. Local

appearance is described by a feature vector, consisting of gray value differences between

the voxel and voxels at random offsets around the voxel.

During testing, each voxel within the image, is classified using the previously trained

RF, resulting in probability maps P c for each landmark c.

RF Regression The information obtained in the previous step is refined using an RRF,

or also called Hough Forest [25], to get precise candidates for the landmark positions.

For each landmark, a Hough Forest is trained to predict relative distance vectors

dc = lc − v = {dx, dy, dz} from a reference voxel v to a landmark lc, according to feature

tests around the reference voxel. Training voxels are selected by taking all voxels in a small

region around the ground-truth landmark positions.

During testing, the probability maps P c obtained from RF classification, are thresh-

olded with β = 0.5 ·max(Pc). The remaining voxels are pushed through the Hough Forests

of each landmark, thus getting for each voxel a relative prediction vector dc. The voxels

of the probability map are shifted by dc, resulting in a highly accurate probability map.

The probability p(cl) of a candidate cl at a certain location, is calculated as the sum over

all probabilities from the classification RF shifted to the candidate position. The number

of candidates is reduced using non-maxima suppression. Further, only the D candidates

with the highest probabilities are used, thus resulting in accurate candidate positions for

each landmark.

Candidate Selection using a Geometric Model The task of this final step is to

select from all the candidate positions for each landmark the best candidate using an

MRF. An MRF is an undirected graph, with each node in the graph corresponding to

one landmark. The edges e, connecting the nodes in the graph, are modeling geometric

relationships between the landmarks.

Not all landmark positions can be used to reliably predict another landmark’s position.

Therefore, the topology of the graph is automatically learned by connecting each node

only to the nodes with a strong geometric relationship, according to a differential entropy
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measure.

The goal of solving the MRF is to assign to each node in the graph one of the candidates,

such that the confidence

Conf(M) =
L∑
c=1

U(c,M(c)) +
E∑
e=1

B(e,M(e)) (2.2)

of the landmark configuration M , consisting of unary terms U and binary terms B, is

maximized. The unary terms, representing likelihoods of candidates, are set to the normal-

ized probabilities of the candidates p(cl). The binary terms are modeling the confidence

between two landmarks connected by an edge e according to their geometric relationship.

The confidence value of an edge between two landmarks s,t located at ls and lt is a func-

tion ks,t(ls− lt) depending on the relative offset between the two landmarks. This function

ks,t is constructed during training by summing up normal distributions at all landmark

offsets occurring in the training set.

Having calculated all the confidence values for the unary and binary terms, the MRF

is solved using loopy belief propagation [39].

2.6.1.2 Shape Model Fitting using Random Forest Regression Voting

In work described in Section 2.6.1.1, a shape model was incorporated by performing dis-

crete optimization to select the landmark positions among a limited set of candidate po-

sitions. In [8] a more generic way of including a shape model was proposed, skipping this

discretization into candidate positions and directly fitting a shape model to the response

of a previous feature detector as can be seen in Fig. 2.7. They employ a Hough Forest

as a feature detector, very similar to the one used in the previous section, which gener-

ates response images based on local appearance. Hough forests are applied to randomly

sampled patches of an input image, and landmark positions relative to the patches are

estimated. The resulting position estimates are accumulated in a response image, which

can be seen as a probability map of a landmark position. Finally, an SSM is fitted directly

to the obtained response image using the Constrained Local Model (CLM) framework [15]

as discussed in the following.

Constrained Local Models The objective of CLMs [15] is to fit a statistical shape

model of the landmarks c to a probability map Pc(l) of the landmark positions l. The
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Outline

input image

Figure 2.7: Outline of the shape model fitting approach using Random Forest Regression
voting to obtain a probability map Pc(lc). The image below shows the first two shape
modes of the SSM, where captured shape variations can be seen. (Source: [8])

probability map is reformulated to a log-likelihood function

Cc(l) = − log(max(Pc(l), p0)), (2.3)

where p0 > 0 increases the likelihood of landmarks being at locations with a probability

of 0, thus increasing the robustness in the presence of occlusions.

The shape model consists of a similarity transform T with parameters t, combined with

a PCA-based SSM with parameter b, learned from training data. The resulting generative

model is of the form

lc = T (lc + P cb; t), (2.4)

where lc holds the mean landmark positions and P c the most important eigenvectors of
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the covariance matrix.

Fitting of the SSM is formulated as an optimization task, with the goal of maximizing

the probabilities of the landmark positions according to the log-likelihood Cc(l), such that

the landmarks are restricted to a hyper-ellipsoid in shape space. Mathematically, this

fitting can be formulated as finding parameters {b, t}, minimizing an energy

Q(b, t) =

L∑
c=1

Cc(lc) subject to bTS−1b b ≤Mt, (2.5)

where Sb is the covariance matrix and Mt a threshold on the Mahalanobis distance. This

energy minimization aims to maximize the landmark probabilities and limits the shapes

to the hyper-ellipsoid bTS−1b b = Mt. This optimization is implemented using an iterative

scheme with the following steps:

1. Initialize search radius: r ←− rmax

and the initial landmark location l with the mean landmark location lc

2. Find best landmark locations

l′i = arg max
l

Cc(l) (2.6)

in a certain radius r around the previous obtained landmark locations li according

to the log-likelihood. In the first iteration the algorithm starts searching around the

mean location lc.

3. Estimate parameters {b, t} from l′i. The similarity transform parameter t is estimated

using Procrustes analysis [28], the shape parameters b by projection of l′i onto the

shape space.

4. Move b to the nearest point on the hyper-ellipsoid bTS−1b b = Mt.

5. Calculate new landmark locations li using the generative model in Equation (2.4).

6. As long as search radius r > rmin, reduce search radius r and repeat from step 2.

2.6.2 Global Context

Instead of modeling local appearance in combination with an SSM, there is also related

work in anatomical landmark localization on making a prediction based on global context
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Figure 2.8: Positive and negative sample selection for training a classification
RF. (Source: [13])

to handle repeating structures within medical images. This concept is realized by using

context-rich features, describing not just local structures, but taking also information from

all the surrounding anatomy into account.

2.6.2.1 Organ Localization using Random Classification Forests

Detecting and locating organs, such as kidneys, liver, heart, lung, etc., within CT-scans

in the form of BBs was the goal of the work presented in [13]. Their proposed algorithm is

capable of handling arbitrary field of view scans, which makes it necessary to tell whether

an organ is present in the volume or not in addition to localization. They formulate

this problem as a classification task, with the goal of assigning class labels to each voxel

within an image. The class labels are corresponding either to one of the organs, or to the

background. This classification task is performed using an RF, which is very similar to the

one already described in Section 2.6.1.1, but instead of simple pixel comparisons they use

context-rich features, thus capturing the global context.

Classification Labels for Training Their labels of the ground truth-database are

consisting of bounding boxes around organs. When training a classification RF, one has to

think about which voxels to use as positive, and which as negative training examples. As

shown in Fig. 2.8, positive samples for an organ are selected from a small box in the center

of the BB around an organ. All voxels outside a larger box, 50% of the dimensions of the

BB, are considered as background class labels. Since they do not consider all voxels within

the BB as positive samples, they train a classifier which produces only a small response

on a testing image, thus increasing the localization precision.
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Figure 2.9: Image on the left is showing examples of the context-rich box-features, rel-
atively defined to the reference voxel. Image on the right is illustrating, how the RF is
able to capture the global context by performing feature tests, describing all surrounding
structures. (Source: [13])

Context-rich features The goal of context-rich features is to describe the appearance

of all surrounding structures, thus capturing the global context. The features are based

on cuboids of arbitrary size and position in each dimension, with the parameters of the

cuboids being denoted as θ. The cuboid positions are defined relative to the voxel position,

as can be better understood with the help of the examples shown in Fig. 2.9. The feature

response f(x,θ) at position x, using two cuboids F1 and F2 within an image I, is calculated

according to

f(x,θ) =
1

|F1|
∑
q∈F1

I(x+ q)− b 1

|F1|
∑
q∈F2

I(x+ q). (2.7)

The parameter b ∈ {0, 1} defines, whether to use the mean intensity within F1 or the

difference between the intensities of F1 and F2. The feature response can be calculated

very efficiently using integral images [54].

Detection and Localization A previously trained RF is applied to all voxels within

an image, to obtain for each class c probability maps Pc(x). A class is considered present

within an image, when the maximum probability

Pc = max Pc(x) (2.8)

exceeds a certain threshold β = 0.5. In case a class is present, the location is determined

as the mean

xc =
∑
x

xPc(x) (2.9)
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Figure 2.10: Locating BBs using RRFs: An RRF models the distances d(v) from all voxels
v (inside and outside the BB) within an image to all faces of the BBs. (Source: [11])

over the whole volume.

2.6.2.2 Organ Localization using Random Regression Forests

In the previous section an algorithm was presented, which achieves the goal of localization

by performing voxel-wise classification and inferring the location from the classification

labels in a subsequent step. As this indirect localization using classification is not optimal,

a more direct approach was presented in [11], which aims to predict directly the faces of

the BB around an organ. They skip the classification part, and formulate the problem as a

regression task using an RRF. The regression outputs are the distances from voxels within

an image to the BB faces in all three dimensions d = {x, y, z}, as shown in Fig. 2.10. The

RRF makes the distance estimates using the same context-rich features as described in

the previous section. When testing an image the distance estimated from voxels all over

the image are accumulated in a voting space.

In comparison with the classification based technique, this approach provides in addi-

tion to the location of an object, information about the extent by means of a BB around

an object. However, the same principles may also be used for localizing landmarks [26].

Another advantage is that localization is performed directly, without having to choose

positive and negative training examples. Further, they could show that the error achieved

using this regression scheme is less than half the error achieved using voxel-wise classifi-

cation.
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2.7 Conclusions

In this chapter we have provided an overview over different approaches for landmark lo-

calization. Low-level approaches such as landmark localization by local feature descriptors

do not meet the requirements in terms of robustness to variations in clinical images.

MSL seems to be an effective tool for estimating multiple parameters such as location,

rotation and scale of an object. A limitation is that MSL fails to handle repeating struc-

tures, therefore, iterative schemes trying to overcome these limitations were proposed.

However, MSL is suitable for localizing BBs, but we prefer a localization of anatomical

landmarks, due to a higher expected precision.

In the past, atlas-based approaches have enjoyed a lot of popularity, but they have a

few drawbacks, like handling variations in shape and anatomy. Due to the progress and

development of new algorithms in the field of machine learning, such state of the art

approaches are able to clearly outperform atlas-based approaches in terms of precision,

robustness and runtime.

To handle repeating structures, SSMs have been widely used in the past. As an example

approach using SSMs, we have presented a method called TDPR, which is able to allow a

fast localization of landmarks using a patch codebook and is also able to handle repeating

structures by including an SSM.

Due to the popularity of RFs for landmark localization, we compared different ap-

proaches based on RFs. We divided RF localization algorithms into those making a pre-

diction based on local and global context. Using local appearance, i.e. capturing the local

context, requires a subsequent geometric model to handle repeating structures. This step

can be omitted when using context-rich features, thus capturing the global context.

Localization using RFs can be formulated as a voxel-wise classification problem us-

ing classification RFs. However, formulating localization of anatomical structures as a

regression task using RRFs seems more natural and allows better results compared to

classification approaches.

For our goal of localizing landmarks within hand MRI images, we propose a novel

algorithm and evaluate its localization accuracy by comparing to TDPR and RRFs in

Chapter 5.
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In this chapter we introduce the basic concepts of Random Forests (RFs) as well as

our Random Regression Forest (RRF) framework for localizing landmarks, inspired by the

work presented in [11]. We extend this RRF framework by introducing a novel weighting

scheme in 3.4.3, which lets local structures have a higher contribution to the position

estimation. In Chapter 4, multiple instances of this framework are combined to get our

final proposed landmark localization algorithm.

An RF is a machine learning algorithm based on decision trees that can be used

for many different kinds of problems, e.g. classification and regression tasks. The goal

in classification problems is to assign a discrete class label c to a generic object called

datapoint, while in regression problems a continuous label y is predicted from a given

datapoint.

As discussed in Chapter 2, the task of landmark localization can be formulated either

as a classification or a regression task. However, localization via regression is more intuitive

and allows better precision. Therefore, we will focus on the application of RFs for regression

29
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problems, i.e. RRFs. A broader overview over other applications of RFs can be found

in [12].

3.1 Decision Trees

A decision tree is a model allowing to solve complex problems by performing hierarchically

arranged feature tests. It is a directed graph consisting of split nodes and leaf nodes

connected with edges in a tree structure. Each split node has edges to two child nodes and

stores a binary decision, which guides datapoints according to a feature test to the left

or the right child node. Starting at the root node, which is the first split node in a tree,

feature tests are applied recursively at each split node until a leaf node is reached. At each

leaf node a final answer (prediction) is stored. The basic structure of a tree, as well as a

toy example of a decision tree is shown in Fig. 3.1.

Figure 3.1: a) Basic structure of a decision tree consisting of split nodes (circles) and
leaf nodes (rectangles). b) Toy example of a decision tree for classifying the given im-
age. (Source: [12])

An alternative interpretation of a decision tree is, that a complex problem that needs

to be solved is divided hierarchically into smaller sub-problems, which are easier to solve.

One can think of creating a decision tree by manually arranging feature tests. However,

for more complex tasks, such as we are dealing with, decision trees are learned automati-

cally from training data. This task is referred to as training of trees, while testing of trees
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means to apply a previously trained decision tree to unseen data. Training and testing

of decision trees for the goal of landmark localization will be the topic of the following

chapters.

3.2 Random Decision Forests

A Random Decision Forest, or also called RF, is a machine learning algorithm originally

proposed in [6]. An RF is an ensemble of multiple decision trees, learned automatically from

training data. During training, the decision trees are built independently and randomness

is injected to ensure that the different trees are uncorrelated, thus learning different aspects

of the data. When combining all trees to an ensemble of decision trees, the outcome is

a powerful machine learning algorithm. The big advantage of an RF over a single fully

optimized decision tree is the increased generalization capabilities. Here, generalization

describes how well an algorithm performs on previously unseen testing data. The opposite

of good generalization is often referred to as overfitting, which means that the algorithm

performs well on training images, but not very well on testing data.

To avoid overfitting and achieve a good generalization with RFs, it is very important

that the individual trees are decorrelated. Thus, each single tree is sub-optimal and usually

not as good as a fully optimized decision tree, but the ensemble of decorrelated sub-optimal

trees performs well. Decorrelating the trees is achieved by injecting randomness during

training. Usually, the two following methods are commonly used in practice:

• Training set sampling: When training the different trees, each tree is trained on

a randomly chosen subset of the training data. This principle is called Bagging

Predictors. [5, 6]

• Random node optimization: During construction of the trees, randomly chosen sub-

sets of the feature vectors are used. [1, 31]

During testing of an RF, all decision trees are applied to the data, thus getting as much

predictions as the number of trees in the forest. There are different ways of combining those

predictions to a final prediction, but the most commonly used one is to average over all

predictions coming from the trees.
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3.3 Random Regression Forests

An RRF is an RF, which predicts one or multiple continuous labels y based on an arbitrary

number of feature dimensions x, i.e. the goal is to learn a function y(x).

Figure 3.2: Toy example, showing how a regression tree is able to perform non-linear
regression on the samples shown in a. Image e shows a regression tree, splitting the input
feature space, thus partitioning the regression problem into smaller sub-problems. Images
b-c show the leaf prediction models of the individual nodes of the tree.(Source: [11])

As the example in Fig. 3.2 illustrates, a non-linear regression problem can be approxi-

mated by splitting the function into smaller parts and estimating those smaller parts using

simpler models, e.g. linear, or constant models.

This idea is picked up by RRFs, which split the feature space using hierarchically

arranged feature tests within a tree structure. Due to splitting, only a small subspace of

the whole feature-space reaches each leaf node, where a prediction model is stored.

When combining the regression trees to an ensemble by averaging over the predictions,

the outcome is a regression function, which generalizes well as can be seen in Fig. 3.3 by

looking at the predicted values further away from training samples. Single trees may have

a non-smooth transition between the training-samples due to simple models in the leaf

nodes, while the whole forest produces a smooth transition between training samples, thus

generalizing well.
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tree 1 tree 2

tree 3 forest (T=100)

Figure 3.3: Visualization of the achieved effect, when combining multiple random regression
trees to a forest, on the basis of a 1D regression problem. The x-axis within each image
represents the input feature dimension, while the y-axis is the regression output dimension.
Training samples are represented by gray dots in the images and the green line shows the
learned function, obtained by applying each tree/RRF to all values on the x-axis. Single
trees may overfit to the data, while the forest consisting of 100 trees produces a smooth
transition between training samples.

3.4 Random Regression Forests for Landmark Localization

In the case of landmark localization, RRFs are used to predict the relative distances

dc(v) = lc − v (3.1)

from the voxel positions v in an image to multiple landmark positions lc in x, y and z

direction. The features (input dimensions) of the regression problem are derived from the

appearance around the voxel v. An RRF is trained based on a set of input images with

labeled ground-truth landmark positions lc. The datapoints used for training the RRF are

all voxels within the training images. Feature values are calculated for all training voxels

and the non-linear regression problem is learned to predict the displacements dc(v) to the

landmark positions.

During testing, this previously trained RRF is used to predict displacements to the

landmark positions dc(v) from multiple voxels within an image. The predicted displace-

ments coming from different voxels can be seen as voting vectors which vote relative to the

absolute voxel position v = x, y, z. All obtained votes are accumulated in a voting space.

This voting space can be seen as a probability map for the landmark location.

In the following, we describe how RFs are trained and applied to the task of landmark
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Figure 3.4: Left Figure shows the principle of RRFs predicting multiple landmark positions
simultaneously relative to the voxel position v. Right Figure shows that predictions dc(v)
coming from multiple voxels within the image are accumulated in a voting space. For each
landmark a separate voting space is used.

localization.

3.4.1 Training

During training of an RF, the goal is to build decision trees by finding good splitting

functions in the split nodes and to store predictions within the leaf nodes. We will define

what is meant with good splitting functions later.

Forest training is achieved by constructing each of the T trees independently. The

trees are trained in a greedy optimization manner, thus optimizing each of the nodes

independently by selecting node splitting functions. Training starts at the root node,

which is the first split node, with all voxels from the training images as datapoints. After

finding the first node splitting function, voxels are sent either to the left or right child

node. Training continues recursively on both child nodes and stops when the maximum

tree depth D is reached or the number of voxels arriving at a node is less than a certain

threshold N = 20 to avoid overfitting. At the leaf nodes, predictions are stored as distance
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histograms according to the voxels reaching that node as illustrated in Fig. 3.5.

Figure 3.5: Illustration of a distance histogram for one dimension (x) representing the
distribution of the distances from voxels in a leaf node to landmark positions in x-direction.

In the following, we will have a look at how the splitting functions are defined and how

nodes are optimized.

3.4.1.1 Node Optimization

Node splitting functions split the set of voxels (S) reaching the node into voxels reaching

the left (SL) and the right child node (SR), according to binary tests h(v,θ, τ), with

parameters θ and τ , computed for a voxel v. Binary tests are defined as

h(v,θ, τ) = f(v,θ) > τ, (3.2)

where a feature response f(v,θ) is thresholded with τ . The calculation of the feature

response is described in the following.

Features Features are responsible for providing a good description of the area around

the voxels. We use a generalization of the Haar-like features as proposed in [54], since they

are able to provide a context-rich description.

Our feature response calculated for each voxel is the difference between the mean of

the intensity values within two cuboids F1, F2, which can be written as

f(v,θ) =
1

|F1|
∑
q∈F1

I(v + q)− 1

|F2|
∑
q∈F2

I(v + q), (3.3)

where I(v) is the intensity value at location v and q are the positions of all vox-

els within the cuboids. Using integral images they can be computed very efficiently. The

cuboid positions are defined relative to the voxel position v. The position in each of the 3

dimensions can be arbitrary within a certain range [−frmax, frmax], where frmax is the
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Figure 3.6: a) Shows how a single voxel is sent either to the left or right child node,
according to the binary test h(v,θ, τ). b) Shows how training data arriving at a node S
are split into SL and SR to maximize an information gain criterion. c) Shows the principle
of feature boxes used to calculate the feature response for a voxel.

maximum feature range. The size of the feature boxes is limited to fsmax in each dimen-

sion. The parameters describing the size and position of the feature boxes are summarized

within the variable θ.

During node optimization, the goal is to select good features, which will be discussed

in the following.

Feature selection To find good features, an information gain criterion IG is maximized

at each node split. Since the parameter space of the features and thresholds is high dimen-

sional, it is computationally expensive to find the best possible combination of feature and

threshold at each node. Since we are interested in injecting some randomness in the train-

ing process, we can use random node optimization, thus considering only a small randomly

chosen subset of the feature space.

At each node, F random feature parameters θ and for each of them, L random thresh-

olds τi are generated. The node splitting function h(v,θ, τ) splits for all combinations of

features and thresholds the set of voxels S arriving at the node into SL and SR. The best

feature and threshold, defined as the one which results in the largest information gain IG

according to

IG(S, SL, SR) = H(S)−
∑

i∈{L,R}

|Si|
|S|

H(Si), (3.4)
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is selected and stored in the split node. The maximization of the information gain

aims to minimize the entropies H(S{L,R}), reflecting the uncertainties Λc(S{L,R}) of the

voting vectors coming from the voxels in left and right child node. With entropy H(S)

and uncertainty Λc(S{L,R}) defined as following:

H(S) =
∑
c

p(c;S) · log|Λc(S)| (3.5)

Λc(S) =
1

|S|
∑
i∈S
||dc(vi)−

1

|S|
∑
j∈S

dc(vj)||2, (3.6)

The variable p(c;S) is the ratio between the number of voxels that vote for landmark

c and the total number of voxels within the set S. In the case of all voxels voting for all

the landmarks simultaneously, the variable p(c;S) is equal for all classes and can therefore

be ignored.

3.4.1.2 Leaf Node Statistics

At each leaf node, we compute for the x, y and z components of dc(v) a 1D histogram

of all the voxels reaching the node. The histograms are denoted as hd,c(lt(v)), where d is

one of the three dimensions d = x, y, z. Those histograms are stored at the leaf node, to

be available when testing an image.

3.4.2 Testing

After having described the procedure for training an RRF, we will now show how to use

it to perform landmark localization.

During testing, voxels are pushed through all of the T trained trees. Starting at the

root node, voxels are passed recursively to the left or right child node, according to binary

feature tests stored at the split nodes, until a leaf node lt(v) is reached. We apply the

distance estimates given by the histograms at the leaf nodes hd,c(lt(v)) relative to the

voxel positions v and sum them up with a weight wc(v), according to (3.7), to get for

each landmark three histograms hd,c, representing the probabilities of a landmark being

located at a certain position separately for x, y, and z.

hd,c =
1

T ·
∑

v wc(v)

T∑
t=1

∑
v

wc(v)hd,c(lt(v)) (3.7)
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The final probability estimate p(lc) for each class is obtained by the product of the

three histograms for x, y and z as follows

p(lc = (vx, vy, vz)) = hx,c(vx) · hy,c(vy) · hz,c(vz) (3.8)

and the final landmark estimates for the landmark positions l̂c by the maximum of

p(lc) according to

l̂c = arg max
lc

p(lc). (3.9)

3.4.2.1 Alternative Voting Schemes

Above we have presented a method to obtain a probability for a landmark being at a

certain position in each dimension hd,c by summing up the leaf histograms hd,c(lt(v)).

This means that each voxel is voting with distance histograms for the landmark positions.

This approach is referred to as histogram voting scheme in the following. Summing up

of all the leaf histograms is computationally expensive and the memory requirements are

high, due to histograms stored in the leaf nodes of the trees. Therefore, we will investigate

alternative voting schemes to overcome those drawbacks. Inspired by the voting schemes

proposed in [8], we compare following schemes using

1. histogram voting: multiple votes from the training samples, i.e. voting with his-

tograms,

2. single voting(mean): a single vote at the mean offset,

3. single voting(max): a single vote at the maximum of the histogram calculated for

the offsets,

4. weighted single voting: a single weighted vote at the mean offset, using a weight

|Λc|−0.5 to put less emphasis on votes with a high uncertainty,

5. Gaussian voting: a Gaussian spread of votes, using a Gaussian with covariance

matrix Λc.

According to the results of [8], single voting seems to be a good alternative to his-

togram voting, gives even better results and is also much faster than histogram voting. A

disadvantage of single voting is that the uncertainties of the leaf nodes are not propagated

to the final probability distribution, e.g. the final probability distribution may have a low
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uncertainty, even when leaf histograms have a high uncertainty. This has the consequence

that the uncertainties of the probability distributions are less meaningful. Weighting of

the single votes gives no additional benefit in terms of precision. Casting Gaussian votes

gives similar results as the single voting scheme, but is significantly slower.

In Chapter 5, we will compare only the results of single voting (mean), single voting

(max) to histogram voting, since the other approaches show no benefits according to [8].

3.4.3 A Novel Scheme for Weighting of Votes

One of our main contributions is the introduced weighting factor wc(v) in (3.7). When

applying an RRF to an image, votes coming from different parts of the image are accumu-

lated, but of course not all of the votes can provide a precise prediction. However, coarse

localization of landmarks is supported by global information from all over the image,

while closer structures provide more information to increase the precision of landmark lo-

calization. We realize this idea by introducing our weighting function, which increases the

contribution of local structures by decreasing the weight of the voting vectors according

to their length ||dc||. This weight is computed as

wc(v) = e−||dc||·α, (3.10)

where α is a parameter allowing to adjust the steepness of the weighting function.

For example using a large value for α would decrease the weights very fast for increasing

voting vector lengths, thus only very local information is used to predict the landmark

positions. The voting vector dc has to be estimated from the distance histograms in x, y

and z dimension, which is done by calculating the mean of the histograms hd,c(lt(v)) in

the leaf nodes.

3.5 Conclusions

In this chapter we have presented our localization framework based on RRFs, inspired by

the ideas presented in [11]. Given an MRI input image, and a previously trained RRF,

the algorithm is able to localize landmarks by estimating a probability distribution of the

landmark positions. Our main contribution in this framework is the introduced weighting

scheme, which lets local structures around the landmark have a higher contribution to the

final landmark positions. Thus, we can increase the localization accuracy in terms of mean

and standard deviation, as can be seen from the Experiments in Chapter 5.
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Figure 3.7: Illustration, showing weighting of votes according to the voting vector length.
Larger weights are indicated as bolder vectors.
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In this chapter we propose a novel multi-scale setup of multiple RRFs based on the

framework introduced in Chapter 3 and our novel idea of the weighting factor from Sec-

tion 3.4.3.

In Section 4.1, we start with the motivation for using a multi-scale setup of RRFs,

Section 4.2 will explain the concept based on an example with two consecutive RRF

stages. The limitations of this two-step approach such as localization results wandering off

wrongly to neighboring landmarks are topic of Section 4.3. To overcome those limitations,

we extend this two-step approach to have an arbitrary number of consecutive RRF stages

in Section 4.4 and add an implicit model of the landmark configuration to the RRF

framework in Section 4.5.

41
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4.1 Motivation

The location of anatomical landmarks is constrained by all of their surrounding structures.

However, global information from all over the image supports to distinguish between the

repeating structures, while closer structures provide the information for a precise landmark

localization. We realize this concept by using multiple localization steps in combination

with the weighting scheme introduced in Section 3.4.3. The first steps aim to predict

landmarks based on the global shape of the hand, while the latter steps refine this pre-

diction based on local appearance around the landmarks. The weighting scheme lets local

structures have a higher contribution to the estimation of landmark positions.

To implement this idea, the RRF framework [11], as described in Chapter 3, is per-

fectly suitable, since it selects proper image structures that vote for landmark distances

in a probabilistic fashion, where position estimates can be weighted by the distance to

the estimate. Additional information about the landmark position can subsequently be

obtained by connecting multiple estimation steps, where the output of individual steps

restricts the area for estimating landmarks in the following step. This connection is made

by using several RRF stages, that gradually decrease the areas around landmarks, where

structural information is taken from. Together with the weighting scheme, we regard this

idea as our main contribution compared to related work [11, 21].

4.2 Two Step RRF Localization

For our application of landmark detection from hand MR images, we propose using two

RRF steps as shown in Fig. 4.1. In the following, we describe the two landmark detection

steps, each using an RRF based on the framework introduced in Chapter 3. We refer to

the combination of first and second detection step as our Gradually Improving Random

Regression Forest (GIRRF) localization method.

4.2.1 CRRF - Coarse Random Regression Forest

The first RRF, referred to as Coarse Random Regression Forest (CRRF), coarsely locates

the landmarks using appearance information from all over the image, i.e. CRRF is captur-

ing the global context. Appearance information is modeled using long-range context-rich

features. This strategy allows to distinguish between the different repeating structures

within the hand, without explicitly modeling geometric relationships between the land-

marks.
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Figure 4.1: Overview of the proposed localization method using RRFs at different scales.
The probability distributions pIc(l) and pIIc (l) are presented in 2D images, where the the 3D
MRI image was projected to 2D by summing up all intensity values along the z-dimension.

4.2.1.1 Training

We train an RRF according to Section 3, using all voxels within the training images as

datapoints. Input images are resampled to a quarter of the original resolution, since this

first step only requires a coarse localization, and experiments on full resolution did not

show any additional benefit in terms of localization accuracy and precision.

All voxels used for training vote for all landmark positions simultaneously. This means

that all landmarks are considered when calculating Information Gain (IG) and at the leaf

nodes, histograms for the displacements of all landmarks are stored.

To learn a good description of the shape of the hand, we allow the feature boxes to

be large and have large distances to the voxels. The parameters we used can be found in

Section 5.1.

4.2.1.2 Testing

When testing an unseen image, all voxels of the image are used. Same as during training

of the RRF, input images are resampled to a quarter of the original resolution. Voxels are

pushed through the trees of the forests by applying feature tests, thus ending up in leaf

nodes. The histograms for all landmark positions, which are stored in the leaf nodes, are

summed up using our weighting scheme. Thus, each voxel contributes to the position of

all landmarks.
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4.2.2 Final Prediction using Local Appearance

The second RRF learns from restricted areas around landmarks, given by the first step,

thus improving localization precision. One crucial step is choosing the size of those re-

stricted areas properly for both, training and testing. For a proper localization the pre-

dicted position from the first localization step has to be within those restricted areas.

Defining that size is a trade-off between reliability and precision of the landmark localiza-

tion algorithm. Choosing large areas results in a reliable detector, because it is very likely

that the first localization step ends up within this area. On the other hand, using larger

areas will include anatomical structures further away from the actual landmark position,

thus resulting in a worse precision. We use only one single forest for all the landmarks,

which makes effective use of feature sharing, since a lot of landmarks share similar local

appearance, an idea that was presented in [41].

Since the goal of this step is a good localization precision, training and testing is

performed at the full image resolution.

4.2.2.1 Training

When training the second RRF, only voxels close to the landmark positions lc are used.

Those voxels are selected according to the precision and accuracy of the first localization

step. In case of a poor precision of the first step, a larger region and in case of a good

precision, a smaller region around the landmarks is considered for training the RRF.

Therefore, before training the second step, we need to evaluate the performance of the

first detection step.

CRRF Performance Estimation For each of the N training images with index j =

1, .., N , we apply the first localization step, to get a probability pIj,c(l) of the landmark

c being at position l, as well as a separate probability pIj,c,d(ld) for each dimension d =

{x, y, z}. As can be seen in Fig. 4.1, we observed that these probability distributions have a

Gaussian-like shape with the maximum being in general not at the ground-truth landmark

position lj,c. This probability distribution tells us some information about the precision

and accuracy of the first localization step. We can use the variance of pIj,c(l) as well as

the deviation of the mean of pIj,c(l) from the ground-truth position to select voxels for

training.

For each of the images in the training set, we fit a one dimensional Gaussian function
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Figure 4.2: Schematic overview of voxel selection for training the second RRF.

f(l) =
1

σ̂
√

2π
e−

1
2( l−µ̂σ̂ )

2

(4.1)

into the probabilities pIj,c,d(ld). The estimated parameters of the function are the stan-

dard deviation σ̂ and the mean µ̂. By fitting that Gaussian function into pIj,c,d(ld) for

each landmark c, each training image j and each dimension d, we obtain the standard

deviations σ̂j,c,d and mean values µ̂j,c,d.

Voxel Selection We select voxels for training according to normal distributions. For

each training image and each landmark, we use a separate normal distribution with mean

values µj,c,d and standard deviations σj,c,d, thus focusing on local structures. The maximum

of the probability distribution should be located at the landmark position. Therefore, we

use the x, y and z components of the ground truth landmark position lj,c of image j as
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Figure 4.3: Estimating the precision of the first RRF for voxel selection. Example showing
PDFs of a landmark position in one dimension (e.g. x dimension). Red Curve shows a
probability distribution pIj,c,d(ld) estimated using CRRF, blue is the PDF of a Gaussian

with parameters µ̂j,c,d, σ̂j,c,d fitted into pIj,c,d(ld). Green curve shows a normal distribution
around the ground-truth landmark position for voxel selection.

mean values of the normal distributions µ̂j,c,d as following:

µj,c,d = lj,c,d (4.2)

The standard deviations σj,c,d control the size of the region used for training. We derive

σj,c,d from the estimated standard deviations σ̂j,c,d and the distance between the estimated

mean and the ground-truth landmark location according to

σj,c,d =

√√√√ 1

N

N∑
j=1

σ̂2j,c,d +

√√√√ 1

N

N∑
j=1

(µ̂j,c,d − lj,c,d)2. (4.3)

Additionally we apply a threshold ρ to the probability of the normal distribution, to

eliminate voxels with a low probability.

Each tree is trained with a different random subset of all voxels within the training

images. The number of voxels in the subsets is a certain fraction λ = 0.1 of the overall

number of voxels. Experiments showed that the value of λ has no significant impact on

the localization accuracy and precision. For each training image, the voxels in the random

subsets are drawn without replacement from all voxels within the image, according to
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normal distributions for each landmark with the parameters defined above. An example

of the selected voxels of a training image can be seen in Fig. 4.4.

All selected voxels for the different landmarks are used for training one single forest. At

each node split, feature tests are applied to all voxels arriving at the node, independently of

the landmark they are voting for. This makes effective use of feature sharing, since a lot of

landmarks share similar local appearance, an idea that was presented in [41]. When going

down to deeper levels of the tree, voxels of landmarks with a different local appearance will

be passed to different branches of the tree. During the IG calculation and in the voting

aggregation in the leaf nodes, voxels are voting only for those landmark positions where

pc(lc) ≥ ρ, i.e. they are voting only for close landmarks.

(a) (b)

Figure 4.4: Selected voxels of an exemplary image, used for training one tree of RRF II.
(a) 3D visualization of the selected voxels (b) selected voxels on one single slice of the 3D
MRI image.

In order to restrict RRF II to learn from local appearance, we restrict the size and the

distance of the feature boxes according to parameters fsmax and frmax, respectively.
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4.2.2.2 Testing

When testing an unseen image, the first detection step is applied to the input image, to get

a coarse probability distribution pIc(l). Like in the training stage, the standard deviations

σ̂c,d and the mean values µ̂c,d of pIc(l) are estimated. Testing voxels are sampled according

to normal distributions with the estimated parameters σ̂c,d and µ̂c,d. The sampled voxels

are pushed through the trees, thus ending up in leaf nodes. For the summation of the leaf

histograms, we extend the weighting function by additionally weighting votes with the

coarse probability according to

wc(v) = e−||dc||·α · pIc(l). (4.4)

Thus, votes from regions with a high probability according to the first localization step

are emphasized.

Since the localization precision increases when using votes from voxels closer to the

actual landmark position, multiple iterations using the same RRF are applied to the input

image. We use three iterations, where voxel selection and weighting of the votes is done by

using the output of the previous iteration. In each iteration the probability distributions

are refined, thus allowing a better voxel selection and weighting in the next iteration.

4.3 Limitations of the Two Step Approach

In the previous sections we have proposed a localization algorithm using two steps. The

first step makes a prediction based on the global shape of the hand, while the second step

is focusing on the local appearance around the landmarks. Although this approach gives

good results, as shown in Chapter 5, one limitation is that the prediction from the first

step has to be precise enough to be able to distinguish between the different landmarks,

i.e. the result of the first step has to be closer to the actual landmark position than to

any neighboring landmark positions. This is because the second step is trained only on

local appearance and cannot distinguish between the joints in the hand very well. In cases

where CRRF fails to capture the shape of the hand precisely, the localization results

may end up in a wrong landmark position, as illustrated in Fig. 4.5. One solution might

be to increase the maximum allowed distance frmax of the feature boxes in the second

localization step, thus obtaining a description of the area around the landmarks which

is better suitable to distinguish between the different joints in the hand. However, this

reduces the precision of landmark localization, because information further away from the



4.4. Setup of Multiple Random Regression Forests 49

actual landmark position is used for position estimation. Choosing this feature range is a

trade-off between achieving a good precision and having less outliers. In Sections 4.4 and

4.5 two approaches are presented to overcome this limitation.

ground-truth rst step second step

localization results

Figure 4.5: Example, which shows how the proposed two step localization approach might
wander off to a wrong joint with similar local appearance. The second localization step
is not able to distinguish between the red and the yellow joint on the thumb, due to
their similar local appearance. In this example the first localization step is very imprecise
localizing the yellow landmark located on the thumb, thus allowing the second step to
wander off to the wrong joint.

4.4 Setup of Multiple Random Regression Forests

One reason for the limitation described in the previous chapter is the large jump from

global shape to local appearance, when going from the first over to the second localization

step. To make the transition between global shape and local appearance smoother, more

RRFs can be introduced in-between. For those RRFs, the maximum size and distance of

the feature boxes steps in between is linearly interpolated between the first and the last

localization step. Thus, we combine the advantages of smaller and larger feature ranges

and make a smoother transition between first and last localization step. The question is,

how many RRFs to use, because a drawback is the increased runtime when adding more

localization steps. In Chapter 5 an evaluation showing the effect of varying the number of
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forests can be found.

4.5 Auto-Context - An Implicit Model of the Landmark

Configuration

During the second localization step, positions of multiple landmarks are estimated in-

dependently of each other, i.e. when making a prediction of a landmark position, the

position of the other landmarks are not considered. The behavior shown in Fig. 4.5 might

be prevented by including a geometric model of the landmark configuration into the RRF

framework.

To model geometric relations between the landmarks in the RRF, feature values can

be derived from the information about the position of other landmarks. Thus, the RRF

predicts landmark location based on the After applying the first RRF to an image, we

obtain a probability distribution for each landmark position. This information about all

landmark positions can be used in the second RRF by deriving feature values from these

probability distributions for the node split functions. In the literature this is often referred

to as auto-context [53].

RRF II

Figure 4.6: Algorithm overview, when using two RRFs with auto-context. RRF II derives
auto-context features from the probability distributions pIc , given by RRF I.

When introducing auto-context, the RRF uses two different types of features, namely,

appearance based features and auto-context features. During training, at each split node
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a random decision is made, whether the split function should be based on appearance or

auto-context features. The probability for using auto-context features is denoted as pac.

An auto-context feature response is derived from one of the probability distributions

for the landmark positions, obtained from the previous localization step. When generating

a random auto-context feature during training, first we randomly select which of the L

probabilities, belonging to the different landmarks, is used to calculate an auto-context

feature response. For deriving a feature value from the probability distribution, we inves-

tigate the following two auto-context feature types:

• Type I: Feature values are derived directly from the probability distribution us-

ing Haar-like features of the same type as used for modeling the appearance. An

advantage of this feature type is, that Haar-like features are able to capture proba-

bility distributions of arbitrary shape. However, when using this feature type, the RF

has to perform several feature tests to obtain a good description of the probability

distribution.

• Type II: Feature values are derived from the position of the maximum of the prob-

ability distribution. We use the distances from the voxel to the maximum in x, y

and z direction as features. The advantage of this feature type is that the RRF is

able to capture the relative position of the maximum using very few feature tests.

However, this feature type cannot handle probability distributions having multiple

modes, thus having no well defined position of the maximum.

4.6 Conclusions

In this chapter we have shown a novel hand bone landmark detection approach based on

several localization steps, each using an RRF. First of all, we have presented the concept

based on two steps, where the first localization step makes a prediction based on global

shape, thus handling the presence of repeating structures within the hand, while the second

step predicts solely based on local appearance, thus achieving a good precision.

To overcome the limitation of landmark locations wandering off to wrong neighboring

landmarks with a similar local appearance during the second localization step we have

presented two approaches. In the first approach we make a smoother transition when going

from global shape to local appearance by introducing more localization steps, between the

first and the last step. The second approach includes an implicit model of the landmark

configuration by adding auto-context features.
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In this chapter we compare the performance of a specific setup of our landmark local-

ization algorithm using two localization steps with other methods from related work in

Section 5.1. To get more insights into the behavior of the proposed algorithm, we provide

an evaluation of some selected parameters in Section 5.2. To investigate further possible

improvements regarding outlier detections, we show results when increasing the number

of forests in Section 5.3 and when including an implicit geometric model of the landmark

configuration using auto-context in Section 5.4. Results from all experiments are discussed

in Section 5.5.

5.1 Comparison of Two-Step Landmark Localization with

Related Work

We evaluated our proposed two detection steps CRRF and Gradually Improving Random

Regression Forest (GIRRF) and compared it to the TDPR [20] method. Further, to show

the benefit of the introduced weighting scheme, we made an experiment on the first de-

53
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tection step with and without the use of the weighting scheme, denoted as CRRF and

Standard Random Regression Forest (SRRF), respectively. Note that SRRF resembles

an implementation of the method in [11], but focusing on landmark localization instead

of bounding boxes, since we aim for accurate localization independent of bounding box

orientation.

5.1.1 Experimental Setup

We evaluated all algorithms in a cross-validation setup with N = 5 rounds. In each round

we randomly split the 60 available input images into 43 training and 17 testing images.

The measure we used for evaluating the performance is the Euclidean distance between the

ground truth and the estimated landmark position. The mean distance shows localization

accuracy, while its standard deviation describes precision of localization.

The setup of the different evaluated algorithms is as following:

TDPR: We evaluated the algorithm with the parameters proposed by the authors of

this work in [20].

SRRF: We trained SRRF by building T = 8 trees with maximum depth D = 14, where

for each node split 100 candidate features and 10 candidate thresholds were generated.

The size fsmax and range frmax of the random feature cuboids was restricted to 50mm

and 25mm in each dimension, respectively.

CRRF: The parameters of CRRF were set equally as for SRRF, but we used our weight-

ing function wc(v), with α set to 1/mm.

GIRRF For the first localization step of GIRRF, we used the same parameters as

for CRRF. The threshold for selecting the voxels for training was chosen as τ = 0.4 ·
max{p(lc)}. During training, we built T = 8 trees with maximum depth D = 15. At each

node split 20 random candidate features and 10 candidate thresholds are generated. The

maximum size in each dimension and distance of the feature cuboids is 7mm.

5.1.2 Results

Figure 5.3 shows a qualitative visualization of the cross-validation results of the evaluated

algorithms. For all landmarks we achieve a localization error (± standard deviation) of

1.44±1.51mm. In x, y and z direction we achieve a mean error of 0.68mm, 0.57mm and
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Table 5.1: Comparison of localization errors from cross validation on hand bone landmarks,
radius/ulna (R/U), carpometacarpal (CMP), metacarpal (MCP), distal and proximal in-
terphalangeal joints (DIP,PIP), finger tips (FT).

Method Localization Error [mm]: Mean ± Std.

R/U CMC MCP PIP DIP FT overall

TDPR [20] 2.8±2.8 2.0±1.1 2.0±2.4 2.0±3.1 1.8±3.9 2.7±4.2 2.2±3.1

SRRF [11] 7.9±5.1 7.4±5.1 6.7±3.1 6.5±3.2 6.5±3.3 8.1±5.3 7.2±4.4

CRRF 4.8±2.4 3.7±1.5 4.0±2.1 4.1±2.0 4.5±2.5 5.5±3.1 4.4±2.4

GIRRF 1.8±1.3 1.5±0.7 1.2±0.6 1.3±2.2 1.3±2.4 1.5±0.8 1.4±1.5

0.84mm, respectively. A more detailed quantitative comparison of the evaluated methods

can be found in Table 5.1, as well as in Fig. 5.1, which shows a cumulative distribution

of the errors. From the 5 · 17 · 28 = 2380 detected landmark positions, only six outliers

(0.25%) had a localization error larger than 10mm. One outlier was on the radius bone, the

others occurred on the distal interphalangeal (DIP) and proximal interphalangeal (PIP)

joints. The TDPR approach showed 35 (1.5%) outliers.

Runtime of our C++ algorithm, which was implemented on top of the open-source

Sherwood library from Microsoft Research∗, is about 400s per volume on an 8-core Intel(R)

Core(TM) i7 CPU. Parallelized forest training for one round of cross validation takes 24

hours on the same PC. Runtimes for training and testing of TDPR are around 2 hours

and 10s, respectively.

Memory required for training our two localization steps is around 10GB. Saving the

random forests on the hard disk consumes around 2GB and 4GB for the first and second

localization step, respectively. Most of the memory is used for storing leaf node histograms.

5.1.3 Discussion

As can be seen in Table 5.1 and Fig. 5.3 and 5.1, our proposed algorithm achieves superior

overall and individual localization accuracy in terms of mean error and standard deviation

among the compared algorithms. When comparing CRRF to SRRF, the clear improvement

when introducing the weighting function can be seen.

A detailed analysis of the outliers shows that for TDPR and GIRRF they occur in

hands with a finger pose that is not covered in the training set during cross validation,

∗http: // research. microsoft. com/ en-us/ downloads/ 52d5b9c3-a638-42a1-94a5-d549e2251728/

Accessed December 2015.

 http://research.microsoft.com/en-us/downloads/52d5b9c3-a638-42a1-94a5-d549e2251728/
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Figure 5.1: Results from cross-validation of comparison with related work. Plot shows the
cumulative distribution of the localization errors.

however, more often these situations occur in the TDPR approach. In case something

went wrong during the detection in the TDPR approach, almost all landmarks located

on the phalanges were detected wrong in the same image. TDPR seems to be even more

constrained by the variability in the training data through the explicit use of a PCA-based

SSM. An experiment showed us that adding this SSM to GIRRF does not fix the remaining

outliers, but rather introduces new errors on already well detected landmarks. In GIRRF,

there were at most three outliers in one single image, compared to 12 for TDPR. As

can be seen in Fig. 5.1, TDPR slightly outperforms GIRRF only for errors smaller than

1mm. This is because TDPR results are in sub-pixel resolution and GIRRF results only

in discrete pixel locations. However, GIRRF may achieve sub-pixel resolution by using for

example mean shift to estimate the final landmark positions from the probabilities.

All evaluated algorithms achieved the worst mean error on radius and ulna bone,

which can be explained by the large anatomical variation especially at the ulna bone and

because the landmarks had to be chosen at locations, that were hard to define in manual
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annotation due to lack of proper anatomical structures near the bone. On our dataset

CRRF is able to achieve a much better accuracy when including the weighting function

according to (3.10), compared to a weighting equal to one as proposed in [11]. The reason

for this improvement is, that local information around each landmark provides a more

accurate estimation, since there is a large pose variation of the fingers in our database.

This fact is exactly what has driven the development of our proposed approach. Since

automatic BAE relies on a very accurate bone localization, we find that we can improve

by using GIRRF compared to related work, due to its capability to extract age related

features to learn an age regression model based on located bone landmarks. A drawback

of our approach is higher runtime compared to e.g. TDPR. Our major bottleneck is leaf

histogram summation, which could be sped up by a GPU implementation or by using an

alternative voting scheme, as evaluated in Section 5.2.1.2.

Figure 5.2: Qualitative results of GIRRF shown on a bone skeleton (a) and on 2D projec-
tions of the MRI volumes (b-d) showing usual results (a,b) and outlier detections (c,d).
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SRRF CRRF

TDPRGIRRF

Figure 5.3: Comparison of results from cross-validation with related work within a pro-
jection of one 3D MRI image. The 3D MRI image was projected to 2D by summing up
all intensity values along the z dimension. For each cross-validation test image result and
each landmark, we calculated the error vector. We visualized each test result by adding the
error vector to the ground truth landmark positions of the presented image and putting a
point at this position. Each point within the presented image corresponds to a localization
result of one single image.



5.2. Effect of Random Regression Forest Parameters 59

5.2 Effect of Random Regression Forest Parameters

To get more insights into the behavior of the proposed landmark localization algorithm

GIRRF and determine important parameters, we will show the influence of some param-

eters of the RRF on the localization accuracy.

Instead of the comprehensive evaluation using multiple rounds of cross validation when

comparing GIRRF to related work in Section 5.1, we performed the following experiments

on one random split of our data into 43 training and 17 testing data.

5.2.1 Experiments and Results

5.2.1.1 Weighting Scheme

One of our main contributions is the introduced weighting scheme, which consists of an

exponential function with the parameter α allowing to adjust the steepness of the weighting

function. In other words α controls the range of votes that should be used for the position

estimation. Setting α to zero resembles an implementation of SRRF, where all votes are

weighted equally. The experiment in Section 5.1 showed improvements when using the

weighting function with α = 0.1/mm.

The question is, if we can get even more improvement by further increasing α. There-

fore, we evaluated CRRF using different values for α. As can be seen in Fig. 5.4, the mean

localization error gets significantly smaller when increasing α until a value of around 0.1.

For α > 0.1 the mean error starts to increase again, while the standard deviation increases

even more. We observed, that the probability distributions are getting very noisy for large

values for α, as can be seen from the qualitative results in Fig. 5.4(b).

5.2.1.2 Voting Scheme

In Section 5.1 we presented the results of CRRF using the histogram voting scheme to

allow a fair comparison with SRRF. Since the histograms are responsible for high memory

requirements and histogram summation is the major bottleneck of the runtime, we evaluate

the accuracy of two alternative voting schemes, which are faster and have lower memory

requirements. We made an experiment on CRRF comparing the following three different

voting schemes:

• histogram voting: Each voxel is voting with a histogram for the landmark position,

which is same strategy as used when obtaining results in Section 5.1.
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(a) Error plot over different values for α

(b) Example images with different values for α.

Figure 5.4: Experiments on the weighting scheme of CRRF using different values for α.
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Table 5.2: Results in terms of mean error and standard deviation using different voting
schemes for CRRF.

voting scheme
error [mm]

mean std.

histogram voting 3.93 2.17

single voting (max) 4.35 2.58

single voting (mean) 4.94 3.05

• single voting: Each voxel is voting for one single position, e.g. by taking the position

of the mean or max in each histogram for x, y and z dimension. This approach is faster

and has lower memory requirements compared to histogram voting. We distinguish

between 2 different versions of singe voting using a

– single voting (max): single vote at the position of the max of each histogram

for x, y, z as proposed in [8].

– single voting (mean): single vote at the position of the mean of each his-

togram for x, y, z.

Results of this comparison can be seen in Figure 5.5, which shows a cumulative distri-

bution of the errors as well as the resulting probability distribution of one randomly chosen

image. Quantitative results are shown in Table 5.2. From the cumulative distribution one

can observe, that the voting scheme using histograms seems to perform best at the cost

of a higher runtime and memory requirements when testing an image. The comparison

between different single voting schemes showed, that the scheme using the maximum is

better, compared using the mean of the histograms.

5.2.1.3 Depth and Number of Trees in the Forest

Two important parameters of the RRF are the maximum depth of trees and the number

of trees in the random forest. These parameters are rather application specific. To show

suitable parameters for our application, we evaluated the performance of CRRF and varied

the number of trees and the maximum depth in the forest. When evaluating the number of

trees, we allowed a maximum depth of 14 and when evaluating the maximum tree depth,

we used eight trees.

Results of the two experiments can be seen in Fig. 5.6. The localization error gets

smaller when increasing the number of trees, but after a few trees no significant im-

provement can be observed. The maximum depth of the trees has more influence on the
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Figure 5.5: Comparison between the histogram and two different single voting schemes
mean and max. The cumulative error distribution shows, for each error e on the x-axis the
percentage of all localization results with an error < e . Images (b) and (c) are showing
the resulting probability distributions of CRRF evaluated on an example image.
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Figure 5.6: Influence of the random forest parameters number of trees and tree depth on
the localization error.

localization error. Until the maximum depth used in our experiments, the error decreases

significantly.
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5.2.2 Discussion

Experiments on the weighting function showed, that there is an optimal value for α, con-

trolling the steepness of the weighting function as can be seen in Fig. 5.4. When increasing

α further, the probability distributions are getting noisy. This leads to a higher uncertainty

in the final decision on the landmark location when taking the maximum of probability

as can be seen from the increasing standard deviation for α > 0.1.

We could show, that the number of trees in the forest is a rather uncritical parameter.

While the accuracy increases almost monotonously with the number of trees, no significant

improvement can be observed after a few trees. In the work presented in [11] only 4

trees are used for the RRF. A speculation about the low number of trees required is,

that during this localization setup averaging is already performed when accumulating the

votes from different voxels. Therefore, increasing the number of trees gives no significant

improvements in terms of mean and standard deviation.

As can be seen in Fig. 5.6, the maximum tree depth can be chosen very large without

observing overfitting. An extrapolation of the error curve suggests, that there might be

more improvement possible, when further increasing the tree depth. However, the memory

requirements scale exponentially with the tree depth, as the number of nodes in a full

binary tree with depth d is 2d−1. Especially the memory required for saving the leaf node

histograms, prevents from further increasing the depth.

The experiment on alternative voting schemes shows, that similar localization results

can be achieved using single voting (max) while requiring only a fraction of memory,

because each histogram in the leaf node can be replaced by one single value. This voting

scheme would allow to train deeper trees, while having the same memory requirements.

Single votes at the position of the mean of the histograms gives worse results compared

to single votes at the position of the maximum. The reason for that might be, because

the mean of a histogram is very sensitive to outliers. Since the probability distributions

look noisier for the single voting case, applying mean shift on the probability distribution

might improve results compared to taking the maximum as the final landmark position.

5.3 Multiple Random Regression Forests

The results of the previous evaluations on GIRRF were obtained using two RRFs, where

the first forest makes a prediction based on global shape and the second based on local

appearance. Although, this two-step approach results in very few outliers, we are still
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interested in further increasing the robustness, since wrongly detected bones might have

an impact on the final age estimation. In Section 4.4 we claimed that by adding more

RRFs in-between the first and last localization step results in a smoother transition when

going from global shape to local appearance, thus reducing the number of outliers. To

show the influence of the number of forests on the localization accuracy, we performed

some experiments, described in the following section.

5.3.1 Experimental Setup

We evaluated our algorithm by randomly splitting data into 43 training and 17 testing

images. We varied the number of forests nf , starting with two, which is the proposed setup

of GIRRF, up to four forests. We set the parameters of the first and last localization step

as proposed in Section 5.1. For the forests in-between we selected a feature range and size

by linear interpolation between the setting of the first and last step.

Furthermore, we evaluated the algorithm with two and four localization steps in a

cross-validation setup with N = 5 rounds, where we randomly split the 60 available input

images in each round into 43 training and 17 testing images.

5.3.2 Results and Discussion

As can be seen in Fig. 5.7, increasing the number of forests in our algorithm improves the

localization accuracy in terms of mean and standard deviation. The improvement when

using four instead of two localization steps is about 20 percent for mean and 57 percent

for standard deviation.

Increasing the number of forest improves mainly on the standard deviation, which

tells us that the improvement is mainly related to localization results with a larger error,

which can also be seen from the cumulative error distribution in Fig. 5.7. However, the

cost of this improvement is a higher runtime, which increases approximately linear with

the number of forests.

From the results of the cross-validation, as can be seen in Fig. 5.7c, we observed that

the difference between using two and four localization steps is very small and that no

significant improvement can be achieved.
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5.4 Auto-Context

To improve on the few remaining outliers we investigated the possibility to use auto-

context features to include an implicit geometric model of the landmark configuration in

the RRF framework, as described in Section 4.5.

5.4.1 Experimental Setup

Since, this evaluation involved computational expensively training of many different

forests, we performed all evaluation on 2D hand images. We obtained the 2D images by

projecting the 3D hand MRI images along the z-dimension. We randomly split our data

into 15 training and 45 testing images. We trained our algorithm with nf = 3 forests,

each with 8 trees and with a depth of 15. We made experiments using two different

auto-context feature types:

• Type I: Feature values are derived directly from the probability distribution using

Haar-like features.

• Type II: The distances from the voxel to the maximum of the probability distribu-

tion in x and y direction are used as features.

In each node split we randomly decided with a probability pac, whether to use auto-context

features for the node-split function. We performed evaluations on different values for the

probability pac, while including zero allows a comparison the results when only appearance

based features are used.

5.4.2 Results and Discussion

As can be seen in Fig. 5.8, both auto-context feature types lead to similar improvements on

standard deviation, while no significant improvement on the mean error can be observed.

As can be seen from the cumulative error distributions, auto-context improves only on

the localization results with an error larger than around 3mm. This can be explained by the

fact, that geometric relationships between the landmarks supports only coarse localization,

while the exact landmark location can only be derived from local appearance.

5.5 Discussion

In this chapter we provided an evaluation of our algorithm and compared one specific

configuration using two localization steps to the SRRF and TDPR method in a cross-
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validation setup. As can be seen from the results, our proposed algorithm achieves superior

overall and individual localization accuracy in terms of mean error and standard deviation

among the compared algorithms.

A detailed analysis of the outliers shows that they occur in hands with a finger pose

that is not covered in the training set during cross validation, however, more often these

situations occur in the SRRF and TDPR method.

To improve on the remaining outliers and increase the robustness of our algorithm,

we investigated the possibility to increase the number of localization steps, to achieve

a smoother transition when going from global shape to local appearance. Further, we

made experiments to include auto-context features, thus implicitly modeling geometric

relationships between landmarks. Auto-context has no significant impact on the mean

error, while very minor improvements on the standard deviation can be achieved. However,

no significant improvements on the outlier localizations can be achieved by introducing

more localization steps and auto-context. This may be due to our limited training set of 43

images, covering not all possible poses, thus the learned geometric model cannot improve

on all remaining outliers.



5.5. Discussion 67

2 3 4
1

1.5

2

2.5

number of forests

e
rr

o
r 

[m
m

]

 

 

mean error

standard deviation

(a)

2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

error [mm]

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

 

 

2 RRFs

3 RRFs

4 RRFs

(b)

2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

error [mm]

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

 

 

2 RRFs

4 RRFs

(c)

Figure 5.7: Influence of the number of forests on the localization errors. (a) shows the
mean error and standard deviation and (b) the cumulative error distribution for different
number of forests. (c) shows results from cross-validation of comparison between using
two and four RRF localization steps.
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Figure 5.8: Experiments using two different types of auto-context features and various
probabilities pac for auto-context features. In the case where pac = 0, no auto-context
features are used.
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Conclusions and Outlook

In this thesis we showed a novel approach for localizing anatomical landmarks from left

hand MRI images. Localization of anatomical structures is an important procedure in

many medical applications. However, our interest is related to an ongoing research study

at the LBI-CFI in Graz, which investigates the possibility of replacing X-ray imaging with

radiation-free MRI for the purpose of age estimation of young unaccompanied asylum

seekers without identification document. To automate age estimation, localization of the

anatomical structures, where age relevant features can be found, is a crucial first step.

Our localization strategy is based upon the idea that the location of anatomical struc-

tures is constrained by all of their surrounding structures. Global information from all over

the image supports coarse localization and distinguishing between the repeating structures,

while closer structures provide the information for a precise landmark localization.

We realized this concept using RRFs at multiple scales. The first RRF predicts coarse

landmark locations from the global shape of the hand using long range context-rich fea-

tures, thus distinguishing between repeating structures within the hand. Subsequent local-

ization steps were locally restricted by a novel weighting scheme according to the coarse

localization provided by the previous RRFs. We regard this combination of multiple RRF

steps together with our weighting scheme, that lets local structures have a higher contri-

bution to the estimation of landmark positions, as our main contribution.

We showed that our approach is able to clearly outperform other methods regarding

localization accuracy on our hand MRI data, achieving a mean localization error of 1.4±
1.5mm with only 0.25% outliers with an error greater than 10mm.

Parts of this work were presented at the MICCAI conference in 2014 [23]. Furthermore,

first experiments, as presented in [47], demonstrated that the proposed algorithm is able

69
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to initialize an automatic skeletal bone age estimation algorithm.

To further improve on the remaining outliers, we investigated including auto-context as

an implicit geometric model of the landmark configuration, however, even though small im-

provements could be achieved, the remaining outliers could not be eliminated. We further

plan to investigate including more sophisticated shape representations, such as ShapeFor-

est [48], into our framework and we plan to investigate our proposed GIRRF approach on

other data sets as well, to show its generalization capabilities.



Appendix A

List of Acronyms

ASM Active Shape Model

BAE Bone Age Estimation

BB Bounding Box

CLM Constrained Local Model

CRRF Coarse Random Regression Forest

CT Computed Tomography

GIRRF Gradually Improving Random Regression Forest

GP Greulich-Pyle

IG Information Gain

MRF Markov Random Field

MRI Magnetic Resonance Imaging

MSL Marginal Space Learning

PBT Probabilistic Boosting Tree

PCA Principal Component Analysis

PDF Probability Density Function

RF Random Forest

RRF Random Regression Forest

SRRF Standard Random Regression Forest

SSM Statistical Shape Model

TDPR Top Down Image Patch Regression

TW Tanner-Whitehouse
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Publications and Presentations

1. T. Ebner, D. Stern, R. Donner, H. Bischof, M. Urschler. Towards Automatic Bone

Age Estimation from MRI: Localization of 3D Anatomical Landmarks. In: Proc

Medical Image Computing and Computer Assisted Intervention (MICCAI) 2014;

Boston, Springer LNCS 8674, p. 220-227. (Oral Presentation)

2. D. Stern, T. Ebner, H. Bischof, S. Grassegger, T. Ehammer, M. Urschler. Fully

automatic bone age estimation from left hand MR images. In: Proc Medical Image

Computing and Computer Assisted Intervention (MICCAI) 2014; Boston, Springer

LNCS 8674, p. 421-428.

3. D. Stern, T. Ebner, H. Bischof, M. Urschler. Determination of legal majority age from

3D magnetic resonance images of the radius bone. In: Proc International Symposium

Biomedical Imaging (ISBI), Beijing, China (May 2014). (Oral Presentation)

4. D. Stern, T. Ebner, E. Scheurer, M. Urschler. Legal Majority Age Determination

from MR Images of the Radius Bone. In 22nd Annual Meeting ISMRM, May 2014,

Milan, Italy.

5. K. Hammernik, T. Ebner, D. Stern, M. Urschler, T. Pock. Vertebrae Segmentation

in 3D CT Images based on a Variational Framework. In: Proc MICCAI Workshop

Computational Methods and Clinical Applications in Spine Imaging (CSI) 2014;

Boston. Honourable Mention Award
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